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Pekka Kilpeläinen, University of Eastern Finland, Finland

Custos
Esko Ukkonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright c© 2015 Antti Laaksonen
ISSN 1238-8645
ISBN 978-951-51-1701-4 (paperback)
ISBN 978-951-51-1702-1 (PDF)
Computing Reviews (1998) Classification: F.2.2, H.3.3, H.5.5, I.2.8
Helsinki 2015
Unigrafia



Algorithms for melody search and transcription

Antti Laaksonen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
ahslaaks@cs.helsinki.fi
http://cs.helsinki.fi/u/ahslaaks/

PhD Thesis, Series of Publications A, Report A-2015-5
Helsinki, November 2015, 36+54 pages
ISSN 1238-8645
ISBN 978-951-51-1701-4 (paperback)
ISBN 978-951-51-1702-1 (PDF)

Abstract

This thesis studies two problems in music information retrieval: search for
a given melody in an audio database, and automatic melody transcription.
In both of the problems, the representation of the melody is symbolic, i.e.,
the melody consists of onset times and pitches of musical notes.

In the first part of the thesis we present new algorithms for symbolic melody
search. First, we present algorithms that work with a matrix representation
of the audio data, that corresponds to the discrete Fourier transform. We
formulate the melody search problem as a generalization of the classical
maximum subarray problem. After this, we discuss algorithms that operate
on a geometric representation of the audio data. In this case, the Fourier
transform is converted into a set of points in the two-dimensional plane.

The main contributions of the first part of the thesis lie in algorithm design.
We present new efficient algorithms, most of which are based on dynamic
programming optimization, i.e., calculating dynamic programming values
more efficiently using appropriate data structures and algorithm design
techniques. Finally, we experiment with the algorithms using real-world
audio databases and melody queries, which shows that the algorithms can
be successfully used in practice. Compared to previous melody search sys-
tems, the novelty in our approach is that the search can be performed
directly in the Fourier transform of the audio data.
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The second part of the thesis focuses on automatic melody transcription. As
this problem is very difficult in its pure form, we ask whether using certain
additional information would facilitate the transcription. We present two
melody transcription systems that extract the main melodic line from an
audio signal using additional information.

The first transcription system utilizes as additional information an initial
transcription created by the human user of the system. It turns out that
users without a musical background are able to provide the system with
useful information about the melody, so that the transcription quality in-
creases considerably. The second system takes a chord transcription as
additional information, and produces a melody transcription that matches
both the audio signal and the harmony given in the chord transcription.
Our system is a proof of concept that the connection between melody and
harmony can be used in automatic melody transcription.

Computing Reviews (1998) categories and subject
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F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical

Algorithms and Problems
H.3.3 [Information Storage and Retrieval] Information Search and

Retrieval
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Chapter 1

Introduction

In this chapter, we state the problems that are studied in the thesis, and
discuss related topics in the literature. After this, we describe the roles of
the papers and specify the contributions of the author of the thesis. Finally,
we outline the structure of the overview part of the thesis.

1.1 Research problems

We study two music information retrieval problems: (1) symbolic melody
search in an audio database, and (2) automatic melody transcription. The
problems are interesting both as theoretical challenges and as building
blocks for real-world applications.

In both of the problems there are two components: an audio track and
a symbolic representation of a melody. The audio track consists of digital
samples of an audio signal, such as a track extracted from a CD. The
symbolic melody consists of musical notes with onset times and pitches.

In the symbolic melody search problem, a collection of audio tracks is
given, together with a melody query. The task is to find the audio tracks
that contain the melody. Melody search algorithms can be used in music
search engines that allow users to hum or whistle a melody, for example,
and search for songs that contain the melody.

Automatic melody transcription is a natural subproblem in automatic
music transcription. Given an audio track, the task is to extract the main
melodic line and represent it using a symbolic notation. While melody
transcription is an easy task for experienced music listeners, it has proven
to be a difficult problem for computers.

Interestingly, the two problems are connected with each other: solving
one of them would also solve the other. First, with an automatic melody
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2 1 Introduction

transcription algorithm, an audio database could be converted into a sym-
bolic database of melodies. After this, the melody search problem would
be easy to solve using standard pattern matching algorithms.

Second, a melody search algorithm could be transformed into a brute
force melody transcription algorithm. Assume that we could check if any
given melody appears in the audio. Thus, we could go through all possible
melodies of certain length, check whether they appear in the audio, and
create the final transcription by combining the appearing melodies.

Both signal processing techniques and symbolic algorithms are needed
in the above problems. We focus on developing symbolic algorithms and
use existing signal processing methods.

1.2 Related work

In this section we provide background for the topics of the thesis. Both
symbolic melody search and automatic melody transcription are actively
studied problems in the literature.

1.2.1 Symbolic melody matching

Symbolic melody matching is a pattern matching problem where patterns
are symbolic representations of melodies.

A popular approach for melody matching is to represent melodies as
strings so that each character in the string corresponds to one musical
note [18, 36]. Usually, only the pitches of the notes are considered and
the onset times are ignored. The benefit of the string representation is
that standard string algorithms, such as approximate string matching with
dynamic programming [38], can be used.

Another way to represent a melody is to describe the melody notes
as events on a timeline [61]. In this representation, both the pitches and
the onset times are considered. Pattern matching is performed using a
technique called dynamic time warping [6]. This method also uses dynamic
programming and resembles approximate string matching.

Finally, symbolic melody matching can be seen as a geometric prob-
lem [34, 56]. The idea is to represent each melody note as a point in
the two-dimensional plane so that x coordinates denote onset times and
y coordinates denote pitches. Using this representation, melody matching
becomes a point set pattern matching problem [45].
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1.2.2 Music search engines

Music search engines allow users to query information in a database that
contains music. There are two common types of music search engine: query-
by-humming systems, and audio fingerprint systems.

In a query-by-humming system [18], the user can hum a melody as a
query, and the system searches for songs that contain the melody. Most
query-by-humming systems [11,27] use a symbolic database and convert the
query melody into a symbolic form. After this, symbolic melody matching
algorithms can be used for searching for the melody.

