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6  |  Abstract

ABSTRACT
Approximately 75% of Finland is covered by boreal forest. Intensive commercial forestry 
has shaped the Finnish landscape as well as the animal communities that inhabit it. It has 
been suggested that commercial forestry increases the density of voles in boreal ecosystems. 
Voles, especially those belonging to Microtus, are important prey items for many avian and 
mammalian predators and are susceptible to numerous pathogens, e.g., Puumala virus. Vole 
population densities can affect the prevalence of these diseases in the environment and, in 
some cases, pose a health risk to the local human population.

In this thesis, I studied the effects of a changing landscape on vole populations and the 
influence of dynamic vole population densities on other trophic levels in the ecosystem. 
The main questions in the thesis are: how is commercial forestry affecting small mammal 
populations?; how does habitat and the small mammal community influence the prevalence 
of Puumala virus?; what are the main factors regulating red fox (Vulpes vulpes) population 
density?; and what are the habitat preferences of red fox?

The effects of forestry on voles and Puumala virus were studied in northern Finland 
(Taivalkoski) between 2006 and 2010. Voles were trapped bi-annually in 40 separate forest 
locations using a small quadrat method. Bank voles (Myodes glareolus) were screened for 
Puumala virus antibodies in the laboratory. The factors regulating the red fox population 
were studied with long-term Finnish data sets for red fox, Eurasian lynx (Lynx lynx), hare 
(Lepus spp.), voles, and hunting bag. Red fox habitat preferences in relation to the Eurasian 
lynx were studied in southern Finland using data collected with GPS-collared foxes and lynx.

We found that the early stages of forest succession are preferred by Microtus and, thus, 
commercial forestry is increasing the amount of habitat used by Microtus voles. In the Finnish 
forest landscape, Puumala virus is found in forests of all ages as is its main host, the bank vole. 
However, the highest bank vole densities are found in mature forests. We also found evidence 
of a dilution effect in that the incidence of Puumala virus antibodies in breeding bank voles 
was lower when the abundance of other small mammal species was high.

Our results suggest that the red fox population is regulated by its main predator, the Eurasian 
lynx, in addition to its own abundance in the environment. The red fox hunting bag was 
surprisingly related positively to the red fox population growth. We also found a negative 
relationship between autumn vole density and fox population growth in the next year. We 
suggest that the red fox population is affected by both top-down and bottom-up factors. 

We also found that red foxes favour agricultural areas, and that home range size is smaller in 
regions dominated by crop fields. Within the home range, foxes prefer open forests that have 
been recently clear-cut and replanted, where Microtus voles can be found more abundantly. 
In comparison to lynx, foxes tend to range within more modified habitats, e.g., agricultural 
and urban areas, where predator densities are lower and alternative resources can be found.

Commercial forestry is affecting vole population density and other trophic levels in boreal forests. 
The increasing abundance of apex predators (e.g., lynx) is limiting the density of the vole predators 
(e.g., red fox) and thereby driving the system and its trophic interactions in a new level.
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TIIVISTELMÄ
Noin kolme neljäsosaa Suomen pinta-alasta on metsää. Metsätalous on kuitenkin vaikuttanut 
voimakkaasti suomalaisiin metsiin ja niiden eliöstöön. On esimerkiksi esitetty, että metsän-
hoito lisää myyrätiheyksiä. Myyrillä taas on tärkeä merkitys pohjoisten havumetsien ekosys-
teemissä. Myyrät, erityisesti peltomyyrän sukuiset myyrät (Microtus), ovat tärkeää ravintoa 
monille pedoille. Myyrissä myös esiintyy monia taudinaiheuttajia kuten Puumala-virusta.

Tutkin väitöskirjassani metsätalousympäristön muutosten vaikutusta myyräpopulaatioihin ja 
edelleen myyräkantojen muutosten vaikutusta muihin lajeihin. Väitöskirjani tärkeimmät tut-
kimuskysymykset ovat: miten nykyaikainen metsätalous vaikuttaa pikkunisäkkäisiin, miten 
elinympäristö ja pikkunisäkäsyhteisön rakenne vaikuttavat Puumala-viruksen esiintyvyy-
teen, mitkä tekijät säätelevät kettukantaa ja minkälaista elinympäristöä ketut suosivat.

Metsätalouden vaikutuksia myyriin ja Puumala-virukseen tutkittiin pyytämällä myyriä Tai-
valkoskella vuosina 2006–2010. Metsämyyristä tutkittiin laboratoriossa Puumala-viruksen 
vasta-aineet. Kettukannan kokoon vaikuttavia tekijöitä tutkittiin hyödyntäen riistakolmiolas-
kentojen tietoja sekä saalistilastoja. Kettujen elinympäristön valintaa selvitettiin seuraamalla 
GPS-pannoitettujen kettujen liikkeitä Hämeessä.  

