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Abstract  

GABAergic inhibition is crucial for regulation of neuronal excitability and hence for optimal 

function of the nervous system. The GABAA receptor forms a pentameric ligand-gated anion 

channel. The subunit combinations of the receptors define their pharmacological and 

electrophysiological properties. The individual subunits display a distinct but often widespread 

distribution throughout the nervous system. GABAA receptor-mediated inhibition can be divided to 

fast and transient synaptic inhibition and to background (tonic) inhibition that is mediated by 

extrasynaptic GABAA receptors. The synaptic inhibition regulates the rhythmic activities in 

neuronal networks. Benzodiazepines, interacting with an allosteric binding site of GABAA receptors 

typically concentrated at synaptic locations, are anxiolytic drugs, but their long-term use evokes 

severe side-effects. The functional role of extrasynaptic GABAA receptor-mediated inhibition is not 

yet well understood. Expanding the understanding of local role of GABAA receptors and neuronal 

circuits mediating anxiolysis is relevant for the development of more selective and safe treatment 

for anxiety disorders. Studying the properties of extrasynaptic GABAA receptors may help to 

understand their physiological relevance and role in psychiatric and neurological disorders. 

The main objectives of this thesis were to study the local expression of benzodiazepine-sensitive 

GABAA receptors in human locus coeruleus (LC), the pharmacology of extrasynaptic GABAA 

receptors in vivo (in mice) and in vitro and the brain structures mediating acute anxiolytic responses 

in a transgenic mouse model as a consequence of enhanced tonic inhibition in specific forebrain 

structures. Firstly, the present in situ hybridization and receptor autoradiography studies in human 

LC revealed benzodiazepine binding sites indicating that LC may directly mediate the sedative 

and/or anxiolytic effects of benzodiazepines in humans. Previously, contradictory reports had been 

published in regard to the benzodiazepine binding sites in the rodent LC suggesting a potential 

species difference in the direct sites of action of benzodiazepines. Secondly, the behavioral tests 

showed that gaboxadol, a GABA site agonist, acts preferentially via extrasynaptic α6β/γ2 receptors 

in vivo as the transgenic mice overexpressing these receptors were significantly more sensitive to 

the anxiolytic and hypnotic effects of gaboxadol than the wild-type mice. Electrophysiological 

recordings on recombinant receptors revealed that GABA is a partial agonist as compared to 

gaboxadol at α6β3, α6β3δ and α4β3δ receptors but not at α6β3γ2 receptors. Gaboxadol and GABA 

displayed also different receptor desensitization and deactivation kinetics on these receptors. 

Thirdly, by increasing tonic inhibition in specific forebrain structures, the anxiolytic dose of 

gaboxadol increased c-Fos expression in the transgenic mouse model especially in the limbic areas, 

such as the cingulate cortex, septal nuclei, central extended amygdala and basolateral nucleus of 
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amygdala. In addition to demonstrating how neuronal excitability can be altered in different brain 

regions as a consequence of enhanced tonic inhibition, this result suggests that a widespread 

neuronal inhibition, as typically associated with benzodiazepines, may not be the exclusive 

mechanism of acute anxiolysis.  
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Abbreviations 
 

ACTH  adrenocorticotropic hormone  
AHN  anterior hypothalamic nucleus 
AP2  clathrin adaptor protein 2 
Best1  bestrophin 1 channel 
BLA  basolateral nucleus of amygdala 
BNST  bed nucleus of stria terminalis 
CA  carbonic anhydrase 
CAML  calcium-modulating cyclophilin ligand 
CeA  central nucleus of amygdala 
CRH  corticotropin-releasing hormone  
CS  conditioned stimulus 
dlPAG  dorsolateral part of periaqueductal gray 
DMCM  methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate 
dmPAG  dorsomedial part of periaqueductal grey 
dmPMD  dorsomedial part of dorsal premammillary nucleus 
dmVMH  dorsomedial part of ventromedial hypothalamic nucleus 
ECl

-
  reversal potential of chloride ions 

EGABA-A  reversal potential of GABAA receptor 
ER  endoplasmic reticulum 
fMRI  functional magnetic resonance imaging 
GABAA  γ-aminobutyric acid A 
GABA-T  GABA-transaminase 
GAD  glutamic acid decarboxylase 
GAD  generalized anxiety disorder 
GAT  GABA transporter 
GIS  GABA-insensitive 
GnRH  gonadotropin releasing hormone  
GODZ Golgi-specific DHHC (aspartate-histidine-histidine-cysteine) zinc finger 

protein 
GTPase   guanosine triphosphatase 
HAP1  huntingtin-associated protein 1 
HPA  hypothalamic-pituitary-adrenal  
ICM  intercalated cell masses 
IL  infralimbic cortex 
KCC2  potassium-chloride co-transporter 2 
KIF5  kinesin superfamily motor protein 5 
LA  lateral nucleus of amygdala 
LC  locus coeruleus 
LORR  loss of righting reflex 
MAOB  monoamine oxidase B  
MDTB  mouse defense test battery 
MEA  medial amygdala 
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mIPSC  miniature inhibitory postsynaptic current 
mPFC  medial prefrontal cortex 
MPN  medial preoptic nucleus  
MRS  magnetic resonance spectroscopy 
NKCC1  sodium-potassium-chloride co-transporter 1 
NMDA  N-methyl-D-aspartate 
pBMA  posterior part of basomedial amygdala 
PCR  polymerase chain reaction 
PBS  phosphate-buffered saline 
pdMEA  posterodorsal part of medial amygdala  
PET  positron emission tomography 
PFC  prefrontal cortex 
PL  prelimbic cortex 
PLIC  protein linking integrin associated protein with cytoskeleton 
PMV  ventral premammilliary nucleus 
pvMEA  posteroventral part of medial amygdala 
rCBF  regional cerebral blood flow 
SAD  social anxiety disorder 
SPECT  single photon emission computed tomography 
TBPS  t-butyl-bicyclo-phosphorothionate 
TH  tyrosine hydroxylase 
TM  transmembrane 
US  unconditioned stimulus 
vlPAG  ventrolateral periaqueductal gray 
vlPMD  ventrolateral part of dorsal premammillary nucleus  
vlVMH  the ventrolateral part of ventromedial hypothalamus  
Vm  membrane potential 
VMH  ventromedial hypothalamus 
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1 Introduction 

GABAA (γ-aminobutyric acid A) receptors are ligand-gated anion channels. There are many 

different isoforms of GABAA receptors, each consisting of five subunits arranged around a central 

chloride and bicarbonate selective ion channel. The subunit arrangement of the receptor defines the 

physiological and pharmacological properties of the receptors. In adult mammalian brain, activated 

GABAA receptors typically hyperpolarize neurons, and therefore GABA is traditionally considered 

as the main inhibitory transmitter in mature brain. The agonist binding to the ligand-binding domain 

triggers a conformational change of the GABAA receptor, which results in the opening of the gate 

permitting chloride and bicarbonate ions to flow through the channel. The functional outcome of the 

GABAA receptor activation depends on the intra- and extracellular distribution of the chloride and 

bicarbonate anions and on the membrane potential of the neuron (reviewed in Farrant and Nusser, 

2005). 

GABAA receptor-mediated inhibition can be divided to fast and transient synaptic inhibition and to 

background (tonic) inhibition that is mediated by extrasynaptic GABAA receptors. An important 

function of phasic inhibition is the generation and maintaining of rhythmic activities in neuronal 

networks, such as theta and gamma frequency network oscillations associated with cognitive 

functions (Buzsáki and Chrobak, 1995). Benzodiazepine diazepam is an allosteric modulator of α1–

3 (or 5) and γ2 subunits-containing GABAA receptors, i.e. receptors typically concentrated at 

synaptic locations. The α1 subunit-containing receptors mediate diazepam-induced sedation and 

anterograde amnesia (Rudolph et al., 1999; McKernan et al., 2000), whereas the α2 subunit-

containing receptors mediate anxiolysis (Löw et al., 2000). Both α2 and α3 (and α5) subunit-

containing receptors are associated with myorelaxant effects of diazepam (Crestani et al., 2001; 

Milić et al., 2012). Tonic GABAergic inhibition is usually mediated via receptors containing α4, α5, 

α6 or δ subunits making them highly sensitive to GABA and thus suitable for detection of low 

GABA concentrations (Brickley et al., 1996; Farrant and Nusser, 2005; Lee and Maguire, 2014). 

Although not yet well understood, tonic GABAA receptor-mediated inhibition may play an 

important role in physiological functions as well as in psychiatric and neurological disorders 

(Belelli et al., 2009; Egawa and Fukuda, 2013). The pharmacological investigations of extrasynaptic 

GABAA receptors may help to understand their physiological relevance and role in psychiatric and 

neurological disorders. 

Anxiety disorders are the most frequent mental disorders in the contemporary EU countries, 

Switzerland, Norway and Iceland estimated to affect 14% of population across all age groups 
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(Wittchen et al., 2011). Anxiety disorders are pharmacologically treated by benzodiazepines but the 

adverse effects such as dependence, tolerance, drowsiness and impairment of cognition limit their 

use in chronic anxiety disorders (Millan, 2003; Farb and Ratner, 2014). Selective serotonin reuptake 

inhibitors and serotonin/noradrenaline reuptake inhibitors are currently used as the first-line 

pharmacological treatment of anxiety disorders, but many individuals are not responsive to these 

drugs and their adverse effects such as nausea, dizziness and sexual problems can also limit their 

use (Millan, 2003; Farb and Ratner, 2014). Expanding the understanding of the pharmacology and 

local roles of GABAA receptors and the neuronal circuits mediating anxiolysis is relevant for the 

development of more selective and safe treatment for anxiety disorders.  
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2 Review of the literature 

2.1 GABAA receptors 

2.1.1 Subunits and their assembly 

GABAA receptors are ligand-gated anion channels. The GABAA receptors belong to the 

superfamily of the Cys-loop pentameric ligand-gated ion channels. Each subunit of the receptors in 

this superfamily consists of a long N-terminal extracellular hydrophilic region, followed by four 

transmembrane (TM) segments and ending with a relatively short extracellular C-terminal domain. 

The TM2 segment forms the lining of the ion channel, and there is a large intracellular loop 

between the TM3 and TM4 segments (Olsen and Sieghart, 2009). Two cysteine residues spaced by 

13 amino acids form the cysteine loop at the N-terminal extracellular domain of the GABAA 

receptor (Korpi et al., 2002a) (Figure 1). 

 

Figure 1. A. Each GABAA receptor subunit contains an N-terminal extracellular hydrophilic region, four 
transmembrane segments (TM) and short extracellular C-terminal domain. The cysteine loop (C-C) locates 
at the N-terminal extracellular domain of each subunit. B. The TM2 domain (2) of each subunit of the 
pentameric receptor forms the wall of the ion channel. The majority of native GABAA receptors are 
composed of two α, two β and one γ subunit. 

There are many different isoforms of GABAA receptors, each consisting of five subunits 

surrounding a central chloride and bicarbonate selective ion channel. The subunit arrangement of 

the receptor defines its physiological and pharmacological properties. The individual subunits 
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display a distinct but often widespread distribution throughout the nervous system varying in their 

regional, cellular and sub-cellular localization. Therefore they have different roles in brain circuits 

and behaviors. Currently 19 subunits of GABAA receptor are known; α1–6, β1–3, γ1–3, δ, ε, θ, π 

and ρ1–3, and an alternative splicing contributes to an additional receptor diversity (reviewed in 

Uusi-Oukari and Korpi, 2010; Olsen and Sieghart, 2008; Rudolph and Knoflach, 2011). The 

homopentameric GABAA receptors consisting of ρ subunits have sometimes been called GABAC 

receptors because they are insensitive to bicuculline (blocks response to GABA in other GABAA 

receptors) and baclofen (stimulates metabotropic GABAB receptors), but the Nomenclature 

Committee of the International Union of Pharmacology (IUPHAR) has recommended not to use 

GABAC nomenclature for such receptors (Barnard et al., 1998; Bormann, 2000).  

The receptor subunit assembly takes place in the endoplasmic reticulum (ER). Unassembled or 

improperly folded receptor subunits are subject to degradation and are not targeted to the cell 

surface (Luscher et al., 2011). Based on the current knowledge, it has been estimated that more than 

800 distinct GABAA receptor subtypes may exist in the brain. Subunit-specific antibodies have 

revealed that receptors composed of α1β2γ2 subunits are the most abundant GABAA receptors in 

the brain (Olsen and Sieghart, 2009). 

2.1.2 Binding sites  

GABAA receptors contain different binding sites for different types of ligands. The GABA and 

benzodiazepine binding sites are located at extracellular regions of the GABAA receptors whereas 

barbiturates, neurosteroids and alcohol have been suggested to bind mostly to the TM regions of the 

receptors. Picrotoxin and TBPS (t-butyl-bicyclo-phosphorothionate) bind to the channel pore (Korpi 

et al., 2002a). Below is a more detailed review of the binding sites and the respective ligands that 

are the most relevant for this thesis. 

GABA binding site. As revealed mostly by studies on recombinant receptors, the GABA binding 

site has been located at the interface of α and β subunits. The amino acid residue Phe64 of the α1 

subunit forms part of the functional GABA binding site (Sigel et al., 1992; Smith and Olsen, 1994 

and 1995; Boileau et al., 1999). This amino acid has been proposed to contribute to a low-affinity 

binding site for GABA (Baur and Sigel, 2003). Also other amino acids (Arg66, Ser68, Arg120, 

Val178, Val180 and Asp183) of the α1 subunit have been associated with the low-affinity GABA 

binding site at the extracellular N-terminus of the GABAA receptor (Boileau et al., 1999; Westh-

Hansen et al., 1999; Newell and Czajkowski, 2003). A conformational variant of the low-affinity 

binding site has been proposed to form a high-affinity binding site for GABA (Smith and Olsen 
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1994; Newell et al. 2000; Baur and Sigel., 2003). Alternatively, the high-affinity GABA binding 

site has been proposed to locate at a different subunit interface, separate from the low-affinity 

binding site (Newell et al., 2000). Nevertheless, the affinity of GABA to the binding site is largely 

dependent on the type of α subunit in the receptor complex (Hevers and Lüddens, 1998). The α6 

subunit-containing receptors are the most sensitive to GABA with EC50 values of 0.2-2 μM (Ducic 

et al., 1995; Knoflach et al., 1996; Saxena and Macdonald, 1996), whereas in α3 subunit-containing 

receptors the EC50 value for GABA is approximately ten or hundred times higher (Sigel et al., 1990; 

Ebert et al., 1994; Verdoorn, 1994). GABA has an intermediate affinity to the α1, α2, α4 or α5 

containing GABAA receptors (Wafford et al., 1993; Ebert et al., 1994; Knoflach et al., 1996). 

GABAA receptors containing the δ subunit are ten times more sensitive to GABA than receptors 

containing the γ subunit (Saxena and Macdonald, 1996; Hevers et al., 2000; Brown et al., 2002). In 

addition, GABA has higher affinity to αβ receptors than to αβγ (Sigel et al., 1990; Horne et al., 

1993). 

Also several GABA analogs bind to the GABA binding site. Muscimol has been regarded as a 

substance that can activate all GABAA receptor subtypes (Krogsgaard-Larsen et al, 1979). In early 

autoradiographic experiments, [3H]muscimol was used to label GABA binding sites (Olsen et al., 

1990). However, low concentrations (10 nM) of [3H]muscimol appeared to reveal only a fraction of 

all GABAA receptors as the binding signal was not as widely distributed as after radioactively 

labelled benzodiazepine or channel site ligands (Korpi et al., 2002a). This high-affinity 

[3H]muscimol binding has been associated with α6 and δ subunits in cerebellum and with α4 and δ 

subunits in the forebrain, as the high-affinity [3H]muscimol binding was reduced in the cerebellar 

and forebrain sections of the δ-deficient mice (Chandra et al., 2010; Korpi et al, 2002b; Mihalek et 

al., 1999), in the forebrain of α4-knock-out mice (Chandra et al., 2010) and in the cerebellar 

sections of the α6-knock-out mice (Mäkelä et al., 1997). Chandra et al. (2010) studied also the 

motor performance of several mutant mice by fixed speed rotarod after an i.p. injection of muscimol 

at doses estimated to become bioavailable at nanomolar concentrations in mouse brains. The α4- 

and δ-deficient mutant mice displayed a decreased behavioral sensitivity to muscimol as compared 

to their wild-type controls although recombinant receptors have been paradoxically reported to 

exhibit unaltered binding affinities to [3H]muscimol in the presence or absence of the δ-subunit 

(Hevers et al., 2000). The α1-knock-out mice had an unaltered behavioral sensitivity to muscimol as 

well as an unaltered high-affinity [3H]muscimol binding (Chandra et al., 2010). The transgenic 

Thy1α6 mice overexpressing the α6 subunit in the forebrain including hippocampus and cerebral 

cortex showed an increased high-affinity [3H]muscimol binding in these brain regions and had an 

increased behavioral sensitivity to muscimol (Chandra et al., 2010).  
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Muscimol has been used as a model substance to design several other GABA analogs, such as 

gaboxadol (Krogsgaard-Larsen et al., 2004). Also gaboxadol is a GABA-site agonist (Karobath and 

Lippitsch 1979; Wafford et al., 1996; Ebert et al., 1997), and the regional distribution of high-

affinity binding of [3H]gaboxadol resembles that of [3H]muscimol in the rat brain (Friemel et al., 

2007) as it acts preferentially via α4 and δ subunit-containing GABAA receptors in the brain (Belelli 

et al. 2005; Cope et al. 2005;  Jia et al. 2005; Chandra et al. 2006; Storustovu and Ebert 2006; 

Winsky-Sommerer et al. 2007, Meera et al., 2011). Although gaboxadol has been shown to be less 

potent (EC50 13 μM) than GABA (EC50 0.35 μM) or muscimol (EC50 0.20 μM) at recombinant 

human α4β3δ receptors, it has been shown to be more efficient (Emax 224%) than GABA (Emax 98%) 

or muscimol (Emax 120%) at these receptors (Mortensen et al., 2010). Native α4 and δ subunit-

containing GABAA receptors on thalamic neurons (Chandra et al. 2006; Herd et al. 2009) as well as 

α6 and δ subunit-containing GABAA receptors on cerebellar granule cells were shown to be 

responsive to sub-micromolar concentrations of gaboxadol, and such gaboxadol sensitivity required 

the δ subunit (Meera et al., 2011). In addition, gaboxadol has been reported to be a partial agonist at 

α1 subunit-containing receptors such as α1βγ2 receptors and a full agonist at α2 containing 

receptors as compared to GABA (Ebert et al., 1994; Ebert et al., 1997; Wafford and Ebert, 2006). 

Ionophore binding site. The ionophore binding site of the GABAA receptor is also called a 

convulsant site or an ion channel site. Binding of compounds such as picrotoxinin and [35S]TBPS to 

the ionophore binding site, block the chloride ion flow through the GABAA receptor ion channel 

and cause convulsions (reviewed in Korpi et al., 2002a). The exact binding sites of these 

compounds are not known. It has been suggested that although picrotoxinin and [35S]TBPS possibly 

bind to the same site of the GABAA receptor, they may have different structural requirements. 

Electrophysiologically detected picrotoxinin block has been reported in homomeric receptors 

composed of α, β, γ, δ and ρ subunits and in heteromeric receptors of αβ, βγ, αγ and αβγ 

combinations. [35S]TBPS binding has been detected in homomeric β receptors and in heteromeric 

αβ, βγ and αβγ combinations but not in homomeric α or γ receptors or in heteromeric receptors 

composed of αγ subunits (reviewed in Sieghart et al., 1995). Electrophysiological recordings have 

revealed that TBPS can block also homopentameric ρ receptors (Vale et al., 1999). Picrotoxin (an 

equimolar mixture of picrotoxinin and picrotin) has been proposed to interact with Val257 of ion 

channel lining TM2 residue of rat α1 subunits (Xu et al., 1995). In β3 subunits, Ala252 and Leu253 

of TM2 have been proposed to be important for picrotoxin and TBPS affinity (Buhr et al., 2001), 

and Val251, Ala252 and Leu253 of TM2 have been proposed to be important for the formation of a 

high-affinity binding site for TBPS (Jursky et al., 2000).  
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Benzodiazepine binding site (zolpidem, flumazenil, diazepam, Ro 15-4513). Benzodiazepine site 

ligands modulate allosterically GABA-induced currents via GABAA receptors only in the presence 

of GABA. The high-affinity benzodiazepine binding site is located at the interface between α and γ 

subunits (Sigel and Buhr, 1997; Ernst et al., 2003). The type of β subunit present in these receptors 

is not likely to significantly modulate the benzodiazepine action. Benzodiazepine site ligands may 

also interact with receptors containing γ1 or γ3 instead of γ2 subunits with different 

pharmacological profiles (Wafford et al., 1993; Sieghart, 1995; Hevers and Luddens, 1998; Khom 

et al., 2006).  

Ro 15-4513 exhibits high affinity to all GABAA receptors consisting of αβγ subunit combinations 

(reviewed in Sieghart, 1995). It usually acts as a partial inverse agonist at the benzodiazepine sites 

(Bonetti et al., 1988; Hadingham et al., 1993; Korpi et al., 2002a). However, Ro 15-4513 is an 

agonist in α4/6βγ2 receptors (Bonetti et al., 1988; Knoflach et al., 1996) and it has a slight positive 

modulatory effect in α2β1γ1 receptors (Wafford et al., 1993). Flumazenil (Ro 15-1788) is a 

benzodiazepine site competitive antagonist that binds to the same GABAA receptor subunit 

combinations as Ro 15-4513 (Sieghart, 1995). 

Diazepam has a comparable affinity and efficacy at α1βγ2, α2βγ2, α3βγ2 and α5βγ2 subunit 

combinations (Sieghart, 1995; Hevers and Luddens, 1998), but α4βγ2 and α6βγ2 receptors are 

diazepam-insensitive (Wisden et al., 1991; Wieland et al., 1992; Luddens et al., 1995). It has been 

shown that the amino acid arginine at the position 99 and 100 of the α4 and α6 subunit, 

respectively, plays an important role in their insensitivity to diazepam (the equivalent amino acid is 

histidine in the other α variants) (Wieland et al., 1992; Korpi et al., 2002a). Substituting the arginine 

of the α6 subunit by histidine made the receptor sensitive to diazepam, whereas substituting the 

histidine at the homologous position 101 by arginine in the α1 subunit, made the α1 subunit-

containing receptors insensitive to diazepam (Wieland et al., 1992). In a study by Benson et al. 

(1998), it was shown that the replacement of the conserved histidine residue of α1, 2, 3 and 5 by 

arginine (H101R, H101R, H126R and H105R, respectively) resulted in diazepam-insensitivity of 

the respective αβ2/3γ2-receptors. Furthermore, Ro 15-4513 acted as an agonist at these mutant 

receptors.  

Diazepam-sensitive receptors contain zolpidem-sensitive and -insensitive receptors (Luddens et al., 

1995). Zolpidem binds with high affinity to α1βxγ2 GABAA receptors and GABAA receptors 

containing γ1 or γ3 subunits exhibit little to no zolpidem sensitivity (Luddens et al., 1994; Sanna et 

al., 2002). Zolpidem has a low affinity to GABAA receptors containing α2 or α3 subunits, and 
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receptors containing the α5 subunit are nearly zolpidem-insensitive (Pritchett and Seeburg, 1990; 

Luddens et al., 1995; Sieghart, 1995).  

Furosemide binding site. Furosemide does not cross the blood-brain barrier (Seelig et al., 1994), 

and therefore it does not bind to the brain GABAA receptors in vivo. In vitro, furosemide has been 

shown to antagonize the function of α6 and β2/3 subunits containing GABAA receptors, and the 

effect was demonstrated to be independent of the presence of γ or δ subunits (Korpi and Luddens, 

1997). Furosemide sensitivity was shown to involve the amino acid isoleucine at the position 228 in 

TM 1 of the α6 subunit, but also other residues were likely to be involved (Thompson et al., 1999). 

The α4β3γ2 receptor was shown to be less sensitive to furosemide than the α6β3γ2 receptor, but it 

was more than 50-fold more sensitive than receptors containing other α subunits, i.e. α1β3γ2, 

α2β3γ2, α3β3γ2 or α5β3γ2 (Wafford et al., 1996). The action of furosemide has also been shown to 

be dependent on the β-subunit type, being weaker at β1-containing receptors than at β2- or β3-

containing receptors (Korpi et al., 1995).  

2.1.3 Hyperpolarizing action  

In adult mammalian brain, activated GABAA receptors typically hyperpolarize neurons, and 

therefore GABA is traditionally considered as the main inhibitory transmitter in mature brain. The 

agonist binding to the ligand-binding domain triggers a conformational change of the GABAA 

receptor, which results in the opening of the gate permitting chloride and bicarbonate ions to flow 

through the channel. The functional outcome of the GABAA receptor activation depends on the 

intra- and extracellular distribution of the chloride and bicarbonate anions and on the membrane 

potential of the neuron (Farrant and Nusser, 2005). A hyperpolarizing GABA response might not be 

inhibitory if it indirectly triggers hyperpolarization-activated depolarizing mechanism (Kaila et al., 

1997; Farrant and Nusser, 2005). 

