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Abstract

Understanding urban human mobility is crucial for various mobile and network
applications. This thesis addresses two key challenges presented by mobile appli-
cations, namely urban mobility modeling and its applications in Delay Tolerant
Networks (DTNs).

First, we model urban human mobility with transportation mode information. Our
research is based on two real-life GPS datasets containing approximately 20 and
10 million GPS samples. Previous research has suggested that the trajectories
in human mobility have statistically similar features as Lévy Walks. We attempt
to explain the Lévy Walks behavior by decomposing them into different classes
according to the different transportation modes, such as Walk/Run, Bike, Train/
Subway or Car/Taxi/Bus. We show that human mobility can be modelled as a
mixture of different transportation modes, and that these single movement pat-
terns can be approximated by a lognormal distribution rather than a power-law
distribution. Then, we demonstrate that the mixture of the decomposed lognor-
mal flight distributions associated with each modality is a power-law distribution,
providing an explanation for the emergence of Lévy Walks patterns that charac-
terize human mobility patterns.

Second, we find that urban human mobility exhibits strong spatial and temporal
patterns. We leverage such human mobility patterns to derive an optimal routing
algorithm that minimizes the hop count while maximizing the number of needed
nodes in DTNs. We propose a solution framework, called Ameba, for timely
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data delivery in DTNs. Simulation results with experimental traces indicate that
Ameba achieves a comparable delivery ratio to a Flooding-based algorithm, but
with much lower overhead.

Third, we infer the functions of the sub-areas in three cities by analyzing urban
mobility patterns. The analysis is based on three large taxi GPS datasets in Rome,
San Francisco and Beijing containing 21, 11 and 17 million GPS points, respec-
tively. We categorize the city regions into four categories, workplaces, entertain-
ment places, residential places and other places. We show that the identification
of these functional sub-areas can be utilized to increase the efficiency of urban
DTN applications.

The three topics pertaining to urban mobility examined in the thesis support the
design and implementation of network applications for urban environments.

Computing Reviews (1998) Categories and Subject
Descriptors:
H.1.2 [User Machine Systems]: Human Factors
B.8.2 [Performance Analysis and Design Aids]

General Terms:
Urban Computing, Human Mobility, Mobile Computing, Mobile Social
Networks

Additional Key Words and Phrases:
Urban Human Mobility, Delay Tolerant Networks, Mobile applications
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Chapter 1

Introduction

Understanding human mobility is crucial for epidemic control [75, 5, 8, 26], urban
planning [125, 114], traffic forecasting systems [58, 38] and, more recently, vari-
ous mobile and network applications [46, 121, 124, 51, 30]. Nowadays, a variety
of urban human mobility data have been gathered and published. The pervasive
GPS data can be collected by mobile phones. A mobile operator can track people’s
movement in cities based on their cellular network location. This urban human
mobility data contains rich knowledge about locations and can help in addressing
many urban challenges such as traffic congestion or air pollution problems. This
thesis aims to utilize the knowledge of urban human mobility patterns to improve
the performance of urban network applications. Urban human mobility patterns
[6, 103, 36, 45, 77, 64, 59] pertain to how people move in cities, for example,
walking, biking, driving and utilizing public transportation.

Delay Tolerant Networking (DTNs) [119, 91, 105, 57, 32, 63, 112] is an en-
abler for the urban network applications. It provides intermittent communica-
tion for humans with mobile devices (vehicles, mobile phones, etc.), by exchang-
ing data through short-range communications such as Bluetooth or WiFi direct,
which can significantly reduce mobile data traffic of cellular networks. The data
transferred in DTNs is delay tolerant, such as weather forecasts, football score or
regional information. Since humans carry their mobile devices everywhere every-
day, understanding and utilizing urban human mobility can help in delivering the
data in DTNs more efficiently [19, 88, 106, 87]. Urban DTNs provide comple-
mentary caching and offloading abilities for the congested cellular networks in a
city. They can also provide the basic network support during disasters, such as
earthquakes or sudden power failures. In addition, urban DTNs also benefit from
the huge number of people living inside a city, e.g., tens of thousands of people
gather together for a football match. These large numbers of people increase the
network density with their mobile devices allowing the network to operate faster
and with more messages.
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2 1 INTRODUCTION

This thesis addresses the two key challenges presented by mobile applications,
namely urban mobility modeling and its network applications especially DTN ap-
plications [83]. First, we present three findings concerning urban human mobility:

• Urban human mobility follows different log-normal distributions with dif-
ferent transportation modes, such as car, subway or bike.

• Urban human mobility exhibits strong spatial and temporal patterns.

• Urban taxi traffic correlates with the functions of city areas.

Then we show that we can utilize our knowledge of these urban human mobil-
ity patterns to improve the performance of urban applications that require delay
tolerant operation.

1.1 Motivation

Nowadays, a variety of urban human mobility data have been gathered and pub-
lished due to the significant growth of sensing technologies and large-scale com-
puting infrastructures. This urban human mobility data contains rich knowledge
about locations and can help in addressing many urban challenges. For example,
understanding human movements inside a city can help forecasting of the traffic.
Another example is that we can identify the functions of locations by the means
of the transitions between these locations, e.g., people usually go to work during
daytime on weekdays, and visit shopping centers after work.

Currently mobile and cellular networks are heavily utilized by mobile appli-
cations. As an example, we can consider a photo post in Facebook1. One picture
taken by a smartphone is typically between 2 MB and 3 MB. Considering the
huge number of users who post millions of photos on Facebook everyday, the
total traffic over mobile networks is high. According to AT& T, its network has
seen a 5,000 percent surge of mobile data transfer2. Thus, it is important to design
and deploy techniques that alleviate network bandwidth issues. DTNs provide the
basis for a promising optimization technique that offloads cellular network traffic
to the opportunistic DTNs. DTNs use complementary network communication
technologies (WiFi direct, Bluetooth) for delivering the data that is originating
from the cellular network and destined for the cellular network subscribers.

Motived by the availability of large-scale urban mobility data and the cur-
rent urban cellular network congestion problem, this thesis aims to utilize the

1www.facebook.com
2http://www.att.com/gen/press-room?pid=17961&cdvn=news&

newsarticleid=30838



1.2 Problem Statement 3

knowledge of urban human mobility patterns to improve the performance of ur-
ban DTNs. The network applications of the urban DTNs include offloading of
delay-tolerant traffic from the cellular network, content delivery in public events
where traditional networks become congested, environmental sensing, and pro-
viding data delivery for environments that do not have ubiquitous cellular connec-
tivity.

1.2 Problem Statement

Human mobility has been studied for a very long time. In 1885, the publication
of The Laws of Migration [84] in the Journal of the Royal Statistical Society can
be considered as the first modern attempt to understand human mobility. Due to
the significant growth of mobile phones, the study of human mobility has sig-
nificantly changed. Mobile phones utilize cell tower information and the Global
Positioning System (GPS) for fine-grained location tracking. Billions of people
carry their phone every day, which provides a large amount of data on human
movement. In 2008, one of the first large scale human mobility studies based
on mobile phones was published in Nature [39]. By studying cell phone user’s
locations it was shown that trajectories in human mobility have statistically sim-
ilar features to Lévy Walks [39]. According to the this model, human movement
contains many short flights and some long flights, and these flights follow a power-
law distribution. Similar results have been published in an earlier work in Nature
in 2006 by studying the tracing of bank notes [15]. Rhee et al. published their
study of human mobility at the IEEE Infocom conference in 2008 [87]. They also
demonstrated that human walk patterns closely follow Lévy Walks patterns based
on approximately one thousand hours of GPS trace studies in various outdoor set-
tings including two different college campuses, a metropolitan area, a theme park
and a state fair [88]. Later studies [110, 44, 56, 118, 90, 93] also identified the
Lévy Walks patterns of human mobility and the researchers propose their explana-
tions of the reasons behind them. The first explanation for the Lévy Walks patterns
was given by Marta et al. [39] and later Yan et al. [110] provided additional in-
sight by examining the individual mobility patterns. Our work helps to understand
the formation of the pattern by decomposing it into transportation mode specific
segments. The relationship of the transportation modes and the emergence of the
Lévy Walks pattern was not studied before our work presented in this thesis.

DTNs [119, 91, 105, 57, 32, 63, 112] provide intermittent communication
for humans with mobile devices (vehicles, mobile phones, etc.), by exchanging
content through short-range communications such as Bluetooth or WiFi direct.
The impact of human mobility on network applications, especially on DTNs, has
been studied recently [62, 47, 111, 22, 52]. Many DTN routing algorithms utilize
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the power of human mobility patterns to disseminate the content in the DTN more
effectively and efficiently.

Vahdat et al. proposed the first Flooding-based algorithm in DTNs called Epi-
demic routing [100], and many later human-mobility-based routing algorithms are
based on this algorithm. The key idea of Epidemic routing is to utilize random
pair-wise message exchanges among mobile devices for achieving eventual mes-
sage delivery. The protocol aims for the maximization of the message delivery
rate, minimization of the message latency, and minimization of the total resources
spent in the message delivery process.

To utilize the mobility property of DTNs, the ProPHET protocol [67] lever-
aged history information for calculating the delivery probability for encountered
nodes and used this information for selecting carriers that maximize the delivery
rate. The Spray and Wait algorithm first sprays the data to a random set of carri-
ers, and then each data carrier waits for encountering the data destinations [95].
The paper [13] presented a Markovian model for developing a utility function for
data dissemination in DTNs. In terms of location-aware dissemination in DTNs,
Fan et al. [33] analyzed mobile users’ movement and observed that mobile users
usually visit several locations regularly rather than moving randomly. They for-
mulated the data dissemination problem in terms of a superuser that broadcasts
data to other users in the network. Based on user movement data, they proposed
an efficient algorithm for constructing superuser trajectories that either minimize
total duration or maximize dissemination ratio.