Myyrätutkimuksissamme selvisi, että metsissä peltomyyriä esiintyy lähinnä hakkuualoilla 
ja taimikoissa. Metsätalous siis lisää peltomyyrille sopivia ympäristöjä metsissämme. Met-
sämyyriä ja siten myös lajin kantamaa Puumala-virusta esiintyy kaikenikäisissä metsissä. 
Metsämyyrätiheydet ovat kuitenkin keskimäärin korkeimpia vanhoissa metsissä. Löysimme 
myös tukea havainnolle, että pikkunisäkäslajien monimuotoisuus vähentää taudinaiheutta-
jan, esimerkiksi Puumala-viruksen, esiintyvyyttä alueella.

Tulostemme perusteella kettukantaan vaikuttavat pedot, saaliin määrä ja kannan tiheys. 
Ilvesten määrä ja kettukannan oma tiheys vaikuttavat negatiivisesti kettukannan kasvuun. 
Myös syksyinen myyrätiheys vaikuttaa negatiivisesti seuraavan vuoden kettukannan kehityk-
seen. Tiheää myyräkantaa seuraa usein romahdus, minkä seurauksena pedoilla on niukasti 
ravintoa saatavilla. 

Havaitsimme, että kettujen elinpiirit ovat pienempiä maatalousvaltaisilla alueilla. Elinpiiril-
lään ketut viettävät aikaa avoimissa metsissä, jotka ovat esimerkiksi hakkuualoja ja taimikoi-
ta. Näillä alueilla esiintyy myös peltomyyriä, jotka ovat tärkeää saalista. Kettujen tärkeimpään 
petoon, ilvekseen, verrattuna ketut suosivat enemmän maatalousalueita ja ihmisen asuttamia 
alueita, joilla riski joutua pedon saaliiksi on pienempi ja joilla on saatavissa ihmisten tarjoa-
maa ravintoa. 

Väitöskirjatyöni tulokset osoittavat, että metsätalous vaikuttaa myyräpopulaatioihin ja myy-
rissä esiintyvän viruksen esiintyvyyteen. Myyräpetojen kantoihin vaikuttavat kuitenkin myös 
muut tekijät, esimerkiksi ilveskannan kasvu, joka rajoittaa kettukannan kokoa. 
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Summary

1. INTRODUCTION

1.1. Forestry and voles

Approximately three-quarters of Finland is covered by boreal forests (Ahti et al. 1968, 
Peltola 2014, Fig. 1) dominated by Scots pine (Pinus sylvestris) and Norwegian spruce 
(Picea abies). In the past, fire has played an important role in their natural disturbance 
and regeneration (Esseen et al. 1992, 1997; Angelstam 1996). As a consequence of modern 
management practices and control measures, large forest fires are now a rare occurrence 
and commercial forestry has replaced them as the main factor shaping the boreal forest 
landscape in Fennoscandia and North America (Loope 1991, Esseen et al. 1997, Peltola 
2014).

Clear-cutting and the cultivation of forest plantations (i.e., a single age class) in 
Fennoscandia began during the 1940s (Esseen et al. 1992). Prior to this period, foresters 
relied on natural regeneration and selectively cut trees of a minimum diameter (Leikola 
1984), which maintained a more natural age structure in Finnish commercial forests. 
In 2004, 81% of commercial forests were clear-cut and replanted with nursery seedlings 
(Peltola 2014). Swedish forests use similar techniques to their counterparts in Finland, 
and operate plantation cycles from 80 years in the south to 120–130 years in the north 
(Esseen et al. 1997, Äijälä et al. 2014). Although the commercial forest area in Finland has 
not changed significantly during the last 100–125 years, the area occupied by old natural 
forests has reduced and become more fragmented (Kouki et al. 2001). In last 50 years, the 
area of old-growth forest has decreased dramatically, especially in northern Finland, and 
16% of the Finnish forest area is less than 20 years old (Peltola 2014). After clear-cutting, 
the light, humidity and nutrient conditions shift and induce changes in the vegetation, 
e.g., grasses and herbs flourish while mosses and dwarf shrubs suffer (Zobel et al. 1993, 
Hannerz & Hånell 1997, Pykälä 2004, Uotila & Kouki 2005).