A difficulty in constructing a query-by-humming system is how to create
the symbolic database, because a large amount of music is available only in
audio form and not in symbolic form. One possibility is to extract features,
such as approximate melody pitches, automatically from the audio data
[13, 46, 54]. However, automatic conversion of audio data into a symbolic
representation is a difficult and unsolved problem.

Another type of music search engine is an audio fingerprint system
[7,22]. In such a system, the user can submit an audio query that is searched
for in an audio database. For example, the user can record music from the
radio and submit the recording to the system to find out the name of the
song. To make the search efficient, the database contains audio fingerprints
that represent features of the songs in a compact form.

Both query-by-humming and audio fingerprints have been used in com-
mercial music search engines. At the moment, popular commercial systems
include SoundHound1 and Shazam2.

1.2.3 Automatic melody transcription

Automatic melody transcription is the problem of extracting the main
melodic line from an audio recording [19]. It is one of the subproblems
in automatic music transcription [2].

Various systems for automatic melody transcription have been devel-
oped during the last decade [42,50]. The transcription usually begins with
the discrete Fourier transform or a similar technique for calculating the
strengths of frequencies within audio frames. After this, the problem is to
determine which frequencies correspond to musical tones.

Most automatic melody transcription systems are based on calculating a
salience function [39,49,50]. The salience function estimates the frequencies
of musical tones in the audio signal using knowledge of the typical structure

1http://www.soundhound.com/
2http://www.shazam.com/

http://www.soundhound.com/
http://www.shazam.com/


4 1 Introduction

of musical tones. An alternative approach for salience methods is to use
signal separation techniques [14].

The final step in automatic melody transcription is to construct the
melody. A popular method for this is to use heuristic rules that describe
features in typical melodies [19, 39, 50]. Some systems also use hidden
Markov models with the Viterbi algorithm [14,49].

While there have been many approaches for automatic melody tran-
scription, no currently available algorithm reliably produces good melody
transcriptions [2]. A central problem in current automatic melody tran-
scribers is that the quality of the transcription varies a great deal. Tran-
scriptions may be excellent for some inputs but poor for other inputs, and
it is also difficult to estimate the quality of the transcription.

Being a difficult problem, automatic melody transcription can be fa-
cilitated by providing additional musical information for the transcription
system. Typically, the information is created by the user of the system,
which results in a semi-automatic transcription system [15,25,26].

1.3 Original papers

The thesis consists of five papers. Papers I, II and III present algorithms for
symbolic melody search, and Papers IV and V discuss automatic melody
transcription. In this section we briefly summarize the contents and the
contributions of the papers.

Paper I. The paper introduces a new algorithmic problem that is a
generalization of the classical maximum subarray problem. This problem
corresponds to symbolic melody search in a matrix that is generated by
the discrete Fourier transform. The main contributions of the paper are
efficient algorithms for solving the problem.

Paper II. The paper discusses geometric algorithms for melody search.
An O(n2m) time algorithm for time-scaled search and an O(n(m+ log n))
time algorithm for time-warped search are presented, where n and m de-
note the number of notes in the database and in the pattern, respectively.
The proposed algorithms are more efficient than the previously published
algorithms for the tasks, both in theory and practice.

Paper III. The paper presents an O(nm log n) time algorithm for time-
warped melody search. The paper also defines a new search problem, ap-
proximately time-scaled search, and shows how the new algorithm can be
extended to that problem. In addition, the paper contains experiments
where symbolic melodies are searched for in an audio database.
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Paper IV. The paper is based on a user experiment where participants
listened to excerpts of audio tracks and marked down approximate onset
times and pitches of melody notes. The paper studies what kind of infor-
mation can be obtained from human listeners, and how the information can
be used in semi-automatic melody transcription.

Paper V. The paper presents a melody transcription algorithm that
uses a chord transcription as a starting point. The algorithm is based on the
fact that the melody and the chords are connected with each other in music.
The motivation for the algorithm is that automatic chord transcription
seems to be easier than automatic melody transcription.

The author of the thesis has designed and implemented the new algo-
rithms in the papers and conducted the experiments in the papers. He has
also written all content in the papers, except that Paper II was written
together with Kjell Lemström. The supervisors have given feedback for
paper drafts and discussed the topics with the author.

1.4 Outline

The structure of the rest of the overview part is as follows:
Chapter 2 introduces topics and techniques that are used in the pa-

pers of the thesis. First, we discuss musical terminology and methods for
processing and representing audio data. After this, we present algorithm
design techniques that are used in our algorithms.

Chapter 3 discusses symbolic melody search, and summarizes the con-
tents of Papers I, II and III. We define the algorithmic problems and present
the main theoretical results and the ideas behind them. Finally, we compare
the algorithms using real-world data.

Chapter 4 deals with automatic melody transcription, and describes
the contents of Papers IV and V. We discuss the current difficulties in
automatic music transcription, and present our transcription systems.
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Chapter 2

Preliminaries

In this chapter, we provide background material for the topics of the thesis.
We discuss the elements of music that we focus on, and show how an audio
signal can be converted into a symbolic representation. Finally, we review
algorithm design techniques that will be used later in the thesis.

2.1 Elements of music

Elements of traditional Western music include melody, harmony, timbre,
and dynamics [59]. In this thesis, we mainly focus on melody, but also
address the interplay between melody and harmony.

Melody and harmony are important elements of music because they
form the basis of musical themes. As an example, consider the excerpt
from Rachmaninov’s Second Piano Concerto [43] in Figure 2.1. The melody
and the harmony of the excerpt are shown in Figure 2.2, representing the
musical content of the excerpt in a compact form.

Next we discuss the representation of melody and harmony in our algo-
rithms. Using a standard convention, we model both the melody and the
harmony as a sequence of events on a timeline. The melody consists of note
events, while the harmony consists of chord changes.

2.1.1 Melody

We model the melody as a sequence of note events. Each note event (t, p)
consists of two parts: the onset time t and the pitch value p.

The onset time is the beginning time of the note, measured in seconds.
In a monophonic melody, all the onset times are distinct, whereas in a
polyphonic melody, multiple notes may have the same onset time.

7



8 2 Preliminaries

Figure 2.1: Complete score.

Figure 2.2: Melody and harmony.

