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ABSTRACT

Soils comprise more carbon (C) than any other terrestrial source and hence even a small
change in the C content can be significant in regards to atmospheric CO2 concentration.
Cultivated soils have lost soil organic carbon (SOC) during the latest decades in Finland.
New cereal crop management practices, like no-till (NT) and reduced tillage (RT), can
affect not only SOC stocks and stabilization, but also nitrous oxide (N20) emissions.
The aim of this study was to gain better understanding about the changesinsoil C
dynamics and N20 emissions as aresult of management practice changes in the boreal
region, and the implications of these changes to climate change mitigation.

Changes in SOC stocks and stabilization rates under different tillage (NT, RT, CT
(conventional tillage with a moldboard plow)) and straw management (straw retention,
straw removal, straw burning) practices, were studied at different sites with clayey and
coarse textured soil across southern Finland. This was done by soil fractionation method
(wet sieving and microaggregate isolation) to elucidate the composition of different soil
fractions, namely large and small macroaggregates, microaggregates, silt and clay and
macroaggregate-occluded soil fractions, and where the C is stored within them. The
effects of Lumbricus terrestris on SOC were studied using the same method. Nitrous
oxide fluxes were monitored biweekly for 2 years under CT, NT and RT practices using
closed chambers. Measurements of several environmental and soil parameters were
taken to study the underlying factors controlling the observed changes in soil C stocks
and N20 emissions under the different management practices.

Climate change mitigation potential through the studied cereal crop management
practices seems small in the humid boreal region based on the results of this study. The
minimum tillage treatments did not sequester SOC at any of the study sites which had
been under NT or RT for a decade and the total C stocks were lower in the 0—15 cm
topsoil layer at one clayey site under RT compared to CT after implementing RT for 30
years. Higher decomposition rate in NT compared to CT and a fairly high original SOC
content at the clayey sites possibly hindered C sequestration. However, the aggregate
stability was enhanced in NT cropping systems compared to CT, and NT increased
the amount of SOC in large macroaggregates at several sites and in microaggregates
within macroaggregates in the coarse textured site. L. terrestris mediated the formation
of soil aggregates and the increase of SOC in the topsoil but possibly enhanced the
decomposition rate in the soils. Cumulative N20 emissions were higher under NT
compared to both CT and RT at the clayey sites and lower at the coarse textured site.
However, the coarse textured site under NT received slightly less N fertilizer compared
to CT. Increased N20 emissions under NT on clayey soils were likely due to denser soil
structure with consistently higher soil moisture content and poor aeration. Therefore,
mitigating N20 emissions requires special attention to soil structure and drainage.
This study suggests that RT is a notable option to control N20 emissions. In the future,
climate change could increase precipitation and the frequency of freeze-thaw cycles in
boreal agroecosystems possibly enhancing N20 fluxes and C losses of cultivated soils
which puts pressure on finding new mitigation measures.
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1. INTRODUCTION

1.1 AGRICULTURE AND CLIMATE CHANGE

Globally averaged combined land and ocean surface temperature has risen 0.85°C
since 1880 (IPCC, 2014) while the Arctic has warmed twice as fast as the rest of
the world during the 20th century (ACIA, 2005). Due to its northern location,
Finland is exposed to this polar amplification of climate change-induced warming
and has experienced a mean temperature increase of over 2°C within the last
166 years (1847-2013) (Mikkonen et al., 2014). Agriculture contributes to global
anthropogenic emissions of three major greenhouse gases (GHGs); carbon dioxide
(CO,), nitrous oxide (N,O) and methane (CH4), accounting for about 10-12% of
the total emissions of GHGs. The atmospheric concentration of all three gases has
risen sharply during the past decades (Fig 1, Data retrieved from: http://www.eea.
europa.eu/). In Finland, without taking into account the energy use or land use and
land use changes, agriculture contributes 9% of the GHGs, of which CO, plays a
minor role, emitted into the atmosphere (Statistics Finland, 2014).
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Figure 1. Atmospheric concentrations of CO, (ppm), N,O (ppb) (left axis) and CH, (ppb) (right
axis) between 1800 and 2013 (Data retrieved from: ht%p://www.eea.europa.eu/).



The European Council confirmed in early 2011 the new climate objective of an
80—-95% reduction in GHG emissions compared to the level of 1990 by midcentury
(Watson et al., 2013). To achieve the climate goal of the European Union, all aspects
of the economy must be taken into account. This includes the non-emission trading
sectors that were assigned a reduction target of 16% in 2005—2020 as a part of the
Kyoto Protocol (EU, 2009). In Finland this has translated to a 13% reduction for
agriculture (Ministry of Employment and Economy, 2008). These decisions cover
agricultural emissions only partly; e.g. CO, emissions from soils are not included.
Agricultural land use related CO, emissions will gain more and more attention
in the EU in 2015-2020 as the member states are committed to report actions in
cropland and grazing land management (EU, 2013).

Agricultural land use inevitably leads to emissions of CO, into the atmosphere
and a concurrent decrease in soil organic carbon (SOC) (Lal, 1997). This is mainly
due to the initial land use change which escalates soil respiration while decreasing
carbon (C) inputs into the soil (Carter et al., 1998; Gregorich et al., 2005; Elder
and Lal, 2008). The loss of SOC as a result of agricultural use compared to natural
state is typically 30—40% in northern regions (Ellert and Gregorich, 1996; Carter
et al., 1998; Griinzweig et al., 2004). According to IPCC guidelines, the system is
considered not to experience conversion effects after the initial land-use change and
instead enters a “steady-state” (IPCC, 2006). In this state, cropland management
is the key modifier of soil C stocks depending on how these practices affect C input
versus output from the system (Paustian et al., 1997; Ogle et al., 2005). In addition,
the changes in the climate system will strongly influence the whole terrestrial C
cycling and land-atmosphere CO, fluxes (Fischlin et al., 2007; Frank et al., 2015).

Agricultural N O emissions have increased by 17% between 1990 and 2005
(Smith et al.,2007). Between 40—50% of global N, O emissions originate from human
activities with most of the increase being attributed to the expansion of agricultural
land area and enhanced microbial N, O production. This effect is associated with
human perturbations to the nitrogen (N) cycle like over application of N fertilizers
and manure to grow more food (Nevison, 2000, Reay et al., 2012). In Finland, this
problem is enhanced by the large amount of cultivated organic soils which add
up to 12% of the cultivated land area but contribute to approximately 30% of the
N, O emissions of Finnish agricultural lands (Lapveteldinen et al., 2007). Nitrous
oxide emissions are reported as part of national inventories of GHGs in many
countries around the world (Lokupitiya and Paustian, 2006), and their mitigation
has a growing role in global and local climate policies.

In 2012, agricultural area occupied about 5000 Mha of land which is 38% of
the land on Earth (FAOSTAT: http://faostat3.fao.org/download/R/RL/E, data
retrieved 15.03.2015). Of this land 70% was under pasture and 30% was under
arable production. Driven by a growing population agricultural land area increased
by over 10% in just four decades, even though technological improvements have



increased land productivity and per capita food availability (Smith et al., 2007). The
need to find ways of reducing GHG emissions from arable soils, while maintaining
sustainable agricultural production and meeting the needs of a growing population,
is evident.

111 CARBON CYCLE AND SOIL ORGANIC CARBON

Soil organic carbon has implications for global C cycle since soils are the second
largest reservoir of C after oceans (Stockmann et al., 2013). Just the first meter of soils
store globally about 1500 Gt of C whereas vegetation stores about 600 Gt (Adams
et al., 1990, Eswaran et al., 1993, Batjes, 1996; Schlesinger, 1997). Hence, even a
small change in the SOC dynamics can greatly affect atmospheric CO, concentration
(Jenkinson et al., 1991; Cox et al., 2000).

The net amount of CO, released to the atmosphere from agricultural soils is
dependent on the rate of SOC formation versus decomposition (Van Breemen
and Feijtel, 1990). Due to large fluxes via plant uptake, the net flux of CO, from
agricultural lands is estimated to be fairly small (~0.04 Gt CO,yr"). However, C
depletion after the initial push is sustained by erosion, crop removal and biomass
burning (Gregorich et al., 2005; Lal, 2007). A 35-year study conducted in Finland
found that cultivated soils have in general been losing SOC during the past decades
(Heikkinen et al., 2013). Thus, soil C sequestration is one of the options for mitigating
GHGs from agricultural soils. Enhanced crop and grazing land management which
include, for example, improved tillage practices, straw management and nutrient
use, together with land restoration are the most prominent techniques to increase
C sequestration into agricultural soils (Armentano and Menges, 1986; Smith et al.,
2007). In Finland, crop cultivation on organic soils is also a significant source of
CO, among the emissions reported in the land use, land use change and forestry
sector (LULUCF) (Statistics Finland, 2014).

Atmospheric CO, is converted to carbohydrates via plant photosynthesis that
produces plant biomass, in other words, organic matter (OM). Some of this C is
immediately released back into the atmosphere by plant and soil respiration and
some is lost from the ecosystem through crop harvesting. Remaining organic C is
retained on the soils as residues like straw, roots and casts (Janzen et al., 1998).
Carbon enters into the soil through decomposition of residues and processing of soil
organic matter (SOM) by soil fauna and micro-organisms (Stevenson 1994). The
quantity and quality of residues affect the potential C sequestration rate depending
on the proportion of OM being humified or stabilized in the soil (Kétterer, 2011).
Rasse et al. (2005) argued that most of the soil C is composed of root C compared to
shoot derived C and, that the effect of roots increases with depth. This is especially
true in cropping systems where little aboveground residues are left on the soil.
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Residues with a lignin content of less than 15% and N content of more than 2.5%
are considered high quality residues, and they enhance residue decomposition and
the release of nutrients compared to low quality residues (Palm et al., 2001).

