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Abstract

The cochlear implant (CI) provides a sensation of hearing and the opportunity to develop

spoken language for deaf-born children. However, many CI children show poor language

outcomes, which may be related to the deficiency of CIs in delivering pitch. The present

thesis studies the development of those neural processes and behavioural skills linked to

the perception of pitch which may play a role in language acquisition. We measured with

event-related brain potentials (ERPs) the neural discrimination of and attention shift to

changes in music, the perception of word and sentence stress and related acoustic cues,

and the auditory working memory (forward digit span) in 4 ̶–13-year-old normally hearing

(NH) and early-implanted children. We studied how the development of these aspects is

related to musical activities known to advance brain development and perceptual skills in

the NH population, and whether the perception of music (pitch or rhythm) is connected

to word stress or visuospatial perception in NH adults. With regard to the development of

neural  responses,  we  found  for  the  CI  children  usually  well-formed  ERP  waveforms

resembling those found for the NH children. However, some brain responses implied

impoverished  processing  for  the  CI  children,  especially  for  timbre  and  pitch.  The  CI

children who sang regularly at home were advantaged over the other CI children for the

development of attention shift, which was linked to improved auditory working memory,

implying better neural discrimination, an advantaged development of neural networks for

attention and better updating of auditory working memory for the CI singers. We found

that for the CI children perception of word and sentence stress improved with improving

discrimination of pitch (f0) and intensity and auditory working memory. For the

perception of stress and related aspects, including pitch and auditory working memory,

only the CI children participating in supervised musical activities performed and

developed similarly to the NH children. Moreover, the perception of musical rhythm

improved with improving word stress and visuospatial perception for the NH adults.

Thus, the results indicate that (i) perception of music and speech are connected not only

via pitch and timbre, but also via rhythm, and (ii) the combination of singing at home and

taking part in supervised musical activities, using also rhythmic exercises and visual cues,

might be the best way to optimize pitch-related abilities, underlying cognitive functions,

spoken language skills and quality of life for early-implanted children.
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Tiivistelmä

Sisäkorvaistute (SI) mahdollistaa syntymäkuurojen lasten puhekielen kehityksen. SI-

lasten puhekielen taidot vaihtelevat kuitenkin paljon ja ovat usein heikompia kuin

kuulevilla lapsilla. Tämä saattaa liittyä SI:n heikkoon kykyyn välittää äänten korkeuksia.

Tässä väitöskirjassa tarkasteltiin puhekielen kehitystä tukevien, äänen korkeuksien

havaitsemiseen liittyvien hermostollisten mekanismien, kuulomuistin ja kuuntelutaitojen

kehitystä 4–13-vuotiailla kuulevilla lapsilla sekä lapsilla, joiden SI oli aktivoitu

varhaisessa iässä. Musiikillisten äänten hermostollista erottelua ja kuulotarkkaavuutta

tarkasteltiin mittaamalla kuuloherätevasteita aivosähkökäyrällä (EEG). Sana- ja

lausepainon havaitsemista ja näihin liittyvien akustisten vihjeiden erottelukykyä tutkittiin

kuuntelukokeilla ja kuulomuistia numerotoistotestillä. Musiikin harrastamisen tiedetään

parantavan kuulevien lasten kuulohavaintotaitoja ja kuulomuistia, ehkä myös

kuulotarkkaavuutta. Siksi tarkastelimme SI-lasten ryhmässä musiikkiaktiviteettien

yhteyksiä mittaustuloksiimme. Tutkimme myös, onko musiikin havaitseminen

yhteydessä sanapainon tai suuntien havaitsemiseen kuulevilla aikuisilla. Havaitsimme,

että SI-lasten kuuloherätevasteet olivat hyvin samantapaisia kuin kuulevien lasten.

Kuitenkin vasteet erityisesti muutoksille soittimesta toiseen (äänen laatu) ja äänen

korkeudessa heijastivat SI-lasten heikkoa kuuloerottelukykyä ja -tarkkaavuutta.

Säännöllisesti kotona laulavien SI-lasten kuulotarkkaavuusvasteet kehittyivät

voimakkaammiksi ja nopeammiksi kuin muiden SI-lasten. Nämä vasteet olivat

nopeampia paremman kuulomuistin myötä. Tulokset viittaavat laulavien SI-lasten

hyvään hermostolliseen erottelukykyyn, kuulotarkkaavuuden aivoverkostojen

kehitykseen ja kuulomuistin päivitykseen. Sana- ja lausepainon havaitseminen parantui

hyvän äänen korkeuden (f0) ja voimakkuuden erottelun sekä kuulomuistin myötä, joissa

vain ohjattuihin musiikkiaktiviteetteihin osallistuneet SI-lapset kehittyivät yhtä hyvin

kuin kuulevat lapset. Musiikin rytmien havaitseminen parantui hyvän sanapainon ja

suuntien havaitsemisen myötä. Tulokset korostavat musiikin havaitsemisen olevan

yhteydessä musiikin rytmien havaitsemiseen, ei pelkästään äänen korkeuksien ja laatujen

havaitsemiseen. Ne korostavat kotona laulamisen sekä äänen korkeuden, myös rytmin

havaitsemisen harjoituksia ja suuntavihjeitä (kuten laululeikkejä), sisältävän ohjatun

musiikkitoiminnan tärkeyttä SI lasten puhekielen ja elämänlaadun parantamisessa.
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1 Introduction

Approximately one or two of every 1000 newborns has profound congenital hearing loss

(Nikolopoulos & Vlastarakos, 2010). As of 2013, the cochlear implant (CI) provides a

sensation of hearing for 80 000 individuals born with hearing loss (Boons et al., 2013a).

Despite the positive effect of CIs, the language and speech perception outcomes of

children with CIs (CI children) vary extensively, many of them showing lower language

skills than normal hearing (NH) children (Boons et al., 2013a, 2013b; Geers et al., 2003;

Niparko et al., 2010). This thesis investigates issues linked to the idea that a poor ability

to perceive prosody, assessed here by perception of word and sentence stress, may

contribute to poor speech and language outcomes. CI children have variable and often

poor ability to perceive word and sentence stress (Meister et al., 2011; O’Halpin, 2010),

both of which are relevant for segmentation of continuous speech and spoken language

development (Friedrich et al., 2009; Jusczyk et al., 1999; Thiessen et al., 2005). Prosodic

perception can be expected to be degraded due to the limitations of CIs in delivering pitch

(Ciocca et al., 2002; Green et al., 2004; Laneau & Wouters, 2004), leading also to

difficulties in perception of music (Hsiao & Gfeller, 2012; McDermott, 2004; Limb &

Roy, 2014). It has been suggested that improving perception of pitch and music can lead

to improved perception of speech, especially in noisy situations where CI listeners

typically have severe difficulties (Drennan & Rubinstein, 2008). Therefore, this thesis

addresses the development of speech prosody and music, and the possible associated

factors: discrimination of acoustic cues, auditory working memory, auditory attention,

visuospatial perception, and most importantly, musical activities in early-implanted

children whose CI had been activated prior to the age of three years one month. Early-

implanted children are now beginning to form a majority of CI children, and little was

known on the issues under investigation in this child population.

1.1 Cochlear implants and perception of acoustic cues for
prosody and music

When the variations of air pressure that constitute sound reach the ear, they produce

corresponding movement of the round window in the interface of the middle and the inner

ear. This leads to the movement of the basilar membrane in the cochlea. The inner hair
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cell bodies are attached to the basilar membrane, and their cilia are in contact with the

tectorial membrane. Movement of the basilar membrane relative to the tectorial

membrane causes the deflection of the cilia of the inner hair cells, leading to the

generation of action potentials in the neurons of the auditory nerve (Moore, 2003a,

2003b). Deafness is a consequence of the damage to or total loss of sensory inner hair

cells due to genetic cause, infectious diseases like meningitis or rubella, or other factors

(Wilson & Dorman, 2008).

The CI bypasses these damaged or missing hair  cells  and all  other structures of the

auditory system that precede them, and stimulates directly the auditory nerve through

electrodes inserted in the inner ear. A microphone placed above or within the pinna

receives sounds. The input sounds, over a frequency range approximately from 200 Hz

to 8500 Hz, are filtered in a speech processor into bands of frequencies. Within each of

these frequency bands, the amplitude envelope is extracted, encoding time-varying sound

level at rates up to a few hundred Hz (Limb & Roy, 2014; Wilson & Dorman, 2008; for

CI coding strategies, CIS, Wilson et al., 1991; ACE, Kiefer et al., 2001). Pulse levels

representing these envelopes are directed to electrodes along the electrode array so as to

encode the time-varying spectrum of sound as time-varying pulse levels distributed

spatially along the array. The outputs of low frequency bands are directed to apical

electrodes, and the outputs of high frequency bands are directed to basal electrodes. Thus

the auditory nerves are stimulated in the order of frequency mapping in the normal

cochlea, in so-called tonotopic order. The electric current pulses normally stimulate the

auditory nerves at  a fixed pulse rate,  which is in CIS and ACE processors at  least  700

pulses per second and sometimes higher (Wilson & Dorman, 2008). An exception to these

coding strategies is the fine structure processing speech coding strategy (FSP), where

additionally the temporal fine structure of sounds is encoded by pulses of varying rate

synchronized to the temporal fine structure, which are directed to up to four of the most

apical electrodes (Riss et al., 2014).

Pitch. The natural sounds that convey a sense of pitch are quasi-periodic tones. The sound

pressure waveform of these tones repeats at a constant or relatively slowly changing rate.

Such tones are composed of a series of sinusoidal waves (harmonics), whose frequencies

are integer multiples of the fundamental frequency (f0), which is the repetition frequency

of the complex wave (Moore, 2003a, 2003b). It is not yet completely clear how pitch is
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derived from these complex tones even in the normal auditory system. However, from

the perspective of CIs, the concepts of place and temporal cues for frequencies, and

together with this, for pitch, are the most relevant ones because CIs cannot deliver

optimally these cues to the auditory nerve.

The place cue for pitch refers to the perceptual mechanism related to the auditory filters

of the basilar membrane. In NH, the basilar membrane acts like a bank of bandpass filters,

each filter responding most strongly to a narrow range of frequencies and located at a

specific point along the length of the cochlea (in the so-called tonotopic order, described

above). Any single sinusoidal tone, having only one frequency component, gives rise to

maximum vibration at a specific place along the basilar membrane (Moore, 2003a).

However, the bandwidths of the filters on the basilar membrane increase with increasing

center frequency (Moore, 2003a). For low frequency harmonics of complex tones, the

bandwidths are sufficiently narrow that each harmonic gives rise to a specific peak on the

basilar membrane, i. e., these harmonics are resolved. In areas responding to higher

frequencies, the filter bandwidth spans several harmonics, so that each place (filter)

responds to several harmonics. Thus, the higher harmonics do not give rise to specific

peaks, and they are unresolved on the basilar membrane. The series of local peaks for

resolved harmonics on the basilar membrane, and the harmonic relationship between

these peaks, provides place cues for pitch (f0) calculation (e.g. Moore, 2003a, 2014). This

calculation is possible even though the f0 may be missing, allowing identification of the

pitch of sounds over the telephone or other sound environments where low frequencies

are attenuated or missing (He & Trainor, 2009).

The nerve spikes induced by the resolved harmonics tend to be phase locked or

synchronized to the stimulating waveform, i, e., when spikes do occur, they occur at

approximately the same phase of the waveform. For a single sinusoid, the timing of the

phase-locked responses encodes the period of the tone. This phase-locking provides also

a temporal fine structure code for the frequency of each resolved harmonic of complex

tones. For resolved lower harmonics, the frequency of each is encoded by the phase-

locked firing, and the harmonic structure, and hence f0, is encoded in the ensemble of fine

timing information across these harmonics. However, the temporal information carried

by the pattern of firing becomes increasingly imprecise above approximately 2 kHz

(Moore, 2008, 2014). For higher, non-resolved harmonics, the movement on the basilar
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membrane reflects the sum of several harmonics, and thus shows the same periodicity as

the input sound waveform (f0). Phase-locked responses to peaks in this complex basilar

membrane  vibration  will  thus  also  reflect  f0. Hence, when only unresolved high

harmonics are present in a tone, and there are no place cues to pitch, the temporal envelope

of the basilar membrane response to the summed unresolved harmonics is the only

available cue to pitch. When the temporal envelope code is the only peripheral cue to

pitch, discrimination of changes in f0 is rather poor (Moore, 2003a, 2014).

Each peripheral model (place or temporal) may explain some, but not all, aspects of

pitch perception. For example, in the periphery of normal auditory system, the pitch of

complex tones may sometimes also be derived from combined place and temporal cues

(Luo et al., 2012).

The effective number of electrodes of CIs is often less than the actual number of

electrodes (12 to 22 in current devices) due to the spread of electric current from active

electrode to adjacent places (Abbas et al., 2004; Chatterjee & Shannon, 1998). Even if

there was minimal current spread and all electrodes conveyed independent information,

the level of detail of the representation of the sound spectrum would be much less than

that provided by the number of filters in the normal inner ear. Therefore, not even the

lower harmonics of complex tones are resolved with CIs (Drennan & Rubinstein, 2008;

Moore, 2003a), and the peripheral coding of cues for pitch of complex, periodic tones is

highly limited with CIs. Except for the special case of isolated low frequency sinusoidal

tones, CIs do not allow phase-locked auditory nerve responses to individual harmonics.

Further, most CIs (like those using CIS or ACE coding strategies) filter out fine temporal

structure above few hundred Hz in the envelope extraction process. Since all harmonics

are normally unresolved with CIs, the envelopes extracted by the CI speech processor

from pitch-bearing sounds will reflect the sum of several harmonics, and thus will tend

to reflect f0. Thus, the peripheral temporal coding of the cues for the pitch of complex

sounds for the CI listener depends entirely on a temporal cue comparable to that for

normal listeners when a complex sound contains only high (non-resolved) harmonics

(Geurts & Wouters, 2001; Laneau & Wouters, 2004: Moore, 2003a; Ping et al., 2012).

Unfortunately,  this  cue  is  difficult  to  detect  for  f0:s above 300 Hz (Green et al., 2002;

Laneau et al., 2004), and CI users also seem to have difficulties in binding the temporal

cue to the place cue (Chatterjee & Oberzut, 2011; Limb & Roy, 2014).
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These limitations of CIs lead to consistent difficulties for CI listeners in the perception

of pitch even in a single tone (monophonic) musical context (CI adults and adolescents,

Leal et al., 2003; McDermott & McKay, 1997; Petersen et al., 2015; Pijl, 1997; Sucher

& McDermott, 2007; Timm et al., 2014; Vandali et al., 2005; CI children, Mitani et al.,

2007; Nakata et al., 2005; Olszewski et al., 2005; Stordahl et al., 2002) and in speech

(Ciocca et al., 2002; Green et al., 2004; Laneau & Wouters, 2004). Even NH listeners,

especially those without musical training, sometimes confuse changes in pitch with

changes in loudness or timbre (Melara & Marks, 1990a, 1990b; Sucher & McDermott,

1997). This may be common also within CI users (Sucher & McDermott, 1997). Further,

changes of the harmonics with changes in pitch (f0) can cause unusual changes in loudness

if the loudness has not been well balanced between the CI channels (for techniques to

prevent this in psychophysical studies, like roving or loudness balancing, see for example

Chatterjee & Peng, 2008). With CIs, perception of two simultaneous pitches and of

melody in polyphonic music is even more challenging than perception of pitch or melody

in single tones (Donelly et al., 2009; Galvin et al., 2008, 2009).

Music instrument timbre and speech sounds. As  with  the  perception  of  pitch,  the

perception of musical timbre is  degraded for CI listeners (adults and adolescents, Gfeller

et al., 2002; Nimmons et al., 2008, Petersen et al., 2015; children, Stabej et al., 2012; for

a review, McDermott, 2004; Limb & Roy, 2014). For NH listeners, the acoustic cues for

perception of differences of timbre between musical instruments involve the spectral

envelope, spectral fine structure and intensity envelope (attack time; Caclin et al., 2005).

In addition, NH listeners can use these temporal and spectral cues both independently and

in combination (Caclin et al., 2005). CI users perceive musical instrument timbre mainly

from the intensity envelope (attack time; Kong et al., 2011; McDermott, 2004; Timm et

al., 2012). However, some adult CI users can learn to weight the acoustic cues for musical

timbre similarly to NH listeners, at least with training (Macherey & Delpierre, 2013).

CI listeners also have difficulties in the perception of differences in spectral shape that

distinguish different speech sounds. In speech, the positions of the tongue and other

structures (like lips and jaw) during vocalization induce peaks in the sound spectrum at

specific frequencies, called formants, and these define largely the vowel quality and

vowel identity (Stevens, 1998). The restrictions of the CI in delivering the spectral shape
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(Moore, 2003a) lead to difficulties in determining the phoneme quality from the formant

structure (Välimaa et al., 2002a; see also Geers et al., 2003). CI users also have difficulties

in the perception of consonants pronounced at different articulation places, cued by

transitions of formants (Donaldson & Kreft, 2006; Välimaa et al., 2002b).