Fennoscandia contains three species of Myodes voles (bank vole [My. glareolus], red 
vole [My. rutilus], grey-sided vole [My. rufocanus]) and four species of Microtus voles 
(field vole [Mi. agrestis], root/tundra vole [Mi. oeconomus], sibling vole [Mi. epiroticus] 
and common vole [Mi. arvalis]), with diversity being higher in the north (Henttonen 
& Hansson 1984). The two most abundant and widespread Fennoscandian species are 
the bank vole and the field vole. Old forests are the core habitat for the bank vole but 
especially during high population densities they can be found elsewhere (Hansson 1999, 
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Sundell et al. 2012, I). The core habitats for the field vole are fields, meadows and grassy 
mires but they also use recently clear–cut and open forests (Henttonen 1989, Sundell et al. 
2012). Due to their different habitat requirements, commercial forestry affects different 
vole species in different ways. It is generally understood that the abundance of folivorous 
Microtus voles increases after clear-cutting (Hansson 1978, Henttonen 1989, Bogdziewicz 
& Zwolak 2014) while granivorous-folivorous Myodes species decline (Hansson 1978, 
1999, Ecke 2002). However, in their meta-analysis of a European dataset, Bogdziewicz & 
Zwolak (2014) did not find a negative effect of clear-cutting on bank voles.

1.2. Voles as prey

Microtus and Myodes voles differ in their spacing behaviour. Breeding Microtus have 
small home ranges that can overlap (Myllymäki 1977, cf. Erlinge et al. 1990), while 
breeding female Myodes have larger territories (reviewed by Viitala & Hoffmeyer 1985, 
Viitala 1987). Due to these differences in behaviour, Microtus voles can reach 5–10-fold 
higher densities than Myodes species (Myllymäki 1977, Henttonen 1987).

Voles, and especially Microtus, are important prey items for many avian and mammalian 
predators such as the least weasel (Mustela nivalis), stoat (Mustela erminea), pine 
marten (Martes martes), common kestrel (Falco tinnunculus), short-eared owl (Asio 
flammeus), long-eared owl (Asio otus), Tengmalm’s owl (Aegolius funereus) (Korpimäki 
1986, Korpimäki & Norrdahl 1991a, Korpimäki 1992, Reif et al. 2001, Korpimäki 
& Hakkarainen 2012). Least weasels are vole specialists and Microtus are an essential 
food source (Korpimäki et al. 1991) during winter and the breeding season (Henttonen 
1987). Red fox (Vulpes vulpes) is a common, mid-sized generalist predator (a so-called 
mesopredator) in Fennoscandia, where small mammals and especially Microtus voles 
comprise the main prey items in northern areas (Lindström 1989, Vainio et al. 1997, 
Kauhala et al. 1998, Dell’Arte et al. 2007). 

1.3. Population fluctuations of voles and their predators

An important characteristic of the northern terrestrial environments is the low diversity 
of vertebrate guilds. This ecological simplicity creates a decoupling of prey and predator 
population densities and thus pronounced fluctuations in their relative abundances. 
While vole population fluctuations are irregular in North America (Hansson & 
Henttonen 1985, Boutin et al. 1995), they occur on rather predictable 3–5-year cycles in 
Fennoscandia (Hansson & Henttonen 1985, Hanski et al. 1991, Sundell et al. 2004). At 
present, a universally-accepted explanation for the mechanism(s) creating the population 
cycles is lacking, but predation by specialist predators and a shortage of winter food are 
commonly suggested (Hanski et al. 1991, Korpimäki et al. 1991, Korpimäki & Krebs 1996, 
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Hanski et al. 2001, Huitu et al. 2003, Huitu et al. 2004). Predation by resident mammalian 
specialists intensifies the amplitude of vole population densities, while predation by 
generalists and nomadic (avian) predators dampen them (Andersson & Erlinge 1977, 
Korpimäki & Norrdahl 1991b, Hanski et al. 2001). Results of a recent modelling study 
(Korpela et al. 2014) suggest that the interactions between voles and small mustelids is an 
important factor in Fennoscandian population cycles, but this interaction is contingent 
upon and modified by climate.

It has been reported that the amplitude of multi-annual cycles has been reducing at 
several long-term monitoring locations in Europe since late 1980s (Henttonen 2000, 
Hörnfeldt 2004, Ims et al. 2008, Cornulier et al. 2013), and has been linked to climate 
change (Cornulier et al. 2013). Ecke et al. (2006, 2010) suggested that commercial 
forestry also represents an important factor in the local long-term decline of the grey-
sided vole in forest plantations of Fennoscandia. An interesting feature is that in northern 
Fennoscandia dampened cycles have recently returned (Henttonen, Ecke, Hörnfeldt, 
pers, comm.). The model applied by Hanski & Henttonen (1996) suggested that such 
long-term changes in the amplitude and frequency of rodent population cycles are not 
unexpected in multispecies prey-predator assemblages.