Environmental factors, like soil temperature, moisture content and pH, along
with soil organisms also play a critical role in determining the decomposition rate
of OM. Soil respiration is the main source of CO, released into the atmosphere
(Raich and Schlesinger, 1992), and it consists of plant derived respiration by plant
roots, rhizo-microbial respiration and microbial respiration of recently died plant
residues, as well as SOM-derived respiration (Kuzyakov, 2006). Soil respiration
normally increases exponentially with increasing temperature (Xu and Qi, 2001).

Soil organic matter can be stabilized in the soil through three main routes as
described by Six et al. (2002) (Fig 2). First of the stabilizing mechanisms is chemical
stabilization, where SOM and soil minerals such as clay and silt particles bind
together. Secondly, SOM is stabilized through physical protection by soil aggregates
and thirdly by biochemical stabilization that is driven by the chemical composition
of SOM itself and chemical complexing processes (Six et al., 2002). Soil aggregates
are formed by fresh organic residues binding with soil mineral particles. These
soil aggregates bind more strongly to each other compared to other surrounding
soil particles and they increase the residence time of C in soils by both offering
physical protection from microbial decomposition and by creating more anaerobic
conditions in the soil that slow down the decay of SOM (Six et al., 2002). Especially
microaggregates within macroaggregates (mM) are a crucial part of long-term
sequestration and storing of SOC (Six et al., 2000; Denef et al., 2007). While the
potential for soils to store C depends on the soil texture and the quality of residue
input, the soil C concentration generally increases with added C inputs with C being
stored in different parts of the soil until the soil reaches its saturation level. The
changes in the amount of C in soil are so slow that it is very difficult to observe only
by measuring the total amount of C in soil. This is why it is important to know in
which soil fractions SOC is stored.
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C content
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(non-protected C)
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l (protected C)
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(protected C)

0

>
>
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Figure 2. Soil saturation level is defined by a combination of different C pools: 1) Silt and
clay protected C, 2) microaggregate protected C, 3) biochemically protected C and the, 4)
unprotected C pool. Adapted after Six et al, (2002).

Earthworms are known to influence soil processes including soil aggregation,
decomposition of residues and soil structure modification, which has created them
a reputation as ecosystem engineers (Jones et al., 1994; Lavelle et al., 1997; Fonte
et al., 2009; Giannopoulos et al., 2010). Earthworms represent the largest group
of animals in the soil by biomass and they can consume up to 2 t of litter ha™
yr*(Whalen and Parmelee, 2000). They are categorized in three different groups,
epigeic, endogeic and anecic, based on their feeding habits and the soil environment
they occupy (Bouché, 1977; Lavelle and Spain, 2001) (Fig 3). The earthworm studied
in this study, Lumbricus terrestris L., is an anecic earthworm that makes permanent,
typically less than 1 m deep, vertical burrows, which open at the soil surface. These
species feed on the fresh surface litter, which they pull down into their burrows
and leave litter and cast-made middens within sight on the soil surface (Lee, 1985).
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-Litter dweller -Top soil dweller -Soil dweller,
-Litter feeder -Soil feeder extensive vertical
burrows
-Soil + litter feeder

Figure 3. Earthworm categories based on their feeding habits
and the soil environment they occupy.

Soil C dynamics are affected by earthworms, including L. terrestris, due to the
efficient residue burial and consumption (Subler and Kirsch, 1998; Eisenhauer et
al., 2008), and defecation of casts which result from intimate mixing of ingested
chopped organic residues, that are often high in C due to preferential selection, and
soil particles in earthworm’s digestive tract (Barois et al., 1993; Shipitalo and Le
Bayon, 2004). The casts are significant for C stabilization because of the relative
stability of dried and aged casts and the formation of new macroaggregate-occluded
microaggregates within the earthworm gut (Bossuyt et al., 2004; Six et al., 2004;
Pulleman et al., 2005; Fonte et al., 2007; Fonte et al., 2009; Six and Paustian,
2014). Casts can be deposited, for example, in L. terrestris middens on the soil
surface and in burrow walls where they can slightly increase SOC content of the
burrow lining (Don et al., 2008). Fonte et al. (2007) observed an increase in newly
added residue derived C into macroaggregate-occluded microaggregates even in
a low input agroecosystem while Bossuyt et al. (2004) showed a link between C
depletion in microaggregates within macroaggregates in a secondary forest due to
a loss in earthworm abundance. These support the theory of the biological origin
of this soil fraction and highlight the importance of soil management via soil biota
(Six and Paustian, 2014).
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1.1.2  NITROUS OXIDE FLUXES AND SOIL NITROGEN

In natural conditions N enters the soil though biological N fixation. This is carried
out by micro-organisms which live both in symbiotic relationships with plants and
free in the soil. Nitrogen is often the limiting nutrient in soils which is why in
agroecosystems plants are amended with N fertilizers either in mineral or organic
form. Organic N, that is bound to OM i.e. crop residues, re-enters the cycle through
mineralization by soil micro-organisms (Canfield et al., 2010). In the mineralization
process organic N is transformed into ammonium (NH,*). Immobilization is an
opposite process where inorganic N is being used and bound to plant or microbial
biomass (Jansson and Persson, 1982).

The main microbial processes (65%) contributing to N, O emissions are anaerobic
denitrification, and aerobic nitrification that produces N,O as a side product when
oxygen (O,) is limited in the soil (Doran, 1980; Groffman, 1984; Six et al., 2002,
Smith et al., 2003). Denitrification is thought to be the most significant one in
agroecosystems contributing to N,O emissions (Ball et al., 1999; Smith and Conen,
2004; Monteny et al., 2006). It is a reduction process where nitrate (NOB') is
reduced to nitrite (NO,") and further to N,O and finally N, (equation 1, Smith et
al., 2003). This process can be extremely quick since after soil O, is consumed
by roots and microbes, NO, and NO, are the best electron receivers in the soil.
However, denitrification can also occur when O, is present (Smith et al., 2003).

NO, > NO; > NO +N,0 > N, (1)

In nitrification, NH,* or nitrogen from organic nitrogen compounds, is
transformed in an aerobic process first into NO, and further oxidized into NO, as
shown in equation 2 (Canfield et al., 2010). If the soil O, levels drop the ammonia
oxidizing soil bacteria can use NO, as an electron receiver and reduce it to nitric
oxide (NO) and N,O. This is called denitrification of nitrifying bacteria (Smith et
al., 2003).

NH,* > NH,0H > NO, (N,0) > NO (2)

Denitrifiers consist of more than 60 known genera of Bacteria and Archaea as
well as some fungi, protozoa and benthic organisms (Demanéche et al., 2009). In
addition to soil nitrate and O, level, soil pH, temperature, moisture content and
the quantity and quality of SOM, all control the denitrification process (Gregorich
et al., 2005, Johnson et al., 2007). Due to this high spatial and temporal variability
of these emissions, it is hard to calculate accurate estimates in a national, or even
on a field, scale. In addition, the boreal climatic conditions add complexity to the
calculations with frequent freeze-thaw cycles and a short growing season (Regina
et al., 2013).
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Currently, on average, only about 50% of added N gets utilized by the growing
plants in agroecosystems while the other half is vulnerable to be leached out of the
root zone or emitted to the atmosphere as N20 and N2 (Erisman et al., 2007).
Nutrient use efficiency is even lower, typically below 40%, for wheat, rice and maize
which currently use about 50% of the globally added fertilizer (Ladha et al., 2005;
Canfield et al., 2010). In Finland a meta-analysis found an average N uptake of 36%
for wheat and barley and 43% for oat (Valkama et al., 2013). Therefore, N-efficient
agriculture that produces proper yields with minimum nutrient losses is considered
one of the best ways to mitigate high N20 fluxes (Snyder et al., 2009).

Earthworm feeding enhances litter decomposition through increasing the
surface area of SOM (Ingham et al., 1985). Smaller organic compounds and mineral
nutrients are then available for other soil microorganisms or plants to use. For
example, James (1991) showed that 10—12% of the yearly plant N uptake in a tallgrass
prairie was present in earthworm casts produced in one year. Similarly, Cortez et
al. (2000) reported a significant increase in the quantity of inorganic N in the soil
in the presence of earthworms. This indicates that, in addition to other soil fauna,
earthworms have an essential role in supplying available N to the plants, and thus
facilitate crop production in agroecosystems (Lubbers et al., 2011). Earthworms
can modify N cycle also in other ways, for example, offering ideal conditions for
microbial nitrification and denitrification to occur within their guts, casts and
burrow walls (Drake and Horn, 2007; Costello and Lamberti, 2008) potentially
leading to increased N,O emissions from soils as a negative side effect of enhanced
N mineralization (Lubbers et al., 2013).

