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Speech is the most common form of human communication. An understanding of the speech
production mechanism and the perception of speech is therefore an important topic when studying
human communication. This understanding is also of great importance both in medical treatment
regarding a patient’s voice and in human-computer interaction via speech.

In this thesis we will present a model for digital speech called the source-filter model. In this
model speech is represented with two independent components, the glottal excitation signal and the
vocal tract filter. The glottal excitation signal models the airflow created at the vocal folds, which
works as the source for the created speech sound. The vocal tract filter describes how the airflow is
filtered as it travels through the vocal tract, creating the sound radiated to the surrounding space
from the lips, which we recognize as speech. We will also present two different parametrized models
for the glottal excitation signal, the Rosenberg-Klatt model (RK-model) and the Liljencrants-Fant
model (LF-model). The RK-model is quite simple, being parametrized with only one parameter in
addition to the fundamental frequency of the signal, while the LF-model is more complex, taking
in four parameters to define the shape of the signal. A transfer function for vocal tract filter is
also derived from a simplified model of the vocal tract. Additionally, relevant parts of the theory of
signal processing are presented before the presentation of the source-filter model.

A relatively new model for glottal inverse filtering (GIF), called the Markov chain Monte Carlo
method for glottal inverse filtering (MCMC-GIF) is also presented in this thesis. Glottal inverse
filtering is a technique for estimating the glottal excitation signal from a recorded speech sample. It
is a widely used technique for example in phoniatrics, when inspecting the condition of a patient’s
vocal folds. In practice the aim is to separate the measured signal into the glottal excitation signal
and the vocal tract filter. The first method for solving glottal inverse filtering was proposed in the
1950s and since then many different methods have been proposed, but so far none of the methods
have been able to yield robust estimates for the glottal excitation signal from recordings with a
high fundamental frequency, such as women’s and children’s voices. Recently, using synthetic vowels,
MCMC-GIF has been shown to produce better estimates for these kind of signals compared to other
state of the art methods.

The MCMC-GIF method requires an initial estimate for the vocal tract filter. This is obtained
from the measurements with the iterative adaptive inverse filtering (IAIF) method. A synthetic
vowel is then created with the RK-model and the vocal tract filter, and compared to the measure-
ments. The MCMC method is then used to adjust the RK excitation parameter and the parameters
for the vocal tract filter to minimize the error between the synthetic vowel and the measurements,
and ultimately receive a new estimate for the vocal tract filter. The filter can then be used to calcu-
late the glottal excitation signal from the measurements. We will explain this process in detail,
and give numerical examples of the results of the MCMC-GIF method compared against the IAIF
method.
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Tal är den mest vanliga formen av mänsklig kommunikation. P̊a grund av detta är det viktigt

att ha en bra först̊aelse om hur människan producerar och uppfattar tal d̊a man studerar mänsklig

kommunikation. Denna först̊aelse är ocks̊a högst viktig i medicinska sammanhang d̊a man v̊ardar

en patients röst och även i utvecklandet av talkommunikation mellan människor och maskiner.

I denna avhandling kommer vi att presentera den s̊a kallade källa-filter-modellen för talpro-

duktion. I modellen är tal representerat som tv̊a oberoende komponenter, röstkällan och an-

satsrörsfiltret. Röstkällan modellerar luftflödet som uppst̊ar vid stämbanden och fungerar som

källa för det skapade talljudet. Ansatsrörfiltret modellerar hur ljudet filtreras d̊a den rör sig ge-

nom ansatsröret till läpparna, varifr̊an det str̊alar ut till omgivningen som talljud. Vi kommer även

att presentera tv̊a olika parametriserade modeller för röstkällan, Rosenberg-Klatt modellen (RK-

modellen) och Liljencrants-Fant modellen (LF-modellen). Av dessa tv̊a är RK-modellen simplare

och använder sig av bara en parameter tillsammans med den fundamentala frekvensen för att ska-

pa signalen, när LF-modellen däremot använder sig av fyra parametrar för att skapa formen för

signalen. Vi kommer ocks̊a att härleda en överföringsfunktion för ansatsrörsfiltret fr̊an en förenklad

modell för ansatsröret. Före granskningen av källa-filter-modellen kommer även relevanta delar av

teorin om signalbehandling att presenteras.

En relativt ny metod för röstkällans inversfiltrering (eng. glottal inverse filtering, GIF), den s̊a

kallade Markov-kedja Monte Carlo -metoden för inversfiltrering (MCMC-GIF), presenteras ocks̊a i

denna avhandling. Röstkällans inversfiltrering är en teknik där man strävar efter att uppskatta

röstkällan fr̊an en inspelning av tal. Tekniken används mycket i till exempel foniatri, d̊a man

granskar tillst̊andet av en patients stämband. I praktiken g̊ar metoden ut p̊a att separera den

inspelade talsignalen till en signal för röstkällan och ansatsrörsfiltret. Första metoden för att lösa

problemet formulerades redan p̊a 1950-talet och sen dess har m̊anga olika metoder presenterats,

men tills vidare har ingen av metoderna lyckats skapa p̊alitliga estimat för röstkällan i s̊adana fall

där den fundamentala frekvensen i inspelningen är hög, vilket är ofta fallet för kvinnors och barns

röster. MCMC-GIF-metoden har dock under senaste tiden visats, med hjälp av syntetiska vokaler,

uppn̊a bättre resultat än n̊agon av de tidigare metoderna även för dessa slags mätningar.

I MCMC-GIF beräknas ett ursprungligt estimat för ansatsrörsfiltret fr̊an de inspelade

mätningarna genom att använda den s̊a kallade iterativa adaptiva inversfiltrering (IAIF) metoden.

En syntetisk vokal skapas därefter med hjälp av RK-modellen och det beräknade ansatsrörsfiltret

och jämförs med mätningarna. Därefter används MCMC-metoden för att justera RK-parametern

och parametrarna för ansatsrörsfiltret för att minimera felet mellan den syntetiska vokalen och

mätningarna, och till slut anh̊alls ett nytt estimat för anstatsrörsfiltret. Filtret kan sedan användas

för att beräkna en ny uppskattning för röstkällan fr̊an mätningarna. Denna metod kommer att pre-

senteras noggrant i avhandlingen, med numeriska exempel av en jämförelse mellan MCMC-GIF och

IAIF metoderna.
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Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



vi



Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos

Lasse Lybeck

Digitaalinen puhe ja Markov-ketju Monte Carlo -menetelmä äänilähteen käänteissuodatukselle
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Puhe on ihmisen kommunikaation yleisin muoto. Tämän vuoksi puheentuottomekanismin ja

puheen käsityksen ymmärtäminen on tärkeä osa ihmisen kommunikaation ymmärtämisessä. Tämä

ymmärrys on myös tärkeää lääketieteessä tutkiessa potilaan ääntä sekä ihmisen ja koneen välisessä

puhekommunikaatiossa.

Tässä tutkielmassa tulemme esittämään niin kutsutun lähde–suodin -mallin digitaaliselle puheel-

le. Mallissa puhe mallinnetaan kahtena erillisenä osana, äänilähteenä ja ääntöväyläsuodattimena.

Äänilähde mallintaa äänihuulilla muodostuvaa ilmavirtaa, joka toimii perustana puheäänelle.

Ääntöväyläsuodatin selittää miten ääni suodattuu kulkiessaan ääntöväylän läpi, muodostaen äänen,

joka säteilee huulilta ympäröivään tilaan ja jonka me miellämme puheeksi. Esitämme kaksi para-

metrisoitua mallia äänilähteelle, Rosenberg–Klatt -mallin (RK-mallin) ja Liljencrants–Fant -mallin

(LF-mallin). Näistä kahdesta mallista RK-malli on yksinkertaisempi, sillä siinä äänilähde mallin-

netaan perustaajuuden lisäksi vain yhdellä parameterilla, kun taas LF-mallissa äänilähteen muoto

määritetään neljän parametrin avulla, tehden siitä huomattavasti monimutkaisemman. Johdam-

me lisäksi ääntöväyläsuodattimelle siirtofunktion yksinkertaistetusta mallista ääntöväylälle. Ennen

lähde–suodin -mallin läpikäyntiä esitämme lisäksi tarpeelliset osat signaalikäsittelyn teoriasta.

Tutkielmassa esitämme myös melko uuden mallin äänilähteen käänteissuodatukselle (eng. glot-

tal inverse filtering, GIF), niin kutsutun Markov-ketju Monte Carlo -menetelmän äänilähteen

käänteissuodatukselle (MCMC-GIF). Äänilähteen käänteissuodatus on tekniikka, jossa äänilähde

arvioidaan nauhoitetusta puhesignaalista. Tekniikkaa käytetään laajasti esimerkiksi foniatriikassa,

kun halutaan tutkia potilaan äänihuulten kuntoa. Käytännössä menetelmissä tavoitteena on erottaa

havaintosignaali äänilähteeksi ja ääntöväylän suodattimeksi. Ensimmäinen menetelmä äänilähteen

käänteissuodatukselle esitettiin jo 1950-luvulla ja useita malleja ongelman ratkaisemiseksi on eh-

dotettu siitä lähtien, mutta vieläkään mikään tunnettu menetelmä ei ole pystynyt varmasti arvioi-

maan äänilähdettä tilanteissa, joissa havaintosignaalin perustaajuus on korkea, kuten naisten ja

lasten äänissä tyypillisesti on. MCMC-GIF-menetelmä on kuitenkin osoittautunut synteettisiin vo-

kaaleihin perustuvassa testauksessa toimivan muita tämän hetken parhaita menetelmiä paremmin,

etenkin korkean taajuisten havaintojen tapauksessa.

MCMC-GIF-menetelmässä ääntöväylän suodattimelle tarvitaan alustava arvio, joka lasketaan

niin kutsutulla IAIF-menetelmällä (eng. iterative adaptive inverse filtering). Tätä suodatinta ja

RK-mallia käyttäen luodaan synteettinen vokaaliäänne, jota verrataan havaintosignaaliin. MCMC-

menetelmää käytetään tämän jälkeen säätämään RK-mallin ja ääntöväylän suodattimen paramet-

reja minimoimaan virhe synteettisen vokaalin ja havaintojen välillä, mistä lopulta saavutetaan uusi

arvio ääntöväylän suodattimelle, jota käytetään uuden äänilähteen arvion laskemiseen. Tämä pro-

sessi MCMC-GIF-menetelmälle esitetään tutkielmassa tarkasti, ja menetelmän tuottamia tuloksia

verrataan esimerkkitapauksissa IAIF-menetelmän tuottamiin tuloksiin.
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Tahtoisin myös kiittää äitiäni, isääni ja siskoani Lottaa kaikesta siitä tuesta,
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1 Introduction

Speech is the most common form of human communication. An understanding

of the speech production mechanism and perception of speech is therefore of

great interest in understanding the foundation of human communication. The

importance of understanding the human speech production mechanism also

rises new possibilities for diagnosing and treating anomalies and other medical

conditions related to the speech production apparatus. Also, with the nowadays

large number of computers and mobile devices surrounding many peoples’ lives,

it has become an important task for software developers to be able to create

human-computer interaction based on speech.

Human speech sounds can be roughly categorized into three classes depending

on the way the sound is produced. Voiced sounds are sounds for which the source

sound signal is created by the periodic fluctuation of the vocal folds, unvoiced

sounds use turbulent noise as the source signal, and plosives are created by

suddenly releasing a flow of air that has been previously blocked by some part

of the vocal tract [12]. Of these classes voiced sounds are the most important,

and for the most part of this work we will be concentrating on these.

A simplified model of human speech production, the so called source-filter

theory [11], divides the speech production mechanism into three parts. The

source of the speech sound is located at the vocal folds, and is modelled as the

glottal excitation signal or glottal flow. The flow then travels through the vocal

tract, consisting of the oral and nasal cavities, where the sound is filtered with

the resonance frequencies of the vocal tract, known as formants. The resulting

flow then escapes through the lips and nostrils in a process called lip radiation,

creating the speech pressure waveform that we hear as the speech sound.

A mathematical model for the speech production mechanism can be derived

from the source-filter theory. The final part of the source-filter theory, the lip

radiation, can be modelled as a first order differentiator of the volume velocity

reaching the lips [12], and due to this we can model the production of a voiced

speech sound as

m = p ∗ v, (1.1)

where m is the produced sound signal, p is the glottal flow derivative and v is

the impulse response of the vocal tract filter. In the z-domain this model takes

the form

S(z) = Ĝ(z)V (z), (1.2)

where S, Ĝ, and V are the z-transforms of the measurements, the glottal

flow derivative and the impulse response of the vocal tract, respectively. Here

Ĝ(z) = G(z)L(z), where G is the z-transform of the glottal flow and L is the

1



z-transform of the lip radiation effect.

Glottal inverse filtering (GIF) is a technique for estimating the glottal flow

from a recorded speech signal. Assuming the source-filter model described in

equation (1.1), this can be done by first estimating the effect of the vocal tract

v on the measured sound m. The measurement signal m can then be filtered

with the inverse of the filter v, removing the effect of the vocal tract from the

measured signal and thus revealing the glottal excitation signal p. In practice

this is often done in the z-domain, as described by equation (1.2). In this setting

we can acquire the glottal excitation by calculating Ĝ(z) = S(z)/V (z). Although

schematically easy, GIF is a hard inverse problem to solve robustly, and many

different methods have been proposed for solving the problem.

GIF is an important technique in both medicine and technology. In medicine

GIF is used for studying the vocal folds, for example when there is suspicion

of a medical condition with a patients voice. The vocal folds are a difficult

target for making direct measurements of, as they are small and move at high

speeds during voiced speech. The length of adult vocal folds vary between

1.25 cm and 1.75 cm for women and between 1.75 cm and 2.5 cm for men, and

in typical speech the vocal folds vibrate with a frequency of between 165 Hz and

255 Hz for women and between 85 Hz and 180 Hz for men [31]. Thus indirect

measurements with GIF are often used in inspecting the state of the vocal folds.

GIF is also a non-invasive technique, meaning that no direct contact with the

speech production mechanism is needed, making it a safe way of inspecting the

vocal folds. In technology GIF is used for both artificial speech production and

speech recognition.

GIF has been studied since the late 1950s, when Miller published the first

study [22] on the subject. Since then many different methods for solving the

problem have been proposed. Several recent comparative reviews of the different

methods [3, 10, 34] have shown that both the zeros of the z-transform (ZZT) (or

if formulated otherwise the complex-cepstrum-based decomposition (CCD)) [6,

7, 9, 30] and the iterative adaptive inverse filtering (IAIF) [2] methods of GIF

perform well in most cases. However, both methods have their limitations, and

no method has yet been proposed that would give robust glottal flow estimates

in all circumstances.

A relatively new method, the so called Markov chain Monte Carlo method

for glottal inverse filtering (MCMC-GIF) was proposed by Auvinen et al. in [5].

The authors showed that MCMC-GIF was able to yield better results than other

state of the art methods for GIF in most cases.

Although GIF has been widely studied, only a few papers have been published

on the subject in the mathematics and inverse problems communities. To the

extent of the authors knowledge these papers are limited to [1, 15, 16, 20].

2
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Figure 1.1: An example of the results obtained with the MCMC-GIF method
compared with the IAIF method. The data used in the example was a synthetic
vowel /i/ with the fundamental frequency 200 Hz.

In this thesis we will describe how the human speech production mechanism

works and present a mathematical model (the source-filter model) for digital

speech production. We will also describe models for solving the GIF problem

and compare different methods of doing this. The emphasis of this thesis will be

on the MCMC-GIF method, which we will explain in detail and give numerical

examples of its performance. An example of the results obtained by MCMC-GIF

compared with the IAIF method is shown in figure 1.1.

The thesis is structured as follows. In section 2 we will cover the fundamental

theory of signal processing needed to describe digital speech modelling and

production. In section 3 we will explain the direct problem, namely the modelling

and simulation of digital speech, with an emphasis on vowel simulation. In

section 4 we will explain the inverse problem of GIF and the methods we use

to solve it. In section 5 we will present some numerical results obtained with

different GIF methods.
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2 Signal processing

To be able to give a mathematical representation of the human speech pro-

duction mechanism and the resulting speech signal we will need some definitions

and tools from the theory of signal processing. In this section we will give a

short introduction to the necessary parts of discrete-time signals, discrete-time

systems and transformations that we will need later on. For a more thorough

presentation in the subject for example the book [23] by Oppenheim et al. is

recommended.

2.1 Discrete-time signals

A discrete-time signal is a sequence of numbers (real or complex), often

denoted as x(n), where x denotes the signal and n is an integer variable. Thus,

the signal can be thought of as a discrete function x : Z → R (or x : Z → C).

Even though the signals are in practical applications often real, we will present

the theory using complex sequences, as it doesn’t affect the formulation of the

theorems or proofs presented.