In most mature neurons, the activity of the potassium-chloride co-transporter KCC2 that extrudes 

chloride ions from the neuron to the extracellular space causes a chloride equilibrium potential that 

is more negative than the resting membrane potential (Figure 2). In contrast, the equilibrium 

potential for bicarbonate is more positive than the resting membrane potential (Farrant and Nusser, 

2005). However, chloride ions are much more permeable than bicarbonate ions. It has been 

estimated that the relative bicarbonate/chloride permeability of GABAA receptors ranges between 

0.18 and 0.6 (Fatima-Shad and Barry, 1993). Consequently, GABAA receptor activation typically 

results in a net influx of anions, causing hyperpolarizing inhibitory postsynaptic potential (IPSP) 

and decreasing the probability of an action potential initiation (Farrant and Nusser, 2005).  
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2.1.4 Depolarizing action 

GABAA receptor-mediated currents may also be depolarizing. Depolarizing responses can be 

generated by activated GABAA receptors in an immature brain. At early stages of development 

GABAergic signals act as an important source of excitatory drive and modulate neuronal migration 

and circuit formation (reviewed in Ben-Ari and Spitzer, 2010). High intracellular chloride 

concentration leads to chloride ion efflux via the GABAA receptor channels once activated.  During 

prenatal and early postnatal life, hippocampal and cortical neurons display positive reversal 

potential of chloride ions (ECl
–) relative to membrane potential (Vm) as a result of robust activity of 

NKCC1 (sodium-potassium-chloride co-transporter) but a minimal activity of KCC2 (potassium-

chloride co-transporter) (Ben-Ari et al., 2012). NKCC1 is driven by sodium gradient and 

accumulates intracellular chloride ions whereas chloride ion efflux is mediated largely by KCC2 

driven by potassium gradient (Figure 2). The spike threshold differs in different immature neurons 

and therefore GABA may depolarize some neurons and excite others. For instance, GABA has been 

reported to depolarize pyramidal neurons and interneurons in both deep and superficial layers of the 

immature neocortex, but to generate action potentials only in deep layers (L5/6) but not in 

superficial layers (L2/3) because L5/6 pyramidal cells have more depolarized resting potentials and 

more hyperpolarized threshold of action potential generation (Rheims et al., 2008). If the spike 

threshold is above the reversal potential of GABAA receptor (EGABA-A), GABAergic depolarization 

can trigger activation of voltage-gated currents that may enable to reach the spike threshold (Ben-

Ari et al., 2012).  Depolarizing GABAA receptor-mediated currents have also been reported in 

embryonic rat spinal and olfactory bulb cells (Serafini et al., 1995). 

A negative shift in the ECl
– relative to Vm  is associated with a robust increase in KCC2 expression, a 

decrease in functional activity of NKCC1 and with hyperpolarizing GABAA currents (Ben-Ari, 

2002, Ben-Ari and Spitzer, 2010; Ben-Ari et al., 2012).  In addition to the hippocampus and cortex 

a significant increase in the activity of KCC2 has been reported in mature retina, cerebellum and 

dorsal horn of the spinal cord as compared to that at birth (Ben-Ari et al., 2012).  
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Figure 2. The NKCC1 and KCC2 expression-dependent shift from GABAA receptor-mediated depolarization 
to hyperpolarization. In certain immature neurons, a robust activity of the chloride importer NKCC1 
(sodium-potassium-chloride cotransporter) but a minimal activity of the chloride exporter KCC2 (potassium-
chloride cotransporter) is present. In adult neurons the hyperpolarizing GABAA receptor mediated currents 
are associated with a robust increase in KCC2 expression and a decrease in functional activity of NKCC1 
leading to a lower intracellular accumulation of chloride in mature neurons and to chloride ion influx as a 
result of GABAA receptor activation (modified from Ben-Ari et al., 2012). 

Depolarizing and excitatory responses can be generated by GABAA receptor activation also in a 

mature brain. Initially, depolarizing responses were recorded in hippocampal pyramidal cells when 

GABA or pentobarbitone was applied to their dendrites. GABAA receptors located at the dendritic 

tree were suggested to be depolarizing whereas those in the cell body or close to it were expected to 

be hyperpolarizing (Alger and Nicoll, 1979; Andersen et al., 1980). A few years later, Alger and 

Nicoll (1982) reported that GABA elicited hyperpolarizing responses in CA1 pyramidal cells when 

applied to the soma, but primarily depolarizing responses when applied to the apical dendrites, 

although hyperpolarizing responses were also recorded. They concluded that hyperpolarizing 

responses reflected the activation of synaptic receptors, which were highly concentrated on the 

pyramidal cell soma/initial segment, but that these receptors were also present on the dendrites. The 

depolarizing responses evoked in the dendrites were proposed to reflect the activation of 

extrasynaptic receptors (Alger and Nicoll, 1982). In adult hypothalamic gonadotropin releasing 

hormone (GnRH) neurons, GABAA receptors have been reported to exert both depolarizing and 

hyperpolarizing effects and the most recent studies indicate that the predominant action of 
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endogenously released GABA is excitation in slice preparations of adult hypothalamic GnRH 

neurons (Herbison and Moenter, 2011).  

GABAA receptor-mediated depolarizing responses have been reported in several in vitro studies in 

adult guinea pig and rat hippocampus (Wong and Watkins, 1982; Michelson and Wong, 1991; 

Lambert et al., 1991; Xie and Smart 1993). The depolarizing postsynaptic response as a result of 

tetanic stimulation of the adult hippocampal GABAergic interneurons has been shown to be more 

effective in triggering spikes than the simultaneously activated glutamatergic inputs. In line with the 

finding, blockade of the GABAA receptors alleviated rather than promoted neuronal excitability 

(Taira et al., 1997). It was proposed that high-frequency stimulation mimicking the in vivo firing 

frequencies of GABA-releasing interneurons, and any other condition that increased the open time 

of the GABAA receptor, depolarized the postsynaptic membrane because the electrochemical 

gradient for chloride ions collapsed more significantly than that for bicarbonate ions (Staley et al., 

1995). An intraneuronal carbonic anhydrase (CA) was proposed to compensate the bicarbonate 

efflux by regenerating bicarbonate of CO2 that diffused across the membrane after being released 

from the extracellular bicarbonate ions. Intra- and extracellular pH buffers were binding and 

releasing, respectively, hydrogen ions for the process. It was shown that in rat hippocampal slices 

an intense stimulation of GABAA receptors on the distal dendrites produced a hyperpolarizing 

membrane potential response followed by a slow depolarizing potential that was 20 mV positive to 

the resting membrane potential (Staley et al., 1995). The phenomenon was proposed to occur 

because the intracellular chloride ion concentrations could change significantly in small structures 

such as in dendrites and therefore reduce the driving force for chloride whereas in larger structures 

the ionic gradients were more stable (Qian and Sejnowski, 1990). Also the voltage-dependent 

magnesium ion block of the N-methyl-D-aspartate (NMDA) receptor was proposed to be 

preferentially lessened in those dendrites with the most intense GABAA receptor activation resulting 

in higher membrane depolarization (Staley et al., 1995). 

Later on, a new theory on the mechanism of GABA-mediated depolarization was presented (Figure 

3). It involved GABAergic extracellular potassium ion transients ([ K+]o) causing an inward 

potassium ion current that induced a long-lasting and a more positive membrane potential than 

EGABA-A in spite of a positive shift in EGABA-A (Kaila et al., 1997; Smirnov et al., 1999; Viitanen et 

al., 2010). It was proposed that in rat hippocampus, GABAA receptor-mediated excitation was 

dependent on bicarbonate efflux via GABAA receptor channels. Bicarbonate efflux caused 

depolarization that drove an equal influx of chloride ions via the GABAA receptor channel. This 

intracellular accumulation of chloride ions activated extrusion of chloride and potassium ions by 
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KCC2, thereby giving rise to a transient increase in the extracellular potassium concentration. The 

intracellular bicarbonate levels did not fall during its efflux phase because CA regenerated 

bicarbonate using CO2 as a substrate. Bulk electroneutrality was maintained without a 

transmembrane cation influx since H+ ions were produced in the hydration reaction of CO2 at the 

same rate as bicarbonate ions. These H+ ions were bound by cytoplasmic buffers to maintain the 

intracellular pH (Viitanen et al., 2010).  It was also postulated that the bicarbonate-dependent 

increase in [K+]o did not  affect only the postsynaptic neurons but it also had a depolarizing 

influence on all nearby neurons, glial cells and presynaptic terminals, therefore having a non-

synaptic nature (Smirnov et al., 1999). 

 

 

Figure 3. Illustration of the ionic mechanism of the GABAA receptor-dependent increase in [K+]o. The 
HCO3

− efflux via GABAA receptors causes depolarization that drives uptake of Cl− into the neuron. Carbonic 
anhydrase (CA) provides an intracellular source of HCO3

− during its efflux from intracellular water and 
CO2. The bulk electroneutrality of the neuron is maintained without a transmembrane cation flux because H+ 
and HCO3

− ions are produced at the same rate in the hydration reaction of CO2. The intracellular pH is 
maintained because cytoplasmic buffers bind these H+ ions. The HCO3

−-driven intraneuronal accumulation 
of Cl− activates extrusion of Cl− by KCC2, giving rise to a K+ efflux and thereby to an increase in [K+]o 
(modified from Viitanen et al., 2010). 
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More recently it has been proposed that the local intra- and extracellular chloride concentrations and 

hence the direction of chloride flux via GABAA receptors are determined by negatively charged 

impermeant intra- and extracellular macromolecules rather than by the function of KCC2 and 

NKCC1 (Glykys et al., 2014a). However, the cation-chloride transporters were considered critically 

important for restoring intracellular chloride concentrations and volume after signaling transients 

(Glykys et al., 2014b). 

2.1.5 Synaptic GABAA receptors and phasic inhibition  

Transient activation of synaptic GABAA receptors represents phasic type of GABAergic inhibition. 

An action potential at the nerve terminal triggers the presynaptic vesicles to fuse with the 

presynaptic membrane and to release GABA into the synaptic cleft (Figure 4). It has been estimated 

that each vesicle contains several thousand GABA molecules and an action potential generates high 

(a millimolar range) peak GABA concentration in a synaptic cleft. Miniature inhibitory 

postsynaptic currents (mIPSCs) are rapid and occur spontaneously when GABA is released from a 

single synaptic vesicle and activates nearly synchronously a proportion of the GABAA receptors in 

the underlying postsynaptic density. An action potential of the presynaptic neuron may trigger a 

synchronous or asynchronous release of multiple vesicles and an activation of GABAA receptors at 

adjacent postsynaptic densities within the same synaptic bouton. Currents that result from GABA 

spillover and activation of extrasynaptic receptors can be considered phasic if they are temporally 

linked to the GABA vesicle release event (Farrant and Nusser, 2005). An important function of 

phasic inhibition is the generation and maintaining of rhythmic activities in neuronal networks, such 

as theta and gamma frequency network oscillations associated with cognitive functions (Buzsáki 

and Chrobak, 1995).  

It has been proposed that ten to a few hundred GABAA receptors are clustered to the postsynaptic 

membrane (Farrant and Nusser, 2005). Synaptic GABAA receptors contain typically the γ2 subunit 

together the α1, α2, or α3 subunits and any β subunits (Brünig et al., 2002; Korpi and Sinkkonen, 

2006) (Figure 4) although no GABAA receptor subunit is known to be exclusively located at 

synaptic membranes. The mechanism by which GABAA receptors are delivered to and maintained 

at synapses is poorly known and many proteins have been postulated to play a role in targeting and 

stabilizing GABAA receptors at the postsynaptic density (Farrant and Nusser 2005). Gephyrin has 

been proposed to play a role in stabilizing GABAA receptors at postsynaptic sites (Cherubini and 

Conti, 2001; Möhler et al., 2002; Lüscher and Keller, 2004), and this role may be receptor subtype-

specific (Lüscher et al., 2011). Gephyrin interacts with microtubules and with several regulators of 
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microfilament dynamics (Kirsch and Betz, 1995; Mammoto et al., 1998). When GABAA receptors 

leave the area containing postsynaptic scaffold proteins, they become highly mobile and diffuse 

along the plane of the phospholipid bilayer (Lüscher et al., 2011). 

The number of GABAA receptors in the postsynaptic membrane controls the efficacy of phasic 

inhibition. This is regulated by GABAA receptor subunit gene expression and subunit assembly, 

receptor exocytosis, diffusion, endocytosis, recycling and degradation (reviewed in Lüscher et al., 

2011). GABAA receptor subunits assemble in ER involving an interaction with ER-associated 

chaperones (Lüscher et al., 2011). Unfolded or improperly folded subunits are ubiquitinated and 

degraded in proteasomes (Lüscher et al., 2011). Also chronic blockage of neural activity enhances 

ER-associated degradation (Lüscher et al., 2011). An interaction of α and β subunits with ubiquitin-

like protein PLIC (protein linking integrin associated protein with cytoskeleton) inhibits their 

ubiquitination and promotes the exit of receptors from the ER to the Golgi  (Lüscher et al., 2011). In 

the Golgi, the cytoplasmic cysteines of γ2 subunits are palmitoylated by the Golgi resident 

palmitoyltransferase [Golgi-specific DHHC zinc finger protein (GODZ)], which promotes the 

receptor translocation to the plasma membrane and synapses (Lüscher et al., 2011). Reduced 

expression of GODZ has been shown to reduce the number of GABAA receptors at synapses and 

the amplitude and frequency of mIPSCs and whole cell currents (Fang et al., 2006).  

GABAA receptors are removed from the cell surface by endocytosis through clathrin-coated 

vesicles (Tehrani and Barnes, 1993; Kittler et al., 2000) that are specialized sites on the plasma 

membrane of eukaryotic cells responsible for the internalization of many cell-surface receptors and 

other membrane proteins (Gaidarov et al., 1999). The endocytosis occurs via interaction of GABAA 

receptor β and γ subunits with the clathrin adaptor protein AP2 after which the complex interacts 

with other binding partners including clathrin, guanosine triphosphatase (GTPase) dynamin and its 

binding partner amphiphysin (Kittler et al., 2000; Lüscher et al., 2011). Phosphorylation of β 

(S408/409 in β3) and γ (Y365/367 in γ2) subunits interferes with these interactions and stabilizes 

the receptors at plasma membrane. Endocytosed receptors that are ubiquitinated at γ2 subunits are 

targeted to lysosomal degradation whereas those interacting with a calcium-modulating cyclophilin 

ligand (CAML) and huntingtin-associated protein 1 (HAP1) at γ2 and β subunit, respectively, are 

recycled back to plasma membrane by kinesin superfamily motor protein 5 (KIF5) -dependent 

vesicular transport. (Lüscher et al., 2011). 

The efficacy of synaptic GABAergic transmission is regulated also by changes in GABA release 

and uptake (Farrant and Nusser 2005). GABA release can be modulated by receptors for GABA or 
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other neurotansmitters on presynaptic terminals or on astrocytes (Cherubini and Conti, 2001; Kang 

et al., 1998). It has been proposed that GABA activates astrocytic GABAB receptors triggering 

glutamate release from astrocytes and increasing GABA release when glutamate activates the 

presynaptic glutamate receptors (Kang et al., 1998). GABA is cleared from the synaptic cleft by 

diffusion and by the action of plasma membrane GABA transporters (GATs). Diffusion is 

influenced by the viscosity of the synaptic cleft liquid, geometry of the cleft and the surrounding 

extrasynaptic space, and by the localization of receptors and GATs (Cherubini and Conti, 2001). 

High-affinity GATs are located in the presynaptic neurons and astrocytes, although neuronal uptake 

has been estimated to be three to six-fold more efficient than glial uptake (Madsen et al., 2008). 

GATs are capable of bidirectional neurotransmitter transport and their function is highly dependent 

on extracellular Na+ and to a lower extent on the Cl- ions. The driving force for GABA transport 

against its concentration gradient is supplied by the movement of Na+ down its concentration 

gradient. Following the GABA uptake into the presynaptic neuron, the transmitter is preferentially 

recycled directly into synaptic vesicles being readily available for further release (Cherubini and 

Conti, 2001; Madsen et al., 2008). Alternatively, GABA taken up into axon terminals may enter a 

so called GABA shunt which is a closed-loop process producing and conserving the supply of 

GABA. First, GABA is metabolized by GABA-transaminase (GABA-T) to succinic semialdehyde 

that is further metabolized by succinic semialdehyde dehydrogenase to succinic acid entering the 

tricarboxylic acid cycle (Krebs cycle) for oxidative metabolism and resulting in α-ketoglutarate. 

The α-ketoglutarate is then transaminated into glutamate that is decarboxylated by glutamic acid 

decarboxylase (GAD) back to GABA that can then re-enter the process (Olsen and DeLorey 1999; 

Madsen et al., 2008) (Figure 4). In glia, GABA is metabolized to succinic semialdehyde by GABA-

T but GABA cannot be resynthesized by GAD in this compartment since glia lack GAD. In glia 

GABA can be converted to glutamine, which is transferred back to the neuron, in which glutamine 

is converted to glutamate by glutaminase, which re-enters the GABA shunt (Figure 4). Therefore, it 

has been postulated that GABA that is taken up by glia is not immediately available for synaptic 

transmission (Olsen and DeLorey 1999; Cherubini and Conti, 2001).  

2.1.6 Extrasynaptic GABAA receptors and tonic inhibition  

Some GABAA receptors do not accumulate at postsynaptic membranes. These extrasynaptic 

receptors with a high affinity for GABA mediate tonic inhibition providing a persistent conductance 

(Stell and Mody, 2002, Semyanov et al., 2004; Farrant and Nusser, 2005; Glykys and Mody, 2007). 

The persistent hyperpolarizing current generated by extrasynaptic GABAA receptors makes the 

neuron less likely to generate an action potential (Pavlov et al., 2009). The α4, α5, α6, and δ 
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subunits are predominantly localized extrasynaptically or perisynaptically (Farrant and Nusser, 

2005) (Figure 4), but their subcellular distribution may vary between cell types. The δ subunit has 

been localized in the cortex, hippocampus, thalamus, striatum, and cerebellum (Lee and Maguire 

2014). In cerebellar granule cells as well as in hippocampal dentate gyrus granule cells, the δ 

subunit has been shown to be localized exclusively outside the postsynaptic density (Nusser et al., 

1998; Wei et al., 2003). The δ subunit forms receptors specifically with the α6 and β2/3 subunits in 

cerebellar granule cells and with the α4 and βx subunits in the forebrain (Barnard et al., 1998). The 

α6 subunit expression is almost entirely limited to the cerebellum, whereas the α4 subunit is highly 

expressed in the thalamus, hippocampus, striatum, and cortex (Lee and Maguire 2014). In thalamus, 

extrasynaptic α4βδ GABAA receptors mediate tonic conductance in ventrobasal nuclei, medial 

geniculate body and dorsal lateral geniculate nucleus (Cope et al., 2005; Jia et al., 2005; Richardson 

et al., 2013). The α5 (and γ2) subunit-containing receptors are highly expressed in the hippocampus 

and to lower extent in the cortex, olfactory bulb, and hypothalamus (Olsen and Sieghart, 2009; Lee 

and Maguire 2014). 

Tonic GABAergic currents have been recorded in the basolateral (BLA) and lateral (LA) nuclei of 

amygdala (Marowsky et al., 2012). The α3 subunit protein was moderately expressed in the LA and 

strongly in the BLA, mainly at extrasynaptic sites (Marowsky et al., 2012). In α3 knock-out mice, 

tonic currents were significantly reduced in BLA principal cells, but not in LA principal cells 

(Marowsky et al., 2012). An α3-selective GABAA receptor agonist (TP003) increased tonic currents 

and dampened excitability markedly in BLA principal cells of wild-type mice but not in those of α3 

knock-out mice (Marowsky et al., 2012). Also interneurons of the LA and BLA expressed a tonic 

current, but the α3-selective GABAA receptor agonist potentiated these currents only in a small 

fraction of these neurons (Marowsky et al., 2012). In the central nucleus of amygdala (CeA), tonic 

GABAergic inhibition was mediated by α1 or δ subunit-containing receptors depending on the 

neuronal subpopulation (Herman et al., 2013).  

In hypothalamus, GnRH neurons release GnRH to regulate fertility by controlling the release of 

follicle-stimulating hormone and luteinizing hormone from the anterior pituitary. In the brain slice 

preparation, half of the GnRH neurons displayed tonic GABAA receptor current that was associated 

with δ subunit-containing GABAA receptors (Bhattarai et al., 2011). These tonically active GABAA 

receptors may be important in controlling the reproductive function as in GnRH neuron-specific 

conditional γ2 subunit knock-out mice no effects on fertility, estrous cycles, puberty onset, or 

luteinizing hormone levels were observed although the amplitude and frequency of postsynaptic 

IPSCs were decreased (Lee et al., 2010a). A tonic GABAergic conductance that was enhanced by 
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blocking the activity of glial GATs has been reported also in the magnocellular neurosecretory cells 

within the supraoptic nucleus of the hypothalamus (Park et al., 2006). It has been proposed that this 

tonic conductance is mediated via α5βγ2 receptors and to a lesser extent by δ-containing receptors 

(Jo et al., 2011).  

The extrasynaptic α4βδ GABAA receptors in ventrobasal nuclei have been associated with the 

hypnotic/sedative action of etomidate and gaboxadol (Belelli et al., 2005; Chandra et al., 2006; 

Herd et al., 2009), but also other  drugs have been proposed to alter the tonic inhibition in the brain 

(Brickley and Mody, 2012) (Table 1). 

Table 1. Drugs altering the tonic GABAergic inhibition in the brain (modified from Brickley and Mody, 
2012). 

Drug Mechanism of action 
 

Current drug indications 

Vigabatrin 
 

Irreversible block of GABA 
transaminase raising ambient GABA 
levels. 

Refractory complex partial seizures and 
infantile spasms. Not favored due to 
visual field loss in some adults and 
children. 

Tiagabine  Blockade of GABA transporters on 
nerve terminals (predominantly GAT-1) 
raising ambient GABA levels. 

Partial seizures; generalized anxiety 
disorders/panic disorders.  

Gaboxadol Selective agonist at extrasynaptic 
GABAA receptors leading to specific 
enhancement of the tonic conductance. 

Sleep enhancer, but withdrawn from 
phase III clinical trials due to poor risk-to-
benefit ratio (hallucinations and 
disorientation in a subset of patients). 

L-655,708 High-affinity negative allosteric 
modulator of α5 subunit-containing 
GABAA receptors reducing tonic 
conductance. 

Cognitive enhancer but not suitable for 
human use due to anxiogenic properties.  

Ganaxolone Positive allosteric modulator of most 
GABAA receptors with greater 
potency/efficacy at δ subunit-containing 
GABAA receptors leading to selective 
enhancement of the tonic conductance. 

Catamenial epilepsy.  

Alphaxalone  Positive allosteric modulator of most 
GABAA receptors with greater 
potency/efficacy at δ subunit-containing 
GABAA receptors leading to selective 
enhancement of the tonic conductance. 

Anesthetic and sedative in long-term 
intensive care patients that was withdrawn 
from clinical practice due to 
complications with the vehicle, 
Cremophor EL. Widely used as an 
anesthetic in veterinary surgery. 

Propofol  Positive allosteric modulator of most 
GABAA receptors including α5 or δ 
subunit-containing GABAA receptors 
leading to enhanced tonic conductance. 

Widely used as an intravenous anesthetic. 
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2.1.7 Sources of extrasynaptic GABA 

Under physiological conditions, GABA spillover from the synaptic cleft after vesicular fusion is 

likely the main source of extrasynaptic GABA (Glykys and Mody, 2007) (Figure 4). Tonic 

inhibition increases when GABA transporter subtypes 1 and 3 (GAT-1 and GAT-3) are 

pharmacologically blocked (Rossi et al., 2003; Keros and Hablitz, 2005) and in GAT-1 knockout 

mice (Jensen et al., 2003). There are also additional non-vesicular sources of extrasynaptic GABA, 

as tonic inhibition occurs also if vesicular GABA release is blocked (Rossi et al., 2003; Wu et al., 

2003). Under certain conditions, neuronal and glial plasma membrane transporters (GAT-1 – GAT-

3) can reverse their action and release GABA from neurons or glial cells (Richerson and Wu 2003; 

Koch and Magnusson, 2009) (Figure 4). The direction of operation is dependent on the Na+ ions, 

the difference in GABA concentration between the intra- and extracellular space and on the 

membrane potential (Koch and Magnusson, 2009). GABA can be released from astrocytes by the 

reverse action of glial GAT subtypes GAT-2 or GAT-3 induced by glutamate uptake (Héja et al. 

2012). Recently it has been reported that in striatum and cerebellum GABA is synthesized in glia 

from putrescine via monoamine oxidation by monoamine oxidase B (MAOB) (Yoon et al., 2014). 