We observe that DTNs have been an active research topic for the last decade;
however, urban human mobility has not yet been extensively studied in this con-
text. This thesis focuses on the following research questions:

• RQ1. How can we model urban human mobility?

• RQ2. How to model and optimize mobile phone energy usage with appli-
cations supporting both local and remote processing?

• RQ3. How can human mobility be used to improve network application
efficiency?

• RQ4. To what extent does an urban human mobility model improve network
application efficiency?

1.3 Methodology

Table 1.1 shows an overview of the research methodology used in this thesis. In
PI, we build a human mobility model based on two real-life GPS datasets con-
taining approximately 20 and 10 million GPS samples with transportation mode
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Research Questions Methodology Publications
RQ1. How can we model urban
human mobility?

Statistical data
analysis and
stochastic model-
ing

PI: Explaining the
Power-law Distri-
bution of Human
Mobility Through
Transportation
Modality Decom-
position. (Nature
SREP 15)

RQ2. How to model and op-
timize mobile phone energy us-
age with applications supporting
both local and remote process-
ing?

Creating a proto-
type for modeling
networking and en-
ergy.

PII: Energy-Aware
Keyword Search
on Mobile Phones.
(Sigcomm MCC
12)

RQ3. How can human mobility
be used to improve network ap-
plication efficiency?

Routing algorithm
and simulation

PIII: Towards
Maximizing
Timely Content
Delivery in Delay
Tolerant Networks.
(TMC 14)

RQ4. To what extent does an ur-
ban human mobility model im-
prove network application effi-
ciency?

Large-scale data
analysis

PIV: Automatic
City Region Anal-
ysis for Urban
Routing. (ICDM
MASS 15)

Table 1.1: The methodology of this thesis contains empirical measurement and
statistical analysis.
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information. Previous research has suggested that the trajectories in human mobil-
ity have statistically features similar to Lévy Walks. We explain the Lévy Walks
behavior by decomposing them into different classes according to the different
transportation modes, such as Walk/Run, Bike, Train/ Subway or Car/Taxi/Bus.
Our transportation-decomposed Lévy Walks model deepens our understanding of
the human mobility in the city environment with different transportation modes.
This answers RQ1, how can we model urban human mobility?

In PII, we model the mobile phone energy usage with applications supporting
both local and remote processing by building a keyword search prototype for mo-
bile phones. We show that a hybrid computation task division approach between
local device and remote server can reduce the energy usage of mobile phones sig-
nificantly. This answers RQ2, how to model and optimize mobile phone energy
usage with applications supporting both local and remote processing? This re-
sult indicates that hybrid solutions that combine local and remote processing are
suitable for energy efficient keyword searching. This result is useful for creat-
ing hybrid DTN applications that can leverage remote servers for reducing energy
consumption in low power situations.

DTN routing protocols aim for the delivery of a message from a source node to
the destination through a series of opportunistic pair-wise encounters. Thus DTNs
do not rely on a complete end-to-end path in data delivery, but rather the path is
formed at runtime by encountering other nodes. Thus the DTN routing proto-
cols adopt the ”store and forward” approach that provides delay tolerance through
message buffering. The key metrics for optimizing DTN protocols include en-
ergy consumption, number of routing steps (or hops), and the maximization of the
message delivery rate.

The overall DTN design consists of two subproblems, namely the target-set
problem [42] and the routing problem [83]. The former pertains to the selection of
the initial data carrier nodes and the latter relates to the runtime routing behaviour
and its characteristics. Typically both problems are solved in order to minimize
the store and forward steps while maximizing the number of devices that receive
the desired data. The thesis addresses these two problems for environments with
urban human mobility.

In PIII, we develop a routing algorithm, Ameba, for solving the routing prob-
lem in DTNs. We find that human mobility exhibits strong spatial and temporal
patterns. In Ameba, we leverage human mobility patterns for deriving an optimal
routing hop count for each message in order to maximize the number of carrier
nodes. Simulation results with experimental traces indicate that Ameba achieves
a delivery ratio comparable to a Flooding-based algorithm, but with only 3% en-
ergy cost. This result answers RQ3, how can human mobility be used to improve
network application efficiency?
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In the DTN target-set problem [42], the protocol selects a subset of devices
that are carriers of the data. The devices in the subset then further distribute the
data to other devices through opportunistic DTN communications. How can we
choose the initial target-set for maximizing the number of devices that further
receive the desired data is called the target-set problem in DTNs [42]. In PIV, we
analyzed the temporal taxi mobility patterns and inferred the functions [37, 43,
69, 108] of the sub-areas in three cities. We then showed that the identification
of these functional sub-areas can be utilized to solve the target-set problem. This
result answers RQ4, to what extent does an urban human mobility model improve
network application efficiency?

1.4 Thesis Contributions

This thesis consists of four scientific articles presented in Table 1.1. In this section,
we summarize the contributions of the four articles.

The contribution of study PI is twofold. First, we built an urban mobility
model and extracted the distribution function of displacement with different trans-
portation modes. This is important for many applications that model and predict
urban movement [46]. Our result deepens the understanding of urban human mo-
bility with different transportation modes. The transportation mode information
can also help us enhancing the prediction of the next place the user will visit,
which can also improve the DTN routing efficiency. Second, we demonstrate that
the mixture of different transportation modes can be approximated with a trun-
cated Lévy Walks. This result is a step towards explaining the emergence of Lévy
Walks patterns in human mobility.

In PII, we built an energy model for keyword search in the mobile environ-
ment and examine there candidate solutions for the search problem. The proposed
hybrid approach adaptively splits the keywords of queries into two subsets, such
that one subset is answered locally by the mobile phone, and another is offloaded
to a remote server. Our experimental results verify that the hybrid approach out-
performs the two other extremes.

In PIII [83], we developed a DTN solution framework, namely Ameba, for
timely content delivery in DTNs by leveraging human mobility patterns in city
settings. The basic idea is to leverage the mobility patterns of mobile devices in
order to improve the developed forwarding utility and distributed relay algorithm.
Based on the study of three DTN trace files, we found that (i) people visiting
different locations exhibit strong spatial properties (that is, the participants fre-
quently visit a small number of hot areas, and rarely visit the remaining areas),
and (ii) people visiting different locations also exhibit strong temporal properties
(e.g., the majority of participant visits are clustered during some specific periods).
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In PIV we categorized city regions into four kinds of places, workplaces, en-
tertainment places, residential places and other places. We show that the iden-
tification of these functional sub-areas can help us deliver data in urban DTNs
more efficiently. The contribution of paper PIV is threefold. First, we find that
there is a high correlation between the road networks and taxi visits. This is an
important result for many applications, because the taxi visits can be seen as a
proxy for the road network. In previous research, the authors have used the road
network for dividing the city into subareas. With this new finding our approach
can quickly divide the city into subareas without the complex road network (mil-
lions of nodes and edges) information as an input. Second, we provide a novel
association rule-based method for detecting the mobility patterns (functions) of
the sub-regions inside the city. Third, we can leverage the functions of sub-areas
and urban mobility pattern for enhancing urban DTN routing.

1.5 Thesis Structure

This thesis consists of the original publications PI - PIV and the present intro-
duction. Chapter 2 describes how we build a human mobility model based on
two real-life GPS datasets containing approximately 20 and 10 million GPS sam-
ples with transportation mode information. Chapter 3 and Chapter 4 introduce
our findings that human mobility exhibits strong spatial and temporal patterns and
how can we leverage these human mobility patterns to increase the routing per-
formance in DTNs. Chapter 5 concludes the thesis.



Chapter 2

Urban Mobility Modeling with
Transportation Information

This chapter discusses the domain of human mobility modeling especially the
Lévy Walks model and our urban Lévy Walks model with transportation informa-
tion. This chapter answers RQ1: How can we model urban human mobility?

2.1 Human Mobility Modeling

2.1.1 Overview

Random Way Points (RWP) [10, 11, 113] or random walk models such as Brow-
nian motion [19, 41, 55], Markovian mobility [9, 2] and Lévy Walks [88, 110,
44, 56] are the most commonly used mobility models in computer networking
research.

In RWP models [10, 11, 113], the mobile nodes move randomly and freely
without any restrictions. The destination, speed and direction are all chosen ran-
domly and independently of the other nodes. In Brownian motion [19, 41, 55],
the mobile nodes move with a mean flight and a mean pause time between flights.
A flight is defined as the longest straight-line trip of a person from one location
to another without a directional change or pause. In Brownian motion, the flights
are normally distributed.

Recent research has shown that trajectories in human mobility have statisti-
cally similar features as Lévy Walks by studying the tracing of bank notes [15],
cell phone users’ locations [39] and GPS traces [88, 110, 44, 56]. According to
the Lévy Walks model, human movement contains many short flights and some
long flights, and these flights follow a power-law distribution.

Although recently human mobility has been empirically observed to exhibit
Lévy flight characteristics and behaviour with power-law distributed jump size

9



10 2 URBAN MOBILITY MODELING WITH TRANSPORTATION INFORMATION

[110, 44, 56], the fundamental mechanisms behind this behavior has not yet been
fully explained. Later studies propose explanations for the emergence of the Lévy
Walks pattern. In [110] Yan et al. observed that the individual human mobility
patterns do not follow Lévy Walks and Lévy Walks are due to the aggregation
of individual mobility patterns. The hierarchy of traffic systems [44] and road
networks [56] are also possible reasons behind the Lévy Walks. Recent research
results [65, 66] investigated the case of a single transportation mode (taxi) and
they found that the scaling of human flights is exponential. They proposed that
this is because few people tend to travel long distances by taxi due to economic
considerations.