1.2 CLIMATIC EFFECTS OF MANAGEMENT PRACTICES
IN CEREAL CROP PRODUCTION

1.21 MINIMUM TILLAGE PRACTICES

Minimum tillage practices, which include both reduced tillage (RT) and no-till (NT),
are being increasingly adopted in order to reduce labor costs, energy use and to
preserve water and soil C as compared to conventional tillage (CT), the practice with
annual topsoil turnaround (Cole et al., 1997). In NT agriculture the crop is sown
into the ground without any prior tillage and RT (shallow stubble cultivation) is a
management practice between CT and NT disturbing the soil to a shallower depth
compared to CT. At a global scale, the adoption of NT has increased more than
230% in the latest decade, reaching 111 million ha in 2009 (Derpsch et al., 2010).
This represents approximately 8% of total arable land in the world. In Europe,
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the adoption of NT has been clearly slower than, for instance, in North and South
America (Soane et al., 2012). In Finland, the area of agricultural land converted
to NT, has, however, increased rapidly and is estimated to have reached over
150,000 ha in only a little over ten years after it was introduced to farmers (Tike,
2011). About 13% of the annually sown area is now under NT and 25% under RT.

Minimum tillage practices increase C sequestration in most parts of the world
by increasing soil aggregation and decreasing mineralization (Abdalla et al.,
2013). When the disturbance of the soil decreases and the soil fauna changes after
implementing NT practice, the amount of C-rich macroaggregates begins toincrease
(Six et al., 2004). Especially microaggregates within macroaggregates (mM), a soil
fraction between 53-250 um, can store a substantial amount of SOC, which is well
protected against physical disturbance, and can represent the majority of the C
sequestration potential observed in minimum tillage (Denef et al., 2004; Six and
Paustian, 2014). Denef et al. (2004) found that over 90% of the difference in SOC
content between CT and NT management practices was associated with the mM soil
fraction. Increased aggregate stability as a result of NT management practice has
been found especially in the tropics (Lal et al., 1999; Bayer et al., 2006; Maia et al.,
2010) and temperate regions of the world (Lal et al., 1997). According to Freibauer
et al. (2004) the potential for management practices to sequester SOC in European
(EU15) agricultural soils, that on average are currently depleted of soil C, is 0.3—0.4
+ 0.1 Mg Cha'yr* and < 0.4 Mg C ha* yr, for NT and RT respectively, which are
in the same range as the estimate of 0.2—0.4 Mg C ha yr for conservation tillage
practices reported by Watson et al. (2000) for Australia, USA and Canada.

Conventional tillage, in which the soil is usually plowed to a depth of 20 cm, is
considered a practice that enhances losses of SOC (Martins et al., 1991; Puget and
Lal, 2005; Wright and Hons, 2005). The turnover rate of SOM increases under
intensive tillage (Six et al., 2000), soil aggregation slows down and decomposition
rate of OM increases (Dolan et al., 2006). Tillage induces several factors affecting
these processes including direct physical disturbance due to plowing and indirect
effects through soil exposure to wet-dry and freeze-thaw cycles at soil surface
(Paustian et al., 1997a), changes in soil microclimate and microbial community as
well as litter placement (Holland and Coleman, 1987). However, recent studies have
challenged the view of minimum tillage practices increasing soil C sequestration for
cold, humid regions of the world and shown that this may be true only in relatively
arid climates (Vandenbygaart et al., 2003). Also, CT practice may not decrease the
SOC stocks as quickly in cool and humid climatic regions (Gregorich et al., 2005;
Hermle et al., 2008).

N,Ois a greenhouse gas approximately 300 times more potent than CO,, and it
hasbeen estimated that its increase under NT could offset 75—-310% of the advantage
gained from C sequestration under NT (Li et al., 2005). It was estimated that
if all the European agricultural soils that could be converted to NT adopted this
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management practice, N,O emissions would increase by the equivalent of 20.5 Tg
of C emitted per year in comparison to CT (Smith et al., 2001). This is due to NT
soils often exhibiting a more dense soil structure (Tebriigge and Diiring, 1999;
Schjenning and Rasmussen, 2000) and higher moisture content (Sharratt, 1996;
Gregorich et al., 2008), which favor the activity of anaerobic denitrifying bacteria.

Field measurements have shown great variability in N,O emissions under NT or
RT compared to CT depending on different soil types and climatic conditions (Aulakh
etal.,1984; MacKenzie et al., 1998; Ball et al., 1999; Elmi et al., 2003; Kaharabata et
al., 2003; Chatskikh and Olesen, 2007; Beheydt et al., 2008; Chatskikh et al., 2008;
Ussiri et al., 2009; Abdalla et al., 2010). The different duration of the experiments
may partly explain the contradicting observations; Six et al., (2004) reported results
of a meta-analysis indicating increased N,O emissions during the first years after
converting to NT, with emissions reducing back to normal levels or less in humid
climate after 20 years of NT. Rochette (2008), on the other hand, argued that N,O
fluxes only increase from poorly aerated soils under NT, especially in cool, humid
climates. Grandy et al. (2006) found that N, O fluxes did not increase under NT in a
10-year study and only offset 56—61% of the C sequestered on loamy soils in south-
western Michigan. However, data on the long-term effects of different management
practices on emissions of N,O in boreal climate are scarce.

Effects of earthworms are especially interesting in long-term minimum tillage
settings where more organic residues are available on the soil surface or within
the top soil layer. Conversion from CT to NT or RT have been shown to increase
earthworm diversity and abundance (Clapperton et al., 1997; Chan, 2001), including
L. terrestris, that benefits when its vertical home burrows are not disturbed and
residues remain available (Kladivko, 2001). This is also true in Finland where
NT increased both the earthworm biomass and number of individuals under NT
compared to CT (Visa Nuutinen, unpublished results).

1.2.2 STRAW MANAGEMENT

All of the observed differences in SOC content and C sequestration potential in
agroecosystems cannot be directly earmarked to tillage effects. Residue stratification
within the soil profile, soil compaction, yield and erosion levels, for example, can
add to the divergence between SOC levels (Yang et al., 2013). As SOC content
largely depends on the C inputs and decomposition rates of residues in the soil,
straw management practices can play a key role in determining the C sequestration
rates of a particular field. Straw retention in crop fields has been shown to increase
soil aggregation and build-up of SOC depending on the quality and quantity of the
residue application (Chivenge et al., 2007) while straw removal can decrease SOC
compared to straw retention (Rasmussen and Parton, 1994; Katterer and Andrén,
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1999; Mann et al., 2002). However, the magnitude of the potential C sequestration
following straw retention depends on climatic and soil conditions, like temperature
and soil moisture content (Curtin and Fraser, 2003; Powlson et al., 2011).

In Europe, burning of harvest residues used to be common practice but is now
banned in most countries. Combustion for energy or partial combustion to biochar
may become more common in the future, possibly affecting straw retention rates
on crop fields (Funke et al., 2013). In the tropics, residue burning is still a common
practice to enhance nutrient mineralization. However this practice is known to
eventually lead to nutrient loss and reduced soil fertility (Hemwong et al., 2008)
in addition to causing a significant amount of air pollution. It can also be harmful
to beneficial soil fauna and microorganisms (Wuest et al., 2005; Jain et al., 2014).

1.3 OBJECTIVES OF THE STUDY

In Finland, cultivated soils have been evaluated to lose SOC during the last decades
(Heikkinen et al., 2013) while new cereal crop management practices, like NT and
RT, have started to gain in popularity (Tike, 2011) and climate change has already
increased the average temperature and precipitation in the country (Tietédviinen et
al.,2010). These are huge landscape scale changes affecting Finnish food production
in a fundamental way. Monitoring of SOC levels and N,O fluxes across landscape
units and over time is crucial for the accurate assessment of spatial and temporal
variations in SOC pools and N, O fluxes (Hartemink et al., 2014). The aim of this
thesis was to gain better understanding about the changes in soil C dynamics and
N, O emissions as affected by tillage practice in the boreal region and the climatic
implications of the different management practices. The changes under NT and
RT compared to CT are partly mediated through soil fauna and residue placement
effects. Hence this project studied the effects of an anecic earthworm, L. terrestris,
and straw management on C sequestration potential and SOC stock. Measurements
of several environmental and soil parameters were taken to elucidate the underlying
factors controlling the observed changes under the different management practices.

The objectives of the study were:

1) To measure the SOC stocks under NT, RT and CT and more specifically to
study the composition of soil aggregates and the distribution and amount of
SOC within the studied soil fractions in boreal agroecosystems (II, IIT).

2) To quantify the annual cumulative N,O flux under NT, RT and CT in different
soil types and study the short-term effect of soil plowing on the temporal N,O
fluxes (I).
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3) To link changes in the soil environment (i.e. soil moisture and temperature)
to the observed differences in N,O emissions under the different management
practices (I).

4) To determine the effects of straw management practices and L. terrestris to
C sequestration potential (III, IV).

5) To assess whether NT and RT are notable options compared to CT to mitigate
climatic effects of cereal crop production in boreal, humid climatic conditions
(1, II, 111, IV).

The main hypotheses of the study were:

1)  Due to the humid, cold climate NT and RT management practices would not
sequester C in the topsoil (II, III, IV).

2) NT and RT would increase soil aggregation level (II, III).

3) N,O emissions would be higher under NT and RT compared to CT (I).

4) L.terrestris densitywould be increased in RT and areas of L. terrestris middens
would have a higher soil aggregation level, more macroaggregate-occluded
microaggregates and associated SOC; thus adding to C sequestration potential
(I1L, IV).

