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ABSTRACT 

Mitochondrial diseases are generally caused by genetic variants that may affect cell 

function during the process of energy generation: right from the start of protein 

translocation to the fatty acid degradation by beta-oxidation (β-oxidation). The main 

objective of this PhD thesis is to study genetic variants that cause mitochondrial diseases 

and also to understand the disease pathogenesis of a known disease using the induced 

pluripotent stem cell (iPSC) method, a revolutionary approach in regenerative medicine.  

 

In the first study, we carried out a long-term follow up of six metabolic diseased patients 

and subsequently we performed a carrier frequency study of the identified carnitine 

palmitoyl transferase 1A (CPT1A) gene variant in the Finnish population. We identified 

a novel homozygous variant c.1364A>C (p.Lys455Thr) in exon 12 of the CPT1A gene. 

No carriers of the variant c.1364A>C were detected upon minisequencing of 150 control 

samples but the allele frequency of CPT1A variant in global population is 0.0002142 

(ExAC Browser) whereas in the Finnish population (6614 allele number) the frequency 

is 0.001966. The identified variant was predicted to cause improper folding of the 

CPT1A protein, which leads to its degradation. All patients were treated with a high-

carbohydrate and a low fat diet. 

 

In the second study, we focused on the human DnaJ (Hsp40 homolog) subfamily C, 

member 19 (DNAJC19) deficiency. Our studies showed that it causes early onset dilated 

cardiomyopathy syndrome (DCMA). This is the first report of a genetic defect in the 

mitochondrial protein, DNAJC19, outside of the Canadian Dariusleut Hutterite 

population. This defect is characterized by an unusual aetiology for an early onset 

recessively inherited dilated cardiomyopathy that is associated with ataxia and male 

genital anomalies. Sequencing of the human DNAJC19 gene revealed a homozygous 

single nucleotide (A) deletion in exon 6 that cause a frameshift and lead to the premature 

termination of the protein. 

 

In the third study, the pathogenesis of retinopathy in long-chain acyl-CoA 

dehydrogenase deficiency (LCHADD) was studied using iPSC technology. Retinopathy 

is an unusual manifestation of LCHADD, as mitochondrial fatty acid β-oxidation 

(FAβO) has not been considered to play a major role in the metabolism of the retina. 

Among all defects of mitochondrial FAβO, only long-chain acyl-CoA dehydrogenase 

(LCHAD) and mitochondrial trifunctional protein (TFP) deficiencies have developed 

pigmentary retinopathy and peripheral neuropathy. We elucidated how a genetic variant 

in the FAβO cycle can disrupt the retinal pigment epithelium (RPE) that can eventually 

lead to blindness. In addition, we developed a new in vitro cell model; iPSC clones were 

generated from LCHADD patient fibroblasts and further differentiated into RPE cells. 

Several changes were observed in patient RPE cells such as decreased cell size, lower 

pigmentation and irregular pattern of morphology. Electron microscopy analysis showed 

an accumulation of a few melanosomes, more melanolysosomes, and large sized lipid 
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droplets in patient RPE cells. Furthermore, increased levels of triglycerides in patient 

RPE cells were observed upon mass spectrometric analysis. We concluded that all these 

changes had contributed to the disruption of the RPE layer that leads to blindness in 

LCHAD deficiency patients.  

 

Finally, the research done for this thesis succeeded in identifying novel variants in 

CPT1A and DNAJC19 genes in Finnish patients. Our long-term follow up studies on 

CPT1A deficiency can help patients in better diagnosis, which further helps clinicians to 

identify the genetic cause. We also found a novel phenotype with DNAJC19 deficiency. 

Further we established the groundwork to understand the pathogenesis of retinopathy in 

LCHADD patients using an advanced method that helps to study in depth pathogenesis 

mechanism.  
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1 INTRODUCTION 

Generally a metabolic disease or disorder is a condition in which the disruption of 

normal metabolism happens at the cellular level. A plethora of key enzymes have been 

demonstrated to play key roles in various interdependent metabolic pathways. Most of 

the metabolic disorders results in cellular dysfunction thereby causing disturbances to 

critical biochemical reactions. All inherited metabolic diseases include both autosomal 

recessive and autosomal dominant, the onset of symptoms appear under conditions when 

the body metabolism undergoes stressful conditions such as prolonged fasting or during 

illness (Bennett et al. 2004). 

 

The most common group of metabolic disorders comprises various mitochondrial 

diseases that have an estimated prevalence of 1 in 5000 (Elliott et al. 2008). They may 

manifest a wide range of symptoms and are not confined to a particular organ or tissue. 

Mitochondrial diseases may also have onset at any age with any mode of inheritance. In 

particular they mainly affect energy demanding tissues such as skeletal muscle, heart, 

and brain and in addition may also affect the peripheral nerves and also the eyes. 

 

Mitochondria are the ‘power houses’ of the cells as they are responsible for generating 

energy in the form of adenosine triphosphate (ATP). Mitochondrial fatty acid β-

oxidation (FAβO) is an important pathway under fasting conditions when the glucose 

supply is limited. A number of enzymes involved in this pathway mediate the generation 

of the required amount of energy for tissues especially for the muscle and heart 

particularly during the non-fed/fasting state. Impairment in the function of any one of 

these enzymes can have a devastating effect that could lead to a FAβO disorder, in most 

cases autosomal recessively inherited. The classical clinical manifestation of a FAβO 

disorder is a metabolic crisis with hypoketotic hypoglycaemia and fat accumulation in 

tissues particularly in the liver, skeletal muscle and heart, during the first years of life. 

Without an emergency treatment, these patients may die a sudden death during the 

neonatal stage or in infancy. For these reasons, it has become the norm to screen FAβO 

disorders in neonates by mutation analysis or acylcarntine analysis (Gillis et al. 2002).  

 

Various treatment strategies of β-oxidation defects currently include a therapeutic 

intervention that secures sufficient caloric intake during periods of metabolic stress and 

fasting. Another primary treatment method contributes to preventing the accumulation of 

β-oxidation intermediates by providing only the required amount of essential fatty acids 

(FA’s). Currently, the dietary regime strategy for FAβO deficiencies primarily seeks 

avoidance of fasting and restriction of dietary fat containing long-chain fatty acids. A 

low fat diet approach in addition to the inclusion of essential fatty acid and fat-soluble 

vitamin supplements in the diet is important (Munnich 1992). 
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The research in this thesis summarizes novel genetic variants that result in mitochondrial 

metabolic disorders in the Finnish population. It also provides a brief description of a 

clinical study and genetic analysis of mitochondrial metabolic diseases for clinicians. 

We present two novel disease-causing variants in carnitine palmitoyl transferase 1A 

(CPT1A) and DnaJ (Hsp40 homolog) subfamily C, member 19 (DNAJC19) in the 

Finnish population and also focus on understanding the pathogenesis of retinopathy 

condition under long-chain acyl-CoA dehydrogenase deficiency (LCHADD). Both long- 

chain acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (TFP) 

deficiencies have unusual manifestations of a β-oxidation defects including: progressive 

retinopathy and peripheral neuropathy, both of which may present in childhood or 

adulthood.  

  

We were able to provide genetic counselling and better treatment for patients with FAβO 

disorders by investigating the genetic cause through detecting new variants. The 

identification of the underlying mechanisms that cause typical manifestations by using 

new in vitro models will also help to provide new therapies.  
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2 REVIEW OF THE LITERATURE 

2 .1 Mitochondria and their evolutionary origin 

It is believed that the mitochondria played a vital role in the evolution of eukaryotic 

cells. Mitochondria are organelles that have their own genome comprising a small 

circular plasmid DNA, thus strongly supporting the theory of endosymbiosis. In 

addition, the double membrane structure of the mitochondria closely resembles 

prokaryotic characteristics such as in bacteria. Mitochondria are believed to have 

originated by the endosymbiosis of ancient bacteria (Margulis et al. 1998, Cavalier 

2006). The endosymbiotic theory hypothesizes that mitochondria evolved from the 

engulfment of an alpha-proteobacterium (Lane & Martin 2010) by an early eukaryotic 

cell (Wallace 2005). 

 

Mitochondria act as the cell’s power house and generate energy in the form of ATP. The 

size of the mitochondria ranges from 1-10 μm. The number of mitochondria in cells 

varies from a single mitochondrion in the retinal cell to thousands of mitochondria in 

hepatocytes. The shape of the mitochondria also varies depending on the cell type, 

ranging from tubular networks to punctuated structures such as sheets and spheres 

(Figure 1) (Perkins et al. 2001, Scheffler 2001). 

2.2 The structure of the mitochondria 

The mitochondrion is the largest organelle in the cell. It consists of two 

submitochondrial compartments, namely the outer membrane (OM) and the inner 

membrane (IM) with its cristae and the matrix, or central compartment. The space 

between the OM and IM is the inner membrane space (IMS) (Figure 1). Most of the 

mitochondrial proteins that are needed for the normal functions of the mitochondria are 

encoded by nuclear genes (Scheffler 2001). 

2.2.1 The outer mitochondrial membrane  

  

The outer mitochondrial membrane (OMM) comprises of approximately 50% of 

phospholipids and 50% of proteins. The OMM contains a protein called the voltage-

dependent anion channel (VDAC) or porin. They are capable of permeating molecules 

having a molecular mass up to 5 kDa (Schleiff & Becker 2011). VDAC has a β-barrel 

structure similar to bacterial proteins and they belong to the porin family. Ions, nutrient 
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molecules, adenosine triphosphate (ATP), adenosine diphosphate (ADP), etc. can easily 

pass through the OMM (Schein et al. 1976; Wurm et al. 2011).   

2.2.2 The inner mitochondrial membrane  

 

The inner mitochondrial membrane (IMM) comprised of approximately 20% 

phospholipid and 80% of protein. The IMM is the site for synthesis and localization of a 

unique four fatty acyl chain phospholipid, cardiolipin. This makes the IMM 

impermeable to ions and solutes (Fadeel et al. 2009), a vital function for the constant 

maintenance of the electrochemical potential that is necessary to mediate the synthesis of 

ATP in mitochondria. The transporter proteins such as inner membrane translocase 

(TIM) or adenine nucleotide translocase (ANT) are embedded in the IMM, they are 

critical for shuttling proteins and metabolites between the matrix and the inter membrane 

space. As the surface of the IMM is larger than the outer membrane, the inner membrane 

(Figure 1) forms numerous invaginations or cristae that protrude into the matrix (Zick et 

al. 2009). The mitochondrial matrix also contains enzymes needed for the citric acid 

cycle, mtDNA, ribosomes and also functions as a site for calcium storage.  

 

 

 

 

 

 

 

 

 

Figure 1 - Schematic representation of mitochondrial structure  

 

2.3 Functions of mitochondria 

Mitochondria are extremely critical organelles whose main function is to produce 

metabolic energy by the oxidation of carbohydrates and fatty acids. The metabolic end 

product of sugars and fats is acetyl-coenzyme A, which enters into ‘Krebs cycle’ (also 

known as the Citric acid cycle or Tricarboxylic acid cycle) where it is further oxidized 

resulting in the reduction of nicotinamide adenine dinucleotide (NAD) and flavin 

adenine dinucleotide (FAD) coupled with the generation of ATP. Thereafter these are 

further re-oxidized in the respiratory chain (RC) or oxidative phosphorylation 
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(OXPHOS) by a series of reactions that are coupled to the synthesis of ATP (Yip et al. 

2011). 

 

2.3.1 Lipids 

 

Lipids are the main sources for storage of energy, membranes building, signalling, 

environmental sensing, and protecting cells from highly reactive chemicals (Harvey 

2004). Fatty acids (FA’s) are components of phospholipids, sphingolipids, triglycerides 

and diacyl glycerols all of which are major lipids in the cell. A single FA consists of a 

long hydrocarbon chain with a carboxyl group at one end. A saturated FA (e.g. 

palmitate) has only single bonds, between the adjacent carbon atoms, whereas an 

unsaturated fatty acid (e.g. C20 arachidonate) has one or more double bonds between 

certain carbon atoms in the hydrocarbon chain and results in various degrees of 

unsaturation. 

2.3.1.1 The mitochondrial β-oxidation of fatty acids 

 

Triglycerides are type of fat found in blood. When body has enough of calories the left 

over fat is stored in the form of triglycerides. After release of fatty acids from 

triglycerides, lipoproteins act as transporters by carrying them and further binding them 

to albumin (Mitchell & Hatch 2011). These fatty acid albumin complexes are 

transported into the blood stream. Later, the FA’s dissociate from albumin, to be taken 

up by the various tissues in the body (Pohl et al. 2004). The fatty acids that enter into the 

cells are either esterified for storage or transported directly to the mitochondria for β-

oxidation of the FAs. There are two theories on how FAs are transported across cell 

membranes and imported into cells. The first theory is that, FAs can cross lipid bilayers, 

independent of proteins by passive diffusion using a ‘flip flop’ mechanism. The second 

theory states that the fatty acids enter cells facilitated by a specific protein-mediated 

transport mechanism, using the fatty acid transport proteins (FATP), fatty acid binding 

protein (FABP), fatty acid translocase/CD36 (FAT) and Caveolin-1. (Mitchell & Hatch 

2011) 
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Figure 2 - Schematic illustrations of fatty acid transport and steps in the -oxidation 

cycle (Variants examined in this thesis are in Bold letters CPT1A and LCHAD (3-

hydroxyacyl-CoA dehydrogenase) 

2.3.1.2 Entry into the -oxidation of FAs  

Short chain fatty acids, FAs with 10 carbons or less, can enter a mitochondrial 

membrane freely through the outer and inner mitochondrial membranes. The acyl 

carnitine shuttle is necessary for transmembrane transport of long chain fatty acids into 

the mitochodrion. The mitochondrial matrix contains enzymes that are needed for fatty 

acid β-oxidation. Mitochondrial fatty acid β-oxidation (FAβO) can theoretically be 

divided into two steps: (a) the transfer of acyl groups into the mitochondrion for 

oxidation and (b) shortening of intramitochondrial chain by oxidative removal of two-

carbon (acetyl) units (Figure 2) (Kiens et al. 2011). 