In Table 2.1 we summarize the related human mobility articles (including our
paper PI) and their contributions. We note that the flight is defined as the longest
straight-line trip of a person from one location to another without a directional
change or pause.

2.1.2 Impact of Human Mobility Model on DTNs

In DTNs, whenever mobile devices (vehicles, mobile phones, etc.) encounter each
other, they exchange content via short-range communications (e.g., Bluetooth or
WiFi). Since people carry their mobile devices everywhere everyday, human mo-
bility model plays an important role in DTNs. The impact of human mobility in
DTNs has been investigated with simulations. The choice of the mobility model
has a significant impact on the behaviour and performance of a DTN algorithm.

Lévy Walks provide a more accurate mobility model for DTNs compared to
other existing models. Other existing models such as RWP are not based on the
real human mobility studies (see Table 2.1) so that they do not reflect how people
move in real life. The RWP model also does not emulate heavy-tail statistical fea-
tures of human mobility. The heavy-tail tendencies of the Lévy Walks model in-
duce heavy-tail routing delays and throughput [88], thus the routing performance
in a RWP model in DTN studies tends to be overestimated compared to a Lévy
Walks model.

Recent papers [106] also investigate the inherent properties of data dissemi-
nation in DTNs based the Lévy Walks Model. For example, the distribution of
minimum time needed for spreading the information to a given region, or the
probability bound of the earliest time at which the information arrives can also be
estimated based on the Lévy Walks Model.

2.2 Lévy Walks Decomposed by Transportation Modes

In this section, we model the Lévy Walks behaviour observed in human mobil-
ity patterns by decomposing them into different classes according to the different
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transportation modes, namely Walk/Run, Bike, Train/Subway or Car/Taxi/Bus.
According to the Lévy Walks model, human movement contains many short flights
and some long flights, and these flights follow a power-law distribution. Our anal-
ysis is based on two real-life GPS datasets containing approximately 10 and 20
million GPS samples with transportation mode information. We show that hu-
man mobility can be modelled as a mixture of different transportation modes, and
that these single movement patterns can be approximated by a lognormal distribu-
tion rather than a power-law distribution. Then, we demonstrate that the mixture
of the decomposed lognormal flight distributions associated with each modality
is a power-law distribution, providing an explanation for the emergence of Lévy
Walks patterns that characterize human mobility patterns.

2.2.1 Overview

According to the Lévy Walks model, human movement contains many short flights
and some long flights, and these flights follow a power-law distribution. Intu-
itively, these long flights and short flights reflect different transportation modali-
ties. Figure. 2.1 shows a person’s one-day trip with three transportation modalities
in Beijing based on the Geolife dataset [122]. Starting from the bottom right cor-
ner of the figure, the person takes a taxi and then walks to the destination in the top
left part. After two hours, the person takes the subway to another location (bottom
left) and spends five hours there. Then the journey continues and the person takes
a taxi back to the original location (bottom right). The short flights are associated
with walking and the second short-distance taxi trip, whereas the long flights are
associated with the subway and the initial taxi trip. Here a flight is the longest
straight-line trip from one point to another without change of direction [88, 56].
One trail from an origin to a destination may include several different flights (Fig.
2.1). Based on this simple example, we observe that the flight distribution of each
transportation mode is different.

In PI, we propose to model the Lévy Walks behavior observed in human mo-
bility patterns by decomposing them into different classes according to the differ-
ent transportation modes: Walk/Run, Bike, Train/Subway, or Car/Taxi/Bus. Our
analysis is based on two large GPS datasets, the Geolife and Nokia MDC datasets
(approximately 10 million and 20 million GPS samples respectively), both con-
taining transportation mode information such as Walk/Run, Bike, Train/Subway
or Car/Taxi/Bus. The four transportation modes (Walk/Run, Bike, Train/Subway
and Car/Taxi/Bus) cover the most frequently used human mobility cases. We de-
termined the flight length distributions for different transportation modes. We
fitted the flight distribution of each transportation mode according to the Akaike
information criteria [17] in order to find the best fit distribution.

We showed that human movement exhibiting different transportation modali-
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Figure 2.1: Illustration of a synthetic trail (taxi, walk, subway, walk, taxi, walk)
for one day trip and their corresponding flights.

ties is better fitted with the lognormal distribution rather than the power-law distri-
bution. We can demonstrate that the mixture of these transportation mode distri-
butions is a power-law distribution based on two new findings: first, there is a sig-
nificant positive correlation between consecutive flights in the same transportation
mode, and second, the elapsed time in each transportation mode is exponentially
distributed.

Datasets

Our analysis is based on two large real-life GPS trajectory datasets, the Geolife
dataset [126] and the Nokia MDC dataset [60]. Both of them contain the trans-
portation information. The key information provided by these two datasets is
summarized in Table 2.2.

Geolife [126, 127, 122] is a public dataset with 182 users’ GPS trajectories
over five years (from April 2007 to August 2012) gathered mainly in Beijing,
China. This dataset contains over 24 million GPS samples with a total distance of
1,292,951 kilometers and a total of 50,176 hours. It includes not only daily life
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Geolife Nokia MDC
Location Beijing Geneva

Measurement GPS GPS
Number of samples 24,876,978 11,077,061

Duration 5 years 1.5 year
Accuracy 3 m 3 m

Sampling interval 1-5s 10s
Number of participants 182 200

Number of flights with transportation mode 202,702 224,723

Table 2.2: The Geolife and the Nokia MDC Human Mobility Datasets.

routines such as going to work and back home in Beijing, but also some leisure
and sports activities, such as sightseeing, and walking in other cities. The trans-
portation mode information in this dataset is manually logged by the participants.

The Nokia MDC dataset [60] is a public dataset from Nokia Research Switzer-
land that aims to study smartphone user behavior. The dataset contains extensive
the smartphone data of two hundred volunteers in the Lake Geneva region over
one and a half years (from September 2009 to April 2011). This dataset contains
11 million data points and the corresponding transportation modes.

Akaike Weights.

We use Akaike weights [101, 97, 18] to choose the best fitted distribution for each
transportation mode. An Akaike weight is a normalized distribution selection
criterion [17]. Its value is between 0 and 1. The larger the value is, the better the
distribution is fitted.

Akaike’s information criterion (AIC) is used in combination with Maximum
Likelihood Estimation (MLE). MLE finds an estimator of θ̂ that maximizes the
likelihood function L(θ̂|data) of one distribution. AIC is used to describe the
best fitting of all the fitted distributions,

AIC = −2log
(
L(θ̂|data)

)
+ 2K. (2.1)

Here K is the number of estimable parameters in the approximating model.
After determining the AIC value of each fitted distribution, we normalize these

values as follows. First of all, we extract the difference between different AIC
values called ∆i,

∆i = AICi −AICmin. (2.2)
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Then Akaike weights Wi are calculated as follows,

Wi =
exp(−∆i/2)∑R
r=1 exp(−∆r/2)

. (2.3)

2.2.2 Power-law Fit for Overall Flight.

First, we fit the flight length distribution of the Geolife and Nokia MDC datasets
regardless of transportation modes. We fit truncated power-law, lognormal, power-
law and exponential distribution. We found that the overall flight length (l) dis-
tributions fit a truncated power-law P (l) ∝ lαeγl with exponent α as 1.57 in the
Geolife dataset (γ = 0.00025) and 1.39 in the Nokia MDC dataset (γ = 0.00016)
(Fig. 2.2), better than other alternatives such as power-law, lognormal or expo-
nential. Figure. 2.2 illustrates the PDFs and their best fitted distributions ac-
cording to Akaike weights. The green points refer to the flight length samples
obtained from the GeoLife and the Nokia MDC dataset, while the solid red line
represents the best fitted distribution according to Akaike weights. The overall
flight length distribution regardless of transportation modes is well fitted with a
truncated power-law distribution. The best fitted distribution (truncated power-
law) is represented as a solid line and the rest are dotted lines. We use logarithm
bins to remove tail noises [88, 3]. Our result is consistent with previous research
([15, 39, 88, 88, 110, 44, 56]), and the exponent α is close to their results.

We use Akaike weight for distribution fitting. The Akaike weight is a value
between 0 and 1. The larger it is, the better the distribution is fitted [17, 3]. The
Akaike weights of the power-law distributions regardless of transportation modes
are 1.0000 in both datasets. The p-value is less than 0.01 in all our tests, which
means that our results are very strong in terms of statistical significance.

2.2.3 Lognormal Fit for Single Transportation Mode.

However, the distribution of flight lengths in each single transportation mode is
not well fitted by the power-law distribution. Instead, they are better fitted with by
lognormal distribution. All the segments of each transportation flight length are
best approximated by the lognormal distribution with different parameters. In Fig.
2.3, we represent the flight length distributions of Walk/Run, Bike, Subway/Train
and Car/Taxi/Bus in the Geolife dataset. The green points refer to the flight length
samples obtained from the GeoLife, while the solid blue line represents the best
fitted distribution according to Akaike weights. The flight length distribution in
each transportation mode is well fitted with a lognormal distribution. The best
fitted distribution (lognormal) is represented as a solid line and the rest are dotted
lines.
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Figure 2.2: Power-law fit for overall flight. (a-b) Power-law fitting of all flights
regardless of transportation modes in the Geolife and the Nokia MDC dataset.

Figure 2.3: Lognormal fit for single transportation mode in the Geolife dataset. (a-
d) Flight distribution of all transportation modes (Car/Taxi/Bus, Walk/Run, Sub-
way/Train, Bike).
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2.2.4 Mixture of All Transportation Modes

We characterized the mechanism of the power-law pattern with Lévy flights by
mixing the lognormal distributions of the transportation modes. Previous research
has shown that a mixture of lognormal distributions based on an exponential dis-
tribution is a power-law distribution [74, 49, 48, 71]. Based on their findings, we
demonstrate that the reason that human movement follows the Lévy Walks pattern
is due to the mixture of the transportation modes used.