Reflecting the dynamics of local vole abundances, predators and small game species have 
earlier followed 3- to 5-year population cycles in northern Fennoscandia (Angelstam et 
al. 1984, Hansson & Henttonen 1985, Hanski et al. 1991, Sundell et al. 2004). However, 
small game species have shown less clear 6- to 7-year cycles in southern and central 
Finland (Lindén 1988). Synchronous population fluctuations have been explained by the 
alternative prey hypothesis (Hagen 1952, Lack 1954, Angelstam et al. 1984, 1985) and 
by the shared predation hypothesis (Norrdahl & Korpimäki 2000). The latter suggests 
that predators kill prey unselectively and the predation pressure against each species is 
determined by the abundance of their predators. The alternative prey hypothesis posits 
that predators concentrate on the main prey species when their densities are high and 
then predation pressure against alternative prey species is reduced. When densities of the 
main prey species decline, predators shift to the alternative prey and their populations 
are suppressed. Eventually, the survival and reproduction of the predators decline 
(Angelstam et al. 1984, 1985). In Fennoscandia, Microtus voles are the main prey item 
for many predators while bank voles (Myodes glareolus) are the most important alternate 
(Korpimäki et al. 2005), along with the eggs and young of small game species such as 
grouse (Tetraonidae) and hare (Lepus spp.). Of the resident predators, the pine marten, 
stoat and especially the red fox appear to align with the alternative prey hypothesis 
(Korpimäki & Norrdahl 1997, Kurki 1997).

Henttonen (1989) hypothesized that the abundance of Microtus voles had increased in 
response to an increase in the area of open grasslands, afforested fields and ditched bogs 
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created by commercial forestry. More voles led to higher densities of red fox and other 
small- and medium-sized predators. During the crash phase of a Microtus population 
cycle, predators shift to small game species and this phenomenon might explanation 
to the decline of forest grouse populations in Finland observed during the 20th century 
(Lindén & Rajala 1981; Kurki et al. 1997, 1998; Sirkiä et al. 2010).

1.4. Regulation of the red fox population

Populations of mesopredators can be regulated by prey abundance (bottom-up) or by 
apex predators (top-down) (Elmhagen & Rushton 2007, Pasanen-Mortensen et al. 2013). 
The red fox is a common generalist mesopredator in Finland, where population densities 
tend to follow vole cycles (Angelstam et al. 1985). Although the red fox population 
is widely believed to be regulated by the availability of food, social factors have been 
implicated in southern Sweden (Englund 1970) and reproductive output is known to 
be density dependent in other canids (Sparkman et al. 2011). The main natural enemies 
of red foxes are large mammalian predators (Andersone & Ozolins 2004, Valdmann 
et al. 2005, Heldin et al. 2006), especially the Eurasian lynx (Lynx lynx) (Sunde et al. 
1999, Andersone & Ozolins 2004, Heldin et al. 2006). The lynx population has increased 
dramatically in the last 20 years and the 2015 minimum population estimate for Finland 
is 2700–2800 adults (http://www.rktl.fi/riista/suurpedot/ilves/ilveksen_kanta_arviot.
html, 9.10.2014), and the notion that lynx can suppress red fox populations has been 
suggested (Ludwig 2007, Elmhagen et al. 2010, Pasanen-Mortensen et al. 2013).

A loss of apex predators can permit a rise in the density of mesopredators that, in 
turn, suppresses the abundance of small prey species (mesopredator release; Soulé et 
al. 1988, Crooks and Soulé 1999, Ritchie & Johnson 2009). Conversely, an increase in 
apex predators can reverse the effects of a mesopredator. For example, the presence of 
dingoes (Canis lupus dingo) in Australia has been reported to suppress the abundance of 
introduced red foxes and facilitate a rebound of native marsupial numbers (Johnson et 
al. 2007, Southgate et al. 2007, Wallach et al. 2010, Gordon et al. 2015). Apex predators 
are affecting mesopredator survival and reproduction by both by consuming them and 
restricting their habitat use and behaviour (reviewed by Ritchie and Johnson 2009). The 
presence of top predators can also create a so-called “landscape of fear” for mesopredators 
(Laundre et al. 2001).