5) Straw retention would increase total SOC and soil aggregation level (IIT).
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2. MATERIAL AND METHODS

2.1 STUDY SITE FEATURES AND ENVIRONMENT

This study took place at five different locations around the most heavily used
agricultural area in Finland. Sites 1, 2 and 5 were located in Jokioinen (60°49’N
and 23°30’E) in southern Finland and maintained by Natural Resources Institute
Finland. Site 5 was a long-term experimental field established in 1983 (III). Site
3 was located in Vihti (60°21’N and 24°22°E) and one field pair (site 4) in Sakyla
(60°58N and 22°31’E) in southwestern Finland (I, IT and IV) (Fig 4). Sites 1—2
were field experiments with a randomized complete-block design (plot size 250
m? and 240 m? respectively) with four replicates of each soil tillage treatment (CT,
NT and RT) (I, II, IV), site 3 was a field experiment with a randomized complete-
block design (plot size 75 m?) with four replicates of CT and NT treatment (I, II),
and site 5 a field experiment with a randomized complete split-plot block design
(plot size 60 m?) where the main-plot treatments (four replicates) consisted of
three straw management practices; straw retained, straw removed and straw burnt,
and the split-plots had two soil tillage treatments (CT and RT) (III). The fields of
site 4 belonged to neighboring farmers (four replicated measurement sites/ field,
plot size 100—250 m?) and consisted of CT and NT treatments (I, II, IV). Different
sites had been under the different treatments for 8 (sites 1 and 3), 9 (site 2), 10
(site 4) or 30 (site 5) years. Soils at sites 1—2 and 5 were classified as Vertic Luvic
Stagnosol (FAO, 2014), at site 3 as Vertic Cambisol and at site 4 as Eutric Regosol
(FAO, 2006). Mean annual precipitation ranged from 614 (site 4) to 647 mm (site
3) and mean annual temperature from 4.6 (sites 1, 2, 3 and 5) to 4.8°C (site 4)
(Reference period 1981-2010, Pirinen et al., 2012).

Every autumn (September/October), the soil was mouldboard ploughed to
a depth of 20—25 cm on all CT plots and soil was stubble cultivated with tined
cultivator to 10—15 cm on RT plots. In spring, CT and RT plots were first leveled
by a harrow and then rotary or S-tine harrowed to 4—5 cm depth to prepare the
seedbed. Spring barley (Hordeum vulgare) was cultivated at sites 1 and 2 during
all study years. At site 3, spring oilseed rape (Brassica rapa subsp. oleifera) was
cultivated during the 2008 growing season, spring wheat (Triticum aestivum) in
2009 and spring oat (Avena sativa) in 2010. Spring barley and spring oilseed
rape were cultivated at site 4 during the experiment years. Different spring or
winter cereals were cultivated at site 5 since 1983. All treatments at all sites were
combisown (drilling and fertilization in the same time) in May. The whole annual
fertilizer application (between 70—110 kg of N ha yr*) was placed during sowing.
All treatments at sites 1 and 2 received 110 kg of N ha* yr* in 2008 and 100 kg of
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N ha yr* in 2009 and 2010. Treatments of site 3 received 105 kg of N ha'yr* in
2008 and 2009 and 120 kg of N ha*yr* in 2010. Site 5 received 9o—110 kg ha' N
annually during the 30 year experiment. Granular ammonium nitrate NPK fertilizer
was used, except at site 4 where liquid fertilizer (Urea 32, 70-80 kg of N ha yr)
was used in the NT plots and the fertilizing level was lower compared to CT (83-96
kg of N ha* yr) according to farmers experience on the need of N fertilizer on this
plot. All sites were harvested in August. At site 5, depending on the straw treatment,
chopped harvest residues were left on the field, removed or burned before tillage.
Yield information was gathered from all study sites.

| 25°E

SAKYLA |
a JOKIOINEN
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/ <™ I

Figure 4. Locations of the different study sites across southern Finland.
Study sites 1-2 and 5 were in Jokioinen, site 3 in Vihti and site 4 in Sakyla.

2.2 SOIL PARAMETERS AND ANALYSIS

2.21 BACKGROUND VARIABLES AND SOIL SAMPLE COLLECTION

Awiderange of key background variables that were measured regarding the different
studies are shown in table 1. Daily air temperatures and precipitation were measured
at study sites 1—4 (I: Fig 1). In addition soil chemical composition was measured
at site 5 (III: Table 1).

21



Table 1. Measured additional soil and environmental parameters by study site are referred with
roman numerals indicating the original paper they are published in.

Site 1 Site 2 Site 3 Site4  Site 5

Soil temperature I I I I -
Water-filled pore space I I - I -
(WFPS)

Mineral N content I I I I 111
Potential denitrification I I I I -
Depth of frost I I - I -
Soil bulk density LILIV LILIV LI LILIV 1
Bulk SOC LILIV LILIV LI LILIV 1
Total N 1 I I I -
Earthworm burrows I I I I -
L. terrestris midden density - - - - I
Microbial C - - - - 1T

Samples for physical soil fractionation from CT, NT and RT treatments were
taken in October 2009 after harvest but before tillage operations at study sites 1—4
from a 0—20 c¢m soil layer (IT). The soil samples were taken with a 3 cm auger.
Ten randomly taken samples from each plot were pooled together. Samples were
passed through an 8 mm sieve before they were air dried and stored. Soil samples
from site 5 to study the effect of different long-term straw and tillage management
practices were collected in early June 2013 from five soil layers: 0—5, 5-10, 10—15,
15—20 and 20—40 cm as ~20 soil cores pooled to one sample per layer per plot.
Samples were stored air dried except the samples for microbial biomass and mineral
N determination which were stored at -18°C. Soil physical fractionation was done
for the soil layers 0—5 cm and 15—20 c¢cm. In addition SOC was determined in the
20—40 cm layer. Soil bulk density in the layers 0—5, 5-10, 10-15 and 15—-17.5 cm
was determined using the Kopec corer with a diameter of 5 cm.

Visibly clear L. terrestris middens were sampled from the top of the study fields
at sites 1, 2 and 4 in September 2010 about a month after harvest to study its
effects on soil aggregation and SOC content (IV). Out of the 16 earthworm species
that exist in Finland, L. terrestris is the only anecic earthworm species (Terhivuo,
1988). Thus, its middens are easily identifiable. Also, at the time of the field work
the conditions for observations were favorable because in all study plots the soil
surface had remained intact and the straw residue had been left in all plots. At the
sites of high L. terrestris density majority of the straw had been gathered by the
worms which made the middens distinct and easily observable. The soil samples
were taken from earthworm middens and surrounding bulk soil to a depth of 5
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cm with a 5 cm diameter soil corer. The midden soil samples included the burrow
entrance of L. terrestris and were comprised mostly of soil, casts and straw. The
bulk soil samples represent the soil without L. terrestris midden-burrow-complexes
and were taken at least 15 cm away from any visible middens. Since the earthworm-
created structures can last for decades and can therefore be considered fairly stable
(Hagedorn and Bundt, 2002), we assumed bulk soil to show less earthworm related
effects on SOC in comparison to midden soil with high present earthworm activity.
In total, 16 midden soil —bulk soil pairs were sampled per treatment (midden vs.
bulk) and per site. Four midden soil samples were combined in each location and
the same was done for the bulk soil samples. The final amount of repetitions was
four samples per treatment per study site. Soil samples for the determination of
soil bulk density were taken from the 0—5 soil layer once in 2010.

2.2.2 SOIL FRACTIONATION METHOD

The aggregate size distribution was analyzed by separating different soil fractions in
two stages, wet sieving and microaggregate isolation, following a protocol developed
by Six et al. (2000) based on a wet sieving method by Elliott et al. (1986) (Fig 5) .
The field moist soil samples were sieved carefully without breaking the soil structure
through an 8 mm sieve and then air-dried. A subsample of 80 g was taken for the
wet sieving process which was done through a series of three sieves that separated
the samples into four different soil fractions; large macroaggregates (LM; >2000
um), small macroaggregates (sM; 250—2000 um), microaggregates (m; 53—250 um)
and silt and clay (s+c; <53 um). Prior to wet sieving the samples were submerged
into deionized water on top of the 2000 um sieve for a period of 5 min to enable
slaking which breaks down the unstable aggregates with pressure buildup. The
sieving was done by manually moving the sieve up and down 50 times during a 2
min period. The sieve was backwashed and the fraction remaining on top of the
sieve was collected in an aluminum pan and oven dried in 60°C. Organic material
floating on the water after sieving with the 2000 pm sieve was discarded as it is
not considered SOM by definition. The sieving was repeated with the remaining
sieves by pouring the water and soil from the earlier sieving through the next one.

Soil fractions within LM and sM fraction (or combined M) were further isolated
with a method described in Six et al. (2000) (I1, I11, IV). The goal of this method was
to break down the macroaggregates while avoiding the breakdown of the released
microaggregates. The subsample was put into deionized water on top of a 250 um
mesh and shaken in a reciprocal shaker with a continuous flow of running water
with 50 stainless steel beads (4 mm diameter) until all the macroaggregates were
broken down (2—3 min of shaking depending on soil type). The microaggregates
and other released material went through the mesh screen with the running water
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ending up on a 53 um sieve that was sieved as in the wet-sieving method. As a
result three different fractions were separated: coarse particulate organic matter
(cPOM; >250 um), microaggregates within macroaggregates (mM; 53—250 pm)
and silt and clay (s+cM; <53 um).

| Wet sieving, Part A |

' ‘ Silt+Clay (s+c)
Large l l <53um
macroaggregates
(LM) >2000um Small Microaggregates
macroaggregates (m)
(sM) 53-250um
l 250-2000um

Microaggregate Isolation,
Part B & | wicroaggregates

‘ l (mM) 53-250pum

Coarse particulate -
organic matter Silt+Clay (s+cM)

(cPOM) >250um <53um

Figure 5. Soil fractionation protocol.