Loudness. The peripheral mechanisms underlying perception of loudness are not fully

understood. In NH, loudness may depend however on a summation of neural activity

across frequency channels, and depends largely on the rate of neural firing in the auditory

periphery (neural firing rate) (Moore, 2003a). Above a certain sound level, any individual

neuron will cease to respond to an increase in sound level with an increase in firing rate;

the neuron is saturated. The range of sound levels between threshold and the level at

which saturation occurs is called the dynamic range. There are three types of auditory

neurons encoding loudness in the auditory system. Each of them has different dynamic

ranges. The neurons with high spontaneous firing rates have a narrow dynamic range.

The neurons with medium spontaneous rates have slightly higher thresholds and wider

dynamic range than those with high spontaneous firing rates, and the neurons with low

firing rates have the lowest thresholds and so-called sloping saturation, where the increase

in firing rate is at first rapid but slows down at higher levels. The variation in these rate

vs. level functions is related to the type of the synapse of the neurons with the inner hair

cell. Moreover, the neurons with wide dynamic ranges probably play a crucial role at high

sound levels. The wide dynamic range of these neurons is probably dependent on the

compression that happens on the basilar membrane, related in turn to the functioning of

the outer hair cells (Moore, 2003a).

In CIs, the sound level is coded by pulse magnitude or duration, or by analog current.

Increase in any of these leads to increases in neural spike rates. The increase is very rapid

as a consequence of the bypass of the compression of the basilar membrane, and the

absence of delay due to the lack of neurotransmitter release (Moore, 2003a). Moreover,

the auditory nerve fibres stimulated by a given electrode all tend to show the same firing

pattern, and when the neurons start firing, they continue firing at a similar rate. Consistent

with the findings on firing rates, a small change of pulse level leads to a large change in

loudness. Therefore, typically the range of current between the detection threshold and

an uncomfortable sensation is very small, in the range 3 to 20 dB. This is much less than
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the dynamic range in acoustic hearing (approximately 120 dB). For these reasons, two-

stage compression is used in CIs (an automatic gain control system followed by

instantaneous compression) (Moore, 2003a; Zeng, 2004).

Duration and gaps. Current CI processing strategies are based mostly on extraction and

representation  of  the  temporal  envelopes  of  sounds  from  the  filtered  stimulus

(McDermott, 2004), making the slow-varying changes in level and spectral shape easy to

discriminate. In line with this, discrimination of syllabic duration (Meister et al., 2011;

O’Halpin, 2010) and gap detection thresholds (Busby & Clark, 1999; Drennan &

Rubinstein, 2008) are typically comparable in CI users and NH listeners. It also seems

that the perception of rhythm in music is fairly good, even though not “perfect”, in CI

listeners (Drennan & Rubinstein, 2008).

1.2 Processing of acoustic cues in the brain

It can be assumed that the cues for music and prosody, although they are different for NH

and electric hearing as explained above, are analysed in the brain in similar networks in

CI and NH listeners. Evidently, the cortical development of these networks has to be

sufficient to enable accurate perception for CI children. In NH, initial pitch analysis is

carried out in the medial primary auditory cortex in two mirror-symmetric tonotopic maps

(Formisano et al., 2003; Griffiths & Hall, 2012). Further, invariant representations of

pitch (independent of musical instruments, voices etc.) seem to be processed in posterior

regions of auditory cortex, in planum temporale (PT) (Garcia et al., 2010; Plack et al.,

2014). Even for NH listeners the efficient cortical representations (neural networks) for

pitch may only emerge during development with exposure to the appropriate sounds

(Oxenham et al., 2011).

The basic acoustic features of musical instrument timbres and human speech are

processed in core and belt (middle) regions of the auditory cortex (Kumar et al., 2007;

Leaver & Rauschecker, 2010; Warren et al., 2005). The spectral envelopes of different

sounds are probably encoded in the PT (Kumar et al., 2007). Category-selective

subregions for both speech sounds and musical instruments have been identified in

anterior superior auditory cortex (Leaver & Rauschecker, 2010). It seems that information

flows from primary auditory cortex to PT, which projects to the anterior parts of the
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temporal gyrus (Kumar et al., 2007). There is some evidence that the anterior parts of the

superior temporal gyrus respond particularly to changes in phoneme categories (vowels,

Obleser et al., 2006; consonants, Obleser et al., 2007).

Changes in loudness are probably coded in auditory cortex by neuronal populations

that are non-randomly distributed in the isofrequency dimension orthogonal to the

primary tonotopic axis (Woods et al., 2009). Medial auditory cortical fields may be more

responsive to stimuli with higher intensities than more lateral ones (Brechmann et al.,

2002; Woods et al., 2009).

Perception of time-related changes seems to rely on widely distributed neural

networks, including motoric areas. For example, discrimination of vowel duration

activates not only the auditory cortex but also the inferior frontal gyrus and insula

(Steinbrink et al., 2012), and the cerebellum is involved in duration interval

discrimination (Grube et al., 2010). Moreover, increasing sound duration increases

activity in the left anterior insula, right inferior frontal, right middle temporal, and right

post-central gyri in addition to bilateral supra-temporal gyri (Ross et al., 2009). PT seems

to be important for sensory-motor integration at least in relation to speech and other vocal

tract behaviors (Hickock et al., 2009). Perception is often multisensory, as indicated by,

for example, the effect of visual (lip-reading) cues on the perception of speech sounds

(McGurk & MacDonald, 1976). Activation of the PT can be seen during lip-reading,

reading written language, piano score reading and observation of finger movements on a

piano keyboard (key-touch reading), the latter only for highly skilled musicians. Thus it

seems that the PT is involved in the multisensory integration of well-learned auditory-

visual couplings in general (Hasegawa et al., 2004).

1.3 Effects of early deafness: Cortical reorganization after sound
onset and attention

After the 27th fetal week, the ear can transmit sounds to the cortex, and exposure to sounds

can lead to long term memory representations of them. This has been found for exposure

to both speech and music (Partanen et al., 2013a, 2013b). During this period, myelination,

essential for rapid synchronized conduction, occurs through the brainstem up to auditory

thalamus (Moore & Guan, 2001), and sound deprivation can affect this process (Moore

& Linthicum, 2007). Furthermore, the dendritic tufts and axons in the cortical marginal



21

layer (later layer 1) develop during this period (Moore & Guan, 2001). Sound deprivation

during this period can thus lead to deficiencies in the development of layer 1 (McMullen

& Glaser, 1988; McMullen et al., 1988). Importantly, the layer 1 axons seem to run across

the cortical surface, carrying stimulation to other cortical areas. Moreover, the activating

influences of layer 1 on deeper cortical layers probably last until adulthood (Moore &

Guan, 2001). Clinical evidence suggests a deficit in attention to auditory stimulation in

congenitally deaf CI children (Houston et al., 2003), which may be partially related to a

deficit in early development of the marginal layer (layer 1) (Moore & Linthicum, 2007).

Sound deprivation from birth to the switch-on of the CI can also have consequences

for the development of the auditory system. Towards the age of six months after birth,

the multilayered structure of the auditory cortex begins to develop (Moore & Guan, 2001).

According to animal studies, myelination, essential for this process, is sensitive to activity

levels (Barres & Raff, 1993). Therefore, deafness during this period can result to

subnormal myelination, affecting further the early construction of cortical columns.

Moreover,  after  birth,  development  of  the  cortical  networks  of  deaf  infants  relies  on

visual, tactual and proprioceptive stimuli, the latter also from the speech apparatus since

deaf infants cry aloud, vary their pitch to some extent, and even produce speech-like

sounds  (Oller  &  Eilers,  1988).  For  CI  children,  the  auditory  cortex  is  sometimes

abnormally activated by visual or tactile stimulation, implying cross-modal

reorganization due to deafness, and harming auditory performance (Sharma et al., 2015).

Deafness can lead to decoupling of the auditory system from other senses and poor

sensory integration even though it seems that early implantation (before approximately

2:5 years) allows integration of visual and auditory cues together (Schorr et al., 2005).

Further, the increase in white-matter in association cortices, important for the maturation

of auditory orienting, is already strong before the age of 8–12 months in normal-hearing

children (Kushnerenko et al., 2013, for a review). Therefore, missing auditory input even

within the first years of life may harm the neural basis of attention to sounds.

Electrophysiological measurements have shown that the brain of newborn NH babies

responds to changes in prosody (Sambeth et al., 2008) and to changes in rhythmic aspects

of sound sequences (in beat patterns) implemented through omission of sounds (Winkler

et al., 2009). Further, the brain of 4 month old NH infants responds to changes in pitch of

tones with a missing fundamental (He & Trainor, 2009). In NH infants less than one year
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old, behavioural experiments conducted with a head-turn procedure have shown that these

infants respond to changes in melodic contour (Trehub et al., 1987), can categorize

auditory sequences on the basis of rhythm or tempo (Trehub & Thorpe, 1989), and can

infer meter from patterns of rhythms (Hannon & Johnson, 2005). Also a listening

preference study has given evidence on that by seven months of age infants learn to

distinguish the rhythmic patterns of music (strong and weak beats inducing meter)

implemented through changes in intensity (Phillips-Silver & Trainor, 2005). So, early-

implanted children begin building up the neural networks for all of these auditory aspects,

including the acoustic cues for music, much later than NH children, and the building up

may be affected by changes in the auditory system due to deafness and degraded input

from CI.

It  is  however  clear  that  the  auditory  system  reorganizes  dramatically  after  the

activation of the CI, especially if the child has been implanted within the first 3.5–4.0

years of life (Ponton et al., 2000, 2001; Sharma et al., 2002, 2009; for a review, Kral &

Sharma, 2012). For the reorganization of networks for processing acoustic cues, early-

implanted children with CIs may need to focus their attention specifically towards them.

Auditory cortex is affected especially by behaviourally relevant stimuli under focused

attention. For example, if ferrets are trained to detect a pure tone within a series of sounds,

the cortical responses specific for the behaviourally relevant target tones are rapidly

facilitated in the primary auditory cortex (Fritz et al., 2003). Conversely, Norena et al.

(2006) found that if the enriched acoustic environment was not informative for the

animals, the information led to habituation of the primary auditory cortex responses.

Attention towards sounds (or lack of it) also modulates activation in auditory cortical

areas in humans (Fritz, 2007; Woods & Alain, 2009; Woods et al., 2009). In the

rehabilitation of hearing-impaired and CI children it has been emphasized that the child’s

awareness of sounds is the first step towards auditory learning (Cole & Flexer, 2011, p.

189), and that the missed parts of spoken language should be brought directly to their

attention (Cole & Flexer, 2011, p. 91). The role of attention has been noticed and may

play a crucial role in the cortical reorganization of CI children, and the deficits in the

neural networks for attention, if such exist, may play a crucial role here.
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1.4 Perception of word and sentence stress

The perception of prosody plays an important role in language acquisition. English-

speaking infants aged 7.5 months rely on stress-based cues in the segmentation of words

from fluent speech (Houston et al., 2004; Jusczyk et al., 19991; Mattys et al., 2005, for a

review), and at later stages their segmentation performance is assisted by the exaggerated

prosody of infant-directed speech, where the parents mark the important words by using

sentence stress (Thiessen et al., 2005). Further, better processing of word stress in infancy

leads to better spoken language skills at later ages (Friedrich et al., 2009). Even in

adulthood, NH listeners use prosodic word stress patterns in word segmentation

(Vroomen et al., 1998). Word segmentation and word learning is also supported by

phonotactic, acoustic-phonetic information (like coarticulation or vowel disharmony) and

lexical information (Kuhl, 2004; Mattys et al., 2005; Vroomen et al., 2008). However, if

the listener has difficulties in hearing the phonotactic or acoustic-phonetic cues, or if the

language skills are only emerging or restricted, the stress cues override the other cues in

segmentation of words (Mattys et al., 2005). The CI children have difficulties in

recognition of phonemes, discrimination of detailed acoustic-phonetic cues and, like all

children or even more, restricted language skills. Therefore, stress cues, if accessible, are

likely to remain important for their language learning throughout their childhood2.

Later-implanted children show deficiencies and great individual variability in the

perception of sentence stress (O’Halpin, 2010) and of word stress (Lyxell et al., 2009;

O’Halpin, 2010), although they seem to develop stress perception (O’Halpin, 2010) on a

similar but delayed trajectory to typically developing children (Vogel & Raimy, 2002;

Wells et al., 2004). Their difficulties are evidently partially a consequence of their

difficulties in perception of pitch (f0). However, stress patterns are also signaled by

changes in duration and intensity (e.g., Kochanski et al., 2005; Lieberman, 1960; Meister

et al., 2011; Vainio & Järvikivi, 2007). CI listeners are also disadvantaged over NH

__________________
1In  these  studies  metrical  stress  i.  e  weak-strong  vs.  strong–weak  stress  patterns,  was  used  in  the
experiments. This can be signaled with vowel reduction together with pitch, duration and intensity cues,
2Word stress is usually in the beginning of the word in languages like Finnish, English and Dutch, and
therefore plays in these languages an important role in word segmentation. However, in languages like
French, where word stress is not in the beginning of the word, other ques play more important role
(Vroomen et al., 1998; Mattys et al., 2005).
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listeners in the perception of intensity changes, as reviewed above. Variations in the

ability to detect changes of pitch (f0) and intensity may thus affect the prosodic perception

of CI users (Meister et al., 2011; O’Halpin, 2010). It is not known how accurately early-

implanted children can perceive stress or the abovementioned acoustic cues. More studies

are needed on these aspects and into the links to abilities to perceive the acoustic cues to

stress in early-implanted children.

1.4.1 Auditory working memory

The speech perception, language and reading skills of CI children are strongly associated

with performance in the forward digit span task where the child has to repeat numbers

(Harris et al., 2013; Pisoni & Cleary, 2003; Pisoni et al., 2011). For CI children, the

performance in this task is more strongly connected to the language skills than the

performance  in  backward  digit  span  task.  Compared  to  NH  children,  they  also  show

poorer performance in forward digit span task than in backward digit span task (Pisoni et

al., 2003). This makes it important to study the development of the CI children especially

in the forward digit span, which is traditionally thought to measure the so-called

phonological loop subcomponent of working memory. The term working memory refers

to the temporary storage and manipulation of information, and the functions involved in

the integration of incoming information with information in existing memory stores (e.g.,

Baddeley, 1992). The phonological loop subcomponent is thought to be a verbal storage

system composed of a short-term phonological store plus a subvocal rehearsal processes

(Baddeley, 1996; Baddeley et al., 2003). However, a good performance in forward digit

span correlates with good discrimination of pitch (Seppänen et al., 2012) and larger and

earlier event-related responses (P300) to pitch changes, thought to reflect updating of

auditory working memory (George & Coch, 2011). Performance in forward digit span

task is thus related not only to phonological processing but also to the functioning of the

central executive component of working memory (Alloway et al., 2004; Engle et al.,

1999; George & Coch, 2011). It is not known how performance in the digit span task is

related to stress perception or discrimination of acoustic cues by CI children. It is also not

known how performance in the digit span task, and auditory working memory

components related to that, develop in early-implanted children, although performance in
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digit span task is typically poorer in later-implanted children than in NH children (Harris

et al., 2013; Pisoni et al., 2011).

1.5 Music

Musical activities seem to be a powerful tool for enhancing auditory perception from the

level of the brain to the behavioural level (Wan & Schlaug, 2010). Self-production may

play a key role in this effect: the plastic changes in the brain related to pitch or other sound

encoding are induced more efficiently with active exposure to music than only by

listening to sounds (Pantev & Herholz, 2011). For instance, Hyde and colleagues (2009)

showed that compared to control children, 15 months of musical training (keyboard

lessons) of 6-year-old children led to enlargement of the corpus callosum, auditory and

motor cortices. Similarly, compared to non-musicians, in adult musicians several sensory,

motor, and higher-order cortical areas as well as regions in the hippocampus, cerebellum,

and corpus callosum are enlarged (Herholz & Zatorre, 2012; Jäncke, 2009; Pantev &

Herholz, 2011). Adult musicians also show enhancements in the architecture of various

white matter tracts, important for cortico-cortical connections (Bengtsson et al., 2005;

Halwani et al., 2011; Imfeld et al., 2009). Musical training early in life seems to be

particularly effective, inducing stronger plastic changes in the brain than musical

activities beginning later in the life (Herholz & Zatorre, 2012).