 

The acyl carnitine shuttle is necessary for transportation of long chain fatty acids and it 

is composed of carnitine and three enzymes: carnitine palmitoyltransferase (CPT) І and 

ІІ, and carnitine acylcarnitine translocase (CACT) (Figure 2). CPT І facilitates the 

transfer of acyl groups from CoA to carnitine at the outer mitochondrial membrane, 

CACT is responsible for the exchange of acylcarnitines to carnitine across the inner 

mitochondrial membrane and CPT ІІ catalyzes the transfer of acyl groups from carnitine 
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back to CoA. Carnitine is obtained primarily from dietary sources but is also synthesized 

by the liver and by the kidney (Kiens et al. 2011). 

2.3.1.3 Steps in the mitochondrial FA -oxidation cycle 

 

When fatty acyl-CoA enters the β-oxidation cycle in the mitochondria it undergoes 3 

steps: oxidation, hydration and cleavage. Initially, fatty acyl-CoA is oxidized to a trans 

alkene i.e. enoyl-CoA by acyl-CoA dehydrogenase with the help of the prosthetic group 

FAD. Next, the transenoyl-CoA is hydrated to L-3-hydroxyacyl-CoA through the 

enzyme enoyl CoA hydratase. The alcohol group in hydroxyacyl-CoA is then oxidized 

by NAD+ to a carbonyl group by the hydroxyacyl-CoA dehydrogenase enzyme to form 

3-ketoacyl-CoA. NAD+ is utilized instead of FAD to oxidize alcohol. Eventually 3-

ketoacyl-CoA is converted to acyl-CoA and acetyl-CoA by thiolase enzyme. Acyl-CoA 

is cleaved off from acetyl-CoA, which is two carbons shorter than before entering the 

cycle (Figure 2). The cleaved acyl-CoA then enters the Krebs cycle/citric acid cycle and 

subsequently the electron transport chain (ETC) within the mitochondria (Bartlett, Eaton 

2004). 

 

2.3.2 The mitochondrial electron transport chain 

 

Oxidative phosphorylation generates ATP from the energy released by the oxidation of 

nutrients. OXPHOS is also known as the respiratory chain or electron transport chain.  It 

consists of five different complexes: Complex I, II, III, IV and V that reside in the inner 

membrane of the mitochondria (Figure 3) (Yip et al. 2011). The electrons from NADH 

enter at complex I (NADH-dehydrogenase then converts NADH back to NAD+ by 

transferring electrons onwards to ubiquinone). At complex III (ubiquinol-cyctochrome 

reductase) electrons are transferred to cytochrome c that is oxidized by complex IV 

(cytochrome c oxidase). Then electrons are finally transferred to molecular oxygen to 

produce water. Electrons from FADH2 enter the respiratory chain at complex II 

(succinate dehydrogenase) that transfers them to ubiquinone. Pumping protons across 

the membrane into the inter membrane space is performed by the complexes I, III, and 

IV in an energy releasing process by electron transfer (Yip et al. 2011). Mitchell 

proposed this as a proton motive force that is defined as the combination of the proton 

concentration gradient (∆pH) and membrane electrochemical gradient ((∆Ψm) (Mitchell  

1961). This is used by complex V that phosphorylates ADP into ATP to form the high 

energy entity (Boyer et al.1973).       
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Figure 3 - Schematic representations of the mitochondrial electron transport chain and 

ATP synthesis. The electron transport chain consists of four complexes: complex I, 

complex II, complex III, complex IV, and complex V. Redox reactions are indicated 

below each complex and the direction of proton flow. Cytochrome c and coenzyme Q are 

located in the IMM and acts as an electron shuttles.  

 

2.3.3 Other functions of mitochondria 

 

Mitochondria actively participate in several other processes such as iron-sulphur cluster 

formation, haeme synthesis and steroid synthesis. Mitochondria are also involved in 

apoptosis and iron-copper metabolism (Michel et al. 1998). 

2.4 Mitochondrial biogenesis  

2.4.1 Mitochondrial DNA 

Human mitochondria have their own genetic information that exists in a single circular 

mitochondrial DNA (mtDNA) molecule (Nass et al. 1963). Interestingly, mitochondria 

are inherited exclusively through the maternal lineage, whereas the paternal 

mitochondria are actively degraded during fertilization (Al Rawi et al. 2011; Sato et al. 
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2011). Human mtDNA is associated with the IMM and is organized in nucleoprotein 

complexes, known as nucleoids, which contain 2-8 mtDNA copies each (Holt et al. 

2007). The copy number of mtDNA in human cells varies between 100-10000 copies. 

Generally, the mtDNA population is homoplasmic: only one mtDNA type exists in the 

organism whereas in heteroplasmy: two or more different mtDNA population exists in 

the same cell. The genetic code of mitochondria is distinct from the universal genetic 

code. The human mitochondrial genome is a 16.6 kb double stranded circular DNA 

molecule comprising of a heavy strand (H) and a light strand (L). The whole genome 

encodes only 37 genes: 22 transfer RNA’s, 2 ribosomal RNA’s and 13 subunits of the 

mitochondrial respiratory chain complex (Anderson et al. 1981).   

2.4.2 Mitochondrial protein import 

 

In eukaryotic organisms about 10% to 15% of the nuclear genes encode mitochondrial 

proteins (Neupert & Herrmann 2007).  These are synthesized on cytosolic ribosomes, 

which are then transported into the mitochondria, a process that is termed mitochondrial 

protein import (Neupert & Herrmann 2007). The mitochondrial proteins are generally 

identified by an N-terminal positively charged presequence that is capable of forming a 

basic, amphipathic α-helix (Baker et al. 2007). All these mitochondrial proteins vary in 

function in a number of ways, some of which are in an unfolded conformation and which 

are associated with chaperones (Neupert & Herrmann 2007).  

 

The crucial processes of membrane translocation and sorting of mitochondrial proteins 

into different mitochondrial compartments are ensured by a complex protein-import 

machinery that span the OMM and IMM (Baker et al. 2007 and Chacinska et al. 2009). 

The translocase of the outer membrane (TOM) is the universal entry gate for all 

precursor proteins that are imported into mitochondria (Baker et al. 2007). The 

components of the TOM complex include the receptors Tom20 and Tom70 and the 

translocation channel Tom40. 

 

The proteins, which are targeted at the matrix, are sorted by the translocase of the inner 

membrane (TIM) that contains TIM23 as the central unit (TIM23 complex) (Baker et al. 

2007). The import of proteins through the IMM is driven by the electrochemical  

potential (∆Ψ) and the chaperone mitochondrial Heat shock protein 70 (mtHsp70) 

(Young et al. 2003).  
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2.4.2.1 Chaperones 

 

Molecular chaperones are a group of proteins that help in the efficient folding of 3D 

native structures in the cell (Frydmann 2001; Bukau et al. 2006; Hartl et al. 2011). One 

of the major important classes of chaperones is the Hsp70. The function and homeostasis 

of mitochondria has been dependent on mtHsp70 chaperones. The Hsp70 chaperone is 

highly homologous to bacterial DnaK chaperone protein (Craig et al. l987). It exists in 

the mitochondrial matrix and mediates two different functions: folding of proteins and 

translocation of channel TIM23 (Endo & Yamano 2009; Mokranjac & Neupert 2010; 

Vander laan et al. 2010).  

 

2.4.2.2 Role of TIM23 complex in mitochondrial membrane 

 

TIM23 consists of membrane part that is tightly integrated into the membrane along with 

the import motor. The membrane part is made up of Tim23 and Tim 17 which are 

involved in forming the protein channel whereas Tim50 plays a role in the transfer of 

preproteins from the TOM to the TIM23 complex. (Mokranjac et al. 2003) The 

mitochondrial import motor is attached to the membrane part at the matrix face of the 

inner membrane. Three consitituents TIM44, mtHsp70 and Mgel have been described. 

TIM44 is peripheral membrane protein involves with the segments of preproteins. 

TIM44 recruits mtHsp70 to binds to unfolded chains as they enter matrix followed by 

TIM44 release (Mokranjac et al. 2003). These reactions are performed by the hydrolysis 

of ATP bound to mtHsp70.  Later Mokranjac and colleagues has identified TIM14 as an 

important part of TIM23 (Mokranjac et al. 2003). Tim14 is a member of the DnaJ 

protein family which consists of J – domain that faces the matrix space and a single 

transmembrane anchor in the inner membrane. Tim14 intearcts with TIM44 and 

mtHSP70 in an ATP-dependent manner and has a effect on the interaction of mtHsp70 

with TIM44.  A mutation in the Tim14 will stop the function of J domain (Mokranjac et 

al. 2003). 

 

2.4.2.3 Role of Cardiolipin in mitochondrial membrane 

Cell organelles function is based on the membrane lipid composition.Cardiolipin (CL) 

present in all mammalian cells containing mitochondria. Cardiolipin is also termed as 

diphosphoglycerolipid. CL is localized in the inner mitochondrial membranes which is 

an important phospholipid. It plays a role in the function of mitochondrial biogenesis 
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and required for stability of several protein complexes (Richter-Dennerlein et al. 2014). 

CL biosynthetic pathway involves the enxyme activity of the protein encoded by the 

Taffazin gene (TAZ). TAZ play a key role in the cardiolipin remodelling in otherwords 

phospholipid acylation that includes the formation of monolyso-CL and subsequesnt 

acylation by TAZ. Defects or mutations in the acyltransferase tafazzin (TAZ) cause 

cardiomyopathy in Barth syndrome which is similar to DCMA syndrome. (Richter-

Dennerlein et al. 2014).  

.  

 

2.5 Mitochondrial diseases 

2.5.1 Clinical manifestations of mitochondrial diseases 

Mitochondrial diseases are a heterogeneous group of disorders and have multisystem 

symptoms that cannot be described by a single diagnosis. Some mitochondrial disorders 

are caused by mutations in the mtDNA, whereas others are caused by mutations in the 

nuclear genome that expresses more than 1000 proteins that are subsequently imported 

and used in the mitochondria. Mitochondrial DNA is inherited maternally (Gillis et al. 

2002) and many mtDNA point mutations contribute to a number of neurological diseases 

for example Pearson syndrome and respiratory chain deficiency. Most of the known 

mitochondrial disorders are considered to be neuromuscular diseases or mitochondrial 

encephalomyelopathies. The most prominent neuromuscular manifestations are seizures, 

strokes, dementia, ataxia, optic neuropathy, peripheral neuropathy, myopathy, 

retinopathy, and sensorineural hearing loss. (Gillis et al. 2002) However 33% of the 

mitochondrial disorder patients have non- neuromuscular symptoms (Munnich et al. 

1992, 1996).  Most of the mitochondrial disorders are characterized by multiorgan 

involvement and affect any of the energy-demanding organs including: the brain, heart, 

liver, and skeletal muscle (Kerr 1997). The age of the patient upon disease onset can 

vary from neonate to adult. In neonates the clinical features observed are hypotonia, 

muscle weakness, lethargy, feeding and respiratory difficulties, failure to thrive, 

psychomotor delay, seizures, and vomiting (Sue et al. 1999). 

 

Clinicians should be well experienced and have a thorough knowledge of the symptoms 

and signs that the patient could exhibit in order to diagnose mitochondrial disorders in 

patients. First, the clinician should know the medical history of the family and the 

relatives of the patient and for the biological parents, if they are consanguineously 

related.  This is especially vital if the biological parents who have also experienced 

similar symptoms and signs earlier. Second, if the affected family did have a similar case 

previously/historically, the clinician should study their pedigree inheritance. Third, the 
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clinician should suspect the occurrence of a particular mitochondrial disease upon 

reappearance of similar symptoms (Suomalainen 2011).  

 

Diagnostic tests for mitochondrial fatty acid β-oxidation disorders include the following: 

determining the plasma acyl carnitine profile, total and free carnitine levels, urine 

organic acid determination, molecular genetic analyses and measurement of the 

cerebrospinal fluid parameters (Gillis et al. 2002). Usually urinary organic acids are 

found to be abnormal, as they have increased levels of 3-methylglutaconic acid, 2-

methylsuccinate. Further histological (skeletal muscle and liver biopsy) and respiratory 

enzyme analyses are conducted. Tandem mass spectrometry is the most useful method to 

identify acylcarnitine species from blood spots either as a part of neonatal screening or 

otherwise for diagnosis of mitochondrial fatty acid oxidation disorders (Gillis et al. 