The mean weight diameter (MWD) of the aggregates was calculated according to
Van Bavel (1949). Carbon content of all fractions from wet sieving and microaggregate
isolation were analyzed with a CN-analyzer (CN-2000 LECO Corp., St Joseph, MI,
USA (II, ITI) and PDZ Europa ANCA-GSL/20-20 isotope ratio mass spectrometer
Sercon Ltd., Cheshire, UK (II) or Costech Instruments, ECS 4010 (IV). The SOC
content of the different aggregates and total SOC stock calculations for all study sites
were based on the equivalent soil mass method which takes soil bulk density into
account (Ellert and Bettany, 1995; Lee et al., 2009) (I, II, III, IV). Organic matter
content was derived from C content using the Van Bemmelen factor of 1.724 (III).

2.3 N,O FLUX MEASUREMENTS

A closed chamber technique was used to measure N,O fluxes at sites 1—4 from June
2008 to June 2010 (Fig 6) (I). The method was adapted from Regina and Alakukku
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(2010). Onebase frame made of steel (60 cm x 60 cm) for the gas collection chambers
was installed in each of the four replicate plots. The measurements were done with
aluminum chambers, each closed with a water seal that was formed when a groove
on the upper end of the frame was filled with water to ensure the gas-tightness of
the chamber. In winter, NaCl was added to the water to avoid ice formation. The
base frames were removed only during field operations, like tillage or harvesting,
and installed back at the same locations afterwards. Venting tubes were installed
on the chambers to minimize pressure changes (Hutchinson and Livingston, 2001).
The emissions were measured biweekly, one field during one day between 10 a.m.
and 2 p.m. and all fields during the same week. In October 2009, more frequent
measurements were done to study the short-term effects of tillage operations on
N,O fluxes at sites 1 and 2. The first measurements were done between 6 and 10
hours after tillage operations, followed by measurements 24 h, 48 h, 4 days and 77
days after soil tillage.

Figure 6. Gas sampling at site 1in Jokioinen in October 2009.

To measure N, O flux, three gas samples were taken during a 30 minute chamber
enclosure at 0, 15 and 30 minutes. At each time point, a 20 ml sample was taken
with a plastic syringe (Becton, Dickinson and Company, Franklin Lakes, NJ, USA)
and transferred immediately into a pre-evacuated 12 ml glass vial (Exetainer, Labco
Ltd., High Wycombe, UK). Gas samples were analyzed within 72 hours of sampling
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using a HP 6890 Series gas chromatograph. Standard gas mixture (AGA Gas AB,
Liding0, Sweden) of known concentrations of N,O was used for diluting a calibration
curve with seven points. The gas production rate was calculated using equation 3:

F=AC/At*V/A 3

where C is the concentration of N,O, t is time, V is chamber volume, and A is the
chamber area. Calculation of the amount of N in the sample was based on the ideal
gas equation. The chamber temperature was measured during each gas sampling.
The cumulative annual fluxes for each management practice were calculated by
linearly interpolating the emissions between consecutive sampling days. The fluxes
were averaged by calculating the cumulative flux value for each chamber separately
and then averaging the treatments in each field. The emission rates of N,O were
calculated as the mass of N in N O (N,O -N).

2.4 DECOMPOSITION RATE OF CROP RESIDUES

Barley straw (Hordeum vulgare) and pea residue (Pisum sativum) bags were
installed at study sites 1, 2 and 4 from November 2009 to September 2010 under
two different tillage practices, CT and NT, to three different depths: on the top of
the soil (0 cm), buried 10 cm deep, and buried 20 cm deep, (IV). Residue bags (10
x 15 cm) were made out of polyester mesh and 5 g of air dried, untreated barley
straw or pea residue (peas were removed), was put into each bag. The bags with
the crop residues in them were oven dried overnight at 40°C for a final weight. The
bags were installed in two rows four meters from the end of the study plots and
one meter from each side of the plots. The two rows were 50 cm apart from each
other. We had four barley straw bags at each depth and two pea residue bags at
each depth for a total of 18 residue bags at each study site. Half of these bags were
pulled out at the end of April before the start of the growing season and half were
left in the study plots until the end of the growing season (September). Afterwards
the residue bags were air dried for a week, the residue samples then moved to paper
bags and oven dried at 40°C before grinding the samples for analysis.

We calculated the loss on ignition (LOI) from the original barley straw and pea
residue, field residue bag samples as well as soil samples by igniting the samples at
550°C for 5 days in a high temperature muffle furnace. This leaves the mineral part
of the soil as ash while organic matter is burnt. The coefficient calculated from the
original crop residues was used to correct the calculations of the amount of barley
straw and pea residue that was decomposed while the bags were installed in the field.
The results were also corrected for the OM in the residue bags originating from soil.
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3. RESULTS

3.1 SOIL AGGREGATION AND SOIL ORGANIC CARBON

311 TOTAL SOC STOCKS

The total SOC stocks were significantly different between management practices
only at site 5 where the mean SOC stock in the 0—15 cm soil layer was lower in RT
compared to CT with averages across the three straw treatments of 46.8 Mg C ha
and 47.6 Mg C ha?in RT and CT respectively (Table 2) (IIT). Straw treatment had
no effect on total SOC stocks and the difference between the tillage practices did
not vary with straw treatment (III). L. terrestris midden soils had a significantly
increased concentration of total SOC in the 0—5 ¢m soil layer when analyzed across
all sites compared to surrounding bulk soil (Table 2) (IV).

31.2 TOPSOIL AGGREGATION

Mean weight diameter (MWD), which is an indicator of aggregate stability at the
time of sampling, of the whole soil had a decreasing trend in the order of NT >
RT > CT at all study sites, including within different straw management practices
(Table 2) (II, III). Statistically significant differences were found at sites 1 and 4
between CT and NT (II). RT treatment differed significantly compared to CT only
at site 5 where RT increased the MWD (III). The largest relative difference between
treatments was found at site 4 where MWD in NT was twice as high compared to
CT. Soil type also affected the general aggregate stability as MWD was higher at
sites 2 and 3, with the MWD reaching up to 2.1 mm in NT at site 2, while the lowest
values were found in the coarse soil at site 4 where the MWD of CT and NT was as
low as 0.28 mm and 0.58 mm, respectively. MWD was significantly higher in the
L. terrestris middens versus surrounding bulk soil at the clayey sites 1 and 2, but
not at the coarse textured site 4 (IV).

No-till increased the amount of macroaggregates (LM and sM combined) at site
4 (I1). Reduced tillage significantly increased the percentage of macroaggregates and
decreased the percentage of m and s+c fractions at site 5 (IIT). More LM fractions
were found in the L. terrestris midden soil than in the surrounding bulk soil at
study sites 1 and 2 but less sM fractions at site 2 (IV). The greatest portion of LM
fraction in middens was found at site 2 where they represented as much as 35%
of the soil mass (II).
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Small macroaggregates were the dominant soil fraction in CT and NT at sites 2
and 3 representing more than half of the sample size (53% and 55%, respectively)
and under NT at site 4, whereas free microaggregates dominated at site 1 and under
CT at site 4 occupying 47% and 65% of the soils, respectively (II). At site 5 the deeper
soil layer (15—20 cm) had proportionally more LM and sM fractions than the topsoil
layer (0—5 cm). However, the difference in the aggregate composition between the
two soil layers tended to be smaller when straw was retained in the soil compared
to when straw was removed or burnt (IIT). The amount of free microaggregates in
the soil was significantly lower in midden soil compared to bulk soil at site 1 (IV).

The composition of macroaggregate-occluded soil fractions was less variable with
mM fraction being the dominant fraction at all study sites under the different tillage
practices (IL, III). Site 3 had relatively the largest amount of mM fraction within
macroaggregates (g mM fraction g* M) with 63% in CT and 64% in NT. However,
NT or RT did not significantly increase the amount of mM fraction present in the
0—20 cm soil layer compared to CT at sites 1—4 (II). At site 5 there was evidence
that the two measured soil layers deviate from each other in terms of aggregate
composition with significantly more cPOM in the 15—20 cm soil layer compared to
the top layer (0—5 cm) (III). Within the L. terrestris midden soil the proportional
weight of cPOM from LM fractions was significantly higher compared to bulk soil
at site 2 (IV). On the other hand, the proportional weight of mM formed within LM
fractions was significantly lower in midden soil than surrounding bulk soil at site
2. Within sM fraction, the proportional weight of cPOM was higher in the middens
versus surrounding bulk soil at site 2 and lower at site 1 (IV). The proportion of
mM fraction within sM fraction was significantly higher in the middens at site 1,
lower in the middens at site 2 and without a difference at site 4 (IV).