Red fox and lynx are both preying on game species (e.g., hares) in Finland (Pulliainen et 
al. 1995, Vainio et al. 1997, Kauhala et al. 1998, Dell’Arte 2007). Elmhagen et al. (2010) 
suggested that in eastern Finland lynx are suppressing red fox densities and that this has 
released the local mountain hare (Lepus timidus) population from top-down regulation, 
thereby facilitating a higher density. Hares are the main prey item for lynx but surveys 
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indicate that red foxes outnumber lynx 40:1, which explains the strongly negative effect 
of foxes on the hare population. Several studies have also emphasised the importance 
of fox predation on grouse (Marcström et al. 1988, Kurki et al. 1997, Kauhala et al. 
2000). Culling the red fox population through hunting is considered to be an important 
technique in the management and health of game species.

1.5. Puumala virus

Small rodents harbour numerous pathogens and parasites. Several vole-borne 
pathogens can also infect humans, i.e., are zoonotic. Rodent-borne hantaviruses 
(family Bunyaviridae) cause hemorrhagic fever with renal syndrome and hantavirus 
cardiopulmonary syndrome in humans (Jonsson et al. 2010, Vaheri et al. 2013a, 2013b).

Human-mediated environmental disturbance (e.g. commercial forestry) can affect 
infection dynamics of pathogens by altering host population density or by influencing 
species richness and therefore intraspecific contact rate and transmission of the pathogen. 
The so-called “dilution effect” is a phenomenon where high species richness is associated 
with a decrease in the prevalence of one or more pathogens (Keesing et al. 2006, Dearing 
& Dizney 2010, Keesing et al. 2010). Fennoscandian small mammal diversity is often 
higher in early succession stages of boreal forests inhabited by both Myodes and Microtus 
voles (I, II, Henttonen & Hansson 1984). 

The most common hantaviral disease in Europe is nephropathia epidemica, a mild form 
of hemorrhagic fever with renal syndrome (Heyman et al. 2008, Vaheri et al. 2013a). 
It is caused by the Puumala virus (Brummer-Korvenkontio et al. 1980, Vapalahti et al. 
2003) hosted by the bank vole. In the vole host, Puumala virus is persistent (Meyer & 
Schmaljohn 2000) and does not cause visible symptoms (Gavrilovskaya 1990, Bernshtein 
1999, Meyer & Schmaljohn 2000) although it can reduce the winter survival of infected 
bank voles (Kallio et al. 2007). Transmission in the host is horizontal and occurs directly 
via aerosol excretions (Gavrilovskaya 1990, Kallio et al. 2006a). Epidemic peaks of 
human nephropathia epidemica follow the seasonal and multi-annual dynamics of bank 
vole abundance (Brummer-Korvenkontio 1982, Niklasson et al. 1995, Kallio et al. 2009). 
While the virus and its host are found in most European countries, most of the human 
infections occur in the boreal zone of northern Europe (Heyman et al. 2008, Vaheri et al. 
2013a).
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2. AIMS

Commercial forestry is drastically affecting the boreal ecosystem. The aim of this thesis 
is to understand the effects of a changing landscape on vole populations and, in turn, the 
influence of dynamic vole populations on other trophic levels. It has been argued that an 
increase in the number of Microtus voles has led to higher predator densities, and that 
this had a negative effect on the abundance of game species. Culling of predators has been 
seen as an important step in game management, and the aggregation of voles in certain 
habitats can affect the distribution of predators in the landscape. However, the habitat 
use and population density of mesopredators is also affected by the presence of apex 
predators. Changes in the landscape and small mammal community might also affect the 
prevalence of vole-borne pathogens, some of which can infect humans.

The main questions in this thesis are:

•	 How is commercial forestry affecting small mammal populations? (I)

•	 How does habitat and the small mammal community influence the prevalence 
of Puumala virus? (II)

•	 What are the main factors regulating red fox (Vulpes vulpes) population density: 
prey abundance, apex predators or hunting? (III)

•	 What are the habitat preferences of the red fox? Can the distribution of red fox 
prey or predators explain these preferences? (IV)
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3. MATERIAL AND METHODS

3.1. Materials

All studies took place in the Finnish boreal zone. Fieldwork for studies I and II was 
conducted in the municipalities of Taivalkoski and Pudasjärvi in northern Finland (65° 
N, 28° E; Fig. 1), respectively. The study areas are located at the interface of the northern 
and central boreal zones (Ahti et al. 1968), where the mean monthly temperature at the 
closest weather station ranges from -12.8 °C in January to 14.6 °C in July. Bi-annual 
surveys of the vole community were made 2006–2010 (study I) and 2007–2010 (study 
II). The voles were snap-trapped in June and September at 40 forest stands using the 
small quadrat method (Myllymäki 1971). Stands represented four age classes: managed 
forests established (1) 3–8, (2) 9–15 and (3) 24–30 years after clear-cutting, and (4) 
unmanaged forests older than 100 years (Fig. 2). After trapping animals were flash 
frozen at -20 °C prior to dissection in the laboratory. The species, sex, weight, age and 
functional group were determined for each individual and the hearts of bank voles 
were preserved in phosphate-buffered saline for serological analyses. An estimate of 
vole density was made in the form of a trapping index, i.e., the number of animals 
trapped per 100 trap nights.