2002). 

2.5.2 Mitochondrial -oxidation defects of FAs 

 

In general mitochondrial β-oxidation defects of FAs have an early-onset, sometimes 

identified even in the neonatal and infant stages and are inherited in an autosomal 

recessive fashion. However, there may be great heterogeneity within families and 

individuals and an important influence of environmental and modifying genetic factors 

(Vockely & Whiteman 2002). The first genetic defect of FAO in human was identified, 

as a disorder of the skeletal muscle that presented with exercise induced rhabdomyolysis 

and myoglobinuria in 1973 (Dimauro et al. 1973). A case was reported with hepatic 

presentations later on during the early 1980s, which was eventually diagnosed as 

medium-chain acyl CoA dehydrogenase (ACADM) deficiency/impairment (Stanley et 

al. 1983). The main fatty acid oxidation (FAO) defects are listed in Table 1 and CPT1A, 

LCHAD and DCMA defects are described briefly below.  

2.5.3 CPT proteins and carnitine uptake machinery 

The CPT system constitutes two separate proteins that are located in the outer (CPT1) 

and inner (CPT2) mitochondrial membranes. CPT1 belongs to a protein family that 

includes several other acyl transferases and acyltransferases that do not use carnitine as 

second substrate. Three tissue specific isoforms of CPT 1 are known to exist: liver 

(CPT1A), muscle (CPT1B) and brain (CPT1C). The CPT1A protein consists of 773 

amino acids. The CPT1A gene is localized in the 11q13.1-q13.5 range in the human 

chromosome. The protein's structural model has been proposed based on the carnitine 

acetyltransferase crystal structure (Morillas et al. 2004)   
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The age of the CPT1 defect onset usually occurs from the first month of life to 18 

months. Onset is usually initiated with fasting or viral illnesses. The patients usually 

present with hepatomegaly and an altered mental status. In such cases, biochemical tests 

usually reveal nonketotic hypoglycaemia, mild hyperammonaemia, elevated liver 

functioning and, elevated free FAs (Longo et al. 2006). Increased plasma carnitine levels 

are usually observed in this disease. Urine organic acid analysis shows high levels of 

C12 dicarboxylic acid and the presence of 3-hydroxyglutaric acids. Diagnosis is 

suspected from the increased levels of free and short chain acylcarnitines, with low 

levels of long chain acylcarnitine. Confirmation of disease can be obtained by measuring 

the activity of the CPT1 enzyme usually from fibroblasts. The enzyme activity is usually 

reduced to 5-20% of normal levels. The ratio between free carnitine (C0) and the sum of 

palmitoylcarnitine and stearoylcarntitne (C16+ C18) is elevated in patients with CPT1A 

deficiency and cause shuttle defective. (Longo et al. 2006). Further DNA studies will 

reveal the specific mutations casuing disease.  

 

Table 1 – Defects in fatty acid transport and enzymes involved in fatty acid -oxidation 

and defects in protein import 
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Deficiency Gene 

Symbol 

OMIM Function Clinical 

manifestations 

Onset of 

disease 

Location of 

enzyme in  

mitochondria 

References 

Carnitine 

palmitoyltransferas

e deficiency 1 

CPT1 600528 Transport of fatty 

acids 

Fatty liver, 

nonketotic 

hypoglyceamia 

Neonatal Plasma 

membrane 

Ijlst  

et al. 1998 

Carnitine-

acylcarnitine 

translocase 

CACT/ 

SLC25A20 

613698 exchange 

acycarnitines for  the 

carntine molecule 

Liver 

failure,hypertrop

hic 
cardiomyopathy 

and septal heart 

defects 

Neonatal Plasma 

membrane 

Huizing 

et al. 1998 

Very long chain 

acylCoA 

dehydrogenase 

deficiency 

ACADVL 609575 Catalyze in 

mitochondrial 

palmitoyl-CoA 

dehydrogenation 

dilated 

cardiomyopathy 

skeletal 

myopathy, 

hypoketotic 

hypoglycaemia, 

Reye-like disease 

Neonatal

-Infant 

Membrane Aoyama 

et al. 1995 

Medium chain acyl 

CoA 

dehydrogenase 
deficiency 

ACADM 607008 Catalyzes the initial 

reaction in β-

oxidation of C4-C12 
straight chain acyl 

CoA’s 

hypoketotic 

hypoglycaemia, 

common 
infections 

Neonatal Matrix Matsubara et 

al. 1990 

Short chain acyl 

CoA 

dehydrogenase 

deficiency 

ACADS 606885 Detoxification of 

metabolic by 

products 

Muscle 

hypotonia and 

developmental 

delay 

Neonatal Matrix Naito et al. 

1989 

Isolated Long 

chain 3 

hydroxyacyl-CoA 

dehydrogenase 

deficiency 

HADHA 609016 Catalyzes long-chain 

fatty acids 

Acute hepatic 

failure, 

cardiomyopathy, 

skeletal 

myopathy, retnal 

pigmentary 

changes and 
neuropathy 

Early-

onset 

Matrix Wanders 

et al. 1989 

Mitochondrial 

trifunctional 

protein deficiency 

HADHA 

/HADHB 

609015 Catalyzes long chain 

fatty acids 

Cardiomyopathy, 

muscular 

hypotonia,  

Early-

onset 

Matrix Wanders 

et al. 1992 

DCMA or 3-

methylglutaconic 

aciduria, type V 

 

 

DNAJC19 610198 Mitochondrial 

protein import motor-

similar to TIM14 

Dilated 

cardiomyopathy, 

ataxia 

Early-

onset 

Inner 

mitochondrial 

membrane 

Davey et al. 

2006 
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2.5.4 Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency 

Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) was initially 

described in 1989, and by 1992 at least 10 patients had been identified, but the carrier 

frequency of LCHAD deficiency was not known. Existence of the trifunctional protein 

complex was proven in 1992 (Wanders et al. 1989).  LCHADD (OMIM#609016) is 

caused by a point mutation and it lies in the alpha subunit of the mitochondrial 

trifunctional protein, encoded by HADHA. The most common disease causing variant in 

LCHADD is c.1528 G>C single nucleotide substitution leading to the amino acid 

change, p.Glu510Gln, in HADHA (IJlst et al. 1994). This results in hypoketotic 

hypoglycaemia during times of fasting, illness and or/ prolonged exercise. Of all the 

FAβO disorders, LCHADD is associated with the greatest number of severe 

complications. The initial cases of isolated LCHADD diagnosed, presented with severe 

liver pathology, cardiomyopathy, rhabdomyolysis and/or myoglobinuria and sudden 

death. Out of 30 cases, of isolated LCHAD deficiency 50% had retinopathy and 

peripheral neuropathy. Pigmentary changes in the retina were observed by the age of 2 

years in around 50% of individuals with LCHADD. A high level of long-chain 

hydroxylated fatty acid 3-hydroxyacylcarnitine is observed in the patient’s plasma, 

(Wanders et al. 1989). 

 

The p.Glu510Gln variant that caused LCHADD was diagnosed in 15 individuals in 

1998. Patients with LCHADD were observed to develop granulation with pigment 

clumping in the macula of the retina, which was visible as early as four months of age. 

Although many patients had died before two years of age, more than 50% of them had 

abnormal fundus examinations prior to death. Tyni and colleagues proposed four stages 

of LCAHDD retinopathy based on these aforementioned data (Tyni et al. 1998a).  

 Stage 1 normal retinal function and a hypopigmented fundus are observed.  

 Stage 2 is distinguished by the appearance of pigment clumping in the fovea 

in addition to progressive retinal dysfunction as measured by 

electroretinogram (ERG). However, despite the diminution in ERG 

amplitudes, age-appropriate performance and visual acuity remain intact. 

 Stage 3, central pigmentation disappears as chorioretinal atrophy that lead to 

notable macular pallor and pigmentary changes, which migrate towards the 

periphery. ERG readings continue to decline with markedly reduced 

amplitudes and prolonged implicit times, or become unrecordable. At this 

stage the patient, often reports loss of night vision. 

 Stage 4, at the end-stage, the posterior pole of the eye loses all 

photoreceptors, and most of the choroidal vessels and macular (central) vision 

are also lost. Morphology reminiscent of the previous stages can be seen 

spreading outward to the peripheral retina as progression continues in stage 4 

(see Figure 4). 
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Histopathological examination of one of the LCHADD patient’s eyes at 7 months of age 

and who died at 14 months of age revealed macrophage infiltration of the retinal 

pigment epithelial (RPE) layer and the evidence of RPE cell death. This suggests that 

disruption or dysfunction of the RPE layer eventually leads to the loss of the 

photoreceptors (Tyni et al.1998b). 

      

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

Figure 4 – Photographs showing the fundus of LCHADD patients at stage 4 and Below- 

Normal fundus image (Permission received from ethical committee and patients). 

Pigment clumping and granulation can be observed in fundus image (Arrows). 

2.5.5 Dilated cardiomyopathy with ataxia syndrome  

 

Dilated cardiomyopathy with ataxia (DCMA) syndrome is a novel autosomal recessive 

disorder. It is an inherited condition with manifestations that include heart defects, 

movement difficulties, and other characteristics that affect multiple body systems. 

Usually DCMA develops in infancy to early childhood with dilated cardiomyopathy in 

which the heart enlarges and weakens thereby adversely affecting its blood pumping 

efficiency. This syndrome is associated with increased levels of 3-methylglutaconic acid 

and 3-methylglutaric acid in urine. So far 30 cases have been reported in the Dariusleut 

Hutterite population in Canada (Sparkes et al. 2007). This syndrome shares resemblance 

to Barth syndrome (type ІІ 3-methylglutaconic aciduria), which is an X-linked disorder 

caused by mutations in the tafazzin (TAZ) gene. It has been found that variants in the 
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DNAJC19 (DnaJ (Hsp40 homolog, subfamily C, member 19) gene lead to DCMA 

syndrome. The DNAJC19 gene in humans encodes the mitochondrial import inner 

membrane translocase subunit TIM14 enzyme. The disease-causing variant identified in 

the Canadian Dariusleut Hutterite population causes aberrant splicing and results in the 

loss of full length DNAJC19 transcript. Proteins containing the DNAJ domain are 

typically involved in molecular chaperone systems of the Hsp70/Hsp40 type. These 

chaperone systems aid in the folding and assembly of newly synthesized proteins (Davey 

et al. 2006). Chaperones prevent abnormal protein folding and their subsequent 

aggregation during times of stress (Davey et al. 2006). 

 

2.6 Pluripotent stem cells 

 

Pluripotency is defined as the capacity of a cell to develop into any cell type that is 

found in embryonic and adult organisms (except extra-embryonic organs including the 

placenta and the umbilical cord). Stem cells in general also have a massive capacity for 

self-renewal and therefore these cells have the potential to play a major role in 

regenerative medicine and other cell-based therapies. Human embryonic stem cells 

(hESCs) are derived from the excess embryos created during the in vitro fertilization 

process (Thomson et al. 1998), whereas human induced pluripotent stem cells (hiPSCs) 

are generated by reprogramming of adult somatic cells back into the pluripotent state 

using the “Yamanaka” embryonic transcription factors (Takahashi et al. 2007). A team 

lead by Takahashi and Yamanaka in 2006 discovered that retroviral vector based 

expression of four transcription factors: Oct4, Sox2, Klf4 and c-Myc can induce 

embryonic stem cell like cells from somatic cells (Figure 5). These cells showed similar 

characteristic features of pluripotency as ESCs and therefore they were called iPSCs.  
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Figure 5 - Method of generating induced pluripotent stem cells (iPSC) by retroviral 

vectors. 

 

 

2.6.1 Characteristics of pluripotent stem cells 

Molecular and functional characterization is necessary to distinguish fully 

reprogrammed iPSCs from partially reprogrammed cells (Takahashi et al. 2007). 

Generally human pluripotent stem cell (hPSC) cultures consist of several cell types that 

range from self-renewing or undifferentiated stem cells to incipient lineage-biased cells. 

Pluripotency is a process that involves multiple genes and pathways. It has been a major 

challenge in understanding the underlying mechanisms that control the status of the 

hPSC (Brivanlou and Darnell 2002). Morphologically, the hPSC have high nucleus to 

cytoplasmic ratio, prominent nucleoli and distinct epithelial cell-like colony morphology 

with sharp edges and a round shape (Thomson et al.1998; Reubinoff et al. 2000). During 

the process of differentiation cellular morphology changes occur rapidly.  
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2.6.1.1 Markers to identify pluripotent stem cells 

 

A set of markers are usually used to monitor the differentiation status of hPSCs 

(Adewumi et al. 2007). Conventionally the various markers used include Oct4 (octamer-

binding transcription factor 4), SOX2, tissue non-specific alkaline phosphatase markers 

Tra 2-49 and Tra 2-54, a high molecular antigen GCTM2, cell surface glycoprotein 

epitopes Tra-1-60 and Tra-1-81, glycosphinglipid antigen H type 1 and the stage –

specific embryonic antigens SSEA-3 and SSEA-4 (Adewumi et al. 2007, Takahashi et 

al. 2007). Nanog was identified as a pluripotency factor more than ten years after Oct4 

and Sox2 were identified (Chambers et al. 2003; Mitsui et al. 2003). Thus, the discovery 

of iPSCs have helped us in gaining a better understanding of the mechanism of key 

transcription factors that are required for early development.  