3.1.3 AGGREGATE-ASSOCIATED C IN TOPSOIL

Enrichment of SOC was observed in the LM fraction at sites 1, 2 and 4 (Table 2)
(IT). This effect was diluted at some sites by a loss of SOC in sM with a statistically
significant depletion of SOC content at site 3. SOC content in both m and s+c
fraction decreased significantly in NT compared to CT at sites 2 and 4 (II). RT had
no effect on the SOC content compared to CT (Table 2) (II, III). Enrichment of
SOC in L. terrestris middens was found only in LM fraction after wet sieving with
significant differences at sites 1 and 2 (Table 2) (IV).

The amount of SOC in mM fraction increased significantly at site 4 in NT
compared to CT (Table 2) (II). No significant differences were found between RT and
the other two treatments. Increases in SOC content under NT compared to CT were
also found in macroaggregate-occluded cPOM fraction at site 4 and s+cM fraction
at sites 1, 2 and 4 in (IT). We observed an increase in SOC content in L. terrestris
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middens compared to bulk soil in cPOM, mM and s+cM within LM fractions at
sites 1 and 2 and cPOM at site 4 (Table 2) (IV). Within sM fractions, a decrease of
SOC in middens was found in mM fraction at site 2 (IV). However, a redistribution
of SOC into bigger aggregates was detected in L. terrestris middens at all sites.

3.2 N,O FLUXES AND RELATED ENVIRONMENTAL
PARAMETERS

Largest N,O fluxes were observed between April and July (I: Fig 4). High peaks
in April are due to snow melt and thawing of frozen soil. Larger peaks in May
and June occurred after combined sowing and fertilization as well as rain events.
Smaller peaks in N,O fluxes were observed also after individual high rain events.
Tillage in the autumn of 2009 did not have any statistically significant effects on
the observed N,O fluxes. The lowest hourly flux was observed at site 2 where the
flux was typically below 0.05 mg N,O-N m™ h™. In general, average fluxes ranged
from 0.05 to 0.14 mg N,O-N m™ h* for the clayey soils and from 0.06 to 0.09 mg
N,O-N m h for the coarse soil.

Annual cumulative emissions of N, O for years 2008 to 2009 and 2009 to 2010
ranged from 2.4 kg N,O-N ha*yr" to 10.2 kg N,O-N ha*yr (Fig 7) (I). The lowest
annual N,O flux was found in the first year in CT at site 2 and the greatest in the
second year in NT at site 3. The largest difference in annual N,O fluxes between
management practices was observed in the first year at site 1 where N,O emissions
were 150% and 90% greater in NT soils compared to their CT and RT counterparts,
respectively. Emissions of N,O were significantly higher in NT compared to CT at
site 3 and lower at site 4 (I). Cumulative N,O emissions in RT were significantly
lower compared to NT at site 1 (I).

There were no differences in the potential denitrification between the tillage
treatments but statistically significant differences were found between different
study sites (I), the values being greatest at site 2 and lowest at site 4. Significant
differencesin NOB'between treatments were only found in October 2009 at site 4. In
20009, all fields had more NH W left after harvest in NT compared to CT treatments.
Significant differences in the NH,* levels were found at sites 1, 3 and 4. Highest
values of NO, after harvest were found at site 2 in 2008 and site 1 in 2009 and
the lowest values at site 3 in both studied years.
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Figure 7. Cumulative N,O-N fluxes (kg ha yr'+SE) for CT, RT and NT. Letters indicate
differences between treatments within each site at p<0.05 (Data from Sheehy et a/, 2013

).

No-till increased WFPS compared to CT during the growing seasons of 2008 and
2009 and was significantly different between management practices even though
temporal variation was relatively high (I). The highest peak of 87% WFPS was found
at site 2 after a heavy rainfall event. The average WFPS was between 45-59% in
CT while the average values in NT were between 53—71% (I). The frost went deeper
and developed faster in the fall in CT compared to NT. Depth of frost in RT was
between that of CT and NT (I). Soil temperature varied less in NT by being higher
during the colder periods of the year and slightly cooler during hot summer days (I).

The strongest correlations between N,O fluxes and environmental parameters
were found between WFPS, soil bulk density and earthworm burrows which all
had a significant positive correlation with the emissions (Table 3).

3.3 DECOMPOSITION RATE OF CROP RESIDUES

Barley straw decomposed significantly faster under NT compared to CT at sites 1
and 4 and pea residue at sites 1 and 2 (Fig 8; unpublished results). The average
decomposition rate was 57%, 56% and 59% at sites 1, 2 and 4, respectively, under
CT, and 65%, 62% and 60% at sites 1, 2 and 4, respectively, under NT.
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Table 3. Pearson correlations between different environmental/soil parameters and continuous
or cumulative N,O fluxes.

r R? p N
N,O flux (continuous)
Air Temperature -0.029 0.008 0.205 1974
Soil Temperature, 5 cm -0.048 0.009 0.068 1446
Precipitation -0.034 0.021 0.127 1974

Water-Filled Pore Space, 15 cm 0.554 0.307 <0.001 403
N,O flux (cumulative)

Soil Bulk Density, 0—20 cm 0.406 0.165 <0.001 64
Earthworm Burrows, 0.346 0.120 0.005 64
Soil Organic Carbon, 0-20 cm 0.156 0.017 0.190 72
Total Nitrogen, 0—20 cm 0.130 0.024 0.277 72
Nitrate (NO;), 0-20 cm -0.315 0.099 0.048 40
Ammonium (NH,"), 0-20 cm 0.325 0.106 0.041 40
Potential denitrification, 0-20 cm  -0.302 0.091 0.015 64
100
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Figure 8. Residue decomposition as % of the original mass of barley straw and pea under CT
and NT. Statistically significant differences between tillage treatments within different litter are
denoted by a star (and p-value) (Part of the data from Sheehy et a/, 2015 manuscript (IV)).
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4. DISCUSSION

4.1 CARBON SEQUESTRATION POTENTIAL
IN CEREAL CROP PRODUCTION

The common understanding is that reducing tillage intensity increases soil C stocks.
The relative C stock change factors used by IPCC (2006) for agricultural soils that
have been under NT or RT for over 20 years, are 1.15 and 1.08 for humid boreal
climate, for NT and RT, respectively. This means, for example, an increase of 8% in
soil C stock under RT in humid boreal climatic conditions during 20 years. Contrary
to this we found a decrease of total SOC in the topsoil layer of 0—15 cm in 30 years
under RT compared to CT (III) and no significant changes in the SOC content in
the topsoil layer of 0—20 c¢m in 10 years under NT or RT (II). This is in contrast to
most studies finding minimum tillage practices to sequester SOC from temperate
regions to the tropics and in various soil types, including a Spanish Aridisol (Alvaro-
Fuentes et al., 2009), two Brazilian Oxisols (Denef et al., 2007) and Alfisols in
Kentucky (Chung et al., 2008). However, in a study conducted in eastern Canada,
NT was found to decrease the SOC stock close to the depth of the ploughed soil
layer (Gregorich et al., 2009), and a study in France found no significant changes
in SOC content between NT, RT and CT in 41 years (Dimassi et al., 2014).

Relatively high soil moisture content may be a limiting factor for C sequestration
in humid and boreal climatic conditions favoring decomposition in Finnish
croplands. Thereis increasing evidence that a fairly low precipitation is a prerequisite
for high C gains in minimum tillage practices. This difference between arid and
humid regions was clearly shown in a data compilation in Canada where NT practice
increased soil C stock only in the more arid west (Vandenbygaart et al., 2003). In
addition, Dimassi et al. (2014) found a negative linear relationship between the
mean annual precipitation and C stock change in NT. The importance of aggregate
breakdown in the topsoil layer may be high in the boreal climate with frequent
winter freezing and thawing of the soil which will break down soil macroaggregates
created during the summer months (Le Guillou et al., 2012). Since the formation of
LM fraction and macroaggregate-occluded microaggregates is mainly driven by soil
biota (Six et al., 2006) not only the disruption but also the formation of aggregates
has a seasonal trend. One reason for the small differences in C sequestration rates
between the management practices found in this study could be that the effect of the
freeze-thaw cycles is significant enough to negate the positive effects of minimum
tillage or other management practices (VandenBygaart et al., 2003; Le Guillou et
al., 2012; Edwards, 2013).
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The results showed increased decomposition rate under NT compared to CT at
sites 1, 2 and 4. At site 5, the reduced amount of SOC, accompanied by increased
L. terrestris density, higher microbial C and mixing of residues within the topsoil
layer under RT, also point to an increased decomposition rate (III). The straw mixed
into the soil by the cultivator may be even more efficiently decomposed than the
plowed straw that enters deeper in the soil. Also, the high densities of L. terrestris
may have directly and indirectly accelerated the decomposition in RT, particularly
that of the surface residues, through the efficient consumption and incorporation
of straw (Bohlen et al., 1997). Angers et al. (1997) suggested that the decomposition
rate of crop residues incorporated deep into the soil slows down under CT due
to limited aeration under these climatic conditions. It is also possible that high
amounts of crop residues stratified in the topsoil in NT practice, accelerates microbial
activity (Hungria et al., 2009). In Finland the topsoil is usually also warmer and has
higher soil moisture content under NT compared to CT especially during fall and
winter months favoring higher decomposition (I). Some studies have shown that
rapid breakdown of newly formed soil aggregates may occur if increased amount of
earthworms also enhances the mineralization of polysaccharides and other organic
gluing compounds (Guggenberger et al., 1996; Ge et al., 2001). This highlights that a
faster decomposition rate under NT, and likely RT, possibly hinders C sequestration
rate under these management practices.