Figure 1. Locations of Taivalkoski (T) and Häme (H) study areas and proportion of forest cover in Finland.
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In study II, bank voles were examined in the laboratory using an immunofluorescent 
antibody test to detect antibodies specific to the Puumala virus (Kallio-Kokko et al. 
2006). Given that Puumala virus causes a chronic infection in bank voles (Meyer & 
Schmaljohn 2000), the presence of antibodies indicates infection. However, infected 
mothers can transfer antibodies to their offspring during gestation and lactation 
(Dohmae et al. 1993, Kallio et al. 2006b). Therefore, a statistical model incorporating the 
probability of being antibody positive in relation to body mass was used to distinguish 
individuals carrying maternal antibodies from those with antibodies generated in 
response to an infection.

Data for study III were gathered from the long-term monitoring projects of the (former) 
Finnish Game and Fisheries Research Institute and Finnish Forest Research institute 
(now the Natural Resources Institute Finland). Density indices of the red fox, Eurasian 
lynx and hare were based on Finnish wildlife triangle snow track counts covering the 
entire country (Lindén et al. 1996). We also used Finnish hunting bag statistics and data 
from nationwide vole censuses (Korpela et al. 2013, 2014). The rate of red fox population 
growth [calculated as ln (fox density index in year t+1 / fox density index in year t)] was 
used as the response variable in statistical analyses.

Figure 2. Forest age classes in 2006 in which the small mammal trappings for study I and II were performed.
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In study IV, GPS-tracking of red fox and lynx was conducted in the southern boreal zone 
(~61°N, ~25°E) at Häme (Fig. 1) during 2011–2014. The mean annual temperature in 
the study area is 4.2 °C (from -6.5 °C in January to 16.6 °C in July). Snow cover lasts for 
approximately six months. In total, four male and three female red foxes were live-trapped 
by local hunters and fitted with GPS transmitters. The collars provided the position of 
each fox every four hours using GPS satellites, and an activity value every five minutes. 
Foxes were tracked for 28–216 days. The activity patterns and habitat preferences of red 
foxes were compared with that of 11 Eurasian lynx fitted with GPS collars in the same 
area.

3.2. GIS

Geographic information system (GIS) methods were used in studies III and IV. In III, 
spatial interpolation of local vole censuses was used to estimate the phase of the vole 
population cycle for the whole of Finland. In IV, the fox and lynx tracking locations were 
used to estimate the home range and activity of each animal. These values were then 
compared with the Corine land-cover dataset to reveal the habitat use of these species 
in the study area. For the red fox, minimum convex polygon (MCP), kernel 95% (K95), 
kernel 75% (K75) and kernel 50% (K50) home range estimates were calculated. For MCP, 
home range is estimated by drawing the smallest possible convex polygon that includes 
all known locations of the animal. It is the oldest and most commonly used home range 
estimation method (Powell 2000). The kernel method was used to estimate the utilisation 
distribution for each animal. This relies on a bivariate function giving the probability 
density that an individual is found at a certain point. The home range is the minimum 
area in which the individual can be found with certain probability (Worton 1995). The 
K95 was used as an estimate of the entire home range of each animal, and the K75 and 
K50 as estimates of its core. GIS analyses were done using Esri ArcGIS 10.1 software and 
AdehabitatHR and AdehabitatLT (Calenge 2006) packages in R statistical software (R 
Core Team 2014).

3.3. Statistical analyses

Generalised linear mixed models (GLMM) were used in studies I, II and III. These 
statistical methods enable the detailed analysis and exploration of complicated 
datasets, (e.g., count and probability data). GLMMs also take into account issues of 
autocorrelation and pseudoreplication (Pinheiro & Bates 2000, Bolker et al. 2009, 
O’Hara 2009). In I, a generalized additive mixed model (GAMM; Zuur et al. 2009) 
was used to distinguish individuals with maternal antibodies from those with acquired 
infections. When necessary, we used an information theoretic (i.e., parsimony) 
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approach to select the most appropriate model (Burnham & Anderson 2000). In IV, 
habitat use of red fox and lynx was studied using compositional analysis (Aebischer et 
al. 1993). Most of the statistical analyses were performed with appropriate packages in 
R (R Core Team 2014).
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4. RESULTS AND DISCUSSION

4.1. Effects of commercial forestry on voles and Puumala virus

Commercial forestry has increased the proportion of forest area in an early stage of 
succession. Our results show that field vole densities peak in clear-cut and newly replanted 
commercial forests (I). Our study began in an acyclical and low density period for 
Microtus voles that lasted from the early 1980s to 2009 in northern Finland (Henttonen 
et al. 1987, Henttonen 2000, Henttonen & Wallgren 2001, Heikki Henttonen personal 
communication). Thus, field voles did not reach the densities reported in earlier studies 
(Henttonen 1987, Henttonen 1989) and were generally lower than that of bank voles, 
especially during the first few years of the study.