In line with these neural changes, cross-sectional studies show that compared to

musically non-trained NH listeners, musically trained NH listeners have enhanced

behavioural perception of pitch for both speech and music (adults: Deguchi et al., 2012;

Parbery-Clark et al., 2009; Schön et al., 2004; Tervaniemi et al., 2005; children, Magne

et al., 2006; Marques et al., 2007) and of pitch when timbre is varied (i.e., invariant

perception of pitch) (Pitt, 1994). Musicians also show enhanced perception of the timbre

of musical instruments and human voices (Chartrand & Belin, 2006), of speech syllable

duration (adults: Marie et al., 2012), of musical rhythm and meter (adults: Geiser et al.,

2009), and of emotional prosody (adults: Lima & Castro, 2011). Moreover, they show

enhanced auditory working memory (adults: George & Coch, 2011; Parbery-Clark et al.,

2009; children, Strait et al., 2012) as well as visual and auditory attention skills (children,

Kraus et al., 2012; Strait et al., 2012). Results from longitudinal intervention studies show
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that musical training improves NH children’s perception of sentence intonation (Moreno

et al., 2009), emotional prosody (Thompson et al., 2004), verbal memory (Ho et al., 2003;

Roden et al., 2012) and auditory working memory (Fujioka et al., 2006). These

experimental studies appear to show that enhancements are attributable to musical

training rather than to genetic or environmental factors (Besson et al., 2011). The findings

that the younger the age at which musical training begins, the larger is the extent of the

specific anatomical differences between musically trained and non-musically trained

listeners, further support the view that musical training enhances cortical development

and through this, auditory perception (for a review, Münte et al., 2002).

For adult CI listeners and CI children, musical training seems to benefit the perception

of musical pitch (Chen et al., 2010), melodic contour, musical timbre, and general music

perception (Petersen et al., 2012; Yucel et al., 2009). However, it is not known how early-

implanted children benefit from musical activities.

Parental singing is known to be an important way of regulating the emotions and state

of arousal of infants and young children (Rock et al., 1999). Consistent with this, singing

arouses the attention of children with CIs and is used in speech therapy sessions

(Ronkainen, 2011). It is also recommended for rehabilitation of music perception of

children with CIs (Rocca, 2012). Singing could play a special role in CI children’s

auditory attention and through this, in neural plasticity related to music perception

(section 1.3).

It is also important to address the question of why the CI children sing. It is possible

that parental singing at an early age plays a role here. For example, the experiences from

the Lindfors Foundation speech-music groups (lindforsinsaatio.net/lindfors-foundation-

speech-music-groups/) imply that CI children begin to sing at home if the parents are

encouraged to sing at home with them right after implantation. However, there is no

scientific evidence on this so far.

1.5.1 Are music and speech perception connected via rhythm?

Traditionally music and speech have been thought to be processed in different areas in

the brain, music in the right hemisphere and speech in the left hemisphere (Tervaniemi &

Hughdahl, 2003). However, in adults, music and speech activate overlapping neural
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regions in superior, anterior and posterior temporal areas, temporoparietal areas, and

inferior frontal areas (Abrams et al., 2011; Koelsch et al., 2002; Rauschecker & Scott,

2009; Rogalsky et al., 2011; Schön et al., 2010; Tillmann et al., 2003), including also

Broca’s and Wernicke’s areas in the left hemisphere that were previously thought to be

language-specific. Moreover, newborns show overlapping neural activity in response to

infant-directed speech and to instrumental music (Kotilahti et al., 2010). These findings

indicate that processing of music and speech are connected in the brain.

Previously, it has been found for NH listeners that perception of pitch and lexical tones

in speech is connected to perception of pitch and melody in music, and musical training

advances perception of pitch and intonation in speech (Jiang et al., 2010; Liu et al., 2010;

Magne et al., 2006; Marques et al., 2007; Moreno et al., 2009; Nan et al., 2010; Patel et

al., 2005, 2008; Schön et al., 2004). These findings imply that perception of music and

speech is linked in the domain of pitch. Rhythm also has important functions in both

music and speech. Both are systems which are dependent on how acoustic events unfold

over time (Cason & Schön, 2012). Moreover, some findings already support an

association between the perception of musical rhythm and speech. For instance, Marie et

al. (2011) found that musicians process the lengthening of the final syllable of sentence

more accurately than non-musicians. Further, priming with musical meter improves

phonological processing of speech (Cason & Schön, 2012), and synchronizing musical

meter and linguistic stress in songs enhances processing of both lyrics and musical meter

(Gordon et al., 2011).

It has already been shown that, for CI listeners, good perception of music, especially

of  timbre,  melody  and  pitch,  is  related  to  good  perception  of  speech  (Drennan  &

Rubinstein, 2008; Wang et al., 2012). If perception of word stress were associated with

better perception of musical rhythm, this would open up new perspectives for further

studies on CI children and their rehabilitation.

1.5.2 Music and visuospatial perception

Importantly for children with CIs, visuospatial processing has been recently linked to

music perception. A stimulus-response compatibility effect has been found between the

pitch (high/low) of auditory stimuli and the location (up/down) of the answer button

(Rusconi et al., 2006), and musicians’ abilities in visuospatial perception have been
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shown  to  be  better  than  average  (Brochard  et  al.,  2004;  Patston  et  al.,  2006).  Thus

perception of musical pitch may be spatial in nature (Rusconi et al., 2006). However,

further studies are needed. If visuospatial perception were correlated with music

perception, this would have implications for rehabilitation of music perception of CI

children.

1.6. Event-related potentials

The neurocognitive functions and neural plasticity related to music perception can be

measured with event-related potentials (ERPs). ERPs are gathered with electro-

encephalography (EEG), measuring the dynamics of electric field potentials generated by

neuronal activity in the brain. EEG reflects the post-synaptic potentials of neurons which

are oriented in parallel and activated synchronously (Luck, 2005). Auditory event related

potentials are brain responses to sounds, formed by averaging the EEG segments,

resulting in attenuation of the activity that is not temporally synchronous and preservation

of the time-locked activity (Picton, 2010). The adult auditory ERP waveform in response

to a sound onsets consists of a series of peaks. They are labelled based on the polarity of

the peak (P for positive, N for negative) and temporal order as P1 (around 50 ms from

stimulus onset), N1 (100 ms), P2 (180 ms), and N2 (250 ms) (Luck, 2005; Picton, 2010).

These ERPs reflect processing in the auditory cortex (N1, Näätänen & Picton, 1987; P2,

Crowley  &  Colrain,  2004;  N2,  Näätänen  &  Picton,  1986).  Each  peak  of  the  ERP

waveform reflects a contribution from several functions or neural processes, which are

also called subcomponents (Näätänen & Picton, 1987).

The latencies and amplitudes of auditory ERPs can provide temporally fine-grained

information about sound-evoked neuronal activity. This information can be linked to the

stages of sound processing, from the early encoding of sound properties in the auditory

brainstem to later, higher-order processes such as attention and memory at the cortical

level (Luck, 2005; Picton, 2010). The later, more cognitive components like mismatch-

negativity (MMN) and following positive P3a are usually recorded using the so-called

oddball paradigm. In this paradigm, an occasional deviant stimulus is inserted into a

repeating sequence of standard sounds. MMN and P3a can be extracted from the ERP

difference signal, which is formed by subtracting the ERP signal for the deviating
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auditory events from the ERP signal for the repeating, standard sounds (MMN: Näätänen

et al., 2007; P3a: Alho et al., 1998; described in more detail later in this section).

ERPs can be measured in passive listening situations where the subject is not required

to pay attention to sounds (as in the present thesis). This makes the technique well suited

to young children (Kujala & Näätänen, 2010). ERPs can give information about brain

plasticity. The enlargement of the response is probably based on the involvement of new

neurons due to learning (Kujala & Näätänen, 2010; Kujala et al., 2007). So far, ERPs are

the best way to directly measure neural plasticity of neural networks in individuals with

CIs, since the metal in the inner parts of CI makes the use of other brain imaging methods

very demanding and even dangerous.

P1. According to Ponton and Eggermont (2001), positivity of the P1 response is

consistent with a relatively deep sink (in cortical layers IV and lower III) and a superficial

current return, and the generators may include thalamo-cortical loops and primary and

secondary auditory areas (Sharma et al., 2007). For NH subjects, the latency of P1

becomes shorter with increasing age as also is the case for CI children (Alvarenga et al.,

2013; Sharma et al., 1997, 2002a, 2002b). For recently implanted children, the P1

responses are prolonged (Ponton et al., 1996a, 1996b; Sharma et al., 2002a, 2002b), which

is consistent with hypomyelination in their auditory system (Moore & Linthicum, 2007).

The P1 latency of early-implanted (before 3:5 years) children seems to reach the normal

range between 3 and 6 months after implantation (Sharma et al., 2002a, 2002c, 2005).

This rapid shortening of P1 latency may reflect a resumption of myelin formation driven

by axonal activity (Moore & Linthicum, 2007).

The  P1  amplitudes  for  CI  subjects  vary  with  stimulus  parameters,  making  the

comparison  between  CI  and  NH  listeners'  P1  responses  hard.  For  example,  Kelly  and

colleagues (2005) found that the P1 amplitude of CI users reduced with increasing pure

tone frequency, and P1 amplitude was smaller at 4 kHz for the CI group than for the NH

group, while it was similar between groups at 1 kHz. Further, in the previous studies, the

stimulus has usually been electric for CI children and acoustic for NH listeners, again

making  it  difficult  to  compare  and  interpret  the  development  of  P1  for  CI  and  NH

children. For example, Ponton and Eggermont (2001) used acoustic clicks for NH

children and electric pulses delivered directly to the electrodes for CI children, bypassing
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the speech processor. They found that P1 was larger for the CI group than for the NH

group. However, using speech presented in free field, via the CI processor, and electric

pulse trains delivered directly to the electrodes, bypassing the CI processor, the P1

amplitude has been found to decrease over time for CI children (speech: Alvarenga et al.,

2013; electric pulses: Jiwani et al., 2013), and the “abnormally” large P1 amplitude for

electric pulses seem to decrease to similar values as P1 for acoustic stimulus in NH

children after 10 years of CI use (Jiwani et al., 2013). There are no studies on the P1 for

music instrument sounds in early-implanted children.

MMN. The mismatch negativity (MMN) reflects how the listener can predict the

regularities in the auditory environment and how sound changes violate these perceived

and remembered regularities (Kujala & Näätänen, 2010; Kujala et al., 2007; Näätänen et

al.,  2007;  Winkler  et  al.,  2009).  This  theory  holds  that  the  MMN  is  a  result  of  a

comparison between the features of the incoming sounds and the sound features predicted

from a memory model of the invariant aspects of the auditory environment. Some theories

assume that a neuronal correlate of the memory trace for the standards is a simple

stimulus-specific adaptation of auditory cortical neurons to repeated stimuli (Nelken &

Ulanovsky, 2007; May & Tiitinen, 2010). These theories are however controversial

(Näätänen et al., 2005, 2011). Recent computational models suggest that more complex

prediction and comparison processes as well as adaptation are necessary to explain the

MMN  (Garrido  et  al.,  2009).  The  latency  and  amplitude  of  the  MMN  also  reflect  the

perceptual difference between the deviant and standard and discrimination accuracy

(Näätänen et al., 2007).

The MMN has been elicited in CI recipients, reflecting discrimination ability and

cortical plasticity after implantation (Lonka et al., 2004; Ponton et al., 2000; Sandmann

et al., 2010; Timm et al., 2014; for a review, Johnson, 2009). Even though the MMN

increases and becomes earlier with better behavioural performance, it can sometimes

reflect only soon-to-appear behavioural skill, i. e., it can be recorded prior to behavioural

discrimination ability becoming apparent (for a review, Kujala et al., 2007). Therefore

the MMN is not directly comparable to behavioural discrimination. Importantly for

studies of children, MMN elicitation does not require motivation, and concentration skills

play a less important role in MMN elicitation than in behavioural tasks.
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The main cortical generators of the MMN are located in the auditory cortical areas

(Alho et al., 1996; Kropotov et al., 1995; Levänen et al., 1996; Opitz et al., 2002;

Tervaniemi et al., 2000). An additional contribution from the frontal cortex (Alho et al.,

1994; Giard et al., 1990; Rinne et al., 2000; Schönwiesner et al., 2007) and parietal areas

(Takahashi et al., 2013) has been shown, implying a wide neural network for MMN

elicitation. It has been assumed that the auditory cortex generators reflect memory trace

formation and comparison processes while the frontal source is involved in triggering

involuntary attention to sound changes (Näätänen et al., 2007).

Musically trained NH children show enhanced MMN for pitch (f0) changes in violin

tones (Meyer et al., 2011), for changes from major to minor chords (Virtala et al., 2012),

and for pitch and voice onset time (VOT) changes in speech (Chobert et al., 2011).

Compared to musically non-trained children, longitudinal studies show more MMN

enhancement in musically active children for melodic and rhythmic modulations,

mistuning and timbre (Putkinen et al., 2014), and for syllable duration and voice onset

time changes (Chobert et al., 2014). There are no studies on MMN for changes in musical

tones or effects of musical activities of MMN in early-implanted children.

P3a. The MMN for deviant tones can be followed by a P3a response, which reflects an

involuntary attention switch towards a salient change in the auditory environment (Alho

et al., 1998; Escera & Corral, 2007; Escera et al., 1998; Wetzel et al., 2006; in CI

recipients, Kelly et al., 2005; Kileny et al., 1997; Nager et al., 2007). Shifting of attention

brings potentially important information into focus, allowing re-evaluation of the entire

situation (Horváth et al., 2008). This is in contrast to the pre-attentive detection of deviant

events reflected by the MMN (Friedman et al., 2001; Tremblay et al., 1998; van Zuijen

et al., 2006). P3a responses may be also related to updating auditory working memory

(Barcelo et al., 2006), i. e., a central executive component related to updating the items

held in working memory by replacing old information with new, more appropriate

information (Miyake et al., 2000). P300 (P3b) responses to target sounds become larger

and earlier with increasing forward digit span, which suggests that P3b reflects updating

of working memory (George & Coch, 2011; Polich et al., 1983). Interestingly, Barcelo

and colleagues (2006) found that familiar sounds that signaled the need to change the rule

in a task and occasional task-irrelevant novel sounds activated a similar neural (P3a)
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network and disrupted behavior in a similar way (see also Barcelo et al., 2002). They also

concluded that novelty P3a may reflect updating of working memory, and proposed a

similar function for P3a to deviant events. However, this proposal has so far not been

assessed in the context of changes in musical tones. Importantly, very little is known

about the attention functions of early-implanted children, even though these might be

affected by early deafness (section 1.3) and are proposed to be highly important for

perception and learning of degraded auditory stimuli with CIs (Beer et al., 2011; Houston

et al., 2014; Wild et al., 2012).

Several brain areas seem to underlie the P3a: frontal areas (Løvstad et al., 2012;

Schröger et al., 2000; Takahashi et al., 2013; Volpe et al., 2007), auditory cortical areas

(Alho et al., 1998; Opitz et al., 1999, Takahashi et al., 2013), temporo-parietal junction

(Knight & Scabini, 1998), parietal areas (Takahashi et al., 2013), and hippocampus

(Knight,  1996).  It  is  worth  noting  that  the  frontal  component  of  MMN  seems  to  be

separable from the frontal component of P3a, peaking earlier for MMN than for P3a

(Schönwiesner et al., 2007). Evidently, the neural networks for MMN and P3a are

separable functionally and statistically (Takahashi et al., 2013).

Like the MMN, P3a becomes larger with increasing physical difference between the

deviant and standard (Wetzel et al., 2006; Winkler et al., 1998), and for CI children P3a

becomes larger and earlier with improving speech recognition (Kileny et al., 1997). P3a

has  been  used  in  several  studies  to  assess  whether  musical  training  enhances  attention

functions. Augmented P3a has been found for adult musicians (Brattico et al., 2013;

Trainor et al., 1999, Vuust et al., 2009) and for children with high amounts of informal

musical activities, including singing, at home (Putkinen et al., 2013). Similarly, P3a has

been shown to occur earlier for musically trained participants (Nikjeh et al., 2009).
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2 Aims and hypotheses

The main aim of the present thesis was to investigate the differences and similarities

between early-implanted children and NH children in the perceptual and cognitive skills

or processes underlying perception of music and of word and sentence stress. Another

aim was to assess whether and how musical activities might assist CI children in

achieving better perception, auditory working memory and attention functions.

More specifically, Study I investigated how CI children differ from NH children in the

neurocognitive processing of changes in musical tones (in P1, MMN or P3a). We tested

hypothesis: (I) CI children have smaller and/or later P1, MMN and P3a than NH children,

especially for the MMN and P3a, for changes in timbre and pitch.

Study II assessed the interplay between the development of neurocognitive processing

of music and hearing status and singing of CI children during a time period of between

14  to  17  months.  Singing  at  home  was  chosen  to  be  the  criterion  for  dividing  the  CI

children into musical activity groups for several reasons. The musical activities of the CI

children themselves comprised mainly singing, and we expected that cortical

development was affected more by regular motoric training than by pure listening (Pantev

& Herholz, 2011). We also expected that singing has a specific role in the development

of auditory attention shift reflected in P3a responses. It is also evident that the early onset

of musical activities is essential for strong effects in the brain (Herholz & Zatorre, 2012).