The reason for us to consider discrete-time signals is the way that sound

signals are represented digitally. A continuous (analog) sound signal needs

to be sampled to a discrete signal for processing on for example a computer.

The sampling is done with some predefined sampling frequency fs (for example

44.1 kHz on typical audio CDs). A continuous signal xc(t) is then sampled into

a discrete-time signal x as x(n) = xc(n/fs).

According to the Nyquist sampling theorem it can be shown that an analog

signal xc(t) with a bandlimit fN (i.e., loosely speaking, the signal does not

contain any frequencies higher than fN ) can be perfectly reconstructed from its

(equally spaced) samples x(n) = xc(n/fs), n ∈ Z, if it holds for the sampling

frequency fs that fs > 2fN . The frequency fN is often referred to as the Nyquist

frequency [23].

As previously mentioned, the sampling frequency on typical audio CDs is

44.1 kHz. In practice this means that any sound signals with the frequency

within the human hearing range (which ranges up to 20 kHz) can, in theory, be

perfectly sampled on an audio CD (although in practice this is not quite true

due to many reasons, such as measurement noise during the sound recording). In

the applications we will be considering such high sampling rates are seldom used.

The most important characteristics of human speech are limited to frequencies

below 8 kHz [24], which is why in many speech processing applications, as in

our case, the sampling rate is chosen to be 16 kHz.

An example of the sampling of a continuous signal can be seen in figure 2.1.
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Figure 2.1: An example of the sampling of a continuous signal.

2.1.1 Some important signals

A couple of important fundamental signals, which we will are going to need

in the introduction of signal processing, are the unit sample and the unit step

signals.

2.1 Definition. The unit sample signal is defined as

δ(n) =

1, n = 0

0, otherwise.
(2.2)

2.3 Definition. The unit step signal is defined as

u(n) =

1, n ≥ 0

0, otherwise.
(2.4)

One important property of the unit step signal is that it allows us to decom-

pose any signal x as the sum

x(n) =

∞∑
k=−∞

x(k)δ(n− k), (2.5)

containing only scaled and shifted unit samples. This representation of signals

will be a useful tool in some of the upcoming proofs.

2.2 Discrete-time systems

A discrete-time system (such as our model for the vocal tract will be) is an

operator or mapping F , which maps a given input signal x(n) to an output signal

y(n) = (F (x))(n). The mapping F can be expressed as an explicit mathematical

function or an algorithm for transforming the input signal.
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2.2.1 Properties of discrete-time systems

We will first present a couple of definitions of discrete time systems.

2.6 Definition. A discrete-time system F is called linear if we have for all

signals x1(n) and x2(n) and constants c1 and c2 that

(F (c1x1 + c2x2))(n) = c1(F (x1))(n) + c2(F (x2))(n). (2.7)

2.8 Definition. If a shift in the input signal of a system results in the same

shift in the output signal, the system is said to be time-invariant.1 In other

words, if F is a time-invariant system and y(n) = (F (x))(n), then for all n0 ∈ Z
we have y(n− n0) = (F (x))(n− n0).

2.9 Definition. A system is called causal, if the output y(n0) of the system

only depends on inputs x(n) with n ≤ n0, for all n0 ∈ Z.

In other words, the causality of a system means that the output of the system

may depend on any values of the input from the past, but on none from the

future.

2.10 Definition. A system is called stable (in a bounded-input, bounded-output

(BIBO) sense), if for every bounded input the system generates a bounded output.

More precisely, assuming that for all n ∈ Z we have that |x(n)| < C1 for some

C1 ∈ R, then F is a stable system if there exists some C2 ∈ R such that for the

output y(n) = (F (x))(n) we have |y(n)| < C2 for all n ∈ Z.

2.2.2 Linear time-invariant systems

We will now introduce the so called linear time-invariant (LTI) system, which

will be an important tool when defining the model for the vocal tract. An LTI

system has the properties of both linear and time-invariant systems, as described

earlier. The power of LTI systems is that the output signal of the system for

any input can be calculated merely as the discrete convolution of the input

signal and the so called impulse response signal. The system can therefore be

completely characterized by its impulse response, which will allow us to easily

analyse properties of the LTI system. We will first prove that this actually is

the case and then present some theorems for the properties of LTI systems.

2.11 Definition. A linear time-invariant (LTI) system is a discrete-time system

which is both linear and time-invariant.

1In a more general context this property is sometimes referred to as shift-invariance.
However, because all the signals in this work are time domain signals we will be using the term
time-invariance.
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2.12 Definition. Let F be an LTI system. The impulse response of the system

is defined as

h(n) = (F (δ))(n). (2.13)

2.14 Definition. Let x and y be discrete-time signals. The discrete convolution

of x and y is defined as

(x ∗ y)(n) =

∞∑
k=−∞

x(k)y(n− k). (2.15)

2.16 Theorem. Let h be the impulse response of an LTI system and let x be

the input signal for the system. The output signal y can be calculated as

y(n) = (x ∗ h)(n)

Proof. Let h be the impulse response of an LTI system F , i.e.

h(n) = (F (δ))(n).

Due to the time-invariant property of F we get that for any shift n0 ∈ Z we have

h(n− n0) = (F (δ))(n− n0). (2.17)

Let now x be an input signal for the LTI system. Now we get for the output y

using the linear property and equations (2.5) and (2.17) that

y(n) = (F (x))(n)

=

(
F

( ∞∑
k=−∞

x(k)δ(m− k)

))
(n)

=

∞∑
k=−∞

x(k)(F (δ))(n− k)

=

∞∑
k=−∞

x(k)h(n− k) = (x ∗ h)(n).

As the LTI systems are described by the discrete convolution between the

impulse response and the input signal, we can use many well known properties

of the convolution sum to get a better understanding of the systems. Next we

will present some of the important properties for convolution sums.

2.18 Theorem. The discrete convolution is commutative.
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Proof. Let h1(n) and h2(n) be sequences (e.g. discrete-time signals). Now with

the substitution k = n−m we get that

(h1 ∗ h2)(n) =

∞∑
k=−∞

h1(k)h2(n− k)

=

∞∑
m=−∞

h1(n−m)h2(m)

=

∞∑
m=−∞

h2(m)h1(n−m)

= (h2 ∗ h1)(n),

and thus the convolution sum is commutative.

2.19 Theorem. The discrete convolution is distributive over addition.

Proof. Let x(n), h1(n) and h2(n) be sequences. We get that

(x ∗ (h1 + h2))(n) =

∞∑
k=−∞

x(k)(h1(n− k) + h2(n− k))

=

∞∑
k=−∞

(x(k)h1(n− k) + x(k)h2(n− k))

=

∞∑
k=−∞

x(k)h1(n− k) +

∞∑
k=−∞

x(k)h2(n− k)

= (x ∗ h1)(n) + (x ∗ h2)(n),

and thus the convolution is distributive over addition.

2.20 Theorem. The discrete convolution is associative, i.e. for signals hi,

i = 1, 2, 3 we have that

h1 ∗ (h2 ∗ h3) = (h1 ∗ h2) ∗ h3.

Proof. Let hi, i = 1, 2, 3 be sequences. Now we have that

(h1 ∗ (h2 ∗ h3))(n) =

∞∑
k=−∞

h1(k)(h2 ∗ h3)(n− k)

=

∞∑
k=−∞

h1(k)

( ∞∑
l=−∞

h2(l)h3((n− k)− l)
)

=

∞∑
k=−∞

∞∑
l=−∞

h1(k)h2(l)h3((n− k)− l)
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=

∞∑
l=−∞

∞∑
k=−∞

h1(k)h2((k + l)− k)h3(n− (k + l))

=

∞∑
m=−∞

( ∞∑
k=−∞

h1(k)h2(m− k)

)
h3(n−m)

=

∞∑
m=−∞

(h1 ∗ h2)(m)h3(n−m)

= ((h1 ∗ h2) ∗ h3)(n),

using the substitution m = k + l, and we see that the discrete convolution is

associative.

Because the convolution sum, and thus LTI systems are commutative, it

means that the order in which the systems are applied to a signal doesn’t matter,

the resulting output will be the same. Thus multiple systems can be thought

of as a single system, applying the impulse response of all of the systems in

question to the input signal.

The case of distributivity tells us how signals behave to several parallel LTI

systems applied to an input signal. As the discrete convolution is distributive, it

means that the system of several parallel LTI systems is equivalent to a single

system where the impulse response is the pointwise sum of the impulse responses

of the parallel systems.

For the stability of LTI systems we get an easy condition.

2.21 Theorem. An LTI system is stable if and only if the impulse response of

the system is absolutely summable.

Proof. Let us first show that an absolutely summable impulse response defines a

stable LTI system. Assume that we have a bounded input |x(n)| < Cx and that

∞∑
k=−∞

|h(k)| = Ch,

for some constants Cx, Ch ∈ R. Now we can calculate for the output

|y(n)| = |(x ∗ h)(n)| =
∣∣∣∣∣
∞∑

k=−∞

h(k)x(n− k)

∣∣∣∣∣
≤

∞∑
k=−∞

|h(k)| |x(n− k)| ≤
∞∑

k=−∞

|h(k)|Cx

= Cx

∞∑
k=−∞

|h(k)| = CxCh <∞,
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which shows that the system is stable.

Next we want to show that every stable LTI system has an absolutely

summable impulse response. This is equivalent to showing that if the impulse

response is not absolutely summable, then the LTI system is not bounded (i.e.

we can find some input which produces an unbounded output).

Assume now that that for the impulse response we have that

∞∑
k=−∞

|h(k)| =∞.

Let us now denote the indices of the non-zero values of the impulse response as

I := {n ∈ Z : h(n) 6= 0}, and define the input

x(n) =


h(−n)
|h(−n)| , n ∈ I
0, n ∈ Z \ I.

Now clearly |x(n)| ≤ 1 for all n ∈ Z, but

y(0) = |(x ∗ h)(0)| =
∞∑

k=−∞

h(k)x(−k) =
∑
k∈I

h(k)x(−k)

=
∑
k∈I

h(k)
h(k)

|h(k)| =
∑
k∈I

|h(k)|2
|h(k)| =

∑
k∈I

|h(k)| =
∞∑

k=−∞

|h(k)|

=∞.

We have now shown that if the impulse response is not absolutely summable,

we can always find an input that produces an unbounded output, and hence we

have shown that every stable LTI system has a bounded impulse response. This

concludes our proof.

For LTI systems we can also give an easy condition for causality.

2.22 Theorem. An LTI system is causal if and only if it holds for the impulse

response h that h(n) = 0 for all n < 0.

Proof. Let us first prove that the mentioned condition holds for h, then the

system is causal.

Let x, h be sequences, with h(n) = 0 for all n < 0. Now

y(n0) = (x ∗ h)(n0) =

∞∑
k=−∞

x(k)h(n0 − k) =

n0∑
k=−∞

x(k)h(n0 − k),

because h(n0 − k) = 0 when k > n0. Now we see that the output signal y(n0)
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does not depend on any values x(n) with n > n0, which means that the system

is causal.

Let us now prove that if the system is causal, then we have that h(n) = 0 for

all n < 0. We will show this by showing that if h(n) 6= 0 for some n < 0, then

the system cannot be causal.

Let x, h be sequences, with h(−m) 6= 0 for some fixed m > 0. Now

y(n0) = (x ∗ h)(n0)

=

∞∑
k=−∞

x(k)h(n0 − k)

=

n0+m−1∑
k=−∞

x(k)h(n0 − k) + x(n0 +m)h(−m)

+
∞∑

k=n0+m+1

x(k)h(n0 − k),

and as we know the h(−m) 6= 0, we know that the output y(n0) always depends

on a future value x(n0 + m), and thus the system cannot be causal. This

concludes our proof.

One important class of LTI systems are those systems, whose input x(n) and

output y(n) satisfy the linear constant coefficient difference equation

N∑
k=0

aky(n− k) =

M∑
k=0

bkx(n− k). (2.23)

We will see later on that the vocal tract can be described as such a system.

2.3 Frequency domain representations

We will now introduce some ways to represent discrete-time signals in the

frequency domain. First, we will make a quick reminder about definition of eigen-

functions and eigenvalues, and then inspect the eigenfunctions and eigenvalues

of LTI systems.

2.24 Definition. The function f is an eigenfunction of the operator H, if it

holds that

Hf = λf,

for some constant λ. Here, λ is called the eigenvalue corresponding to the

eigenfunction f of the operator H.

12



2.25 Theorem. Let h be the impulse response of an LTI system. Now the

complex exponential x(n) = eiωn, ω ∈ R, is an eigenfunction for the LTI system,

with the eigenvalue

H(ω) =

∞∑
k=−∞

h(k)e−iωk.

Proof. Let h be the impulse response of an LTI system, and let x(n) = eiωn, for

some fixed ω ∈ R. We have now that

y(n) = (h ∗ x)(n) =

∞∑
k=−∞

h(k)x(n− k)

=

∞∑
k=−∞

h(k)eiω(n−k) = eiωn
∞∑

k=−∞

h(k)e−iωk.

If we denote

H(ω) =

∞∑
k=−∞

h(k)e−iωk,

we can write y(n) as

y(n) = (h ∗ x)(n) = x(n)H(ω),

and we see that x is an eigenfunction of the LTI system with the eigenvalue

H(ω).

The function H(ω) defined in theorem 2.25 is called the frequency response

of the LTI system. The frequency response defines both the change in magnitude

and phase of an input signal by the impulse response, represented by |H(ω)|
and arg(H(ω)), respectively.

The frequency response has a couple of important properties, which we will

present next.

2.26 Theorem. The frequency response of LTI systems is periodic with the

period 2π.

Proof. Let H(ω) be the frequency response of an LTI system with the corre-

sponding impulse response h(n), and let n ∈ Z be fixed. Now

H(ω + 2πn) =

∞∑
k=−∞

h(k)e−i(ω+2πn)k =

∞∑
k=−∞

h(k)e−iωke−2iπnk

=

∞∑
k=−∞

h(k)e−iωk = H(ω),

which proves the theorem.
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2.27 Theorem. Let H(ω) be the frequency response of an LTI system with the

impulse response h(n). Now the frequency response H(−ω) describes an LTI

system with the impulse response h(n).

Proof. Let H(ω) be the frequency response corresponding to an LTI system with

the impulse response h(n). Now

H(−ω) =

∞∑
k=−∞

h(k)e−i(−ω)k =

∞∑
k=−∞

h(k)eiωk

=

∞∑
k=−∞

h(k)e−iωk,

as claimed.

2.28 Corollary. If the impulse response h(n) of an LTI system is a real sequence,

then we have for the frequency response that H(−ω) = H(ω).

Proof. According to theorem 2.27 and the fact that h(n) is real for all n ∈ Z we

get that

H(−ω) =

∞∑
k=−∞

h(k)e−iωk =

∞∑
k=−∞

h(k)e−iωk = H(ω).

The above theorem also implies, that the magnitude of the frequency response

for real valued impulse responses is an even function, |H(ω)| = |H(−ω)|.
Because the frequency response of LTI systems is periodic with the period

2π and conjugate symmetric around zero, it is usual to restrict the values of the

variable ω to the range [−π, π] or [0, π]. Here the values near zero represent the

low frequencies, and the values near ±π represent the high frequencies.

2.3.1 The discrete-time Fourier transform

We will now explain how arbitrary signals can be expressed in the frequency

domain, much like we did in the case of the frequency response for the LTI

systems. The discrete-time Fourier transform (DTFT) is an important tool in

such frequency domain analysis of signals.

2.29 Definition. The discrete-time Fourier transform of a sequence x(n), de-

noted by F {x}, is defined as

X(ω) =

∞∑
k=−∞

x(k)e−iωk. (2.30)
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As one can easily see, the DTFT is defined in the same way as the frequency

response of an LTI system. In other words, the frequency response of an LTI

system is just the DTFT of the system’s impulse response.

However, the sum in equation (2.30) does not always converge, meaning that

not all sequences have a DTFT. Before showing a condition for the convergence,

let us review a couple of examples.

2.31 Example. Let us calculate the DTFT F {δ} for the unit sample. We get

the DTFT

∆(ω) =

∞∑
k=−∞

δ(k)e−iωk = δ(0) = 1.

So the DTFT of the unit sample is a constant function 1.

2.32 Example. For the DTFT of the unit step u we get

U(ω) =

∞∑
k=−∞

u(k)e−iωk =

∞∑
k=0

e−iωk =
eiω

eiω − 1
.

This is however not defined at ω = 0, as |U(ω)| → ∞, as ω → 0. This means

that the unit step does not have a DTFT.

Let us now give a condition for the convergence of the DTFT.

2.33 Theorem. The DTFT converges uniformly to a continuous function for

absolutely summable sequences.