 

Earlier work showed that specific transcription factors Oct4 (also known as Pou5f), 

SOX2, a member of the SRY-related high mobility group-box (SOX) family and Nanog, 

a homeobox protein, are key regulators of early development (Scholer et al. 1989; 

Scholer et al. 1990a; Scholer et al. 1990b; Nichols et al. 1998). This OCT4-SOX2-

NANOG-triad is central to the transcription regulatory hierarchy that specifies the 

identity of hPSCs. These transcription factors regulate several hundreds of target genes 

in the pluripotent cells, which indicate their crucial role in pluripotency. However, the 

expression of this triad does not guarantee pluripotency per se because, factors such as 

Kruppel-like factor (Klf4) are also vital to achieve pluripotency (Scholert et al. 1990b; 

Chambers et al. 2003; Lee et al. 2004). Klf4 plays a critical role in the process of 

proliferation, differentiation and apoptosis (Garrett-Sinha et al. 1996; Shields et al. 1996; 

Rowland et al. 2005).  

2.6.2 In vitro differentiation of human pluripotent stem cells to retinal pigment 

epithelial cells 

2.6.2.1 The human eye  

The eye is like a camera that can self-focus, adjust for light intensity, and convert light 

into electrical impulses that can be interpreted by the brain. The human eye is located in 

a bony orbit and is connected to the brain by the optic nerve. The eyeball protects and 

facilitates the functions of the photoreceptive retina, and inner layer of the eye ball 

(Kierszenbaum 2002). The human eye-ball is roughly spherical with a diameter of about 

24 mm. The anterior pole of the eye-ball is the centre of the cornea. The posterior pole is 

located between the optic disk and the fovea, in a shallow depression in the retina 

(Figure 6) (Kierszenbaum 2002).  
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Figure 6 – Diagram of the Eye- (Courtesy: National Eye Institute, National Institutes of 

Health). 

  

2.6.2.2 Structure of the posterior segment of the human eye 

The outer layer of the posterior segment is known as the sclera that functions as the main 

supporting layer of the posterior part of the eye due to its rigid and collagenous structure. 

It is a brachytrophic structure with a low metabolic rate. The choroid is a thin, richly 

vascularised layer between the sclera and the retinal pigment epithelium (RPE). The 

choroid consists of three layers: (a) Bruch’s membrane, (b) the choriocapillaris, and (c) 

the stroma. The choriocapillaris is a dense network of wide, fenestrated capillaries, 

arranged as one single layer. The stroma contains larger choroidal vessels and 

melanocytes. Blood is supplied to the choroid by the short and long posterior ciliary 

arteries. The main function of the choroid is to nourish the outer third of the retina, 

particularly the photoreceptor cells (Figure 7) (Kierszenbaum 2002). 

2.6.2.3 Cell layers of the retina  

In addition to the RPE, the inner neurosensory retinal layer can be further divided into 

nine layers, including the photoreceptor layer, ganglion layer, bipolar layer and the nerve 

fibre layer all of which are composed of cell bodies and processes of its neuronal and 

glial cells (Figure 7). The inner limiting membrane consists of foot plates of the Müller’s 

radial glial cells that lie between the neuroretina and the vitreous body. Müller’s cells 

extend a supportive and nutritive function. The ganglion cell layer comprises a single 

layer of ganglion cells in the peripheral retina and up to 10 layers in the fovea. The inner 

nuclear layer contains three main types of interneurons: bipolar, amacrine, and Müller 

cells. In the outer nuclear layer, the cone nuclei form a monolayer immediately below 
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the outer limiting membrane, the rest of the nuclei belong to the rods. The inner and 

outer plexiform layers consist of the synapses of these five retinal layers. The inner and 

outer segments of the rods and cones form the photoreceptor layer. The organelles 

(mitochondria, ribosomes) that are involved in the highly active energy production and 

in the protein synthesis of the photoreceptor cells are situated in their inner segments. 

Cones predominate in the central retina and are present exclusively in the foveal centre, 

whereas rods predominate in the periphery (Kierszenbaum 2002). 

 

 

Figure 7 – Cell layers of the retina & Structure of RPE showing the photoreceptor cell 

arrangement (Modified picture from Bharti et al. 2011). 
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2.6.2.4 The Retinal pigment epithelium (RPE) 

The RPE is a monolayer of pigmented, polarized and highly specialized epithelium. It 

constitutes of hexagonal pigmented epithelial cells that are attached to the Bruch’s 

membrane. The apical membrane of the RPE cells faces the photoreceptor and the apical 

RPE microvilli surround the photoreceptor outer segments (POS). The basolateral 

membrane of the RPE faces the Bruch’s membrane, a specialized basement membrane 

of the RPE (Figure 7). These cells also play a role in the formation of the outer blood-

retinal barrier participating in the control of ions, nutrients, and metabolites that are 

transported between the photoreceptors and choroid (Strauss 2005).  The RPE also plays 

a key role in the visual cycle of the retina by re-isomerizing all trans-retinal to 11-cis-

retinal via a number of enzymes including the 65kDa retinal pigment epithelium-specific 

isomerase (RPE65). The RPE cells are metabolically active; they phagocytose and can 

also degrade the photoreceptor outer segments damaged by light (Strauss 2005, Bharti et 

al. 2011).  

2.6.2.5 The development of RPE cells 

 

The RPE cells exhibit cobblestone morphology and in vitro, grow as a single monolayer 

arranged in a hexagonal mosaic pattern and pigmentation due to the presence of 

melanosomes that are stored in melanin pigments (Figure 7) (Maminishkis et al. 2006). 

Both the RPE and the neural plate are derived from the anterior neural plate during 

embryogenesis. Stage two bilateral optic primoridia are formed from the neural plate to 

give rise to the both the eyes at maturation (Zaghluol et al. 2005).  The neural plate 

converts into the neural tube, further the optic vessels are formed by the evagination of 

optic primordia from the diencephalon. Later the optic vessels transform into optic cups, 

with two different layers: inner layer and outer layer form. The inner layer gives rise to 

neural retina that contains a whole range of cells right from the cone and rod 

photoreceptors, in addition others such as Müller, glial, ganglion cells, horizontal, 

bipolar and amacrine cells. The outer layer forms the RPE (Zaghluol et al. 2005).  

  

A number of transcription factors are required for eye development: Orthodenticle 

homeobox-2 (OTX2), paired box protein-6 (PAX6), retina and anterior neural fold 

homeobox (RAX), and SIX homeobox 3 (SIX3) (Zuber et al. 2003). The presumptive 

RPE faces the periocular mesenchyme while the prospective neural retina faces the 

surface ectoderm during the stage of optic vesicle formation (Martinez-Morales et al. 

2004).  FGF is expressed by the ectoderm that faces the prospective neural retina and is 

responsible for the induction of early retinal transcription factors, such as Chx10 in the 

inner layer (Nguyen & Arnheiter 2000). The extraocular mesenchyme secretes activin A 
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whilst the optic vesicle expresses activin receptor suggesting that TGFβ signalling 

participates in establishing RPE identity (Martinez-Morales et al. 2004). The 

transcription factors that are proven to be essential for RPE specification are: 

Microphthalmia-associated transcription factor (MITF), OTX1/OTX2, and PAX6. 

 

MITF is a transcription factor of the basic helix-loop-helix and leucine zipper family 

(bHLH_LZ). The fundamental function of MITF involves the development of melanin-

producing cells, including the neural-crest-derived melanocytes and the RPE (Martinez-

Morales et al. 2004, Goding 2000). In fact MITF is vital for the activation of expression 

of pigment specific genes such as tyrosinase, tyrosinase related proteins TRP1 and TRP-

2 and QNR71 (Fuhrmann et al. 2000). MITF operates as a target and also as a nuclear 

mediator of Wnt signalling in melanocyte development. Further, the Wnt signalling 

cascade in the RPE may help in maintaining MITF expression (Martinez-Morales et al. 

2004). The important feature of MITF is its gene structure and its isoforms. MITF 

consists of five isoforms with distinct amino-termini: MITF A, MITF B, MITF C, MITF 

H, MITF M. MITF M is important for melanocyte differentiation whereas other isoforms 

are responsible for RPE differentiation and normal eye development (Shibahara et al. 

2001).  

 

OTX1 and OTX2 are transcription factors that each contains a homeodomain region. 

The expressions of OTX genes initially occur in the entire optic vesicle and are later 

restricted to the presumptive RPE during optic cup formation (Martinez-Morales et al. 

2004). PAX2 and PAX6 are the two members of the paired box family of transcription 

factors expressed in the optic territory during development. PAX6 is distributed mainly 

in the entire optic vesicle and the early optic cup (Walther et al. 1991). During the late 

optic cup stage, the expression of PAX6, however, disappears from the developing RPE 

(Grindley et al. 1995).  

 

The initial network for driving the RPE differentiation process comprises PAX6 and 

Wnt signalling, which in combination, switches on the expression of MITF. This 

switching occurs in cooperation with OTX proteins (Martinez-Morales et al. 2004). 

Other molecules such as Bone Morphogenetic factor (BMP) and Hedgehog (Hh) 

families and the cell cycle regulators are involved in the differentiation of RPE 

(Martinez-Morales et al. 2004).   

 

2.6.2.6 RPE differentiation procedures in vitro 

Klimanskaya and co-workers were the first to demonstrate that hESCs can 

spontaneously differentiate into RPE-like cells when they are overgrown on mouse 

embryonic feeder cells (Klimanskaya et al. 2004). The same authors have also reported 

that hESC can also differentiate without feeder cells as embryonic bodies in standard 
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hESC culture medium (KO-SR) but in the absence of bFGF. The differentiations of 

hESC and hiPSC have been based on either adherent overgrowth on feeder cells or 

embryoid body (EB) or neurosphere/rosette formation in suspension. 

 

 

It has been noticed that pigmentation usually appears within eight weeks of culture.  

After sufficient pigmentation is achieved, pigmented areas are manually selected and 

seeded onto the extracellular matrix (ECM) protein coatings for RPE cell enrichment. 

The differentiations are generally inefficient and slow, thus it may take months to 

acquire enough pigment cells for enrichment. After replating, the hiPSC-RPE cells lose 

their pigmentation and acquire fibroblast-like morphology; they also readily proliferate 

to confluence and re-differentiate to the RPE cell phenotype (Klimanskaya et al. 2004). 

The transdifferentiation resembles the epithelial-mesenchymal-transition (EMT) process 

that is also described for the isolated native RPE cells upon loss of cell-cell contacts 

(Tamiya et al. 2010). The spontaneous and embryoid differentiation methods lead to the 

generation of multiple cell types and the sequence of events that leads to the RPE cell 

formation is still unclear. It is generally accepted that in the absence of inductive cues, 

the ESCs ‘choose’ the neural differentiation pathway as a “default” pathway (Smukler et 

al. 2006). It is possible that the earliest step is a default differentiating step of the neural 

lineage commitment of neuroectodermal cells or retinal progenitors and the further 

specification to RPE cells is driven by the surrounding cells in the EBs or the feeder 

cells (Klimanskaya et al. 2004). 

2.6.2.7 Characterization of human pluripotent stem cell-derived retinal epithelial 

cells  

Human iPSC-RPE cells show typical pigmentation and morphology quite similar to their 

native counterparts. Their genes express proteins that are specific for RPE cells, which 

include a number of transcription factors including: MITF, OTX2, the membrane 

associated proteins bestrophin, tight junction protein zona occludens (ZO-1), proteins 

involved in the retinal visual cycle, cellular retinaldehyde-binding protein (CRALBP) 

and RPE65, tyrosinase and premelanosome protein (PMEL). Tyrosinase and PMEL play 

a key role in pigment synthesis and finally proteins that are involved in phagocytosis 

such the integrin αV subunit and Mer Tyrosine Kinase (MERTK) (Lund et al. 2006; 

Vaajasaari et.al. 2008; Buchholz et.al. 2009; Carr et.al. 2009; Liao et al. 2010; Vugler 

et.al. 2008; Cho et.al. 2012). Additionally, human iPSC-RPE cells exhibit a gene 

expression signature similar to native RPE (Liao et.al. 2010; Lamba and Reh 2011) and 

dynamic regulation of specific miRNA subsets associated with the RPE differentiation 

process (Li WB et al. 2012). Mature hiPSC-RPE cells show polarized apical and basal 

features and barrier function with increasing transepithelial electric resistance (TER) and 

impedance and decreasing permeability upon being measured by electrical impedance 

spectroscopy (Savolainen et al. 2011; Vaajasaari et al. 2011; Zhu et al. 2011; Onnela et 

al. 2012). Further, it has been demonstrated that polarized hPSC-RPE cells display 

localization of proteins e.g. apical localization of Na+/K+ ATPase and basolateral 

localization of bestrophin and polarized secretion of vascular endothelial growth factor 



 

 

 

 

37 

(VEGF) to the basolateral side (Kokkinaki et al. 2011; Vaajasaari et al. 2011). Polarized 

hESC-RPE cells also have prominent expression of pigment epithelium-derived factor 

(PEDF) in apical cytoplasm and an increased secretion of PEDF into the medium as 

compared with non-polarized culture (Zhu et al. 2011). 