Here, we show that bank voles inhabited forests in all stages of succession, but their 
numbers were always highest in mature forest except for 2006 when their density peaked 
in seedling forests that had been replanted 9–15 years earlier. During low density periods, 
bank voles were mainly trapped in mature forests, which is consistent with earlier studies 
that observed how mature forests are their preferred habitat (Henttonen et al. 1977, 
Hansson 1978, Hansson 1999, Sundell et al. 2012). Bank vole densities were higher in 
3–15 year-old forests than in 24–30 year-old forests, where the total rodent abundance 
was also the lowest. Our results suggest that the highest prey densities for predators are 
found in old and young succession stages depending on year and season while the rodent 
density is lowest in forests of intermediate succession stage. The middle-aged forests 
often have a thick canopy which leads to more sparse ground vegetation than younger 
and older forest stages. Rodent density is more stable in old forests than in young patches, 
where Microtus species exhibit more pronounced population fluctuations than Myodes 
species. Furthermore, young forests are mainly inhabited by Myodes species during high 
density periods.

Bank voles harbour the Puumala virus (Vaheri et al. 2013) and thus their distribution 
and abundance affects its prevalence in the environment. We found that Puumala virus 
reflected the distribution of the bank vole generally, and could be found in all successional 
stages of commercial forest in Finland (II). However, the Puumala virus infection rate 
of bank voles peaked in mature forests, and bank vole population density was positively 
related to infection rate. However, when the population density was taken into account, 
younger forests had relatively higher infection rates. We also found evidence for a “dilution 
effect”, i.e., a phenomenon in which infection rate is negatively correlated with the density 
of other small mammals (Keesing et al. 2006, 2010). Breeding bank voles in June had lower 
Puumala seroprevalence when the density of other small mammals increased. In managed 
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forests of Fennoscandia, the diversity of small mammal communities is higher in younger 
successional stages inhabited by Microtus and Myodes species (I, II, Henttonen & Hansson 
1984, Ecke et al. 2002). The wide co-distribution of bank voles and Puumala virus in boreal 
landscapes explains why most of the human infections of nephropathia epidemica occur in 
the boreal zone of northern Europe (Heyman et al. 2008, Vaheri et al. 2013).

4.2. Factors limiting the red fox population

Populations of mesopredators can be limited by either prey abundance (bottom-up), by 
apex predators and hunting (top-down) (Elmhagen & Rushton 2007, Pasanen-Mortensen 
2013), or by reproductive inhibition dependent on their own local abundance (Englund 
1970). The red fox is a common and widespread mesopredator of Finland. We found that 
the yearly red fox population growth rate was negatively affected by the density of lynx in 
the winter and Microtus voles in the preceding autumn (III). We suggest that the negative 
impact of Microtus voles in autumn is due to the following population crash and low vole 
numbers in next year. In earlier studies red fox population changes have been linked to 
the vole population fluctuations in central and northern Fennoscandia (Angelstam et al. 
1985). Contrary to our hypotheses the fox population growth was positively associated 
to the red fox hunting bag. We hypothesise that this is due to the higher hunting yield 
during the high population growth, not due to the real positive effect of hunting.  Our 
results also show that red fox population growth is inversely proportional to density, a 
phenomenon which may be due to social factors or intraspecific competition. Englund 
(1970) reported that red fox populations in southern Sweden are socially regulated while 
they are more strongly influenced by the availability of food in the north.

Our results suggests that while top predator is present red fox population growth is 
affected by both bottom-up and top-down forces and any single factor does not explain the 
changes in the populating growth comprehensively. Red fox is an opportunistic predator 
and thus its numbers are influenced by environmental productivity and complexity 
(Elmhagen & Rushton 2007, Elmhagen et al. 2010) and thereby the overall abundance of 
a diverse prey base. The “mesopredator release” hypothesis posits that the loss or removal 
of apex predators enables the rise of mesopredator densities and thereby suppresses the 
abundance of small prey species, and conversely the return of apex predators will suppress 
the mesopredator population and enable the small prey species to recover (Soulé et al. 
1988, Crooks & Soulé 1999). 