The pitch denotes how high or low the note is located on the musical
scale. We represent pitches using integer numbers so that the interval
between pitches a and b is |a− b| semitones.

Often, we use MIDI note numbers [21] for referring to the pitches. A
MIDI note number is an integer in the range [0, 127], and can be calculated
from pitch f Hz by the formula 69+b12 log2(f/440)+0.5c. The MIDI note
number of middle C (261.6 Hz) is 60.

For example, the first four notes in the melody of Figure 2.2 can be
represented as [(0, 68), (0.5, 65), (1, 67), (1.5, 68)], assuming that the onset
time difference between each consecutive note pair is 0.5 seconds.

Note that, unlike traditional musical notation, we do not specify the
durations of the notes in the melody representation. The reason for this
is that the pitches and the onset times of the notes describe the melody
precisely enough for our purposes.

2.1.2 Harmony

We model the harmony as a sequence of chord changes. Each chord change
(t, s) consists of two parts: the onset time t and the chord symbol s.

The onset times are measured in seconds similar to note events. The
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chord symbol can contain the following parts:

Root note: The most important note in the chord, encoded using note
names (C, C#, D, etc.).

Quality : Major (default), minor (letter “m”), augmented (“aug”), or
diminished (“dim”).

Interval : An extra note in the chord, represented by a diatonic interval
above the root.

Bass note: If the bass note is different from the chord note, it is marked
after the character ’/’.

For example, “F”, “Fm”, “Fm7”, and “Fm7/C” are valid chord sym-
bols. Symbol “F” denotes an F major triad, symbol “Fm” denotes an F
minor triad, symbol “Fm7” denotes an F minor triad with added seventh,
and symbol “Fm7/C” contains C as the bass note.

Traditionally, chord symbols are mostly used in popular music, while
Roman numeral analysis is preferred in classical music [5]. However, chord
symbols can also be used in classical music, and this is the standard repre-
sentation in automatic chord transcription [23].

For example, the first four chords in Figure 2.2 can be represented as
[(0, “Fm”), (1, “Cm/Eb”), (2, “Bb/D”), (4, “Eb”)].

2.1.3 Ambiguity

Melody and harmony are widely used concepts in the theory of music, but
it is difficult to precisely define how they appear in real-world music. There
can be several interpretations, and it is not possible to state that only one
of them would be correct. For example, sometimes it is not clear whether
a note is part of the melody or part of the accompaniment.

The problems studied in this thesis are inherently ambiguous, and one
consequence of this is that evaluating the algorithms is difficult [28, 52].
Still, experienced music listeners “know” what melody and harmony are and
can mark them down, even if they may disagree on some details. Databases
with hand-made annotations are used for evaluating the algorithms [35].

2.2 From audio to symbols

The algorithms studied in the thesis are symbolic, i.e., they work with
symbolic representations of melody and harmony. However, we use the
algorithms for music audio processing.

To convert the audio data into a symbolic representation, we use the
discrete Fourier transform that is a standard technique in music audio pro-
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cessing. The Fourier transform reveals which frequencies are present in the
audio signal, and the transform can be calculated efficiently.

After performing the Fourier transform, a symbolic representation of
the potential musical notes in the audio signal can be constructed. We use
two symbolic representations in our algorithms: matrix representation and
geometric representation.

2.2.1 Discrete Fourier transform

A standard technique in music audio processing is the discrete Fourier
transform (DFT). Given a list of digital samples of an audio signal, the
DFT constructs a set of sinusoids whose sum corresponds to the samples.
Each sinusoid has a fixed frequency, and its amplitude denotes the strength
of the frequency in the audio signal.

Usually, the audio data is divided into small audio frames, each of which
consists of consecutive samples within a time interval. Typically, the dura-
tion of a frame is between 0.01 and 0.1 seconds. Each frame is processed
separately using the DFT during the conversion.

The result of the process is a spectrogram of the audio signal. The spec-
trogram is a matrix where each column corresponds to one audio frame, and
the elements in the columns denote the strengths of different frequencies
used in the analysis. The spectrogram shows which frequencies are present
at each frame.

The DFT can be calculated in O(n log n) time using the FFT algorithm
[10, Chapter 30], where n is the number of audio samples.

2.2.2 Musical tones

A musical tone consists of a set of frequencies that are approximate inte-
ger multiples of the fundamental frequency of the tone. The fundamental
frequency determines the pitch that the listener hears, and the other fre-
quencies contribute to the timbre of the tone. Musical instruments sound
different because they have different timbres.

The challenge in music audio processing is that the audio signal is a
complex combination of frequencies of different musical tones. In addition,
some frequencies can be non-musical noise that should be ignored. For
this reason, it is difficult to, for example, identify which musical tones are
present in the signal or follow a melody played by a specific instrument.

As an example, Figure 2.3 shows the spectrogram of the excerpt from
Rachmaninov’s Second Piano Concerto. The horizontal axis denotes the
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Figure 2.3: Spectrogram of an audio signal.

time, and the vertical axis denotes the frequencies. The lighter the color in
the spectrogram, the stronger the frequency.

2.2.3 Matrix representation

The first symbolic representation that we use for the audio data in the thesis
is the matrix representation. The matrix representation is a straightforward
representation that resembles the spectrogram. The representation consists
of n audio frames, each having m pitch elements.

The matrix representation is a matrix M of m rows and n columns. We
use the notation M [i, j] to access the matrix elements where 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Each matrix element is a real number that denotes the
strength of pitch i within audio frame j. The pitches are integer numbers
and are measured in semitones.

Each pitch in the matrix representation is associated with a set of con-
secutive frequencies in the spectrogram. For example, the middle C (261.6
Hz) could be associated with the frequency range [255, 265]. After this,
the strength for the pitch can be calculated as a sum of the corresponding
elements in the spectrogram.

The matrix representation is used in Papers I, IV and V.

2.2.4 Geometric representation

The second symbolic representation that we use for the audio data is the
geometric representation [34]. In this representation, each musical note is
a point in the two-dimensional plane.
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The geometric representation consists of a set S of n points. Each point
p ∈ S is a pair of real numbers, and we use notations p.x and p.y to refer
to the x and y coordinates, respectively. The x coordinate corresponds to
the onset time, and the y coordinate corresponds to the pitch. In addition,
the point can be assigned a value that denotes the strength of the note.