Traditionally clay soils are thought to encompass alower decomposition rate due
to physical and chemical protection, thus enabling SOC accumulation (von Liitzow
et al., 2014; Six and Paustian, 2014), but there are some studies contradicting this
by showing higher levels of decomposition in clay soils (Miiller and Héper 2004;
Dilustro et al., 2005; Wei et al., 2014). The results showed a significant increase in
the decomposition rate of pea residue in clayey textured site 2 versus coarse textured
site 4, thus highlighting the complicated nature of factors affecting decomposition
rate and C dynamics in soils (IV).

Agroecosystems under NT may also experience reduced yields which in turn may
negatively affect C sequestration rates due to reduced amounts of residue (West and
Post, 2002; Venterea et al., 2006; Blanco-Canqui and Lal, 2008). Reduced yields
were found at sites 1 and 2 where the average yield since transition has been 4%
and 12% lower during the years 2001—2010, respectively, under NT compared to
CT (II). This was also the case at site 3 where the average yield of the last decade
in CT was as much as 22% higher compared to NT. This might be one of the
key factors affecting the SOC depletion that was discovered in the sM fraction at
site 3 in NT compared to CT. Similar results have been reported by Follett et al.
(2001) and Lal et al. (1999) on Bojac soil with lower yields and reduced amounts
of residue returned to the field each season resulting in lower soil C content in NT
compared to CT. On the other hand, we found a significant loss of SOC under RT
compared to CT at site 5 regardless of straw management practice while yields did
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not differ significantly between RT and CT. It is possible that the root C inputs are
more dominant than shoot C inputs into the soil under minimum tillage practices
compared to CT (Rasse et al., 2005). It may also be that the C inputs matter less
than the decomposition rate of the soil.

There is a possibility that the clayey soils of sites 1—3 and 5, which had significant
C redistribution into bigger aggregates but no added SOC under NT or RT versus
CT, also had alow saturation deficit and therefore less potential to accumulate SOC.
High SOC content of clayey soils is generally acknowledged (Nichols, 1984; Wiseman
and Puttmann, 2006; Heikkinen et al., 2013) due to physical protection through a
network of smaller sized pores and chemical protection through stronger adsorption
of SOC on to the soil minerals (Chan et al., 2008; West and Six, 2008). Every
agroecosystem has its own equilibrium SOC stock and therefore a limit to saturate
added C (Stewart et al., 2007). A Canadian compilation of studies found that a C
content of >45 Mg ha* was limiting C gain in management changes (VandenBygaart
et al., 2003). Our study sites 1—3 had a range from 57 to 84 Mg C ha (0—20 c¢cm)
and site 5 an average value of 47 Mg C ha™ (0—15 cm). Also, long-term studies have
shown that soil C stock does not necessarily increase with higher C inputs (Paustian
et al., 1997b; Reicosky et al., 2002), and the efficiency to stabilize SOM decreases
in soils with high C levels compared to soils with lower C levels under the same
management practices (Campbell et al., 1991).

Several studies support the view of Six and Paustian (2014) that the mM fraction
serves as a diagnostic fraction for management induced changes in SOClevels (Denef
et al., 2004; Kong et al., 2005; Chung et al., 2008). Findings show that, of the
increase in SOC levels under NT compared to CT, 49—112% can be attributed to the
change in the microaggregate-within-macroaggregate C (mM-C) (Six and Paustian,
2014). In our study this was only supported by results from coarse textured site 4
where mM fraction gained SOC under NT. However, with no significant increase in
total SOC levels we cannot calculate the contribution of the change in mM-C. Even
though we saw a depletion or no change in the overall C stock at the clayey sites
(sites 1, 2, 3 and 5) under NT or RT, there was a higher level of larger aggregates
(increased aggregation level), and more SOC stored in the LM fractions (per unit
of LM) under NT at sites 1 and 2 compared to CT as well as more SOC stored in
the mM fraction in the top soil layer (0-5cm) under RT at site 5.

The contribution of earthworms to C sequestration is an intricate issue which has
been described as the “earthworm dilemma” arising from the simultaneous effect of
earthworms on C mineralization and stabilization (Lubbers et al., 2013). Based on a
meta-analysis of mainly relatively short term laboratory studies Lubbers et al. (2013)
concluded that earthworms do not affect soil SOC stocks but increase CO, emissions
by 33%. On the contrary, Zhang et al. (2013) challenged this view and claimed that
C stabilization by earthworms overrides their enhancing effect on mineralization.
The present study cannot clarify this controversy showing both positive and negative
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effects of earthworms in respect to climate. L. terrestris presence increases the
potential to store C within LM and mM fraction and, in clay soils, enhances the
aggregation level. However, the observed preferential C stabilization reached its
full potential only at site 1 where 99% of the difference in total SOC in the 0-5
cm soil layer between midden and bulk soil was associated with the C found in
macroaggregate-occluded microaggregates. At site 2 the corresponding number was
34%. At this site the increase in C found in mM within LM fraction was counteracted
by a decrease of C in the mM within the sM fraction. This highlights the importance
of this fraction as a microsite for C sequestration (Six and Paustian, 2014). On the
other hand, higher earthworm abundance at sites 2 and 4 under NT versus CT (Visa
Nuutinen, unpublished results) and higher L. terrestris density under RT versus CT
at site 5 (IV) possibly contributed to higher decomposition rates. However, Fonte
and Six (2010) argued that since most of the C in earthworm casts is associated with
macroaggregate-occluded microaggregates the rate of decomposition in these casts
would, with time, possibly decrease to a level below the level of non-ingested soil.

Some justified criticism has been given regarding the usefulness of aggregate
fractionation to understanding soil dynamics (Young and Ritz, 2000; Young et
al., 2001), but it has been argued that the isolation of aggregates has its purpose
as a complimentary tool in addition to other known techniques, like tomography
(De Gryze et al., 2006) or thin sectioning (Pulleman et al., 2005), by revealing
soil properties and dynamics that could not be seen by utilizing just one technique
(Six and Paustian, 2014). The comparison of the different techniques is important
for learning about the functioning of different organic binding agents in aggregates
of different stabilities. For example, a comparison between less destructive sieving
methods and slacking method (Kemper et al., 1985) has revealed the role of SOM as
a key binding agent to hold together microaggregates within macroaggregates (Six
and Paustian, 2014). Also, some of the sites in this study were fairly young giving
that the management practices were adopted only about a decade ago (sites 1—4).
Six et al. (2004) concluded that the positive effects of NT may not show until at
least a decade after the transition from CT, especially in humid climates. In addition,
majority of the SOC analyses were done from the soil layer of 0—20 cm (sites 1—4;
equivalent soil mass was taken into account) which may not be deep enough to
accurately measure the changes in total SOC content or to see the C stratification
effect on the topsoil under NT. At site 5 we changed our approach and sampled
both deeper into the soil and in increments to better capture the effect of depth.
However, most of the changes in SOC can be expected to happen in the affected
soil layer of 0—20 c¢m and the results will therefore give a good estimate of changes
happening in the studied agroecosystems. In addition, for the management practice
effects to be meaningful from a climatic perspective the changes in SOC levels
should be seen in the whole 0—20 cm soil layer even if stratification under NT is
predominantly happening in the top 5 cm soil layer.
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In current climatic conditions, tillage and straw management practices only have
aminor effect on Cdynamics in Finnish cereal cropping systems (Table 4). Increasing
winter temperatures (Pirinen et al., 2012; Jylhi et al., 2014) may increase the freeze-
thaw cycle frequency breaking down soil aggregates, and higher temperature and
precipitation (Pirinen et al., 2012; Jylha et al., 2014) could potentially lead to higher
decomposition rates. These changes may increase SOC losses from cereal cropping
systems in the future. However, NT management practice has been reported to be
advantageous with respect to erosion control in boreal areas (Borresen and Ulén,
1991; Puustinen et al., 2007). As one of the measures to decrease erosion and
therefore C and other soil fixed nutrient transport from land to watercourses, Rural
Development Programme for Mainland Finland 2014—2020 encourages increasing
the crop or crop residue covered area outside the growing season when erosion
and particulate phosphorus leaching peak (Ministry of Agriculture and Forestry,
2014; Puustinen et al., 2007). However, this phenomenon was not measured and
therefore its effect cannot be estimated in the scope of this study.

Table 4. Potential climatic effects of NT and RT compared to CT expressed as + increasing
emissions, - decreasing emissions and O no significant difference.

Site 1 Site 2 Site 3 Site 4 Site 5
NTvsCT RTvsCT NTvsCT RTvsCT NTvsCT NTvsCT RTvsCT
N,O 4 0 + 0 + - n.d.
Total SOC 0 0 0 0 0 0 1
SOC in mM 0 0 0 0 0 - -+
Decomposition + n.d. + n.d. n.d. + n.d

rate

n.d. = not determined

4.2 FACTORS CONTROLLING N,O FLUXES

The mean annual N,O-N emissions, from all sites and treatments combined, were
5.8 kg ha* yr* in the first year and 6.4 kg ha™* yr* in the second year (I), which are
a little higher than found in a compilation of N,0 measurements done between
2000-2009 in Finland with average fluxes of 3.5 kg N,O-N ha yr* under annual
crop production (Regina et al., 2013). However, our data includes NT management
practice contrary to the above mentioned results, with values that fall within the
reported ranges for mineral agricultural soils (0.8 kg N,O-N ha yr* to 24 kg N, O-N
hayr*in NT and 1.8 kg N,O-N ha yr* to 13.2 kg N,O-N ha yr* in CT) (Aulakh et
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al., 1984; MacKenzie et al., 1998; Ball et al., 1999; Kaharabata et al., 2003; Syvisalo
et al., 2004; Syvasalo et al., 2006; Chatskikh and Olesen, 2007).