Therefore,  the  CI  singing  groups  (see  section  3.1.1)  were  formed  on  the  basis  of  the

regularity of musical activity (singing) in the home setting and the time they had sung

before the study began. Here we tested two hypotheses: (I) CI children have smaller

and/or later MMN and P3a than NH children for changes in timbre and pitch: the

differences between groups become smaller over time. (II) The MMN and P3a is/becomes

larger and/or earlier in CI children who sing regularly at home compared to other CI

children. We had an additional hypothesis III (not presented in the publications included

in the thesis): Larger and/or earlier P3a responses are associated with longer digit spans.

An additional hypothesis IV (not presented in the publications included in the thesis) was:

Singing of CI children is related to the singing of the parents in early years of the hearing

life of the CI children.

Study III compared development of the perception of word and sentence stress and

associated  auditory  cues  as  well  as  auditory  working  memory  for  CI  and  NH children
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(also during 14 to 17 months), and assessed the role of auditory discrimination of pitch

(f0), intensity and duration as well as auditory working memory and supervised music

group activities in perception of stress within CI children. Feedback, challenging situation

(like the presence of simultaneous sounds) requiring good concentration skills as well as

tasks provided by the group leaders were expected to be important for the development

of performance in the behavioural tasks. With regard to the development of auditory

working memory, training leading to improved digit span performance typically involves

visuospatial cues, is designed to become more demanding during the course of training,

and includes feedback (in NH children: Klingberg et al., 2005; in CI children,

Kronenberger et al., 2011). These aspects are typical of supervised group activities but

not for singing by oneself. Therefore, in Study III the CI children were divided into those

who attended supervised musical activities outside of the home and those who did not.

Within CI children, we tested three hypotheses: (I) Prosodic perception is related to

auditory discrimination abilities; (II) Prosodic perception is related to auditory working

memory; (III) Prosodic perception is associated with musical activities. We also

hypothesized that auditory working memory develops better in CI children attending

supervised musical activities than in other CI children.

Study IV investigated the associations between perception of music and word stress

and between visuospatial perception and music perception in NH adults. We

hypothesized: (I) Perception of music, particularly perception of rhythm, improves with

improving perception of word stress; (II) Perception of music improves with improving

visuospatial perception.
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3 Methods

3.1 Participants

In Studies I–III, the participants were 4–13-year-old Finnish-speaking unilaterally

implanted CI children and NH children (Table 1). Inclusion criteria for the CI children

were: CI activation prior to three years one month; no diagnosed developmental or

linguistic problems; more than 6 CI electrodes in use; no re-implantation between

measurements in the case of longitudinal Studies (II and III). All of them had been using

their implants for at least 22 months prior to the first measurements, had full insertion of

the electrode array, attended mainstream school or day care, and communicated with

spoken language. They did not benefit from residual hearing in the unimplanted ear.

The  NH  children  were  healthy  and  without  linguistic  or  hearing  problems.  Their

hearing had been screened at child welfare clinics and according to the parents reports the

hearing of the children was normal. In all studies the NH groups were matched to the CI

groups at the group level by age, gender, and handedness as well as social and musical

background using questionnaires filled in by parents and personnel at schools or day care

concerning the children’s musical and other hobbies and musical activities at home,

school and daycare centres (the questionnaires are presented here:

http://www.cbru.helsinki.fi/music/RitvaTorppa/).

Parents of all participating children gave written informed consent prior to testing and

the  participants  gave  consent  orally  after  the  study  was  explained  to  them.  All  studies

were carried out in accordance with the Declaration of Helsinki, and the procedures for

Studies II–II were approved by the local ethical committees of the participating hospitals.

In Study I, 24 CI children filled the initial inclusion criteria. Only 22 CI children were

included in the final analysis because data recorded from two CI children had to be

excluded due to problems in the quality of ERP responses. Twenty two NH children were

matched to this CI group (Table 1).

In  Study  II,  21  CI  children  fulfilled  the  initial  inclusion  criteria.  The  same  22  NH

children as in Study I served as a control group. In Study III, 21 CI children fulfilled the

inclusion criteria, and 21 NH children were matched to this CI group (Table 1).

http://www.cbru.helsinki.fi/music/RitvaTorppa/
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Table 1. The details of the participating children used for statistical analyses.
ID1 Age at T1 Hand2 Music3 SE4 Aetiology5 Age at CI

switch-
on (months)

CI use
prior T1
(months)

CI
processor
type6

CIs/m 01 5y 11m R 20(betw) R U 18 53 NF
CIs/m 03 9y 2m R 12(betw) R U 32 77 MT
CIs/m 04 7y 10m R 24(betw) R U 25 69 MT
CIns/CIm 09 7y 4m R 0(betw) R C 19 69 MO
CI 10* 12y 6m R 12 R U 32 130 MO
CI 12* 4y 1m R 24 R C 15 34 NF
CIs/m 13 5y 5m R 22(betw) R U 18 47 NE
CIs/m 14 4y 4m R 0(betw) R U 18 34 NF
CIs/n 15 5y 1m R 0 R C 17 44 NE
CIns/n 16  7y 2m R 0 R C 25 61 NF
CIns/n 17 9y 4m L 0 R U 19 93 NF
CIns/n 18 12y 1m R 0 R U 27 118 NF
CIns/n 19** 7y 5m R 0 R U 29 60 NE
CIs/n 20 5v 8m R 0 R U 20 48 NF
CIs/n 21 5y 7m L 0 L C 19 48 NF
CIs/n 22 7y 1m R 0 R U 21 48 NE
CIns/n 23 7y 10m L 0 R U 18 76 MT
CIns/m 24 4y 2m R 23(betw) R C 14 36 NF
CIs/m 26 4y 2m R 23(betw) R C 20 30 NF
CIns/n 27 4y 2m R 0 R C 13 37 NF
CIs/n 28 6y 2m R 24 R U 22 52 NF
CIns/n 29 8y 7m R 0 L C 37 66 NF
CIs/n 30 6y 7m R 0 R C 25 54 NF
N CI = 23
N CIs = 12
N CIns = 9
N CIm = 8
N CIn = 13

N
R+L
= 20+3

N attend:
before = 9
betw = 8

N
R+L
= 21+2

N U = 13
N C = 10

N NF = 14
N NE = 4
N MO = 2
N MT = 3

NH 02 7v 11m R 36(betw) *Included only in Study I.
NH 03 4y 6m R 0 ** ERP data only from T1, excluded from Study I.
NH 04 8y 2m R 45(betw) *** Excluded from Study III.
NH 05 10y 0m R 0(betw) ****Included only in Study III.
NH 06 5y 8m R 0(betw) 1 Identification number, CI = CI child, NH = NH child
NH 07 6y 9m R 0 s = CI singer in Study II,
NH 08 5y 7m R 0(betw) ns = CI non-singer in Study II,
NH 09*** 4y 6m L 42(betw) m = in musically active CIm group in Study III,
NH 10 4y 0m R 0(betw) n = in musically non-active CIn group in Study III.
NH 11 5y 6m R 0 2 Hand = handedness.
NH 13 5y 0m R 35(betw) 3 Music = amount of time attending to supervised
NH 14 4y 6m R 15(betw) musical hobbies outside of the home before
NH 15*** 12y 0m R 0 T1 (months) (dancing excluded),
NH 16 8y 5m R 0 (betw) = child attended supervised musical hobbies
NH 17 9y 8m R 0 outside of the home between measurements.
NH 18 6y 9m R 0 4 SE = stimulated ear.
NH 19 7y 0m R 0 5 U = unknown, C = Connexin 26.
NH 20 4y 6m R 12 6 NF = Nucleus Freedom (coding strategy: ACE)
NH 21 6y 5m R 15 NE = Nucleus ESPrit 3G (coding strategy: ACE)
NH 22 6y 11m R 0(betw) MT = Medel Tempo + (Coding strategy: CIS)
NH 23 5y 5m R 12 MO = Medel Opus 2 (Coding strategy: CIS).
NH 24**** 7y 0m R 0 N = number
NH 30 11y 2m L 54(betw)
N NH
 = 23

N
R+L
= 21+2

N attend
before = 9
betw = 11
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For Study IV, sixty four 19-60-year-old Finnish-speaking, NH adults (without musical

education at a professional level) were recruited. One participant was excluded because

of a deaf ear, one because of weaker than first language level skills in Finnish, and one

because of evident congenital amusia, and so 61 were selected for the final analysis. The

ethical committee of the Faculty of Behavioural Sciences of the University of Helsinki

approved the study and the participants gave their written informed consent.

3.1.1 Division of CI groups into musical activity groups

CI singing groups in Study II. The CI children were divided into two subgroups on the

basis of the regularity of their singing in the home and the time they had sung before the

Study began, using questionnaires (http://www.cbru.helsinki.fi/music/RitvaTorppa/).

According to the answers, 12 CI children sang weekly at home one year before the study

began and between T1 and T2 (“CI singers”). Nine CI children sang less than weekly or

not  at  all  (“CI non-singers”) (Table 1). According to age-controlled ANOVA, these

groups did not differ significantly from each other in the other aspects of home-related

musical background as assessed by musical activity clusters (formed with cluster analysis

based on the answers to the questionnaire, APPENDIX 1), amount of musical activities

at day care or schools, supervised musical activities outside of the home, or factors  related

to their aided thresholds for hearing or CI devices, age, gender, socioeconomic

background, or aetiology.

We also recorded samples of singing (“Tuiki tuiki tähtönen”, in English, “Twinkle

twinkle little star”) of the CI children at T2 (the task was completed by nineteen CI

children). A professional singing teacher scored blindly (without knowing whether the

child was a CI singer or not) the rhythm, melody and lyrics they sang. It was concluded

that the singing of CI children was recognisable and different from general speech. The

comparisons between CI singers and CI non-singers showed that the accuracy of

production of lyrics, melody and rhythm was better for CI singers than for CI non-singers.

Age-controlled ANOVA confirmed that the CI singers were significantly better in

production of rhythm (F1,18 = 7.83, p = .013) and in the overall accuracy of singing (the

mean of production of lyrics, melody and rhythm) (F1,18 = 5.28, p = .035) than CI non-

singers.

http://www.cbru.helsinki.fi/music/RitvaTorppa/
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Musically active and non-active CI children in Study III. In order to divide the CI

children into musically active and non-active groups for Study III, the same questionnaire

as for Study II was used. The inclusion criterion for the musically active group (CIm) was

participation in instruction of music or dance outside of the home during the course of the

present study. Eight CI children met the inclusion criterion. Seven of them had

participated in musical activities with an emphasis on singing, together with a parent at

an early age. The CI children who did not meet the inclusion criterion were designated

CIn (Table 1). Compared to the CIn group, the CIm group demonstrated more time

engaged in musical activities and in dancing outside of the home prior to the study and

significantly more musical activities in the home (Cluster A, see APPENDIX 1), implying

that they also heard and saw others doing music (mainly singing but also some of them

music instrument playing) at home more than CIn children. The groups did not differ

significantly in the amount of singing by the child at home (Cluster D) or in factors related

to their aided thresholds for hearing or CI devices, age, gender, or aetiology. However,

the CIm group had a higher level of maternal education.

3.2 Stimuli and procedure for ERP experiments

Stimuli. We recorded ERPs with the multi-feature (MFP) paradigm over a relatively short

period of time (Näätänen et al., 2004; Pakarinen et al., 2007). By using the MFP, it is

possible to record responses to several types of changes in sounds during a single

recording, which is important in order to gain a comprehensive view of auditory

processing, which is beneficial in child measurements

Natural sounds were selected from the McGill University Master Samples DVD,

edited to the desired duration and normalized in intensity. The standard was a piano tone

with  f0 of 295 Hz (duration 200 ms). The deviant tones differed from the standards in

pitch (f0), timbre (Figure 1), duration, intensity increment, intensity decrement or by the

presence of a silent gap in the middle of the tone. Each deviant differed from the standard

in one of three degrees of change (small, medium and large), leading to 18 deviant tones

(Table 2). The deviant tones were similar to the standard in all other features, except for

those presented in Table 2, and for the changes in timbre (these contained changes in

temporal intensity, spectral envelope and periodicity). In the stimulus sequence every
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other tone was a standard and every other tone a deviant. The SOA was kept at 480 ms.

The presentation order of the changes was randomized throughout the experiment. The

probability of the standard tone was 0.5 and the probability of each deviant tone was 0.028

(Table 2). The standard tone was presented 2250 times and each deviant tone was

presented 125 times. The total duration of the experiment was 36 min.

Figure 1. (a). Frequency spectra of the standard tone (black) in comparison to pitch and musical
instrument deviants (gray). (b) Sound envelopes of the standard piano tone and the musical
instrument deviants. The Figures have been reprinted with permission from Elsevier.

Table 2. Stimulus parameters in ERP experiment
Change
type

Change
amount

f0
(HZ)

Intensity
NH (dB)

Intensity
CI (dB)

Duration
(ms)

Musical
instrument

Silent gap
(ms)

Fall time
(ms)

Silent interval2

(ms)
None (std) None 295 60 70 200 Piano None 20 280
f0 S 312 60 70 200 Piano None 20 280

M 351 60 70 200 Piano None 20 280
L 441 60 70 200 Piano None 20 280

Intensity S 295 63 73 200 Piano None 20 280
increment M 295 66 76 200 Piano None 20 280

L 295 69 79 200 Piano None 20 280

Intensity S 295 57 67 200 Piano None 20 280
decrement M 295 54 64 200 Piano None 20 280

L 295 51 61 200 Piano None 20 280
Gap S 295 60 70 200 Piano 5 201 280

M 295 60 70 200 Piano 40 201 280
L 295 60 70 200 Piano 100 201 280

Musical  S 295 60 70 200 Cembalo None 20 280
instrument M 295 60 70 200 Violin None 20 280

L 295 60 70 200 Cymbal None 20 280
Duration S 295 60 70 175 Piano None 20 305

M 295 60 70 100 Piano None 20 380
L 295 60 70 50 Piano None 10 430

Std = standard. S = small, M = medium, L = large. Probability of each deviant type: 3 x 0.028
= 0.084. Probability of deviants together: 0.5. Fall and rise time of the gap 5 ms. The Table has
been reprinted with permission from Elsevier.
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Procedure. During the experiment, subjects watched a silent video. All stimuli were

presented in an acoustically insulated and dampened room through 2 loudspeakers placed

at a 45º angle to each side of the subject, approximately 1 m in distance from the subject’s

ear, using the everyday settings of the CI. The stimuli were presented at a fixed

(comfortable) level, at maximum of 60 dB(A) SPL for the NH group and 70 dB(A) SPL

for the CI group. For one CI child the sound level had to be lowered to 65 dB(A) SPL at

T1.

The EEG was recorded with Biosemi ActiveTwo amplifier and active electrodes

(sampling rate of 512 Hz, low-pass filtering at 102.4 Hz) using a 64-channel electrode

cap. On-line, the data were referenced to the CMS electrode. Off-line, the data were

referenced to the electrode at the nose tip. To record eye movements and blinks, additional

electrodes were placed at the left and right mastoid. The measurements were performed

twice (T1 and T2), 14 to 17 months apart (in Study I, only data from T1 were included).

3.3 Stimuli and procedure for behavioural tests and experiments

An overview of the experimental tests and tasks of the participants is presented in Table

3. The table also defines the number of items, the Study where the test/experiment was

used (I-IV) and how many times or when (Study III) that was conducted. The text below

describes only the details of the stimuli in the experiments (when necessary), the

questionnaires and the procedures.

Perception of stress. The stimuli for perception of stress were recorded from an adult

male, an adult female, and two female children aged 7 years and 10 years. The stimulus

in the word stress task was either a compound word or a phrase. In the sentence stress

task, the child heard a sentence containing three content words, one of which bore

prosodically marked narrow focus (the stimuli for the tasks are presented here:

http://www.cbru.helsinki.fi/music/RitvaTorppa/) (Table 3)3.

____________
3In the word stress perception task, f0, intensity and duration cues were available for the listeners (Hausen
et al., 2013). In Finnish, sentence stress (also called prosodically marked narrow focus) is typically signaled
with changes in f0, intensity and duration (Vainio & Järvikivi, 2007).

http://www.cbru.helsinki.fi/music/RitvaTorppa/
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Table 3. The behavioural experiments and tests.
Experiment/test Auditory/visual

stimulus
Task of the subject Study

(times
repeated)

Perception of stress
Perception of word stress1,2 Natural, recorded

compound words and
phrases + pictures
representing the recorded
objects.

Point at a picture representing “KISsankello” or
“KISsan KELlo” (BLUebell ” or “BLUe BEll”).
48 items for children aged > 6 years, 36 for aged
< 6 years. 30 items for NH adults.

III (2x, at
T1/T2), IV
(1x)

Perception of sentence stress2,3 Natural, recorded
sentences + pictures
representing each word
in the sentence.