The glial GABA is released via bestrophin 1 channels (Best1) (Figure 4) and contributes to tonic 

inhibition in hippocampus, cerebellum and striatum (Le Meur et al., 2012; Lee et al., 2010b; Yoon 

et al., 2011; Yoon et al., 2014). Also a release from dying cells or non-vesicular leakage may 

provide extrasynaptic GABA (Glykys and Mody, 2007). Ca2+-dependent retrograde release of 

GABA from dendritic structures has been reported in olfactory granule cells, interneurons in 

thalamic relay nuclei, layer 2/3 neocortical bitufted interneurons and in the principal neurons of the 

lateral superior olive (Koch and Magnusson, 2009). 
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Figure 4. Sources of synaptic and extrasynaptic GABA (black dots) activating synaptic and extrasynaptic 
GABAA receptors and contributing to phasic and tonic inhibition, respectively.  Following the GABA uptake 
into the presynaptic neuron by GABA transporter (GAT), GABA may be recycled directly into synaptic 
vesicles being readily available for further release or enter the GABA shunt. In GABA shunt GABA is first 
metabolized by GABA-transaminase (GABA-T) to succinic semialdehyde that is further metabolized to 
succinate entering the tricarboxylic acid cycle (Krebs cycle) (dashed circular arrow) for oxidative 
metabolism and resulting in α-ketoglutarate. The α-ketoglutarate is then transaminated into glutamate that is 
decarboxylated by glutamic acid decarboxylase (GAD) back to GABA that can then re-enter the process. In 
glia, uptaken GABA can be first converted to glutamate that is then converted to glutamine. Glutamine is 
transferred back to the neuron, in which glutamine is converted to glutamate that re-enters the GABA shunt. 
The main source of extrasynaptic GABA is GABA spillover from the synaptic cleft after vesicular fusion. 
Under certain conditions, neuronal and glial GATs can reverse their action and release GABA from neurons 
or glial cells. GABA can also be synthesized in glia from putrescine by monoamine oxidase B (MAOB), and 
it is released via bestrophin 1 channels (Best1). Synaptic GABAA receptors contain typically the γ2 subunit 
with α1, α2, or α3 subunits and any β subunits, whereas the α4, α5, α6, and δ subunits are predominantly 
localized extra- or perisynaptically. The α5 subunits form extrasynaptic receptors with γ2 subunits but not 
with δ subunits. 
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2.2 Anxiety  

According to ICD-10 (International Statistical Classification of Diseases and Related Health 

Problems 10th Revision), anxiety disorders include agoraphobia, social phobia, specific phobias, 

panic disorder and generalized anxiety disorder (GAD) (Table 2). In 2010, anxiety disorders were 

the most frequent mental disorders in the contemporary EU countries, Switzerland, Norway and 

Iceland estimated to affect 69.1 million persons (14.0%) across all age groups (Wittchen et al., 

2011). Anxiety disorders have typically an early onset, are often of chronic or recurrent nature, 

cause substantial personal distress, impair the ability to function socially and occupationally, 

increase the suicidal thoughts and behavior, and impose a substantial economic burden (Baldwin et 

al., 2013). Fear and anxiety overlap in anxiety disorders, but they are distinct phenomena (Grillon, 

2007). Fear is an adaptive component of the acute stress response to potentially dangerous stimuli 

and is characterized by a flight or fight response (Millan, 2003; Grillon, 2007). In the sensation of 

anxiety, fear becomes disproportional in intensity, chronic and/or irreversible, or not associated 

with any genuine risk (Millan, 2003).  Anxiety is characterized by tension, worry, negative affect 

and a feeling of insecurity and it is associated with avoidance and increases in overall sensory 

sensitivity (Grillon, 2007).  
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Table 2. Main anxiety disorders and their description according to ICD-10 (International 
Statistical Classification of Diseases and Related Health Problems 10th Revision).  

 

 

Phobic anxiety disorders 

Anxiety evoked in certain well-
defined situations that are not 
currently dangerous. These 
situations are characteristically 
avoided or endured with dread. The 
patient's concern may be focused 
on individual symptoms like 
palpitations or feeling faint and is 
often associated with secondary 
fears of dying, losing control, or 
going mad. Contemplating entry to 
the phobic situation usually 
generates anticipatory anxiety. 

Agoraphobia 

A fairly well-defined cluster of phobias embracing fears of leaving 
home, entering shops, crowds and public places, or travelling alone in 
trains, buses or planes. Panic disorder is a frequent feature of both 
present and past episodes. Avoidance of the phobic situation is often 
prominent. 
Social phobias 

Fear of scrutiny by other people leading to avoidance of social 
situations. More pervasive social phobias are usually associated with 
low self-esteem and fear of criticism. They may present as a complaint 
of blushing, hand tremor, nausea, or urgency of micturition, the patient 
sometimes being convinced that one of these secondary manifestations 
of their anxiety is the primary problem. Symptoms may progress to 
panic attacks. 

Specific (isolated) phobias 

Phobias restricted to highly specific situations such as proximity to 
particular animals, heights, thunder, darkness, flying, closed spaces, 
urinating or defecating in public toilets, eating certain foods, dentistry, 
or the sight of blood or injury. Though the triggering situation is 
discrete, contact with it can evoke panic as in agoraphobia or social 
phobia. 
 

 

 

Other anxiety disorders 

 
Disorders in which manifestation 
of anxiety is the major symptom 
and is not restricted to any 
particular environmental situation. 
Depressive and obsessional 
symptoms, and even some 
elements of phobic anxiety, may 
also be present, provided that they 
are clearly secondary or less 
severe. 

Panic disorder  

The essential feature is recurrent attacks of severe anxiety (panic), 
which are not restricted to any particular situation or set of 
circumstances and are therefore unpredictable. As with other anxiety 
disorders, the dominant symptoms include sudden onset of 
palpitations, chest pain, choking sensations, dizziness, and feelings of 
unreality (depersonalization or derealization). There is often also a 
secondary fear of dying, losing control, or going mad.  

Generalized anxiety disorder 

Anxiety that is generalized and persistent but not restricted to, or even 
strongly predominating in, any particular environmental circumstances 
(i.e. it is "free-floating"). The dominant symptoms are variable but 
include complaints of persistent nervousness, trembling, muscular 
tensions, sweating, lightheadedness, palpitations, dizziness, and 
epigastric discomfort. Fears that the patient or a relative will shortly 
become ill or have an accident are often expressed. 
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The anxiety disorders are treated by benzodiazepines but the adverse effects limit their use in 

chronic anxiety disorders (Millan, 2003; Farb and Ratner, 2014). The short-term benefits of 

benzodiazepines are well known, but their long-term use causes dependence, daytime somnolence, 

blunted reflexes, memory impairment, and an increased risk of falls in older people (Mugunthan et 

al., 2011). Selective serotonin reuptake inhibitors and serotonin/noradrenaline reuptake inhibitors 

are currently used as the first-line pharmacological treatment of anxiety disorders but many 

individuals are not responsive to the treatment and the side effects such as nausea, dizziness and 

sexual problems of these drugs are often limiting their use (Millan, 2003; Farb and Ratner, 2014). 

Other pharmacological treatments of anxiety disorders include tricyclic antidepressants (inhibit 

serotonin and noradrenaline reuptake but have also affinity on different receptors), buspirone 

(serotonin1A receptor agonist), pregabalin (reduces the synaptic release of several neurotransmitters 

by binding to voltage-gated calcium channels), noradrenaline reuptake inhibitors and the α2-

adrenergic agonist (clonidine) (Bandelow et al., 2014; Itoi and Sugimoto, 2010).  

A better understanding of neurocircuitry and molecular pathways mediating anxiety is required for 

the development of more selective and safe treatment for anxiety disorders (Millan, 2003; Farb and 

Ratner, 2014). Brain-imaging methods in humans have revealed the involvement of the amygdala 

and prefrontal, insular, limbic, paralimbic, and occipital cortices as well as the basal ganglia in 

anxiety (Farb and Ratner, 2014). These imaging methods include the functional Magnetic 

Resonance Imaging (fMRI) that reveals changes in regional cerebral blood flow (rCBF) that is a 

marker of energy consumption by neurons. Both excitatory and inhibitory neurotransmission are 

energy-consuming processes and cause changes in rCBF (Detre and Floyd, 2001). Magnetic 

resonance spectroscopy (MRS) is a noninvasive technique monitoring the levels of neurochemicals 

in the brain (Farb and Ratner, 2014). The positron emission tomography (PET) involves a systemic 

exposure to a short-lived radioactive tracer. It has been used to study metabolism, receptor binding, 

and alterations in regional blood flow within certain brain areas, but it lacks a resolution for 

structural details and is a highly costly technique (Politis and Piccini, 2012). The single photon 

emission computed tomography (SPECT) is another emission tomography technique using a 

radionucleotide-labeled tracer but it has lower resolution than PET (Bailey and Willowson, 2013). 

To be complemented with clinical findings, animal tests of anxiety are crucial for biomedical 

research, including testing of anxiolytic drugs, assessment of behavioral phenotypes of mutant and 

transgenic animals, testing neurobiological hypotheses and finding candidate genes for anxiety 

disorders (Kalueff and Nutt, 2007).  
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2.2.1  Locus coeruleus and anxiety 

The locus coeruleus (LC) is the largest noradrenergic nucleus producing half of the total 

noradrenaline in the brain (de Lecea et al., 2012). LC projects virtually to all brain regions with the 

exception of basal ganglia (Sara, 2009). The adrenergic receptors are G-protein-coupled receptors 

that modulate neuronal excitability via distinct G-protein-coupled signal cascades. There are three 

major categories of adrenergic receptors, α1, α2 and β, each eliciting different cellular responses. 

Each category is further divided into subtypes. It has been suggested that the effect of noradrenaline 

in any brain region is complex and depends on the intracellular concentration of noradrenaline and 

the receptor subtypes in the target region (Sara, 2009). LC mediates the alarm reaction during stress, 

and its over-activity increases the arousal level and amplifies emotional reactions to stress 

(Yamamoto et al., 2014).  

Noradrenergic dysfunction has been associated with anxiety disorders (Yamamoto et al., 2014), 

although a causal relationship has not been demonstrated (Itoi, 2008). However, the activation of 

LC by direct electrical stimulation or by pharmacologic agents has elicited fear responses in 

primates whereas such responses have been reduced by decreasing LC firing (Southwick et al., 

1999). In addition, noradrenaline reuptake inhibitors and the α2-adrenergic agonist (clonidine) are 

used as a pharmacological treatment for anxiety disorders, whereas the α2-adrenergic antagonist 

(yohimbine) has been shown to increase anxiety symptoms (Itoi and Sugimoto, 2010; Itoi, 2008).  

LC-mediated responses to stress are linked to the neuroendocrine stress system by corticotropin-

releasing hormone (CRH) (reviewed in Kovács, 2013). Activation of the hypothalamic-pituitary-

adrenal (HPA) axis is a well-known mediator of neuroendocrine stress responses, but in addition to 

stimulating the release of adrenocorticotropic hormone (ACTH), also known as corticotropin, and 

glucocorticoids from the pituitary gland and adrenal cortex, respectively, CRH from the 

paraventricular nucleus of hypothalamus increases the firing of TH-positive neurons in LC. LC 

receives CRH-positive afferents also from the brainstem, Barrington nucleus, CeA and bed nucleus 

of stria terminalis (BNST). Different stressors recruit different CRH pathways projecting to LC. As 

an example, psychosocial stress increases CRH mRNA levels in the CeA and BNST (Kovács, 

2013). 
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2.2.2 Anxiety tests in rodents 

Numerous preclinical anxiety tests have been developed for animals (Griebel and Holmes, 2013) 

(Table 3). One major difficulty confronted in animal studies on anxiety is the absence of concrete 

parameters reflecting the emotional component of anxiety. Surrogate markers, such as an increase 

in arterial pressure, tachycardia, hyperthermia and excessive secretion of glucocorticoids into the 

systemic circulation, can be instructive in the evaluation of anxiety, but behavioral end-points such 

as avoidance, escape, freezing are generally preferred although their precise relevance to different 

types of anxiety disorders in man is not easy to determine (Millan 2003). The translational value of 

an animal test in understanding pathological anxiety in humans can be assessed by three validity 

criteria; face, predictive and construct validity (Griebel and Holmes, 2013). Face validity 

determines if the test measures something analogous to one or more human anxiety symptoms. 

Predictive validity defines whether the test is reliably sensitive to clinically efficacious anxiolytics. 

Construct validity determines if the test measures something analogous to one or more mechanisms 

of human anxiety disorder (Griebel and Holmes, 2013). None of the currently available anxiety tests 

or models is considered unequivocally meet these criteria (Griebel and Holmes, 2013). 
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Table 3. Commonly used anxiety tests in experimental rodents and the anxiety disorders they are proposed 
to model (Griebel and Holmes, 2013; Parsons and Ressler, 2013; Bourin et al., 2007). In bold are 
highlighted the most frequently used animal tests in anxiety research between 1990 and 2011 (Haller et al., 
2013). 

Procedure Group Principle Test Anxiety 
disoder 

Unconditioned Approach-
avoidance 
conflict tests 

Generation of a conflict between 
a drive to approach novel areas 
and a simultaneous avoidance of 
potential threat therein. 

Open field test, 
elevated plus
maze test, 
light/dark 
exploration test 

Generalized 
anxiety 
disorder, 
specific phobias 

Fear tests Testing mice for their responses 
(fight, flight, freeze, vocalize or 
scan) to an approaching 
anaesthetized natural predator. 

Mouse Defense 
Test Battery 
(MDTB) 

Generalized 
anxiety 
disorder, panic 
disorder 

Interaction- 
based tests 

Measuring the time spent by 
pairs of rodents in social 
interaction (e.g. sniffing, 
following or grooming the 
partner). 

Active social 
interaction 
(unfamiliar rat 
pairs), resident 
intruder, ultrasonic 
vocalization 
(separation 
induced) 

Generalized 
anxiety 
disorder, social 
anxiety disorder 

 

Conditioned Conditioned 
fear tests 

Learning process in which a 
neutral stimulus as a result of 
pairing with fear-provoking 
stimulus becomes a conditioned 
stimulus (CS) that alone elicits 
fear. Fear extinction is learning 
that the CS no longer predicts the 
unconditioned stimulus. 

Pavlovian fear 
conditioning 

Specific 
phobias and 
other anxiety 
disorders 

 Conflict
based tests 

Measuring anxiolytic like 
activity via the maintenance of a 
behavioral response despite the 
receipt of a punishment (mild 
electric shock). 

Vogel conflict test, 
Geller Seifter test 

Generalized 
anxiety disorder 

Unconditioned anxiety tests, especially the elevated plus-maze, light/dark and open-field tests, are 

easy, quick and inexpensive to perform and analyze and are therefore popular in preclinical drug 

testing and genetic research (Blanchard et al., 2008). The elevated plus-maze, light/dark and open-

field tests generate a conflict between the natural drive to approach novel areas and an avoidance of 

a potential threat there, and are considered to model especially specific phobias and GAD (Griebel 
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and Holmes, 2013). The social interaction test of anxiety is thought to mimic the state of anxiety in 

GAD and social anxiety disorder (SAD) (File and Seth, 2003; Griebel and Holmes, 2013). The test 

measures the time spent by pairs of rodents in social interaction (e.g. sniffing, following or 

grooming the partner) (File and Seth, 2003). The test conditions (the light intensity and the novelty 

of the test arena) can be manipulated to generate different levels of anxiety (File and Seth, 2003). 

The Mouse Defense Test Battery (MDTB) provides multiple measures related to fear and anxiety. 

In the test, mice are placed in an oval runway and tested for their fight, flight, freeze, vocalize or 

scan responses to a natural predator (Griebel and Holmes, 2013). Predator-elicited flight responses 

in mice have been suggested to serve as an experimental model of panic attacks (Griebel et al., 

1996). 

In fear conditioning an emotionally neutral stimulus is paired with an aversive unconditioned 

stimulus (US). As a result of the pairing, the neutral stimulus becomes a conditioned stimulus (CS) 

that alone elicits fear. If the CS is subsequently presented repeatedly in the absence of the US, it 

gradually loses the ability to elicit fear. This phenomenon, i.e. learning that the CS no longer 

predicts the US, is called extinction (LeDoux, 2000, Sotres-Bayon et al., 2004; Johansen et al., 

2011). The Pavlovian fear conditioning test and its variations are considered as useful models to 

study the neural circuitry and the cellular and molecular mechanisms of fear-related disorders as 

anxiety disorders are thought result from a dysregulation of normal fear learning mechanisms 

(Dunsmoor and Paz, 2015). Early life experience and genetic background are important risk factors 

in the development of fear-related disorders (Parsons and Ressler, 2013). When an individual 

experiences a traumatic event, the person learns to fear the cues that are associated with the 

traumatic event, and this fear memory is transferred from short-term memory into long-term 

memory (Parsons and Ressler, 2013). The psychopathology of anxiety disorders is characterized by 

recruitment of cues not originally associated with the traumatic event (a phenomenon called 

generalization) and by sensitization to fear experiences when an exposure to fear cues occurs 

(Parsons and Ressler, 2013). It has been demonstrated that a similar brain activation pattern is 

observed in humans and rodents in a fear conditioning test, and that these areas are notably 

dysregulated in anxiety disorders suggesting a promising face and construct validity of the test 

(Parsons and Ressler, 2013).  

Other types of conditioned procedure tests include the Vogel conflict and Geller-Seifter tests that 

measure anxiolytic-like activity as the maintenance of a behavioral response despite the receipt of a 

mild electric shock (Griebel and Holmes, 2013). In the Vogel conflict test water-deprived rodents 

are exposed to a mild and intermittent electric shock via a water bottle whereas in the Geller-Seifter 
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conflict test, rats that are trained to respond for a food reward are exposed to a modest electric 

shock during a “conflict” component of the procedure (Millan, 2003). Vogel conflict test and other 

fear-based conflict tests are postulated to be relevant for testing anxious states related to GAD, 

social and other phobias, but their validity in reflecting other anxious states, such as those related to 

panic attacks is less apparent (Millan, 2003). .   

Despite of a large number of existing preclinical anxiety tests, preferences for their use have not 

changed between the years 1990 and 2011 (Haller et al., 2013). The elevated plus-maze test was 

used in half of all anxiety studies identified in a thorough Medline search, and the elevated plus-

maze, open-field, social interaction, and light/dark box tests accounted for about 80% of them 

(Haller et al., 2013). The most widely used animal tests of anxiety have been argued to predict only 

a specific type of anxiolytic activity (Haller et al., 2013). Actually, about 40% of compounds that 

have been promising in preclinical tests were ineffective in clinical trials. The important difference 

between the anxiety disorders and anxiety-like behavior monitored by classical preclinical animal 

tests is that anxiety disorders are chronic states with “excessive” or “unreasonable” fear whereas the 

animal tests often monitor acute manifestations of natural fears. The mechanisms mediating the 

non-pathological extreme forms of anxiety are essential for survival and likely to be highly 

conserved in different mammalian species (Steimer, 2001). As certain compounds have been shown 

to reduce both natural fear responses and symptoms of anxiety disorders, the mechanisms 

underlying these natural and “unreasonable” fears are probably overlapping.  However, as some 

substances selectively reduce only the natural fear responses or the symptoms of anxiety disorders, 

their mechanisms are not identical (Haller et al., 2013).  

An important component of anxiety disorders is linked to personality characteristics. An inhibited 

(fearful) temperament, i.e. trait anxiety, is supposed to be a predisposing factor for anxiety disorders 

(Steimer, 2011). Therefore trait anxiety animal models including genetic models, chronic exposure 

to fear-provoking stimuli, rodent strains displaying high or low anxiety and inter-individual 

differences within a defined strain model may be critical tools for scientists trying to unravel the 

mechanisms of these complex disorders (Steimer, 2011). 

2.2.3 Neuroanatomy of conditioned fear  

Amygdala has been implicated in the acquisition, expression and extinction of conditioned fear 

(LeDoux, 2000). During the acquisition phase, pathways transmitting the conditioned auditory 

stimulus and unconditioned nociceptive stimulus were proposed to be transmitted to the lateral 

nucleus of amygdala (LA) serving as a sensory input region (LeDoux, 2000). Expression of 
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conditioned fear was proposed to involve changes in the activity of the LA and in CeA to which LA 

is connected both directly and indirectly via the basal and accessory basal nuclei and intercalated 

cell masses (ICM) (LeDoux, 2000, Sotres-Bayon et al., 2004; Johansen et al., 2011). During 

contextual fear conditioning, the acquisition phase was proposed to involve the hippocampus and 

the communication between the ventral hippocampus (CA1 and subiculum) and the basal and 

accessory basal nuclei of amygdala that project further to the CeA (LeDoux, 2000). According to 

the theory by LeDoux, CeA serves as an output region of both acoustic and contextual CSs and 

controls the expression of fear responses by sending projections to the hypothalamus and brainstem 

(LeDoux, 2000, Sotres-Bayon et al., 2004; Johansen et al., 2011).  

Indeed, many animal studies involving lesions, pharmacological manipulations and electrical 

stimulation support the central role of amygdala in the acquisition and expression of conditioned 

fear. Post-training and pre- or post-training lesions of CeA and BLA, respectively, blocked fear-

potentiated startle to both auditory and visual CSs in rats (Campeau and Davis, 1995). 

Pharmacological inactivation of the prelimbic cortex (PL) reduced conditioned fear expression 

(Corcoran and Quirk, 2007). As PL projects to BLA, PL may augment conditioned fear responses 

via this pathway (Milad and Quirk 2002). Infusion of muscimol into BLA and LA either before 

conditioning training or before testing the responses to CS (tone or context) decreased the freezing-

response to the conditioned stimuli (Muller et al., 1997). Pharmacological blockage of NMDA 

receptors in the rat BLA or CeA prior to fear conditioning training abolished the acquisition of both 

auditory and contextual fear conditioning (Goosens and Maren, 2003). Infusions of muscimol into 

CeA and LA resulted in an impairment of acquisition of conditioned fear further suggesting that 

also CeA is involved in fear learning and is not a simple output structure (Wilensky et al., 2006). As 

a result, the fear circuitry theory by LeDoux was updated to involve also CeA as an input station for 

CS and US resulting in memory formation of conditioned fear. However, it still remained unsolved 

whether plasticity and memory formation in CeA occurred in parallel to that in LA or if it relied on 

distributed plasticity throughout the amygdala that was initiated by LA neurons (Wilensky et al., 

2006). Recent developments in methodologies have made it possible to study how fear memories 

are acquired at the circuitry level. An in vivo study in mice using implanted chronic recording 

electrodes and optogenetic and pharmacological approaches has shown that inactivation of lateral 

subdivision of the CeA during the acquisition phase of fear conditioning interfered with the learning 

process indicating that excitation of neurons in the lateral subdivision of the CeA is required for fear 

acquisition (Ciocchi et al., 2010). It was further shown that the conditioned freezing behavior was 

driven by excitation of output neurons in the medial subdivision of CeA (Ciocchi et al., 2010). In 

the lateral subdivision of CeA some neurons exhibited CS-evoked short-latency excitatory 
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responses, whereas some displayed a strong inhibitory response and the majority did not exhibit any 

CS-evoked responses (Ciocchi et al., 2010).  

Many studies suggest that amygdala has a role also in fear extinction. Like other types of learning, 

extinction learning can be divided into acquisition, consolidation, and retrieval phases (Quirk and 

Mueller, 2008). Acquisition is the initial phase of extinction learning in which conditioned 

responses are declining within an extinction training session. In the consolidation phase, 

physiological and molecular processes stabilize a long-term extinction memory. In the retrieval 

phase of extinction, a presentation of the extinguished CS triggers a retrieval of extinction, 

characterized by low levels of conditioned responding.  

Blockade of NMDA (Sotres-Bayon et al., 2007) or metabotropic glutamate subtype 1 (Kim et al., 

2007) receptors within the BLA has been reported to impair the acquisition of fear extinction. Also 

the ventrolateral periaqueductal gray (vlPAG) has been proposed to mediate extinction acquisition 

as the acquisition of extinction was impaired in rats with naloxone-blocked μ-opioid receptors in the 

vlPAG (McNally et al., 2004, 2005). Noradrenergic action within the BLA has been proposed to 

enhance the consolidation of conditioned fear extinction (Berlau and McGaugh, 2005). Several 

molecular processes have been identified within the amygdala (BLA), hippocampus and prefrontal 

cortex (PFC) during the consolidation of extinction (Quirk and Mueller, 2008). 

PFC is poorly developed in rodents as compared to humans, and it consists of the orbital frontal, 

anterior cingulate, infralimbic (IL) and prelimbic (PL) cortices in rodents (Sotres-Bayon et al., 

2004). Selective stimulation of IL during a CS session facilitates fear extinction (Milad and Quirk, 

2002; Vidal-Gonzalez et al., 2006). It has been shown that CS-evoked firing of IL neurons increases 

during fear extinction training and this firing is larger a day after the extinction training when rats 

are recalling extinction (Milad and Quirk 2002). Rats with lesions in IL extinguish freezing 

responses within a CS session but display excessive freezing to the CS the following day, 

suggesting impaired recall of extinction (Quirk et al. 2000; Lebron et al. 2004).  

There are also marked deficits in fear extinction when intercalated cells of amygdala (ITC) are 

injured (Likhtik et al., 2008). The ITC cells receive a strong projection from IL, and potentiated 

activity of IL during extinction retrieval could inhibit amygdala output via activation of ITC cells 

(Quirk and Muller, 2008). This is supported by the finding that electrical stimulation of IL reduces 

the responsiveness of CeA output neurons to BLA stimulation (Quirk et al, 2003). In contrast to IL, 

stimulation of PL has been shown to slower the rate of fear extinction and to prevent extinction 

learning (Vidal-Gonzalez et al., 2006).  
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Hippocampus is proposed to play an important role in the fear extinction of contextual CS (Sotres-

Bayon et al., 2004, Quirk and Mueller, 2008; Maren et al., 2013). Hippocampus sends mainly 

glutamatergic projections from CA1/subiculum to mPFC (primarily to IL and ventral PL), and may 

regulate CeA output via mPFC or via its connections with basal and accessory basal nuclei of 

amygdala (Sotres-Bayon et al., 2004). It has been proposed that the activation of CeA through the 

direct glutamatergic projection from the hippocampus to BLA as well as through the indirect BLA 

activation via the glutamatergic projection to PL may be crucial for the renewal of fear expression 

in response to an extinguished conditional stimulus (Figure 5) (Maren et al., 2013). In contrast, 

hippocampus may indirectly inhibit the CeA firing via its glutamatergic projection to IL that further 

sends glutamatergic projections to ITC and thus can activate the inhibitory GABAergic projections 

from ITC to CeA (Maren et al., 2013). This inhibition of CeA output is involved in suppressing the 

expression of fear in response to an extinguished conditional stimulus (Maren et al., 2013). 