When a and b are two points, a < b exactly when either a.x < b.x or
a.x = b.x and a.y < b.y. Often, we assume that the set S is sorted and can
be accessed using the notation S[1], S[2], . . . , S[n].

The matrix representation can be converted into the geometric repre-
sentation by representing each matrix element as a point. The conversion
can be seen as a primitive automatic music transcription. To improve the
quality of the representation, points with zero or near-zero strengths can
be omitted because they are unlikely to represent real musical notes.

The geometric representation is used in Papers II and III.

2.3 Algorithm design

In this section we review algorithm design techniques that are used as build-
ing blocks for the algorithms in the thesis. First we present a data structure
for maintaining the minimum value in a queue. After this, we discuss dy-
namic programming optimization and the increasing pointer method.

2.3.1 Queue minimum structure

In several of our algorithms, we use a data structure that maintains a queue
of numbers and provides the following operations:

• Insertion: Insert number x at the end of the queue.

• Removal: Remove the first number from the queue.

• Minimum: Return the minimum number in the queue.

All the above operations can be implemented in amortized O(1) time [55]
using a data structure that can be seen as a simplification of a general
Cartesian tree [17, 58]. This data structure is often used for solving the
sliding window minimum problem.

The idea is to use two queues: queueQ contains the actual numbers, and
queue A is an auxiliary structure that contains pointers to queue Q. The
first pointer in A points to the minimum number in Q, and each following
pointer points to a larger number in Q than the previous pointer.
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Insertion: Let x be the new number that is inserted into the structure.
As long as the last pointer in A points to a number that is equal to or
greater than x, the pointer is removed from A. After this, x is inserted into
Q, and a pointer to x is inserted into A.

Removal: If the first pointer in A points to the first number in Q, the
pointer is removed from A. After this, the first number is removed from Q.

Minimum: The first pointer in A points to the minimum number in Q.

The amortized time complexity of each operation is O(1) because each
number and pointer is inserted and removed only once, and only the first
and last elements of the queues are inspected.

The queue minimum structure is used in Papers I and III.

2.3.2 Dynamic programming optimization

Dynamic programming [10, Chapter 15] is a general algorithm design tech-
nique that we use in several of our algorithms. Our contributions in the
algorithms lie in dynamic programming optimization: how to implement
the dynamic programming computation as efficiently as possible.

As an example, consider the following problem: Given an array X of n
numbers X[1], X[2], . . . , X[n], what is the maximum sum of numbers in a
subarray whose length is between a and b?

Let s(k) denote the sum of subarray X[1], X[2], . . . , X[k]:

s(k) =

{
0 k ≤ 0

s(k − 1) +X[k] otherwise.

Let f(k) denote the maximum sum of a subarray whose length is be-
tween a and b and whose last element is located at index k. Thus, the
answer to the problem is maxn

i=1 f(i). The value f(k) can be calculated
using the formula f(k) = s(k)−minb

i=a s(k − i).
A direct computation of the f(k) values would take O(n2) time because

for each k, there are b − a + 1 = O(n) possible choices for the length of
the subarray. However, the computation can be implemented in O(n) time
using the queue minimum structure.

The idea is to calculate the value f(k) by maintaining a queue that
contains the elements s(k−a), s(k−a−1), . . . , s(k−b). Thus, the minimum
value of s(k − i) can be found in amortized O(1) time from the queue. In
addition, after each calculation, one element is added to the queue and one
element is removed from the queue.

Most algorithms in Papers I, II and III are based on dynamic program-
ming optimization in one way or another.
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2.3.3 Increasing pointer method

Another technique worth mentioning is the increasing pointer method. In
this technique, we maintain a pointer that has n possible values. At each
step in the algorithm, the pointer value can be increased arbitrarily, but the
pointer value is never decreased. Hence, the total time needed for updating
the pointer is O(n).

As an example of the technique, consider the following point set pattern
matching problem:

Given two point sets S and P in the two-dimensional plane, the problem
is to find all translations t such that P + t ⊂ S. Let n be the number of
points in S, and let m be the number of points in P . The problem can be
solved in O(nm) time assuming that the point sets are sorted [45,56].

The idea is to maintain values X[1], X[2], . . . , X[m] that refer to points
in S. During the search, these values are used for matching the points of
P with the points of S. Initially, X[k] = 0, for k = 1, 2, . . . ,m.

The search consists of n phases. At the beginning of each phase, the
value X[1] is increased. After this, for each k = 2, 3, . . . ,m, the value
X[k] is increased as long as S[X[k]] − S[X[1]] < P [k] − P [1]. Finally, if
S[X[k]]−S[X[1]] = P [k]−P [1], for all k = 2, 3, . . . ,m, one translation has
been found and t = S[X[1]]− P [1].

The time complexity of the algorithm is O(nm) because the total in-
crement for each pointer is O(n) during the algorithm.

The increasing pointer method is used in Papers I and II.



Chapter 3

Melody search from audio

The first part of the thesis (Papers I, II and III) focuses on symbolic pattern
matching algorithms that can be used in the following real-world applica-
tion: given a collection of audio tracks and a symbolic melody query, find
the track that contains the melody. The speciality in our work is that we
use symbolic algorithms for searching for melody occurrences in audio data.

We approach the problem from both a theoretical and a practical view-
point. The efficiency of the algorithms is important because audio files
contain a lot of data, and the queries should be as fast as possible. The
problems are also interesting as independent algorithm design problems,
without connecting them to musical applications.

We discuss two types of algorithms for the melody search problem: ma-
trix algorithms, that are based on the matrix representation of the audio
data, and geometric algorithms, that are based on the geometric represen-
tation. We also conduct experiments where melodies are searched in an
audio database using the algorithms.

3.1 Matrix algorithms

In this section we discuss algorithms that search for symbolic melody oc-
currences in the matrix representation of an audio track. We model the
melody as a sequence of horizontal segments in the matrix, so that each
segment corresponds to one note in the melody.