Point at a picture representing the most important
word in the sentence “POIKA maalaa veneen”
(“The BOY paints the boat”). 48 items.

III (2x, at
T1/T2)

Discrimination of acoustic
cues
Discrimination of intensity,
duration and pitch (f0), i, e.,
acoustic cues for stress 2,4

Synthesized /tata/
syllable pairs + pictures
representing same and
different.

Judge if the /tata/ syllable pairs are same or
different either by pointing at corresponding
picture, or orally. An adaptive procedure for 71%
correct discrimination threshold, varying number
of items.

III (2x, at
T1/T2)

Pitch perception test by Hyde
and Peretz (2004) (shortened
adaptation)

Sine wave tones. Judge if all five tones are similar or if there is a
change in pitch. 80 trials (40 similar, 40
different).

IV (1x)

Auditory working memory
Digit Span subtest of the ITPA Natural speech (face to

face).
Recall number sequences in the same order as in
the original sequence. Varying number of items.

III (2x, at
T1/T2)

Digit Span subtest of the
WAIS-III

Natural speech. Recall number sequences in the same/reverse
order. Varying number of items.

IV (1x)

Nonverbal intelligence, PIQ
Block design subtest of the
WISC-IV

Red and white blocks. Order the blocks based on the model you see.
Varying number of items.

III (1x, at T2)

Music perception
MBEA computer based scale
subtest5

Melodies played with
piano.

Judge if the two melodies are similar or different.
30 trials (15 same, 15 different).

IV (1x)

MBEA on-line Off-beat
subtest6

Melodies played with
varying instruments.

Judge if the melody contains an unusual delay.
24 trials (12 congruous, 12 incongruous).

IV (1x)

MBEA on-line Out-of-key
subtest6

Melodies played with
varying instruments.

Judge if the melody contains an out-of-tune tone.
24 trials (12 congruous, 12 incongruous).

IV (1x)

Visuospatial perception
Discrimination of Gabor
patches

Gabor patches
proceeding from left to
right.

Judge whether the two paths are similar or
different. 30 trials (15 similar, 15 different).

IV (1x)

1-4 Task based on: 1Vogel & Raimy, 2002, 2O’Halpin, 2010, 3 Wells et al., 2004, 4Straatman et al., 2010.
PIQ: Performance intelligence quotient, WAIS-III: Wechsler Adult Intelligence Scale III (Wechsler, 1997), WISC-IV:
Wechsler intelligence scale for children, 4th edition (Wechsler, 2010), ITPA: Illinois test of psycholinguistic abilities
(Kirk et al., 1974), MBEA: Montreal Battery of Evaluation of Amusia, 5Peretz et al., 2003, 6Peretz et al., 2008.

Discrimination of acoustic dimensions. In the discrimination of acoustic cues for stress

each trial comprised either two identical (“TAta”/“TAta”) or two different

(“TAta”/“taTA”) patterns, created with the KLATTSYN-88 software synthesizer (Klatt,

1980) and the Speech Filing System (SFS) software (Huckvale, 2012;

http://www.phon.ucl.ac.uk/resource/sfs/) (the stimuli for the tasks are presented here:

http://www.cbru.helsinki.fi/music/RitvaTorppa/).

For testing intensity discrimination, the stimuli had intersyllable level differences

ranging between 1 and 15 dB. All disyllables had an identical f0 pattern and the syllable

duration was fixed at 300 ms. For testing discrimination of syllable duration, the duration

http://www.phon.ucl.ac.uk/resource/sfs/
http://www.cbru.helsinki.fi/music/RitvaTorppa/
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of the two syllables varied, the total duration of each disyllable being always 600 ms. The

duration ratio between syllables ranged from 1.02 to 2.38. The only variation in f0 was

the steady declination, as in the intensity series. In the two tasks measuring the

discrimination of pitch (f0),  the  f0 pattern comprised two components: a rise-fall

representing syllable stress and the same gradual declination as used in the series

described above (Figure 2). The onset f0 of  the  rise-fall  was  either  160  Hz  (female  f0

range) or 295 Hz (child f0 range). The peak in f0 at the mid-point was higher than at onset

according to 48 equally spaced multiplicative factors from 1.013 to 1.84. This rise-fall f0

pattern was then summed with the declination component which, as above, had a linear

fall in f0 such that the f0 at syllable offset was 94% of the f0 at syllable onset. Because a

preliminary analysis showed that pitch (f0) discrimination thresholds did not differ

between the two f0 ranges, the thresholds were averaged over the two f0 ranges for further

analyses.

Figure 2. Example f0 contours for the pitch (f0) discrimination task (160-Hz baseline).

The  pitch  (f0)  discrimination  ability  of  adult  NH  participants  was  assessed  with  a

computer-based pitch perception test. The duration of each tone was 100 ms and the inter-

tone interval was 350 ms. In the standard sequences the f0 of all tones was C6 (1047 Hz)

and in the other sequence types one (fourth) tone was altered by 1/16, 1/8, 1/4, 1/2, or 1

semitones (3, 7, 15, 30 or 62 Hz) upward or downward from C6 (Hausen et al., 2013,

Supplementary audio files 3, 4 and 5).

Auditory working memory. Digit span tasks (Table 3) were used as a measure of

auditory working memory.
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Music perception. Music perception was tested with three online, computer-based

subtests of the Montreal Battery for Evaluation of Amusia (MBEA; Peretz et al., 2003,

2008). In the Scale subtest the melodic difference was an out-of-scale tone (approximately

4.3 semitones apart from the original pitch). In the Off-beat subtest, in the incongruous

trials there was a time delay, i. e., a silence of 5/7 of the note duration (i. e., 357 ms) in

the melody (the tone began later than it was expected). In the Out-of-key sub-test, in the

incongruous  trials  the  melody  had  a  tone  that  was  outside  of  the  key  of  the  melody,

sounding like a “wrong note” (http:// www.brams.umontreal.ca/amusiademo/).

Visuospatial perception. This task represented a visuospatial analog of the MBEA Scale

subtest. The stimuli were created using Matlab and Psychophysics Toolbox extension

(Brainard, 1997). In each trial the participants were presented with two series of Gabor

patches (contrast 75%; spatial frequency ca. 0.8 c/°; size approximately 2°) proceeding

from left to right. There was a 500-ms pause between the two paths. In the paths, a single

Gabor was presented at a time (there was a 50 ms pause between two Gabors, the duration

of each Gabor varied). The path was formed by simultaneously changing the position and

the orientation of each Gabor relative to the preceding Gabor. The orientation of the

Gabor followed the direction of the path. On half of the trials the two Gabor paths were

identical. On the other half the second path was changed. In change trials the second series

had one Gabor that deviated from the expected path. The task of the participant was to

judge whether the two paths were similar or different. Each Gabor was analogous to a

tone in the melody of the Scale subtest. Every semitone difference in the melody was

equivalent to a 12° difference in the Gabor orientation/location, except for the deviant

Gabor that had a 22° location change for each semitone.

Questionnaires. The parents of the participating children as well as the personnel in

schools and daycare centres filled in questionnaires (section 3.1.1,

http://www.cbru.helsinki.fi/music/RitvaTorppa/). The adult NH subjects filled a

computerized questionnaire (Peretz et al., 2008) and a paper questionnaire (see Hausen et

al., 2013, Data Sheet 1). In these, the participants were asked about their musical and

educational background, cognitive problems, musical abilities and hobbies.

http://www.brams.umontreal.ca/amusiademo/
http://www.cbru.helsinki.fi/music/RitvaTorppa/
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Procedures. For the CI group and part of the NH control group the perceptual tasks and

forward digit span were performed in an acoustically isolated and dampened room. For

part  of  the  NH  control  group  these  tasks  were  performed  in  a  quiet  room  in  the

participant’s home. For both child groups nonverbal intelligence was measured in a quiet

test room. In perceptual, recorded tasks, sounds were delivered for children with a laptop

through two powered loudspeakers placed at a 45 ° angle to each side of the subject, and

70 cm distant from the subject’s ear at a comfortable level (averaging 60 dBA for NH and

70 dBA for the CI group, measured at the pinna). All sounds were presented for CI

children using the everyday settings of the CI.

The place of testing of NH adults was arranged individually for each participant: most

assessments were done in a quiet workspace at a public library. The computer-based tests

were conducted using laptops and headphones. The volume level was adjusted

individually to a level that was clearly audibly to the subject.

3.4 ERP Data analysis

Basic analysis in Studies I and II. EEGLAB 8 (Delorme & Makeig, 2004) was used.

Imported data were downsampled to 256 Hz, and high-pass filtered at 0.5 Hz. Because of

the location of the CI device, some channels could not be used; data from these electrodes

were interpolated. The analysis epoch was 550-ms long, starting 100 ms before the onset

of the tones. The baseline level of the epochs was set to be zero during the 100 ms before

the tone onsets.

Ocular  and  muscle  artifacts  were  removed  for  both  CI  and  NH  groups  using

independent component analysis (ICA) with the Fastica algorithm (Makeig et al., 2004).

In addition, ICA was used for the CI group to reduce the CI-related artifact. Data

dimensionality was narrowed down by the number of interpolated channels and automatic

epoch rejection at a threshold between ± 300 and ± 400 µV (individually adjusted to

preserve at least 85% of original epochs for effective statistical analysis) was performed

before ICA. After ICA, the epoch voltage rejection was done again with a threshold of ±

150  µV,  followed  by  the  analysis  of  the  proportion  of  remaining  epochs  for  each

individual subject. The criteria of 75% (95) remaining epochs for each deviant was used
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to include individual children in further analysis. One child with a CI did not reach the

criterion,  and  was  excluded  from Study I  and  Study II  at  T1.  The  mean percentage  of

acceptance of epochs at T1 was 94% in the CI group (119 deviants, 2348 standards) and

93% in the NH group (116 deviants, 2330 standards), and at T2 was 93% in the CI group

(116 deviants, 2330 standards) and 95% in the NH group (119 deviants, 2348 standards).

We calculated the median instead of average of ERP signals (Yabe et al., 1993),

because the median method is optimal in cases where the data in general are of high

quality, but some extreme values are expected due to liberal rejection criteria or other

factors  (Fox  &  Dalebout,  2002;  Yabe  et  al.,  1993).  After  this,  we  inspected  again  the

individual ERP waveforms. Another child with a CI was excluded from analysis from

Study I because of abnormally shaped responses (amplitudes exceeding in the range of

MMN -20 µV) (this child was not included in Study II). The data were offline-filtered

with a 25 Hz low-pass filter.

Further ERP data analysis for Study I. Data only from T1 was included. CI and NH

groups were divided to two age groups: younger or older than 6 years 9 months. The

baseline was set to be zero during 100 to 350 ms (whole period).

For ERP quantification, group-level peak latency of the response was determined at

the Fz (P1 and MMN) or Cz (P3a) electrodes. P1 was identified as the maximum (most

positive) peak occurring in a 70–140 ms time window. MMN was identified as the

minimum (most negative) peak within the time window 90–250 ms after change onset,

and P3a as the maximum peak within the time window 145–300 ms after change onset.

The corresponding mean amplitudes were calculated for each subject from electrodes of

interest (F3, Fz, F4, C3, Cz and C4) using a 60-ms (P1) or 40-ms (MMN and P3a) time

window surrounding the peak latency of the age group. Because no clear differences in

scalp distribution of the responses for electrodes of interest were found, amplitudes were

then averaged over the aforementioned electrodes in order to reduce noise. Response

amplitudes were subjected to one-sample, two-tailed t-tests in order to examine whether

they differed significantly from zero for the CI and NH groups.

For ERP latency quantification, the individual peak latencies were calculated in a

specified time window in relation to change onset, only for those responses that were

found to be significant. The window was 85–250 ms for timbre and pitch (f0) MMN, 100–
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250 ms for gap and duration MMN, 100–300 ms for intensity decrement MMN and 145–

350 ms for P3a. The latencies of responses for intensity increments were not analysed due

to different processing between CI and NH groups.

Further ERP data analysis in Study II. The data from both T1 and T2 were used. The

signals from F3, Fz, F4, C3, Cz and C4 channels were averaged to form a ROI (region of

interest) channel. The baseline was set to be zero during the 50-ms period before the tone

onsets.

The group-level peak latency for MMN and P3a was determined for the ROI difference

signal (deviant minus standard) within the same time windows as for Study I for the entire

CI and NH groups (age division was not performed). The mean amplitudes were

calculated using a 30-ms time window surrounding the peak latency. For the NH group,

the intensity increment MMN and P3a responses were not analysed due to different

processing between CI and NH groups.

Similarly to Study I, ERP response amplitudes were subjected to one-sample, two-

tailed t-tests. The individual peak latencies were calculated for the significant responses

from the ROI-signal in a similar time windows as in for Study I except for the intensity

increment and decrement MMN. For these, the window was set at 100–400 ms. In order

to compare MMN and P3a between CI and NH groups or between CI singers and CI non-

singers, we analyses the responses using the following principles. The response for the

specific deviant type was included in the analyses if the MMN/P3a was significant at T1

and/or T2 for the both tested child groups.

3.5 Statistical analyses

In Study I, the mean amplitudes and peak latencies were compared between CI and NH

groups and age groups by repeated-measures analysis of variance (ANOVA). A

Greenhouse-Geisser correction was used when appropriate. The analyses were conducted

separately for each change type.

For Studies II and III, the statistical analyses used linear mixed modeling (LMM:

Singer & Wilett, 2003; West, 2009). Due to the large variability of age of the child

participants, age was controlled for. In addition, for Study III maternal education was
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controlled for because the CIn children had lower level of maternal education than the

CIm children. We also tested the covariance structures and selected the best fitting ones

based on Akaike’s and Bayesian information criteria (AIC and BIC). For Studies I and II,

the statistical analyses were conducted separately for each change type because the

magnitudes of the changes were not equalized across change types.

For both Studies II and III, the LM models for testing hypotheses I and II included

measurement time, age, and one or more hypothesized predictors of the dependent

measure, as shown in the tables in the Results section. The additional hypothesis III for

Study II was tested with LMM similar to that was used for testing hypothesis I, but with

digit span as an additional independent variable. The additional hypothesis IV for Study

II was tested with partial correlation analyses (age controlled). Because the responses to

questions addressing parental singing were included in the cluster A (APPENDIX 1), we

ran partial  correlation analyses between the amount of singing of the CI child at  home

and the answers falling inside the cluster A.

For Study III, a set of small models was selected to test specific hypotheses. All non-

significant interactions were omitted from the final results reported in the tables in the

Results section. For Studies I-III post-hoc tests were conducted when necessary, and, for

these, Bonferroni correction was used.

For Study IV, the associations between the MBEA scores and background variables

possibly affecting the connections of music perception to word stress perception or

visuospatial perception (age, pitch perception/discrimination, musical and general

education as well as forward and backward digit span) were first examined using t-tests,

ANOVAs, and Pearson correlation coefficients depending on the variable type. The

variables that had significant associations with the music perception scores were then

included in further analysis. Pitch discrimination thresholds calculated from the pitch

perception test and auditory working memory were also controlled for when examining

the associations of word stress and visuospatial perception with music perception. Linear

step-wise regression analyses were then conducted to examine how much the different

variables explained the variation of the music perception total score and subtest scores.

For all  Studies I–IV, the level of significance was set  at  0.05 and the analyses were

performed using the current version of SPSS (also called PASW in Studies I and IV).
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4 Results

4.1 Cortical processing of musical sounds for CI and NH
children

The aim of  Study  I  was  to  compare  the  CI  and  NH groups  in  the  ERP responses  (P1,

MMN and P3a) to acoustical changes in musical sounds, reflecting the efficiency of the

processing of piano tone onsets and the efficiency of the cortical networks for neural

discrimination and auditory attention shift.

Figure 3. Standard waveforms over the frontocentral scalp regions of the CI and NH groups.

P1 with N2 and without N1 response was elicited for both CI and NH groups (Figure 3).

Moreover, early MMN was followed by early P3a for the large change in timbre and for

changes in pitch (f0) in both groups (Figures 4a,b). Timbre MMN for small and medium

change was non-existent for the NH group while the P3a for these changes was elicited

for both groups (Figure 4a). The gap, duration and intensity decrement changes elicited

MMN for both groups (Figure 4c,e,f). ERP responses for intensity increments differed

between CI and NH groups. In NH group we observed a pattern of P3a followed by large

reorienting negativity (RON) responses (Escera & Corral, 2007; Figure 4d). In CI group

intensity increments did not elicit P3a or RON responses. Because of these substantial

differences between groups, the group comparisons were not conducted.
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Figure 4. The subtraction (deviant - standard) waveforms at Fz electrode for CI and NH group
for (a) timbre changes, (b) pitch (f0) changes, (c) intensity decrements (d) intensity increments
(e) gap changes and (f) duration changes.