 

 

The functionality of hPSC-RPE cells is shown by their ability to phagocytose latex 

beads or more specifically photoreceptor outer segments (Klimanskaya et al. 2004; 

Buchholz et al. 2009; Liao et al. 2010) and also in rescuing visual function as observed 

in the royal college of surgeons (RCS) rat model (Lund et al. 2006; Vugler et al. 2008). 

 

The hiPSC-RPE that shows regular physiological functions can be produced in vitro by 

well-established protocols. Interestingly, RPE cells that are derived from hiPSCs are the 

only cells that have met the high standards required for clinical trials. Initially, there was 

success in transplanting iPSC derived RPE cells in animals. Currently the work is very 

active with clinical trials for macular degeneration and retinitis pigmentosa disorders 

(Svendsen et al. 2013) but the drawback of using iPSC technology is tumour formation 

and host immune rejection of transplanted cells.  

 

Recently, Schwartz and colleagues succeeded in the use of hESC-RPE cells in treating 

age related macular degradation and Stargard’s dystrophy in a clinical setting (Schwartz 

2012, 2014). After the transplantation of hESC-RPE cells into the patients’ eyes, 

hyperproliferation, tumour formation, immune rejection or serious ocular problem were 

not observed, which in itself is a major success. Remarkably, the patients showed 

improved vision, which therefore suggest that the hESC-derived cells could provide a 

new alternative therapeutic procedure in treating disorders that require tissue 

replacement. (Schwartz et al. 2012, 2015). These may contribute to further success of 

iPSCs in medical therapies (Svendsen et al. 2013). 

 

Reprogramming aids us exciting possibilities for studying and treating diseases. In future 

iPSC cells help us to provide unlimited cells and tissues for many patients with 

untreatable diseases.These models can also help us to test new drug therapeutics to treat 

diseases. Current reprogramming strategies include retroviral, lentiviral, adenoviral and 

plasmid transfections to provide reprogramming factor transgenes. A small molecule 

also helps in reprogramming transgenes and they also increase the efficiency of 

generating iPSC lines. (Gunaseeli et al. 2010) 

 

Another emerging platform deals with iPSCs and genome editing technology to generate 

human disease models. This is possible using zinc finger nucleases (ZFN), which 

provide short template complementary sequences combined with integrases, or by 

adenoviral delivery. The use of ZFN genome editing tool, however is not straight 

forward, further it is labour intensive and quite expensive. Very recently, the enzyme 

transcription activator-like-effect or nucleases (TALENs) have been used. These are 
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inexpensive and have a good specificity but the frequency of recombination is low. 

Another genome editing tool, CRISPR/CAS systems seem to be very efficient at 

targeting iPSCs. Improving gene editing techniques by iPSCs might help to remove 

tumour formation in the long-run (Svendsen et al. 2013). 
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3 AIMS OF THE STUDY 

 

The main objective of the research reported in this thesis was to study mitochondrial 

disorders and their pathogenesis. This thesis is based on studies relating: 1) First, 

detecting mitochondrial FAβO (fatty acid β- oxidation) and mitochondrial chaperone 

defects and also to carry out their molecular genetic analyses. 2) Second, introduce an in 

vitro cell model that helps to study the underlying pathogenesis of a retinopathy 

condition that expresses the prevalent variant p.Glu510Gln in LCHAD deficiency. 

 

The aim of this thesis was planned based on the symptoms and biochemical analysis 

results obtained from the patient’s blood and urine samples. The specific aims of this 

study were: 

 

1. To find out the molecular genetic defects of FAβO from long term follow 

up of 6 patients with CPT1A deficiency diagnosed by biochemical analysis and 

to study the carrier frequency of the identified CPT1A p.Lys455Thr variant in the 

Finnish population 

 

2. To analyse the clinical features of a rare mitochondrial chaperone disease 

and find out the molecular genetics of DCMA syndrome  

3. To study the underlying pathogenesis of pigmentary retinopathy related to 

the prevalent (1 in 200) variant p.Glu510Gln in LCHAD deficiency 
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4 MATERIALS AND METHODS 

The materials and methods used in this study are presented in detail in the original 

publications (І -ІІІ), which are referred to by their roman numerals and are briefly 

summarized in this thesis. 

4.1 Ethics statement (І - ІІІ) 

All the participating patients gave their signed informed consent and all the study 

protocols were approved by the Ethics committee of Helsinki University Central 

Hospital, Helsinki, Finland. 

 4.2 Subjects (І - ІІІ)  

We studied the long-term follow up of six patients with CPT1A deficiency diagnosed by 

biochemical analyses and 150 healthy controls were also used to determine CPT1A 

carrier frequency. In addition, two patients with DNAJC19 deficiency and two patients 

with LCHAD deficiency, diagnosed by biochemical analyses and healthy controls were 

included.  

4.3 DNA extraction (І - ІІІ) 

Extraction of DNA was performed from blood and fibroblasts from patients and controls 

in studies I and II. In study III the DNA was extracted from undifferentiated hiPSC and 

patient’s hiPSC derived RPE cells. The extractions were performed using the flexi gene 

DNA kit from QIAGEN™ (QIAGEN™). Concentrations of DNA were measured using 

Nanodrop at an absorbance of 260nm. 

4.4 Protein extraction (І - ІІ) 

Protein isolation from fibroblasts of patients and controls (I, II) were done according to 

the method described by Prip-Buus (Prip-Buus et al. 2001) and protein quality was 

assessed by Lowry’s assay. Mitochondrial protein extraction for blue native 

polyacrylamide gel-electrophoresis (BN-PAGE) from heart and skeletal muscle were 

extracted as described below. Crude mitochondria was prepared by homogenizing the 

tissue samples in ice cold HIM buffer (200mM Mannitol, 70mM sucrose, 10mM 

HEPES, 1 mM EGTA, pH 7.5 with KOH). Homogenates were centrifuged at 600 xg for 
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20 minutes at +4°C, the supernatant was transferred to a new tube and centrifugation 

repeated at 600 xg for 20 min. The supernatant was then centrifuged at 8000 xg at +4°C 

for 10 min, to get enriched mitochondria. The mitochondrial pellet was washed in ice-

cold HIM buffer and the centrifugation step repeated. The samples for the BN-PAGE 

assay were then stored in 750mM aminocaproic acid and 5% serva blue G (Serva) in 

aliquots stored at -80°C. 

 

4.5 Mutation Analysis (І - ІІІ) 

We used PCR to amplify the exon regions of the control and patient DNA in order to 

identify variants in CPT1A, DNAJC19 and HADHA. PCR was carried out with the high 

fidelity Phusion® DNA polymerase (Thermo Fisher, Waltham, MA, USA) according to 

the manufacturer’s instructions, using 100 ng of fibroblasts total DNA as template. 

Cycling conditions are illustrated in Table 2: 

 

Table 2 - Primers and PCR cycling conditions 

Gene name and 

ID 

OMIM Primers PCR cycling 

conditions 

CPT1A – 2328 255120 Exon 12 

Forward: 

5’TTGGGAGTACGTCATGTCCA3’ 

Reverse: 5’-

ATCTGCCCAGGAGTGTTCAG-3’ 

Exon 13 

Forward: 

5’TCATGTTGGAGGTTAATGTGTTT3’ 

Reverse: 

5’CTGTAAGACTTCAAATGTGTTTCC3’ 

95°C for 5min 

followed by 35 

cycles (95°C for 

30 sec, 59°C for 

35 sec, 72°C for 

2 min) and 72°C 

for 10min 

DNAJC19- 

30528 

610198 Exon 6 

Forward: 5′-

GCTAAATCTCCCTCAGATAAG-3′ 

Reverse:5′-

AAGTTTAGACGGTAGGTAGTATAA-3’ 

95°C for 5min 

followed by 30 

cycles (95°C for 

30 sec, 53°C for 

30 sec, 72°C for 

2 min) and 72°C 

for 10min 
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HADHA - 3030  600890 Exon 15 

Forward: 5′-

GGTTCCTCACCCGCATTCTC-3’  

 

Reverse: 5′-

TCCTTTTACCTCCAGGCTTG-3’   

 

95°C for 5min 

followed by 30 

cycles (95°C for 

30 sec, 58°C for 

30 sec, 72°C for 

2 min) and 72°C 

for 10min 

 

 

PCR products were analysed by 1% agarose gel electrophoresis. The PCR products were 

subsequently sequenced with the same primers using ABI BigDye™ terminator 

sequencing kit (ABI, Foster City, CA). 

4.6 SDS-PAGE and immunoblotting (І - ІІ) 

Western blotting was done as described previously to detect proteins (Prip-Buus et al. 

2001) 

Antibodies used are listed in Table 3. 

 

Table 3 - Antibodies used for western blotting 

Antigen Antibodies Reference or 

source 

Publication Dilutions 

CPT1A Polyclonal 

Sheep 

 A kind gift 

from Carina 

Prip-Buus, 

Institut Cochin, 

Meudon, 

France). 

 

 I 1:2000 

dilution in 

TBST with 

5% milk 

TFPαβ Polyclonal 

Rabbit 

A generous gift 

from 

Bruce 

Middleton, 

University of 

Nottingham 

I  1:2000 

dilution in 

TBST with 

5% milk 
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Medical School, 

Nottingham, 

United Kingdom 

DNAJC19 Polyclonal 

Rabbit 

Proteintech 

Group,Inc 

12096-1-AP 

II 1:2000 

dilution in 

TBST with 

5% milk 

4.7 Homology modelling of Human CPT1A (І) 

Homology modelling of the CPT1A structure was done in the SWISS MODEL server 

using an alignment mode. The template used was the resolved structure of the homolog 

carnitine acetyltransferase from Mus musculus. 

4.8 Minisequencing (І) 

The 150 unrelated control samples were genotyped using the single nucleotide extension 

minisequencing method as described previously to detect the carrier frequency of the 

CPT1A gene missense variant in exon 12 in the Finnish population (Syvanen AC et al. 

1992). PCR cycling conditions are listed in Table 4 

 

Table 4 - Primers and PCR cycling conditions for Minisequencing 

Mutation 

Exon 12 

Primers PCR cycling conditions 

c.1364A>C Forward: 5’-

TGAAGCAGAGAGGTGCAATG -3’ 

Reverse: 5’-biotinylated 

GAAAATCCAAACCTGGCCAG-3’ 

Miniseq primer: 5’-

TTCACGTAGGTGGTTTGACA-3’ 

95°C for 5min followed by 

30 cycles (95°C for 30 sec, 

57.1°C for 35 sec, 72°C for 

2 min) and 72°C for 10min 
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4.9 BN-PAGE (ІІ) 

We used 2.5μg of enriched mitochondrial protein from skeletal muscle and heart for the 

BN-PAGE assay. Electrophoresis and semi-dry transfer were done under native 

conditions as previously described (Antonicka et al. 2006; Lyly et al. 2008). The 

antibodies were mouse monoclonal antibodies against complexes І (MS111), ІІ 

(MS204), ІІІ (MS302) and IV (MS407) from Mitosciences diluted at 1:10000 or 1:1000 

in TBST with 5% milk. 

4.10 Publication III methods 

The methods used in study III are listed in Table 5 followed by detailed descriptions. 

The antibodies used for immunocytochemistry are listed in Table 6.  

Table 5 - Methods used in Publication III  
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4.10.1 hiPSC lines maintenance and reprogramming 

 

Fibroblasts were obtained from skin biopsies of controls (healthy volunteers) and patient 

then cultured in fibroblast growth medium, Dulbecco’s modified eagle medium DMEM 

(Gibco, Carlsbad, CA, USA), with 10% foetal bovine serum (FBS) (Gibco), 1% 

GlutMAX (Lonza, Basel, Switzerland), and 1% penicillin and streptomycin (Lonza). 

Human pluripotent stem cells were cultured on mitomycin-inactivated mouse embryonic 

fibroblasts (MEFs) in hiPSC medium: Knockout (KO) DMEM (Gibco), supplemented 

with 20% KO-serum replacement (Gibco), 1% GlutMAX (Gibco) and 6ng/ml basic 

fibroblasts growth factor (bFGF; Sigma-Aldrich, Missouri, USA). Human pluripotent 

stem cell lines were passaged enzymatically using 1mg/ml Collagenase IV (Invitrogen, 

Carlsbad, CA, USA) and passaged onto new mitomycin-treated MEF plates. 293-GPG 

packaging cells (Ory et al. 1996) were transfected at the confluence of 80-90% with 5 

individual pMXs-cDNA vectors, including “Yamanaka” Factors (pMXs_Oct4, 

pMXs_Sox2, pMXs_Klf4, pMXs_cMyc) and pMXs_dsRed using FugeneHD (Roche, 

Basel, Switzerland), according to the manufacture instructions. After 24 h transfection 

the medium was changed to the fibroblast growth medium. On days 4, 5 and 6 the viral 

supernatants were collected, combined and filtered prior to use through 0.45µm syringe 

filters (Millipore, Billerica, MA, USA). Fibroblasts were plated between passages 4 to 

10 in 6-well plates at a density of 1 × 10
5
 cells/well. Cells were transduced on day 0 and 

1 with freshly collected virus supernatants containing equal volumes (2mls each virus) 

of the 4 retroviruses. On day 3, transduced fibroblasts were washed with phosphate 

buffered saline (PBS) and the media was changed to fibroblast growth medium. Six days 

after the transduction, the cells were dissociated by TrypLE Select (Invitrogen) and 

replated into cell culture plates coated with mitomycin-treated MEFs. Next day, the 

medium was replaced by the hiPSC medium, which was changed every other day. 