Proof. Let us assume that x(n) is an absolutely summable sequence, i.e.

∞∑
k=−∞

|x(k)| = S <∞,

for some S ∈ R.

First, we want to show that the DTFT described in equation (2.30) actually

converges to a continuous function for the sequence x(n). After this we want to

prove that the convergence is uniform.

Let us begin with the first step of the proof. We get for the DTFT that

|X(ω)| =
∣∣∣∣∣
∞∑

k=−∞

x(n)e−iωk

∣∣∣∣∣ ≤
∞∑

k=−∞

|x(n)|
∣∣e−iωk∣∣

=

∞∑
k=−∞

|x(n)| = S <∞,

so the series converges for all ω ∈ R. The continuity of X comes directly from

the continuity of the exponential function ω 7→ eω.

15



We now need to show that the partial sum

Xn(ω) =

n∑
k=−n

x(n)e−iωk

convergences uniformly toward the function X.

Let ε > 0, and let us denote the upper and lower partial sums as

Sn :=

∞∑
k=−n

|x(k)|

and

Sn :=

n∑
k=−∞

|x(k)| .

Because x(n) is absolutely summable, we know for the partial sum that there

exists some N1 ∈ N, such that

|S − SN1 | = S − SN1 =

−N1−1∑
k=−∞

|x(k)| < ε

2
.

Similarly, we know that there exists some N2 ∈ N, such that

∣∣S − SN2
∣∣ = S − SN2 =

∞∑
k=N2+1

|x(k)| < ε

2
.

Let now N = max{N1, N2} and ω ∈ R. We get

|X(ω)−XN (ω)| =
∣∣∣∣∣
∞∑

k=−∞

x(k)e−iωk −
N∑

k=−N

x(k)e−iωk

∣∣∣∣∣
=

∣∣∣∣∣
−N−1∑
k=−∞

x(k)e−iωk +

∞∑
k=N+1

x(k)e−iωk

∣∣∣∣∣
≤
∣∣∣∣∣
−N−1∑
k=−∞

x(k)e−iωk

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=N+1

x(k)e−iωk

∣∣∣∣∣
≤
−N−1∑
k=−∞

|x(k)|
∣∣e−iωk∣∣+

∞∑
k=N+1

|x(k)|
∣∣e−iωk∣∣

=

−N−1∑
k=−∞

|x(k)|+
∞∑

k=N+1

|x(k)|

<
ε

2
+
ε

2
= ε.
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2.34 Corollary. Every stable LTI system has a continuous frequency response.

Proof. Follows directly from theorems 2.21 and 2.33.

We can now introduce the inverse DTFT.

2.35 Theorem. The inverse mapping the DTFT (the inverse discrete-time

Fourier transform, IDTFT) is

x(n) =
1

2π

∫ π

−π
X(ω)eiωn dω. (2.36)

We denote the inverse mapping as x = F−1 {X}.

Proof. Let x(n) be a absolutely summable sequence, and X(ω) its DTFT. Let

us now denote

y(n) :=
1

2π

∫ π

−π

( ∞∑
k=−∞

x(k)e−iωk

)
eiωn dω.

We would now like to show that y(n) = x(n). We know from theorem 2.33 that

the infinite sum in our expression converges uniformly. This allows us to change

the order of the sum and the integral, yielding

y(n) =
1

2π

∫ π

−π

( ∞∑
k=−∞

x(k)e−iωk

)
eiωn dω

=
1

2π

∞∑
k=−∞

x(k)

(∫ π

−π
e−iωkeiωn dω

)

=
1

2π

∞∑
k=−∞

x(k)

(∫ π

−π
eiω(n−k) dω

)

=
1

2π

∞∑
k=−∞

x(k)
2 sin(π(n− k))

n− k

=

∞∑
k=−∞

x(k)
sin(π(n− k))

π(n− k)

=

∞∑
k=−∞

x(k)δ(n− k)

= x(n),

which proves our claim.

Some of the central properties of the DTFT are listed in table 2.1. The proofs

for the identities can be found in appendix A. In the table x(n) and y(n) are

sequences, X(ω) and Y (ω) their respective DTFTs, c1, c2, ω0 ∈ R and n0 ∈ Z.
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Property Transform

Linearity F {c1x(n) + c2y(n)} = c1X(ω) + c2Y (ω)

Delay F {x(n− n0)} = e−iωn0X(ω)

Modulation F
{
eiω0nx(n)

}
= X(ω − ω0)

Conjugation F
{
x(n)

}
= X(−ω)

Time reversal F {x(−n)} = X(−ω)

Convolution F {(x ∗ y)(n)} = X(ω)Y (ω)

Table 2.1: Properties of the DTFT.

One of the most important properties for the DTFT is the convolution

property (also know as the convolution theorem). The property states that the

DTFT of the convolution of two sequences is just the product of the sequences’

DTFTs. What makes this particularly valuable is, that the convolution is

computationally relatively expensive (the discrete convolution has the time

complexity of O
(
n2
)
), whereas the DTFT using fast Fourier transform (FFT)

algorithms is computationally very efficient (having the time complexity of

O (n log(n))). This way the convolution can be done efficiently by first taking

the DTFT of the sequences, then multiplying them pointwise, and then applying

the IDTFT.

Next we are going to introduce a generalization of the DTFT, the so called

z-transform. This will be an important transformation in the modelling of the

vocal tract.

2.3.2 The z-transform

The z-transform is a generalization of the DTFT. As the DTFT is defined

on the unit circle in the complex plane (or more specifically, on the range

ω ∈ [−π, π], which is the mapped to the point eiω on the unit circle), the

z-transform generalizes this to the whole complex plane.

2.37 Definition. Let x(n) be a sequence. The z-transform of x(n) is defined as

Z {x(n)} =

∞∑
k=−∞

x(k)z−k. (2.38)

2.39 Theorem. The z-transform is equivalent to the DTFT, when |z| = 1.

More specifically

XF (ω) = XZ
(
eiω
)
, (2.40)

where XF is the DTFT and XZ is the z-transform of the sequence x(n).
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Property Transform

Linearity Z {c1x(n) + c2y(n)} = c1X(z) + c2Y (z)

Delay Z {x(n− n0)} = z−n0X(z)

Multiplication by zn0 Z {zn0 x(n)} = X(z/z0)

Conjugation Z
{
x(n)

}
= X(z)

Time reversal Z {x(−n)} = X(z−1)

Convolution Z {(x ∗ y)(n)} = X(z)Y (z)

Table 2.2: Properties of the z-transform.

Proof. Let XF be the DTFT and XZ the z-transform of the sequence x(n), and

ω ∈ R. Now

XF (ω) =

∞∑
k=−∞

x(k)e−iωk =

∞∑
k=−∞

x(k)
(
eiω
)−k

= XZ
(
eiω
)
.

Some important properties of the z-transform are listed in table 2.2. The

proofs of the properties can be found in appendix A.

Series of the type defined in equation (2.38) are so called Laurent series

familiar from complex analysis. We will not go through the theory of Laurent

series in detail here, but we will use some results from the theory, which we will

present when needed. For a good reference work on the subject, see for example

[29] by Stewart and Tall.

The Laurent series of an analytic function f in an annulus around a point

z0 ∈ C is defined as

f(z) =

∞∑
n=−∞

an (z − z0)
n
, (2.41)

where an ∈ C are constants defined in a specific manner by the function f . The

series in equation (2.38) falls within this definition, which we can easily see with

the substitution n = −k.

We know, that every Laurent series has a region of convergence (ROC), where

the series converges to an analytic function (i.e. a function which is infinitely

differentiable in a neighbourhood around every point). The convergence is also

uniform in all compact subsets of the ROC. More specifically, for every Laurent

series defined as in equation (2.41) there exists two radii R1 and R2, such that

the series converges in the open annulus {z ∈ C : R1 < |z − z0| < R2}. Here we

might have R1 = 0 or R2 =∞.

In many cases we might have a z-transform which consists of a sum of many
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Laurent series (due to the linear property of the z-transform). This is still a

Laurent series, and its ROC will be the intersection of the sums’ ROCs.

Let us now formulate a condition for the convergence of the z-transform on a

specific circle around the origin. The proof of the theorem comes directly from

the convergence of the DTFT of an exponentially weighted sequence, as we will

see.

2.42 Theorem. The z-transform of the sequence x(n) converges uniformly for

|z| = r, r > 0, if the sequence x(n)r−n is absolutely summable, i.e.

∞∑
k=−∞

∣∣x(k)r−k
∣∣ <∞.

Proof. Let x(n) be a sequence, r > 0 and x(n)r−n absolutely summable. Now,

according to theorem 2.33, the DTFT

∞∑
k=−∞

x(k)r−ke−iωk

converges uniformly. This, however, is precisely the z-transform X(z) of x(n) at

|z| = r, because

∞∑
k=−∞

x(k)r−ke−iωk =

∞∑
k=−∞

x(k)
(
reiω

)−k
= X

(
reiω

)
.

Thus the sequence x(n) converges uniformly for |z| = r.

The previous theorem states, that the convergence of the z-transform at the

point z ∈ C is only dependent on the magnitude |z|. This is consistent with

the previously mentioned fact that Laurent series have an annular region of

convergence around the point about which they are defined (the origin in the

case of z-transforms). In practice this means, that if the z-transform converges at

a point z0 ∈ C, it will also converge for all other values with the magnitude |z0|
(and actually also for all magnitudes in some neighbourhood of |z0|, as Laurent

series always converge in an open annulus, but we will not go into further detail

regarding this).

Let us now take a look at a couple of examples regarding z-transforms and

their ROCs.

2.43 Example. Let x(n) = anu(n), for some a ∈ R, where u(n) is the unit step

signal. Now we get the z-transform

X(z) =

∞∑
k=−∞

aku(k)z−k =

∞∑
k=0

akz−k =

∞∑
k=0

(a
z

)k
=

1

1− az−1
,
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when |z| > |a|. Here the resulting function gets a pole at z ∈ C where 1−az−1 = 0,

i.e. at z = a.

2.44 Example. Let us look at the z-transform of a combination of sequences

like the one in theorem 2.43. Let x(n) = anu(n) + bnu(n) for a, b ∈ R. Now

according to theorem 2.43, when |z| > |a| and |z| > |b| we get the z-transform

X(z) =
1

1− az−1
+

1

1− bz−1
=

1− bz−1 + 1− az−1

(1− az−1)(1− bz−1)

=
2− (a+ b)z−1

(1− az−1)(1− bz−1)
=
z−2(2z2 − (a+ b)z)

z−2(z − a)(z − b)

=
2z2 − (a+ b)z

(z − a)(z − b) .

Here the resulting function has zeros at z = 0 and z = a+b
2 and (first order)

poles at z = a and z = b, and the series converges when |z| > max{|a| , |b|}.

2.45 Example. Let us look at one more example of a sum of two sequences,

namely x(n) = anu(n)− bnu(−n− 1). We know the z-transform of the first term

from the previous examples, but we need to calculate it for the second term. We

get

Z {−bnu(−n− 1)} = −
∞∑

k=−∞

bku(−k − 1)z−k = −
−1∑

k=−∞

bkz−k

= −
∞∑
k=1

b−kzk = 1−
∞∑
k=0

(
b−1z

)k
= 1− 1

1− b−1z

=
−b−1z

1− b−1z
=

−b−1z

−b−1(z − b) =
z

z(1− bz−1
=

1

1− bz−1
,

when
∣∣b−1z

∣∣ < 1, or equivalently |z| < |b|. Now we get for the z-transform of

x(n) with the linear property that

X(z) =
1

1− az−1
+

1

1− bz−1
=

1− bz−1 + 1− az−1

(1− az−1)(1− bz−1)

=
2− (a+ b)z−1

(1− az−1)(1− bz−1)
=
z−2(2z2 − (a+ b)z)

z−2(z − a)(z − b)

=
2z2 − (a+ b)z

(z − a)(z − b) ,

and the z-transform converges when |z| > |a| and |z| < |b|, or |a| < |z| < |b|. We

can note that the algebraic expression (and thus also the zeros and poles) of the

z-transform are precisely the same as in example 2.44, even though the signal is

different. The ROC for the z-transform is however different.
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As we saw in the previous examples that in the case where the z-transform

can be written as a rational function, it is enough to specify the ROC and

the zeros and poles of the z-transform to specify the complete expression for

the transform. This is because we can uniquely find the polynomials for the

numerator and the denominator based on the poles and zeros. We will formalize

this in a theorem a little bit later on.

Let us now take a look at some properties the z-transforms related to LTI

systems, and then continue to a special case of LTI systems, namely those which

can be defined by a rational system function.

2.46 Definition. Let h(n) be the impulse response of an LTI system. Its

z-transform, denoted as H(z) is called the system function of the system.

2.47 Theorem. Let H(z) be the system function of an LTI system and X(z)

the z-transform of the input signal. Now the z-transform of the output signal is

Y (z) = X(z)H(z).

Proof. Let h(n) be the impulse response of the LTI system, H(z) its z-transform

(the system function), x(n) the input signal and X(z) its z-transform. Now the

output of the system is y(n) = (h∗x)(n). Directly from the convolution property

of the z-transform we now get that

Z {y(n)} = Z {(h ∗ x)(n)} = Z {h(n)}Z {x(n)} = H(z)X(z).

2.3.3 Systems with rational system functions

We will now take a closer look at a specific set of LTI systems, namely those

which can be described by a rational system function.

2.48 Theorem. Let H(z) be the system function of an LTI system, which satis-

fies the linear constant coefficient difference equation defined in equation (2.23).

Now the system function can be written as

H(z) =

M∑
k=0

bkz
−k

N∑
k=0

akz−k
. (2.49)

We call such a system function a rational system function.

Proof. Let H(z) be the system function of an LTI system satisfying equa-

tion (2.23). Let x(n) be the input signal and y(n) the resulting output signal,
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and X(z) and Y (z) their respective z-transforms. Now taking the z-transform

on both sides of equation (2.23) we get

Z
{

N∑
k=−0

aky(n− k)

}
=

N∑
k=0

akZ {y(n− k)} =

N∑
k=0

akz
−kY (z)

= Y (z)

N∑
k=0

akz
−k,

and similarly for the other side

Z
{

M∑
k=0

bkx(n− k)

}
=

M∑
k=0

bkZ {x(n− k)} =

M∑
k=0

bkz
−kX(z)

= X(z)

M∑
k=0

bkz
−k,

and we now get the equation

Y (z)

N∑
k=0

akz
−k = X(z)

M∑
k=0

bkz
−k.

Recalling from theorem 2.47 that for an LTI system we have that Y (z) =

H(z)X(z), we can write this as

M∑
k=0

bkz
−k

N∑
k=0

akz−k
=
Y (z)

X(z)
= H(z),

which is what we set out to prove.

2.50 Corollary. Every LTI system with a rational system function can be

characterized by its poles and zeros, within a linear scaling factor.

Proof. Both the numerator and the denominator in equation (2.49) are polyno-

mials of the variable z−1, with the degrees M and N , respectively. This means

that we can factorize the polynomials with their respective roots, call them

ck ∈ C, k = 1, . . . ,M , for the numerator and pk ∈ C, k = 1, . . . ,M , for the

denominator. We can now write the system function in equation (2.49) as

H(z) =
b0
a0

M∏
k=1

(
1− ckz−1

)
N∏
k=1

(1− pkz−1)

. (2.51)
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Now, as defined, ck are the zeros and pk are poles of the system function.

As the the systems with a rational system function can be described only

with their zeros and poles, we can also describe the frequency response of such

a system with the help of these (if it exists). In fact, the magnitude of the

frequency response gets a nice expression in this way.

2.52 Theorem. The magnitude of the frequency response of an LTI system

with a rational system function can (if it exists) be written as

|H(ω)| = |B|

M∏
k=1

∣∣ck − eiω∣∣
N∏
k=1

|pk − eiω|
, (2.53)

where ck are the zeros and pk the poles of the system function, and B = b0/a0 a

scaling factor. The frequency response in a point on the unit circle is thus just

the ratio between the product of the zeros’ distances and the poles’ distances to

that point.

Proof. Let HZ be the z-transform of an LTI system, with

HZ(z) = B

M∏
k=1

(
1− ckz−1

)
N∏
k=1

(1− pkz−1)

,

and assume that the frequency response exists (i.e. the DTFT converges, or the

z-transform converges on the unit circle). As mentioned earlier in theorem 2.39,

we can now write the frequency response as

H(ω) = HZ
(
eiω
)

= B

M∏
k=1

(
1− cke−iω

)
N∏
k=1

(1− pke−iω)

.