Table 4. Significant results from CI vs. NH group comparisons.
P1 Timbre MMN (L) Timbre

P3a (S,M,L)
Gap MMN (M,L2) Duration MMN (S,M)

Amplitudes Latencies Amplitudes Latencies Amplitudes Amplitudes Latencies Amplitudes Latencies
F F F F F F F F F

Group 28.00*** 19.20*** 10.36** 6.23* 14.81*** ns ns 9.35** 8.25**
Age ns 6.80* 4.32* ns ns ns ns ns ns
Amount - - - - 7.35** 6.82* 4.12* 10.88** 13.11***
Amount × group - - - - 4.34* ns 13.50*** ns ns
Amount × age - - - - 3.68* ns ns ns ns
Group = CI vs. NH group. Age = younger vs. older children. Amount = amount of change. Following the
response type, in parentheses the amount of change included in analysis: S, M, L = small, medium, large
amount of change. - = interaction or amount of change was not included in repeated-measures ANOVA. ns
= result was not significant. (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001).
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For group comparisons, P1 was smaller and earlier for the CI group than for the NH

group and appeared earlier for older children than for younger children (Table 4, Figure

3). Compared to the NH group, the CI group had smaller and later timbre MMN (Table

4, Figure 4a), smaller timbre P3a (Table 4, Figure 4a), later MMN to the 40-ms (medium)

gap (amount × group, Table 4, Figure 4e), and smaller and later duration MMN (Table 4,

Figure 4f). Moreover, for timbre P3a, the differences between amount of changes were

not significant for the CI group while for the NH group the P3a for the change from piano

to cymbal was larger than the P3a for other timbre changes (amount × group, Table 4,

Figure 4a). Also the main effect of amount was significant (Table 4). The pitch (f0) MMN

or P3a did not differ between groups (Figure 4b).

Further, timbre MMN was larger for older than for younger children, the MMN to the

medium gap was larger and earlier than the MMN to the large gap, and the duration MMN

was smaller and later for the small than for the medium duration change (Table 4, Figures

4a,e,f).

Summary of findings from Study I. The results from Study I indicate that the musical

multi-feature paradigm is feasible for measuring ERP responses to changes in musical

sounds for young children. Moreover, there are reliable neurocognitive responses similar

to those seen for NH children to changes in most of the key acoustic features of musical

sounds for CI children. Their MMN for several change types and their timbre P3a were

smaller and/or later than for NH children, implying degraded neural discrimination and

less  efficient  attention  shift  as  a  consequence  of  this.  However,  the  results  of  Study  II

changed the picture and two subgroups of CI children were found.

4.2 Interplay between singing and cortical processing of music
for CI children

The main aim of longitudinal Study II was to compare the development of ERP responses

to changes in musical sounds for CI and NH children and to investigate whether the

development (especially of P3a) was better with more singing of the CI children at home.

Additionally, we investigated whether P3a response latencies or amplitudes were

earlier/larger with better forward digit span (to find evidence indicating that P3a reflects
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updating of auditory working memory), and whether singing of the CI children was

related to singing of parents early in their hearing life.

Table 5. The MMN and P3a mean amplitudes and latencies in Study II.
Stimulus eliciting the
response:

CI group   NH group
T1 µV T2 µV  T1 ms   T2 ms   T1 µV T2 µV T1 ms T2 ms

Timbre  cembalo(S) -1.06(2.80)° -0.82(2.46)° - -  1.22(2.60) -0.16(2.59) - -
       MMN violin(M)  0.04(2.17) -0.12(2.30) - -  1.56(2.51)   0.61(2.69) - -

cymbal(L) -2.44(2.82)*** -2.17(2.50)*** 126(40) 133(31) -1.98(2.39)*** -1.80(2.08)*** 116(29) 113(23)
        P3a cembalo(S)  1.81(1.98)***  2.20(2.83)** 249(60) 276(54)  3.84(4.40)***  3.00(4.14)** 211(36) 206(39)

violin(M)  2.82(2.57)***  3.31(2.88)*** 218(45) 248(60)  6.29(4.77)***  5.19(4.33)*** 215(29) 211(30)
cymbal(L)  1.81(1.88)***  1.49(2.68)* 247(52) 242(60)  6.57(4.17)***  7.05(2.82)*** 243(53) 231(50)

Pitch (f0) 312 Hz(S) -1.68(2.69)* -0.72(1.67)° 147(48) 158(48) -1.08(2.80)° -1.52(2.31)** 156(41) 146(31)
       MMN 351 Hz(M) -1.47(1.55)*** -1.37(1.78)** 139(26) 148(41) -1.75(2.91)** -1.81(3.89)* 136(35) 135(34)

441 Hz(L) -1.46(2.81)* -1.81(3.26)* 143(44) 135(46) -1.33(2.55)* -2.26(2.88)*** 131(37) 128(30)
        P3a 312 Hz(S)  0.94(1.53)*  1.03(2.58)° 265(72) 307(59)  0.55(3.31)  0.64(2.92) - -

351 HzM)  1.49(2.42)*  1.39(2.65)* 266(57) 283(65)  1.84(3.74)*  1.68(3.72)* 237(36) 229(48)
441 Hz(L)  0.64(1.76)°  1.32(2.60)* 248(80) 274(54)  2.11(2.88)**  2.08(3.27)** 242(69) 237(57)

Intensity  3 dB(S) -0.43(1.99) -0.76(1.92)° - - -1.20(2.55)* -1.52(2.19)** - -
decrement 6 dB(M) -0.82(1.86)* -0.28(2.14) 255(83) 249(84) -1.55(2.74)* -1.64(2.93)* 248(78) 265(78)
      MMN 9 dB(L) -0.19(2.02) -0.41(2.04) - - -1.29(2.50)* -2.46(2.65)*** - -
Intensity 3 dB(S) -1.26(.96)***  n - - - - - -
increment 6 dB(M) -0.07(1.61) -0.90(2.31)° - - - - - -
      MMN 9 dB(L) -0.20(1.67) -0.60(1.94) - - - - - -
      P3a  3 dB(S)  n  1.29(1.81)** - - - - - -
Gap 5ms(S) -0.14(2.23) -0.68(2.66) - - -0.98(2.89) -2.34(3.19)** - -
       MMN 40 ms(M) -1.64(2.43)** -1.10(2.95) 176(15) 167(25) -4.00(4.20)*** -4.04(3.67)*** 160(34) 149(27)

100 ms(L) -1.24(2.26)* -0.33(2.42) 166(29) 165(27) -1.58(3.55)* -3.00(3.40)*** 177(36) 179(34)
        P3a 5 ms(S)  0.90(1.90)*  1.12(2.96) 250(65) 260(72)  n  n - -

40 ms(M)  0.98(3.24)  1.04(2.33)* 261(34) 251(34)  n  n - -
100 ms(L)  0.83(2.15)  0.71(2.54) - -  n  n - -

Duration 175 ms(S) -0.77(2.06) -1.29(1.39)*** 168(44) 143(28) -2.60(3.35)** -3.54(1.93)*** 154(45) 150(34)
      MMN 100ms(M) -2.27(2.10)*** -1.55(3.01)* 188(18) 188(34) -3.07(3.68)*** -4.80(3.81)*** 173(16) 181(39)

50 ms(L) -1.46(2.78)* -.92(2.97) 167(38) 175(46) -1.13(4.25) -2.89(3.70)*** 158(40) 147(32)
      P3a 175 ms(S)  0.00(2.21)  0.63(1.32)* 209(29) 214(33)  n  n - -

100 ms(M)  1.19(1.33)***  1.10(3.11) 289(43) 258(60)  0.22(1.56)  0.18(3.83) - -
50 ms(L) .90(2.19)° .25(2.80) - - 1.51(3.14)* .21(3.35) - -

S, M, L = small, medium and large amount of change. For both time points of the measurements (T1, T2),
the mean amplitude (the standard deviation in parentheses) is followed by the significance of the
responses (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001; two-tailed t-test against zero). Following these, the mean
latencies (and standard deviation) of the responses are given. The columns marked with light gray present
the amplitude and latency values included in statistical comparisons between CI singers and CI non-
singers as well as between the entire CI group and the NH group. The columns marked with dark gray
present the values included only in statistical comparisons between CI singers and CI non-singers. - = the
mean amplitudes or individual latencies were not analysed. n = the responses were non-existent (wrong
polarity in the time window of the response).
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Figure 5. The subtraction (deviant - standard) ROI waveforms averaged across F3, Fz, F4, C3,
Cz and C4 electrodes for CI and NH groups for (a) timbre changes, (b) pitch (f0) changes, (c)
intensity decrements (d) intensity increments (e) gap changes and (f) duration changes. These are
given for both time points of the measurements (T1 and T2 on the left and right in each panel,
respectively).

As found in Study I for the data from T1, the MMN was followed by P3a for the large

change in timbre and changes in pitch (f0) for CI and NH groups at T1 and T2 (Table 5,

Figure 5a,b). The ERP responses for intensity increments differed between CI and NH

groups at both T1 and at T2 to the extent that it was not possible to conduct the statistical

group comparisons (Table 5, Figure 5d). There was more variation between T1 and T2

for the CI group than for the NH group in the MMN for intensity decrements, gaps and

changes in duration (Table 5, Figure 5c,e,f), which seemed be a consequence of the

variation of the ERPs of CI singers between T1 and T2 (Figure 6c,e,f).

Statistical analyses showed that, as for Study I, compared to the NH group the CI group

had significantly smaller and/or later MMN/P3a responses for several change types: later

timbre MMN, smaller and later timbre P3a, smaller and later duration MMN, smaller gap

MMN (Table 6), and later MMN for the medium gap (amount x group, Table 6) (Figure

5a,e,f). We also found later pitch (f0) P3a for the CI group than for the NH group (Table
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6, Figure 5b). Timbre P3a became later over time only for the CI group while duration

MMN became larger over time only for the NH group (time x group, Table 6, Figure 5).

In Study I we found very small or non-existent MMN preceding early P3a for small

and medium changes in timbre. This suggested that the small MMN was a consequence

of the overlap of the early P3a with the MMN. To test this possibility, if in the present

Study the MMN preceding the P3a was unexpectedly small, we conducted partial

correlation analysis (age controlled) between the amplitudes of the MMN, or the ERP

responses in the expected time line of the MMN, and the amplitudes of the following P3a.

If the correlation was positive, the MMN became smaller together with the enlargement

of the P3a, and the overlap was evident.

For the NH group and the CI singers,  the MMN was non-existent for the change to

cembalo and to violin (Figures 5a and 6a). As figure 6a shows, in the group level, large

MMN was followed by small P3a (for the CI non-singers), and vice versa, small or non-

existent MMN was followed by large P3a (for the NH group and CI singers). Therefore,

including all groups into correlation analysis was expected to give more information

about the direction of the link and stronger correlations between MMN and P3a together

with more participants in analysis, and all participants were included in correlation

analysis. The MMN and P3a amplitudes were correlated positively (at T1, cembalo, rp =

.48, p =.001; violin, rp = .65, p < .001; at T2 violin, rp = .49, p = .001), suggesting a co-

dependence and a possibly overlapping MMN and P3a.

Table 6. Results (unstandardized estimates for main effects) for testing Hypothesis I.
Timbre
MMN (L)

Timbre P3a (S, M, L) Pitch ( f0)
P3a (M, L)

Gap MMN (M, L) Duration MMN (S, M, L)

Latencies Amplitudes Latencies Latencies Amplitudes Latencies Amplitudes Latencies
B F B F B F B F B F B F B F B F

Group -14.82 4.92* 5.14 17.42*** -19.25 8.30** -32.01 6.12* -2.10 8.74** 12.61 .16 -2.49 6.66* -10.61 4.87*
Time -1.20 .03 .18 .28 -15.50 .69 -6.09 .55 .04 .01 4.71 1.25 2.40 10.10** 3.71 .74
Amount - -1.181 7.87*** 18.201 .01* 3.212 .70 -1.182 8.68** 40.432 3.34° -.481 6.701** -8.031 15.80***

3.642 -11.152 -1.352 20.692

Time × ns ns 4.99* ns ns ns 7.65** ns
group
Amount × - 10.72*** 7.81*** ns ns 12.09*** ns ns
group
Group = CI vs. NH group. Amount = amount of change. Following the response type, in parentheses the
amount of changes included in analysis: S, M, L = small, medium, large. B shows the direction/asterisks
the strength of the connection (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001). Group: reference is the CI group. Time:
reference is the second time point (T2). 1B for small change, reference is the large change. 2B for medium
change, reference is the large change. - = interaction or amount of change was not included in LMM. ns =
interaction was not significant. Age was always controlled.



54

Gap P3a was elicited for the CI group only (Figure 5) and so we studied the possibility

of overlap only for them. The MMN and P3a amplitudes were correlated positively (small

gap, at T1, rp = .59, p = .008, at T2, rp = .67, p =.001; medium gap, at T1, rp = .54, p =

.018, at T2, rp = .55, p = .012; large gap, at T2, rp = .58, p = .007).

At T1, the duration MMN was followed by P3a for both groups while at T2, the P3a

was elicited only for the CI group (Figure 5). Therefore, we conducted partial correlation

analyses  on  the  T2 data  for  the  CI  group.  Again,  the  MMN and P3a  amplitudes  were

correlated positively (small change, rp = .64, p = .001; medium change, rp = .68, p = .001;

large change, rp = .79, p < .001).

Figure 6. The subtraction (deviant - standard) ROI waveforms averaged across F3, Fz, F4, C3,
Cz and C4 electrodes for the NH group, CI singers and CI non-singers for (a) timbre changes, (b)
pitch (f0) changes, (c) intensity decrement changes (d) intensity increment changes (e) gap
changes and (f) duration changes. These are given for both time points of the measurements (T1
and T2 on the left and right in each panel, respectively).
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P3a development was enhanced for the CI singers. The singing of the children divided

the CI group into two subgroups having very different development of ERPs. Timbre

MMN became smaller over time in the CI singers (time × group, Table 7; Figure 6a). In

contrast, timbre P3a was earlier for the CI singers than for the CI non-singers; it became

also larger over time for the CI singers but smaller and later over time for the CI non-

singers and was larger at T2 for the CI singers than for the CI non-singers (time × group,

Table 7; Figure 6a).

Table 7. Results (unstandardized estimates for main effects) for testing Hypothesis II
Timbre
MMN (L)

Timbre P3a (S,M,L) Pitch (f0)
MMN
(S, M, L)

Pitch (f0) P3a  (S, M, L) Intensity
decrement
MMN (M)

Duration
MMN
(S, M, L)

 Amplitudes  Amplitudes Latencies Amplitudes Amplitudes Latencies Amplitudes Amplitudes
B F B F B F B F B F B F B F B F

Group 4.07 .19 -2.71 4.19˚ 64.98 7.07* -4.12 3.52˚ -1.52 5.36* 36.30 7.14* -3.34 14.39** -1.76 1.49
Time 11.21 10.82** -1.02 .01 3.69 .62* -1.28 .12 -.22 .40 -27.05 5.83* -1.27 1.5 2.38 5.60*
Amount - .361 7.17*** 18.201 5.04** -.421 1.02 -.011 .78 25.151 1.69 - .141 2.28

1.432 -11.152 -.612 .452 13.622 -.722

Time × group 13.21** 10.15** 8.81** 5.40* ns ns ns 4.46*
Time × group - ns ns 2.42* ns ns ns ns
× amount
Time × group 9.80*** ns ns  ns ns ns ns ns
× age
Group = CI singers vs. CI non-singers. Amount = amount of change.  Following the response type, in
parentheses the amount of changes included in analysis: S, M, L = small, medium, large. B shows the
direction/asterisks the strength of the connection (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001). Group: reference
is the CI singing group. Time: reference is the second time point (T2). 1B for small change, reference is
the large change. 2B for medium change, reference is the large change. - = interaction was not included
in analysis. ns = interaction was not significant. Results for age are given only when that could not be
controlled.

Pitch (f0) P3a was larger and earlier for the CI singers than for the CI non-singers

while, in contrast, pitch (f0) MMN was larger for the CI non-singers than for the CI singers

(Table 7, Figure 6b). Further, for the CI non-singers pitch (f0) MMN became larger over

time for the large change, and was significantly larger at T2 for them than for the CI

singers (time × group, time × group × amount, Table 7; Figure 6b). The pitch (f0) P3a of

the CI non-singers, however, did not become larger over time with the pitch (f0) MMN.

The CI singers had smaller 6 dB intensity decrement MMN than the CI non-singers

(Table 7, Figure 6c). However, for the CI singers, the difference wave was already

positive in the time line of MMN at T1 and T2 (Figure 6c), as were the difference waves

for medium and large gaps (Figure 6e) and for the large duration change at T2 (Figure

6f). Evidently as a consequence of the early positivity (P3a), the CI singers also had

smaller duration MMN at T2 than the CI non-singers (time × group, Table 7; Figure 6f).
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P3a was earlier with longer digit span. We found that when the timbre P3a was earlier,

then the forward digit span was longer (B = -6.15, p = .004) (Figure 7). For pitch (f0) P3a

latencies there was a significant interaction of amount and digit span (B = -2.18, p = .030):

the  P3a  for  medium  change  was  significantly  earlier  with  longer  digit  span  (rp (age

controlled) between mean T1/T2 digit span and mean T1/T2 P3a latency for medium

change = -.376, p = .015) (Figure 7). The other interactions with P3a latency (including

those with CI vs. NH group) or connections to P3a amplitudes were not significant.