3.1.1 Problem statement

The input consists of an m×n matrix M of real numbers (audio data), and
a set of k segments (melody pattern), indexed 1, 2, . . . , k. Matrix M is as
defined in Section 2.2.3. Each segment in the pattern corresponds to one

15
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3 1 7 5 2 9 6 4 1 8 5 3 9 7

5 2 9 6 4 1 8 5 3 9 7 4 2 8

6 4 1 8 5 3 9 7 4 2 8 6 3 1

8 5 3 9 7 4 2 8 6 3 1 7 5 2

9 7 4 2 8 6 3 1 7 5 2 9 6 4

2 8 6 3 1 7 5 2 9 6 4 1 8 5

Figure 3.1: A melody pattern occurrence in a matrix

note in the melody. The segment i is assigned range [ai, bi], which denotes
the allowed duration of the note, and if i < k, integer di, which denotes the
pitch difference between notes i and i+ 1.

The task is to find an occurrence of the melody in the matrix. In an
occurrence, each segment is assigned row ri (1 ≤ ri ≤ m) and columns
[si, ei] (1 ≤ si ≤ ei ≤ n). There are three requirements:

Note durations: The duration of each note in the occurrence must be
within the given bounds, i.e., ai ≤ ei − si + 1 ≤ bi, for i = 1, 2, . . . , k.

Intervals: The intervals (pitch differences) between consecutive notes
in the pattern and in the occurrence must be the same, i.e., di = ri+1 − ri,
for i = 1, 2, . . . , k − 1.

Continuity: The next note begins immediately after the previous note
ends, i.e., ei + 1 = si+1, for i = 1, 2, . . . , k − 1. Thus, we focus on “legato”
melodies, that are common in real-world music.

In addition, an evaluation function is given, and the task is to find an
occurrence that maximizes the value of the evaluation function. We study
the following evaluation functions:

(E1) Sum:
∑k

i=1

∑ei
j=si

M [ri, j].

(E2) Minimum of sums: mink
i=1

∑ei
j=si

M [ri, j].

(E3) Average: (
∑k

i=1

∑ei
j=si

M [ri, j])/(ek − s1 + 1).

(E4) Minimum of averages: mink
i=1(

∑ei
j=si

M [ri, j])/(ei − si + 1).

Figure 3.1 shows an example of a pattern occurrence. Assuming that
the evaluation function E1 is used, the evaluation value of this occurrence
is 21 + 26 + 17 = 64.

In Paper I, we present efficient algorithms for finding the best pattern
occurrences in terms of the above functions. Each function poses a separate
algorithm design problem: how to find a pattern occurrence that maximizes
the value of the evaluation function as fast as possible.
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3.1.2 Background

To our knowledge, the present problem has not been discussed before in
the literature. However, the special case where k = 1, i.e., there is only one
segment, is a well-known problem in computer science.

Sum: Finding the subarray with the maximum sum is a classical prob-
lem, and it can be solved in O(n) time [4]. The extended version of the
problem, where a length range for the subarray is given, can also be solved
in O(n) time [33] (Section 2.3.2).

Average: When working with averages, the maximum subarray problem
is nontrivial only if a length range for the subarray is given. If there is no
length range, an optimal solution is always a single element in the array.
This problem is more difficult than the maximum sum problem, but an
O(n) time solution has been discovered [9].

3.1.3 Sum

Function E1 calculates the sum of all matrix elements within the segments
in the occurrence. This is the most straightforward evaluation function,
and the techniques for maximizing the value of this function can also be
extended to other evaluation functions.

First, we present a simple dynamic programming algorithm that works
in O(nmkw) time where w = maxk

i=1 bi − ai. After this, we show how
the time complexity of the algorithm can be improved by calculating the
dynamic programming values more efficiently.

The efficient dynamic programming calculation is based on the queue
minimum structure (Section 2.3.1). The running time of the final algorithm
is O(nmk), so it is independent of the segment lengths.

3.1.4 Minimum of sums

Function E2 calculates the minimum segment sum among all segments in
the occurrence. The motivation is that the function attempts to ensure
that all the notes in the melody occurrence are strong.

We present several algorithms for maximizing the value of this function.
First, the O(nmkw) time dynamic programming approach for E1 can also
be applied to E2. However, the dynamic programming calculation is more
difficult to speed up for this function.

For the general case, we present an O(nmk logw) time algorithm. The
algorithm uses a balanced binary search tree to calculate the dynamic pro-
gramming values more efficiently.
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For the special case where the matrix is nonnegative (for example, a
spectrogram), i.e., M [i, j] ≥ 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n, we present
another algorithm whose running time is only O(nmk). In this case, the
binary search tree can be avoided, which yields both a more efficient and
simpler algorithm. This algorithm also uses the queue minimum structure.

3.1.5 Average

Function E3 calculates the average of all matrix values within the occur-
rence. The benefit in calculating averages instead of sums is that long
durations of notes do not increase the evaluation value.

Interestingly, calculating the maximum average can be reduced to cal-
culating the maximum sum. The idea is to convert the problem “what is
the maximum average?” into “is the maximum average at least x?”.

Suppose that we have a sequence a1, a2, . . . , an of real numbers. The
crucial observation is that the average of the sequence is at least x exactly
when the sum of the sequence a1−x, a2−x, . . . , an−x is at least 0. Thus,
we can binary search for the maximum average using an algorithm that
calculates the maximum sum.

The number of steps in the binary search depends on the required pre-
cision of the result. Assuming that each matrix element can be represented
using a constant number of bits, the number of steps is O(log n), and the
time complexity becomes O(nmk log n).

3.1.6 Minimum of averages

Finally, function E4 calculates the minimum average among all segments
in the occurrence. The function is a combination of E2 and E3, and the
maximum value for the function can be found in O(nmk log n) time by
using binary search in a similar way.

3.1.7 Future work

We believe that O(nmk) is the best possible time complexity for the prob-
lem because the matrix contains nm elements and the pattern contains k
segments that may all have different lengths. For this reason, it does not
seem possible to combine subproblems of different segments.