4.3. Habitat selection of red fox

In IV, fox MCP home ranges ranged from 13.1 to 132.8 km2. The kernel 50% (K50) 
represents the core of the home range, and we recovered estimates from 1.3 to 15.3 km2. 
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Both MCP and K50 estimates are larger than the home ranges estimated by earlier studies 
(e.g., Kauhala et al. 2006). This could partly be due to methodological differences (VHF 
in earlier studies instead of GPS) and/or the environmental productivity being lower in 
our study area than elsewhere.

The home ranges (MCP, K95) of the tracked foxes contained a higher proportion of field 
area than the study area did as a whole. The size of the red fox K75 core was negatively 
correlated with the proportion of fields in the home range, i.e., a home range consisting of 
mainly field habitat was proportionally smaller. The proportion of agricultural and urban 
infrastructure correlates with the overall productivity of the area. Fields and urban areas 
were used mainly at night, suggesting they are used as foraging and hunting habitats. 
Open areas are favoured by Microtus voles which are an important prey item for red fox 
(Lindström 1989, Kauhala et al. 1998, Dell’Arte et al. 2007). Foxes also spent more time in 
fields and urban areas than their most important predator, the lynx. As such, the apparent 
preference of the red fox for modified or artificial habitats could partly be due to a trade-
off to reduce their own predation risk while maximizing their ability to find prey or other 
nutritional resources.

Within the home ranges, areas with sparse tree cover were favoured over other forest 
areas and other habitats. Open forests are those that have recently been clear-cut or 
replanted, and are where the highest densities of Microtus voles are frequently observed 
(I). The preference shown for this habitat by the red fox could be due to the high vole 
densities that occur in these settings. Thus, our results are consistent with the hypothesis 
that modern silvicultural practice is favouring the predator (Henttonen 1989). Moreover, 
seedling stands and young forests can provide dense daytime shelter for foxes, and areas 
with sparse amounts of tree cover were used more during the day than at night.
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5. CONCLUSIONS

Finnish forests, and the animal communities they support, are now profoundly affected 
by anthropogenic activity. Voles are one of the keystone species in boreal forests and 
changes in their abundance and distribution affect many species that depend on them as a 
food source. Commercial forestry increases the proportion of the forested landscape that 
is in an early stage of succession, i.e., ideal habitat for Microtus voles. Species richness of 
voles is higher in young forests inhabited by a mixed community of forest and grassland 
species. In Fennoscandia, Puumala virus and its principal host the bank vole are found 
in forests of all ages. However, bank vole densities are highest in mature forests, and 
host density is positively correlated with infection rate. We also observed a “dilution 
effect”, wherein breeding bank voles were less often infected by Puumala virus when the 
abundance of other small mammal species was higher.

The increased density of apex predator, the Eurasian lynx, has shifted the red fox 
population from one regulated by prey availability (i.e., bottom-up) to one regulated by 
also predation pressure (i.e., top-down) and with curtailed reproduction in response to 
its own population density. We suggest that greater numbers of lynx in the landscape 
will suppress red fox populations and induce a trophic cascade that benefits prey species 
such as hare and grouse. Since the start of the wildlife triangle scheme in 1989, the red 
fox indices have been stable or have slowly decreased in all game management districts 
of Finland. 

In southern Finland, the red fox established home ranges in agricultural areas, and 
the size of a home range was negatively correlated with the proportion of the range 
that comprised field habitat, i.e., home ranges comprised mainly of fields were 
proportionally smaller. Within their home range, foxes prefer open forest areas such 
as those that had been recently clear-cut and replanted. This could be due to the high 
abundance of voles and the cover provided by these habitats. This finding supports 
the hypothesis that forestry is favouring the predators (Henttonen 1989). Foxes use 
agricultural and urban areas more than their most important predator, the lynx. This 
could be due to a predator-avoidance strategy, or due to the food and other resources 
those areas provide. Fields and urban locations are used by foxes relatively more during 
the night, suggesting they are important feeding grounds, but could also be influenced 
by the human activity during the day. It has been suggested that foxes are moving 
more closer to urban settlements than ever before and that this could be caused by the 
lynx. Unfortunately, data pertaining to habitat use by red foxes in Finland prior to the 
recovery of lynx are not available. The main species interactions studied in the thesis 
are presented in the figure 3.
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Figure 3. The main species interactions studied and discussed in this thesis. The thick black arrows represent 
the newly-discovered population-level interactions, the thick dashed arrows represent newly-discovered but 
controversial interactions and thin arrows represent other plausible interactions.
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