 

Figure 5. The neural circuit involved in the context-dependent regulation of fear memory involves the 
hippocampus, infralimbic cortex (IL), prelimbic cortex (PL), basolateral amygdala (BLA), central nucleus of 
amygdala (CeA) and intercalated (ITC) cells of amygdala (modified from Maren et al., 2013). Black arrows 
represent glutamatergic excitatory projections, and the blunt line represents the GABAergic inhibitory 
projection.  The hippocampus projects directly to BLA, and this projection may be crucial for the renewal of 
fear expression in response to an extinguished conditional stimulus. The red arrows represent whether the 
context-dependent fear renewal is stimulated or suppressed in response to an extinguished conditional 
stimulus as a result of GABAergic CeA output neuron activation or inhibition.  
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2.2.4  Neuroanatomy of unconditioned (innate) fear 

Responses to predators and to aggressive conspecifics are processed via independent neural 

pathways that include different subnuclei of amygdala, hypothalamus and periaqueductal gray 

(PAG) (Figure 6). The interconnected anterior hypothalamic nucleus (AHN), the dorsomedial part 

of ventromedial hypothalamic nucleus (dmVMH), and ventrolateral part of dorsal premammillary 

nucleus (vlPMD) form a so-called medial hypothalamic defensive circuit (Canteras, 2002) that is 

also called a predator-responsive circuit (Gross and Canteras, 2012). Lesions in PMD have been 

effective in reducing antipredator defensive responses (Canteras et al. 1997; Blanchard et al. 2003). 

The medial hypothalamic defensive system receives neurochemical signals from the posteroventral 

part of medial amygdala (pvMEA) upon olfactory stimulus representing a predator and from LA 

and the posterior part of basomedial amygdala (pBMA) upon auditory/visual stimulus representing 

a predator (Gross and Canteras, 2012).  The vlPMD is the output nucleus of the predator-responsive 

circuit and it projects to the dorsolateral part of periaqueductal gray (dlPAG) (Gross and Canteras, 

2012). Fear response to aggressive conspecifics involves the posterodorsal part of medial amygdala 

(pdMEA), the ventrolateral part of ventromedial hypothalamus (vlVMH) and its connections with 

the medial preoptic nucleus (MPN) and ventral premammilliary nucleus (PMV), the dorsomedial 

part of dorsal premammillary nucleus (dmPMD) and the dorsomedial part of periaqueductal grey 

(dmPAG) (Gross and Canteras, 2012). 
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Figure 6. The fear response to an olfactory or auditory/visual stimulus representing a predator is mediated 
by a neural pathway that involves the posteroventral part of medial amygdala (pvMEA) or the lateral 
amygdala (LA) and the posterior part of basomedial amygdala (pBMA), respectively. Both pvMEA and 
pBMA project to the dorsomedial part of ventromedial hypothalamus (dmVMH) that is connected to the 
ventrolateral part of dorsal premammillary nucleus (vlPMD) both directly and indirectly via the anterior 
hypothalamic nucleus (AHN). The vlPMD projects to the dorsolateral part of periaqueductal grey (dlPAG). 
The fear response to aggressive conspecifics involves a pathway including the posterodorsal part of medial 
amygdala (pdMEA), the ventrolateral part of ventromedial hypothalamus (vlVMH) and its connections with 
the medial preoptic nucleus (MPN) and ventral premammilliary nucleus (PMV), the dorsomedial part of 
dorsal premammillary nucleus (dmPMD) and the dorsomedial part of periaqueductal grey (dmPAG). 
Dashed arrows indicate stimulus input and behavioral output (modified from Gross and Canteras, 2012). 

Also BNST and BLA are likely to play a role in unconditioned fear responses to predators, as 

lesions in both structures have exhibited a significant reduction in unconditioned fear responses to a 

predator odor (Fendt et al., 2003; Li et al., 2004; Rosen, 2004; Vazdarjanova et al., 2001). However, 

lesions in CeA have not been shown to affect the natural defensive responses to a predator (de Oca 

and Fanselow 2004) or to its odor (Li et al. 2004). Exposure of mice to 2,5-dihydro-2,4,5-

trimethylthiazoline, a synthetically derived component of fox feces, induced neuronal activation of 

the BNST, lateral septum (LS), paraventricular nucleus of hypothalamus, LC and PAG (Janitzky et 

al., 2015). Of these areas at least BNST and LS in addition to PAG receive direct innervations from 

the medial hypothalamic defensive system (Canteras, 2002). 

As shown by increased c-Fos expression, the elevated plus-maze-induced anxiety has been shown 

to activate  e.g. mPFC,  nuclei of amygdala (the medial, cortical and lateral nucleus of amygdala, 

BLA, and to a low extent also CeA) and  the crescentic LS, and it  has  been hypothesized  that  

they  are components  of  basic  neural  circuits  related  to  the  experience  of  anxiety  or  distress 
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(Duncan et al., 1996). Open-field exposure induced an increased c-Fos expression in the mPFC, 

cingulate, motor, somatosensory, insular, piriform and entorhinal cortices, LS, paraventricular 

thalamic nucleus, hypothalamus (anterior and lateral hypothalamic areas), amygdala (BLA, MEA), 

extended amygdala (BNST), hippocampus (CA1, subiculum) and LC (Hale et al., 2008). A local 

administration of a benzodiazepine site agonist midazolam into BLA showed an anxiolytic-like 

action by impairing the open arm avoidance in the plus-maze (Pesold and Treit, 1994, 1995). 

However, GABAergic drug action in the CeA did not have a similar effect as in the BLA because in 

the same protocol midazolam administration into CeA had no effect on the open arm activity in the 

plus-maze. A brightly lit test chamber has been shown to generate similar unconditioned fear in 

control animals and in animals with lesions in the CeA (Rosen, 2004). 
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3 Aims of the study  

Expanding the understanding of local role of GABAA receptors and neuronal circuits mediating 

anxiolysis is relevant for the development of more selective and safe treatment for anxiety 

disorders. Studying the properties of extrasynaptic GABAA receptors may help to understand their 

physiological relevance and role in psychiatric and neurological disorders. 

The main objectives of this thesis were as follows: 

 

1. To investigate whether benzodiazepine-sensitive GABAA receptors are expressed in human 

LC neurons. 

 

2. To study the pharmacology of extrasynaptic GABAA receptors in vivo in mice and in vitro 

in brain sections and recombinant receptors. 
 

3. To study the neuronal networks mediating acute anxiolytic responses. 
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4 Materials and methods 
4.1 Human brains (I) 

Postmortem brain tissue was obtained from the Section on Neuropathology of the Clinical Brain 

Disorders Branch, Genes Cognition and Psychosis Program of the Intramural Research Program of 

the National Institute of Mental Health under a protocol approved by the Institutional Review Board 

(IRB).  

The collection, screening, and analysis of subjects (2 females, 3 males, average age 30 ± 12.6 years) 

have been described in Lipska et al. (2006).  The cause of death was determined and the toxicology 

profile was defined from brain or blood samples. The interval between death and tissue collection 

ranged from 16 to 50.5 h. The pons and cerebellar cortex were cut into 2–3 cm thick slabs, flash 

frozen in dry ice and isopentane, and stored at -80 °C. 14-μm-thick sections were cut from the slabs 

of pons and cerebellar cortex with a Leica CM 3050S cryostat (Leica Microsystems, Benheim, 

Germany) at -20 °C. The sections were thaw-mounted onto gelatin-coated or SuperFrost object 

classes (Menzel-Gläser) and stored frozen at -70 °C. 

4.2 Experimental animals (II, III) 

All animal experiments were approved by the Southern Finland Provincial Government and the 

Institutional Animal Use and Care committee of the University of Helsinki. 

The Thy1 6 mice had been generated by microinjecting a transgene consisting of the Thy-1.2 pan-

neuronal promoter, the mouse GABAA receptor α6 subunit cDNA and the Thy1 polyadenylation 

site into the genome of two-cell embryos of CBA/cba x C57BL/6 (Caroni, 1997; Wisden et al. 

2002). The Thy1α6 founder line was expanded in C57BL/6 background for at least 10 generations 

(William Wisden, personal communication).  

The experimental Thy1α6 mice were produced in the animal facilities of the Korpi research group 

by mating within a homozygous line (II, III). The control C57BL/6NHsd mice (Harlan Netherland, 

Horst, The Netherlands) were purchased at the age of 5 weeks (II, III).  

To generate littermate wild-type controls for homozygous or heterozygous Thy1α6 mice (II), 

homozygous Thy1α6 mice were first mated with C57BL/6HNsd mice to produce heterozygous 

offspring. These heterozygous mice were then mated. Genotyping of the pups was performed from 

tail-tip samples by PCR (denaturing at 94°C for 3 min followed by 20 cycles, 94°C 30 s, 60°C 30 s, 

and 72°C 30 s) with primers (forward 5′-TCTTGCTTCTCCCCTGGCTCTTCA-3′ and reverse 5′-
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AGACGGTTGTCATAGCCTTCCAGC-3′) designed to discriminate between the endogenous 

Gabra6 gene (362 bp) and the transgenic intronless Gabra6 cDNA (160 bp). The presence of the 

shorter PCR product was used to identify the transgenic, either homozygous or heterozygous, mice. 

All experimental mice (II, III) were maintained until the experiments at the age of 3–6 months in 

groups of 2–6 in Makrolon cages (37 · 21 · 15 cm; Tecniplast, Buguggiate, Italy), under 12 : 12 h 

light : dark cycles (lights on 7 AM–7 PM), at 21–23°C and humidity of 50–60%. They received 

standard rodent pellets (Harlan BV., Horst, The Netherlands) and tap water ad libitum.  

For behavioral tests (II), the mice were transferred to the experimental room at least 1 h before drug 

injections, which were performed 30 min before behavioral tests. In the light : dark exploration and 

elevated plus-maze tests, the mice received an i.p. injection of either saline or gaboxadol 

hydrochloride (3 mg/kg; H. Lundbeck A/S, Copenhagen, Denmark). In the loss of righting reflex 

(LORR) test, 25 mg/kg gaboxadol hydrochloride was injected. 

For the immunohistochemical and autoradiography assays (III), the mice were pre-handled and 

accustomed to the test room and to injections for a week. On the test day, the mice were allowed to 

adapt to the test room at least 1 h before saline or gaboxadol (3 mg/kg, i.p.) injections. Immediately 

after the injections, the mice were returned in their home cages. Brain dissections were performed 

between 9 am and 1 pm, 2 h after the injections and the brains were frozen on dry ice and stored at  

-80 °C. 14-μm-thick coronal sections were cut with a cryostat (Leica CM 3050; Leica Microsystem, 

Nussloch, Germany), thaw-mounted onto gelatin-coated or SuperFrost object classes (Menzel 

Gläser) and stored frozen at -80 °C until used in the experiments. The mice were treated blindly for 

genotype and drug treatment. 

4.3 Behavioral tests (II) 

The light : dark exploration and elevated plus-maze tests have been described in Vekovischeva et al. 

(2004). All behavioral tests were performed between 9 AM and 1 PM. 

4.3.1  The light : dark exploration test  

A mouse was placed in the lit compartment of a two-compartment box (47 × 29 × 35 cm) divided 

into one dark (16 × 29 cm) and one lit (31 × 29 cm; about 450 lux) area separated by an open door 

(7 × 8 cm). During a 5-min testing period the time before the first crossing to the dark compartment 

(latency to the first entry), the number of crossings between the compartments and the time spent in 
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the lit compartment (minus the latency) were recorded and analyzed by EthoVision Color-Pro 3.0 

software (Noldus Information Technology, Wageningen, The Netherlands). 

4.3.2  The elevated plus-maze test  

A mouse was placed on the central platform facing the open arm and was allowed a free exploration 

of the maze for 5 min. The time spent on the open arms, number of entries into the open and closed 

arms, and total movements were recorded and analyzed using the EthoVision video tracking 

system. The elevated plus-maze apparatus (gray plastic; elevated 54 cm from the floor level) 

consisted of a central platform (5 × 5 cm), from which two open arms (5 × 40 cm with a 0.7 cm 

marginal elevation) and two closed arms (5 × 40 × 20 cm) extended. The light intensity was set at 

50 lux on the open arms, and 20 lux in the closed arms.  

4.3.3  The LORR (loss of righting reflex) test  

The LORR was determined every 4 min by turning a mouse in a supine position consecutively for 3 

times on a V-shaped trough made of plastic. The mouse was considered to have lost its righting 

reflex when it was not able to right itself in any of three consecutive 5-s trials and gained the 

righting reflex when it was able to right itself at least once of the three trials. 

4.4 Immunohistochemistry (I, III) 
4.4.1 Tyrosine hydroxylase (TH) immunohistochemistry (I) 

A rapid staining procedure as described in the instructions of Vectastain Elite ABC Kit (Vector 

laboratories) was applied. The human brain sections on gelatin-coated object classes were fixed in 

cold acetone for 5 min and washed briefly in 1× phosphate-buffered saline (PBS), pH 7.4. The first 

incubation was performed in the 1:25 dilution of primary rabbit anti-TH affinity-purified polyclonal 

antibody (AB152; Chemicon International, Temecula, USA), the second in the 1:50 dilution of 

secondary biotinylated anti-rabbit goat IgG (PK-6105; Vectastain Elite ABC Kit, Vector 

laboratories) and the third in the avidin/biotinylatedhorseradish peroxidase enzyme complex ABC 

(Vectastain Elite ABC Kit, Vector laboratories), each at room temperature for 4 min and with a 

brief rinsing with 1× PBS between each step. After the color development with diaminobenzidine 

(DAB) (Vector laboratories) for 60 s, the sections were rinsed in H2O, and then dehydrated in 70%, 

95% and 100% ethanol (30 s each) and xylene (twice for 5 min each). Finally, glass cover slips 

(Menzel-Gläser) were mounted on the sections. Negative controls were carried out in the absence of 
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the primary antibody. The LC sections were scanned (Epson expression 1680 Pro) with digital 

manipulation (shadow 179, gamma 2.89, highlight 215). 

4.4.2  C-Fos immunohistochemistry (III) 

The staining procedure has been described in Procaccini et al. (2011). The frozen slides on 

SuperFrost object classes were air-dried for 15 min, surrounded with a hydrophobic pen (Daigo 

Sangyo, Tokyo, Japan) and fixed for 10 min in ice-cold 4% paraformaldehyde in PBS (pH 7.4). The 

slides were washed in PBS containing 0.05% Tween 20 (PBST20) and blocked for endogenous 

peroxidases in methanol containing 0.3% hydrogen peroxide for 15 min. After washing in PBST20, 

the slides were incubated for 20 min in a blocking buffer consisting of 5% horse normal serum and 

1% fatty acid free bovine serum albumin (BSA) in PBST20. After washing in PBST20, the goat 

polyclonal anti-c-Fos antibody (1:1000, SC-52G, Santa Cruz Biotechnology, Santa Cruz, CA) was 

applied in the incubation buffer (1% BSA in PBST20) overnight at 4 °C. Negative control sections 

were incubated without the primary antibody. On the next day, slides were washed with PBST20 

and incubated in a solution containing biotinylated horse anti-goat IgG (1:200; Vector Laboratories, 

Burlingame, CA) in 1% BSA in PBST20 for 1 h followed by an incubation in an avidin-horseradish 

peroxidase solution for 1 h (Vectastain Elite ABC, Vector). After washing in PBST20, the sections 

were incubated in a chromogen solution containing diaminobenzidine and nickel sulfate 

intensification (DAB Substrate kit, Vector) for 8 min. The reaction was stopped by PBST20. The 

sections were dehydrated in ethanol series, immersed in Histoclear (National Diagnostic, Atlanta, 

GA, USA) and coverslipped with Permount (Fisher Chemicals, Fair Lawn, NJ). 

Photomicrographs from anatomically matched sections were captured blind to the treatment, 

genotype and sex using a light microscope (Leica DMR, Leica Microsystems, Wetzlar, Germany) 

and a CCD camera (Leica DC 300). Image Pro Plus digitizing software (Media Cybernetics, Silver 

Spring, ML) was used to set thresholds and to count c-Fos positive cells.  

4.5 In situ hybridization (I, III) 

The in situ hybridization procedures followed the protocol as described earlier by Sinkkonen et al. 

(2004). The air-dried sections on SuperFrost object classes (Menzel-Gläser) were fixed in ice-cold 

4% paraformaldehyde for 5 min, washed in 1× PBS at room temperature for 5 min, dehydrated in 

70% ethanol for 5 min and stored in 95% ethanol at 4 °C until used (I, III).  
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Two different antisense DNA oligonucleotide probes complementary to the human γ2 subunit 

mRNA sequence (nucleotides 1442–1486 and 1695–1739; GenBank accession 

number NM_198904) and analogous sense probes (I) as well as one antisense DNA oligonucleotide 

probe complementary to the mouse GABAA receptor α6 subunit mRNA sequence (5’-CAG TCT 

CTC ATC AGT CCA AGT CAT-3’) (III) were synthesized (Oligomer Oy, Helsinki, Finland). 

Poly[35S]dA ([35S]dATP from PerkinElmer Life and Analytical Sciences, Boston, MA, USA) tails 

were added to the 3′-ends of the probes by deoxynucleotidyl transferase (Promega Corporation, 

Madison, WI, USA) and unincorporated nucleotides were removed by Illustra ProbeQuant G-50 

Micro Columns (Amersham Biosciences, Buckinghamshire, UK). Sufficient labelling efficiencies 

were confirmed by a scintillation counter (I, III).  

The labelled probes were diluted to 0.06 fmol/μl with hybridization buffer (containing 50% 

formamide, 10% dextransulphate, 4× SSC) (I, III). Non-specific controls contained a 100-fold 

excess of unlabelled antisense probes. The hybridization occurred under glass cover slips (Menzel-

Gläser) over-night at 42 °C. The next day, the slides were washed in 1× SSC at room temperature 

for 10 min, in 1× SSC at 55 °C for 30 min, and 1× SSC, 0.1× SSC, 70% EtOH and 95% EtOH at 

room temperature for 1 min each. After air-drying, the sections were exposed with plastic 14C-

radioactivity standards (GE Healthcare, Little Chalfont, Buckinghamshire, UK) to BioMax MR film 

(Eastman Kodak Company, Rochester, NY, USA) for up to a week and scanned for images (Epson 

expression 1680 Pro). The binding densities were measured as optical density values (SCION 

IMAGE; Wayne Rasband, NIMH, Bethesda, MD) and converted to radioactivity levels in nCi/g of 

gray matter for [35S]-labelled oligonucleotides. Non-specific signal was subtracted to obtain the 

specific signal. 

For emulsion autoradiography (I), the sections were dipped in Kodak autoradiography emulsion 

(Eastman Kodak Company, Rochester, NY, USA) diluted in 600 mM ammonium acetate (1:1 

volume) in the 42 °C water bath, air-dried over-night in the dark and exposed in a light-tight slide 

box at 4 °C for 6 weeks. The sections were developed at 15 °C in Kodak D-19 Developer for 3 min, 

water for 30 s, and Kodak fixer for 5 min, after that they were washed twice in water for 5 min and 

air-dried over-night at room temperature. The dry sections were counterstained by 0.125% thionin, 

rinsed in water, dehydrated in ethanol series (70%, 95%, 100%) and xylene and mounted by cover 

slips. Conventional transmitted and darkfield images were acquired using Olympus AX70 

microscope with UPlanF1 20×/0.50 NA or PlanApo 60×/1.40 NA Oil objectives. 
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4.6 Autoradiographic binding assays (I, II, III) 
4.6.1  The [3H]Ro 15-4513 autoradiography (I, III) 

The [3H]Ro 15-4513 autoradiographic binding assays were modified from Mäkelä et al. (1997). 

Brain sections on gelatin-coated object classes were pre-incubated in ice-cold 50 mM Tris–HCl 

buffer, pH 7.4, containing 120 mM NaCl for 15 min. The final incubation was performed in the pre-

incubation buffer containing 15 nM [3H]Ro 15-4513 (PerkinElmer Life and Analytical Sciences, 

Boston, MA, USA) without (basal binding) or with 1 nM to 10 μM zolpidem or 10 μM flumazenil 

(non-specific binding) for human brain sections (I) and without (basal binding) or with 10 μM 

diazepam or 10 μM flumazenil (non-specific binding) for brain sections of saline or gaboxadol-

injected Thy1α6 or C57BL/6NHsd mice (III) at 4 °C for 1 h. The sections were washed in ice-cold 

pre-incubation buffer twice for 1 min, dipped in ice-cold distilled water, air-dried at room 

temperature and exposed with 3H-plastic standards (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK) to BAS-TR 2040 imaging plate (Fujifilm Corp., Tokyo, Japan) for up to 2–

3 days (I) or to Biomax MR films (Eastman Kodak, Rochester, NY, USA) (III).  

The binding densities were measured as optical density values (SCION IMAGE; Wayne Rasband, 

NIMH, Bethesda, MD) from digitalized images scanned by the FLA-9000 Starion image scanner 

(Fujifilm) (I) or by Epson expression 1680 Pro scanner (III) and converted by co-exposed 3H-

standards to nCi/mg for [3H]Ro 15-4513 binding.  

4.6.2  The [35S]TBPS autoradiography (II, III) 

The [35S]TBPS autoradiographic binding assay has been described in Sinkkonen et al. (2001). 14-

μm-thick horizontal brain sections on gelatin-coated object glasses were pre-incubated in ice-cold 

buffer containing 50 mmol/L Tris–HCl (pH 7.4) and 120 mmol/L NaCl for 15 min. The final 

incubation was performed at 22 °C for 90 min in the buffer containing 6 nmol/L [35S]TBPS (Perkin-

Elmer, Boston, MA, USA) without (basal binding) or with 1 mmol/L gaboxadol hydrochloride and 

10 mmol/L GABA (Sigma, St Louis, MO, USA), 1 μmol/L – 10 mmol/L GABA, 1 mmol/L 

gaboxadol hydrochloride (Sigma) or 100 μmol/L picrotoxin (Sigma) (non-specific binding) for 

naive adult Thy1α6 and control C57BL/6NHsd mouse brain sections (II) and in the buffer 

containing 2 nmol/L [35S]TBPS without (basal binding) or with 10 mM GABA, 1 mM gaboxadol 

hydrochloride, combination of 1 mM gaboxadol hydrochloride and 10 mM GABA, combination of 

10 mM GABA and 100 μM furosemide (Sigma) or 100 μM picrotoxinin (non-specific binding) for 

brain sections of saline or gaboxadol-injected Thy1α6 or C57BL/6NHsd mice (III). After 

incubations, the sections were washed 3× 30 min in ice-cold 10 mmol/L Tris–HCl (pH 7.4), dipped 
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into distilled H2O, air-dried at 22 °C, and exposed with plastic 14C radioactivity standards (GE 

Healthcare, Little Chalfont, Buckinghamshire, UK) to Biomax MR films (Eastman Kodak, 

Rochester, NY, USA) for up to 6 weeks (II, III).  

The binding densities were quantified on films by MCID M5 image analysis devices and programs 

(Imaging Research Inc., St. Catharines, ON, Canada) (II) or on scanned films by SCION IMAGE 

(III), and by using the simultaneously exposed 14C-standards as the reference, the binding values 

were converted to radioactivity levels estimated for gray matter areas (nCi/g) for [35S]TBPS 

binding.  

4.7 Cell culture and transfection (II) 

Human embryonic kidney cell line (HEK293) were passaged and replated on 12-mm glass 

coverslips located in 9.6-cm plastic dishes filled with 10 mL of Minimum Essential Medium 

supplemented with 158 mg/L sodium bicarbonate, 2 mmol/L glutamine, 100 U/mL penicillin–

streptomycin, and 10% fetal calf serum (all from Invitrogen, Karlsruhe, Germany). Cultures were 

maintained at 37 °C in a humidified 95% O2/5% CO2 atmosphere for 2–3 days. 

Transfections were carried out as described in Korpi and Lüddens (1993) and Lüddens and Korpi 

(1997) in double or triple subunit combinations using the phosphate precipitation method with rat 

GABAA receptor cDNAs in eukaryotic expression vectors. To identify transfected cells all subunit 

combinations except δ-internal ribosome entry site- enhanced green fluorescent protein (EGFP) 

were co-transfected with 1 μg of pN1-EGFP per plate. 

4.8 Electrophysiology (II) 

Two days after transfection single coverslips with human embryonic kidney cell line (HEK293) 

were placed in a recording chamber mounted on the movable stage of a fluorescence microscope 

(Olympus IX70; Olympus Optical CO. Europa GmbH, Hamburg, Germany) and perfused with a 

recording solution at 22°C. Transfected cells were identified by their eGFP fluorescence. Ligand-

mediated membrane currents in these cells were studied in the whole-cell configuration of the 

patch-clamp technique (Rabe et al. 2007).  

Dose-responses of GABA and gaboxadol and the kinetics of GABA and gaboxadol-induced peak 

currents were studied on HEK293 cells expressing α6β3, α6β3δ, α6β3γ2, or α4β3δ receptors. 0.01–

1000 μmol/L of gaboxadol hydrochloride or GABA was applied to the cells with a fast application 

system (SF-77B, Perfusion Fast Step; Warner Instruments, LLC, Hamden, CT, USA). The binding 
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site competition by GABA and gaboxadol was tested on HEK cells expressing α6β3δ and α6β3γ2 

receptors. 1 mmol/L GABA or gaboxadol or 1 mmol/L GABA or gaboxadol and 0.1, 1, 10, 100, 

and 1000 μmol/L gaboxadol or GABA, respectively, were applied to the cells.  