Using the algorithms in Paper I, the maximum value for function E1

and nonnegative E2 can be found in O(nmk) time. It is an interesting open
question whether the maximum value for general E2 and functions E3 and
E4 could also be calculated in O(nmk) time.
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Another interesting question is whether there is a simpler O(nmk logw)
time algorithm for function E2, for example, based on simple sorting. The
current algorithm uses a complex balanced binary tree which results in
large constant factors and a difficult implementation.

3.2 Geometric algorithms

In this section we approach the melody search problem from another view-
point using the geometric representation of music. Using this represen-
tation, the melody search problem can be seen as a special case of two-
dimensional point set pattern matching.

3.2.1 Problem statement

The input consists of two point sets in the two-dimensional plane: set S
contains n points (musical piece), and set P contains m points (melody
pattern). This corresponds to the definition in Section 2.2.4. We assume
that the points in the sets are sorted and can be indexed like array elements.

The problem is to find functions f : P → S that correspond to oc-
currences of pattern P in point set S. The intervals between consecu-
tive notes must be the same in the pattern and in the occurrence, i.e.,
p1.y − p2.y = f(p1).y − f(p2).y, for each p1, p2 ∈ P .

Depending on the type of search, we introduce additional constraints
for x coordinates in an occurrence:

Exact search: The tempo of the melody is not changed, i.e., p1.x−p2.x =
f(p1).x− f(p2).x for each p1, p2 ∈ P .

Time-scaled search: The tempo of the melody is scaled by a constant
scaling factor α, i.e., α(p1.x−p2.x) = f(p1).x−f(p2).x for each p1, p2 ∈ P .
Each occurrence may have a distinct scaling factor.

Time-warped search: The tempo of the melody can be altered without
restrictions, but the order of the notes cannot be changed, i.e., p1.x < p2.x
always when f(p1).x < f(p2).x.

Figure 3.2 shows examples of exact, time-scaled and time-warped melody
occurrences in a point set.

In Papers II and III, we present new algorithms for time-scaled and
time-warped melody search. The algorithms are both more efficient and
conceptually easier than the earlier algorithms for the tasks.
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(a) (b)

(c) (d)

Figure 3.2: Geometric melody search: (a) melody pattern, (b) exact occur-
rence, (c) time-scaled occurrence, (d) time-warped occurrence

3.2.2 Background

Compared to traditional two-dimensional point set pattern matching [45],
the speciality in the present problem is that scaling is allowed only hori-
zontally but not vertically. For this reason, the problem is different from
standard point set pattern matching.

All the above problems have been studied before. The exact search
problem can be solved in O(nm) time [45, 56]. The best previous algo-
rithm for time-scaled search works in O(n2m log n) time [32], and the best
previous algorithm for time-warped search works in O(n2m) time [30].

3.2.3 Time-scaled search

In time-scaled search, the pattern can be scaled horizontally using constant
factor α. Different pattern occurrences can have different scaling factors.
The special case α = 1 is similar to the exact search problem.

Time-scaled search is a difficult problem, because partial occurrences
that have different scaling factors cannot be combined. For this reason,
it seems difficult to use any dynamic programming techniques. It can be
proved that the problem is 3SUM complete [29], so it is not probable that
it could be solved considerably faster than in O(n2) time.
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In Paper II, we present an O(n2m) time algorithm for the time-scaled
search problem. The new algorithm is an extension to the previous O(nm)
time algorithm for exact search [56]. Like the previous algorithm, it uses a
set of pointers to track pattern note positions.

3.2.4 Time-warped search

Time-warped search is the most flexible search type because any tempo
changes are allowed as long as the notes appear in the correct order in the
occurrence. Although the problem resembles time-scaled search, it is a very
different problem from the viewpoint of algorithm design. Now dynamic
programming can be used, because there are no fixed scaling factors.

In Paper II, we present an O(n(m + log n)) time algorithm for the
time-warped search problem. The algorithm uses a merge-like technique to
maintain partial pattern occurrences. If the set of pitches is constant, i.e.,
the pitches are integers in the range [0, c] where c is a constant, the time
complexity of the algorithm is only O(nm).

In Paper III, we present another algorithm for time-warped search. The
algorithm is based on dynamic programming and the queue minimum data
structure, and its time complexity is O(nm log n). Again, if the set of the
pitches is constant, the time complexity is only O(nm).

Paper III also introduces two extensions to the problem, which are useful
in practice. First, the notes are assigned strengths, and an occurrence with
maximum total strength has to be found. Second, each consecutive note
pair in the pattern is assigned a range of allowed scaling factors. The
proposed algorithm supports both of the extensions.

3.2.5 Future work

An interesting special case for exact and time-scaled search is the one-
dimensional problem where each point has the same y coordinate, i.e.,
each note has the same pitch. It seems that the one-dimensional problem
captures the difficulty of the general problem [29], so concentrating on the
one-dimensional problem first could be a good approach.

The current best algorithms for exact and time-scaled search, with run-
ning times O(nm) and O(n2m), respectively, both use the idea of main-
taining a set of pointers that increase during the search. To get rid of the
m factor, this technique should be replaced with something else. Possibly,
ideas from efficient string matching algorithms could be used [57].

Another interesting question is whether the time-warped search problem
could be solved in O(nm) time without assuming that the set of the pitches
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is constant. The algorithm in Paper II is already close to this because it
only needs one O(n log n) time sorting as preprocessing, and the rest of the
algorithm works in O(nm) time.

3.3 Experiments

We conducted experiments where we searched for symbolic melodies in a
real-world audio database using the algorithms presented in this chapter.
We searched for themes in a collection of Tchaikovsky’s six symphonies.
Papers I and III describe the experiments in detail.

3.3.1 Algorithms

We compared four matrix algorithms and two geometric algorithms in the
experiments. The matrix algorithms use evaluation functions E1, E2, E3

and E4, and the geometric algorithms are based on time-warped search,
using (1) unlimited and (2) limited scaling range.

In practice, there are two main differences in matrix and geometric algo-
rithms. First, in matrix algorithms all audio frames within the occurrence
contribute to the strength of the melody, while in geometric algorithms
each note event corresponds to a single audio frame. Second, in geometric
algorithms note events with near-zero strengths can be omitted.