Figure 7. The relationship of digit span to the latency of timbre P3a and medium change in

pitch (f0).

Singing of the CI children was related to singing of the parents. It was found in

correlation analysis for the answers falling inside the cluster A (APPENDIX 1) that

singing of the CI children was connected only to the amount of singing of the parents to

the child during the last year before measurements (rp = .757, p = .010), one year before

that (rp = .627, p = .004) and during the first year after implantation (rp = .618, p = .005).

Summary of findings from Study II. The development of timbre and gap P3a and

duration MMN and P3a differed between CI and NH groups. Overlap of early P3a with

MMN diminished P3a for CI and NH groups for changes in timbre, and for the CI group

also for changes in duration and gaps at T2. The early P3a of CI singers evidently affected

comparisons of MMN between the CI and NH groups as well as between CI singers and

CI non-singers. Importantly, the development of P3a was enhanced for CI singers over

all change types, especially for changes in pitch (f0) and timbre. These P3a responses

were positively correlated with auditory working memory, consistent with P3a reflecting

updating of auditory working memory, not only distraction. The only background
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variable correlated with the singing of the CI children at home was singing of the parents

to the child before the measurements, beginning from the first year after implantation.

4.3 The development of perception of word and sentence stress
of CI children: The role of auditory cues, auditory working
memory and supervised musical activities

The main aim of the Study III was to investigate how CI children develop in perception

of word and sentence stress and whether this development improves with improving

discrimination of acoustic cues, improving auditory working memory and more

supervised musical activities outside of the home (in the CIm group). Additionally, we

were interested especially in the development of auditory working memory of CI children.

Table 8. Results (unstandardized estimates) for LMM analyses for
contributors to word and sentence stress perception.

8a) Word stress     8b) Sentence stress
H I H II H III Composite H I H II H III Composite
B B B B B B B B

Pitch (F0) -8.96 - - 8.06 -49.18*** - - -37.87**

Intensity
-
2.38*** - - -1.10˚ -1.57* - - -1.69˚

Duration .50 - - -7.03 -9.73 - - -14.32
Digit span - 1.12*** - .38˚ - 1.22* - -.17
PIQ - .26 - .07 - .98 - .56
Group  - - -17.54*** -13.24*** - - -23.24** -8.08
Group = CIm vs. CIn group. H = hypothesis. Composite = composite model.
- = the independent variable was not included in LMM. B shows the direction/
asterisks the strength of the correlation (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001). All
models: controlled for time, age and education of mother.

Higher levels of word stress perception were associated with lower thresholds for

(better) discrimination of intensity (Table 8a, H I) while higher levels of sentence stress

perception were associated with lower thresholds for discrimination of pitch (f0) and

intensity (Table 8b, H I). The correlations with discrimination of duration were not

significant (Table 8). Word and sentence stress perception were unrelated to PIQ (Table

8a, 8b, H II). However, higher values of stress perception were associated with longer

forward digit span and with more musical activity: the CIm group outperformed the CIn

group (Table 8a, 8b, H III, Figure 8). The composite models including all of the

hypothesized predictors showed that for word stress, the only significant, and hence the
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strongest, factor was musical activity (Table 8a, Composite, Figure 8), and for sentence

stress, the only significant factor was pitch (f0) discrimination (Table 8b, Composite).

Figure 8. Comparisons of results for CI and NH children as a function of age and musical
activity for CI children.

Table 9. Results (unstandardized estimates) for differences between CIm/CIn and NH group.
Word stress Sentence stress Pitch (f0) Intensity1 Digit span
CIm/NH CIn/NH CIm/NH CIn/NH CIm/NH CIn/NH CIm/NH CIn/NH CIm/NH CIn/NH
B B B B B B B B B B

Time -9.44*** -6.35** -12.49*** -15.04*** .16* .16*** .38 .00 -3.28*** -2.27***
Age 4.03*** 1.13*** 8.27*** 7.27*** -.08*** -.07*** -1.40*** .01** 2.43*** 1.66**
Group -7.85* -11.36 -9.01 16.30** -.13 ˚ -.43*** .22 5.39 -.09 8.23***
Age × group ns 3.25* ns ns ns ns ns -1.27** ns ns
Time: reference is T2. Group: reference is the CIm or CIn group. 1 Thresholds: more negative value =
better performance. ns = interaction was not significant. B shows the direction/asterisks the strength of
the connection (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001). Education of mother was always controlled.

Next, we investigated how CI musical activity groups differed from each other and

from the NH group in the development of perception of word and sentence stress. For the

CIn vs. NH comparison, for word stress perception, there was a significant interaction of

group with age (Table 9): the CIn group did not develop over age while the NH group
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did. Surprisingly, the CIm group performed better than the NH group (Table 9, Figure 8).

For sentence stress perception (Table 9), the CIm group performed as well as the NH

group, while the CIn group performed more poorly than the NH group (Figure 8). The

development with time and age was similar across groups (Table 9).

We also investigated whether CI musical activity groups differed from each other and

from the NH group in the significant predictors of word and sentence stress. For intensity

discrimination, both group comparisons revealed significant interactions of age and group

(Tables 9 and 10). The CIn group did not develop over age while the CIm and NH groups

did (Figure 8). For pitch (f0) discrimination, the CIm group performed better than the CIn

group (Table 10, Figure 8), and the CIm group did not differ from the NH group while

the CIn group performed less well than the NH group (Table 9, Figure 8). For forward

digit  span, the CIm group outperformed the CIn group at  T2, and only the CIm group

developed between T1 and T2 (time × music group, Table 10). Moreover, the CIn group

performed less well than the NH group while the CIm group performed similarly to the

NH group (Table 9).

Table 10. Results (unstandardized estimates) for
differences between CIm and CIn groups in the
factors predicting prosodic perception.

Pitch (f0)1 Intensity1 Digit span
B B B

Time .17* -.73 -4.00**
Age -.08*** -1.62* 1.65 ˚
Music group2 .30*** -7.50 ˚ -8.98*
Time x music group ns ns -3.00*
Age x music group ns 1.70** ns
1Thresholds: more negative value = better performance.
2Reference is the CIm children. ns = interaction was not
significant. B shows the direction/asterisks the strength of
the connection (˚p≤.1, *p≤.05, **p≤.01, ***p≤.001).
Education of mother was always controlled.

We also tested within the CI group whether musical activity contributed to

discrimination after controlling for digit span. With this control in place, the correlation

of musical activity with intensity discrimination was no longer significant (B = 1.88, p

= .142), but the connection to pitch (f0) discrimination remained strong (B = .26, p = .002),

indicating that the relationship of musical activity to discrimination of pitch (f0) was not

purely due to variation in digit span.
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Overview of interrelations. Because of the small sample size, LMM analysis cannot

give an interpretable picture of the overall interrelations of these measures. For example,

while both auditory discrimination and digit span are linked to prosodic perception, those

two predictors might be highly intercorrelated. Therefore, partial correlation analyses

were performed for CI children on average measures across the two measurement points.

The first partial correlation analysis (age controlled) included only the hypothesized

predictors of prosodic perception. As a result, digit span was connected to discrimination

of  intensity  (rp = -.717, p =  .001)  and  of  pitch  (f0)  (rp = -.630, p = .004). In addition,

discrimination of pitch (f0) and intensity were interconnected (rp = .650, p =  .003),  as

were discrimination of duration and intensity (rp = .535, p = .018). Because digit span

was found to be correlated with auditory discrimination, we examined links of auditory

discrimination to word and sentence stress perception after partialling out digit span and

age. This showed that the correlation of pitch (f0) and intensity discrimination with

sentence stress remained significant (pitch (f0): rp = -.680, p = .002; intensity: rp = -.487,

p = .040), as did the correlation of discrimination of intensity with word stress (rp = -.559,

p = .016).

Does singing by CI children at home play a role? In Study II it was found that the CI

singers had enhanced P3a responses, and these responses were earlier with better digit

span which in turn in Study III was connected to perception of prosodic stress. Therefore

it was assumed that the perception of stress or auditory working memory would also be

better with more singing by the CI child at home. To test this, we conducted additional

analyses with similar procedures as for testing hypothesis III (for the LMM, see Table 8)

and for testing the differences between CI musical activity groups in digit span (for the

LMM, see Table 10) (see also section “Statistical analyses”). However, we added the CI

singing group as an additional independent variable in the LMM. These analyses and

results are not provided in the publications of the thesis.

For sentence stress, the CI singers performed better than the CI non-singers (B =  -

13.81, p = .038) and the main effect of musical activity group remained significant (B =

-18.71, p = .011), implying that sentence stress perception was better with both more

singing at home and more supervised musical activities. For word stress, the correlation

with CI singing group was not significant and the correlation with musical activity group
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remained strong (B = -16.41, p < .001). For digit span, the correlations with CI singing

group was not significant. However, the interaction of time and musical activity group

remained significant (B = 3.00, p =.048) while the main effect of musical activity group

did not (B = -7.76, p = .099), implying that the singing of the CI children may have

mediated  the  performance  in  digit  span  at  T1,  but  not  the  development  of  digit  span

between measurements (for mediation, Baron & Kenny, 1986).

Summary of findings from Study III. The  main  result  was  that  the  CIm  group

performed at least equivalently to the NH group in stress and pitch (f0) perception and in

digit span, while the CIn group performed more poorly than both the NH group and the

CIm group. Moreover, only the CIm group improved with age in word stress perception,

intensity discrimination and improved over time in forward digit span. The higher values

of word stress perception of the CI group were associated with longer forward digit span

and better intensity discrimination: higher values of sentence stress perception were

additionally associated with better pitch (f0) discrimination. Further, more singing by the

CI children was associated with improved sentence stress perception and might have

mediated the improved performance in digit span at T1.

4.4 Connections of music perception to word stress and
visuospatial perception for NH adults

The main aim of Study IV was to investigate whether music perception improved with

improving word stress perception or with improving visuospatial perception for NH

adults. We expected that especially the perception of musical rhythm would improve with

improving word stress perception.

As a first step, the connections between the variables that could play a role in the

connections of music perception to word stress or visuospatial perception were

investigated (Table 11). Age was not linearly correlated with the music perception total

score, but when the age groups were compared to each other using ANOVA, a significant

difference was found (F = 6.21, p = .001). A post-hoc test (Tukey HSD) showed that the

40–49 age group had significantly higher music perception total scores than the 19–29 (p

= .004) and 50–59 age groups (p = .002). The music perception total score was higher
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with more musical education (Table 11) and better pitch discrimination thresholds (Table

11), the latter calculated as the size of the pitch change that the participant detected with

75% probability. Moreover, word stress perception was not correlated with pitch

discrimination while it was positively correlated with music perception Total score (r

= .34, p = .007), with Off-beat subtest score (r = .39, p = .002), and with forward digit

span. It was not correlated with backward digit span (Table 11).

Table 11. Correlations between word stress, visuospatial and
music perception and the variables possibly affecting the
connections between these.

Word stress Visuospatial Music perception (total)

Pitch perception: Change trials  .01  .05  .31*
    No change trials -.06  .07 -.15
    All trials -.06  .14  .09
Pitch discrimination threshold -.13 -.03 -.32*
Auditory working memory  .26*  .10  .10
    Digit span forward  .26*  .07  .07
    Digit span backward  .13  .11  .06
Music education (years)  .12  .02  .32*
General education (years)  .18 -.11  .10
*p < .05, **p < .01.

Table 12. Results for four regression models.
Model Total score Scale subtest Out-of-key subtest Off-beat subtest

B F R2 R2 ch. B F R2 R2 ch. B F R2 R2 ch. B F R2 R2 ch.

1 5.21** .15 .15 3.35**.10 .10 3.35* .10 .10 1.67 .05 .05
 Music ed.  .28*  .15  .31*  .14
 Age group -.20 -.26* -.04 -.15
2 3.77** .21 .06 1.78 .11 .00 2.77* .17 .06 2.83* .17 .11
 Music ed.  .28*  .15  .32*  .12
 Age group -.14 -.25˚ -.01 -.04
 AWM -.01 -.01 -.12  .13
 Pitch -.25** -.04 -.23 -.32*
3 4.43** .29 .08 2.05˚ .16 .05 2.55* .19 .02 3.33* .23 .06
 Music ed.  .28*  .15  .32*  .11
 Age group -.08 -.20 -.03  .01
 AWM -.02  .00 -.13  .12
 Pitch -.26* -.05 -.24˚ -.33*
 VSP  .28*  .22˚  .15  .26*
4 5.27** .37 .08 1.85 .17 .01 2.87* .24 .05 4.34** .33 .09
 Music ed.  .28*  .15  .32*  .12
 Age group -.09 -.20 -.00  .00
 AWM -.10 -.03 -.20  .04
 Pitch -.23* -.03 -.21˚ -.29*
 VSP  .27*  .21  .14  .25*
 Word stress  .30*  .12  .24˚  .32**
Musical ed. = music education (yes/no). Age group = under/over 50 years. AWM = auditory
working memory (digit span forward + backward). Pitch = pitch discrimination threshold. VSP =
visuospatial perception. R2 ch. = R2 change. ˚p≤.1, *p≤.05, **p<.01, ***p<.001.

Based on the findings above, step-wise regression analyses were performed to see how

much the variables found to be related to word stress, musical or visuospatial perception

could explain the variation of the music perception total score and subtests. Four different
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predictor models were examined, as shown in Table 12 (models 1–4). For the total music

perception score, the R2 change showed that both visuospatial perception and word stress

perception explained about 8% of the variance (Table 12, Figure 10). Musical education

and pitch discrimination threshold were also significant predictors. Auditory working

memory was not a significant predictor (Table 12).

Figure 9. Scatterplots of word stress scores and music perception task scores.

For the Scale subtest, the only significant predictor in the first, and only, significant

regression model was age group (Table 12). Visuospatial perception had only a

marginally significant association with the Scale subtest with which it had been designed

to be analogous. For the Out-of-key subtest, the final regression model was significant

and explained 24 % of the variance, and the only significant predictor was music
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education (Table 12). For the Off-beat subtest, the final model was significant and

explained 33% of the variance, and the most significant predictor was word stress

perception, which alone explained 9% of the variance (Table 12, Figure 9). Also pitch

discrimination and visuospatial perception were significant predictors.

Summary of findings from Study IV. The main result from Study IV was that especially

perception of musical rhythm (measured with the Off-beat subtest of the MBEA) was

positively correlated with word stress perception. Also MBEA music perception total

score and performance for the Out-of-scale subtest were better with more musical

education. Moreover, pitch discrimination was connected to music perception but not to

perception of word stress, which in turn was connected to forward digit span (auditory

working memory), repeating the results from Study III for CI children. Visuospatial

perception was a significant predictor of the MBEA total score and Off-beat subtest score.

Visuospatial perception was not connected to the MBEA Scale subtest with which the

task was analogous, implying that the association with music perception could be driven

by some other variable, like attention.
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5 Discussion

This thesis investigated the development of cortical processing of music and perception

of  prosodic  stress  of  CI  children.  In  addition,  we  studied  the  development  of  auditory

working memory, auditory attention shift, and discrimination of acoustic cues for stress

at the behavioural level and music at the neural level. Most importantly, we investigated

the interplay between these and musical background (including singing at home and

supervised musical activities outside of the home) for CI children. We also studied the

connections of perception of music to word stress and visuospatial perception for NH

adults.

More specifically,  the auditory ERPs for piano tones and six acoustic change types,

behavioural perception and forward digit span were measured twice (at T1 and T2) for

4–13-year old CI and NH children (Studies I-III). The CI children were divided into CI

singers and CI non-singers based on the amount of singing of the CI children at  home

(Study II)  and  to  musically  active  and  non-active  (CIm and CIn)  groups  based  on  the

amount of supervised musical activities of the CI children outside of the home (Study

III). In addition, music perception, word stress and visuospatial perception, pitch

perception and digit span forward and backward were assessed once for 19–60-year old

NH adults (Study IV).

The main findings were that for the CI children, the development of cortical processing

of music, especially attention shift towards sound changes (P3a), was more advanced with

more  informal  singing  of  the  CI  children  at  home  (Study  II),  and  the  perception  of

prosodic stress was better for CI children with supervised musical activities outside of the

home, the advantages of these musical activities extending to acoustic discrimination

linked to prosodic perception as well as to auditory working memory (Study III). The

results from NH adults (Study IV) resembled the findings on word stress in CI children

(Study III). For both NH adults and CI children, perception of word stress was positively

correlated with performance in the forward digit span task (auditory working memory)

while the connection of word stress to pitch discrimination was not significant.