Cell responses were recorded by a patch-clamp amplifier (EPC-8; HEKA-Electronic, Lambrecht, 

Germany) in conjunction with a standard computer and the pClamp 8.1 software package (Axon 

Instruments, Foster City, CA, USA). Data analysis was performed using the appropriate programs. 

4.9 Statistical analyses (II, III) 

Statistical analyses of the data were carried out using two- and three-way ANOVAs, non-parametric 

Mann–Whitney test,  Wilcoxon matched pairs, Student’s t-test, two-tailed Welch t-test and 

Newman-Keuls comparisons with the statistical software packages SPSS 10.0.7 or 14.0.1 for 

Windows (SPSS, Chicago, IL, USA) and the PRISM 3.0 or 5.0 program (GraphPad Software, San 

Diego, CA, USA). 
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5 Results and discussion 
5.1 Human LC neurons express GABAA receptor γ2 subunit mRNA and 

benzodiazepine binding sites (I) 

The current study was performed in order to investigate whether the human LC neurons express the 

GABAA receptor γ2 subunit mRNA and benzodiazepine binding sites. Benzodiazepines are well 

known anxiolytics, and could in theory directly decrease anxiety and the associated arousal and/or 

insomnia by increasing the activity of the γ2 subunit-containing GABAA receptors on the LC 

neurons thereby decreasing the firing of these cells. However, contradictory reports had been 

published in regard to the expression and participation of the γ2 subunit in the functional GABAA 

receptors in the mammalian LC. Some studies had suggested the presence of γ2 subunit mRNA or 

protein in the rat LC (Fritschy et al., 1992; Lüddens et al., 1995; Caldji et al., 1998 and 2000), 

whereas many studies could not detect the γ2 subunit gene expression in the rodent LC (Araki et al., 

1992; Luque et al., 1994; Tohyama and Oyamada, 1994). Based on pharmacological investigations, 

Chen and colleagues (1999) concluded that the GABAA receptors of the rat LC neurons do not 

contain the γ subunit. 

The localization of the LC in the human pons sections was determined by TH 

immunohistochemistry and by the endogenous neuromelanin pigment that gives the natural bluish-

grey color for the LC. Neuromelanin is a waste product of catecholamine metabolism, derived from 

the oxidation of catecholamines and related compounds to quinones (German et al., 1988). 

Noradrenaline is synthesized from tyrosine (tyrosine → dopa → dopamine → noradrenaline), and 

the rate-limiting enzyme in this process is TH which can be used to label the noradrenergic neurons 

in the LC. However, although most TH expressing neurons in the human LC contain neuromelanin 

pigment, some larger neurons lack the pigmentation (Chan-Palay and Asan, 1989).  

In this study, a clear γ2 mRNA signal was revealed in the human LC. The finding is reliable as 

consistent results were obtained by two antisense probes designed to hybridize to different locations 

of the human GABAA receptor γ2 subunit mRNA. The emulsion autoradiography, that gives 

information with a cellular level resolution, revealed that the γ2 subunit mRNA was expressed over 

the entire LC, including neuronal somas within the structure, covering both neuromelanin-

pigmented and non-pigmented somas. In the negative control experiments with complementary 

sense probes and with competition hybridizations with an excess of unlabelled antisense probes 

only a very weak signal was detected on the films. The signal was completely absent in the negative 

controls after the emulsion autoradiography indicating that the faint signal on the film was an 
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artefact. The cerebellar granule cell layer served as a positive control for the γ2 subunit mRNA 

expression, and a strong expression was detected there, thus further increasing the reliability of the 

study. 

As a clear γ2 subunit mRNA expression was detected in the human LC, it was further investigated 

whether the subunit is assembled in GABAA receptors within the structure. As Ro 15-4513 exhibits 

high affinity to all GABAA receptors consisting of αβγ subunit combinations (Sieghart, 1995), a 

[3H]Ro 15-4513 binding autoradiography was performed. The [3H]Ro 15-4513 binding was clearly 

detected in the LC and in the cerebellar granule cell layer that was used as a positive control for 

benzodiazepine binding (Albin and Gilman, 1990). The benzodiazepine binding-site antagonist 

flumazenil displaced all [3H]Ro 15-4513 binding in the sections. These results indicate that the γ2 

subunit is assembled in GABAA receptors in the human LC.  

To further investigate the subunit combination in the benzodiazepine-binding receptors, we tested 

whether there were binding sites for zolpidem, an α1 subunit-preferring benzodiazepine-site agonist 

that has little or no sensitivity to γ1/γ3 subunit-containing receptors (Lüddens et al., 1994; Sanna et 

al., 2002). The cerebellar granule cell layer was used as a positive control as it expresses α1 

subunits but not α2/3 subunits in rats (Wisden et al., 1992). Based on the IC50 values for zolpidem 

determined by displacement of [3H]Ro 15-4513 binding, our results indicate that the  GABAA 

receptors in the human cerebellar granule cell layer are 3-times more sensitive to zolpidem than 

those in the LC, but as zolpidem displays about 10-fold higher affinity to α1 subunit-containing 

receptors than to α2/3 subunit-containing receptors (Hadingham et al., 1993), it is likely that the α1 

as well as α2/3 subunits are assembled in the GABAA receptors in the human LC. However, it 

cannot be fully excluded that the α2/3 subunits would be expressed in the human cerebellar granule 

cell layer and that the sensitivity difference between the granule cells and LC would have been due 

to some α1 expression in granule cells and none in LC. It is however most likely that also the α1 

subunits assemble in receptors in the human LC as Waldvogel and colleagues (2010) reported α1 

immunoreactivity in the human LC. In that study, the neuromelanin-pigmented neurons of LC were 

highly immunopositive for the GABAA receptor α3 and γ2 subunits and minimally labeled by α1, 

α2, or β2/3 subunit-antibodies. The non-pigmented neurons interspersed between the pigmented 

neurons and were immunopositive for the α1 and β2/3 subunits. The autoradiography films do not 

allow a cellular level analysis, and therefore it cannot be determined whether the α1 and α2/3 

subunits in our LC samples were located in pigmented or non-pigmented neurons. In mice, the 

GABAA receptor α1 and α2 subunits have been associated with sedative and anxiolytic effects of 

benzodiazepines, respectively (McKernan et al., 2000; Löw et al., 2000). In the current study it was 
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shown that the γ2 subunit is expressed in the neuromelanin-pigmented and non-pigmented human 

LC neurons and that the LC neurons express α1, α2/α3 and γ2 subunit-containing GABAA receptors 

likely in the same neurons that express the γ2 mRNA. These findings indicate that the human LC 

may directly mediate the sedative and/or anxiolytic effects of benzodiazepines. This study does not 

provide an answer to the inconsistent findings related to the γ2 subunit expression in the rodent LC, 

but there is a possibility that there is a species difference in the expression profile of the γ2 subunit 

in the LC. If the benzodiazepine binding sites are more abundant in the LC of man than rodents, the 

anxiolytic drugs in rodents may produce pronounced adverse sedative effects in man via the γ2 

subunit-containing benzodiazepine binding sites in the LC. However, any of the α1, α2 or α3 

subunits may assemble in human LC with the γ2, and one of the reasons for the association of the 

mouse α1 subunit with the sedative effects of benzodiazepines may result from benzodiazepine 

action in other brain regions than LC. 

5.2 The Thy1α6 mouse model expresses ectopically the GABAA receptor α6 
subunit contributing to extrasynaptic receptors and tonic inhibition 

The transgenic Thy1α6 mice express the GABAA receptor α6 subunit gene under the Thy-1.2 

promoter, and the first study on the mouse line reported an ectopic mRNA expression of GABAA 

receptor α6 subunit in many brain regions including deep cerebellar nuclei, deep layers of 

neocortex, layer II of neocortex in the somatosensory area, hippocampal pyramidal cells and dentate 

granule cells, cells in the septum and olfactory bulb mitral cells (Wisden et al., 2002). Of the 

investigated Thy1α6 mouse brain areas, only some cells were α6-immunopositive and most often 

large cell types displayed strong α6 immunoreactivity. Strong α6 subunit immunoreactivity was 

reported in the globus pallidus, zona reticulata of the substantia nigra, nucleus ruber, large cells in 

the intermediate gray layer of superior colliculus, some cells of the pontine nuclei, the vestibular 

nuclei, deep cerebellar nuclei, gigantocellular reticular formation, trigeminal nucleus and lateral 

reticular nucleus. In α6 immunopositive cells, the transgene was always present in the cell body, 

and the dendrites were α6 immunopositive to different extent in different neurons (Wisden et al., 

2002).   

It was reported that in the Thy1α6 mouse forebrain, the α6 subunit-containing receptors contained 

also the γ2 subunit or consisted of α6β receptors (Wisden et al., 2002; Sinkkonen et al., 2004), and 

that the α6 subunit-containing receptors were largely located extrasynaptically in the pyramidal 

cells of CA1 hippocampal area, a brain area that was chosen for more detailed microscopic 

investigation due to a strong α6 subunit protein expression on the entire somato-dendritic surface of 
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the neurons (Wisden et al., 2002).  As compared to control C57BL/6 mice, the CA1 pyramidal 

neurons of the Thy1α6 mice had a five-fold increased tonic GABAA receptor-mediated current 

(Wisden et al., 2002), further supporting the extrasynaptic nature of the receptors containing the 

ectopically expressed subunit. This is also in line with the finding that in its natural environment in 

cerebellar granule cells, the α6 subunit forms extrasynaptic receptors with β2/3 and δ subunits 

(Barnard et al., 1998). In cerebellar granule cells, the α6 subunit assembles also in receptors 

containing the γ2 subunit. The majority of the α6βγ2 receptors are located synaptically, although 

some of these receptors have also been detected in the extrasynaptic membrane in cerebellar granule 

cells (Nusser et al., 1998).   

5.3 Earlier behavioral characterization of consequences of ectopic expression of 
GABAA receptor α6 subunits 

Thy1α6 mice are healthy, grow and breed as the control C57BL/6 mice. The initially performed 

basic characterization of their phenotype according to a standardized set of experimental procedures 

revealed no strain differences in most of the studied parameters (Sinkkonen et al., 2004). Only the 

tests on startle reflex and struggle-escape behavior showed that the Thy1α6 mice were more 

sensitive to the acoustic stimuli and had an enhanced struggle-escape behavior as compared to the 

control C57BL/6 mice. Therefore, a slightly increased behavioral excitability of the Thy1α6 mice 

was suggested by the authors, even though no changes in anxiety, exploration or working memory 

of the Thy1α6 mice were observed in the in the light–dark or T-maze test (Sinkkonen et al., 2004).   

The first behavioral consequence of the increased tonic conductance in the Thy1α6 mice was 

observed when a low dose of a GABA uptake blocker, the antiepileptic drug tiagabine (i.p., 30 min 

prior to i.p. picrotoxinin) delayed the picrotoxinin-induced generalized tonic-clonic convulsions in 

the Thy1α6 mice as compared to the wild-type C57BL/6 controls. However, higher tiagabine 

concentrations had a stronger antiepileptic effect in the control mice (Sinkkonen et al., 2004).  

5.4 The Thy1α6 mice display an enhanced sensitivity to anxiolytic-like and 
sedative effects of gaboxadol (II) 

In order to investigate further the behavioral consequences of the enriched extrasynaptic GABAA 

receptors, they were aimed to be selectively activated by gaboxadol in the present study. It had been 

shown in recombinant GABAA receptors that gaboxadol had higher potency and relative efficacy 

(as compared to GABA) in α6β3δ, 4β3δ and α4β3 receptors as compared to α1-6β3γ2 receptors of 

which the α2/5/6β3γ2 receptors displayed the highest sensitivity to gaboxadol and the efficacy of 
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GABA and gaboxadol were similar in these receptors. The α1/3/4β3γ2 had the lowest sensitivity to 

gaboxadol that was a partial agonist in them as compared to GABA (Ebert et al., 2001; Storustovu 

and Ebert, 2006). The α4βδ GABAA receptors have been reported to locate extrasynaptically 

mediating tonic conductance in thalamus (Cope et al., 2005; Jia et al., 2005; Richardson et al., 

2013). In line with these findings, suggesting that gaboxadol acts preferentially via extrasynaptic 

α6β3δ, α4β3δ and α4β3 receptors, we expected that especially the extrasynaptic α6β receptors (but 

also α6βγ2 receptors) would be more sensitive to gaboxadol than the typical synaptically located 

GABAA receptors, and that this enhanced sensitivity would become visible in the behavior of the 

transgenic mice ectopically expressing the α6 subunit. 

Indeed, gaboxadol induced strong anxiolytic-like response in the light : dark exploration and 

elevated plus-maze tests in Thy1α6 mice at 3 mg/kg, while the anxiolytic behavior was largely 

unaffected in the gaboxadol-treated wild-type C57BL/6 NHsd mice. In the light : dark exploration 

test, this anxiolytic-like behavior of the transgenic mice was shown as a shortened latency to the 

first dark entry, an increased number of crossings between the compartments, and in a doubled time 

the mice spent in the lit compartment. There was no difference between saline-treated 

C57BL/6NHsd control and Thy1α6 mice, except that there was a significant delay in the first entry 

into the dark compartment in the transgenic mice. In the elevated plus-maze test, gaboxadol was 

notably more effective in increasing the time on the open arms in the Thy1α6 mice than in the 

C57BL/6 NHsd mice, whereas the saline-treated mouse lines did not differ in any of the tested 

parameters. Neither test showed any sedative effect at this low dose of gaboxadol in either mouse 

line as determined by measuring crossings and total movements. The gaboxadol-treated female 

Thy1α6 mice had slightly, but significantly more crossings than the gaboxadol-treated Thy1α6 

males, C57BL/6 NHsd males or C57BL/6NHsd females in the light : dark exploration test. In the 

elevated plus-maze test the saline-treated control males moved significantly more than the saline-

treated females, the Thy1α6 males or females. However, there were no significant gender effects on 

the time in lit area or on time on open arms.  

Differences in early nursing or genetic background could have had a role in the sensitivity 

difference between the Thy1α6 and C57BL/6NHsd mice to gaboxadol. The transgenic mice had 

been generated by injecting the Thy1α6 transgene into mouse eggs (strain CBA/cba×C57BL/6), and 

the Thy1α6 founder line was repeatedly expanded in C57BL/6 background for at least 10 

generations. In the current study, the experimental Thy1α6 mice were produced by mating within a 

homozygous line, and the control C57BL/6NHsd mice were purchased at the age of 5 weeks. 

Thereafter, the mice were maintained until the experiments at the age of 3–6 months. In order to test 
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the potential confounding effects of genetic background and early nursing on the result, the Thy1α6 

mice were backcrossed into C57BL/6HNsd mouse line to produce heterozygous offspring that were 

then mated to generate transgenic Thy1α6 mice (heterozygous and homozygous) and littermate 

wild-type controls. The behavioral difference after 3 mg/kg of gaboxadol was confirmed in these 

backcrossed transgenic and wild-type littermate mice. In the backcrossed Thy1α6 mice, gaboxadol 

increased significantly the time spent in the lit area and the number of crossings between the 

compartments in the light : dark exploration test. In general the latencies to the first dark entry were 

much shorter in the backcrossed mice than in the original Thy1α6 and C57BL/6HNsd control mice. 

The saline-treated backcrossed transgenic mice had a similar latency as the wild-type littermates 

deviating from the result obtained in the saline-treated original Thy1α6 and C57BL/6HNsd control 

mice. Even though gaboxadol prolonged the latency to the first dark entry of the wild-type 

littermates and had an opposite effect on the backcrossed Thy1α6 mice, the time in the lit area, i.e. 

the main indicator for the anxiolytic-like response, showed very similar results between the 

littermate and non-littermate transgenic and wild-type mice. Therefore, the initial differences in the 

latencies unlikely affected the observed anxiolytic-like response of the Thy1α6 mice to gaboxadol.  

The Thy1α6 mice were also more sensitive to gaboxadol-induced hypnosis as assessed by the 

latency to and the duration of the LORR after administration of gaboxadol hydrochloride (25 

mg/kg, i.p.).  As compared to the wild-type C57BL/6NHsd mice, the Thy1α6 mice lost quicker and 

for longer time their righting reflex after the gaboxadol treatment. Furthermore, three out of eight 

wild-type mice did not lose their righting reflex and they were excluded from the data.  

As gaboxadol did not induce any consistent effects on the locomotor activation, it is concluded that 

the response of transgenic mice to gaboxadol was anxiolytic-like rather than motor stimulant. 

GABAA receptor-mediated anxiolysis has been traditionally associated with α2βγ2 receptors based 

on studies with benzodiazepines (Löw et al., 2000), but in the Thy1α6 mice the strong anxiolytic 

response to gaboxadol was most likely mediated via the α6 subunit-containing GABAA receptors. 

Considering the enhanced behavioral sensitivity of the Thy1α6 mice to both anxiolytic and hypnotic 

effect of gaboxadol as compared to the wild-type mice, it seems likely that the α6 subunit-

containing receptors formed extrasynaptic receptors with enhanced pharmacological sensitivity to 

gaboxadol.   
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5.5 The enhanced behavioral sensitivity to gaboxadol is likely mediated via α6β3 
and α6β3γ2 GABAA receptors 

The α6β receptors are about four times more sensitive to gaboxadol than α6βγ2 receptors (see the 

later sections of results) suggesting that gaboxadol produces the anxiolytic-like responses in 

Thy1α6 mice by activating the ectopic α6β receptors. Pharmacokinetic studies on rats by Cremers 

and Ebert (2007) showed that subcutaneously injected gaboxadol entered rapidly the brain with 

peak CNS concentrations in the range of 0.7 to 3 μM after one dose of gaboxadol at 2.5, 5 and 10 

mg/kg. A very short half-life (28 min) of gaboxadol was observed in both plasma and CNS 

(Cremers and Ebert, 2007).  Assuming that similar pharmacokinetics of gaboxadol applies also to 

mice and fitting our data on recombinant receptors to the Hill equation (I = Imax/(1 +(EC50/ [C])n), 

where Imax is the maximal current density induced by 1 mmol/L gaboxadol, [C] is 1 μM (the 

estimated CNS concentration after one dose of gaboxadol at 3 mg/kg) and n is the apparent Hill 

coefficient (approximately equal to 1)) separately for α6β3γ2 and α6β3 receptors, the current 

densities (I) at 1 μM gaboxadol concentration in the brain are equivalent (9.2 pA/pF) via both 

α6β3γ2 and α6β3 receptors. In other words, based on this calculation, the sensitivity difference 

between these receptors to 1 μM gaboxadol is offset by the greater gaboxadol-induced current 

density in α6β3γ2 receptors than in α6β3 receptors. Therefore, it is likely that the anxiolytic dose of 

gaboxadol activates both the α6β3 and α6β3γ2 receptors in the Thy1α6 mice. When fitting our data 

on recombinant receptors into the Hill equation with [C] of 7.5 μM (the estimated CNS 

concentration after one hypnotic dose of gaboxadol at 25 mg/kg), the current density (I) is 44.9 and 

60.4 pA/pF via the α6β3 and α6β3γ2 receptors, respectively. This suggests that at such high 

gaboxadol concentration, the current density is higher via α6β3γ2 despite of the lower sensitivity. 

It is also unlikely that these pronounced behavioral effects of gaboxadol were mediated via any 

compensatory increase in the function of synaptic GABAA receptors in the transgenic mice. In 

Mortensen et al. (2010) the potencies and efficacies of gaboxadol were studied in recombinant 

α1β3γ2 and α4β3δ receptors. It was shown that in α4β3δ receptors, gaboxadol was more than twice 

as efficient as in α1β3γ2 receptors, but in addition to that, the α4β3δ receptors were eight times 

more sensitive to gaboxadol than the α1β3γ2 receptors. In the present study, α1β3γ2 receptors were 

not investigated but based on this information and our electrophysiological data, it can be assumed 

that the overexpressed extrasynaptic GABAA receptors selectively mediate the enhanced behavioral 

sensitivity of Thy1α6 mice to gaboxadol. According to Wafford and Ebert (2006), gaboxadol has no 

effect on synaptic currents at concentrations of up to 3 μM. In addition, the frequency of 

spontaneous inhibitory postsynaptic currents and amplitudes of mIPSCs were decreased in the CA1 
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pyramidal neurons of the Thy1α6 as compared to wild-type mice (Wisden et al., 2002), suggesting a 

reduced synaptic GABAA receptor function. However, the Thy1α6 mice were also less sensitive to 

electroshock-induced convulsions and had decreased amplitudes in the AMPA receptor-mediated 

miniature excitatory postsynaptic currents (mEPSCs) in patch clamp recordings of CA1 pyramidal 

neurons in hippocampal slices (Möykkynen et al., 2007). It is likely that this decrease in the 

postsynaptic excitability was a compensatory response to the reduction in the postsynaptic 

GABAergic inhibition, but it is not possible to fully exclude the possibility that in the transgenic 

mice the function of the postsynaptic excitatory AMPA receptor system would have been disabled 

more than the synaptic GABAA receptor system and therefore, or partly therefore, less gaboxadol 

would have been sufficient to induce the anxiolytic and hypnotic effects in the Thy1α6 mice. On the 

other hand, the non-treated Thy1α6 mice were more sensitive to the acoustic stimuli and had an 

enhanced struggle-escape behavior as compared to the control C57BL/6 mice (Sinkkonen et al., 

2004), suggesting that the function of the neuronal excitatory system is not decreased at least in 

regions mediating the acute fear responses.  

An enhanced behavioral sensitivity to ataxic, sedative, and analgesic effects of gaboxadol at 10 

mg/kg has been associated with the α4 subunits that are expressed at high levels in the dentate gyrus 

and thalamus and contribute to extrasynaptic GABAA receptor-mediated tonic inhibition (Chandra 

et al. 2006). Although the Thy1α6 mouse model is expressing the α6 subunit in neurons where it is 

normally absent, the model allows examining the function of the added α6 subunit-containing 

extrasynaptic GABAA receptors and it provides in vivo evidence that anxiolytic and hypnotic doses 

of gaboxadol act preferentially via α6 subunit-containing GABAA receptors. 

5.6 GABA-insensitive [35S]TBPS autoradiographic signal reflects partial agonism 
of GABA (II) 

TBPS blocks the of ion flux through the GABAA receptor by binding to the ionophore/convulsant 

site (Korpi et al., 2002a). Basal [35S]TBPS binding represents non-conducting GABAA receptors 

and dissociation of [35S]TBPS by agonists, serves as a biochemical measure of receptor activation 

(Im and Blakeman, 1991, Sinkkonen et al., 2001). It has been shown that the displacement of 

[35S]TBPS binding by saturating concentration of GABA partially fails in the cerebellar granule cell 

layer and thalamus in contrast to the majority of other brain regions (Sinkkonen et al. 2001). These 

regions are enriched by the expression of α6, α4, and δ subunits (Wisden et al., 1992; Pirker et al., 

2000). By expressing different subunit combinations in HEK cells, it has been shown that α6βx (but 

not α6βxγ2) receptors retain about 50% of the [35S]TBPS binding in the presence of millimolar 
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GABA concentrations (Korpi and Lüddens, 1993). As previous electrophysiological data on 

recombinant receptors have suggested that GABA is a partial agonist as compared to gaboxadol in 

extrasynaptic α6β3δ, 4β3δ and α4β3 receptors but not in α1-6β3γ2 receptors (Adkins et al., 2001; 

Ebert et al., 2001; Storustovu and Ebert, 2006) and as GABA-insensitive (GIS)-[35S]TBPS binding  

has been associated with α6β2/3 and α4/6β2/3δ receptors (Korpi and Lüddens, 1997; Mäkelä et al., 

1997; Korpi et al., 2002b; Sinkkonen et al., 2001, 2004a and 2004b), our hypothesis was that as a 

stronger agonist than GABA, gaboxadol at high concentration would displace the GIS-[35S]TBPS 

binding from α6β2/3 and α4/6β2/3δ receptors and if so, GIS-[35S]TBPS binding would indeed 

represent partial agonism of GABA on α6β2/3 and α4/6β2/3δ receptors. 

In line with the results of Sinkkonen et al. (2004b), the hippocampus of the Thy1α6 mice retained 

significantly more GIS-[35S]TBPS binding  (13.5 ± 1.0% of the basal [35S]TBPS binding)  than that 

of the control C57BL/6NHsd mice (1.7 ± 0.2% of the basal [35S]TBPS binding) revealing the α6βx 

receptors. Gaboxadol (1mM) displaced the [35S]TBPS binding  more than GABA (10 mM) in the 

hippocampus of the transgenic mice whereas the efficacies of GABA and gaboxadol were similar in 

the hippocampus of the wild-type control mice indicating that GABA is a partial agonist in 

comparison to gaboxadol in the α6βx receptors. As a characteristic of partial agonists is that they 

can reverse the effects of full agonists acting as competitive antagonists, we co-applied different 

doses of GABA with gaboxadol (1mM) and measured the remaining [35S]TBPS binding.  Already 

0.1 mM GABA significantly increased [35S]TBPS binding  as compared to gaboxadol alone, and 1 

mM GABA increased the [35S]TBPS binding  to the same level as saturating GABA concentration 

(10 mM) alone, demonstrating a competitive displacement of full agonist gaboxadol from the 

agonist binding site by the partial agonist GABA.  