3.3.2 Material

Our audio database consisted of Tchaikovsky’s six symphonies [12]. We
converted the material from CD tracks into mono WAV files using a sample
rate of 44,100 Hz. There were 25 tracks in the database, and the total
duration of the tracks was 4 hours and 22 minutes.

The symbolic melody queries were taken from Barlow and Morgen-
stern’s A Dictionary of Musical Themes [1]. The melodies used in the
experiments are available online as MIDI files [37]. There were a total of
75 melodies, with durations between 5 seconds and 25 seconds.

3.3.3 Evaluation

For each melody query and algorithm, we calculated the rank of the cor-
rect audio track in the sorted list of tracks. The sorting criterion was the
maximum occurrence value of the melody in the track. For example, rank
1 means that the correct track was the first track in the list. The rank was
always between 1 (best) and 25 (worst).
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Algorithm Rank 1 Rank 1–3

Expected random 3 9
Matrix E1 6 14
Matrix E2 7 14
Matrix E4 14 18
Geometric 1 18 26
Geometric 2 22 31
Matrix E3 26 32

Table 3.1: Results of the experiments

As a baseline in the evaluation we used an algorithm that returns ran-
dom occurrence values. The probability that this algorithm would yield
rank 1 for a melody query is 1/25, so when searching for 75 melodies, the
expected number of rank 1 results is 3.

3.3.4 Results

Table 3.1 shows the results of the experiments. For each algorithm, the
number of queries with rank 1 and with rank 1–3 are shown.

It turned out that there are large differences between the evaluation
functions for matrix algorithms. The most suitable evaluation function for
this material was E3 that calculates the average of matrix elements within
the occurrence. Using function E3, 26 out of 75 queries had rank 1, the
best result in the experiments.

On the other hand, the results of other matrix algorithms were consid-
erably weaker. The evaluation functions E1 and E2 that calculate sums do
not seem to be good choices because their results were barely better than
the results of the random algorithm.

The results of the geometric algorithms were close to each other. This
is not surprising because both the algorithms were based on time-warped
search, and the only difference was that algorithm 2 restricted the range of
allowed scaling factors between melody notes. The geometric algorithms
outperformed all matrix algorithms except E3.

3.4 Discussion

The main contributions of this chapter are in algorithm design. The dis-
cussed problems are interesting as independent problems, because the ma-
trix problems extend the well-known maximum subarray problem [4], and
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the geometric problems are variations of point set pattern matching [45].
The experiments show that the algorithms can be successfully used

in practice for searching for symbolic melodies in audio material. The
Tchaikovsky dataset used in the experiments is difficult because many
melody occurrences in the symphonies are subtle. Thus, it is challenging
evaluation material for the algorithms.

It is evident that the choice of evaluation function in matrix algorithms
is important, so it might be worthwhile to study more evaluation functions.
However, from the algorithm design viewpoint, each evaluation function is a
different problem and it may not be possible to design an efficient algorithm
for a complex evaluation function.



Chapter 4

Automatic melody transcription

The second part of the thesis (Papers IV and V) discusses automatic melody
transcription, i.e., the extraction of the most important melody from the
audio signal. Automatic melody transcription is a difficult problem, and
despite many proposed approaches and methods, to date, no automatic
system is capable of reliably producing good-quality melody transcriptions.

While melody transcription is difficult for computers, most human lis-
teners can recognize melodies and provide information about the notes in
the melody, even if they cannot produce a complete melody transcription.
In our first study, we use the information produced by human listeners in
a melody transcription system.

Our second study focuses on the connection between melody and har-
mony in music. Automatic chord transcription seems to be easier than
automatic melody transcription, and there are already systems that pro-
duce good chord transcriptions. For this reason, we use chord information
to improve the quality of the melody transcription.

4.1 User-aided transcription

In general, music listeners have an understanding of what a melody is and
can recognize melodies in music, even if they do not have the skills to
produce a melody transcription [24]. It turns out that listeners can also
help the computer to create a melody transcription.

In Paper IV, we present a system that creates a melody transcription
from an audio signal together with a user. First, the user gives information
about approximate note onset times and pitches. After this, the system
creates the melody transcription using both the information given by the
user and the information in the audio data.

25
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Of course, before creating such a system, it is important to know what
kind of information about the melody users are able to produce. For this
reason, we conducted an experiment with users to find out what character-
istics in the melody they can recognize and write down.

4.1.1 Background

Creating the transcription with the help of a user is called semi-automatic
transcription. For example, users can provide information about instru-
ments [25], identify some notes in the melody [26], or select the audio
source that corresponds to the melody [15].

A system somewhat similar to ours is Songle [20]. This system creates
a preliminary transcription automatically, and after this the users can work
on the transcription collaboratively.

The ability to recognize musical pitches has been studied in psychology
[41]. An interesting phenomenon, that we also noticed in our experiment, is
that participants without a musical background could only compare pitches
accurately when they were played with the same instrument.

4.1.2 Listening experiment

In the experiment, the participants were given two melody excerpts with
an accompaniment extracted from real-world recordings. The first excerpt
was taken from the Star Wars theme by John Williams, and the second
excerpt was taken from the opera, Parsifal, by Richard Wagner.

For the experiment, we created a user interface where it was possible to
listen to the original version of the excerpt, mark down an initial melody
transcription and listen to the synthesized transcription. Figure 4.1 shows
the layout of the user interface.

The participants were asked to perform two tasks. First, they had to
mark down the locations where a note in the melody begins. After this,
the participants were shown correct locations where notes begin, and they
were asked to determine the pitch for each note. To do this, the interface
had commands to make the pitch lower and higher and play the original
sound and the synthesized pitch repeatedly.

We had a total of 30 participants in the experiment. Group A consisted
of 15 participants without a musical background, and Group B consisted
of another 15 participants with a musical background. None of the partic-
ipants were experienced music transcribers.

It turned out that the first task in the experiment was easy for most
of the participants. Both listeners without and with a musical background
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Figure 4.1: The user interface used in the experiment.

were able to accurately mark down the places where melody notes begin.
Surprisingly, the best performers in the task were participants without a
musical background but who were active computer gamers.