We demonstrated that the mixture of the lognormal distributions of differ-
ent transportation modes (Walk/Run, Bike, Train/Subway or Car/Taxi/Bus) is a
power-law distribution given two new findings: first, we defined the change rate
as the relative change of length between two consecutive flights with the same
transport mode. The change rate in the same transportation mode is small over
time. Second, the elapsed time between different transportation modes is expo-
nentially distributed.

Lognormal in the Same Transportation Mode.

Let us consider a generic flight lt. The flight length at the next interval of time
lt+1, given a change rate ct+1, is

lt+1 = lt + ct+1lt. (2.4)

It has been found that the change rate ct in the same transportation mode is
small over time [46, 122]. The change rate ct reflects the correlation between two
consecutive displacements in one trip. To obtain the pattern of correlation be-
tween consecutive displacements in each transportation mode, we plot the flight
length point (lt, lt+1) from the GeoLife dataset (Fig. 2.4). Here lt represents the
t-th flight length and lt+1 represents the t + 1-th flight length in a consecutive
trajectory in one transportation mode [107]. Figure. 2.4 shows the density of
flight lengths correlation in Car/Taxi/Bus, Walk/Run, Subway/Train and Bike cor-
respondingly. (lt, lt+1) are posited near the diagonal line, which identifies a clear
positive correlation. Similar results are also found in the Nokia MDC dataset.

We use the Pearson correlation coefficient to quantify the strength of the cor-
relation between two consecutive flights in one transportation mode [25]. The
p value is less than 0.01 in all the cases, identifying very strong statistical sig-
nificances. r is positive in each transportation mode and ranges from 0.3640 to
0.6445, which means that there is a significant positive correlation between con-
secutive flights in the same transportation mode, and the change rate ct in the same
transportation mode between two time steps is small.

The difference ct in the same transportation mode between two time steps is
small due to the small difference lt+1 − lt in consecutive flights. We sum all the
contributions as follows:



18 2 URBAN MOBILITY MODELING WITH TRANSPORTATION INFORMATION

Figure 2.4: Flight length correlation for each transportation mode. (a-d) Con-
secutive Flight length correlation of all transportation modes (Car/Taxi/Bus,
Walk/Run, Subway/Train, Bike) in the GeoLife dataset. A high density of points
are near the diagonal line lt = lt+1, identifying a small difference lt+1 − lt in the
same transportation mode between two time steps.
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Figure 2.5: The change rate of the Car/Taxi/Bus mode in the Geolife dataset. The
change rate is defined as the relative change of length between two consecutive
flights with the same transport mode. From the figure we observe that the change
rate are uncorrelated from one time interval to another.

T∑
t=0

ct =
T∑
t=0

lt+1 − lt
lt

(2.5)

≈
∫ T

0

dl

l
= ln

lT
l0
. (2.6)

We plot the change rate samples ct of the Car/Taxi/Bus mode from the Geolife
dataset as an example in Figure 2.5. We observe that the change rate ct fluctuates
in an uncorrelated fashion from one time interval to another in one transportation
mode due to the unpredictable character of the change rate. The Pearson correla-
tion coefficient accepts the findings at the 0.03-0.13 level with a p-value less than
0.05. By the Central Limit Theorem, the sum of the change rate ct is normally
distributed with the mean µT and the variance σ2T , where µ and σ2 are the mean
and variance of the change rate ct and T is the elapsed time. Then we can assert
that for every time step t, the logarithm of l is also normally distributed with a
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mean µt and variance σ2t [89]. Note here that lT is the length of the flight at the
time T after T intervals of elapsed time. In the same transportation mode, the
distribution of the flight length with the same change rate mean is lognormal, its
density is given by

Psinglemode(l) =
1

l
√
2πσ2t

exp[−(ln(l)− µt)2

2σ2t
], (2.7)

which corresponds to our findings that in each single transportation mode the
flight length is lognormal distributed.

Transportation Mode Elapsed Time.

We define elapsed time as the time spent in a particular transportation mode;
we found that it is exponentially distributed. For example, the trajectory sam-
ples shown in Fig. 2.1 contain six trajectories with three different transportation
modes, (taxi, walk, subway, walk, taxi, walk). Thus the elapsed time also consists
of six samples (ttaxi1, twalk1, tsubway1, twalk2, ttaxi2, twalk3). The elapsed time t
is weighted exponentially between the different transportation modes. Similar re-
sults are also reported in [65]. The exponentially weighted time interval is mainly
due to a large portion of Walk/Run flight intervals. Walk/Run is usually a con-
necting mode between different transportation modes (e.g., the trajectory samples
shown in Fig. 2.1), and Walk/Run usually takes a much shorter time than any
other modes. Thus the elapsed time decays exponentially. For example, 87.93%
of the walk distance connecting other transportation modes is within 500 meters
and the traveling time is within 5 minutes in the Geolife dataset.

Mixture of The Transportation Modes.

Given these lognormal distributions Psinglemode(l) in each transportation mode
and the exponential elapsed time t between different modes, we make use of
mixtures of distributions. We obtain the overall human mobility probability by
considering that the distribution of flight length is determined by the time t, the
transportation mode change rate ct mean µ and variance σ2. We obtain the distri-
bution of single transportation mode distribution with the time t, the change rate
mean µ and variance σ2 fixed. We then compute the mixture over the distribution
of t since t is exponentially distributed over different transportation modes with an
exponential parameter λ. If the distribution of l, p(l, t), depends on the parameter
t. t is also distributed according to its own distribution r(t). Then the distribution
of l, p(l) is given by p(l) =

∫∞
t=0 p(l, t)r(t)dt. Here the t in p(l, t) is the same

as the t in the r(t). r(t) is the exponential distribution of elapsed time t with an
exponential parameter λ.
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So the mixture (overall flight length Poverall(l)) of these lognormal distri-
butions in one transportation mode given an exponential elapsed time (with an
exponent λ) between each transportation mode is

Poverall(l) =

∫ ∞

t=0
λexp(−λt)

1

l
√
2πσ2t

exp[−(ln(l)− µt)2

2σ2t
]dt, (2.8)

which can be calculated to give

Poverall(l) = Cl−α′
, (2.9)

where the power law exponent α′ is determined by α′ = 1− µ
σ2 +

√
µ2+2λσ2

σ2

[49, 48, 71]. The calculation to obtain α′ is given as follows:

P (x) =

∫ ∞

t=0
λexp(−λt)

1

xσ
√
2πt

exp[−(ln(x)− µt)2

2σ2t
]dt

=
λ

σ

1√
2π

x−1∫ ∞

t=0
exp(−λt)exp[−(ln(x)− µt)2

2tσ2
]
1√
t
]dt

=
λ

σ

1√
2π

x−1∫ ∞

t=0
exp[

−(ln(x)− µt)2 − 2λσ2t

2tσ2
]
1√
t
]dt

=
λ

σ

1√
2π

x−1exp(
lnxµ

σ2
)∫ ∞

t=0
exp[−(

µ2 + 2λσ2

2σ2
)t− (lnx)2

2σ2

1

t
]
1√
t
]dt.

Using the substitution t = u2 gives

P (x) =
λ

σ

1√
2π

x−1exp(
lnxµ

σ2
)∫ ∞

u=0
exp[−(

µ2 + 2λσ2

2σ2
)u2 − (lnx)2

2σ2

1

u2
]

1√
u2

]2udu.

Let a = µ2+2λσ2

2σ2 and b = (lnx)22σ2, from the integral table we get∫ ∞

u=0
exp(−au2 − b

u2
) =

1

2

√
π

a
exp(−2

√
ab),
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which helps us to get the expression for P (x),

P (x) =
λ

σ
√

µ2

σ2 − 2λ2
x−(1− µ

σ2+

√
µ2+2λσ2

σ2 )

=
λ

σ
√

µ2

σ2 − 2λ2
x−α′

.

The expression for α′ is

α′ = 1− µ

σ2
+

√
µ2 + 2λσ2

σ2
.

If we substitute the parameters from the fitted distributions, we get the α′ =
1.55 in the Geolife dataset, which is close to the original parameter α = 1.57,
and α′ = 1.40 in the Nokia MDC dataset, which is close to the original param-
eter α = 1.39. The result verifies that the mixture of these correlated lognormal
distributed flights in one transportation mode given an exponential elapsed time
between different modes is a truncated power-law distribution.

2.3 Chapter Summary

In this chapter, we have shown that human movement exhibiting different trans-
portation modalities is better fitted with the lognormal distribution rather than the
power-law distribution (Lévy Walks Model). We have demonstrated that the mix-
ture of these transportation mode distributions is a power-law distribution based
on two new findings: first, there is a significant positive correlation between con-
secutive flights in the same transportation mode, and second, the elapsed time in
each transportation mode is exponentially distributed.

Our transportation-decomposed Lévy Walks work, combined with the travel
time distribution in each transportation mode and flight correlation, can help us
build a more realistic urban human mobility model. The impact of our new
transportation-decomposed Lévy Walks model on DTNs is not fully examined and
will be considered in future work. For example, people tend to have a larger con-
tact duration with each other in train compared to the other transportation modes,
such as a bus or walking. If we know the context of transportation information
[120, 96, 86, 61, 85, 102, 92], we can set the DTN transferring time to a larger one
if a person is in a in train or to a smaller one if a person is walking, for dissem-
inating more data to the nearby nodes while reducing unnecessary data transfer
energy costs.



Chapter 3

Urban Mobility Applications for DTNs

This chapter introduces routing algorithms for DTNs and how we improve the per-
formance of DTN routing algorithms with human mobility patterns. This chapter
answers RQ3: How can human mobility be used to improve network application
efficiency?