We can now write the magnitude of the frequency response as

|H(ω)| =

∣∣∣∣∣∣∣∣∣B
M∏
k=1

(
1− cke−iω

)
N∏
k=1

(1− pke−iω)

∣∣∣∣∣∣∣∣∣ = |B|

M∏
k=1

∣∣1− cke−iω∣∣
N∏
k=1

|1− pke−iω|

= |B|

M∏
k=1

∣∣e−iω∣∣ ∣∣eiω − ck∣∣
N∏
k=1

|e−iω| |eiω − pk|
= |B|

M∏
k=1

∣∣eiω − ck∣∣
N∏
k=1

|eiω − pk|
,
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as we wanted.

2.54 Note. The frequency response is often presented in logarithmic form in

decibels (dB). We get the so called log magnitude as

20 log10 (|H(ω)|) = 20 log10 (|B|) +

M∑
k=1

20 log10

(∣∣eiω − ck∣∣)
−

N∑
k=1

20 log10

(∣∣eiω − pk∣∣) .
One thing we would still be interested in is the location of the poles for the

system function. For certain types of systems this can be shown quite specifically.

We will need to present a lemma first.

2.55 Lemma. If x(n) is a bounded right-sided sequence (i.e. there exists a

number N ∈ Z such that x(n) = 0 for all n < N), then the ROC of the

sequence’s z-transform is |z| > R for some R > 0.

Proof. Let x(n) be a sequence with x(n) = 0 when n < N for some N ∈ Z. Also,

let C > 0 such that |x(n)| < C for all n ∈ Z. Now we get that

∞∑
k=−∞

∣∣x(k)r−k
∣∣ =

∞∑
k=N

|x(k)| r−k =

∞∑
k=N

Cr−k = C

∞∑
k=N

(
r−1
)k

= C
−
(
r−1
)−N

r−1 − 1
= C

r1−N

r − 1
,

which converges when
∣∣r−1

∣∣ < 1, or r > 1. According to theorem 2.42 also the

z-transform of x(n) converges for r > 1.

Note. What theorem 2.55 actually says, is that if a bounded right-sided sequence

converges for some z0 ∈ C, it will also converge for all |z| > |z0|.

2.56 Theorem. All the poles of the system function of a stable and causal LTI

system are located inside the unit disc D = {z ∈ C : |z| < 1}.

Proof. Recall from theorem 2.34, that every stable LTI system has a continuous

frequency response. This means that the DTFT of the system converges, which

again means that the z-transform converges for |z| = 1. From theorem 2.22 we

know that a causal LTI system is right-sided, and thus by theorem 2.55 we now

know that the z-transform converges at least for |z| ≥ 1. As the ROC cannot

contain any poles (as the z-transform by definition diverges at poles), we can

conclude that all the poles of the system are inside the unit disc.
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3 The direct problem – digital speech

The aim of this section is to give an overview of the human speech apparatus by

first describing how the speech production mechanism works and then describing

the whole system mathematically. The system will be described in terms of a

simplified so called source-filter theory, which is a widely used model for digital

speech production. The source-filter theory will be described in sections 3.3

and 3.4. We will first describe conceptually the different parts of the speech

production mechanism and then give a mathematical description for them one

by one, using the tools described in section 2.

3.1 The speech production mechanism

Human speech can be said to consist of three major parts: the respiratory

system (i.e. the lungs), the larynx and the vocal tract. Speech is produced by

pressing out air from the lungs, which then travels through the larynx and the

vocal tract both of which modify the airflow in a specific manner. In voiced

speech (which we will be concentrating on) the larynx modifies the constant

airflow to characteristic pulses, known as the glottal flow. The vocal tract, which

consists of the pharynx and the oral and nasal cavities, then modifies frequency

spectrum of the flow with resonances and anti-resonances depending on the

tract’s shape. The flow is then finally radiated through the lips and nostrils to

the surrounding air, creating the speech signal.

Speech is created by combining signals of the type described above. Only a

part of the different sounds in speech are voiced, the rest are different unvoiced

sounds where the larynx lets through the airflow from the lungs unaltered.

Although we will be concentrating on voiced sounds, we will also give a short

review of the different kinds of unvoiced sounds in section 3.1.3, where we will

also describe the other different kinds of speech sounds.

3.1.1 Glottal excitation

As described earlier, in voiced speech the flow from the lungs is modified

at the larynx to a periodic signal. This is done by two elastic flaps know as

the vocal folds. The opening between the vocal folds is known as the glottis.

In voiced speech the muscles of the larynx tighten the vocal folds which then

start to vibrate due to the pressure from the lungs; first the glottis is closed and

pressure builds up behind the vocal folds, then the pressure forces the glottis

open and releases a pulse of air, releasing the pressure and causing the glottis to

close again. This mechanism then repeats creating a periodic pulse know as the

glottal excitation or glottal flow.
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Figure 3.1: A glottal flow signal acquired with glottal inverse filtering.

The glottal flow plays an important role in the quality and characteristics of

the produced speech sound, in particular with vowel sounds. The glottal flow

cannot be directly measured due to the larynx’s position deep in the throat,

which creates a challenge for the creation of digital speech; the modelling of the

signal is a hard task when no complete reference signal can be presented. One of

the main aims of this thesis is, apart from giving a description of the modelling

of digital speech, to describe means to recreate the signal for the glottal flow

from a recorded sound signal. This task is called glottal inverse filtering (GIF),

and it will be reviewed in detail in section 4.

A couple of different models for the modelling of the glottal flow will be

presented in section 3.3. An example of the vocal flow, acquired by glottal

inverse filtering, is shown in figure 3.1.

3.1.2 Vocal tract

The vocal tract include the pharynx and the oral and nasal cavities and is

the primary source shaping the frequency spectrum of the speech signals. The

vocal tract can be thought of as a tube from the larynx to the lips, with a branch

to the nasal cavity. In sounds where the glottal airflow is not obstructed the

cross-sectional area of the vocal tract is what mostly defines the resonant and

anti-resonant frequencies of the tract. The resonant frequencies of the vocal

tract are called formants, and can be seen in the frequency spectrum of the

vocal tract system as peaks. The airflow can also be modified by obstructing the

airflow at some point, creating different turbulent effects resulting most often in

different consonants. Also the amount of flow directed to the nasal cavity can

be adjusted.

The vocal tract varies from person to person, giving each speaker a char-

acteristic sound and allowing people to be recognized by the sound of their

speech. The personal differences in the vocal tract are however smaller than

the similarities when uttering the same sound, so different sound (for example

vowels) can be characterized in a general context for all speakers.
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Figure 3.2: The frequency spectrum of the vowels /a/ and /i/.

3.1.3 Categorization of speech sounds

A typical way of categorizing speech sounds is to divide them into vowels

and consonants. Vowels are said to be the voiced sounds where the airflow from

the larynx is not obstructed in any way on its way to the lips. The rest of the

speech sounds are regarded as consonants. However, many consonants are very

different from each other, which is why they need to be further categorized to

subcategories.

As previously stated, vowels can be characterized by their distinct formants,

which can be seen as peaks in the frequency spectrum of the vocal tract system.

It has been noted, that the greatest impact on the created vowel comes from

the first two or three formants, while the rest correspond to personal differences

between the speakers [26]. The vocal tract can be regarded as if it would be

stationary when looking at the characteristics of vowels, because the vocal tract

moves quite slowly and it is almost stationary when looking at short periods of

time. An example of the frequency spectrum of a couple of different vowels is

shown in figure 3.2.

The consonants can be roughly categorized as follows. A more complete

categorization of the pulmonic consonants can be found in table 3.1.

Nasals Nasals are consonants where the whole airflow is directed to the nasal

cavity, and no air escapes through the lips. Nasals have characteristic anti-

resonant frequencies in addition to resonant frequencies, due to the closed oral
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Bilabial
Labio-
dental

Dental Alveolar
Post-

alveolar
Retroflex

Alveolo-
palatal

Palatal Velar Uvular
Epi-

glottal
Glottal

Nasal m M n ï ñ N ð

Stop p b t d ú ã c é k g q å P

Fricative F B f v T D s z S Z ù ü C ý ç J x G X K è Q h H

Lateral
fricative

ì Ð

Approximant V ô õ j î

Lateral
approximant

l í L Ï

Flap or tap R ó

Trill à r ór ö Ë Ý

Table 3.1: Pulmonic consonants according to the International Phonetic Associ-
ation, 2015.

cavity trapping certain frequencies. Examples of nasals include [m] and [n].

Stops Stops (or plosives) are created by stopping the airflow for a short time

at some point in the vocal tract and then releasing a short burst of air. Stops

include [t], [d], [k], [g], [p] and [b].

Fricatives Fricatives are created by narrowing the vocal tract at some point

so much that a turbulent noise is created. Fricatives include [s], [z], [f] and [v].

Approximants Approximants are created by partially obstructing the airflow,

but only to an extent that it does not create much turbulent noise. Approximants

include [l], [ô] and [j].

Flaps or taps Tap or flaps are created by hitting one part of the vocal tract

against some other. Examples include [R] (as in the (American) English word

”latter”) and [Õ] (as in the Japanese word ”ラーメン”, ”ramen”).

Trills Trills are produced when an active articulator vibrates against a passive

articulator. Trills include [r] and [ö].

Other consonants include for example clicks, but are very uncommon in

western languages.

3.2 The source-filter theory

The source-filter theory is a simplified model for the human speech production

mechanism. As speech production consists of different parts, the source-filter

theory also (as the name states) consists of a model for both the sound source

(the glottal flow) and the filter (the vocal tract). We will give a more detailed
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review of the model in sections 3.3 and 3.4, but we will first demonstrate the

general idea of the model.

As previously stated, the source-filter model consists of different parts. The

source signal is created at the glottis by the vibrating vocal folds, after which

the created airflow travels through the vocal tract getting its spectral structure

modified, and finally radiates to the surrounding air from the lips and nostrils.

In the z-domain, the produced speech signal can be written as

S(z) = G(z)V (z)L(z) (3.1)

where S is the speech signal, G the glottal flow, V the vocal tract filter and L

the lip radiation [11]. The lip radiation can however be expressed as a first order

differentiator

L(z) = 1− αz−1, (3.2)

where usually 0.96 ≤ α < 1 [12]. For this reason equation (3.1) is often expressed

as

S(z) = Ĝ(z)V (z), (3.3)

where Ĝ(z) = G(z)L(z) is the glottal flow derivative or the glottal pressure.

We will now take a closer look at how the glottal flow and the vocal tract

are modelled. We will discuss glottal flow models in section 3.3 and the vocal

tract filter in section 3.4.

3.3 Glottal flow models

We will present two different models for the glottal flow: the Rosenberg-Klatt

model (RK-model) and the Liljencrants-Fant model (LF-model). Of these two

the RK-model is more simple, using only a single parameter in addition to the

fundamental frequency of the sound, whereas the LF-model uses four parameters.

The RK-model is still useful even though it gives less freedom in creating the

sound signal than the LF-model, because it is easier to use in more complicated

situations, such as in Markov chain Monte Carlo simulations.

The two different models described next will give closed form expressions for

the glottal flow and the glottal flow derivative. The models will be given for a

continuous time case, but the discrete-time signals may be acquired by sampling

the expressions, as described in section 2.

3.3.1 Rosenberg-Klatt model

The RK-model was first proposed by Rosenberg in 1971 [28] and later used

in creating the synthesisers KLSYN [17] by Klatt, D, and KLSYN88 [18] by
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Figure 3.3: The (a) airflow and (b) pressure generated by the RK-model.

Klatt, D and Klatt, L.

The airflow g for the RK-model is defined as

g(t) =

at2 + bt3 if 0 ≤ t ≤ QT
0 if QT < t ≤ T,

(3.4)

where t denotes the time, T = 1/f0 is the period of the pitch, f0 is the funda-

mental frequency and Q ∈ [0, 1] is the Klatt-parameter. The air pressure p can

be calculated as the derivative of the airflow function, namely

p(t) = g′(t) =

2at+ 3bt2 if 0 ≤ t ≤ QT
0 if QT < t ≤ T.

(3.5)

An example of the airflow and pressure generated by the RK-model can be seen

in figure 3.3. The parameters used in the example for the fundamental frequency

and the Klatt-parameter are f0 = 120 Hz and Q = 0.7, respectively.

Let us now calculate the values for the variables a and b. We can assume

that Q > 0, because else we would have g(t) = 0 for all 0 ≤ t ≤ T . We can also

assume that f0 > 0 and T > 0. Now define T0 := QT as the closing instant for

the vocal folds. Now we only need to inspect the situation for t ∈ [0, T0]. We will

need two assumptions. Firstly, we know from the definition of the airflow that

g(0) = g(T0) = 0. (3.6)

Secondly, we can choose to normalize the airflow, as

max
t∈[0,T0]

g(t) = 1. (3.7)

From equation (3.6) we get that

0 = g(T0) = aT0
2 + bT0

3 = T0
2(a+ bT0). (3.8)
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Because we assumed Q > 0 and T > 0 we know that T0 > 0, and thus we get

from equation (3.6) that

b = − a

T0
. (3.9)

Inserting this into equation (3.4) for the glottal airflow we get for 0 < t < T0

that

g(t) = a

(
t2 − t3

T0

)
. (3.10)

Now our assumption in equation (3.7) states that the maximum value of

the airflow should be 1. As the function for the airflow is a polynomial (when

0 < t < T0) we know that it is continuous. Because we know that all continuous

functions on closed intervals have a maximum value, we know that such a

maximum exists for the airflow function. We can find the point for the maximum,

call it t0, from the derivative of the function as

g′(t0) = 0. (3.11)

Now we get

0 = g′(t0) = a

(
2t0 −

3t0
2

T0

)
= at0

(
2− 3t0

T0

)
, (3.12)

which means that either t0 = 0 or t0 = 2T0/3. However, we assumed that

g(0) = 0, which means that we get

g(t0) = g

(
2T0

3

)
= 1. (3.13)

We can now calculate

1 = a

(
t20 −

t30
T0

)
= a

((
2

3
T0

)2

− 1

T0

(
2

3
T0

)3
)

= a · 4

27
T 2

0 , (3.14)

and finally

a =
27

4T 2
0

, b = − 27

4T 3
0

. (3.15)

We have now acquired numerical values for the variables a and b, which

makes the RK-model easy to implement.

3.3.2 Liljencrants-Fant model

The LF-model is a more complicated model for the glottal excitation than

the RK-model. The LF-model uses four different parameters to define the shape

of the signal, and thus gives more freedom in shaping the signal as wanted

and allows to create more realistic excitation signals. The LF-model takes the
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Figure 3.4: The pressure created by the LF-model.

parameters f0 (the fundamental frequency), tp, te, ta and tc, and optionally a

scaling parameter Ee.

As presented in [33] by Touda, the air pressure according to the LF-model is

defined as

p(t) =


E0e

αt sin(ωt), 0 ≤ t ≤ te
− Ee

εta

[
e−ε(t−te) − e−ε(tc−te)

]
, te ≤ t ≤ tc

0, tc ≤ t ≤ T,
(3.16)

and the airflow as the integral

g(t) =


∫ t

0

p(t′) dt′, 0 ≤ t ≤ tc

0, tc ≤ t ≤ T,
(3.17)

where

E0 = − Ee
eαte sin(ωte)

and

ω =
π

tp
.

The variables ε and α can be retrieved by solving the systemη(ε) = 0

ξ(α) = 0,
(3.18)

where

η(ε) = εta + e−ε(tc−te) − 1

and

ξ(α) =

∫ T

0

p(t) dt. (3.19)
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The system (3.18) can then be solved with Newton’s iteration as

εn+1 = εn −
η(εn)

η′(εn)
and αn+1 = αn −

ξ(αn)

ξ′(αn)
. (3.20)

In order to easily generate similar signals of different fundamental frequencies

we will be using the following notations. Let us denote the period of the signal

as T = 1/f0. Then, instead of defining the parameters tp, te, ta and tc directly,

we define them as relative parameters to the period T . We can choose the

parameters qp, qe, qa and qc, where

0 < qp, qe, qa, qc < 1

and

tp = Tqp, te = Tqe, ta = Tqa, tc = Tqc.

Now we do not need to adjust the parameters when changing the fundamental

frequency of the signal to match the length of the fundamental period of the

signal.

An example of the pressure generated with the LF-model can be found in

figure 3.4. The fundamental frequency used in the example is f0 = 100 Hz and

the parameters used are qp = 0.45, qe = 0.6, qa = 0.015 and qc = 0.7.

Now we still want to give explicit formulations for the equations of the LF-

model. These can then be used as a reference when making an implementation

of the model. Let us first calculate the integral in equation (3.17). Firstly, when

0 ≤ t ≤ te we get∫ t

0

p(t′) dt′ =

∫ t

0

E0e
αt′ sin(ωt′) dt′

=
E0

α2 + ω2

[
eαt (−ω cos(ωt) + α sin(ωt)) + ω

]
.