Colonies were picked 24-30 days after the transduction and transferred to 24 well plates 

coated with mitomycin-treated MEFs. This cell stage was counted as a passage 1. hiPSC 

cells were confirmed using teratoma assay. 

4.10.2 Differentiation of hiPSC into RPE cells  

All pluripotent cell lines were adapted to human foreskin feeder cell layers for atleast 8 

passages prior to the differentiation. The RPE differentiation was performed as 

previously described (Vaajasaari et al. 2011).  
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4.10.3 Immunocytochemistry 

Cell fixation and antibody hybridization were performed as described earlier (Vaajasaari 

et al. 2011). The primary antibodies used and their dilutions are listed in Table 6. A 

dilution of 1:1500 of donkey anti-mouse IgG and goat anti-rabbit IgG, chicken anti-goat 

IgG (all Alexa Fluor 488), goat anti-mouse IgG, goat anti-rabbit IgG, donkey anti-sheep 

IgG (all Alexa Fluor 568) (Molecular probes, Life Technologies, Paisley, UK) were used 

as secondary antibodies. Images were taken with a Zeiss Axioplan 2 microscope. 

 

4.10.4 RT-PCR  

Total RNA was extracted as described earlier from control and patient hiPSC-RPE by 

using NucleoSpin XS-kit (Macherey Nagel, GmbH & Co, Duren, Germany) (Vaajasaari 

et al. 2011). Isolated RNA was eluted in 10µl H2O. The RNA concentration and quality 

were assessed with a NanoDrop 1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, Delaware). The RNA was DNase I (Invitrogen, Carlsbad, CA, USA) 

treated to remove any traces of DNA according to the manufacturer’s instructions. 5 μg 

of RNA was used for cDNA synthesis by using the 200U Superscript II RT™ (Life 

Technologies CA) according to the manufacturer’s instructions. cDNA was used as a 

template in a following PCR reaction, which was performed using Phusion® DNA 

polymerase (Thermo Fisher, Waltham, MA, USA). Gene specific primer sequence 

details were based on Vaajasaari (Vaajasaari et al. 2011).  

 PCR reactions were performed as follows: 98
o
C, 5 min; 35 x 95

o
C, 30 sec; 

60
o
C, 30 sec (annealing temperature varied with the primer pair used) (Vaajasaari et al. 

2011) and extension at 72°C for 2 min followed by final extension at 72
o
C for 10 min. 

PCR products were analyzed on 2% agarose gels with a 100 bp DNA ladder. The bands 

were visualized with 4.5.2 Basic Program (Bio-Rad Laboratories, Inc., Hercules, CA). 

4.10.5 In vitro phagocytosis assay  

 

The photoreceptor outer segments (POS) were isolated from the eyes of freshly 

slaughtered porcines using a continuous sucrose gradient (Vaajasaari et al. 2011). POS 

were labelled with FITC (0.04 ug/ul; Sigma-Aldrich, Missouri, USA) in 0.1M NaHCO3 

(pH 9.0) were incubated for 1h at RT. Then labelled POS were washed, resuspended in 

RPE culture medium, and seeded onto collagen IV–coated 0.3cm
2
 BD biocoat culture 

plate inserts. Cells were incubated at +37°C in 5% CO2 for 16 h. External fluorescence 

was removed by trypan-blue treatment for 10 min. Cells were then washed with PBS and 
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used for immunocytochemistry as described earlier (Vaajasaari et al. 2011). Filamentous 

actin was stained with 1:40 dilution (Invitrogen, Carlsbad, CA, USA) by incubating for 

10 min at RT following several washes with PBS. The nuclei were stained with DAPI 

that was in mounting media (Vector Laboratories Inc., Burlingame, CA). The images 

were captured using a confocal microscope (Leica TCS SP2 confocal microscope, 

Wetzlar, Germany).  

 

4.10.6 Electron microscopy  

The RPE cell medium was removed from the collagen coated inserts and the cell layer 

was cut into pieces, rinsed with PBS, and fixed in 2.5% glutaraldehyde in 0.1M HEPES 

for 2 h at RT and then transferred to 4% paraformaldehyde for 3 days at 4°C. Further 

cells were postfixed with 1% osmium tetroxide, dehydrated and embedded in Epon. 

Images were captured with a Jeol 1200-EXII and Jeol 1400 (Tokyo, Japan) electron 

microscope. 

4.10.7 Lipidomic analysis  

 

First, 170µl 0.9% NaCl-solution was added to the cell pellets from both control and 

patient hiPSC-RPE, and the samples were then sonicated for 3 min, at 7°C, 40 kHz 

(Finnsonic m03). For the UPLC-QTOFMS analyses, a standard mixture 1 (10 μl) 

containing PC (Phosphatidylcholine) (17:0/0:0), PC (17:0/17:0), PE 

(Phosphatidylethanolamine) (17:0/17:0) and Cer (Ceramide)(d18:1/17:0), (Avanti Polar 

Lipids, Inc.) and TG (17:0/17:0/17:0) (Larodan Fine Chemicals) was  added to 15 µL of 

cell homogenates. HPLC-grade chloroform and methanol (2:1; 100 µL) was added to the 

samples, which were then vortexed for 2 min and allowed to stand for 30 min.  

Subsequently, samples were centrifuged and the lower phase (60µL) was collected and 

20µL of internal standard mixture 2 was added. The internal standard mixture 2 

contained the labelled lipids PC (16:1/0:0-D3), PC (16:1/16:1-D6) and TG 

(16:0/16:0/16:0-
13

C3).  Detailed information about instrumental conditions were 

described in Publication III. 

 

4.10.8 Lipid stainings  

Lipid (neutral lipids and phospholipids) stainings were performed using HCS 

LipidTOX
TM 

phospholipidosis and steatosis detection kit according to the 

manufacturer’s instructions. Cells were treated with LipidTOX
TM 

Red phospholipids 

stain and incubated for 24h. Cells were fixed with 4% paraformaldehyde mixed with 
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Hoechst staining for 30 min at RT. After washing with PBS, the cells were stained with 

LipidTOX
TM

 Green neutral lipid (Molecular Probes, Invitrogen Carlsbad, CA, USA) for 

30min at RT to detect neutral lipids. Pictures were taken using a Zeiss Axioplan 2 

microscope. 

 

4.10.9 Statistical analyses 

Statistical analysis were determined by the Student's t-test. Data were expressed as mean 

± standard error. Values of  P < 0.05 were considered significant.  

 

Table 6 - Antibodies used for Immunocytochemistry 

Antigen Antibodies Reference or source Dilutions 

CPT1A Polyclonal 

Sheep 

 Kind gift from Carina Prip-

Buus (Institut Cochin, Meudon, 

France). 

 

1:300  

TFPαβ Polyclonal 

Rabbit 

Generous gift from Bruce 

Middleton (University of 

Nottingham Medical School, 

Nottingham, UK). 

1:400 

CRALBP Mouse 

monoclonal 

Abcam (ab15051) 1:1000 

MITF Rabbit 

polyclonal 

Abcam (ab20663)  

ZO-1 Mouse 

monoclonal 

Invitrogen (ZO1-1A12) 1:250 

RPE65 Mouse 

monoclonal 

Millipore (MAB5428) 1:250 

ACADM Rabbit 

polyclonal 

Kind gift from Prof. Jerry 

Vockley Children’s Hospital of 

Pittsburgh, Pittsburgh, PA, 

USA 

1:400 
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ACAD9 Rabbit 

polyclonal 

Children’s Hospital of 

Pittsburgh, Pittsburgh, PA, 

USA 

1:400 

ACADVL Mouse 

monoclonal 

Abnova,(M01) Taiwan 1:300 

Actin Goat Santa Cruz Biotechnology 

Inc.USA (I -19) 

1:300 

Na+/K+ATPase Mouse Abcam (ab76509) 1:50 
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5 RESULTS AND DISCUSSION 

5.1 Characterization of a novel homozygous and compound 
heterozygous CPT1A variants in Finland (I) 

Patients with CPT1A deficiency do not show symptoms until there is an increase in 

energy demand such as during fasting or illness. Bennett (Bennett et al. 2010) and 

colleagues stated that, the important laboratory findings observed were hypoketotic 

hypoglycaemia, elevated serum concentrations of liver transaminases, ammonium and 

total carnitine during increases in physiological stress due to increased energy demand. 

CPT1A deficiency does not have muscle weakness or cardiomyopathy like other 

inherited metabolic disorders in FAβO (Ijlst et al.1998). 

 

We identified six patients in Finland with CPT1A deficiency by gene mutation analyses 

during an 11 year period. Five were live-born patients. Four out of six patients were 

from unrelated Finnish families and two were siblings (brothers). All of the patients had 

the same homozygous variant in exon 12 of the CPT1A gene. The initial symptom 

observed in all patients, was common illness. The main hallmark of the disease is a 

metabolic hypoketotic hypoglycaemia, hepatopathy, and loss of consciousness or coma; 

all patients also had hyperlipidaemia and mild hyperammonaemia. However, patient 

number 6 was an adult who had experienced serious decompensation in childhood due to 

viral illness. The patient was diagnosed earlier as having HELLP syndrome during her 

pregnancy (Ylitalo et al. 2005). Patients 1 and 5 were diagnosed after their first attack 

and have been on low dietary fat therapy treatment since then. Patient 2 (older brother) 

and patient 3 (younger) were siblings. For all patients (aged from 4 to 34 years), 

conditions of motor and neuropsychological development have been normal except for 

patient 1 who had learning disabilities and specific language impairment. Neurological 

symptoms such as mental retardation, developmental delay and decreased attention span 

have been reported earlier in CPT1A deficiency (Prasad et al. 2001a). 

 

The sequence analysis of CPT1A confirmed a homozygous missense variant c.1364A>C 

in exon 12 that was found in five patients and compound heterozygosity, c.1364A>C 

(exon 12)/c.1493A>C (exon 13) in the one remaining patient (patient 5) (I, Figure 1). 

The locations of the variants are reported in the cDNA sequence (NM_001876.3). Both 

variants change conserved amino acids (p.Lys455Thr and p.Tyr498Ser) in the N-domain 

of the protein (I, Figure 3). Gobin and Ijlst groups have earlier reported disease-causing 

variants in the same region of the CPT1A gene (Gobin et al. 2002; Ijlst et al. 1998). 

Western blotting analyses of the fibroblasts that were obtained from patient 1 with the 

homozygous variant c.1364A>C (p.Lys455Thr) and compound heterozygous variants in 

patient 5 showed no protein expression (I, Figure 2).  This result was supported by the 

CPT1A enzyme activity measurements. In addition, the palmitate loading test showed 

decreased enzyme activity. This has also been supported by our structural model of 
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CPT1A (based on a template, mouse carnitine acetyltransferase), which predicts that the 

p.Lys455Thr variant resides in the core of the N-domain that possibly leads to protein 

degradation due to improper folding. The other variant,  p.Tyr498Ser is also predicted to 

have an impact on protein stability as Tyr498 plays a role in interacting with the N-

terminal end of the protein downstream of Ser166 (I, Figure 3). 

 

We used minisequencing analyses to study the carrier frequency of the variant 

c.1364A>C (exon 12). No carriers were found in 150 healthy unrelated control samples 

but the allele frequency of CPT1A variant in the global population is 0.0002142 (ExAC 

Browser) whereas in the Finnish population (6614 allele number) the frequency is 

0.001966 (ExAC Browser). This is in accordance with the low prevalence of CPT1A 

deficiency in Finland. However, the patient carrying the compound heterozygote 

mutation c.1493A>C (p.Tyr498Ser) had a more severe clinical course, which could be 

due to other factors than the mutation type. 

 

CPT1A is a liver enzyme which also experessed in kidney, leukocytes, fibroblasts. It is a 

key regulator of fatty acid metabolism (Greenberg et al. 2009). The first variant of 

CPT1A was reported in the year 1981 (Bougneres et al. 1981) and since then 30 cases of 

CPT1A variants have been reported from across the world (Bennett et al. 2004). 

However all of the relevant variants detected in the present study had reduced CPT1A 

expression and enzyme activity in the fibroblasts.  Nevertheless, the clinical course 

among these patients varied from mild hypoglycaemia aggravated by illness to 

hyperammonaemic coma.  

 

Most studies indicate that CPT1A deficiencies are caused by homozygous variants, but 

carriers of functional variants could have a higher risk of a disorder in lipid metabolism. 