3.1 Delay Tolerant Networks

In this section, we summarize the recent routing algorithms and energy modeling
work on DTNs. In DTNs, whenever mobile devices (vehicles, mobile phones,
etc.) encounter each other, they exchange content via short-range communica-
tions (e.g., Bluetooth or WiFi). DTNs are a promising technology for signifi-
cantly reducing the mobile data traffic of cellular networks by using complemen-
tary network communication technologies (WiFi direct, Bluetooth) for delivering
the data offloaded from the cellular network. Most of the time there does not exist
a complete path from the source to the destination in DTNs. To deal with such
opportunistic encounter based networks researchers have proposed many routing
schemes. Most of them fall into three general categories, Flooding-based routing
schemes [100, 4], Probability-based routing schemes [67, 95] and Social-based
routing schemes [72, 50, 78, 33, 16].

A Flooding-based routing scheme simply floods the DTN network with a mes-
sage. A Probability-based routing scheme determines a forwarding probability, or
utility value, for deciding to which encountered node to forward a given message.
A Social-based routing scheme detects communities based on node encounters
and then utillizes the community structure in message delivery.

In Table 3.1 we summarize the related papers of DTNs routing algorithms
(including our paper PIII) and their contributions.

23
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Table 3.1: Comparison of DTNs routing algorithms
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3.1.1 Flooding-based Routing

Epidemic

Vahdat et al. present a Flooding-based routing protocol for DTNs called Epidemic
routing [100]. In this protocol each node has a buffer that is used to store mes-
sages that cannot be delivered immediately. One Summary vector is kept in each
node that contains an index of the buffered messages. When one node meet an-
other node, they exchange their summary vectors. After this exchange, each node
determines whether or not the other node has messages that they have not seen
before. In the case that new messages are detected, the node requests the new
messages from the contacted node. This message exchange process is shown in
Figure 3.1. Finally, the messages will be delivered to their destinations through
the pairwise communications. The system uses the First-In-First-Out (FIFO) mes-
sage buffering strategy.

Figure 3.1: Message exchange in Epidemic Routing

The Epidemic Routing algorithm is illustrated in Algorithm 1

Algorithm 1 Epidemic Routing
Require: Node nj , carrying di, is opportunistically encountering node nk;

1: nj (resp. nk) exchanging summary vector with nk (resp. nj);
2: if di is not in nk’s summary vector then
3: di is forwarded to nk;
4: end if
5: repeat this process until all unseen messages are exchanged between

nk and nj;
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3.1.2 Probability-based Routing

ProPHET

ProPHET is a probability based routing protocol for intermittently connected net-
works proposed by Lindgren et al. [67]. ProPHET is short for a Probabilistic
Routing Protocol using History of Encounters and Transitivity. To accomplish
this, a probabilistic metric called the delivery predictability Pa,b ∈ [0, 1] for the
two nodes a and b, is introduced. This metric captures the probability of the two
nodes meeting and sharing data. When two nodes meet, they not only exchange
summary vectors, but also the delivery predictability scores. Delivery predictabil-
ity is then updated in the manner given below.

The calculation of delivery predictabilities has three parts. Firstly, the metric
is updated whenever a node is encountered, so that the often encountered node
will have a higher delivery predictability than a less frequently encountered node.
The following equation defines the delivery predictability,

P(a,b) = P(a,b)old + (1− P(a,b)old)× Pinit,

where the Pinit parameter is set to 0.75 by default.
If a pair of nodes does not meet each other for a while, they are less likely

to be good forwarders to each other, thus their delivery predictability should be
decreased. This behaviour is given by the following equation:

P(a,b) = P(a,b)old × γk,

where γ ∈ [0, 1) is a constant and k is the number of time units that have elapsed
since last time that the metric was aged. The time unit can differ and be defined
based on the application and the expected delays.

The transitive property complements the basic delivery predictability metric
by capturing the transitivity of the encounters. If a frequently meets b and b fre-
quently encounters c, then b is a suitable node for forwarding messages from a to
c. The following equation defines this property:

P(a,c) = P(a,c)old + (1− P(a,c)old)× P(a,b) × P (b, c)× β,

where β ∈ [0, 1] is a scaling constant that affecting how large an impact the
transitivity should have on the delivery predictability, the default value is 0.25.

When two nodes encounter each other, they will first update the delivery pre-
dictabilities. A message is forwarded to the other node if the delivery predictabil-
ity of the destination of the message is higher in the other node. A forwarded
message is not deleted at the source node if there is enough buffer space for the
message. This message buffering results in the probability-flooding behaviour of
the protocol. The queue management used in ProPHET is FIFO.
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The ProPHET Routing algorithm is illustrated in Algorithm 2.

Algorithm 2 ProPHET Routing
Require: Node nj , carrying di, is opportunistically encountering node nk;

1: nj (resp. nk) exchanging summary vector and delivery probability
with nk (resp. nj);

2: nj (resp. nk) update its delivery probability;
3: if the delivery probability of di in nk is higher than in nj then
4: di is forwarded to nk;
5: end if
6: repeat this process until all unseen messages are checked and/or for-

warded between nk and nj;

The PRoPHETv2 [40] protocol was developed based on the lessons learned
with ProPHET in various simulation scenarios. This new version improves the
design of the original protocol. The new version retains the original idea and
presents minor modifications to the evolution calculations. The following equa-
tion gives the new delivery predictability:

P(a,b) = P(a,b)old + (1− P(a,b)old)× Penc,

where Penc takes into account the time since an information exchange was per-
formed with the node. This change reduces possible distortion from intermittent
wireless connections that are frequently established and then disconnected. The
protocol improvements increase the protocol performance especially for hetero-
geneous network mobility scenarios.

3.1.3 Social-based Routing

BUBBLE Rap

Pan et al. proposed a Social-based forwarding algorithm for DTNs called BUB-
BLE Rap in 2008 [50]. They observed that human interaction is heterogeneous
both in terms of popularity and communities, and developed a BUBBLE Rap pro-
tocol based on these observations for improving the forwarding efficiency.

There are two intuitions behind this algorithm. First, people have different
popularities in society, so the first part of this algorithm is to bubble the messages
to the more popular nodes. Secondly, people form communities in their social
lives, and people in the same community have more chances to meet others in
the same community. Thus the second part aims for the efficient spreading of
messages inside the community.

Community detection is a key problem in a Social-based routing protocol.
Many community detection methods have been proposed and examined in the
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Bubble Rap algorithm, e.g., K-CLIQUE by Palla et al. [76], weighted network
analysis by Newman et al. [73] and distributed community detection by Pan et al.
[53].

The BUBBLE Rap algorithm first sends a message to a more popular node
globally that represents a community. When the message reaches its destination
community, it will be forwarded within the community. The detailed ’bubble’
and forwarding processes are carried out as follows. If a node has a message
destined for another node, this node first bubbles this message through the hier-
archical ranking tree using the global ranking until it reaches a node inside the
same community as the initiator node. Then the nodes inside the community will
use the local ranking tree to continuing bubbling the message until it reaches its
destination or the message expires.

The BUBBLE Rap Routing algorithm is illustrated in Algorithm 3.

Algorithm 3 BUBBLE Rap Routing
Require: Node nj , carrying di, is opportunistically encountering node nk;

1: if nj is di’s destination community then
2: if nk is also in di’s destination community

and
Local Rank of nk is higher than that of nj

then
3: di is forwarded to nk;
4: end if
5: else
6: if nk is in di’s destination community

or
Global Rank of nk is higher than that of nj

then
7: di is forwarded to nk;
8: end if
9: end if

10: repeat this process until all unseen messages are checked and/or for-
warded between nk and nj;

3.1.4 Energy Modeling

In this section we discuss the energy costs in DTNs that relates to RQ2: How to
model and optimize mobile phone energy usage with applications supporting both
local and remote processing?

Pan et al. [42] built a prototype called Opp-Off and verified the availability of
mobile phone communication during a short contact. Bluetooth and WiFi are two
common local wireless communication technologies found on most smartphones,
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and thus are the two possible techniques to be used for building DTNs. WiFi
scanning will significantly reduce the battery life of a fully charged phone, on the
other hand, Bluetooth scanning will not drain battery life very quickly. Compared
to WiFi, Bluetooth may be a better candidate for DTN communication. During
a 30 seconds contact of two Bluetooth devices, the maximum number of trans-
ferred bytes is about 1,517.58KB, and the average number of transferred bytes is
563.25KB [42]. If the mobile phones have a longer communication range, they
may have a higher probability to transfer more data during their opportunistic
communication. The above result suggests that it is feasible to implement a DTN
using a short-period communication technology, such as Bluetooth.

In PII, we studied energy-aware keyword searches [80, 12, 7] on mobile phones
and proposed three approaches. The proposed hybrid approach adaptively splits
the keywords of queries into two subsets, such that one subset is answered locally
by the mobile phone, and another is offloaded to a remote server. Our experimen-
tal results indicate that the hybrid approach outperforms the two other extremes.

This result is useful for creating hybrid DTN applications that can leverage
remote servers for reducing energy consumption in low power situations. For
example, if we consider two mobile phones encountering each other, a hybrid
approach for distributing and processing part of the data locally and the rest of the
data on a remote support server will reduce the energy consumption significantly.
It is also possible for other mobile phones to act as servers and utilize only local
communications when offloading tasks in the network; however, the servers need
to have access to the necessary application specific data.

The optimisation framework in PII indicates that server assisted keyword search
and indexing can result in significant energy savings for mobile devices. Our
framework focuses on the mobile cloud environment; however, we anticipate that
a similar design is also useful in optimising keyword and content based DTNs.
The main assumption is that the mobile or fixed network server assisting the
mobile device has sufficient data for performing the offloaded operation. This
assumption is reasonable for modern mobile devices that have extensive cloud
synchronisation features.