Secondly, when te < t ≤ tc we have the following situation. Let us denote

the pressure function when 0 ≤ t ≤ te as p1 and the pressure function when

te < t ≤ tc as p2. We know from equations (3.18) and (3.19) that

0 =

∫ T

0

p(t′) dt′ =

∫ tc

0

p(t′) dt′

=

∫ te

0

p1(t′) dt′ +

∫ tc

te

p2(t′) dt′

=

∫ te

0

p1(t′) dt′ +

∫ t

te

p2(t′) dt′ +

∫ tc

t

p2(t′) dt′

=

∫ t

0

p(t′) dt′ +

∫ tc

t

p2(t′) dt′,
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and thus ∫ t

0

p(t′) dt′ = −
∫ tc

t

p2(t′) dt′

=

∫ tc

t

Ee
εta

[
e−ε(t

′−te) − e−ε(tc−te)
]

dt′

=
Ee
taε2

[
e−ε(t−te) + (εte − εtc − 1)e−ε(tc−te)

]
.

We can now express the equation (3.17) of the glottal flow in a more explicit

form as

g(t) =


E0

α2+ω2 [eαt (−ω cos(ωt) + α sin(ωt)) + ω] , 0 ≤ t ≤ te
Ee

taε2

[
e−ε(t−te) + (εte − εtc − 1)e−ε(tc−te)

]
, te ≤ t ≤ tc

0, tc ≤ t ≤ T,
(3.21)

We can now also write the function ξ as

ξ(α) =

∫ T

0

p(t′) dt′

=

∫ te

0

p(t′) dt′ +

∫ tc

te

p(t′) dt′

=
E0

α2 + ω2

[
eαte (−ω cos(ωte) + α sin(ωte)) + ω

]
+

Ee
taε2

[
1 + (εte − εtc − 1)e−ε(tc−te)

]
.

In order to calculate the Newton’s iterations defined in equation (3.20) we

need the derivatives η′(ε) and ξ′(α). We get with a simple calculation that

η′(ε) = ta − (tc − te)e−ε(tc−te)

and

ξ′(α) =
E0

(α2 + ω2)
2

[
eαte

(
2αω cos(ωte)−

(
α2 − ω2

)
sin(ωte) )

−ω
(
α2te + 2α+ ω2te

)]
.

3.4 The vocal tract filter

As the source signal created in the glottis travels through the vocal tract,

the sound is filtered due to the resonant and anti-resonant frequencies of the

tract. This process is very similar to an equalizer, where some frequencies are

boosted and others are dampened.
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Glottis LipsA(x)

Figure 3.5: An example of the cross-sectional area of the simplified vocal tract.

As we described earlier in section 3.2, we will assume that the vocal tract is

unaltered with time. Also, we will only be concentrating on vowel sounds, where

the airflow can move unobstructed through the whole vocal tract without any

turbulent behaviour.

The most important factor in the creation of different vowel sounds is the

cross-sectional area of the vocal tract; we will assume that the vocal tract is

straight and rotationally symmetric. This is of course not quite the case in

reality, but it has been noted that it is a plausible simplification [26]. The vocal

tract can then be characterized by a so called cross-sectional area function, A(x),

where x denotes the distance travelled along the rotational axis from the glottis

toward the lips. An example of this situation can be seen in figure 3.5.

3.4.1 The uniform lossless tube model

One way to look more closely at a vocal tract with a variable cross-sectional

area is to use the so called uniform lossless tube model [26] (or just tube model).

The idea of the tube model is to discretize the area function of the vocal tract,

and then see how the tract affects the airflow, when assuming there are no losses

in the tract. The vocal tract will thus be regarded as a concatenation of cylinders

with different radii. The area function of a vocal tract with the length L will

then become a simple function A : [0, L]→ R+, where

A(x) = Ak, x ∈ Ik,

where Ik = [(k − 1)∆x, k∆x[, k ∈ {1, . . . , N}, and ∆x = L/N . An example of

the discretized vocal tract can be seen in figure 3.6.

Glottis LipsA1 A2 A3 A4 A5 A6 A7

∆x
∆x

∆x

∆x ∆x

∆x
∆x

Figure 3.6: An example of the discretization of the vocal tract in the tube model.
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Ak

Ak+1

∆x

∆x

Figure 3.7: The airflow at a tube junction.

The idea with the tube model is to be able to calculate the output signal of

an input signal to a tube, given the cross-sectional areas Ak. As it turns out,

the lossless tube will work as an LTI system and given the cross-sectional areas

we can calculate an explicit transfer function for the system, which will allow us

to calculate the output of any input signal easily. Next we will explain briefly

how the transfer function is derived.

In the inspection of the tube model we will be using the following notation.

The airflow in the k:th tube at the distance x from the start of the k:th tube at

the time t will be denoted with uk(x, t). The pressure will be denoted similarly as

pk(x, t). The speed of sound in the whole system will be assumed to be constant

and will be denoted with c. The pressure inside the tube will be denoted with ρ,

and will also be assumed to be constant.

For the airflow inside the k:th cylinder we have the identities

uk(x, t) = u+
k (t− x/c)− u−k (t+ x/c) (3.22)

and

pk(x, t) =
ρc

Ak

(
u+
k (t− x/c) + u−k (t+ x/c)

)
, (3.23)

where u+
k and u−k are the positive and negative direction volume flows at the

beginning of the k:th tube, respectively [26].

Let us look at the situation at the junction between two tubes, as shown

in figure 3.7. Because of the physical principle that volume flow and pressure

are continuous everywhere in both space and time, we get a constraint for the

junction between the k:th and (k + 1):st tube, namelyuk(∆x, t) = uk+1(0, t)

pk(∆x, t) = pk+1(0, t).
(3.24)
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Delay τ
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Figure 3.8: A schematic image of the signals at the k:th junction.

Now, by substituting equations (3.22) and (3.23) into the system (3.24), and

denoting τ := ∆x/c, we acquire the systemu
+
k (t− τ)− u−k (t+ τ) = u+

k+1(t)− u−k+1(t)

Ak+1

Ak

(
u+
k (t− τ) + u−k (t+ τ)

)
= u+

k+1(t) + u−k+1(t).
(3.25)

Solving the system (3.25) for u+
k+1 and u−k we getu

+
k+1(t) = rku

−
k+1(t) + (1 + rk)u+

k (t− τ)

u−k (t+ τ) = (1− rk)u−k+1(t)− rku+
k (t− τ),

(3.26)

where

rk =
Ak+1 −Ak
Ak+1 +Ak

. (3.27)

The coefficients rk, k = 1, . . . , N , are the so called reflection coefficients for the

k:th junction. Loosely speaking, the reflection coefficient rk describes how much

of the flow u−k+1 is reflected back to the positive direction at the k:th junction,

and similarly −rk tells how much of u+
k is reflected back in the negative direction.

Because we assumed the tube to be lossless, the rest of the volume flow continues

in its original direction, adding up to a no change in the total volume flow but

only redirection of the flow.

The process of signal propagation and reflection at the k:th junction is shown

schematically in figure 3.8. Each delay corresponds to the time it takes for the

sound to traverse through one tube. As we can clearly see, the shortest possible

time for a signal to arrive at the lips from the glottis is Nτ . If we now assume

that there is an impulse starting at the lips at time zero, the impulses from the

system will arrive at the lips at times Nτ + 2nτ , n = 0, 1, . . ., i.e. always when

the impulses have had time to traverse one cylinder back and forth.

Before we start examining the system in more detail, we will define exactly

what kind of system the tube model describes, in order to know what kind of

tools we have to work with.
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3.28 Theorem. The uniform lossless tube model describes a causal LTI system.

Proof. We can easily see that the tube model describes an LTI system; the system

is time-invariant because we defined the cross-sectional areas to be constant, and

we can see from the system (3.26) that the volume flow behaves linearly at the

tube junctions. The system is also clearly causal; as we previously mentioned,

the least time in which a signal from the glottis can reach the lips is Nτ > 0

and thus the output at time t cannot depend on any input values after the time

t−Nτ .

We now know how the volume flow behaves at the tube junctions, but our

ultimate goal with the tube model is to describe the output of the last tube as

compared to the input of the first tube. Thus we will now start working our way

toward a transfer function for the vocal tract. For this we will need boundary

conditions for the glottis and lips ends of the tube.

The boundary condition for the glottis can be done in a multitude of ways,

but one common way is to assume the glottis to be completely lossless, reflecting

all of the incoming signals back toward the lips. This can be described as

u+
1 (t) = u+

g (t) + u−1 (t), (3.29)

where u+
g is the source flow from the glottis.

To get expressions for the flow ul at the lips, we will think of a fictional

(N + 1):st tube, which is thought to be infinitely long, resulting in no flow back

in the negative direction, as

u−l (t) = 0. (3.30)

A reflection coefficient for the lips is still needed to account for the reflection

at the junction to the fictional (N + 1):st tube. We will call this coefficient rl,

resulting in the output

u+
l (t) = (1 + rl)u

+
N (t). (3.31)

The reflection at the lips is the only source of loss in the system. The value

of rl represents the amount of loss at the lips, and also determines the strength

of the resonances of the system. A value of rl = 1 results in an acoustic short

circuit with no loss, but usually the value is chosen as rl < 1 to give reasonable

bandwidths for the resonances of the system [26].

An example of a complete tube model with two tubes is seen in figure 3.9a.

Let us now consider the discrete-time case where we sample the signals with

the sample rate T = 2τ . Now each delay in figure 3.8 will become a delay of half

a sample. Recall from section 2.3.2, that a delay of n0 samples corresponds to

a factor z−n0 in the z-plane. Thus, the delays of τ time correspond to a factor
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(a) Signal flow graph of the system.
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z−1/2

−rl

ul(nT )

1 + rl

(b) The discrete time system.

Figure 3.9: An example of a two tube model including the boundary conditions
for the glottis and the lips.

z−1/2. An example of a two tube model with its respective discrete-time system

can be seen in figure 3.9.

As previously mentioned, an impulse at the glottis will arrive at the lips

at times t = Nτ + 2kτ , for k = 0, 1, . . .. In the discrete time case this will

correspond to the samples at the indices n = NT/2 + kT , k = 0, 1, . . ., which we

can see is an integer as long as N is even. If it is not, the problem can be solved

with interpolation between samples. For simplicity, we will assume N to be even

in the following discussion.

With the information so far, we can now give an expression for the transfer

function of the vocal tract described by the uniform lossless tube model.

3.32 Theorem. The transfer function of the system described by the uniform

lossless tube model can be written as

V (z) =
G

D(z)
, (3.33)

where

D(z) = 1−
N∑
k=1

αkz
−k (3.34)

and G and αk, k = 1, . . . , N are constants depending on the reflection coefficients

rk, k = 1, . . . , N of the tube.

Proof. Let rk, k = 1, . . . , N , be the reflection coefficients of a uniform lossless

tube, with the reflection coefficient at the lips denoted as rN = rl. As we know

by theorem 3.28 that the tube model describes an LTI system, we know that

there exists an impulse response v(n) such that the output signal ul(n) at the
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lips can be described by the convolution

ul(n) = (ug ∗ v)(n), (3.35)

where ug is the input signal at the glottis. Taking the z-transform of equa-

tion (3.35), we obtain the expression

UL(z) = UG(z)V (z), (3.36)

where UL, UG and V are the z-transforms of the signal at the lips, the signal

at the glottis and the impulse response, respectively. Solving equation (3.36)

for V (z) we can now note that the transfer function we are looking for can be

expressed as

V (z) =
UL(z)

UG(z)
. (3.37)

Let us now recall the system (3.26), which describes the change of flow at

the k:th tube junction. Sampling this with the sampling frequency T = 2τ we

get the discretized version of the system asu
+
k+1(n) = rku

−
k+1(n) + (1 + rk)u+

k

(
n− 1

2

)
u−k
(
n+ 1

2

)
= (1− rk)u−k+1(n)− rku+

k

(
n− 1

2

)
.

(3.38)

Taking the z-transforms of the two equations in the system (3.38) we obtain the

z-domain systemU
+
k+1(z) = rkU

−
k+1(z) + (1 + rk)z−

1
2U+

k (z)

z
1
2U−k (z) = (1− rk)U−k+1(z)− rkz−

1
2U+

k (z),
(3.39)

where U+
k and U−k are the z-transforms of the volume flows in the positive and

negative directions, respectively. Solving the first equation in the system (3.39)

for U+
k we obtain

U+
k (z) =

z
1
2

1 + rk
U+
k+1(z)− rkz

1
2

1 + rk
U−k+1(z). (3.40)

Substituting equation (3.40) into the second equation in the system (3.39) and

solving for U−k we get

U−k (z) = (1− rk)z−
1
2U−k+1(z)− rkz−1

(
z

1
2

1 + rk
U+
k+1(z)− rkz

1
2

1 + rk
U−k+1(z)

)

= −rkz
− 1

2

1 + rk
U+
k+1(z) +

(
(1− rk)z−

1
2 +

r2
kz
− 1

2

1 + rk

)
U−k+1(z)
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= −rkz
− 1

2

1 + rk
U+
k+1(z) +

(
z−

1
2

(
(1 + rk)(1− rk) + r2

k

)
1 + rk

)
U−k+1(z)

= −rkz
− 1

2

1 + rk
U+
k+1(z) +

z−
1
2

1 + rk
U−k+1(z),

i.e.

U−k (z) = −rkz
− 1

2

1 + rk
U+
k+1(z) +

z−
1
2

1 + rk
U−k+1(z). (3.41)

Now let us define

Uk(z) =

(
U+
k (z)

U−k (z)

)
and

Qk(z) =
z

1
2

1 + rk
Q̂k(z),

where

Q̂k(z) =

(
1 −rk

−rkz−1 z−1

)
.

Now we can write equations (3.40) and (3.41) in matrix form as

Uk(z) = Qk(z)Uk+1(z). (3.42)

Let us denote the z-transform of the flow at the lips as UL := UN+1. As

described in equations (3.30) and (3.31), we can describe the z-transform at the

lips as

UL(z) =

(
UL(z)

0

)
=

(
1

0

)
UL(z). (3.43)

Applying equation (3.42) recursively through the whole tube we get

U1(z) =

N∏
k=1

Qk(z)UL(z). (3.44)

From equation (3.29) we get the boundary condition for the z-transform of

the flow at the glottis as the matrix product

UG(z) =
(

1, −1
)

U1(z). (3.45)

Now, combining equations (3.43)–(3.45) we get

UG(z) =
(

1, −1
)

U1(z)

=
(

1, −1
) N∏
k=1

Qk(z)UL(z)
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=
(

1, −1
) N∏
k=1

Qk(z)

(
1

0

)
UL(z),

and according to equation (3.37) we can write

V (z) =
UL(z)

UG(z)
=

1(
1, −1

) N∏
k=1

Qk(z)

(
1

0

) ,

and further

V (z) =

N∏
k=1

(1 + rk)z−N/2

(
1, −1

) N∏
k=1

Q̂k(z)

(
1

0

) . (3.46)

The constant delay z−N/2 in the numerator can be dropped, as it does not

account to anything else than a shift of N/2 samples in the output. This can

be compensated by advancing the input with the respective amount of samples.

Thus, the transfer function gets the expression

V (z) =
G

D(z)
, (3.47)

where G is a constant,

G =

N∏
k=1

(1 + rk). (3.48)

Let us now take a closer look at the denominator. By writing out Q̂k, we

obtain

D(z) =
(

1, −1
) N∏
k=1

(
1 −rk

−rkz−1 z−1

)(
1

0

)
. (3.49)

It can easily be seen that this yields a polynomial of the variable z−1, with the

degree N . Thus, the denominator can be written as

D(z) = 1−
N∑
k=1

αkz
−k, (3.50)

and we have proven our claim.

We would still be interested in finding the numerical values of the polynomial

coefficients αk in equation (3.33). We can calculate them easily from the reflection

coefficients rk, as we will soon see. However, we will first need to formulate a

lemma.
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3.51 Lemma. Let rk, k = 1, . . . , N , be the reflection coefficients of a uniform

lossless tube. The denominator D(z) of the transfer function in equation (3.33)

can be calculated recursively by the formula
D0(z) = 1

Dm(z) = Dm−1(z) + rmz
−mDm−1

(
z−1
)
, m = 1, . . . , N

D(z) = DN (z).

(3.52)

Proof. Let rk, k = 1, . . . , N be the reflection coefficients of a uniform lossless

tube. From equation (3.49) we know that

D(z) =
(

1, −1
) N∏
k=1

Q̂k(z)

(
1

0

)
, (3.53)

where

Q̂k(z) =

(
1 −rk

−rkz−1 z−1

)
.

Let us now define the vectors

P0(z) =
(

1, −1
)

and

Pm(z) = Pm−1(z)Q̂m(z),

for m = 1, . . . , N . Now we can write equation (3.53) as

D(z) = PN(z)

(
1

0

)
,

because by definition

PN(z) = PN−1(z)Q̂N(z) = . . . = P0(z)

N∏
k=1

Q̂k(z).