The next question was whether a similar fingerprint for partial agonism of GABA could be found in 

the cerebellar granule cell layer and thalamus that are naturally expressing α6, α4, and δ subunits. In 

the Thy1α6 mice and control C57BL/6NHsd mice, a saturating concentration of GABA (10 

mmol/L) revealed a GIS-[35S]TBPS binding in the thalamus and cerebellar granule cell layer as 

expected. In both brain regions and mouse strains, gaboxadol displaced the [35S]TBPS binding more 

than GABA, and when increasing concentrations of GABA were co-applied with 1 mmol/L 

gaboxadol, GABA at millimolar concentrations increased [35S]TBPS binding in the transgenic and 

wild-type mice. However, in the thalamus and cerebellar granule cell layer, the difference between 

GIS-[35S]TBPS and gaboxadol-insensitive [35S]TBPS binding at high agonist concentrations was 

not as great as in the hippocampus of the transgenic mice, indicating that the efficacy difference 

between GABA and gaboxadol is greater in α6β3 receptors than in α6β3δ or α4β3δ receptors. These 
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results demonstrate that GIS-[35S]TBPS binding reflects partial agonism of GABA also in the native 

brain regions containing α6β3δ or α4β3δ receptors in which gaboxadol acts with higher efficacy. 

The collicular region was used as a control region because it expresses mainly α1βxγ2 receptors 

(Wisden et al., 1992; Pirker et al., 2000). These receptors represent the majority of GABAA 

receptors in the brain (Fritschy et al., 1992) and in these receptors gaboxadol acts as a partial 

agonist (Ebert et al., 1994; Ebert et al., 1997). In accordance with this, GABA was more efficient 

than gaboxadol in the collicular region of both mouse lines leaving no GIS[35S]TBPS binding at 

saturating GABA concentrations.  

Altogether, these results indicate that GIS-[35S]TBPS binding can be used as a fingerprint for partial 

agonism of GABA. 

5.7 Highly potent GABA is a partial agonist as compared to gaboxadol in α6β3, 
α6β3δ and α4β3δ receptors but not in α6β3γ2 receptors (II) 

The aim of this study was to investigate further the pharmacology of gaboxadol and GABA on 

different extrasynaptic GABAA receptors, namely on α6β3, α6β3δ, α4β3δ and α6β3γ2 receptors and 

to confirm that the GIS[35S]TBPS binding reflects the partial agonism of GABA as compared to 

gaboxadol in α6β3, α6β3δ and α4β3δ receptors. Gaboxadol had been earlier reported to act as a 

superagonist in recombinant α4β3δ receptors (Adkins et al., 2001). Later on, it was also shown that 

GABA is a partial agonist as compared to gaboxadol in human α4β3δ and α6β3δ receptors 

expressed on Xenopus oocytes and when GABA was co-applied with a fixed concentration of 

gaboxadol at α4β3δ receptors, GABA reduced concentration-dependently the response to gaboxadol 

until the response corresponded to the maximum response to GABA (Storustovu and Ebert 2006).  

In the present study the relative efficacy and other kinetic parameters of high concentrations of 

GABA (1 mmol/L) and gaboxadol (1 mmol/L) were studied in α6β3, α6β3δ, α6β3γ2 and α4β3δ 

receptors.  

Our electrophysiological results showed that gaboxadol had the highest relative efficacy as 

compared to GABA in α6β3 receptors, but also in α6β3δ and α4β3δ receptors the efficacy of 

gaboxadol was about twofold higher than that of GABA. This is in line with the previous 

electrophysiological data on recombinant receptors on α6β3δ and 4β3δ receptors (Adkins et al., 

2001; Ebert et al., 2001; Storustovu and Ebert, 2006). In α6β3γ2 receptors, the efficacy of GABA 

and gaboxadol were similar. However, the maximal GABA and gaboxadol-mediated currents via 

these receptors were much larger than those via α6β3, α6β3δ or α4β3δ receptors.  As partial 
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agonists reverse the effects of full agonists acting as competitive antagonists, we compared the 

effects of increasing competing concentrations of GABA on the maximal responses evoked by 1 

mmol/L gaboxadol and the effects of competing concentrations of gaboxadol on the maximal 

responses evoked by 1 mmol/L GABA in α6β3γ2 and α6β3δ receptors. As expected, in α6β3γ2 

receptors the efficacy of GABA and gaboxadol were identical, and the co-application of the 

competitor did not change the maximal response evoked by either GABA or gaboxadol. However, 

in α6β3δ receptors GABA reduced the 1 mmol/L gaboxadol response and gaboxadol increased the 

1 mmol/L GABA response. This interaction proves the partial agonism of GABA in the α6β3δ 

receptors.  

The weighted time constant for desensitization of α6β3γ2 receptors was similar for GABA (1 

mmol/L) and gaboxadol (1 mmol/L), and although α4β3δ receptors desensitized somewhat faster 

after GABA than after gaboxadol, both α6β3γ2and α4β3δ receptors showed largest extent of 

desensitization relative to the peak current at 4 s of both GABA and gaboxadol application. GABA 

and gaboxadol displayed most dissimilar kinetics in α6β3 and α6β3δ receptors which were 

desensitizing significantly faster after gaboxadol than after GABA application. Also the level of 

desensitization relative to the peak current at 4 s was greater after gaboxadol than after GABA in 

these receptors. In α6 subunit-containing receptors the deactivation after GABA was slowest in 

α6β3 receptors, followed in order by α6β3δ and α6β3γ2 receptors. The order of deactivation was the 

same after gaboxadol, and in all α6 subunit-containing receptors the deactivation occurred faster 

after gaboxadol than after GABA exposure. The relatively short deactivation time was similar after 

GABA and gaboxadol in α4β3δ receptors. 

The effects of high agonist concentrations reported here may not be physiologically important for 

the extrasynaptic currents, but they may explain the different effects of the agonists on the 

[35S]TBPS binding to native receptors. As the GIS-[35S]TBPS binding is imaged in the presence of 

high concentrations of GABA in α6β and α4/6βδ receptors (Sinkkonen et al., 2001), the partial 

agonism of GABA at these receptors correlates with GIS-[35S]TBPS binding. The partial agonism 

of GABA and superagonism of gaboxadol correlates also with the GIS-[35S]TBPS binding  that was 

dissociated to large extent by gaboxadol in the hippocampus of the Thy1α6 mice as well as in the 

thalamus and cerebellar granule cell layer of the wild-type mice, the regions known to express α6β, 

α4βδ or α6βδ receptors, respectively.  

Also the desensitization characteristics of the receptor complex may regulate the remaining agonist-

insensitive [35S]TBPS binding component. In the present study on recombinant α6β3, α4βδ3, α6β3δ 
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and α6β3γ2 receptors, GABA and gaboxadol did not differ in their speed of desensitization 

(measured as weighted time constant of desensitization) in α6β3γ2 receptors whereas it was always 

faster after gaboxadol exposure than after GABA exposure in the α6β3, α4β3δ, α6β3δ  receptors. 

The extent of desensitization (relative to the peak current of the tested agonist) or weighted time 

constant of deactivation did not provide evidence of different effect between GABA and gaboxadol 

at the α6β3γ2 receptors as compared to the α6β3, α4β3δ, α6β3δ receptors. If the speed of 

desensitization played a role in agonist-insensitive [35S]TBPS binding, logically thinking GABA 

would displace [35S]TBPS more than gaboxadol from α6β3, α4β3δ, α6β3δ receptors (opposite to 

what has been observed) due to its slower desensitization speed at these receptors. As the 

desensitization and deactivation kinetics were tested after a 4 s incubation, there is no data on how 

these kinetic parameters may change within the 90-minute incubation time in the [35S]TBPS 

binding studies. As a conclusion, more data is needed to reveal whether the desensitization kinetics 

of the receptor complex regulate the agonist-insensitive [35S]TBPS binding. 

5.8 The α6 subunit-containing GABAA receptors are widely distributed in the 
Thy1α6 mice (III) 

The α6 subunit mRNA expression was restricted to the cerebellar granule cell layer in the wild-type 

mice, in line with its known distribution (Laurie et al., 1992; Wisden et al., 1992), whereas in the 

Thy1α6 mice the α6 expression was widely distributed, including deeper layers of the isocortex 

(e.g. Cg1, motor, primary somatosensory, auditory and association areas), the olfactory areas 

(piriform area, anterior olfactory nucleus), hippocampal formation [CA1 and CA3 pyramidal cell 

layers, dentate gyrus (DG)] and BLA, being highest in the BLA, hippocampus and cortical regions. 

The receptor autoradiography revealed α6β and/or α6βδ receptors in the BLA and CA1 of the 

Thy1α6 mice as gaboxadol dissociated the [35S]TBPS binding significantly more than GABA. The 

diazepam-insensitive [3H]Ro 15-4513 binding, illustrating the localization of the ectopic α6βγ2 

receptors, was strong in the middle and deep layers of isocortex, olfactory areas (piriform area, 

anterior olfactory nucleus), hippocampal formation (CA1 and DG) and BLA in the Thy1α6 mouse 

brain. Similar levels of the diazepam-insensitive [3H]Ro 15-4513 binding  were present in the 

cerebellar granule cell layer of both wild-type and transgenic mice containing native α6βγ2 

receptors. 
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5.9 Widespread neuronal activation associated with gaboxadol-induced anxiolysis 
(III)  

The induction of c-Fos, a protein product of a c-fos immediate early gene, is used as a tool to 

identify brain cells that become activated in response to various stimuli (Kovács, 1998). The 

expression of c-Fos is rather low in the brain of naive animals (Ryabinin et al., 1999). However, 

injection and handling stress has been shown to significantly increase c-Fos expression in C57BL/6 

mice and a prehandling has been suggested as necessary to habituate the mice to the injection and 

handling stress and to decrease the c-Fos expression closer to the basal levels (Ryabinin et al., 

1999). In the present study c-Fos expression was studied two hours after saline of gaboxadol 

injection (3 mg/kg, i.p.) in the transgenic Thy1α6 mice and wild-type C57BL/6HNsd control mice. 

The tested gaboxadol dose had been shown to be highly anxiolytic in Thy1α6 mice whereas only 

slight anxiolytic-like behavior was observed in the C57BL/6HNsd control mice. It was assumed 

that the anxiolytic dose of gaboxadol mediated the enhanced behavioral response in Thy1α6 mice 

by activating the artificially located α6β and α6βγ2 receptors in the forebrain. We prehandled the 

mice to avoid the injection and handling stress-induced c-Fos expression before gaboxadol fully 

entered the brain (30-60 min) (Cremers and Ebert, 2007) in order to investigate possible sites of 

action of low anxiolytic gaboxadol dose in the Thy1 6 mice as compared to basal c-Fos levels. We 

expected that gaboxadol would decrease any basal c-Fos expression due to its inhibitory 

GABAergic mode of action and because the anxiolytic effect of benzodiazepines has been generally 

associated with a decreased neuronal activity (Beck and Fibiger, 1995; Panhelainen and Korpi, 

2012; Lkhagvasuren et al., 2014). It may be argued that our conditions with low level of 

stress/novel stimuli favored observations of only increases in neuronal activity whereas a decrease 

in already low basal c-Fos expression would have been difficult to detect. However, after saline 

injections, c-Fos was expressed at such levels in many regions that it should have been possible to 

detect increased inhibition (decreased c-Fos expression). Furthermore, in Lkhagvasuren et al. 

(2014), in many brain regions of non-stressed rats, including cerebral cortices (orbital, primary 

somatosensory, visual, secondary cingulate, retrosplenial and layer II piriform cortices and anterior 

olfactory nucleus), hippocampal formation, LS, claustrum, cortical and medial amygdaloid nuclei, 

posterior hypothalamic area, dorsal and medial premammillary nuclei, rhomboid nucleus of 

thalamus, superior colliculus and median raphe nucleus, diazepam was shown to decrease c-Fos 

expression approximately to half of the expression in the vehicle-treated rats, and similarly, 

diazepam decreased c-Fos expression in these regions in stress-exposed rats as compared to stress-

exposed vehicle-treated rats. 
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In contrast to our hypothesis, we observed an increased c-Fos expression in gaboxadol-treated 

Thy1 6 mice especially in the limbic areas, such as the cingulate cortex, septal nuclei and in the 

central extended amygdala areas, including BNST and CeA as well as in BLA. C-Fos was also 

increased in dorsal tenia tecta, medial anterior olfactory nucleus, and dorsal endopiriform nucleus of 

the gaboxadol-treated Thy1α6 mice. Interestingly, many of these regions have previously shown 

decreased c-Fos expression in non-stress-exposed as well as in stress-exposed rats after diazepam 

injection (Lkhagvasuren et al., 2014). In addition, several studies suggest that different stressors 

activate the medial prefrontal cortex (mPFC), cingulate cortex, BLA, BNST and LS, and it has been 

suggested that the threshold for c-Fos induction in these areas is low (reviewed in Kovács, 1998). 

As we anyway had earlier observed a reduced anxiety at the tested dose of gaboxadol (II), our 

findings on widely increased c-Fos expression was surprising. Gaboxadol had only limited effects 

on the c-Fos expression in the wild-type mice. In the lateral part of the mediodorsal thalamic 

nucleus (MDL), there was a significant increase in c-Fos expression only in the gaboxadol-treated 

wild-type mice, but not in the transgenic mice. In some brain regions, including hippocampal CA1 

and CA3 areas as well as layers 2-4 of the primary motor cortex, gaboxadol induced c-Fos 

expression regardless of the genotype.  

5.10 Potential mechanisms of paradoxical gaboxadol-induced widespread neuronal 
activation 

The gaboxadol-induced c-Fos expression may result from disinhibition of selected neuronal 

networks, although also depolarizing responses have been generated by GABAA receptor activation 

in a mature brain slices, and these depolarizing responses were originally proposed to be mediated 

via the activation of extrasynaptic GABAA receptors (Alger and Nicoll, 1979; Andersen et al., 

1980; Alger and Nicoll, 1982). In rat hippocampal slices an intense stimulation of GABAA 

receptors on distal dendrites produced a hyperpolarizing membrane potential response followed by 

a slow depolarizing potential (Staley et al., 1995). It was proposed that this depolarization was a 

result of activity-dependent collapse of the opposing concentration gradients of chloride and 

bicarbonate, and that this consequently diminished the voltage-dependent block of the NMDA 

receptors thereby further depolarizing the cell membrane (Staley et al., 1995). It has also been 

postulated that the KCC2-dependent increase in extracellular potassium ion transients ([ K+]o) cause 

an inward potassium ion current that induces a long-lasting and a more positive membrane potential 

than EGABA-A in CA1 pyramidal cells (Kaila et al., 1997; Smirnov et al., 1999; Viitanen et al., 2010). 

However, these depolarizing actions of GABAA receptors may well not be exclusive or even 

inclusive properties of extrasynaptic GABAA receptors and if such effects were occurring in vivo, it 
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would be likely that also diazepam would induce increased c-Fos expression. In addition, acute 

effects of systemic drugs with preferential action on extrasynaptic GABAA receptors, including 

gaboxadol, were not affected in mice lacking 80-85% of KCC2, although the responses to the 

synaptic GABAA receptor agonist benzodiazepine diazepam were strongly blunted (Tornberg et al., 

2007), suggesting that KCC2 is predominantly involved in the phasic but not in the tonic component 

of GABAergic neurotransmission.  

Methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) is a potent inverse agonist in 

α1 subunit-containing receptors (Crestani et al., 2002), and a partial agonist in α6 subunit-

containing receptors (Knoflach et al., 1996; Saxena and Macdonald, 1996). Interestingly, the 

Thy1α6 mice have been shown to be more sensitive to DMCM-induced convulsions than the wild-

type mice (shorter latency to writhing clonus) (Sinkkonen et al., 2004b) indicating that Thy1α6 

mice are more susceptible to convulsions induced by the inverse agonism of DMCM on α1 subunit-

containing receptors and/or that agonism of DMCM on α6 subunit-containing receptors generates 

directly or indirectly shortened latency to neuronal excitation. Reduced synaptic GABAA receptor 

currents have been reported in the hippocampal CA1 neurons of Thy1α6 mice (Wisden et al., 2002), 

and therefore it seems likely that the Thy1α6 mice would be more sensitive to the convulsive effect 

of DMCM by decreasing the inhibitory effect of the receptors with an already reduced synaptic 

inhibition. It would be still an open question whether the agonism of DMCM on α6 subunit-

containing receptors could generate directly or indirectly neuronal depolarization or whether the 

increased extrasynaptic inhibition was just not sufficient to balance the decreased synaptic 

inhibition.  

Also the non-selective GABAA receptor blocker picrotoxinin shortened the latency of Thy1α6 mice 

to generalized convulsions as compared to wild-type mice (Sinkkonen et al., 2004b), which most 

likely resulted from reduced synaptic GABAA receptor responses. Picrotoxinin blocks also α6 

subunit-containing receptors, but since these receptors were not present in the forebrain of the wild-

type mice it is likely that the increased sensitivity to convulsions was due to blockage of already 

reduced synaptic GABAA responses in the transgenic mice. The result also suggests that 

physiological GABA concentrations are not sufficient to depolarize neurons via extrasynaptic α6 

subunit-containing receptors as blocking this response would have had an opposite effect on the 

convulsion sensitivity of the Thy1α6 mice.  

Tiagabine, an antiepileptic GABA uptake inhibitor increasing brain GABA levels, delayed 

picrotoxinin-induced convulsions at a low dose of 3.2 mg⁄ kg in Thy1α6 mice but not in the wild-
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type mice, but higher tiagabine doses shortened the convulsion latency in the Thy1α6 mice as 

compared to the wild-type mice (Sinkkonen et al., 2004b). This switch in the sensitivity of Thy1α6 

mice to the tiagabine-reduced convulsions may be due to the function of highly potent but low-

efficacy α6β3 receptors that at lower GABA concentrations would mediate the enhanced sensitivity 

of the Thy1α6 mice to tiagabine. At higher tiagabine concentrations causing higher extracellular 

GABA concentrations, the fully functioning synaptic GABAA receptors of wild-type mice with 

lower GABA sensitivity but higher efficacy would overcome the power of low efficacy α6β3 

receptors and reduced synaptic inhibition in the Thy1α6 mice, thereby mediating the more enhanced 

antiepileptic response to high-dose tiagabine in the wild-type mice. An alternative explanation 

could be that at higher tiagabine concentrations an intense activation of extrasynaptic GABAA 

receptors by GABA resulted in depolarizing responses in the transgenic mice. In support of the 

latter, enhanced tonic GABAA receptor conductance via the knock-down of GABA reuptake has led 

to ataxia, tremor and increased nervousness (Chiu et al., 2005) suggesting increased neuronal 

excitation following increased extrasynaptic GABAA receptor function, but this neuronal excitation 

could also be an indirect effect of increased inhibition of inhibitory interneurons. Some reports have 

suggested that increased tonic inhibition of cortical interneurons by gaboxadol can lead to increased 

cortical network excitability (Krook-Magnuson and Huntsman 2005, Drasbek and Jensen 2005).  

Overall, the direct gaboxadol-induced depolarization is an unlikely mechanism for the paradoxical 

c-Fos induction in the Thy1α6 mice because the hippocampal principal neurons were not 

increasingly activated by gaboxadol in the transgenic Thy1α6 mice, although the CA1 neurons 

express high level of ectopic and functionally active 6 / 2 receptors (Wisden et al., 2002; 

Sinkkonen et al., 2004b). Furthermore, c-Fos induction by gaboxadol treatment in Thy1α6 brain 

was not restricted to areas highly expressing the α6-containing GABAA receptors (such as BLA and 

medial anterior olfactory nucleus) suggesting that indirect pathways lead to the paradoxically 

widespread activation. For example in the CeA and septum, gaboxadol induced strong c-Fos 

expression in spite of the lack of ectopic α6 subunit expression. 

Altogether these results demonstrate that the anxiolytic dose of gaboxadol, preferring 4, 6 or 

subunit-containing extrasynaptic receptors, paradoxically activates multiple neurons in the limbic 

brain regions via α6 subunit-containing GABAA receptors in the Thy1α6 mice. This suggests that 

the widespread neuronal inhibition as typically associated with benzodiazepines is not the exclusive 

mechanism of anxiolysis. Instead, the selective activation of certain neuronal populations in the 

amygdala and BNST, might specifically lead to strong anxiolytic responses in the Thy1α6 mice. 
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5.11 Gaboxadol activated neurons in mediodorsal thalamic nucleus only in wild-
type mice 

MDL differed from the other brain regions, because there a significant increase in c-Fos expression 

was found only in the gaboxadol-treated wild-type mice, but not in the transgenic mice. MDL is 

interconnected with the mPFC and amygdala, being a part of the limbic circuitry (Vertes, 2006), 

and involved in fear-related information processing (Lee et al., 2012; Padilla-Coreano et al., 2012) 

and anxiety (Farb and Ratner, 2014).  It has been shown recently, that a direct gaboxadol injection 

into the MDL, naturally containing gaboxadol-sensitive extrasynaptic α4βδ GABAA receptors 

(Cope et al., 2005; Jia et al., 2005; Richardson et al., 2013), increased fear freezing and attenuated 

fear extinction (Paydar et al., 2014). This suggests that local inhibition of MDL neurons mediate 

anxiety rather than anxiolysis.   

As in our behavioral study (II), the low dose of gaboxadol was anxiolytic in Thy1α6 mice but not in 

the wild-type mice, it is tempting to speculate that in the transgenic mice, gaboxadol counteracted 

the anxiety mediating local action in MDL via α6 subunit-containing receptors outside MDL as no 

ectopic α6 subunit-containing GABAA receptors were observed in the MDL. However, as a result it 

would be expected that c-Fos was rather decreased than increased in the wild-type mice as 

compared to the Thy1α6 mice if gaboxadol did not induce direct α4βδ GABAA receptor-mediated 

depolarization. Histologically two populations of neurons, small inhibitory GABAergic 

interneurons projecting restrictedly to specific thalamic nuclei and larger excitatory relay neurons 

projecting to the cerebral cortex, have been described for the mediodorsal thalamic nucleus 

(Damgaard Nielsen et al., 2008). More detailed information on the activated neuronal MDL 

subpopulations and their association with gaboxadol-sensitive receptors would be necessary in 

order to understand the role of MDL in the anxiolytic action of gaboxadol in Thy1α6 mice.  As a 

strong expression of ectopic α6 subunit-containing GABAA receptors was observed in the BLA as 

well as in the deep layers of PFC, both of which are abundantly projecting to the MDL (Vertes, 

2006), these projections in the Thy1α6 mice may have inhibited the neuronal activation in the MDL 

that was observed in the wild-type mice after gaboxadol treatment.  
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6 Conclusions 

GABAA receptors and neuroanatomy of anxiety have been widely studied over decades. By 

utilizing human brain tissue and taking the advantage of a unique mouse model, this thesis 

work provides new information on GABAA receptor pharmacology and on brain structures and 

mechanisms that may mediate anxiolytic responses via specific types of GABAegic inhibition: 

1. Previously, contradictory reports had been published in regard to the expression and 

participation of the γ2 subunit in the functional GABAA receptors in the rodent LC. 

(Fritschy et al., 1992; Lüddens et al., 1995; Caldji et al., 1998 and 2000; Araki et al., 1992; 

Luque et al., 1995; Tohyama and Oyamada, 1994; Chen et al., 1999). Our results show that 

in human, the γ2, α1 and α2/α3 subunits are expressed in the LC neurons. These findings 

indicate that the human LC may directly mediate the sedative and anxiolytic effects of 

benzodiazepines. 

 

2. Systemic gaboxadol acts preferentially via ectopically expressed α6β/γ2 receptors as 

compared to naturally occurring GABAA receptor subunit combinations in the forebrain, as 

the transgenic mice overexpressing these receptors were significantly more sensitive to the 

anxiolytic and hypnotic effects of 3 and 25 mg/kg of gaboxadol, respectively. This 

transgenic mouse model provides unique information on the pharmacology of gaboxadol in 

vivo. 

 

3. GABA-insensitive (GIS) [35S]TBPS autoradiographic signal reflects partial agonism of 

GABA because gaboxadol  as a stronger agonist than GABA displaced the  GIS-[35S]TBPS 

binding from α6β2/3 and α4/6β2/3δ receptors at saturated concentrations. As a result, GIS-

[35S]TBPS binding can be used as a fingerprint for partial agonism of GABA. 

 

4. GABA is a partial agonist as compared to gaboxadol in typically extrasynaptic α6β3, α6β3δ 

and α4β3δ receptors but not in α6β3γ2 receptors. Gaboxadol and GABA display also 

different receptor desensitization and deactivation kinetics in these receptors suggesting a 

different transduction pathway leading from agonist binding to gating of the extrasynaptic 

ion channel.  

 

5. Gaboxadol acting preferentially via extrasynaptic GABAA receptors induced a widespread 

neuronal activation rather than inhibition in many brain areas of the transgenic Thy1 6 
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mice overexpressing the GABAA receptor 6 subunit. Although the 6 subunit is expressed 

outside its natural environment in the Thy1 6 mouse model, the model demonstrates how 

neuronal excitability can be altered in different brain regions as a consequence of enhanced 

tonic inhibition in specific forebrain structures. In many areas this neuronal activation was 

likely to be an indirect network effect, but in some areas (e.g. BLA, anterior olfactory 

nucleus) the neuronal activation occurred in the areas containing extrasynaptic GABAA 

receptors. Slow depolarizing potentials have been reported after an intense stimulation of 

GABAA receptors on distal dendrites of rat hippocampal slices and after an initial 

hyperpolarizing membrane potential (Staley et al., 1995). The transgenic Thy1 6 mouse 

model could be an interesting tool to study whether the extrasynaptic 6 subunit-containing 

GABAA receptors may function also as excitatory rather than only inhibitory receptors in 

adult mice.  