With the proposed framework, a DTN node receiving a full-text document
query can tune the ratio between local and remote processing for the matching
operation in order to meet the energy budget. We anticipate that this offloading of
queries and certain routing table functions can be beneficial for very constrained
low-power DTN nodes; however, further experimentation is needed for the multi-
device routing environment. The main contribution of the article is a generic
framework for offloading that allows the tuning of the local versus remote pro-
cessing with applications in mobile search that include DTNs.
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3.2 Ameba Routing Algorithm

3.2.1 Overview

We designed and developed a solution framework, Ameba, for timely content
delivery in DTNs by leveraging human mobility patterns in a city setting [83].
The basic idea of the system is to leverage the mobility information [21, 31, 54] of
mobile devices for determining forwarding utilities for encounters and a content-
aware relay algorithm that builds on the utilities [14, 20, 23, 24, 28, 29, 68, 82].

Ameba is able to (i) leverage the optimal routing hop count for each content,
(ii) capture human mobility patterns, to deliver content towards the needed nodes.
In this section, we mainly introduce the (ii), how can we use human mobility pat-
terns in the Ameba algorithm. Here briefly introduce the overview of the Ameba
algorithm in this sub-section.

In DTNs, the roles of mobile devices can be publishers (sources), subscribers
(destinations) or intermediate carriers. Publishers publish content of specific top-
ics. Subscribers register subscription filters (containing defined topics) to receive
the needed content. In addition to publishers and subscribers, mobile devices can
act as carriers to relay content. Mobile devices are typically equipped with short
range interfaces (e.g., Bluetooh or Wi-Fi) to detect and communicate with each
other. When mobile devices encounter each other, the data are exchanged oppor-
tunistically, and relayed from the publishers to the subscribers with the help of the
intermediate carriers.

First, Ameba leverages the distribution of content and assigns a larger hop
counter for the highly popular content demanded by more subscribers [83]. In this
way, more nodes act as intermediate carriers of popular content, and subscribers
have more chance to receive the content in a timely manner.

Second, Ameba develops a metric, namely the forwarding utility, to identify
(i) which nodes are interested in the content and (ii) how fast the encountered node
can forward the content towards subscribers [83]. Based on the developed utility,
Ameba selects the best carriers to forward the content, and adaptively creates the
copies of an content for timely delivery.

In Figure 3.2 we give an overview of the Ameba routing algorithm. We have
publishers (S1, S2, S3, ...) publishing data items for each topic, such as weather
forecast or news. The subscribers (N1, N2, N3, ...) are nodes that are interested
in these data items. The data items are exchanged opportunistically, and relayed
from the publishers to the subscribers with the help of the intermediate carriers
(r1, r2, r3, ...). First, Ameba leverages the popularity distribution of the data and
assigns a larger hop counter for popular data items that are demanded by more sub-
scribers. This process of determining the topic-based hop counters is performed
offline before the dissemination of the data items in the DTN network at runtime.
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Figure 3.2: Ameba Routing algorithm

The runtime dissemination is started with the selection of the best carriers for
efficient data forwarding. Human mobility patterns can be utilized for selecting
carriers with high mobility in order to improve forwarding efficiency in the DTN
network at runtime. In a city there are hot areas such as shopping centers or work-
places. The ’hot areas’ gather most of the people and exhibit strong temporal
regulations, the persons who visit these hot areas during peak times are optimal
potential carriers for DTN data. The nodes with higher probability visiting the hot
areas and meeting the subscribers are the optimal carriers for disseminating the
data. We show how we utilize the knowledge of the spatial and temporal patterns
of a city to select carriers and improve routing efficiency in the following sections.

3.2.2 Datasets

We use three real-world datasets (Table 3.2) of human mobility traces to motivate
and demonstrate the efficiency of our solution. (i) The Infocom06 dataset [21]
contains opportunistic Bluetooth contacts between 98 iMotes, 78 of which were
distributed to Infocom06 participants and 20 of which were static. (ii) The MIT
Reality trace [31] comprises 95 participants carrying GSM enabled cell-phones
over a period of 9 months. (iii) In the UCSD dataset [70], 274 WiFi-enabled
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Experimental data set INFOCOM06 Reality UCSD
Context settings Conference City City

Device iMote Nokia 6600 PDA
Network type Bluetooth Bluetooth WiFi

Number of devices 78 97 274
Duration of trace 4 days 9 months 2 months

Granularity 120s 300s 120s
Number of Areas 20 213 287

Number of internal contacts 191,336 54,667 195,364

Table 3.2: Summary of three real-world traces

PDAs were respectively used by 274 freshmen to log nearby Access Points (APs)
for an 11-week period between Sep 22, 2002 and Dec 8, 2002 and a contact was
recorded when two devices are associated to the same AP. Besides, we also used
the location information of phones (e.g., the GSM cellular tower in the MIT reality
trace).

3.2.3 Human Mobility Patterns

Based on the study of three DTN trace files (Table 3.2), we find that (i) people vis-
iting different locations exhibit strong spatial properties (that is, the participants
frequently visit a small number of hot areas, and rarely visit the remaining areas),
and (ii) people visiting different locations also exhibit strong temporal properties
(e.g., the majority of participant visits are clustered during some specific periods).
To the best of our knowledge, this is the first work that examines the population
density of different areas in DTNs and exploits it for content dissemination. The
location information could be passively gathered by GPS, WiFi or other position-
ing solutions [81, 27, 99].

We find that The ‘area density’ distribution is very heterogeneous. The area
density is defined as follows. When a node ni (e.g., a mobile phone carried by a
user) visits an area j, we say one visit vij occurs. The visit was logged by iMote in
the Infocom06 dataset or by cellular tower in the MIT Reality dataset, or logged
by the APs in the UCSD dataset. Based on the logged visits, we calculate the area

density pj of a area j by pj =
∑N

i=1 vij∑N
i=1

∑R
j=1 vij

, where N is the total number of nodes

and R is the total number of areas. By the definition pj , an area j becomes more
dense, (i.e., a higher pj), when more users visit the area j. The intuition behind
it is that people tend to visit ’hot areas’ such as the university campus during
weekdays or a football stadium during match days, rather than moving randomly.

Taking the MIT Reality trace [31] as an example, it comprises of 95 partici-
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Figure 3.3: Participants’ visits of different areas during peak and off-peak times

pants carrying GSM-enabled cell-phones over a period of 9 months in the Boston
area while recording their locations. First, we extract the cumulative distribution
(CDF) of all areas visits in the MIT Reality dataset. Note that we assume these lo-
cations in the Reality dataset are equal in area size. We set the observation period
to 3 weeks in the Reality dataset (see Figure 3.3), ’Mon-1’ represents Monday in
week 1, etc. Here ’hot areas’ are the areas where their cumulative visits account
for at least 65% of total visits.

We find that the visits of the participants are highly clustered in the hot areas.
In the MIT Reality dataset the top two hot areas (1%) occupy 70% of participants
visits. Actually these top two hot areas in the Reality dataset are the ’Work’ places
such as the MIT Media lab and Sloan Business School. We plot the hourly visits
in ’hot areas’ in Figure 3.3 and we find that in the urban settings those students
tend to visit their work places (hot areas) during daytime on weekdays (peak time)
and their visits will drop significantly during night on weekdays or weekends (off-
peak time).
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3.2.4 Ameba Routing Algorithm

Since the ’hot areas’ gather most of the people and exhibit strong temporal regula-
tions, the persons who visit these hot areas during peak times are potential carriers
for DTN data. We design and implement the Ameba algorithm by leveraging such
human mobility patterns.

We use the percentage similarity fj,k to predict the chance that two mobile
devices nj and nk will encounter each other. We define an encounter event as
follows: two nodes encounter each other in the same area if their arrival time at
such an area are within a specific period. For illustration we use one minute in
the three datasets. The interval is chosen to be shorter than the device discovery
interval in order to avoid the synchronous device discovery periods.

We compute the percentage similarity fj,k as follows: depending upon the
similarity of the locations that nj and nk have respectively visited, we compute

fj,k = 1 −
∑C

i=1 |Vji−Vki|
2 , where C is the total number of areas, Vji indicates

the percentage of nj’s visits at the area i and Vki indicates the percentage of nk’s
visits at the area i.

To clearly illustrate the intuition of fj,k, we give an example. We consider
C = 5 areas. A user nj visits the areas with 10, 10, 10, 20 and 50 times respec-
tively, and another user nk visits the areas with 25, 0, 0, 20 and 5 times respec-
tively. We then have fj,k = 1− |0.1−0.5|+|0.1−0|+|0.1−0|+|0.2−0.4|+|0.5−0.1|

2 = 0.4.
Based on this example, if nj and nk visit the same areas more frequently, we have
higher percentage similarity fj,k.

The percentage similarity fj,k captures the possibility that two nodes will visit
the same place in the future. In Ameba, the percentage similarity fj,k incorporates
the mobile devices nj and nk interests of the associated topic ti to calculate the el-
ement utility uki and uji (the details of calculation is described in PIII [83], Section
4). Each element utility uji , is computed as a number inside the range [0.0, 1.0].
The utility uji measures the goodness of nj to successfully relay a message di
(with a topic ti) towards the nodes that are interested in di. A larger uji indicates
that nj has more chance to relay di successfully to the nodes that are interested in
di. The Ameba algorithm is illustrated in Algorithm 4.