Now, let us define

D0(z) = 1

and

Dm(z) = Dm−1(z) + rmz
−mDm−1

(
z−1
)
,

for m = 1, . . . , N . We want to show that

Pm(z) =
(
Dm(z), −z−mDm

(
z−1
))
, (3.54)
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for m = 0, . . . , N . The proof is done by induction.

For m = 0 we get

P0(z) =
(

1, −1
)

=
(
D0(z) −z−0D0

(
z−1
))
.

Now assume that equation (3.54) holds for m = n− 1, n = 1, . . . , N , i.e.

Pn−1(z) =
(
Dn−1(z), −z−n+1Dn−1

(
z−1
))
.

Now we get

Pn(z) = Pn−1(z)Q̂n(z)

=
(
Dn−1(z), −z−n+1Dn−1

(
z−1
))( 1 −rk

−rkz−1 z−1

)
=
(
Dn−1(z) + rnz

−nDn−1

(
z−1
)
, −z−n

(
Dn−1

(
z−1
)

+ rnz
nD(z)

))
=
(
Dn(z), −z−nDn

(
z−1
))
.

Thus, equation (3.54) holds for m = 0, . . . , N . We see now, that

D(z) = PN(z)

(
1

0

)
= DN (z),

and thus we have proven our claim.

3.55 Theorem. Let rk, k = 1, . . . , N be the reflection coefficients of a uniform

lossless tube. The coefficients for the transfer function

V (z) =
G

1−
N∑
k=1

αkz
−k

can be calculated as

G =

N∏
k=1

(1 + rk) (3.56)

and by the recursion formula

α
(0)
0 = 1

α
(n)
m = 0, m = 1, . . . , N and n < m

α
(n)
m = α

(n−1)
m + rnα

(n−1)
n−m , m = 1, . . . , n and n = 1, . . . , N

αm = α
(N)
m , m = 1, . . . , N.

(3.57)
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Proof. Let rk, k = 1, . . . , N be the reflection coefficients of a uniform lossless

tube. We already know from equation (3.48), that equation (3.56) holds.

Now we can prove equation (3.57) by induction, using the recursion formula

in equation (3.52). We see that for m = 1 we get

D0(z) = 1 =

0∑
k=0

α
(0)
k .

Now, assume that the values hold for m = p− 1, p = 1, . . . , N , i.e.

Dp−1(z) = 1 +

p−1∑
k=1

α
(p−1)
k z−k.

Now we get for m = p, that

Dp(z) = Dp−1(z) + rpz
−pDp−1

(
z−1
)

= 1 +

p−1∑
k=1

α
(p−1)
k z−k + rpz

−p

(
1 +

p−1∑
k=1

α
(p−1)
k zk

)

= 1 +

p−1∑
k=1

α
(p−1)
k z−k +

p−1∑
k=1

rpα
(p−1)
k zk−p + rpz

−p

= 1 +

p−1∑
k=1

α
(p−1)
k z−k +

p−1∑
k=1

rpα
(p−1)
p−k z−k + rpz

−p

= 1 +

p−1∑
k=1

(
α

(p−1)
k + rpα

(p−1)
p−k

)
︸ ︷︷ ︸

=α
(p)
k

z−k +
(

0 + rpα
(p−1)
0

)
︸ ︷︷ ︸

=α
(p)
p

z−p

= 1 +

p∑
k=1

α
(p)
k z−k.

Now we know that α
(m)
k are the polynomial coefficients of the m:th polynomial

Dm(z). As D(z) = DN (z) we can conclude that αk = α
(N)
k are the coefficients

of the denominator D(z). We have now proven our claim.

3.58 Note. An algorithm to obtain the values in equations (3.56) and (3.57) from

the reflection coefficients is shown in algorithm 3.1.

The final thing we want to show regarding the uniform lossless tube model

is that all the poles of the transfer function are located strictly inside the unit

circle. We are going to need a powerful theorem from complex analysis for this

proof, namely the so called Rouché’s theorem [8]. We will not prove the theorem

here, as it would require a much deeper discussion in the theory of complex

analysis than possible for the scope of this work.
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Algorithm 3.1 Coefficients for the transfer function

1: function reflection coeff2transfer coeff(r)
2: let G = 1
3: let α

(0)
0 = 1

4: for n = 1, . . . , N do
5: let G = G× (1 + rn)
6: for m = 1 to n do
7: let α

(n)
m = α

(n−1)
m + rnα

(n−1)
n−m

8: end for
9: end for

10: return G, α(N)

11: end function

3.59 Theorem (Rouché’s theorem). Let γ be a simple closed contour in C and

let f and g be analytic within and on γ. Assume that f(z) 6= 0 and |g(z)| < |f(z)|
for all z on γ. Then f and f + g have the same number of zeros inside γ.

Proof. See theorem 5.3.2 in [8].

Using Rouché’s theorem we have the tools to present a result about the

position of the transfer function’s poles. We will first present a lemma regarding

the values of the reflection coefficients for a uniform lossless tube and then move

to present the actual result regarding the poles of the transfer function.

3.60 Lemma. Let rk, k = 1, . . . , N be the reflection coefficients of a uniform

lossless tube. We have that |rk| < 1, for all k = 1, . . . , N .

Proof. Let Ak, k = 1, . . . , N be the cross-sectional areas of a uniform lossless

tube. We can assume that Ak > 0 for all k = 1, . . . , N . Now, according to

equation (3.27), we get the upper bound for the reflection coefficients as

rk =
Ak+1 −Ak
Ak+1 +Ak

=
Ak+1

Ak+1 +Ak
<
Ak+1

Ak+1
= 1,

and the lower bound as

rk =
Ak+1 −Ak
Ak+1 +Ak

>
−Ak+1 −Ak
Ak+1 +Ak

= −1.

Thus we see that |rk| < 1, and we have proven our claim.

3.61 Theorem. All the poles of the transfer function of a system defined by the

uniform lossless tube model are strictly inside the unit circle.

Proof. Let rk, k = 1, . . . , N be the reflection coefficients of a uniform lossless

tube. The poles of the transfer function are the zeros of the denominator D(z)

defined in equation (3.52). As Dk, k = 1, . . . , N , are polynomials of the degree k
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we know that they have exactly k roots (as each root is calculated as many times

as its multiplicity). This means that we have to show that for each k = 1, . . . , N

the function Dk has all its k roots inside the unit circle, i.e. for each root zl,

l = 1, . . . , k, of Dk we have that |zl| < 1. This proves that DN = D has all its

N roots inside the unit circle, which is exactly what we want to prove. We will

prove this by induction.

The case k = 0 is easy. We know from the definition of Dk in equation (3.52)

that D0(z) = 1 for all z. Thus it has no roots, meaning that all its roots are

inside the unit circle.

Let us now assume that for k = n, with 0 ≤ n < N , we have that Dn has all

its n roots inside the unit circle. From the proof of theorem 3.55 we know that

Dk can be written as

Dk(z) =

k∑
m=0

α(k)
m z−m,

for all k = 0, . . . , N . We also know from the recursive definition of Dn+1 in

equation (3.52) that

Dn+1(z) = Dn(z) + rn+1z
−(n+1)Dn

(
z−1
)
.

Multiplying this with zn+1 (z 6= 0) and reorganizing the terms yields the equation

zn+1Dn+1(z)− zn+1Dn(z) = rn+1Dn

(
z−1
)
. (3.62)

Let now |z| = 1. Because α
(k)
m ∈ R for all m and k, we get that

Dk (z−1) =

k∑
m=0

α
(k)
m zm =

k∑
m=0

α
(k)
m zm =

k∑
m=0

α
(k)
m zm

=

k∑
m=0

α(k)
m

(
z−1
)m

=

k∑
m=0

α(k)
m z−m = Dk(z),

and thus ∣∣Dk

(
z−1
)∣∣ = |Dk(z)| . (3.63)

Using lemma 3.60, equation (3.63) and the fact that
∣∣zn+1

∣∣ = 1 we can

rewrite equation (3.62) for |z| = 1 as

∣∣zn+1Dn+1(z)− zn+1Dn(z)
∣∣ =

∣∣rn+1Dn

(
z−1
)∣∣ = |rn+1|

∣∣Dn

(
z−1
)∣∣

= |rn+1| |Dn(z)| = |rn+1|
∣∣zn+1

∣∣ |Dn(z)|
= |rn+1|

∣∣zn+1Dn(z)
∣∣

<
∣∣zn+1Dn(z)

∣∣ ,
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yielding ∣∣zn+1Dn+1(z)− zn+1Dn(z)
∣∣ < ∣∣zn+1Dn(z)

∣∣ . (3.64)

Both sides of equation (3.64) are now analytic2 and thus by theorem 3.59 we

can conclude that zn+1Dn+1(z) and zn+1Dn(z) have the same number of zeros

inside the unit circle.

Writing out zn+1Dn(z) as

zn+1Dn(z) = zn+1
n∑

m=0

α(n)
m z−m =

n∑
m=0

α(n)
m zn+1−m,

we see that zn+1Dn(z) has a total of n+ 1 zeros. Setting zn+1Dn(z) = 0 we see

that either zn+1 = 0, yielding z = 0, or Dn(z) = 0, which we assumed to be n

zeros inside the unit circle. Thus zn+1Dn(z), and therefore also zn+1Dn+1(z),

has n+ 1 zeros inside the unit circle.

Writing out zn+1Dn+1(z) as

zn+1Dn+1(z) = zn+1
n+1∑
m=0

α(n+1)
m z−m =

n+1∑
m=0

α(n+1)
m zn+1−m,

we see that it has a total of n+ 1 zeros. These zeros are already proven to be

inside the unit circle. Noting that Dn+1(z) already has n+ 1 zeros in total, we

can conclude that the zeros of zn+1Dn+1(z) are actually the zeros of Dn+1(z).

We have now shown by induction that DN , and thus also D, has all its N

zeros inside the unit circle, which is what we set out to prove.

2 This is strictly speaking not completely true, as equation (3.62) is not valid for z = 0,
as we mentioned earlier. However, the functions on both sides can be continued to analytic
functions over z = 0, as multiplying Dn(z) and Dn+1(z) makes the singularities at z = 0
removable singularities. Due to this reasoning it is reasonable to call the functions analytic.
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4 The inverse problem – glottal inverse filtering

Glottal inverse filtering (GIF) is a technique for recovering the glottal excita-

tion signal from a recorded speech signal. The basic idea of the technique is to

cancel the vocal tract filter and lip radiation from the speech signal, revealing

the original source signal. However, this is a challenging task, as it turns out

that GIF is an ill-posed inverse problem.

As GIF has been studied for decades, since around the 1950s, many different

methods for solving the problem have been proposed. Several methods are also

robust and work within reasonable error margins for low enough fundamental

frequencies [3]. One of the challenges with GIF is still to construct a robust

method for estimating the glottal flow from recorded speech signals with a high

fundamental frequency, such as children’s or women’s voices.

In this section we will present a GIF method based on Markov chain Monte

Carlo proposed by Auvinen et al. in [5]. In section 4.2 we will also briefly present

the so called IAIF (iterative adaptive inverse filtering) method, proposed by

Alku in [2]. The IAIF method has been shown to give very good estimates of

the glottal flow, but is prone to error with high-pitched voices. The IAIF is an

important method to the MCMC based GIF method, as the initial guess of the

solution of GIF in the MCMC method is based on the IAIF result.

We will now move on to describe the problem in more detail, and then

describe different methods for solving the problem.

4.1 Glottal inverse filtering

As previously stated, GIF is a technique where we attempt to recover the

glottal flow from a recorded speech signal. As we know from equation (3.1) in

section 3, the speech signal can be view in the z-domain as S(z) = G(z)V (z)L(z),

where S, G, V and L represent the z-transforms of the recorded speech signal,

the glottal flow, the vocal tract and lip radiation, respectively. This means

that the glottal flow can be recovered as G(z) = S(z)/(V (z)L(z)). Recalling

from equation (3.2), the lip radiation can be modelled with a fixed first-order

differentiator, resulting in the fact that only the vocal tract needs to be estimated.

As we described in section 3.4, we will only need to estimate the parameters

G and αk in equations (3.33) and (3.34) in order to recover a good estimation

for the vocal tract filter. This is however not that straightforward, due to a

number of factors.

GIF is a typical inverse problem, which we can be write as

m = A(g) + ε, (4.1)
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where m ∈ Rn represents the measured data, A : Rk → Rn is an operator, g ∈ Rk

is the original signal we want to recover and ε ∈ Rn is random measurement

noise. For simplicity the noise is assumed to be Gaussian additive noise, with

ε = [ε1, . . . , εn]
T

satisfying εm ∼ N
(
0, σ2

)
for all m = 1, . . . , n, with a standard

deviation σ > 0.

The task related to equation (4.1) is “given the measurements m, reconstruct

g”. In practice, the problem with solving these kinds of inverse problems is

often the ill-posedness of the problem. Typically this means that two different

solutions g and g′ will result in almost the same measurements, A(g) ≈ A(g′).

With the addition of the measurement noise, this makes recovering g from the

measurement m a difficult task.

To be able to give robust solutions to the inverse problem in equation (4.1) we

need to use some a-priori knowledge of the problem at hand. As an example, in

our case we have defined a detailed mathematical model of the speech production

mechanism in section 3 that we can use to our advantage.

4.2 The IAIF method

We will now briefly present the iterative adaptive inverse filtering (IAIF)

method for solving the glottal inverse filtering problem. The idea in IAIF is

to estimate both the glottal excitation and the vocal tract using linear predic-

tive coding (LPC) [25]. We will go into further detail about the algorithm in

section 4.2.2, but we will first need to take a closer look at LPC analysis.

4.2.1 Linear predictive coding and analysis

In LPC analysis we would like to find such linear prediction coefficients αk,

k = 1, . . . , p, such that given the signal x the signal

y(n) =

p∑
k=1

αkx(n− k) (4.2)

is as good an approximation of x as possible. More specifically, we want to

minimize the sum of squares of the error

d(n) = x(n)− y(n) = x(n)−
p∑
k=1

αkx(n− k).

If we assume α0 = −1 we can write the error simply as

d(n) = −
p∑
k=0

αkx(n− k). (4.3)
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(a) (b) (c)

Figure 4.1: Example of the weighting of a signal with the Hann window. The
graphs show (a) the original signal, (b) the Hann window and (c) the weighted
signal.

Here p is the order of the LPC analysis.

Assume now that we have a frame of K samples as our given signal x, i.e.x(n) ∈ R, 1 ≤ n ≤ K
x(n) = 0, otherwise.

Writing equation (4.3) in matrix form we acquire

Xα = y′, (4.4)

where

X =



x(1) 0 · · · 0

x(2) x(1)
. . .

...
... x(2)

. . . 0
...

...
. . . x(1)

...
...

... x(2)

x(K)
...

...
...

0
. . .

...
...

...
. . .

. . .
...

0 · · · 0 x(K)



, α =


α1

α2

...

αp

 and y′ =



x(2)

x(3)
...

x(K)

0
...

0


.

Now equation (4.4) can easily be solved in the least squares sense for the

coefficients αk.

In practice the LPC analysis is often done to a somewhat modified signal

x̂ instead of the original signal x. The reason for this is that the errors at

the boundaries near x(1) and x(K) tend to become large due to the fact that

the frame ends and the remaining samples are padded with zeros. A common

modification is to use the weighted signal using the Hann (or Hanning) window,
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m(n)

1. LPC, order 1 2. Inverse filtering
Hg1(z)

3. LPC, order p

4. Inverse filtering

Hvt1(z)

5. Integration

6. LPC, order pg

g1(n)

7. Inverse filtering

Hg2(z)

8. LPC, order p

9. Inverse filtering

Hvt2(z)

10. Integration
ga(n)

Figure 4.2: A diagram showing the structure of the IAIF algorithm.

where the samples near the center are given high weights and samples near the

boundaries close or equal to zero weight. An example of the weighting of a signal

using the Hann window is shown in figure 4.1.

4.2.2 The IAIF algorithm

The IAIF method relies on the assumption that the combined effect of the

glottal excitation and lip radiation can be estimated from the speech measurement

frame using low-order LPC analysis. The algorithm proceeds as follows.