Earlier studies have reported CPT1A variants in the North American Hutterite 

community that resulted in hypoketotic hypoglycaemia and signs of encephalopathy. For 

instance, Prasad and co-workers (Prasad et al 2001b) carried out a pilot study on six 

patients who belonged to a large extended Hutterite kindred scattered across Canada and 

the United States. All of them shared a common haplotype on chromosome 11q13 and 

were homozygous for a common CPT1A p.Gly710Glu variant. DNA analyses carried 

out by Carina Prip-Buus and co-workers (Prip-Buus et al. 2001) on three children (two 

siblings and their second cousin) belonging to an extended inbred Hutterite kindred 

revealed that they were homozygous for the c.2129G>A missense variant p.Gly710Glu. 

The catalytic function of the mutant protein was shown to be impaired (Prip -Buus 

et al. 2001).  

 

Previous studies indicated that the Canadian and Greenland Inuit, British Colombia First 

Nations and Alaska Natives come under one population where the CPT1A thermolabile 

gene variant c.1436C>T (p.Pro479Leu) has a high prevalence (Colins et al. 2010, 

Gessner et al. 2011).  Collins and colleagues reported a high allele frequency and rate of 

homozygosity for the CPT1A Pro479Leu variant, which lead to a decreased CPT1A 
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functional activity, further the patients could be susceptible to decompensation during 

times of high fever and illness. Another study by Rajakumar and co-workers (Rajakumar 

et al. 2009) was carried out to determine the population frequency of this variant in a 

Greenland Inuit community with a population size of 1111.  Contrasting results from 

their study demonstrated that the gene variant c.1436C>T might not necessarily cause 

CPT1A deficiency and further presentation of similar symptoms as reported by an earlier 

study might be rather coincidental. Results also indicated that a high frequency of the 

Leu479 allele that is significantly associated with high plasma levels of HDL-cholesterol 

and apoA-I, which could possibly act as protecting agents against atherosclerosis. A 

recent study detected the presence of a CPT1A missense variant c.1436C>T 

(p.Pro479Leu) in arctic pouplations and further authors suggested that this associated 

mutation was partly due to various factors including the prevailing cold environment, 

absence of plant food and in addition a higher in take of fat diet (Clemente et al. 2014).  

 

MS/MS analysis has been an effective technique that has significantly helped in the 

detection of a number of inborn errors of metabolism (Greenberg et al. 2009). Routine 

newborn screening of blood spots that includes MS/MS analysis of samples obtained 

from infants has become a mandatory standard procedure amongst Alaskan and 

Greenland populations with a high incidence of the c.1436C>T sequence variation in 

CPT1A. Evaluating sensitivities of newborn screening by tandem mass spectrometry 

were carried out in various studies to identify homozygous infants (Borch et al. 2012, 

Gessner et al. 2011). 

 

Monique Fontaine and colleagues suggested that a homozygous variant (c.1783 C>T) in 

CPT1A resulted in hepatic CPT deficiency (Fontaine et al. 2012) CPT1A acts as a rate 

limiting enzyme for β-oxidation in the liver. Thus, reduced CPT1A activity in 

p.Lys455Thr homozygous fibroblasts would limit FAβO flux and further lead to reduced 

capacity for hepatic ketogenesis (Greenberg et al. 2009). In contrast low enzyme activity 

in compound heterozygous (p.Lys455Thr/Tyr498Ser) (Table 7) patients implies that it 

has blocked the malonyl-CoA mediated regulation and thus leads to a decrease in β-

oxidation during lipid metabolism (McGarry et al. 1997; Brown et al. 2001). 

Interestingly, Luise Borch and colleagues from Denmark have reported a CPT1A patient 

who had normal levels of plasma free carnitine and acylcarnitines but the patient started 

showing symptoms and signs at the age of 8 months and was found to have a mild 

enzyme defect with a novel variant c.167C>T. (Borch et al. 2012).  
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Table 7 Carnitine Enzyme activity measurement 

Patient Activity 

(nmol/min.mg) 

Control mean ± SD (n) 

Case 5 (compound 

heterozygous 

Lys455Thr/Tyr498Ser) 

0.00  0.54± 0.20 (12) 

Case 6 (homozygous 

c.1364A>C (Lys455Thr) 

0.00 0.54± 0.20 (12) 

 

 

Our follow up study of five patients (1, 2, 3, 5, and 6) showed improved metabolic 

compensation with high carbohydrate with the low dietary fat therapy treatment. The 

dietary therapy consisted of a low fat, high carbohydrates diet and it was provided to all 

of the patients with the exception of patient 1, who also needed intravenous glucose 

intake during viral illness. The follow up studies showed good metabolic compensation. 

However, patient six who was the oldest patient in the group, had delayed dietary 

therapy that led to various episodes of decompensation with coma. This further suggests 

that dietary therapy helps in maintaining metabolic compensation; nevertheless strict 

usage of dietary therapy however remains uncertain. Ingesting high carbohydrate meals 

and avoidance of fasting possibly aids in the survival of the patient. Furthermore, 

identifying the disease causing variants and also by keeping a check on the variants 

existing in other populations can help in the prenatal diagnosis and early therapy. 

 

5.2 DNAJC19 deficiency as a novel cause for early onset dilated 
cardiomyopathy (II) 

 

This study is the first case report from Europe that describes inherited dilated 

cardiomyopathic syndrome (DCMA), which is caused by DNAJC19 deficiency outside 

the previously reported Canadian Dariuslet Hutterite population. DCMA is a novel 

autosomal recessive condition that occurs in children due to a single gene variant in 

DNAJC19 (Murphy et al. 2005; Bowles et al. 2004). DNAJC19 is presumed to play a 

key role in importing mitochondrial proteins. Here we report a case of two Finnish 

brothers with a novel homozygous truncating variant c.300delA (NM_145261.3) in the 

DNAJC19 gene. Parents of the brothers were heterozygous for the variant, which left 

them unaffected. The variant is a single nucleotide deletion (A) in exon 6 (II, Figure 1), 

which does not immediately cause an aminoacid change but produces stop codon 11 

aminoacids later thus caused a frameshift and premature truncation of the protein (106 
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AA). Western blot analysis showed no expression of DNAJC19 protein in the patient 

fibroblasts (II, Figure 2).  Further quantification of ATP and mitochondrial complexes 

CI, CII and CIV enzymes revealed a reduced enzyme activity in the patient’s skeletal 

muscles, which was indicative of, a mild respiratory chain abnormality. However, the 

BN-PAGE analysis of their heart and skeletal muscle lysates revealed normal expression 

of enzyme levels (II, Figure 5). The variant caused a severe onset dilated 

cardiomyopathy and high excretion of 3-methylglutaconic aciduria type V in urine. The 

mutation also caused a severe muscle weakness and neurological disturbances. Suddenly 

at the age of 13 months the younger brother died. The left ventricle of the heart of the 

deceased patient was found to be noncompacted and dilated. Neuropathological studies 

revealed mild brain stem atrophy resulting in ataxia.  

 

An earlier study by Davey et al. (2006) reported, DCMA syndrome in the Canadian 

Dariuslet Hutterite population (Davey et al. 2006). The DNJAC19 patients in the cohort 

constitute 18 patients: all of whom had onset of DCM before 3 years of age. In addition 

more than 70% of the affected patients died from either progressive cardiac failure or 

sudden cardiac death associated with the splice site variant c. IVS3-1G>C in the 

DNAJC19 gene (Davey et al. 2006). All the patients over the age of two years had a 

cerebellar syndrome with ataxia resulting in motor delays. In some male patients, 

testicular dysgenesis along with impaired androgen and anti-Mullerian hormone 

synthesis was reported. Other features presented were optic atrophy, elevation in hepatic 

enzyme levels and mild to borderline non-progressive mental retardation. In the 

Canadian population, the rate of cardiomyopathy is larger when compared to 

mitochondrial disorders (Sparkes et al. 2007). Further Sparkes and colleagues have 

reported 17 patients with dilated cardiomyopathy, which was diagnosed as DCMA 

syndrome. They were diagnosed at the onset age of 12 months and a range from 1 to 36 

months. It was caused by homozygous variant in the DNAJC19 gene. (Sparkes et al. 

2007).   

 

Symptoms of DCMA syndrome include early onset cardiomyopathy, methylglutaconic 

aciduria and failure of growth which are similar to those observed in Barth syndrome 

(type II 3-methylglutaconic aciduria) a syndrome is caused by mutations in the X-linked 

TAZ gene on Xq28. The TAZ gene encodes tafazzin, a protein that is involved in 

cardiolipin metabolism in the mitochondria (Davey et al. 2006). Barth syndrome 

manifests in early infancy with cardiomyopathy, raised 3-MGC and 3-MGA levels, 

skeletal myopathy, hypotonia, growth delay and neutropenia (Barth et al. 2004, Spencer 

et al. 2006). Some features, which are not seen in Barth syndrome, are cerebellar 

symptoms and autosomal recessive inheritance. Both tafazzin and DNAJC19 are 

mitochondrial proteins. Studies by He and co-workers suggested that the knockdown of 

tafazzin causes cardiolipin deficiency, which further lead to a reduction in ATP 

production decreased cardiac contractility, hypertrophy and cell death (He Q et al. 

2013). However, only few inherited genetic defects affecting DNAJ proteins and 

mitochondrial chaperones have been described. Disruption of tafazzin leads to defective 

OXPHOS and it is also involved in apoptosis and mitochondrial membrane dynamics 

(Wortmann et al. 2013). In addition, recent studies suggest that Prohibitin (PHB) 
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/DNAJC19 membrane domains regulate cardiolipin remodelling by tafazzin (Richter-

Dennerlein et al. 2014). PHB from large protein and lipid scaffolds in the inner 

membrane of mitochondria. PHB’s forms large hetero-oligomeric ring complexes 

composed of PHB1 and PHB2 subunits.PHB complexes are essential for mitochondrial 

integrity such as mitochondrial morphogenesis and normal life span (Richter-Dennerlein 

et al. 2014).  

 

Previous studies have also shown that DNAJC19 shares a strong homology with the 

yeast protein Tim14. Tim 14 localizes in the inner mitochondrial membrane and is 

involved in the transport of mitochondrial-targeted proteins into the matrix (Mokranjac 

et al. 2003). This indicates that loss of DNAJC19 in DCMA leads to defects in the 

import of mitochondrial proteins (Davey et al. 2006), although clear experimental 

evidence is lacking. Studies indicate that approximately 1000 mitochondrial proteins are 

encoded by nuclear genes that are synthesized in the cytosol and imported into the 

mitochondria (Fosslein 2003). Therefore, any defect or mutations may render DNAJC19 

into an inactive state or even completely abolished DNAJC19 may influence the 

mislocalization of the mitochondrial respiratory chain or matrix proteins. Although it’s a 

reasonable clarification for mitochondrial cytopathy, the precise mechanism still remains 

unclear (Sparkes et al. 2007) and suggests that mutation could affect many aspects of 

mitochondrial function. Furthermore studies by Sinha and co-workers (Sinha et al. 2010) 

demonstrated that human MAGMAS an ortholog of Pam16 in yeast, functions in a 

similar manner by facilitating the translocation of proteins across the inner 

mitochondrial membrane. Experiments revealed that MAGMAS could form a stable 

subcomplex with DNAJC19 through its C-terminal, mutations within DNAJC19 could 

result in decreased stability of the MAGMAS: DNAJC19 complex, thus causing 

impairment in both protein importation and cellular respiration.  

 

Another recent study showed that the mitochondrial PHB complexes interact with 

DNAJC19 (Richter-Dennerlein et al. 2014). Cells lacking in either DNAJC19 or PHB2, 

showed clear indications of alterations in the acyl chain composition of cardiolipin 

reminiscent of cells lacking TAZ suggests that DNAJC19 could be involved in the 

translocation of TAZ into the mitochondrial inner matrix. Alterations in the acyl chain 

composition of cardiolipin could interfere with membrane rearrangements, which would 

lead to disturbances in the morphology of cristae in DNAJC19-deficient mitochondria. 

Biochemical analyses results from this study were quite discordant with the results of an 

earlier study, which DNAJC19 associates with TIM23 translocases (Davey et al. 2006). 

Therefore, the absence of either DNAJC19 or PHB2 results in conditions that include 

impaired cell growth, a disturbed mitochondrial ultrastructure, and similar 

transcriptional responses, all of which suggests that the PHB/DNAJC19 complex 

represents the functional active structure (Richter-Dennerlein et al. 2014). 
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5.3 Evaluation of hiPSC derived RPE cells obtained from a LCHADD 
patient (III) 

One of the outcomes of deficiencies in FAβO defects is LCHAD deficiency. The 

manifestation of the disease is retinopathy, neuropathy, and cardiomyopathy. Among all 

FAβO defects retinopathy occurs only in LCHAD deficient patients (Tyni et al. 1998a). 