Here Vk is the sum of the visit percentage Vjk of user nk’s visits at hot areas
during peak times. When Vk is higher, then nk visits the hot areas more frequently.
The intuition of Vk > λ is as follows. When nk more frequently visits the hot
areas (due to a higher Vk), the node nk, though not interested in di, could help to
forward di to the nodes that are interested in di. Such forwarding is useful because
many users frequently encounter each other at the hot areas during peak times.
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Algorithm 4 Ameba Routing
Require: Node nj , carrying di, is opportunistically encountering node nk;

1: if nk is interested in di, or Vk > λ during peak times; then
2: di is forwarded to nk;
3: end if
4: if the element utility uk

i is larger than the element utility uj
i ; then

5: nk keeps a copy of di;
6: end if
7: if uk

i > µj
i , µ

j
i is the largest element utility of the topic ti among all

nodes that nj ever encountered.; then
8: nj removes di;
9: else

10: nk does not keep a copy of di;
11: end if

3.2.5 Evaluation

We compare Ameba (Algorithm 4) with the Epidemic routing scheme [100] (chap-
ter 3.1.1, Flooding-based algorithm), ProPHET [67] (Chapter 3.1.2, Probability-
based algorithm), and Bubble Rap [50] (Chapter 3.1.3, Social-based algorithm).
We use the MIT reality dataset to simulate the mobility pattern of DTN nodes,
similar results has been found in the other two datasets [83].

During the experiment, we measure the average of the following metrics.

• Delivery ratio: the average ratio of the number of successfully delivered
destinations to the total number of destinations.

• Average cost: the average number of content transmissions (including trans-
missions for duplicated copies) used to deliver a data item. Thus, the aver-
age cost measures the average overhead to deliver the data item.

Our simulation shows that Ameba is able to achieve a comparable delivery
ratio to a Flooding algorithm (Epidemic [100]) but with only 3.5% overhead (see
Figure 3.4). This result is mainly due to the new location-based algorithm that
captures the movement of the users and the forwarding of content to users who of-
ten visit ’hot areas’ during peak times. The mobility-pattern-based optimizations
improve the information dissemination performance by leveraging information
pertaining to spatial and temporal encounters.

3.3 Chapter Summary

In this chapter, we summarized recent DTN routing algorithms and presented
an overview of our Ameba routing algorithm. In DTNs, most of the time there
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does not exist a complete path from the origin to the destinations. To deal with
such networks researchers have proposed many routing schemes. Most of them
fall in to the three general categories, Flooding-based routing schemes [100, 4],
Probability-based routing schemes [67, 95] and Social-based routing schemes
[72, 50, 78, 33].

We proposed a solution framework, called Ameba, for timely data delivery
in DTNs based on human mobility patterns. We find that urban human mobility
exhibits strong spatial and temporal patterns. We leverage such human mobil-
ity patterns to derive an optimal routing algorithm that minimizes the hop count
while maximizing the number of needed nodes in DTNs. Simulation results with
experimental traces indicate that Ameba achieves a comparable delivery ratio to a
Flooding algorithm, but with only a 3% lower overhead.
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Chapter 4

Automatic City Region Analysis for
Urban Routing

This chapter discusses the domain of automatic city region analysis with human
mobility patterns and how we use the functional sub-areas of a city to improve
DTN algorithm. This chapter answers RQ4: To what extent does an urban human
mobility model improve network application efficiency?

4.1 Automatic City Region Analysis

4.1.1 Overview

There are different functional regions in cities such as tourist attractions, shop-
ping centers, workplaces and residential places. The human mobility patterns for
different functional regions are different, e.g., people usually go to work during
daytime on weekdays, and visit shopping centers after work. In this chapter, we
analyse urban human mobility patterns and infer the functions of the regions in
three cities. The analysis is based on three large taxi GPS datasets [116, 115, 79, 4]
in Rome, San Francisco and Beijing containing 21 million, 11 million and 17 mil-
lion GPS points respectively.

We categorized the city regions into four kinds of places, workplaces, en-
tertainment places, residential places and other places. First, we provide a new
quad-tree region division method based on the taxi visits. Second, we use the
association rule to infer the functional regions in these three cities according to
temporal human mobility patterns. Third, we show that these identified functional
regions can help us delivering data in network applications, such as urban Delay
Tolerant Networks (DTNs), more efficiently. The new functional-regions-based
DTNs algorithm achieves up to 183% improvement in terms of delivery ratio.

We infer the temporal human mobility of these three cities based on the taxi

39
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trips. Since taxis carry people to different places at different times, taxi trips
reflect how people move in a city. We define a taxi’s trip as two GPS points from
picking up the passenger until dropping off the passenger. The taxi trips reflect
the actual human movement inside the city.

First, we use the taxi visits as a baseline for dividing the sub-areas. We provide
a new quad-tree sub-area division algorithm based on the taxi visits. Then we use
association rules to infer the functions of different sub-areas in these three cities
according to traveling patterns [98, 35]. We show that the identification of these
functional sub-areas is useful in improving the efficiency of DTN routing in urban
environments [32, 42, 53].

4.1.2 Datasets

A variety of urban human mobility data have been gathered and published due
to the significant growth of sensing technologies and large-scale computing in-
frastructures. An urban human mobility dataset can be utilized for many urban
applications. For example, Zheng et al. use the urban taxi dataset for monitor-
ing the air pollution in a large city [123], Hemminki et al. use the mobile sensor
data to detect the transportation modes [46]. In Table 4.1, we summarize the
recent human-mobility-based urban applications (including our paper PIV) and
their contributions.

We use three large taxi GPS trajectory datasets in our work, the Rome dataset,
the San Francisco dataset and the Beijing Dataset. We summarize the key infor-
mation in these three datasets in Table 4.2. All of the three datasets contain the
following information: taxi id, timestamp and position (longitude, latitude). In
the taxi mobility patterns, the drivers typically either move to pick up or drop off
customers, or stay in parking areas while waiting for new customers.

The San Francisco dataset [79] is a public dataset from the Exploratorium that
aims to study the invisible economic, social, and cultural trends of the city. The
dataset contains extensive GPS data of five hundred Yellow Cab vehicles in the
San Francisco region over one month (from 17th May 2008 to 10th June 2008).
This dataset contains 11 million data points and the corresponding timestamps.

The Rome dataset [4] is a public dataset containing mobility traces of 316 taxi
cabs in Rome over 30 days. Each taxi driver had a tablet that was set to retrieve
the GPS position every 7 seconds after which the position was sent to a central
server.

The Beijing dataset [116, 115] is a public dataset gathered by Microsoft Re-
search Asia. It records the GPS trajectories of 10,357 taxis in Beijing from Feb.2
to Feb.8, 2008. There are about 15 million GPS points in this data set, and the
total distance for each trajectory reaches up to 9 million kilometers.
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Table 4.1: Summary of recent human-mobility-based urban applications.
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Rome San Francisco Beijing
Measurement GPS GPS GPS
Number of samples 11,219,955 21,817,851 17,586,065
Duration 1 month 1 month 1 week
Sampling Interval 64 s 9 s 177 s
Number of taxis 536 316 10357

Table 4.2: Taxi Mobility Datasets

(a) Rome (b) San Francisco (c) Beijing

Figure 4.1: Original GPS samples in the three cities

4.1.3 Quad-tree Division Based on Taxi Visits

We use taxi visits as a baseline for dividing the sub-regions. Fig. 4.1 shows the
GPS samples of the three cities. We use the quad-tree [34, 109, 104] for dividing
the city into different regions. We set the subdivision threshold as 1% of total
visits inside the cities. If the number of visits in a sub-area is larger than 1% of
the total visits, we further divide the sub-area into four equal-sized smaller sub-
areas. This process continues until all the sub-areas have equal to or smaller than
1% of total visits. Fig. 4.2 shows the sub-areas after the division, we obtain 367
sub-areas in Rome, 211 sub-areas in San Francisco and 259 sub-areas in Beijing.

4.1.4 Inferring Hot Areas

In this section, we provide an Apriori-based [1] function detection method for the
sub-areas inside the city.

We utilize the knowledge of urban human mobility patterns to identify the
functional regions of three cities, Rome, San Francisco and Beijing. A functional
region [114, 117, 94] is a region (we use grid here) that has a specific character-
istic such as tourist attractions, shopping centers, educational areas, workplaces
or residential places. The human mobility patterns for different function regions
are different. People usually go to work during daytime weekdays, visit the en-
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(a) Rome (b) San Francisco (c) Beijing

Figure 4.2: Quad-Tree based region division in the three cities. The threshold is
1% of total taxi visits

(a) Rome (b) San Francisco (c) Beijing

Figure 4.3: Function identification in the three cities. The black regions represent
workplaces, the light grey regions represent residential places, the dark grey re-
gions represent entertainment places while the white represent all the other places.
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tertainment places such as shopping centers after work, and stays at home during
the night. Such temporal human mobility patterns can help us to identify the
functional regions of a city.

First, we group the taxi visits for the sub-areas every hour and convert the
taxi visits into a boolean table for the Apiori algorithm [1]. For example, sup-
pose there are five sub-areas and three taxis. Each taxi’s visits to these five areas
are 2,3,0,2,1, 1,0,0,1,2 and 0,0,0,2,2. We can build a boolean table consisting of
(1,1,0,1,1),(1,0,0,1,1), (0,0,0,1,1). Here each transaction (row) is the list of the
locations that the taxis visits.

After building the boolean table, we use an Apriori algorithm [1] to generate
frequent item sets for each hour. Apriori is an algorithm for finding the frequent
item sets and learning association rules for transactional datasets. Here in our taxi
visits boolean table, each transaction (row) is the list of the locations that the taxi
visits within one hour, the frequent item sets are the sets that people usually visit
within one hour. We set the threshold as 0.2 to find the frequent item sets in the
first place.

After generating the frequent item sets (popular places people visit) for each
hour, we divide the city into four kinds of places, the workplaces which people
usually visit during work time, the entertainment places where people usually
stay during entertainment time, the residential places where people usually stay
during home time and the other places with no identical mobility patterns. We
define work time as the daytime on weekdays (08:00-17:00, Monday to Friday),
the entertainment time as the evening on weekdays and daytime and evening on
weekends (17:00-23:00, Monday to Friday and 08:00-22:00, Saturday to Sunday),
and home time as the night time all week (23:00-08:00 Monday to Friday).