Let m(n) be the measurement speech frame.3 The algorithm begins by first

estimating the effect of glottal excitation and lip radiation from m(n) with an

LPC analysis of order 1. We receive the first estimate for the effect of the glottal

excitation and the lip radiation as an all pole filter Hg1(z). The measurement

signal m(n) is then filtered with the inverse of the filter Hg1(z) to receive a new

signal, with the effect of Hg1(z) removed. An LPC analysis of order p (usually

20) is then performed on this signal, giving the first estimate of the vocal tract

filter, Hvt1(z). The measurement signal m(n) is then filtered with the inverse

of this filter and integrated, leaving us with the first estimate for the glottal

flow, g1(n). This process is then repeated to receive the estimates Hg2(z) and

Hvt2(z), but this time the estimate for the effect of the glottal excitation and

the vocal tract is done with an LPC analysis of order pg (usually 8) instead of

1. Finally the estimate ga(n) for the glottal flow is received with filtering m(n)

with the inverse of Hg2(z) and integrating the resulting signal.

A diagram of the specifics of the algorithm is shown in figure 4.2.

4.3 The MCMC-GIF method

As we already noted, we described in section 3 that the we can model the

speech production mechanism in the z-domain as S(z) = G(z)V (z)L(z), where

S, G, V and L represent the z-transforms of the recorded speech signal, the

3 The measurements can be high-pass filtered before using the algorithm, but we will not
consider that part of the algorithm itself.
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Figure 4.3: An example of the connection between the formant frequencies and
poles of the transfer function.

glottal flow, the vocal tract and lip radiation, respectively. In theorem 3.32 we

showed that the vocal tract can be modelled as an all-pole filter

V (z) =
G

1−
N∑
k=1

αkz
−k

, (4.5)

allowing us to estimate the vocal tract filter simply by estimating the parameters

for the filter.

As we noted in theorem 2.50, all LTI systems with a rational transfer function

can be characterized by their poles and zeros. In the case of the vocal tract

filter, which is an all-poles filter having no zeros, we can characterize it by only

its poles. Having a denominator written as a real polynomial of degree N , the

transfer function V has exactly N poles, all of which are either purely real or

appear in conjugate pairs. Let us assume for simplicity that we have no real

poles, but all poles are complex having a conjugate pair.4

Let us now call the poles of the transfer function with a positive argument

p1, . . . , pN/2 and their conjugates p̃1, . . . , p̃N/2. Recalling theorem 2.52 from

section 2, and assuming that the arguments of the poles pk are somewhat evenly

divided in the range [0, π], we can see that each pole corresponds to a formant in

the frequency spectrum.5 The closer the pole is to the unit circle, the higher the

formant. An example of the connection between poles and formants is shown in

figure 4.3.

4 This is actually a feasible assumption. Recall from section 2, that the argument of a pole
of a transfer function corresponds to the frequency, with an argument close to 0 corresponding
to a low frequency and an argument close to ±π corresponding to a high frequency. This
means that a real pole corresponds to a frequency of either 0 Hz or the Nyquist frequency
fs/2, where fs is the sampling frequency, and thus no more than two of these poles are ever
required.

5 If we take a closer look at equation (2.53) for an all pole filter, we can see that if pk = rke
iω

for some k with rk = 1− ε for some small ε > 0 and no other poles have an argument close to
ω, then the factor

∣∣pk − eiω∣∣ =
∣∣rkeiω − eiω∣∣ = |ε| becomes dominant in the denominator of

H(ω), thus creating a peak at the frequency ω in the frequency spectrum.
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As we previously noted in section 3.1.3, different vowels can be characterized

by their formant structure, with the first few formants having the greatest impact

on the created vowel. The general idea with the MCMC-GIF method is thus to

start out with a reasonable guess for a vocal tract filter (obtained with the IAIF

method) and then moving around the first few poles of the transfer function

trying to improve the estimate. An estimate for the poles of the transfer function

is obtained using MCMC, which we will explain in more detail in section 4.3.1.

A more precise description of how the MCMC-GIF algorithm works will be given

in section 4.3.3.

4.3.1 Bayesian inversion and Markov chain Monte Carlo

Bayesian inversion is a technique for estimating the solution for ill-posed

inverse problems as in equation (4.1). The idea of Bayesian inversion is to use

a priori information that we have of the problem in order to solve it. The

information we have can be used to construct probability distributions, giving a

clue to how probable different kinds of solutions are.

Let us start by introducing some basic concepts of probability theory, and

then work our way toward a more precise formulation of Bayesian inversion and

the usage of MCMC in order to solve the problem. In this discussion we will

restrict ourselves to continuously derivable probability distributions.

Let X be an Rn-valued random variable with the probability distribution

pX . The probability density function (PDF) pX : Rn → R describes the relative

likelihood of the random variable taking a given value. For a PDF it holds that

pX(x) > 0

for all x ∈ Rn and ∫
Rn

pX(x) dx = 1.

The probability for a sample x′ of the random variable X to be in a subset

A ⊂ Rn is

P(x′ ∈ A) =

∫
A

pX(x) dx.

Let now X and Y be Rn and Rk valued random variables with the PDFs pX

and pY respectively. The joint probability density pX,Y : Rn × Rk → R is now

also a PDF, defined as

pX,Y (x, y) = pY |X(y|x)pX(x) = pX|Y (x|y)pY (y), (4.6)

where pY |X and pX|Y are the conditional probabilities of Y given X = x and X
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given Y = y respectively. Now equation (4.6) yields the so called Bayes’ formula

pX|Y (x|y) =
pX(x)pY |X(y|x)

pY (y)
, (4.7)

where pY (y) > 0 is required.

Let us assume m and g from equation (4.1) to be random vector with

continuous probability densities. Now according to Bayes’ formula we acquire

the so called posterior distribution

pG|M (g|m) =
pG(g)pM |G(m|g)

pM (m)
. (4.8)

The PDF pM |G in equation (4.8) is the so called likelihood distribution. It

is related to the noise in the measurements, giving high probabilities of the

measurements m which are close to A(x) and a low to those that are further

away. In the case of Gaussian noise, as we assumed in our case, the likelihood

distribution takes the form

pM |G(m|g) = C exp

(
− 1

2σ2
‖A(g)−m‖22

)
, (4.9)

where C is a normalization constant.

Now the likelihood distribution behaves as described. In our case we have

the measurements m constant, meaning that we can inspect the probability for

a given solution candidate g to yield the measurements m; if A(g) (the perfect

noiseless measurements assuming g) is close to m, then the probability is high

for g being the actual solution, and if A(g) differs a lot from m the probability

for g being the solution is low.

The role of the prior distribution pG(g) in equation (4.8) is to include all

the a priori information that we have about the solution. It should assign high

probabilities to likely solutions and low probabilities to unlikely solutions, in

light of the a priori knowledge.

The actual solution to the inverse problem in equation (4.1) according to

Bayesian inversion is the posterior distribution defined in equation (4.8). This

is however hard to visualize, and a point estimate of some sort is much rather

presented. In the case of MCMC-GIF we will be using the conditional mean

estimate defined as

gCM =

∫
Rn

g pG|M (g|m) dg. (4.10)

Another widely used point estimate is the maximum a posteriori estimate, defined

as

gMAP = arg max
g∈Rn

(
pG|M (g|m)

)
. (4.11)
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The conditional mean can be approximated using Markov chain Monte Carlo.

We want to estimate the integral in equation (4.10) numerically as

∫
Rn

g pG|M (g|m) dg ≈ 1

N

N∑
m=1

g(m), (4.12)

where the values g(1), g(2), . . . , g(N) are distributed according to the posterior

density pG|M .

In Markov chain Monte Carlo the value of the element g(m) only depends on

the previous element g(m−1) (thus the term Markov chain, which corresponds to

this particular property). In practice we cannot guarantee the initial guess g(1)

to be close to the conditional mean, which means that the beginning of the chain

might not be distributed properly. To avoid biasing due to this fact, we use a so

called burn-in period, where the first M elements of the chain are discarded, and

we assume that from the element g(M+1) on the chain is properly distributed.

The estimate of the conditional mean in equation (4.12) then becomes

∫
Rn

g pG|M (g|m) dg ≈ 1

N −M
N∑

m=M+1

g(m). (4.13)

We are still left with the task of acquiring the values g(k). This can be done

with the Metropolis-Hastings algorithm, which will be explained next.

4.3.2 The Metropolis-Hastings algorithm

The idea behind the Metropolis-Hastings algorithm [14, 21] is to find samples

that correspond to a probability distribution p using a Markov process. This

Markov process should be generated so that it reaches asymptotically a stationary

distribution π, such that π = p. We will now explain and derive the Metropolis-

Hastings algorithm. The proofs regarding results of Markov processes are beyond

the scope of this work, but we will give references to sources of the proofs.

A Markov process is a process with the Markov property, namely such a

process where the next state x(m) only depends on the current state x(m−1).

The process is therefore memoryless, meaning that it doesn’t matter how we

got to the state x(m−1), the probabilities for the process to move to any state

remain the same. A Markov process can be uniquely defined by defining the

transition probabilities p(x→ x′) for all the states x and x′.

Let us now examine a Markov process with the transition probabilities

p(x → x′) between the states x and x′. We want to know when the Markov

process reaches asymptotically a unique stationary distribution. This is true

when we can show that such a stationary distribution exists and that it is
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unique. We get the following conditions (of which the first one, theorem 4.14, is

a sufficient but not necessary condition, but will suffice in our case) [27]:

4.14 Theorem. There exists a stationary distribution π to which the Markov

process converges asymptotically, if the probability for being in a state x and

moving to a state x′ is equal to being at the state x′ and moving to the state x,

for all states x and x′. This can be expressed mathematically as

π(x)p(x→ x′) = π(x′)p(x′ → x). (4.15)

4.16 Theorem. The stationary distribution π is unique, if the Markov process

is (1) aperiodic and (2) positive recurrent.

Now we would like to choose the transition probabilities in our Markov

process in a way that the conditions in theorems 4.14 and 4.16 hold. We will do

this by separating the transition probabilities into two steps: proposal of the

next state and acceptance of the state. If we denote the proposal probability with

q and the acceptance probability with a we can write

p(x→ x′) = q(x→ x′)a(x→ x′). (4.17)

Combining equations (4.15) and (4.17) we get the condition

a(x→ x′)

a(x′ → x)
=
p(x′)q(x′ → x)

p(x)q(x→ x′)
. (4.18)

The common choice for the acceptance probability is to choose

a(x→ x′) = min

{
1,
p(x′)q(x′ → x)

p(x)q(x→ x′)

}
. (4.19)

We still want to show that this choice satisfies the condition in equation (4.18).

We see that either a(x → x′) = 1 or a(x′ → x) = 1 for all states x and x′.

Assume now that a(x→ x′) = 1. Then we know that

a(x′ → x) =
p(x)q(x→ x′)

p(x′)q(x′ → x)

and substituting this into the LHS of equation (4.18) we get

a(x→ x′)

a(x′ → x)
=

1

p(x)q(x→ x′)/(p(x′)q(x′ → x))
=
p(x′)q(x′ → x)

p(x)q(x→ x′)
.

Thus we see the choice in equation (4.19) satisfies the condition in equation (4.18).

The proposal probability distribution q is still to be chosen. This remains as

a free parameter to be chosen for each particular problem. In many cases q is
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Algorithm 4.1 The Metropolis-Hastings algorithm

1: procedure metropolis hastings
2: choose x(1) at random
3: let m = 1
4: for m = 1, . . . , N do
5: choose x′ according to q(x(m) → x′)
6: let r = p(x′)/p(x(m)) ∗ q(x′ → x(m))/q(x(m) → x′)
7: if rand(0, 1) < r then
8: let x(m+1) = x′

9: else
10: let x(m+1) = x(m)

11: end if
12: end for
13: end procedure

chosen to be symmetric (a multivariate normal distribution with the mean at

the current state and a suitable variance is a popular choice when dealing with

problems in Rn), such that q(x→ x′) = q(x′ → x) for all x and x′. In this case

the acceptance probability is reduced to

a(x→ x′) = min

{
1,
p(x′)

p(x)

}
. (4.20)

As we see, the acceptance of the new state becomes a really easy task; if the

new state has a higher posterior probability than the last state it is immediately

accepted, if it has a lower probability the state is accepted with respect to how

much less probable it is compared with the previous state.

The Metropolis-Hastings algorithm is described with step by step instructions

in algorithm 4.1.

4.3.3 The MCMC-GIF algorithm

We will now describe how Markov chain Monte Carlo and the Metropolis-

Hastings algorithm are used to solve the GIF problem. The process is done for

a small frame of recorded speech, which allows us to assume that the vocal tract

is time-invariant for the whole speech frame. According to our model of speech

production explained in section 3 the problem can be written as a convolution

m = p ∗ v + ε, (4.21)

where m = m(n) are the measurements, p = p(n) is the glottal pressure signal,

v = v(n) is the impulse response of the vocal tract and ε is random noise.

The initial step in MCMC-GIF is to find an initial guess for the MCMC. As

already mentioned earlier, the solution from the IAIF method is used as such.
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Figure 4.4: The MCMC-GIF algorithm shown as a flow diagram.

From IAIF we acquire an estimate for the glottal flow, g0(n), as well as the

parameters for the all-pole filter describing the vocal tract, V0(z). Once this

is done we can shift the frame into position.6 This is done by searching for

the glottal closure instant (GCI) using a simple peak finding algorithm. The

Klatt-parameter is initialized usually in the range q0 ∈ [0.4, 0.6]. We then have a

parametrized IAIF estimate for our problem, with q0 being the Klatt-parameter

for the glottal flow and v = v(z1, . . . , zN ) being the vocal tract filter parametrized

by the poles zk, k = 1, . . . , N . Let us assume that the poles are ordered by

the absolute value of their argument, |arg(zk)| < |arg(zl)| for k < l. We will

disregard the purely real poles from the IAIF result, as they do not correspond

to any actual formant frequencies.7

Next we want to compute the radii and arguments of the poles, which

makes it easier to put constraints on the numerical values of the numbers when

simulating the MCMC. As we only regard the purely complex poles, we get the

vector θ = (r1, ϕ1, . . . , rM , ϕM , q), where q is the Klatt-parameter, rk and ϕk

correspond to the radii and arguments of the k:th conjugate pair of poles,

z2k−1 = rk exp(iϕk)

and

z2k = rk exp(−iϕk),

6 This is an important part in MCMC-GIF, as it is important that the glottal source signal
created with the RK-model has the correct phase that matches the original signal.

7 In the original work [5] by Auvinen et al. the proposed method is to completely discard
the real poles. It is still up to discussion if this is the best thing to do, as the real poles still
shape the frequency response, even though they do not correspond to any actual formant
frequencies. Another way to go about this is to keep the real poles in the calculations keeping
them unaltered during the whole process. This method is used in the results presented in
section 5.
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Figure 4.5: An example of the effect on the frequency response of the movement
of the first four poles.

k = 1, . . . ,M and M = N/2. The forward solution can now be written as

mθ(n) = p(n,θ) ∗ v(n,θ),

where mθ is the forward solution, p(n,θ) = p(n, q) is the glottal pressure

described by the RK-model and v(n,θ) is the impulse response of the all-pole

filter Vθ(z) defined by the poles z1, . . . , zN .

Our aim is now to find the values for θ that correspond best to our mea-

surements m. The idea is to improve the transfer function by moving the poles

and the Klatt-parameter to fit the measurements. Because we know that a high

dimension of the free variables complicates the numerical stability of the problem,

and we know that the first few formants are most important in defining the

vocal tract for vowels, we will choose the four first poles of the transfer function

to be free variables while we fix the rest. This means that the problem will take

place in the space R9 (the Klatt-parameter and four poles). An example of the

effect of the movement of the first four poles can be seen in figure 4.5. As it can

be seen, the poles correspond approximately to the formant peaks, as we have

mentioned earlier.

As explained in section 4.3.1, the Bayesian inversion solution to the described

problem is

π(θ|m) =
π(θ)π(m|θ)

π(m)
, (4.22)

where π(m|θ) is the likelihood distribution, π(θ) is the prior distribution and

π(m) is a normalizing constant.

The prior distribution should map likely values of θ to high probabilities

and unlikely values to low probabilities. This should not take into account the

measurements, but only correspond to the a priori knowledge we have of the

values. As we know from theorem 3.61, all the poles of our transfer function

should be strictly inside the unit circle. The poles’ radii can also be restricted

to certain ranges based on the IAIF result; it is highly unlikely that the values
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would change drastically from the initial estimate. The poles’ arguments also

follow the ordering ϕ1 < ϕ2 < . . . < ϕM .8 The Klatt-parameter q can also be

restricted to a certain range. All of the above qualities are represented in the

prior distribution.

As we assumed that the measurement noise is Gaussian white noise with

some standard deviation σ > 0, as explained in section 4.3.1, the likelihood

model takes the form

π(m|θ) = exp

(
− 1

2σ2
‖p(θ) ∗ v(θ)−m‖22

)
.