 

6. The widespread neuronal inhibition as typically associated with benzodiazepines may not 

be the exclusive mechanism of anxiolysis. We observed an increased neuronal activation 

especially in the limbic areas of Thy1α6 mice after an anxiolytic dose of gaboxadol.  

However, future experiments are needed to demonstrate the actual causality between the 

neuronal activation and anxiolysis. In addition, as brain areas are built of different neuronal 

subpopulations that are connected in a complex network, it is also important to study the 

neuronal activation/inactivation at a cellular and sub-cellular level to understand the 

mechanism of anxiolysis in more detail and to further be able to develop more selective and 

safe treatments to anxiety disorders.  

 

7. Unconditioned approach-avoidance conflict tests such as the elevated plus-maze and 

light/dark exploration test are considered to model some components of human anxiety 

disorders. However, the fear conditioning tests are likely to be more valid, as regards 

especially the construct validity, in studying the neuroanatomy and mechanisms of anxiety 

disorders as they involve the fear learning component that is dysregulated in anxiety 

disorders.  

 

 

 

 



71 
 

7 Acknowledgements 

This thesis was carried out at the University of Helsinki, Institute of Biomedicine, Department of 

Pharmacology. I am grateful to the department for the friendly atmosphere and for offering the great 

facilities at my disposal. I thank Sigrid Juselius Foundation and FinPharma Doctoral Program for 

financial support. I am grateful to my supervisor Professor Esa Korpi for giving me the opportunity 

to do my thesis in his group, for providing the learning environment that equipped me with valuable 

knowledge and experience, for encouraging me to stretch out from my comfort zone and for his 

ability to make me see challenges as opportunities. I am also thankful to Esa for pushing me 

forward during periods when my thesis project was on hold. In parallel, I would like to express my 

sincerest gratitude to my other supervisor Docent Anni-Maija Linden for her expert scientific 

support and for teaching me so many methods. I am thankful to Professor Garry Wong and Docent 

Markus Storvik for reviewing the manuscript of my thesis and for providing valuable suggestions 

for improvement.  

I want to thank the co-authors of the original publications and everybody who has contributed to 

this thesis work. I wish to express my gratitude to Docent Iiris Hovatta for her support and positive 

attitude. I wish to thank the former and present Korpi Group members for the great, fun and easy 

working atmosphere. I want to express my gratitude to Aira Säisä for her excellent technical 

knowledge and support as well as for her sense of humour and for sharing my feelings of ups and 

downs during these years. I wish to thank Anne Panhelainen for being a close and trusted colleague 

and friend and for sharing so many laughs and unforgettable experiences, Salla Mansikkamäki and 

Chiara Procaccini for being such lovely and empathic friends and for long discussions, Elli Leppä 

for her kindness and support in everything, and Xiaomin Zheng for being a close friend. I thank 

Teemu Aitta-Aho and Tommi Möykkynen for being so fun company, for interesting discussions 

and for good music taste that made the PCR lab an even more enjoyable place. I am grateful to Saku 

Sinkkonen for his scientific support, enthusiasm and co-authorship in the LC project. I would also 

like to thank Elena Vashchinkina, Martin Ranna, Lauri Halonen, Bjørnar Den Hollander, Milica 

Maksimovic, Olga Vekovischeva, Pirkko Möller, Vuokko Pahlsten and Heidi Pehkonen for making 

the unit such a good place to work. Eeva Harju is especially acknowledged for her secretarial and 

general support. 

I wish to thank all my friends and current colleagues for their friendship and support. I am grateful 

to my mother Arja for her love, care and unfailing support through my life. I am thankful to my 

godparents Ani and Jarmo for always believing in me and for their altruistic support and help in 



72 
 

everything I have ever needed, and to my aunt Heljä for sharing her experience of life and 

especially for childcare during these extremely busy times. I also thank my brother Pasi for IT 

support. I am most grateful to my husband Claes for his love, support, patience and belief in me and 

to our sons Max and Viggo for making every moment of my life full of love and happiness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

8 References 

Adkins CE, Pillai GV, Kerby J, Bonnert TP, Haldon C, McKernan RM, Gonzalez JE, Oades K, 
Whiting PJ, Simpson PB (2001) alpha4beta3delta GABA(A) receptors characterized by 
fluorescence resonance energy transfer-derived measurements of membrane potential. J Biol Chem 
276:38934-38939.  

Albin RL, S. Gilman S (1990) Autoradiographic localization of inhibitory and excitatory amino 
acid neurotransmitter receptors in human normal and olivopontocerebellar atrophy cerebellar 
cortex. Brain Res 522:37–45. 

Alger BE, Nicoll RA (1979) GABA-mediated biphasic inhibitory responses in hippocampus. 
Nature 281(5729):315-7. 

Alger BE, Nicoll RA (1982) Pharmacological evidence for two kinds of GABA receptor on rat 
hippocampal pyramidal cells studied in vitro. J Physiol 328:125-141. 

Andersen P, Dingledine R, Gjerstad L, Langmoen IA, Laursen AM (1980) Two different responses 
of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol 305:279-
296. 

Araki T1, Sato M, Kiyama H, Manabe Y, Tohyama M (1992) Localization of GABAA-receptor 
gamma 2-subunit mRNA-containing neurons in the rat central nervous system. Neuroscience 
47(1):45-61. 

Bailey DL, Willowson KP (2013) An evidence-based review of quantitative SPECT imaging and 
potential clinical applications. J Nucl Med 54(1):83-89. 

Baldwin DS, Pallanti S, Zwanzger P (2013) Developing a European research network to address 
unmet needs in anxiety disorders. Neurosci Biobehav Rev 37(10:1):2312-2317. 

Bandelow B, Lichte T, Rudolf S, Wiltink J, Beutel ME (2014) The diagnosis of and treatment 
recommendations for anxiety disorders. Dtsch Arztebl Int 111(27-28):473-480. 

Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, 
Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric 
acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol 
Rev 50:291-313.  

Baur R, Sigel E (2003) On high- and low-affinity agonist sites in GABAA receptors. J Neurochem 
87:325-332.  

Beck CHM, Fibiger HC (1995) Conditioned fear-induced changes in behavior and in the expression 
of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci 15:709-720. 

Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic 
GABAA receptors: form, pharmacology, and function. J Neurosci 29(41):12757-12763. 

Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ (2005) Extrasynaptic GABAA 
receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 25:11513-11520.  

Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev 
Neurosci 3(9):728-739. 



74 
 

Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in 
brain maturation and neurological disorders. Neuroscientist 18(5):467-486. 

Ben-Ari Y, Spitzer NC (2010) Phenotypic Checkpoints Regulate Neuronal Development. Trends 
Neurosci 33(11):485–492. 

Benson JA, Low K, Keist R, Mohler H, Rudolph U (1998) Pharmacology of recombinant gamma-
aminobutyric acidA receptors rendered diazepam-insensitive by point-mutated alpha-subunits. 
FEBS Lett 431:400-404.  

Berlau DJ, McGaugh JL (2006) Enhancement of extinction memory consolidation: the role of the 
noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol Learn Mem 
86(2):123-132. 

Bhattarai JP, Park SA, Park JB, Lee SY, Herbison AE, Ryu PD, Han SK (2011) Tonic extrasynaptic 
GABA(A) receptor currents control gonadotropin-releasing hormone neuron excitability in the 
mouse. Endocrinology 152(4):1551-1561.  

Blanchard DC, Griebel G, Nutt DJ (2008) Handbook of Anxiety and Fear, 1st Edition. 
ISBN9780080559520. 

Blanchard DC, Li CI, Hubbard D, Markham CM, Yang M, Takahashi LK, Blanchard RJ (2003) 
Dorsal premammillary nucleus differentially modulates defensive behaviors induced by different 
threat stimuli in rats. Neurosci Lett 345(3):145-148. 

Boileau AJ, Evers AR, Davis AF, Czajkowski C (1999) Mapping the agonist binding site of the 
GABAA receptor: evidence for a beta-strand. J Neurosci 19:4847-4854.  

Bonetti EP, Burkard WP, Gabl M, Hunkeler W, Lorez HP, Martin JR, Moehler H, Osterrieder W, 
Pieri L, Polc P (1988) Ro 15-4513: partial inverse agonism at the BZR and interaction with ethanol. 
Pharmacol Biochem Behav 31:733-749.  

Bormann J (2000) The 'ABC' of GABA receptors. Trends Pharmacol Sci 21:16-19.  

Bourin M, Petit-Demoulière B, Dhonnchadha BN, Hascöet M (2007) Animal models of anxiety in 
mice. Fundam Clin Pharmacol 21(6):567-574. 

Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition 
in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 
497(3):753-759.  

Brickley SG, Mody I (2012). Extrasynaptic GABA(A) receptors: their function in the CNS and 
implications for disease. Neuron 73(1):23-34.Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford 
KA (2002) Pharmacological characterization of a novel cell line expressing human 
alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol 136:965-974.  

Brünig I, Scotti E, Sidler C, Fritschy JM (2002) Intact sorting, targeting, and clustering of γ-
aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol 443:43–55. 

Buhr A, Wagner C, Fuchs K, Sieghart W, Sigel E (2001) Two novel residues in M2 of the gamma-
aminobutyric acid type A receptor affecting gating by GABA and picrotoxin affinity. J Biol Chem 
276:7775-7781.  

Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role 
for interneuronal networks. Curr Opin Neurobiol 5(4):504-510. 



75 
 

Caldji C, Francis D, Sharma S, Plotsky PM, Meaney MJ (2000) The effects of early rearing 
environment on the development of GABAA and central benzodiazepine receptor levels and 
novelty-induced fearfulness in the rat. Neuropsychopharmacology 22(3):219-229. 

Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care 
during infancy regulates the development of neural systems mediating the expression of fearfulness 
in the rat. Proc Natl Acad Sci U S A 95(9):5335-5340. 

Campeau S, Davis M (1995) Involvement of the central nucleus and basolateral complex of the 
amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently 
with auditory and visual conditioned stimuli. J Neurosci 15(3:2):2301-2311. 

Canteras NS (2002) The medial hypothalamic defensive system: hodological organization and 
functional implications. Pharmacol Biochem Behav 71(3):481-491. 

Canteras NS, Chiavegatto S, Ribeiro do Valle LE, Swanson LW (1997) Severe reduction of rat 
defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res Bull 
44(3):297-305. 

Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic 
mice. J Neurosci Methods 71:3–9. 

Chandra D, Halonen LM, Linden AM, Procaccini C, Hellsten K, Homanics GE, Korpi ER (2010) 
Prototypic GABA(A) receptor agonist muscimol acts preferentially through forebrain high-affinity 
binding sites. Neuropsychopharmacology 35:999-1007.  

Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen 
RW, Harrison NL, Homanics GE (2006) GABAA receptor alpha 4 subunits mediate extrasynaptic 
inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci U S A 
103:15230-15235.  

Chan-Palay V, Asan E (1989) Quantitation of catecholamine neurons in the locus coeruleus in 
human brains of normal young and older adults and in depression. J Comp Neurol 287(3):357-372. 

Chen CL, Yang YR, Chiu TH (1999) Activation of rat locus coeruleus neuron GABAA receptors 
by propofol and its potentiation by pentobarbital or alphaxalone. Eur J Pharmacol 386:201–210. 

Cherubini E, Conti F (2001) Generating diversity at GABAergic synapses. Trends Neurosci 
24(3):155-162. 

Chiu CS, Brickley S, Jensen K, Southwell A, Mckinney S, Cull-Candy S, Mody I, Lester HA 
(2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-
induced tonic conductance in cerebellum. J Neurosci 25(12):3234-3245. 

Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth 
K, Stadler MB, Müller C, Lüthi A (2010) Encoding of conditioned fear in central amygdala 
inhibitory circuits. Nature 468(7321):277-282. 

Cope DW, Hughes SW, Crunelli V (2005) GABAA receptor-mediated tonic inhibition in thalamic 
neurons. J Neurosci 25:11553-11563.  

Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of 
learned, but not innate, fears. J Neurosci 27(4):840-844. 



76 
 

Cremers T, Ebert B (2007) Plasma and CNS concentrations of Gaboxadol in rats following 
subcutaneous administration. Eur J Pharmacol 562(1-2):47-52. 

Crestani F, Assandri R, Täuber M, Martin JR, Rudolph U (2002) Contribution of the alpha1-
GABA(A) receptor subtype to the pharmacological actions of benzodiazepine site inverse agonists. 
Neuropharmacology 43(4):679-684. 

Crestani F, Löw K, Keist R, Mandelli M, Möhler H, Rudolph U (2001) Molecular targets for the 
myorelaxant action of diazepam. Mol Pharmacol 59(3):442-445. 

Damgaard Nielsen R, Abitz Mand, Pakkenberg B (2008) Neuron and glial cell numbers in the 
mediodorsal thalamic nucleus in brains of schizophrenic subjects. Image Anal Stereol 27:133-141. 

de Lecea L, Carter ME, Adamantidis A (2012) Shining light on wakefulness and arousal. Biol 
Psychiatry 71(12):1046-1052. 

de Oca BM, Fanselow MS (2004) Amygdala and periaqueductal gray lesions only partially 
attenuate unconditional defensive responses in rats exposed to a cat. Integr Physiol Behav Sci 
39(4):318-333. 

Detre JA, Floyd TF (2001) Functional MRI and its applications to the clinical neurosciences. 
Neuroscientist 7(1):64-79. 

Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an 
extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 
16(8):1134-1141.  

Ducic I, Caruncho HJ, Zhu WJ, Vicini S, Costa E (1995) gamma-Aminobutyric acid gating of Cl- 
channels in recombinant GABAA receptors. J Pharmacol Exp Ther 272:438-445.  

Duncan GE, Knapp DJ, Breese GR (1996) Neuroanatomical characterization of Fos induction in rat 
behavioral models of anxiety. Brain Res 713(1-2):79-91. 

Dunsmoor JE, Paz R (2015) Fear Generalization and Anxiety: Behavioral and Neural Mechanisms. 
Biol Psychiatry 78(5):336-343. 

Ebert B, Mortensen M, Thompson SA, Kehler J, Wafford KA, KrogsgaardLarsen P (2001) 
Bioisosteric determinants for subtype selectivity of ligands for heteromeric GABAA receptors. 
Bioorg Med Chem Lett 11:1573–1577.  

Ebert B, Thompson SA, Saounatsou K, McKernan R, Krogsgaard-Larsen P, Wafford KA (1997) 
Differences in agonist/antagonist binding affinity and receptor transduction using recombinant 
human gamma-aminobutyric acid type A receptors. Mol Pharmacol 52:1150-1156.  

Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P, Kemp JA (1994) Molecular 
pharmacology of gamma-aminobutyric acid type A receptor agonists and partial agonists in oocytes 
injected with different alpha, beta, and gamma receptor subunit combinations. Mol Pharmacol 
46:957-963.  

Egawa K, Fukuda A (2013) Pathophysiological power of improper tonic GABA(A) conductances in 
mature and immature models. Front Neural Circuits 7:170. 

Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABA(A) 
receptors: limits, insights, future developments. Neuroscience 119:933-943.  



77 
 

Fang L, Deng CA, Keller M, Fukata Y, Fukata G, Chen B, Lüscher B (2006) GODZ-mediated 
palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic 
inhibitory synapses. J Neurosci 26: 12758–12768. 

Farb DH, Ratner MH (2014) Targeting the modulation of neural circuitry for the treatment of 
anxiety disorders. Pharmacol Rev 66(4):1002-1032. 

Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of 
GABA(A) receptors. Nat Rev Neurosci 6(3):215-29. 

Fatima-Shad K, Barry PH (1993) Anion permeation in GABA- and glycine-gated channels of 
mammalian cultured hippocampal neurons. Proc Biol Sci. 253(1336):69-75. 

Fendt M, Endres T, Apfelbach R (2003) Temporary inactivation of the bed nucleus of the stria 
terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a component of 
fox feces. J Neurosci 23(1):23-28. 

File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463(1-
3):35-53. 

Friemel A, Ebert B, Hutson PH, Brust P, Nieber K, Deuther-Conrad W (2007) Postnatal 
development and kinetics of [3H]gaboxadol binding in rat brain: in vitro homogenate binding and 
quantitative autoradiography. Brain Res 1170:39-47.  

Fritschy JM, Benke D, Mertens S, Oertel WH, Bachi T, Möhler H (1992) Five subtypes of type A 
gamma-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence 
staining with subunit-specific antibodies. Proc Natl Acad Sci U S A 89(15):6726-6730. 

Gaidarov I, Santini F, Warren, Keen JH (1999) Spatial control of coated-pit dynamics in living 
cells. Nat Cell Biol 1:1-7. 

German DC, Walker BS, Manaye K, Smith WK, Woodward DJ, North AJ (1988) The human locus 
coeruleus: computer reconstruction of cellular distribution. J Neurosci 8(5):1776-1788. 

Glykys J, Dzhala V, Egawa K, Balena T, Saponjian Y, Kuchibhotla KV, Bacskai BJ, Kahle KT, 
Zeuthen T, Staley KJ (2014a) Local impermeant anions establish the neuronal chloride 
concentration. Science 343(6171):670-675. 

Glykys J, Dzhala V, Egawa K, Balena T, Saponjian Y, Kuchibhotla KV, Bacskai BJ, Kahle KT, 
Zeuthen T, Staley KJ (2014b) Response to comments on "Local impermeant anions establish the 
neuronal chloride concentration". Science 345(6201):1130. 

Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the 
mouse hippocampus. J Physiol 582(3):1163-1178.  

Goosens KA, Maren S (2003) Pretraining NMDA receptor blockade in the basolateral complex, but 
not the central nucleus, of the amygdala prevents savings of conditional fear. Behav Neurosci 
117(4):738-750. 

Griebel G, Blanchard DC, Blanchard RJ (1996) Predator-elicited flight responses in Swiss-Webster 
mice: an experimental model of panic attacks. Prog Neuropsychopharmacol Biol Psychiatry 
20:185–205. 

Griebel G, Holmes A (2013) 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev 
Drug Discov 12(9):667-687. 



78 
 

Grillon C1 (2006) Models and mechanisms of anxiety: evidence from startle studies. 
Psychopharmacology (Berl) 199(3):421-347. 

Gross CT, Canteras NS (2012) The many paths to fear. Nat Rev Neurosci 13(9):651-658. 

Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI, Whiting PJ (1993) Cloning of 
cDNA sequences encoding human alpha 2 and alpha 3 gamma-aminobutyric acidA receptor 
subunits and characterization of the benzodiazepine pharmacology of recombinant alpha 1-, alpha 
2-, alpha 3-, and alpha 5-containing human gamma-aminobutyric acidA receptors. Mol Pharmacol 
43:970-975.  

Hale MW, Hay-Schmidt A, Mikkelsen JD, Poulsen B, Shekhar A, Lowry CA (2008) Exposure to 
an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to 
the basolateral amygdaloid complex. Neuroscience 155(3):659-672. 

Haller J, Aliczki M, Gyimesine Pelczer K (2013) Classical and novel approaches to the preclinical 
testing of anxiolytics: A critical evaluation. Neurosci Biobehav Rev 37(10:1):2318-2330. 

Héja L, Nyitrai G, Kékesi O, Dobolyi A, Szabó P, Fiáth R, Ulbert I, Pál-Szenthe B, Palkovits M, 
Kardos J (2012) Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 
10:26. 

Hellsten K. S., Linden A. M., Korpi E. R (2015). Paradoxical widespread c-Fos expression induced 
by a GABA agonist in the forebrain of transgenic mice with ectopic expression of the GABAA α6 
subunit. Neuroscience 293:123-135. In the paperback version reprinted from Neuroscience, 293, 
Hellsten, K. S., Linden, A. M., & Korpi, E. R., Paradoxical widespread c-Fos expression induced by 
a GABA agonist in the forebrain of transgenic mice with ectopic expression of the GABAA α6 
subunit, 123-135, Copyright (2015), with permission from IBRO. DOI: 
10.1016/j.neuroscience.2015.02.052 

Hellsten K. S., Sinkkonen S. T., Hyde T. M., Kleinman J. E., Särkioja T., Maksimow A., Uusi-
Oukari M., Korpi E. R. (2010). Human locus coeruleus neurons express the GABAA receptor γ2 
subunit gene and produce benzodiazepine binding. Neurosci. Lett. 477(2):77-81. In the paperback 
version reprinted from Neuroscience Letters, 477(2), Hellsten, K. S., Sinkkonen, S. T., Hyde, T. M., 
Kleinman, J. E., Särkioja, T., Maksimow, A., Uusi-Oukari, M., & Korpi E. R., Human locus 
coeruleus neurons express the GABAA receptor γ2 subunit gene and produce benzodiazepine 
binding, 77-81, Copyright (2010), with permission from Elsevier. DOI: 
10.1016/j.neulet.2010.04.035 

Herbison AE, Moenter SM (2011) Depolarizing and hyperpolarizing actions of GABA(A) receptor 
activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J 
Neuroendocrinol 23(7):557-569. 

Herd MB, Foister N, Chandra D, Peden DR, Homanics GE, Brown VJ, Balfour DJ, Lambert JJ, 
Belelli D (2009) Inhibition of thalamic excitability by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-
ol: a selective role for delta-GABA(A) receptors. Eur J Neurosci 29:1177-1187.  

Herman MA, Contet C, Justice NJ, Vale W, Roberto M (2013) Novel subunit-specific tonic GABA 
currents and differential effects of ethanol in the central amygdala of CRF receptor-1 reporter mice. 
J Neurosci 33(8):3284-3298. 

Hevers W, Korpi ER, Luddens H (2000) Assembly of functional alpha6beta3gamma2delta 
GABA(A) receptors in vitro. Neuroreport 11:4103-4106.  

Hevers W, Luddens H (1998) The diversity of GABAA receptors. Pharmacological and 
electrophysiological properties of GABAA channel subtypes. Mol Neurobiol 18:35-86.  



79 
 

Horne AL, Harkness PC, Hadingham KL, Whiting P, Kemp JA (1993) The influence of the gamma 
2L subunit on the modulation of responses to GABAA receptor activation. Br J Pharmacol 108:711-
716. 

Im WB, Blakeman DP (1991) Correlation between gamma-aminobutyric acidA receptor ligand-
induced changes in t-butylbicyclophosphoro[35S]thionate binding and 36Cl- uptake in rat 
cerebrocortical membranes. Mol Pharmacol 39(3):394-398. 

Itoi K (2008) Ablation of the central noradrenergic neurons for unraveling their roles in stress and 
anxiety. Ann N Y Acad Sci 1129:47-54. 

Itoi K, Sugimoto N (2010) The brainstem noradrenergic systems in stress, anxiety and depression. J 
Neuroendocrinol 22(5):355-361. 

Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I (2003) GABA transporter-1 (GAT1)-deficient 
mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J 
Neurophysiol 90:2690–2701. 

Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA (2005) An extrasynaptic 
GABAA receptor mediates tonic inhibition in thalamic VB neurons. J Neurophysiol 94:4491-4501.  

Jo JY, Jeong JA, Pandit S, Stern JE, Lee SK, Ryu PD, Lee SY, Han SK, Cho CH, Kim HW, Jeon 
BH, Park JB (2011) Neurosteroid modulation of benzodiazepine-sensitive GABAA tonic inhibition 
in supraoptic magnocellular neurons. Am J Physiol Regul Integr Comp Physiol 300(6):1578-1587. 

Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and 
memory. Cell 147(3):509-524. 

Jursky F, Fuchs K, Buhr A, Tretter V, Sigel E, Sieghart W (2000) Identification of amino acid 
residues of GABA(A) receptor subunits contributing to the formation and affinity of the tert-
butylbicyclophosphorothionate binding site. J Neurochem 74:1310-1316.  

Kaila K, Lamsa K, Smirnov S, Taira T, Voipio J (1997) Long-lasting GABA-mediated 
depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice 
is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17(20):7662-
7672. 

Kalueff AV, Nutt DJ (2007) Role of GABA in anxiety and depression. Depress Anxiety 24(7):495-
517. 

Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory 
synaptic transmission. Nat Neurosci 1(8):683-92. 

Karobath M, Lippitsch M (1979) THIP and isoguvacine are partial agonists of GABA-stimulated 
benzodiazepine receptor binding. Eur J Pharmacol 58:485-488.  

Keros S, Hablitz JJ (2005) Subtype-specific GABA transporter antagonists synergistically modulate 
phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 94(3):2073-2085.  

Khom S, Baburin I, Timin EN, Hohaus A, Sieghart W, Hering S (2006) Pharmacological properties 
of GABAA receptors containing gamma1 subunits. Mol Pharmacol 69:640-649.  

Kim J, Lee S, Park H, Song B, Hong I (2007) Blockade of amygdala metabotropic glutamate 
receptor subtype 1 impairs fear extinction. Biochem Biophys Res Commun 355:188–193. 



80 
 

Kirsch J, Betz H (1995) The postsynaptic localization of the glycine receptor-associated protein 
gephyrin is regulated by the cytoskeleton. J Neurosci 15(6):4148-4156. 

Kittler JT, Delmas P, Jovanovic JN, Brown DA, Smart TG, Moss SJ (2000) Constitutive 
endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates 
inhibitory synaptic currents in hippocampal neurons. J Neurosci 20:7972–7977. 

Knoflach F, Benke D, Wang Y, Scheurer L, Luddens H, Hamilton BJ, Carter DB, Mohler H, 
Benson JA (1996) Pharmacological modulation of the diazepam-insensitive recombinant gamma-
aminobutyric acidA receptors alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2. Mol Pharmacol 
50:1253-1261.  

Koch U, Magnusson AK (2009) Unconventional GABA release: mechanisms and function. Curr 
Opin Neurobiol 19(3):305-310. 