The success in the second task, however, strongly depended on musi-
cal background. Most participants with a musical background were able
to determine all pitches correctly, whereas almost all participants without
a musical background could not determine exact pitches but only select
pitches that were near the correct pitches.

4.1.3 Transcription system

We created a system that takes as input an audio track and an approximate
melody transcription created by the user. The transcription consists of a
sequence of notes with onset times and pitches. However, the notes in
the transcription may not be exactly correct, because the transcription is
created by a user without transcription experience.

The system is based on a dynamic programming algorithm, and it cre-
ates a melody transcription that is based both on the approximate tran-
scription by the user and the actual audio data. Depending on the config-
uration, the system may use either only approximate note onset times, or
both approximate note onset times and pitches.

The assumption in the design of the system was that the users do not
have a musical background. For this reason, the pitches in the approximate
transcription are not exact, and the challenge for the algorithm is to find
the correct pitches by using the information in the audio data.



28 4 Automatic melody transcription

4.1.4 Evaluation

We evaluated our system using a collection of orchestral music recordings.
For each excerpt, we created a simulated approximate transcription. We
estimated the errors in transcriptions by deriving parameters for normal
distribution from the data collected in the user experiment.

We compared the results of our system with a state-of-the-art automatic
melody transcription system. For each audio file, we calculated the accu-
racy of the transcription as the ratio of correctly annotated audio frames
and all audio frames. The total accuracy was calculated as the average of
all transcription accuracies.

The accuracy of the automatic system was 0.33, whereas the accuracy
of our system was 0.24 using only note onset time information, and 0.66
using both onset time and pitch information. Thus, the quality of the
transcription was much better using our system with full information than
using the automatic system.

Of course, the drawback in our system is that it is not an automatic
system but it requires that the user helps the computer to create the tran-
scription. However, it is interesting that users without a musical back-
ground are able to produce information that clearly improves the quality
of the automatic melody transcription.

4.2 Chord-based transcription

For human listeners, melody transcription is an easier task than chord tran-
scription, because it is usually easy to follow the melody, while recognizing
the harmony requires more expertise. Surprisingly, for automatic systems,
the situation is just the opposite: the current automatic chord transcribers
are better than the automatic melody transcribers [35].

In Paper V, we approach the automatic melody transcription task from
the chord transcription perspective. If a chord transcription is available, it
can be used as a starting point for a melody transcription because there is
a strong connection between the melody and the chords. For example, the
melody is usually based on the notes of the underlying chord.

Given that chord transcription is easier for computers than melody
transcription, we can first create an automatic chord transcription, and
then use this transcription to create an automatic melody transcription.
Thus, the melody transcription algorithm is given both the audio data and
the chord transcription as input.
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4.2.1 Background

A chord transcription describes the harmony of the music, and consists of
a sequence of chord changes on a timeline. Several systems for automatic
chord transcription have been developed [8, 40].

Most automatic chord transcription systems are based on calculating
and comparing chromagrams [16]. The quality of the transcription can be
improved by smoothing the chord sequence [53]. A popular approach for
this is to use a hidden Markov model together with statistical information
about probabilities of chord changes [31,49].

To our knowledge, our system is the first system that creates the melody
transcription based on a chord transcription. However, many previous stud-
ies have combined key, chord and pitch estimation [3, 44,47].

4.2.2 Transcription system

Our chord-based melody transcription system is given an audio track and
a chord transcription, and it produces a melody transcription. The system
divides the transcription into three phases: segmentation, key estimation,
and pattern matching.

In the segmentation phase, the audio data is partitioned into segments
of approximately equal length using the chord transcription. The idea is
to select the segments so that each segment has a stable chord, and the
segments can be processed separately later in the algorithm.

In the key estimation phase, the key of the excerpt is estimated using
the chord transcription. The key determines which notes are most likely to
appear in the melody. For example, if the key is D major, the most typical
notes in the melody are the notes that belong to the D major scale, i.e., D,
E, F#, G, A, B and C#.

Finally, in the pattern matching phase, the system selects a suitable
melody pattern for each segment. A melody pattern is a group of notes
that have some onset times and pitches. The system attempts to select a
melody pattern that matches the audio data, the key of the excerpt and
the chord of the segment.

4.2.3 Evaluation

We evaluated our melody transcription system using a collection of Finnish
popular music. The collection consisted of song excerpts in audio form,
together with hand-made melody and chord transcriptions. We used the
melody transcriptions as the ground truth.
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We measured two values to evaluate the melody transcriptions: preci-
sion and recall. Precision is the ratio of the number of correctly transcribed
notes to the total number of notes in the transcription. Recall is the ratio
of the number of correctly transcribed notes to the total number of notes
in the ground truth.

We used both automatically created and hand-made chord transcrip-
tions in the evaluation. Using automatic chord transcription, the precision
of the melody transcription was between 0.40 and 0.45, and the recall was
between 0.60 and 0.65. Using hand-made transcriptions, the precision was
between 0.55 and 0.60, and the recall was between 0.50 and 0.55.

The evaluation results show that automatic melody transcription and
chord transcription can be successfully combined. As expected, the preci-
sion of the melody transcription was better using hand-made chord tran-
scriptions, but there were no large differences between the results using
automatic and hand-made chord transcriptions.

4.3 Discussion

Melody transcription is easy for experienced human listeners, because they
can hear and follow the melody. Computers, on the other hand, extract
from the data something that may or may not be the melody. Sometimes
automatic transcriptions are excellent, but usually they contain primitive
mistakes that no human listener would ever make.

We feel that adding musical knowledge to the transcription algorithm
is an ambivalent technique. Musical knowledge usually improves the tran-
scription result to some extent, but at the same time, it increases the
amount of “guessing” in the algorithm, because it typically involves making
decisions based on probabilities.

For example, it is true that the melody notes follow the scale of the
underlying chord with high probability. However, human transcribers do
not trust musical knowledge but their ears. Even if most melody notes are
outside the current scale, as it can be in modern music, human transcribers
write down the correct melody without hesitation.

Of course, it is not clear that automatic melody transcription should
use methods similar to those used by human transcribers, or that guess-
ing should be avoided. In any case, we believe that there should be more
collaboration between human transcribers and designers of automatic tran-
scription systems.
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