We plot the cities according to the different functions detected above in Fig.
4.3. We use four colors to identify the functions inside the city. The black regions
represent the workplaces, the light grey regions represent the residential places,
the dark grey regions represent the entertainment places while the white represent
all other places.

4.2 Data Dissemination (DTNs) in the Regions

We can utilize urban mobility patterns in different functional regions and across
regions for enhancing DTNs routing algorithms. The key idea is to map content to
functional sub-areas and then select carriers that optimize the information delivery
to the destinations. For example, a person that is going to visit functional-areas
during a peak time (for example, workplaces during daytime on weekdays) has
a high chance of meeting a person that may need the carried content targeted for
those areas. The functional regions can also be viewed as hubs for forwarding
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messages to more people. We provide two simple functional-region-based urban
routing algorithms and we show that they achieve up to 183% improvement in
terms of delivery ratio compared with a random-routing algorithm.

4.2.1 Target-set Problem

DTN routing protocols aim to route data (e.g., a weather forecast notification)
from the data sources to the destinations through opportunistic and delay tolerant
data exchanges that typically are based on short-range wireless communications,
such as Bluetooth.

In DTNs, the data is not typically distributed to all devices, but only to a subset
of the devices. The devices in the subset then further distribute the data to other
devices through an opportunistic DTN communication. How can we choose the
initial target-set for maximizing the number of devices that further receive the
desired data is called the target-set problem in DTNs [42].

4.2.2 Oracle-based, History-based, and Random Algorithms

We present our two simple functional region-based algorithms called the Oracle-
based (Greedy) algorithm and the History-based (Heuristic) algorithm for solving
the target-set problem in DTNs. To evaluate the performance of the Oracle-based
and History-based algorithms, we compare them with the Random algorithm. In
the Random algorithm, the initial group of carriers is chosen randomly.

In the Oracle-based algorithm, the initial subset of data carriers consists of
people who have the highest probability of visiting the hot-areas in the city. Note
that here the hot-areas represent workplaces during work time, entertainment
places during entertainment time and residential places during night. The Oracle-
based algorithm provides an upper bound for the target-set problem.

The History-based algorithm is similar to the Oracle-based algorithm, with
the exception that a taxis probability of visiting hot areas is obtained from the
historical data traces. We use the taxi visit data of the same hour in the previous
day as the historical data. This strategy is motivated by the observation that human
mobility has regularity. For example, a person usually goes to work-places at 8
am in the morning, and returns for dinner time. If the person has visited the work-
places at 8 am in the previous weekdays, he has a high probability of visiting
the work-places at 8 am on the current weekday. The person would be a good
candidate carrier for data to the work-places.

4.2.3 Evaluation of Functional Region-based Algorithms

We use the Beijing dataset for evaluating the three algorithms, similar results has
been found in the other two datasets. When two taxis visit (enter) the same region
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in Beijing at the same time, we consider it as an encounter event and these two
taxis can exchange the data they carried. We randomly choose 100 taxis (100 sub-
scribers) out of the 10,357 taxis as the subscribers who wish to receive messages
(e.g., weather notifications) from the DTN. Then 100 copies of the message to be
delivered are distributed to 100 taxis (100 publishers). If these 100 messages are
all delivered to the subscribers, we count the delivery ratio as 100%. The initial
target-set of the 100 publishers are chosen according to the three algorithms, the
Oracle-based algorithm, the History-based algorithm and the Random algorithm.

After obtaining the message, each publisher will keep the message until it
meets a subscriber and forwards the message. We extract the taxi visits of two
hours to evaluate our algorithm under different scenarios. One is during ”2008-
02-03 (Sunday) 15:00:00 - 16:00:00” and the other one is ”2008-02-05 (Tuesday)
15:00:00-16:00:00”.

During ”2008-02-03 (Sunday) 15:00:00-16:00:00” these entertainment places
are usually the hot-areas in the terms of people visits, while during ”2008-02-05
(Tuesday) 15:00:00-16:00:00” these workplaces are usually the hot-areas. To ob-
tain the historical information for our History-based algorithm, we take the taxi
visits from ”2008-02-02 (Saturday) 15:00:00 - 16:00:00” as a baseline for enter-
tainment places and ”2008-02-04 (Monday) 15:00:00 - 16:00:00” as a baseline for
work places.

Fig. 4.4 shows the delivery ratio of the three algorithms. The delivery ratio is
the average ratio of the number of data messages that were successfully delivered
divided by the total number of messages. We observe that the Oracle-based algo-
rithm outperforms the other two as it provides the upper bound. The History-based
algorithm increases the deliver ratio with up to 183% improvement compared with
a Random algorithm. This is mainly because that these taxis carrying data (e.g.,
today’s weather forecast) visiting the hot-areas (e.g., workplaces during daytime
on weekdays) have a higher chance of meeting a person that needs the required
data (e.g., today’s weather forecast). These functional regions can be viewed as
hubs for forwarding messages to more people.

4.3 Chapter Summary

In this chapter, we analyzed urban human mobility patterns and presented a tech-
nique for inferring the functions of the sub-areas in Rome, San Francisco and
Beijing. We categorize the city regions into four kinds of functional places, work-
places, entertainment places, residential places and the other places. We use as-
sociation rules to infer the functions of different sub-areas in these three cities
according to the temporal travel patterns. We show that the identification of these
functional sub-areas can help us to deliver the data in urban DTNs with a 183%
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Figure 4.4: Delivery ratio of Oracle-based (Greedy), History-based (Heuristic),
and Random Algorithms.

increase of the delivery ratio.
Since this is still an ongoing work, some important parts are still missing.

Adding Points of Interest (POIs) will further increase the accuracy of the region
function identification. A comparison with other traditional transportation engi-
neering works is needed for the evaluation of our method. The computational
improvement of the quad-tree method has not yet been evaluated. We will con-
sider these in future work.
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Chapter 5

Conclusions

In this thesis we address two key challenges presented by mobile applications,
namely urban mobility modeling and its network applications (DTNs). These two
topics pertaining to urban mobility examined in the thesis support the design and
implementation of efficient information dissemination solutions for various appli-
cations, such as content offloading to the DTN and environmental monitoring.

First, we model urban human mobility as a Lévy Walks and decomposed it
with transportation mode information such as Walk/Run, Bike, Train/Subway or
Car/Taxi/Bus. We show that in each transportation mode, the flight length follows
log-normal distribution and the mixture of these single-transportation modes is
a power-law distribution. The travel time in each transportation mode is expo-
nentially distributed and the flight fluctuations are identically and independently
distributed. Our transportation mode decomposed Lévy Walks model deepens
the understanding of human mobility in the city environment with different trans-
portation modes. This contribution answers RQ1, how can we model urban human
mobility?

The transportation mode decomposed Lévy Walks model is important for ap-
plications relying on human mobility models, for example network simulations,
network planning applications, and applications running on top of urban DTNs.
For example, according to our model, human movement exhibits different spatial
and temporal patterns in each transportation mode. For DTNs this can be used to
estimate the contact time of two or more devices sharing the same transportation
mode.

The impact of our transportation mode decomposed Lévy Walks model on
DTNs has not been investigated yet. Transportation modes have a profound im-
pact on the performance of a DTN network, because their spatial and temporal
properties differ. Our results motivate the design of an adaptive DTN routing
algorithm that would change the routing parameters and dynamics based on the
transportation mode. Such an algorithm could conserve energy by optimizing
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network scans and utilize the transportation patterns in maximizing data dissem-
ination speed and accuracy. The transportation mode can be detected at runtime
with efficient algorithms as discussed in Chapter 2. We plan to investigate the
adaptive DTN algorithm in future work.

Second, we find that urban human mobility exhibits strong spatial and tem-
poral patterns in frequently visited hot areas. We leverage such human mobility
patterns to derive an optimal routing algorithm (Ameba) in DTNs to maximize the
delivery ratio and minimize the overhead. Hot areas, such as workplaces or big
shopping malls, are ideal places for transferring data in DTNs. People gathered
in the same place have a higher chance of meeting the person with the desired
message (data) in DTNs. Simulation results with experimental traces indicate that
Ameba achieves a delivery ratio comparable to a Flooding-based algorithm, but
with only 3% overhead. By proposing the Ameba routing algorithm, we answer
RQ3, how can human mobility be used to improve network application efficiency?

One item that demands further attention is the social aspect of the hot-area-
based Ameba. The prediction of social events, such as a workshop meeting or
watching a football game, would enable the algorithm to leverage anticipating the
formation of hot areas. We plan to conduct a social-spatial analysis of the human
mobility datasets in future work.

Third, we analyze the temporal urban mobility patterns and infer the functions
of the sub-areas in three cities. The identification of these functional sub-areas
can be utilized to increase the efficiency of urban DTN applications. People have
strong temporal regularity, e.g., people usually go to work during the daytime on
weekdays, and visit shopping centers after work. Based on this temporal informa-
tion we can infer the functional regions of the cities. These identified functional
regions can improve the performance of urban network applications, such as ur-
ban DTNs. The proposed functional-regions-based DTN algorithm achieves up to
183% improvement compared to a random scheme in terms of the delivery ratio.
This answers RQ4: To what extent does an urban human mobility model improve
network application efficiency?

More and more urban human mobility datasets are published in the era of the
Internet of Things. These urban mobility datasets can help us to better understand
how people move in the urban environment. As the number and density of urban
areas increases, there are more opportunities for urban network applications, such
as DTNs. In this thesis, we show that with the help of urban human mobility pat-
terns, we are able to significantly increase the efficiency and coverage of network
applications (DTNs).
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