In alignment with our hypothesis, NT increased N,O emission in the clayey
textured sites by 86% on average negatively affecting the net GHG balance (Table
4). Thus, for the clayey soils, the results are consistent with the results from similar
climatic conditions from Canada compiled by Gregorich et al. (2005) indicating that
NT increases N,O emissions from clayey soils in a humid climate. Six et al. (2004)
came to the same conclusion and added that the increase is most distinct during
the first decade after converting to NT, but the emissions from NT systems might
decrease after that. The study sites have been under NT for approximately 10 years
and may have still been experiencing the changes associated with conversion. A
long, continuous period of NT practices may gradually improve the soil structure
as more soil aggregates form and the biological activity enhances and adapts to the
new conditions improving, for example, the aeration of the soil. However, in an
experiment in France the N,O emissions did not decrease and were consistently
higher in NT compared to CT 32 years after the conversion (Oorts et al., 2007). N,O
flux data from site 4 with coarse soil texture, however, gave contrasting results, i.e.,
the emissions in NT were lower both years compared to CT. This has also been found
in an experiment established in Denmark on loamy sand soil in 2002 where N,O
fluxes measured from 2003 to 2005 were lower from NT compared to CT (Chatskikh
et al., 2008). Sand or clay content has been shown to often correlate with measured
N,O emissions (Chadwick et al., 1999; Bouwman et al., 2002; Freibauer, 2003).

Poor aeration accompanied with favorable soil moisture content and temperature
are the most likely driving factors of greater N, O emissions of the clayey soils under
NT. The higher soil bulk density at sites 1and 3 with lower micro- and macroporosity
(Regina and Alakukku, 2010) indicates that wet soil was less aerated in NT compared
to CT. Water-filled pore space (WFPS) was rarely above 60% in CT but in NT it
was more often above this threshold, which is thought to induce denitrification in
the soil (Linn and Doran, 1984). While WFPS was occasionally as low as 30% in
CT during the growing season, it stayed above 50% in the NT systems at sites 1
and 2, while the NT system on the coarse textured soil at site 4 had lower levels
of WFPS highlighting the better water holding capacity of clayey soils. Soil WFPS
explained the variability of N,O emissions better than precipitation. These results
are in accordance with the results of Rochette (2008) who concluded that N O
emissions are generally increased in NT in poorly aerated soils but not necessarily
in medium or well aerated soils with better drainage.

The average difference in annual N,O emissions between CT and NT was 2.9
and 1.4 kg N O-N ha* yr* in the first and second year, respectively, and reflected
differences in WFPS. This was very close to the average difference of 2 kg N,O-N
ha yr reported by Rochette (2008) on poorly aerated soils. However, it should be
noted that the differences between CT and NT at the different study sites ranged from
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-2.2t0 4.6 kg N O-N ha™ yr* on the coarse loamy soil and clayey soils, respectively.
Since the global warming potential of N, O is about 300 times greater than that of
CO, and there was no increase in the total SOC under NT, the higher emissions of
N,O in the clayey soils under NT are effectively having a negative effect on the net
GHG balance. The situation is reversed at site 4 where the positive net impact of NT
is twice as high as the negative impact of NT on the clayey soils. The farmer at site
4 reduced the N fertilizer rate (about 15%) in NT, which might partly explain the
lower emissions for this field. However, our data is too small to accurately calculate
the N,O losses related to the difference in N application. Also, at this site there was
different fertilizer types used in CT versus NT which reduces the comparability of
the treatments.

We observed a clear increase in N,O emissions after fertilization every year.
Sometimes there was a delayed effect probably due to lack of moisture in the soil
but the first rain events after fertilization triggered denitrification activity. Elevated
levels of N,O have been reported several weeks after fertilization events (Gregorich
et al., 2008; Zebarth et al., 2008). In support of findings in other studies (Maljanen
etal.,2003; Regina et al., 2004; Regina and Alakukku, 2010), our data also showed
large peaks in N,O fluxes after soil moisture content rose as a result of snow and
frost melt in the spring creating optimum conditions for denitrification. It has been
shown that thawing also accelerates microbial activity (Regina et al., 2004) and
increases amounts of NH_*, NO," and dissolved organic C in the soil (Herrmann
and Witter, 2002; Jacinthe et al., 2002). Jungkunst et al. (2006) reported that
agricultural lands that are characterized by regular freeze-thaw events are more
likely to have higher N, O—to—N-input ratios compared to similar soils characterized
by less regular frosting. Boreal soils may be even more susceptible due to the long
period of no plant uptake of N (Syvésalo et al., 2004). In this study, the winters were
cold with very few freeze-thaw events and winter-time emissions were relatively
low, about 40% of the annual emissions.

The presence of earthworms in the soil has been reported to accelerate the
denitrification by soil-derived bacteria (Drake and Horn, 2006). This was supported
by the results of this study with a significant positive correlation between the amount
of earthworm burrows and N, O emissions. Higher amounts of earthworm burrows
and N,O emissions were found in NT compared to CT at site 1, which might partly
explain the higher emissions in NT at this site.

In the face of global climatic change, Finland is expected to have warmer winters
and more annual rainfall (Pirinen et al., 2012; Jylhé et al., 2014), possibly introducing
more frequent freeze-thaw cycles and rain events, which could potentially lead
to increased occurrence of high N O emission peaks from agricultural soils. In
addition, NT cereal crop management practice is gaining popularity in Finland, and
as shown by our data, can potentially increase N,O emissions. Since the increase
of N,O emissions in NT appears to be closely related to soil aeration, mitigating
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these emissions requires special attention to soil structure and drainage. Also, a
long continuous period of NT practices may gradually improve the soil structure
as the biological activity enhances and adapts to the new conditions. On the other
hand RT did not show any significant differences compared to CT in cumulative
N,O emissions in the studied years making RT a notable option for clayey soils.
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5. CONCLUSIONS

Climatic benefits of either minimum tillage or straw retention seem small in the
humid boreal climatic region since soil C levels did not increase under NT, RT or
straw retention and N,O emissions increased in clayey soils under NT. While no C
sequestration was observed, as expected, some improvements were seen in aggregate
stability in NT cropping systems compared to CT in addition to increased amount
of earthworms. No-till also increased the amount of SOC in microaggregates within
macroaggregates in the coarse soil underlining a potential for future C accumulation
in this soil type. L. terrestris mediated the formation of soil aggregates and the
increase of SOC in soil particles within LM fractions without showing an effect on
overall Csequestration. In addition L. terrestris may enhance the decomposition rate
in the soils under NT and RT. The low C sequestration potential of minimum tillage
practices is most likely the result of a humid and cool boreal climate which causes
increased soil moisture content and decomposition rate compared to arid regions
where most of the research on this issue originates. In addition, frequent freeze-thaw
cycles as well as high original SOC content are likely to hinder C sequestration. On
the other hand along, continuous period of NT practices may gradually improve the
soil structure as the aggregation level increases and the biological activity enhances
and adapts to the new conditions. Increased N,O emissions on clayey soils were
most likely due to more dense soil structure with increased soil moisture content
and poor aeration in NT compared to CT. On the contrary to our hypothesis we
found lower N, O emissions under NT in the coarse soil but it may have been due to
decreased level of applied N fertilizer at that site compared to CT. Reduced tillage,
with N,O emissions comparable to CT, is a notable option for clayey soils to mitigate
potentially increasing N,O emissions. In general, mitigating N, O emissions requires
special attention to soil structure and drainage since increased soil moisture content
and soil density under NT correlate with higher emissions.
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6. FUTURE PERSPECTIVES

Since the role of SOC in relation to climate change was realized in the 1980’s a
mounting number of research projects globally have focused on SOC. However,
because of the complicated nature of soil C dynamics, the wide array of soil types,
climatic conditions, human perturbations, and other environmental factors that
play a role in determining the fate and speed at which SOC is processed through
the soil, it has been difficult to determine how SOC content changes in soils in
relation to climate change and climatic conditions in general. There is a need for
more detailed soil information in climate models. Development of climate and soil
Cmodels would highly benefit from technological improvements enabling accurate,
less time consuming sampling of SOC. This would allow for higher amounts of soil
samples over larger areas of land while modeling can also offer a complimentary
approach to measurement based assessments.

In Finland, some of the main goals of future SOC research could be: 1) maintaining
or establishing new long-term field experiments across different landscapes and
management practices in addition to model development to monitor changes in
SOC over time and space, 2) focusing on identifying the key components affecting
C sequestration potential in mineral soils (clay soils) especially in relation to root
versus shoot inputs and fungal contributions and 3) measuring and monitoring SOC
changes in peat soils which comprise of large amounts of soil C. Climate change
will continue to affect agroecosystems at large and even a small change in the soil
C dynamics is likely to have a significant climatic impact. The above-mentioned
research accompanied by model development would enable a more timely and
accurate response to climate change induced changes in soil C dynamics.
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