If this condition is untreatable then it leads to a loss of vision. Underlying pathogenic 

mechanisms for the cause of pigmentary retinopathy in LCHADD patients is still 

unknown. Earlier Tyni et al., used isolated porcine RPE cells and immortalized RPE 

(ARPE 19) cells to study the pathogenesis but no standard physiological model has been 

proposed so far (Tyni et al. 1998a). We introduced an in vitro hiPSC model in this study, 

which helps to investigate the pathogenic mechanism that causes pigmentary 

retinopathy. The concept pertaining to this paper was designed based on our earlier 

histopathological and ophthalmological findings (Tyni et al. 1998a, Tyni et al. 1998b, 

Tyni et al. 2012) obtained from LCHADD patient eye. 

 

Current treatments of LCHAD deficiency do not cure retinopathy progression, the 

pigment clumping at the level of RPE and the central pigmentation may disappear and 

result in the progressive loss of central RPE and choroid, and leaving the central sclera 

bare which could potentially lead to blindness. We generated hiPSC from a LCHADD 

patient’s fibroblasts and from controls to understand the pathogenesis of retinopathy. 

They showed similar characteristic features to the hESCs (III Figure 3). Moreover, the 

control and LCHADD patient derived hiPSC-RPE cells produced a monolayer of 

hexagonal polyhedral shaped cells with distinct nuclei with a mosaic like pattern. They 

both expressed the RPE cell markers particularly, ZO1, CRALBP, MITF, Na
+
/K

+ 

ATPase as confirmed by immunocytochemistry and RT-PCR (III Figure 4). In general, 

the patient cells were smaller in size when compared to the control cells. Further there 

was a significant difference observed between the samples upon measuring the cell 

volume. Interestingly, the patient cells also had low pigmentation in all three hiPSC cell 

lines produced.  

 

For RPE, the phagocytosis of photoreceptor outer segments (POS) is an important 

function and the basis for proper vision. Incubation with porcine POS control and patient 

hiPSC-RPE demonstrated the ability of the RPE cells to phagocytose, thereby 

demonstrating their functionality in vitro (III Figure 5). No specific difference was 

observed between the cells. With ZO-1 staining, the patient hiPSC-RPE cells appeared 

circular and possibly formed incomplete cell-to-cell adhesion, which indicates that the 

intercellular gaps might weaken the RPE layer. Instead, the control hiPSC-RPE cells had 

a hexagonal shape, and formed regular tight junctions. The RPE monolayer constitutes 

the outer blood retina barrier, thus the integrity of adherens junctions is vital for normal 

functioning of the neural retina (Tyni et al. 2004). In addition, previous studies 

suggested that both the choriocapillaris and RPE cells are affected early in its course 

(Tyni et al 1998b). Consequently, disruption of adherens junctions may degenerate the 

RPE layer in patients, which is supported in clinical histopathological findings (Tyni et 

al. 1998b). 



 

 

 

 

57 

 

Pigmentation in RPE cells is due to the melanin component in organelles called 

melanosomes. When subjected to electron microscopy (III, Figure 7), the amount of 

melanosomes appeared to be fewer in patient cells, in comparison to control cells. 

Numerous lipid accumulations were also observed in patient cells when compared to 

control cells. In addition, Oil-red–O staining showed vast dispersed lipids in patient cells 

whereas in the controls it appeared like small clumps in a particular region (unpublished 

data) (Figure 8). Further, the patient cells had huge accumulations of neutral staining 

lipids and a weak expression of phospholipids upon LipidTOX
TM

 staining (III, Figure 

8A). LipidTOX
TM

 staining usually detects the intracellular accumulation of neutral lipids 

and phospholipids in the cells. Neutral staining lipids expression in control cells was 

weak and phospholipids had a very faint expression. Lipidomics data generated by mass 

spectrometry found a significant increase of triglycerides (TG) in patient cells compared 

to control cells (III, Figure 8B). The neutral staining results were concordant with 

lipidomics analyses, which suggested a two-fold increase in triglyceride accumulation. 

Intracellular lipid accumulation could possibly occur when there was a mismatch 

between free fatty acid import and utilization. It has also been shown that TG 

accumulation in non-adipose cells could be a response to an acute palmitate overload, 

which could be a cellular defence against lipotoxicity (Listenberger et al. 2003). Similar 

findings have been detected earlier in stress-induced inflammatory response in human 

corneal epithelial cells exposed to increasing osmolarity (Robciuc et al. 2012). 

Lipidomics analyses showed significant up-regulation of TGs in the stress-induced cells, 

particularly polyunsaturated molecular species. Relatively, large TGs were highly up-

regulated, which is in agreement with our current results. Non-adipose cells have a 

limited capacity for lipid storage, therefore excess free FAs may have impaired normal 

cell signalling and thus caused cellular dysfunction and apoptotic cell death (Schaffer et 

al. 2003).  

 

  

Figure 8 – Oil red O staining in Patient and Control hiPSC –RPE cells Magnification 

63x Scale bar = 10 m 

 

Retinopathy manifestation in defective mitochondrial FAβO is surprising as in the brain 

glucose is considered to be the main source of energy in the retina (Berman 1991). 

Clinical and histopathological findings in retinopathy of LCHAD deficiency indicate 

Control Patient 
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that the choriocapillaris and RPE cells are affected early in its course, usually by the age 

of two years (Tyni et al. 1998b).  The possible mechanism of retinal damage suggested 

in literature was the accumulation of toxic metabolites of impaired long chain fatty acid 

oxidation (Gillingham et al 2005). Further Gilingham and co-workers suggested that the 

severe progression of chorioretinopathy and decreased retinal function on the fundus 

images associated with increased levels of long chain 3-hydroxyacylcarnitines. 

Interestingly, DHA deficiency was detected in plasma of the one year old LCHADD 

patient. DHA is considered to be abundant fatty acid in retinal photoreceptor membrane 

phospholipid and also suggested that DHA deficiency is associated with retinal 

dysfunction in rhesus monkeys and human infants (Harding et al. 1999). Further, 

Harding hypothesis (Harding et al. 1999) suggests that the DHA deficiency also 

contributes to retinopathy in LCHADD patients. Low levels of DHA have also been 

observed in some LCHAD deficiency children. (Gillingham et al. 2005).  

 

Tyni and co-workers used human retinal sections and cultured porcine RPE cells to 

explain the energy metabolism of the RPE cells in relation to the retinopathy condition 

in LCHAD deficiency (Tyni et al. 2004). Their results convincingly explains the role of 

mitochondrial FAβO in RPE such as the expression of MTP and other enzymes such as 

ACAD9 in RPE and other layers of retina such as ganglion cells, inner segments of 

photoreceptors in RPE. The expression and localization of β-oxidation enzymes such as 

ACADVL, ACADM, ACAD9, CPT1A and MTP αβ expression in hiPSC-RPE cells in 

our study were positive (III, Figure 6). Now, it is quite clear that the current results are 

concordant with our earlier findings (Tyni et al. 2002, 2004; Roomets et al. 2006).  

 

Our findings from the patients strongly suggest that retinopathy of LCHAD deficiency 

was due to the degeneration of the RPE layer from the accumulation of toxins resulting 

from the lack of HADHA. In addition, earlier studies (Tyni et al. 2012) from a 5 year old 

patient eye images showed grades of stage 2 pigment deposits and RPE atrophy and 

there were two different stages of retinopathy observed. Thus the hypopigmentation and 

pigment clumping in the macula in stage 2 and total atrophy of the posterior pole, 

posterior staphyloma in stage 4 appears to be due to disrupted RPE. These stages support 

the current findings such as reduced cell size, less melanosomes (hypopigmentation), 

accumulated toxins and disrupted cell-cell contacts (ZO1) crucial for RPE function. 

 

There are many studies associated with using iPSC disease modelling techniques. For 

instance, studies reported on patient-derived iPSCs of retinal diseases such as retinitis 

pigmentosa (RP) (Jin et al. 2011) and gyrate atrophy (GA) (Meyer et al. 2011). RP is an 

inherited human eye disease that is caused by the degeneration of photoreceptors (Jin et 

al. 2011). In contrast GA is a rare autosomal recessive disease caused by a mutation in 

the gene ornithine δ aminotransferase (OAT), that primarily affects the RPE and thereby 

causes blindness. Recently, GA patient specific RPE derived from iPSCs were 

developed that showed a disease specific functional defect i.e., very low OAT activity in 

RPE cells (Meyer et al. 2011) thereby demonstrating the use of patient specific iPSCs in 

understanding disease pathogenesis and also to test new therapeutic drugs. Other studies 
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include Best disease, which is an inherited degenerative disease of the human macula 

that causes loss of central vision (Singh et al. 2013).  

 

The hiPSC-RPE cells are the most promising candidates to be used as they can be 

produced easily with established protocols using various substrates. They were found to 

show mature phenotypes that exhibit key physiological functions in vitro. (Singh et al. 

2013). Schwartz and colleagues used hESC-RPE cell transplantation observed improved 

vision in age-related macular degeneration and stargardt’s macular dystrophy patients 

with long-term safety. This indicates the success of using hESC-derived cells in clinical 

trials. (Schwartz et al. 2015). Recently researchers in Japan also announced the approval 

for transplanting autologous iPSC-RPE into clinic for patients after performing safety 

tests. They changed the law to permit these studies; they are classed as a clinical iPS cell 

pilot study for 6 patients. This has been halted due to the presence of oncogene 

activation in the second patient iPS cells. 

 

In summary, we were able to produce the first in vitro LCHADD disease model for 

pigmentary retinopathy. This cellular model illustrated novel early pathogenic changes 

in LCHADD retinopathy- a gross disruption of the RPE cell morphology, less 

pigmentation, few melanosomes, defective tight junctions and an excessive 

accumulation of TGs early upon differentiation and – all were fully consistent with 

patient findings. These changes are likely to cause fatal consequences for the main 

functions of the RPE. 
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7 CONCLUSIONS AND FUTURE PROSPECTS 

The research presented in this PhD thesis identified novel disease-causing variants in 

CPT1A and DNAJC19 in the Finnish population. This series of studies worked towards 

the implementation of hiPSC in order to understand the disease pathogenesis of 

LCHADD. Furthermore, these studies might help in providing knowledge for future 

therapies for the above mentioned FAβO disorders. 

 

Our results give insight into the clinical manifestation of CPT1A protein deficiency, 

which were based on biochemical analyses, molecular characterization and structural 

analysis. The carrier frequency of the CPT1A variant in the Finnish population showed 

no single carrier in the healthy controls, but the allele frequency of CPT1A variant in the 

global populations is 0.0002142 (ExAC Browser), whereas in Finnish population (6614 

allele number) the frequency is higher at 0.001966 (ExAC Browser). The structural 

study of the CPT1A protein can help clinicians in identifying or predicting the 

consequences of new variants. Advanced techniques such as next generation sequencing 

that include exome and whole genome sequencing may be able to provide in depth study 

of multiple variants of CPT1A.  The implementation of screening of neonates and infants 

in paediatric medicine is an important aspect to consider as it can aid in early detection 

of disease-causing variants and can facilitate early treatment. Newborn screening for 

defects in long-chain FAβO defects has already reduced mortality and also helps in 

identifying variants in mildly affected patients. Additionally, treating CPT1A patients 

with dietary therapy is an important step to consider, as it would improve metabolic 

levels and a better clinical status. 

 

The DCMA cases due to DNAJC19 deficiency are the first patients diagnosed in Europe. 

Effective screening of the urinary organic acid analysis together with the analysis of 

cardiac disease is needed well before undergoing molecular genetic analysis. Further 

studies are required to identify the phenotype-genotype relationship and elucidate a 

deeper understanding of the underlying pathogenic mechanisms that cause DCMA 

syndrome. Performing population based screening tests in the near future will further 

help to understand the cardiac phenotype and other mitochondrial disorders. 

  

Current developments in regenerative medicine are providing valuable techniques to 

study the pathogenesis of various diseases. The iPSC technology provides a 

revolutionary platform in regenerative medicine that facilitates, in understanding various 

diseases and their mechanisms. This particular approach has helped to circumvent the 

ethical issues that relate to use of hESC. However, other challenges remain as in the case 

of hESC such as tumour formation.  

  

In our study, differentiated RPE cells from LCHADD patient fibroblasts appear to show 

a disrupted RPE layer, which is a key component of vision. Currently, there are no 
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specific drugs to treat LCHADD. Optimal low fat diet therapy is the only treatment for 

LCHAD deficiency in patients that helps in slowing the progression of chorioretinopathy 

and vision loss. In addition, supplementation of DHA may improve visual acuity in 

children with LCHADD. Execution of hiPSC techniques on LCHADD patient specific 

fibroblasts, revealed a new pathway in understanding the pathogenesis of the disease 

mechanism study. The disease specific hiPSC derived cells acts as a bridge between the 

clinical phenotype and molecular or cellular mechanisms along with other strategies 

including drug screening or developing novel therapeutic agents. Many labs have used 

this method to generate iPSC from patient fibroblasts cells. These findings aid in the 

newly emerging field of mitochondrial FAβO disorders and assist in the development of 

novel treatments for clinical trials.  

 

The further identification and elucidation of molecular mechanisms of the above 

mentioned cases will help in understanding the full pathogenicity of the disease and 

should illuminate the path to develop potential treatments and medical care for the 

patients. Genetic counselling is also an important aspect for early diagnosis and better 

treatment and these should also benefit from further research.  
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