Korpi ER, Grunder G, Luddens H (2002a) Drug interactions at GABA(A) receptors. Prog 
Neurobiol 67:113-159.  

Korpi ER, Kuner T, Seeburg PH, Lüddens H (1995) Selective antagonist for the cerebellar granule 
cell-specific gamma-aminobutyric acid type A receptor. Mol Pharmacol 47(2):283-289. 

Korpi ER, Mihalek RM, Sinkkonen ST, Hauer B, Hevers W, Homanics GE, Sieghart W, Luddens 
H (2002b) Altered receptor subtypes in the forebrain of GABA(A) receptor delta subunit-deficient 
mice: recruitment of gamma 2 subunits. Neuroscience 109:733-743.  

Korpi ER, Lüddens H (1997) Furosemide interactions with brain GABAA receptors. Br J 
Pharmacol 120:741-748. 

Korpi ER, Lüddens H (1993) Regional gamma-aminobutyric acid sensitivity of t-
butylbicyclophosphoro[35S]thionate binding depends on gamma-aminobutyric acidA receptor 
alpha subunit. Mol Pharmacol 44:87–92. 

Korpi ER, Sinkkonen ST (2006) GABA(A) receptor subtypes as targets for neuropsychiatric drug 
development. Pharmacol Ther 109(1-2):12-32.  

Kovács KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. 
Neurochem Int 33(4):287-297. 

Kovács KJ (2013) CRH: the link between hormonal-, metabolic- and behavioral responses to stress. 
J Chem Neuroanat 54:25-33. 

Krogsgaard-Larsen P, Frolund B, Liljefors T, Ebert B (2004) GABA(A) agonists and partial 
agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem 
Pharmacol 68:1573-1580.  

Krogsgaard-Larsen P, Hjeds H, Curtis DR, Lodge D, Johnston GA (1979) Dihydromuscimol, 
thiomuscimol and related heterocyclic compounds as GABA analogues. J Neurochem 32:1717-
1724.  

Krook-Magnuson EI, Huntsman MM (2005) Excitability of cortical neurons depends upon a 
powerful tonic conductance in inhibitory networks. Thalamus Relat Syst 3(2):115-120. 

Lambert NA, Borroni AM, Grover LM, Teyler TJ (1991) Hyperpolarizing and depolarizing 
GABAA receptor-mediated dendritic inhibition in area CA1 of the rat hippocampus. J Neurophysiol 
66(5):1538-1548. 



81 
 

Laurie DJ, Seeburg PH, Wisden W (1992) The distribution of 13 GABA(A) receptor subunit 
mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J Neurosci 12:1063-1076. 

Lebrón K, Milad MR, Quirk GJ (2004) Delayed recall of fear extinction in rats with lesions of 
ventral medial prefrontal cortex. Learn Mem 11(5):544-548. 

LeDoux J (2012) Rethinking the emotional brain. Neuron 73(4):653-676. 

LeDoux JE 2000 Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. 

Lee K, Porteous R, Campbell RE, Lüscher B, Herbison AE (2010a) Knockdown of GABA(A) 
receptor signaling in GnRH neurons has minimal effects upon fertility. Endocrinology 151(9):4428-
4436.  

Lee S, Ahmed T, Lee S, Kim H, Choi S, Kim DS, Kim SJ, Cho J, Shin HS (2012) Bidirectional 
modulation of fear extinction by mediodorsal thalamic firing in mice. Nat Neurosci 15:308-314. 

Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010b) Channel-
mediated tonic GABA release from glia. Science 330:790–796. 

Lee V, Maguire J (2014) The impact of tonic GABAA receptor-mediated inhibition on neuronal 
excitability varies across brain region and cell type. Front Neural Circuits 8:3. 

Le Meur K, Mendizabal-Zubiaga J, Grandes P, Audinat E (2012). GABA release by hippocampal 
astrocytes. Front Comput Neurosci 6:59. 

Li CI, Maglinao TL, Takahashi LK (2004) Medial amygdala modulation of predator odor-induced 
unconditioned fear in the rat. Behav Neurosci 118(2):324-332. 

Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Paré D (2008) Amygdala intercalated neurons 
are required for expression of fear extinction. Nature 454(7204):642-645. 

Lkhagvasuren B, Oka T, Nakamura Y, Hayashi H, Sudo N, Nakamura K (2014) Distribution of 
Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam 
treatment. Neuroscience 272:34-57. 

Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S, Weickert CS, Matsumoto M, 
Sawa A, Straub RE, Vakkalanka R, Herman MM, Weinberger DR, Kleinman JE (2006) Expression 
of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol 
Genet 15(8):1245-1258. 

Luque JM, Malherbe P, Richards JG (1995) Localization of GABAA receptor subunit mRNAs in 
the rat locus coeruleus. Brain Res Mol Brain Res 24:219–226. 

Lüddens H, Korpi ER (1997) Methods for transient expression of hetero-oligomeric ligand-gated 
ion channels. Methods Mol Biol 83:55-63. 

Lüddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: 
neurophysiological implications. Neuropharmacology 34:245-254.  

Lüddens H, Seeburg PH, Korpi ER (1994) Impact of beta and gamma variants on ligand-binding 
properties of gamma-aminobutyric acid type A receptors. Mol Pharmacol 45:810-814.  

Lüscher, B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of 
inhibitory synapses. Neuron 70:385-409. 



82 
 

Lüscher B, Keller CA (2004) Regulation of GABAA receptor trafficking, channel activity, and 
functional plasticity of inhibitory synapses. Pharmacol Ther 102(3):195-221.  

Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, 
Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of 
anxiety (2000) Science 290(5489):131-134. 

Madsen KK, Larsson OM, Schousboe A (2008) Regulation of excitation by GABA 
neurotransmission: focus on metabolism and transport. Results Probl Cell Differ 44:201-221.  

Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T, Takai 
Y (1998) Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 
243:86–89. 

Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, 
extinction and psychopathology. Nat Rev Neurosci 14(6):417-428. 

Marowsky A, Rudolph U, Fritschy JM, Arand M (2012) Tonic inhibition in principal cells of the 
amygdala: a central role for α3 subunit-containing GABAA receptors. J Neurosci 32(25):8611-
8619. 

McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook 
G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, 
Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not 
anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. 
Nat Neurosci 3(6):587-92. 

McNally GP, Lee BW, Chiem JY, Choi EA (2005) The midbrain periaqueductal gray and fear 
extinction: opioid receptor subtype and roles of cyclic AMP, protein kinase A, and mitogen-
activated protein kinase. Behav Neurosci 119:1023–1033. 

McNally GP, Pigg M, Weidemann G (2004) Opioid receptors in the midbrain periaqueductal gray 
regulate extinction of pavlovian fear conditioning. J Neurosci 24:6912–6919. 

Meera P, Wallner M, Otis TS (2011) Molecular basis for the high THIP/gaboxadol sensitivity of 
extrasynaptic GABA(A) receptors. J Neurophysiol 106:2057-2064.  

Michelson HB, Wong RK (1991) Excitatory synaptic responses mediated by GABAA receptors in 
the hippocampus. Science 253(5026):1420-1423. 

Mihalek RM, Banerjee PK, Korpi ER, Quinlan JJ, Firestone LL, Mi ZP, Lagenaur C, Tretter V, 
Sieghart W, Anagnostaras SG, Sage JR, Fanselow MS, Guidotti A, Spigelman I, Li Z, DeLorey 
TM, Olsen RW, Homanics GE (1999) Attenuated sensitivity to neuroactive steroids in gamma-
aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A 96:12905-
12910.  

Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. 
Nature 420(6911):70-74. 

Milić M, Divljaković J, Rallapalli S, van Linn ML, Timić T, Cook JM, Savić MM (2012) The role 
of α1 and α5 subunit-containing GABAA receptors in motor impairment induced by 
benzodiazepines in rats. Behav Pharmacol 23(2):191-197. 

Millan M (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244. 



83 
 

Mortensen M, Ebert B, Wafford K, Smart TG (2010) Distinct activities of GABA agonists at 
synaptic- and extrasynaptic-type GABAA receptors. J Physiol 588(8):1251-1268. 

Mugunthan K, McGuire T, Glasziou P (2011) Minimal interventions to decrease long-term use of 
benzodiazepines in primary care: a systematic review and meta-analysis. Br J Gen Pract 
61(590):573-578. 

Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and 
basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit 
conditioned stimulus and to contextual stimuli. Behav Neurosci 111(4):683-691. 

Mäkela R, Uusi-Oukari M, Homanics GE, Quinlan JJ, Firestone LL, Wisden W, Korpi ER (1997) 
Cerebellar gamma-aminobutyric acid type A receptors: pharmacological subtypes revealed by 
mutant mouse lines. Mol Pharmacol 52:380-388.  

Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp 
Ther 300(1):2-8. 

Möykkynen TP, Sinkkonen ST, Korpi ER (2007) Compensation by reduced L-alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses in a mouse model with reduced 
gamma-aminobutyric acid type A receptor-mediated synaptic inhibition. J Neurosci Res 85(3):668-
672. 

Newell JG, Czajkowski C (2003) The GABAA receptor alpha 1 subunit Pro174-Asp191 segment is 
involved in GABA binding and channel gating. J Biol Chem 278:13166-13172.  

Newell JG, Davies M, Bateson AN, Dunn SM (2000) Tyrosine 62 of the gamma-aminobutyric acid 
type A receptor beta 2 subunit is an important determinant of high affinity agonist binding. J Biol 
Chem 275:14198-14204.  

Nusser Z, Sieghart, W Somogyi, P (1998) Segregation of different GABAA receptors to synaptic 
and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703. 

Olsen RW, De Lorey TM (1999) GABA Synthesis, Uptake and Release. Basic Neurochemistry: 
Molecular, Cellular and Medical Aspects. 6th edition. 

Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and 
pharmacology. Neuropharmacology 56:141-148.  

Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-
aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, 
and function. Update. Pharmacol Rev 60:243-260.  

Olsen RW, McCabe RT, Wamsley JK (1990) GABAA receptor subtypes: autoradiographic 
comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous 
system. J Chem Neuroanat 3:59-76.  

Padilla-Coreano N, Do-Monte FH, Quirk GJ (2012) A time-dependent role of midline thalamic 
nuclei in the retrieval of fear memory. Neuropharmacology 62:457-463. 

Panhelainen AE, Korpi ER (2012) Evidence for a role of inhibition of orexinergic neurons in the 
anxiolytic and sedative effects of diazepam: A c-Fos study. Pharmacol Biochem Behav 101:115-
124. 



84 
 

Park JB, Skalska S, Stern JE (2006) Characterization of a novel tonic gamma-aminobutyric acidA 
receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia. 
Endocrinology 147(8):3746-3760. 

Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and 
fear disorders. Nat Neurosci 16(2):146-153. 

Pavlov I, Savtchenko LP, Kullmann DM, Semyanov A, Walker MC (2009) Outwardly rectifying 
tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain. J Neurosci 
29(48):15341-15350. 

Paydar A, Lee B, Gangadharan G, Lee S, Hwang EM, Shin HS (2014) Extrasynaptic GABA(A) 
receptors in mediodorsal thalamic nucleus modulate fear extinction learning. Molecular Brain 7:39. 

Pesold C, Treit D (1993) The central and basolateral amygdala differentially mediate the anxiolytic 
effects of benzodiazepines. Brain Res 671(2):213-221. 

Pesold C, Treit D (1994) The septum and amygdala differentially mediate the anxiolytic effects of 
benzodiazepines. Brain Res 638(1-2):295-301. 

Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAAreceptors: 
immunocytochemical distribution of 13 subunits in the adult rat brain.Neuroscience 101:815–850. 

Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J 
Neurol 259(9):1769-1780. 

Pritchett DB, Seeburg PH (1990) Gamma-aminobutyric acidA receptor alpha 5-subunit creates 
novel type II benzodiazepine receptor pharmacology. J Neurochem 54:1802-1804.  

Procaccini C, Aitta-aho T, Jaako-Movits K, Zharkovsky A, Panhelainen A, Sprengel R, Linden 
AM, Korpi ER (2011) Excessive novelty-induced c-Fos expression and altered neurogenesis in the 
hippocampus of GluA1 knockout mice. Eur J Neurosci 33:161-174. 

Qian N, Sejnowski TJ (1990) When is an inhibitory synapse effective? Proc Natl Acad Sci U S A 
87(20):8145-8149. 

Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases 
the responsiveness of central amygdala output neurons. J Neurosci 23(25):8800-8807. 

Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. 
Neuropsychopharmacology 33(1):56-72. 

Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the 
recovery of extinguished fear. J Neurosci 20(16):6225-6231. 

Rabe H, Kronbach C, Rundfeldt C, Lüddens H (2007) The novel anxiolytic ELB139 displays 
selectivity to recombinant GABA(A) receptors different from diazepam. Neuropharmacology 
52(3):796-801. 

Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes GL, Ben-Ari Y, Zilberter Y 
(2008) Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol 100(2):609-619. 

Richardson BD, Ling LL, Uteshev VV, Caspary DM (2013) Reduced GABA(A) receptor-mediated 
tonic inhibition in aged rat auditory thalamus. J Neurosci 33(3):1218-1227. 



85 
 

Richerson GB, Wu YM (2003) Dynamic equilibrium of neurotransmitter transporters: Not just for 
reuptake anymore. J Neurophysiol 90:1363–1374. 

Rosen JB (2004) The neurobiology of conditioned and unconditioned fear: a neurobehavioral 
system analysis of the amygdala. Behav Cogn Neurosci Rev 3(1):23-41. 

Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar 
granule cells. J Physiol 548:97–110. 

Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, 
Möhler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) 
receptor subtypes. Nature 401(6755):796-800. 

Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of 
GABAA receptor subtypes. Nat Rev Drug Discov 10:685-697.  

Ryabinin AE, Wang YM, Finn DA (1999) Different levels of Fos immunoreactivity after repeated 
handling and injection stress in two inbred strains of mice. Pharmacol Biochem Behav 63(1):143-
151. 

Saarelainen K. S., Ranna M., Rabe H., Sinkkonen S. T., Möykkynen T., Uusi-Oukari M., Linden A. 
M., Lüddens H., Korpi E. R. (2008). Enhanced behavioral sensitivity to the competitive GABA 
agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic alpha6beta 
GABAA receptors. J. Neurochem. 105(2):338-350. In the paperback version reprinted from 
Journal of Neurochemistry, Saarelainen, K. S., Ranna, M., Rabe, H., Sinkkonen, S. T., Möykkynen, 
T., Uusi-Oukari, M., Linden, A. M., Lüddens, H., & Korpi, E. R., Enhanced behavioral sensitivity to 
the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal 
extrasynaptic alpha6beta GABAA receptors, John Wiley & Sons, with permission. © 2007 The 
Authors Journal Compilation © 2007 International Society for Neurochemistry, J. Neurochem. 
(2008) 105, 338-350. DOI: 10.1111/j.1471-4159.2007.05136.x 

Sanna E, Busonero F, Talani G, Carta M, Massa F, Peis M, Maciocco E, Biggio G (2002) 
Comparison of the effects of zaleplon, zolpidem, and triazolam at various GABA(A) receptor 
subtypes. Eur J Pharmacol 451:103-110.  

Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 
10:211-223. 

Saxena NC, Macdonald RL (1996) Properties of putative cerebellar gamma-aminobutyric acid A 
receptor isoforms. Mol Pharmacol 49:567-579.  

Seelig A, Gottschlich R, Devant RM (1994) A method to determine the ability of drugs to diffuse 
through the blood-brain barrier. Proc Natl Acad Sci U S A 91(1):68-72.Semyanov A, Walker MC, 
Kullmann DM, Silver RA (2004) Tonically active GABA A receptors: modulating gain and 
maintaining the tone. Trends Neurosci 27(5):262-269. 

Serafini R, Valeyev AY, Barker JL, Poulter MO (1995) Depolarizing GABA-activated Cl- channels 
in embryonic rat spinal and olfactory bulb cells. J Physiol 488 (2):371-386. 

Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. 
Pharmacol Rev 47:181-234.  

Sigel E, Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends Pharmacol 
Sci 18:425-429.  



86 
 

Sigel E, Baur R, Kellenberger S, Malherbe P (1992) Point mutations affecting antagonist affinity 
and agonist dependent gating of GABAA receptor channels. EMBO J 11:2017-2023.  

Sigel E, Baur R, Trube G, Mohler H, Malherbe P (1990) The effect of subunit composition of rat 
brain GABAA receptors on channel function. Neuron 5:703-711.  

Sinkkonen ST, Linden AM, Korpi ER, Wong G (2004a) Selective reduction of gamma-
aminobutyric acid type A receptor delta subunit mRNA levels by MK-801 in rat dentate gyrus. 
Neurosci Lett 364:106-109. 

Sinkkonen ST, Uusi-Oukari M, Tupala E, Sarkioja T, Tiihonen J, Panula P, Luddens H, Korpi ER 
(2001) Characterization of gamma-aminobutyrate type A receptors with atypical coupling between 
agonist and convulsant binding sites in discrete brain regions. Brain Res Mol Brain Res 86:168-178. 

Sinkkonen ST, Vekovischeva OY, Moykkynen T, Ogris W, Sieghart W, Wisden W, Korpi ER 
(2004b) Behavioural correlates of an altered balance between synaptic and extrasynaptic 
GABA(A)ergic inhibition in a mouse model. Eur J Neurosci 20:2168-2178. 

Smirnov S, Paalasmaa P, Uusisaari M, Voipio J, Kaila K (1999) Pharmacological isolation of the 
synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 
hippocampal pyramidal cells. J Neurosci 19(21):9252-9260. 

Smith GB, Olsen RW (1995) Functional domains of GABAA receptors. Trends Pharmacol Sci 
16:162-168.  

Smith GB, Olsen RW (1994) Identification of a [3H]muscimol photoaffinity substrate in the bovine 
gamma-aminobutyric acidA receptor alpha subunit. J Biol Chem 269:20380-20387.  

Sotres-Bayon F, Bush DE, LeDoux JE (2007) Acquisition of fear extinction requires activation of 
NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 32: 1929–
1940. 

Sotres-Bayon F, Bush DE, LeDoux JE (2004) Emotional perseveration: an update on prefrontal-
amygdala interactions in fear extinction. Learn Mem 11(5):525-535. 

Southwick SM, Bremner JD, Rasmusson A, Morgan CA 3rd, Arnsten A, Charney DS (1999) Role 
of noradrenaline in the pathophysiology and treatment of posttraumatic stress disorder. Biol 
Psychiatry 46(9):1192-1204. 

Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory 
GABAA receptors. Science 269(5226):977-981. 

Steimer T (2011) Animal models of anxiety disorders in rats and mice: some conceptual issues. 
Dialogues Clin Neurosci 13(4):495-506. 

Stell BM, Mody I (2002) Receptors with different affinities mediate phasic and tonic GABA(A) 
conductances in hippocampal neurons. J Neurosci 22(10). 

Storustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing 
GABAA receptors: Functional selectivity for extrasynaptic receptors is dependent on the absence of 
gamma2. J Pharmacol Exp Ther 316:1351-1359.  

Taira T, Lamsa K, Kaila K (1997) Posttetanic excitation mediated by GABA(A) receptors in rat 
CA1 pyramidal neurons. J Neurophysiol 77(4):2213-2218. 



87 
 

Tehrani MH, Barnes EM Jr (1993) Identification of GABAA/benzodiazepine receptors on clathrin-
coated vesicles from rat brain. J Neurochem 60(5):1755-1761. 

Thompson SA, Arden SA, Marshall G, Wingrove PB, Whiting PJ, Wafford KA (1999) Residues in 
transmembrane domains I and II determine gamma-aminobutyric acid type AA receptor subtype-
selective antagonism by furosemide. Mol Pharmacol 55(6):993-999. 

Tohyama M, Oyamada H (1994) Gene expression of neuroreceptors in the locus coeruleus of the 
rat. Microsc Res Tech 29(3):200-203. 

Tornberg J, Segerstråle M, Kulesskaya N, Voikar V, Taira T, Airaksinen MS (2007) KCC2-
deficient mice show reduced sensitivity to diazepam, but normal alcohol-induced motor 
impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis. 
Neuropsychopharmacology 32(4):911-918. 

Uusi-Oukari M, Korpi ER (2010) Regulation of GABA(A) receptor subunit expression by 
pharmacological agents. Pharmacol Rev 62:97-135.  

Vale C, Vilaro MT, Rodriguez-Farre E, Sunol C (1999) Effects of the conformationally restricted 
GABA analogues, cis- and trans-4-aminocrotonic acid, on GABA neurotransmission in primary 
neuronal cultures. J Neurosci Res 57:95-105.  

Vazdarjanova A, Cahill L, McGaugh JL (2001) Disrupting basolateral amygdala function impairs 
unconditioned freezing and avoidance in rats. Eur J Neurosci 14(4):709-718. 

Vekovischeva OY, Aitta-aho T, Echenko O, Kankaanpaa A, Seppala T, Honkanen A, Sprengel R, 
Korpi ER (2004) Reduced aggression in AMPA-type glutamate receptor GluR-A subunitdeficient 
mice. Genes Brain Behav 3:253–265. 

Verdoorn TA (1994) Formation of heteromeric gamma-aminobutyric acid type A receptors 
containing two different alpha subunits. Mol Pharmacol 45:475-480.  

Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline 
thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1-20. 

Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals 
opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. 
Learn Mem 13(6):728-733. 

Viitanen T, Ruusuvuori E, Kaila K, Voipio J (2010) The K+-Cl cotransporter KCC2 promotes 
GABAergic excitation in the mature rat hippocampus. J Physiol 588(9):1527-1540. 

Wafford KA, Ebert B (2008) Emerging anti-insomnia drugs: tackling sleeplessness and the quality 
of wake time. Nat Rev Drug Discov 7:530–540. 

Wafford KA, Ebert B (2006) Gaboxadol--a new awakening in sleep. Curr Opin Pharmacol 6:30-36.  

Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ (1996) Functional 
characterization of human gamma-aminobutyric acidA receptors containing the alpha 4 subunit. 
Mol Pharmacol 50:670-678.  

Wafford KA, Bain CJ, Whiting PJ, Kemp JA (1993) Functional comparison of the role of gamma 
subunits in recombinant human gamma-aminobutyric acidA/benzodiazepine receptors. Mol 
Pharmacol 44:437-442.  



88 
 

Waldvogel HJ, Baer K, Eady E, Allen KL, Gilbert RT, Mohler H, Rees MI, Nicholson LF, Faull RL 
(2010) Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits 
and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal 
cord: an immunohistochemical study. J Comp Neurol 518(3):305-328. 

Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of δsubunit-
containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J 
Neurosci 23:10650–10661. 

Westh-Hansen SE, Witt MR, Dekermendjian K, Liljefors T, Rasmussen PB, Nielsen M (1999) 
Arginine residue 120 of the human GABAA receptor alpha 1, subunit is essential for GABA 
binding and chloride ion current gating. Neuroreport 10:2417-2421.  

Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential 
for benzodiazepine agonist binding. J Biol Chem 267:1426-1429.  

Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central 
nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian 
fear conditioning. J Neurosci 26(48):12387-12396. 

Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP 
(Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. 
Eur J Neurosci 25:1893-1899.  

Wisden W, Cope D, Klausberger T, Hauer B, Sinkkonen ST, Tretter V, Lujan R, Jones A, Korpi 
ER, Mody I, Sieghart W, Somogyi P (2002) Ectopic expression of the GABA(A) receptor alpha6 
subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic 
inhibition. Neuropharmacology 43(4):530-549. 

Wisden W, Herb A, Wieland H, Keinanen K, Luddens H, Seeburg PH (1991) Cloning, 
pharmacological characteristics and expression pattern of the rat GABAA receptor alpha 4 subunit. 
FEBS Lett 289:227-230.  

Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor 
subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 
12:1040–1062. 

Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, Olesen J, Allgulander C, 
Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-
Carulla L, Simon R, Steinhausen HC (2011) The size and burden of mental disorders and other 
disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21(9):655-679. 

Wong RK, Watkins DJ (1982) Cellular factors influencing GABA response in hippocampal 
pyramidal cells. J Neurophysiol 48(4):938-951. 

Wu YM, Wang WG, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA 
transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034. 

Xie X, Smart TG (1993) Properties of GABA-mediated synaptic potentials induced by zinc in adult 
rat hippocampal pyramidal neurones. J Physiol 460:503-523. 

Xu M, Covey DF, Akabas MH (1995) Interaction of picrotoxin with GABAA receptor channel-
lining residues probed in cysteine mutants. Biophys J 69:1858-1867. 

Yamamoto K, Shinba T, Yoshii M (2014) Psychiatric symptoms of noradrenergic dysfunction: a 
pathophysiological view. Psychiatry Clin Neurosci 68(1):1-20. 



89 
 

Yoon BE, Jo S, Woo J, Lee JH, Kim T, Kim D, Lee CJ (2011). The amount of astrocytic GABA 
positively correlates with the degree of tonic inhibition in hippocampal CA1 and cerebellum. Mol 
Brain 4:42. 

Yoon BE, Woo J, Chun YE, Chun H, Jo S, Bae JY, An H, Min JO, Oh SJ, Han KS, Kim HY, Kim 
T, Kim YS, Bae YC, Lee CJ (2014). Glial GABA, synthesized by monoamine oxidase B, mediates 
tonic inhibition. J Physiol 592(22):4951-4968.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

9 Original publications 


	Table of contents
	Abstract
	List of original publications
	Abbreviations
	1 Introduction
	2 Review of the literature
	3 Aims of the study
	4 Materials and methods
	5 Results and discussion
	6 Conclusions
	7 Acknowledgements
	8 References
	9 Original publications


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