However, in the case of GIF it is important to measure the error in both the time

domain and the frequency domain. This is due to the fact that characteristics

of signal are often better visible in the frequency domain representation. As

proposed by Auvinen et al. in [5], this results in the likelihood distribution

π(m|θ) = exp (−ct∆t(m,θ)− cf∆f (m,θ)) , (4.23)

where

∆t(m,θ) = ‖p(θ) ∗ v(θ)−m‖22

is the time domain squared norm,

∆f (m,θ) = ‖|FFT(p(θ) ∗ v(θ)| − |FFT(m)|‖22

is the frequency domain squared norm and ct, cf > 0 are parameters to be

evaluated experimentally.

With the given specifications we can generate a sequence θ(1),θ(2), . . . ,θ(K)

using the Metropolis-Hastings algorithm described in section 4.3.2 for a predefined

number of samples K.9 After computing the sequence we can acquire a point

estimate calculating the conditional mean of the sequence as in equation (4.13),

with a burn-in period of K0 samples. The conditional mean is then

θCM ≈
1

K −K0

K∑
k=K0+1

θ(k). (4.24)

When we have acquired the conditional mean estimate, we can finally calculate

our new glottal flow estimate. This is done by inverse filtering the measurements

8 This would otherwise not be needed as a constraint, but because all the poles correspond
to the transfer function equally, a change of order of the poles’ angles could possibly result in
disrupting the estimate; when taken the conditional mean of the results two poles would be
mixed up resulting in unexpected behaviour.

9 In both this work and the work [5] by Auvinen et al. the method used to obtain the
sequence is actually a modern variation of the Metropolis-Hastings algorithm known as DRAM
[13]. The implementation of DRAM can be found in the Matlab package [19].
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with the filter VCM(z) described by the poles in the conditional mean estimate

and then integrating the result.

A diagram of the MCMC-GIF algorithm is shown in figure 4.4.
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5 Numerical results

In this section we will present some numerical results obtained by using the

MCMC-GIF method for solving the glottal inverse filtering problem. All the

results presented are obtained from synthetic data, created for the purpose of

example. The results are not to be regarded as any kind of proof for the perfor-

mance of MCMC-GIF in a general case, but merely as examples to demonstrate

how the algorithm performs in typical cases. Synthetic data is used to ensure

objective analysis of the results; we have a reference signal for the correct answer.

The results of MCMC-GIF will compared with the results of the IAIF method

in each case.10

We will first present some earlier results of the performance of the MCMC-

GIF algorithm in section 5.1. In section 5.2 we will present new results of the

performance of MCMC-GIF in some example cases.

5.1 Earlier results

A comprehensive set of results using the MCMC-GIF method was presented

by Auvinen et al. in [5]. In the article, the authors showed using a large set

of synthetic vowels, that MCMC-GIF performs better than other existing GIF

methods in almost all cases.11 It was noted that the errors for all methods tend

to grow larger with higher fundamental frequencies, but this also depends on

which vowels are used. It was also noted that although the MCMC-GIF method

performed better in most cases, the most prominent improvements compared to

the IAIF method were received with low fundamental frequencies.

Although the results by Auvinen et al. were promising, the authors wanted

to stress that the results are still preliminary and that the method can most

probably be further improved. In particular, the authors suggested that further

study is needed to understand how different prior distributions affect the results.

5.2 Numerical examples

Let us now present some results of the performance of MCMC-GIF acquired

by the author. As already mentioned before, the results presented are not to

be regarded as any kind of proof of the algorithm’s performance, but merely as

examples of how the algorithm works.

10 As MCMC-GIF uses the IAIF result as an initial guess, the results actually tell how much
MCMC-GIF was able to improve (or worsen) the results obtained by the IAIF method.

11 The authors of the article want to note that synthetic vowels were used in order to obtain
a reference signal for the results, which is not possible with natural recorded vowels. The
synthetic vowels were, however, created using physical modelling techniques of the vocal folds
and the vocal tract, in order to ensure that the results are not biased by the data being created
with the same source-filter theory than what the GIF methods are based on.
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/a/ 100 Hz /a/ 200 Hz /i/ 200 Hz /i/ 250 Hz
H1-H2

IAIF 0.04 dB 0.44 dB 6.80 dB 6.39 dB
MCMC-GIF 0.02 dB 0.01 dB 0.16 dB 0.56 dB

NAQ
IAIF 3.2 % 0.6 % 41.3 % 32.8 %
MCMC-GIF 0.9 % 1.8 % 2.9 % 2.8 %

Table 5.1: Results of the numerical experiments.

5.2.1 Experiment setup

All the synthetic test data were created in the following way. The glottal

excitation signal was created using the LF-model, described in section 3.3.2.

The parameters for the LF-model were chosen to represent viable excitation

signals and the fundamental frequency f0 was chosen separately for each case.

The glottal excitation signal was then filtered with a vocal tract filter previously

recovered with some existing GIF method to create the synthetic vowel data.

The sampling frequency of the speech data was chosen to be 16 kHz in each

experiment, with the speech frame of the length 25 ms (400 samples), except for

the case with the fundamental frequency of f0 = 100 Hz, where the frame was

31.25 ms (500 samples) long.

It is important to note, that the data was created with a different model

than what MCMC-GIF uses for solving the problem; the data is created with

the LF-model and MCMC-GIF uses the RK-model. By doing this we avert the

so called inverse crime, where the inspected method gets an unfair advantage

of using the same model as the data it is tested on. In other words, if the data

is created with the same model than what is used in solving the problem, the

data is “too easy” for the method to solve. By choosing the data wisely we get

comparable results.

The IAIF algorithm was run on the data frame to receive a 20:th order LP

estimate for the vocal tract filter. A total of nine parameters were then estimated

with the MCMC-GIF algorithm; the Klatt-parameter q and the radii rk and

angle shift ∆ϕk of the four first poles. The initial value of the Klatt-parameter

was chosen as q0 = 0.5, with a uniform prior distribution in the range [0.2, 0.9].

The radii were initialized to the values of the IAIF estimate, Rk, with a uniform

prior distribution in the range [Rk − 0.1, 0.99]. The angle shift was initialized

to 0 for all angles (resulting in the IAIF estimate angle for all poles) with a

uniform prior distribution in the range [−π/16, π/16]. The parameters ct and

cf for the likelihood distribution were chosen to give equal weights to both the

time domain and frequency domain errors. The MCMC-GIF algorithm was run

with a total of K = 100 000 simulations, using a burn-in period of K0 = 50 000.
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Figure 5.1: The (a) glottal flow estimates and (b) vocal tract filter estimates for
the vowel /a/ at f0 = 100 Hz.

5.2.2 Results

The numerical results of four different GIF cases are shown in table 5.1.

A solution for each case was calculated using both the IAIF method and the

MCMC-GIF method. Two different error estimates were calculated for all the

results, one in both the time domain and the frequency domain.

The first error estimate, H1-H2, is a frequency domain error, measuring the

magnitude difference between the first and second harmonics of the glottal flow

[32]. The second error estimate, NAQ (Normalized Amplitude Quotient), is a

time domain error, measuring the ratio between the amplitude of the glottal flow

and the negative peak amplitude of the glottal pressure, normalized in respect

with the length of the fundamental period [4]. Both methods are widely used in

determining the vocal quality.

The results of the glottal inverse filtering using both IAIF and MCMC-GIF

are shown in figures 5.1–5.4. The glottal flow comparison between IAIF and

MCMC-GIF in the time domain for each case is shown in figures 5.1a and 5.2–5.4.

The frequency response of the recovered vocal tract filter for one of the cases is

also shown in figure 5.1b.

The computation time required for the MCMC-GIF varied from 6 to 7 hours

using a single core on a laptop computer.
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Figure 5.2: The glottal flow estimates for the vowel /a/ at f0 = 200 Hz.
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Figure 5.3: The glottal flow estimates for the vowel /i/ at f0 = 200 Hz.
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Figure 5.4: The glottal flow estimates for the vowel /i/ at f0 = 250 Hz.
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5.2.3 Discussion

The presented examples show that the MCMC-GIF method improves most

of the results obtained by the IAIF method. In three out of the four examples

better results were acquired with the MCMC-GIF method in both H1-H2 and

NAQ sense, while one (200 Hz /a/) was better in H1-H2 sense but worse when

measured with NAQ. It can be seen that the errors are clearly higher for both

examined methods with higher frequencies, as already noted in section 5.1.

The chosen vowel also clearly affects the errors; the results using IAIF were

good in both cases using the vowel /a/, but bad with the vowel /i/. This might

be the result of the first formant of the vowel /i/ being around 240 Hz, whereas

the first formant for the vowel /a/ is around 850 Hz. This can greatly affect the

IAIF method, as the fundamental frequency might get “mixed up” with the first

formant frequency.

From figure 5.1b we can see that the frequency response (or the poles of

the transfer function) acquired by the MCMC-GIF method are not necessarily

always better for the whole spectrum. We can clearly see that the frequency

response is almost perfect for the frequencies 0–1500 Hz, but that the third

formant at about 3 kHz is clearly misplaced. However, this does not seem to

affect the final result of the glottal flow estimate, as we can see in figure 5.1a

and from the results in table 5.1; the glottal flow estimate is almost perfect.

The reason to why the misplaced third formant does not affect the result that

much might be that the impact of the formants on the vowel sound is greatest at

the first two formants, and as frequency of the third formant for this particular

vowel is quite high it does not affect the result as much as the two first formants.

Even though the results obtained with MCMC-GIF are better than those

acquired with the IAIF method, especially for higher frequencies and certain

vowels, the computation time required is much longer. As the IAIF method only

needs seconds to compute the result, it takes several hours for the MCMC-GIF

to reach the results, making the algorithm quite impractical to use. However,

the run time of MCMC-GIF could be shortened with a couple of changes.

The implementation of MCMC used in this work is a single threaded algorithm,

which means that the computational time could be lowered drastically by using

parallel algorithms for the MCMC calculations. Also, the number of simulations

used in this work is quite high, being 100 000 compared to the 40 000 used in

the original work by Auvinen et al.. The number of simulations was increased

because it was noted that the results improved further when exceeding the

suggested 40 000 simulations. The chosen number of 100 000 simulations in this

work might though be a bit overkill, and the same level of results might easily be

achieved with a smaller number of simulations, decreasing the computation time
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of the algorithm even further. The computation time of the algorithm could

thus possible be decreased to well within an hour with the right implementation

and choice of the number of simulations used.
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Appendices

A Proofs of the DTFT and z-transform proper-

ties

In this appendix we will present the proofs for the properties of the DTFT

and the z-transform, presented in tables 2.1 and 2.2 in section 2.

We will present all the proofs only for the z-transform case, because the

z-transform is just a generalization of the DTFT. In other words, the DTFT

can be acquired from the z-transform by only looking at values on the complex

unit circle, i.e. XF (ω) = XZ
(
eiω
)
, where XF is the DTFT and XZ is the

z-transform.

A.1 Theorem. The z-transform is linear, i.e.

Z {c1x(n) + c2y(n)} = aX(z) + bY (z),

where x(n) and y(n) are sequences, X(z) and Y (z) their respective z-transforms

and c1, c2 ∈ R constants.

Proof. With a direct calculation we get

Z {c1x(n) + c2y(n)} =

∞∑
k=−∞

(c1x(k) + c2y(k))z−k

= c1

∞∑
k=−∞

x(k)z−k + c2

∞∑
k=−∞

y(k)z−k

= c1X(z) + c2Y (z).

A.2 Theorem. Let x(n) be a sequence, X(z) its z-transform, and n0 ∈ Z. Now

the z-transform of the delayed sequence is

Z {x(n− n0)} = z−n0X(z).

Proof. Using the substitution m = k − n0 we get with a direct calculation that

Z {x(n− n0)} =

∞∑
k=−∞

x(k − n0)z−k =

∞∑
m=−∞

x(m)z−(m+n0)

= z−n0

∞∑
m=−∞

x(m)z−m = z−n0X(z).
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A.3 Theorem. Let x(n) be a sequence, X(z) its z-transform, and z0 ∈ C. Now

the z-transform of the new sequence y(n) = zn0 x(n) is

Z {zn0 x(n)} = X(z/z0).

Note. The theorem is equivalent to the modulation property of the DTFT. If

you restrict |z0| = 1, and write z0 = eiω0 , where ω0 = arg(z0), the theorem will

take the form

F
{
eiω0nx(n)

}
= Z

{
eiω0nx(n)

}
= Z

{(
eiω0

)n
x(n)

}
= Z {zn0 x(n)} A.3= XZ (z/z0) = XZ

(
eiω/eiω0

)
= XZ

(
ei(ω−ω0)

)
= XF (ω − ω0) .

Proof. Let x(n) be a sequence, X(z) its z-transform, and z0 ∈ C. Now we get

Z {zn0 x(n)} =

∞∑
k=−∞

zk0x(k)z−k =

∞∑
k=−∞

x(k)(1/z0)−kz−k

=

∞∑
k=−∞

x(k)(z/z0)−k = X(z/z0).

A.4 Theorem. Let x(n) be a sequence and X(z) its z-transform. Then we have

Z
{
x(n)

}
= X (z).

Note. If we again restrict |z| = 1 and write z = eiω, we get for the DTFT the

equivalent expression

F
{
x(n)

}
= Z

{
x(n)

}
A.4
= XZ (z) = XZ

(
eiω
)

= XZ (e−iω) = XF (−ω),

as mentioned in table 2.1 .

Proof. Let x(n) be a sequence and X(z) its z-transform. Now we get

Z
{
x(n)

}
=

∞∑
k=−∞

x(k)z−k =

∞∑
k=−∞

x(k)z−k =

∞∑
k=−∞

x(k)z−k
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=

∞∑
k=−∞

x(k)z−k = X (z).

A.5 Theorem. Let x(n) be a sequence and X(z) its z-transform. Now it holds

for the z-transform of the time-reversed signal that

Z {x(−n)} = X
(
z−1
)
.

Proof. Let x(n) be a sequence and X(z) its z-transform. Now we get with the

substitution m = −k that

Z {x(−n)} =

∞∑
k=−∞

x(−k)z−k =

∞∑
m=−∞

x(m)zm

=

∞∑
m=−∞

x(m)
(
z−1
)−m

= X
(
z−1
)
.

A.6 Theorem (The convolution theorem for z-transforms). Let x(n) and y(n)

be sequences, and X(z) and Y (z) their respective z-transforms. Now it holds for

the z-transform of the discrete convolution that

Z {(x ∗ y)(n)} = X (z)Y (z) .

Proof. Let x(n) and y(n) be sequences, and X(z) and Y (z) their respective

z-transforms. Now we get with the substitution n = k −m that

Z {(x ∗ y)(n)} =

∞∑
k=−∞

(x ∗ y)(k)z−k

=

∞∑
k=−∞

∞∑
m=−∞

x(m)y(k −m)z−k

=

∞∑
m=−∞

∞∑
k=−∞

x(m)y(k −m)z−k

=

∞∑
m=−∞

x(m)

∞∑
k=−∞

y(k −m)z−k

=

∞∑
m=−∞

x(m)

∞∑
n=−∞

y(n)z−(n+m)

=

∞∑
m=−∞

x(m)

∞∑
n=−∞

y(n)z−nz−m
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=

∞∑
m=−∞

x(m)z−m
∞∑

n=−∞
y(n)z−n

= X (z)Y (z) .

77


	Title
	Abstract, English
	Abstract, Swedish
	Abstract, Finnish
	Acknowledgements
	Contents
	1 Introduction
	2 Signal processing
	2.1 Discrete-time signals
	2.1.1 Some important signals

	2.2 Discrete-time systems
	2.2.1 Properties of discrete-time systems
	2.2.2 Linear time-invariant systems

	2.3 Frequency domain representations
	2.3.1 The discrete-time Fourier transform
	2.3.2 The z-transform
	2.3.3 Systems with rational system functions


	3 The direct problem – digital speech
	3.1 The speech production mechanism
	3.1.1 Glottal excitation
	3.1.2 Vocal tract
	3.1.3 Categorization of speech sounds

	3.2 The source-filter theory
	3.3 Glottal flow models
	3.3.1 Rosenberg-Klatt model
	3.3.2 Liljencrants-Fant model

	3.4 The vocal tract filter
	3.4.1 The uniform lossless tube model


	4 The inverse problem – glottal inverse filtering
	4.1 Glottal inverse filtering
	4.2 The IAIF method
	4.2.1 Linear predictive coding and analysis
	4.2.2 The IAIF algorithm

	4.3 The MCMC-GIF method
	4.3.1 Bayesian inversion and Markov chain Monte Carlo
	4.3.2 The Metropolis-Hastings algorithm
	4.3.3 The MCMC-GIF algorithm


	5 Numerical results
	5.1 Earlier results
	5.2 Numerical examples
	5.2.1 Experiment setup
	5.2.2 Results
	5.2.3 Discussion


	References
	Appendices
	A Proofs of the DTFT and z-transform properties