Additionally, for NH adults, perception of musical rhythm improved with improving

word stress and visuospatial perception (Study IV).
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The implications of these results for CI children’s perception of music and auditory

attention are discussed further in section 5.1, for their prosodic perception and auditory

working memory in section 5.2, and for their more general development in section 5.3.

5.1 The neural basis of music perception of CI children: The
role of singing and attention

The CI children had well-formed ERP waveforms with P1, MMN and/or P3a resembling

those recorded for the NH group (Study I), in line with the previous findings for CI

children in non-musical contexts (Kileny et al., 1997; Ponton & Eggermont, 2001; Ponton

et al., 2000, among others) and for musical context in adults and adolescents using CIs

(Koelsch et al., 2004; Petersen et al., 2015; Sandmann et al., 2010; Timm et al., 2014).

This implies that early-implanted children have neural abilities for discrimination of all

measured change types, and that the neural networks for acoustic cues and MMN (see

Introduction, sections 1.2 and 1.6) have developed rather well. Surprisingly, the MMN

and/or P3a was clearly visible even for one semitone pitch (f0) changes for the CI group.

This may be explained by the rather low baseline frequency (295 Hz), allowing some CI

children to follow the temporal cue for pitch (Green et al., 2002; Laneau & Wouters,

2004). Good pitch processing may be also related to the early age at implantation of the

CI children, allowing their neural networks for pitch to develop well.

5.1.1 Differences between CI and NH groups

The P1 responses were smaller and earlier for the CI group than for the NH group (Study

I), which may reflect impoverished processing specifically of natural piano tones for the

following reasons. First, with simpler or familiar speech stimuli, P1 latencies and

amplitudes  typically  develop  to  be  similar  for  early  implanted  CI  children  and  NH

children (amplitudes: Jiwani et al., 2013; latencies: Sharma et al., 2002; among others).

Second, because decreased response amplitudes reflect reduced synaptic density and

efficiency (Picton & Taylor, 2007), the small P1 responses probably reflect poor neural

representations of piano tone onsets. Third, stimulus differences affect PI amplitudes for

CI  listeners  (Kelly  et  al.,  2005).  Moreover,  the  early  P1  could  be  a  consequence  of
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electrical stimulation per se, which in post-lingually deafened adults seems to reach

auditory cortex faster than for acoustic stimuli in NH adults (Picton, 2010). Alternatively,

it could be a consequence of plastic neural changes in the CI children. Congenital deafness

can lead to hypersynchronization of peak latencies of local field potentials over distant

cortical regions on the primary auditory cortex (Kral et al., 2009, their Fig. 9). The cortical

networks for P1 could be affected by such a hypersynchronization, leading to early P1

responses.

The  small  and  late  timbre  MMN  and  P3a  (Studies  I  and  II)  and  late  pitch  (f0) P3a

(Study II) for the CI group echo previous behavioural findings showing difficulties in

discrimination  of  pitch  and  timbre  by  CI  recipients  (Limb  &  Roy,  2014;  McDermott,

2004). For intensity increments, the ERP responses differed between CI and NH groups.

We found a pattern of P3a followed by negative RON responses especially for large

changes for the NH group (Studies I and II), indicating that these changes were clearly

detectable for them. This pattern of P3a followed by negative RON responses was

invisible for the CI group. This suggests that their unusual processing of intensity

increments is probably a consequence of the activation of the automatic gain control of

the speech processor above the 70 dB reference (Stöbich et al., 1999; see also

Introduction, section 1.1), which made the present intensity increment changes difficult

to detect for the CI group. Additionally, the activation of the gain control system might

induce variation between subjects in the time-sensitive ERP responses, and cancel out the

responses in the group level. However, the similar processing between CI and NH group

for intensity decrements indicates that early-implanted children can follow intensity cues

until the gain control system is activated, until the ceiling effect has been reached. In line

with our results, Timm et al. (2014) found no differences between adult CI users and NH

counterparts in intensity decrement MMN.

Another novel finding was the different development between CI and NH groups in

MMN and P3a for gaps and changes in duration (Study II). Evidently, when the gap and

duration changes elicited P3a only for the CI group, then their gap or duration MMN was

smaller than for the NH group as a consequence of overlap of early P3a (shown with

correlation analyses), especially for the CI singers. Conversely, the duration MMN of the

NH group increased between measurements partially because of the lack of the overlap

of P3a with MMN. Therefore, the CI vs. NH group comparisons of MMN were of little
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value. Probably the changes in duration or gaps become less distracting for the NH

children over time (see Wetzel et al., 2006, for the development of distraction over age in

another context) while not for the CI children. This could be related to the reliance of CI

users on sound envelopes, leading further to their reliance on surface rhythm

(implemented in sound durations and gaps) in music perception (Gfeller & Lansing, 1991;

Limb & Roy, 2014).

In summary, the results suggest that compared to NH children CI children have

difficulties in processing of piano tone onsets and in neural discrimination of timbre and

pitch, but not necessarily in discrimination of intensity decrements, gaps and changes in

duration.

5.1.2 P3a without MMN: P3a reflects updating of auditory working
memory?

Interestingly, as in previous studies (Horvath et al., 2008; Koistinen et al., 2012; Wetzel

et al., 2006,  among others), P3a without clear MMN was elicited, here especially for

changes from piano to cembalo and violin for the NH group and for some of the CI group,

for the CI singers (Study II). In the present thesis, the correlation analyses implied that

the lack of MMN was a consequence of the partly overlapping MMN and P3a responses.

The response to a change to cymbal differed from the responses to other timbre changes,

eliciting MMN and P3a for all  children. These results are consistent with the proposal

that the attention shift can be a consequence of either a large physical difference or

contextual novelty (Kushnerenko et al., 2013). Thus, for the CI singers and NH group,

the change to cymbal might have been processed as a large physical change while the

change to cembalo and violin was processed as a contextual difference, a change in

musical instruments. The CI singers may have rather sophisticated neural networks for

timbre, including the anterior temporal classification system (see Leaver & Rauschecker,

2010, see also Introduction, section 1.2),  similarly to the NH children. Conversely,  for

the CI non-singers, the neural network for timbre might be less developed.

The connection of P3a latencies to digit span has implications for the interpretation of

P3a for deviant tones in passive listening situations (see section 1.6). All ERP responses

are sums of several components and each component can explain one part of the
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manifestation of the response (Donchin & Coles, 1988, for a review). P300 responses to

target sounds, consisting of P3a and P3b, are proposed to reflect not only discrimination,

but also updating of working memory, i.e., a central executive component for monitoring

and processing incoming information and then updating the items held in working

memory by replacing information that is no longer relevant with new, more appropriate

information (Donchin & Coles, 1988; Miyake et al., 2000). This assumption has been

largely based on the finding that performance in digit span tasks is better with larger and

earlier P300 responses (George & Coch, 2011; Polich et al., 1983). The present results

suggest that the P3a responses to changes in musical sounds reflect updating of auditory

working memory (see Barcelo et al., 2006), and with this, the functioning of the central

executive component of auditory working memory (see section 1.4.1).

5.1.3 Advanced P3a responses with singing in the framework of
discrimination, dynamic attending theory and neural networks for
attention

The more advanced development of auditory attention shift (P3a) through all measured

change types for CI singers (Study II) can be explained by better neural discrimination

over all change types, which can also be related to better dynamic attending to the changes

and better development of neural networks for attention as follows.

The better production of songs (evident in the production of rhythms and in the overall

production of song elements in general, see section 3.1.1) for CI singers compared to CI

non-singers  at  T2,  and  the  earlier  P3a  with  better  auditory  working  memory  strongly

suggest that the P3a reflected better processing of acoustic changes by CI singers.

Moreover, the CI non-singers had clearly visible MMN with degraded P3a which

suggests that they did not link some of the changes, especially changes in pitch (f0), to the

behavioural level. Sometimes MMN can be recorded prior to behavioural discrimination

ability becoming possible (for a review, Kujala et al., 2007). Also, the pitch (f0) MMN

became larger in CI non-singers without any evidence of increase in the pitch P3a, even

though previous evidence shows that P3a increases with MMN (Draganova et al., 2009).

The MMN without P3a for CI non-singers also shows similarities with NH subjects who

suffer from tone-deafness, also called congenital amusia, who have near-to-normal
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preattentive neural processing (MMN) of musical pitch incongruities even though they

have highly limited behavioural accuracy in such a task (Peretz et al., 2009). The large

MMN responses suggest that the neural networks for acoustic changes (see section 1.2)

and for MMN (see section 1.6) have developed well in CI non-singers. At the behavioural

level (Study III), pitch (f0) discrimination was also enhanced for musically active CI

children, and thus the present results are consistent with the proposal that multisensory

musical training or singing is needed to enhance the discrimination of the acoustic cues

for music, especially pitch, by CI children.

Singing by the child might be beneficial for auditory discrimination for several

reasons. For example, because the ability of CI listeners to perceive pitch varies

depending  on  the  stimulus  properties  of  the  sound  source  (for  example,  Galvin  et  al.,

2008), detecting predictable pitch (f0) changes in the child’s own familiar voice might be

important, especially in the first years of hearing life. Further, the proprioceptive feedback

from larynx in the context of predictable, well-learned children’s songs might play a role

in the perception of gross temporal changes and also in perception of pitch (f0). Young

children often produce a high pitch with high position and a low pitch with low position

of the larynx (for a review, Trollinger, 2003), which might be easy to sense for deaf-born

children, and even provide spatial cues for pitch. According to Welch (1985), reproducing

an external song generates expectations of proprioceptive feedback which are then

compared to the feedback received from the sensory receptors. This might be a reciprocal

multisensory system which benefits perception of pitch by CI singers.

It is also possible that only CI singers interpreted the musical meter in the experiment,

which can lead to dynamic variation in attention (Brochard et al., 2003; Potter et al.,

2009). Meter is an aspect of relative rhythm, induced by accents (or beats) in the music,

allowing the listener to synchronize to the rhythm of music (Brochard et al., 2003; Geiser

et al., 2009; Hannon et al., 2004). Deafened, adult CI users have difficulties in deriving

meter from piano music, perhaps due to the spectral and envelope properties of the piano

tones (Phillips-Silver et  al.,  2015).  In line with this,  based on the present results on P1

responses (Study I), the CI children processed the piano tone onsets less accurately than

the NH children. Because motor regions of the brain have been consistently shown to be

involved in rhythm and meter perception (Chen et al., 2008; Overy & Turner, 2009),

motoric training is essential for rhythm and meter perception (Cason et al., 2015; Phillips-
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Silver et al., 2015), and since singing provides a rich content for motoric experiences of

the regular meter in children’s songs, singing may have advanced cortical networks for

the perception of meter and may have led to better detection of regular meter. Dynamic

attending theory (DAT: Jones, 1976; Jones & Boltz, 1989; Large & Jones, 1999) states

that because of limited attentional resources, attention varies periodically according to

internal dynamic oscillators. This determines the attending rhythm of an individual, and

further, the times at which the prediction for and processing of external events are most

effective. In line with DAT, it has been found that ERP responses in the P3a time range

are more positive when the listeners hear the sound changes (deviants) in the on-beat

position than in the off-beat position (Brochard et al., 2003; Potter et al., 2009). Moreover,

Brochard and colleagues (2003) found that the ERP differences between the deviant in

strong and weak accent (beat) positions arose earlier for subjects with musical training

than in those without musical training. They interpreted this as indicating that musicians

have stronger temporal expectancies, leading to the attention being deployed periodically

more efficiently. This is in line with the consistently large and early P3a at T2 for the CI

singers.

This is the first time that such a consistent difference for the development of P3a across

all change types has been found in multi-feature paradigm studies. In the framework of

DAT, it is possible that the attention system of early-implanted children relies on temporal

regularities because of limited attentional resources. Dynamic temporal entrainment of

attention in musical context could be beneficial for the cortical processing of acoustic

changes, since attention reshapes receptive fields in the auditory cortex precisely and

rapidly (Fritz et al., 2007). Further, the dynamic variation in attention induced by musical

regularities could shape the attention networks.

The neural network for P3a is distributed across frontal, parietal and temporal cortical

regions (Takahashi et al., 2013, among others), suggesting functional connectivity

between them. In line with the connection found in this thesis between P3a and digit span,

the neural networks for top-down and bottom-up auditory attention are highly

overlapping (Alho et al., in press; Salmi et al., 2009), suggesting similar function for these

networks. Congenital deafness can lead to deficiencies in neural networks for auditory

attention (see introduction, chapter 1.3), and to degradation in white-matter volume in the

auditory  cortex  and  thus  fewer  afferent  and  efferent  fibres  (Emmorey  et  al.,  2003).
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Interestingly, it has also been found that people suffering from amusia have degraded

connections between frontal and temporal regions in their right hemisphere (Loui et al.,

2009). Thus, the lack of development of P3a responses for CI non-singers could be related

to the consequences of early deafness for neural networks of auditory attention.

Conversely, musical activities, like singing, could cancel out these effects. NH

musicians, especially singers, have enhanced white-matter (anatomical) connectivity

between frontal and temporal cortical regions (Halwani et al., 2011), and singing-based

aphasia therapy seems to lead to similar enhancement (Wan et al., 2014). Also faster

plastic changes in auditory and frontal areas in 6 year old children participating in 15

months of musical training compared to other children have been found (Hyde et al.,

2009). In line with this, musical activities at home, including singing, seem to enhance

NH children’s auditory attention functions, reflected in P3a responses for gap and

duration changes (Putkinen et al., 2013). In conclusion, singing may well lead to

enhancements in the neural networks for P3a, and this could lead to enhanced perception

of music for CI singers. This conclusion is partially supported by the finding that the CI

singers did not differ from the CI non-singers in factors related to hearing or CI devices,

or other musical background than parental singing (see sections 3.1.1 and 4.2). Our results

on the development of P3a responses between T1 and T2 indicate that singing can have

effects on attention of CI children up until 13 years of age which was the age of our oldest

participants at T2. This can be partially related to the late developmental trajectory of the

prefrontal areas and neural circuits linked to them, essential for the neural networks for

attention and working memory (Casey et al., 2000) while partially this may be a more

general positive effect of singing on attentional capabilities, possibly observed also in NH

children of the same age.

The more the parents had sung to CI children before measurements, the more the CI

children sung by themselves, suggesting that parental singing encourages the CI children

to sing. This indicates that parents should be encouraged to sing with their CI children

starting right after implantation. The singing of the parents may play also a special role

in the present results. It might be easy for the CI child to detect the acoustic changes, like

changes in pitch and voice timbre, in the familiar voice of the parent, which could improve

the perception of musical instrument pitch and timbre. Moreover, parental singing is

known to arouse and regulate the attention of infants and young children (Rock et al.,

http://journal.frontiersin.org/Journal/10.3389/fpsyg.2011.00156/full#B27
http://journal.frontiersin.org/Journal/10.3389/fpsyg.2011.00156/full#B27
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1999). This might be beneficial in the development of the neural networks for auditory

attention.

5.1.4 Music perception and visuospatial perception are connected:
Implications for CI children

Those NH adults who were better at visuospatial perception had better Total music

perception and Off-beat subtest (measuring perception of rhythm) scores (Study IV).

Importantly, because the expected association between the analogous test of music

perception (the Scale subtest) and visuospatial perception was not significant, the link to

music perception might be mediated not by pitch, but rather by perception of rhythm. The

regular 500 ms pause between the two series and a regular 50 ms pause between two

Gabors could be responsible for this finding.

As explained previously, DAT proposes that attention varies periodically, leading to

enhanced performance in the task if it is performed at a moment when the attention is

most effectively directed to that (Jones, 1976; Jones & Boltz, 1989; Large & Jones, 1999).

In line with this, if the foreperiod (the time interval from the signal indicating that the task

will soon appear to the beginning of the task) is predictable, the task performance

becomes better or faster than for non-predictable foreperiods (Correa & Nobre, 2008).

Intriguingly, the perception of auditory and visual rhythm seems to share similar neural

bases. Escoffier and colleagues (2010) as well as Bolger and colleagues (2013) have

shown that musical rhythm (meter) can affect the timing of the best performance in visual

tasks. For example, if a visual task occurs on the on-beat position of the musical

(rhythmic) sequence playing in the background, the performance of the subject in the

visual task becomes faster (Escoffier et al., 2010). Moreover, after extensive short-term

training, all rhythms, even those that are both trained and paced in visual modality,

transform into auditory-motor representations and share similar neural networks

(Karabanov et al., 2009). Therefore, those individuals who are more sensitive to rhythms

in the auditory domain may also register better the time intervals between visual tasks.

Thus the connection we found between visuospatial perception and performance at the

Off-beat task could be related to variation in rhythm perception, leading to variation in

detection of the regularity of the foreperiod and in attention towards the visual task.
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Because the music perception Total score was improved also with improving

visuospatial perception, it cannot be ruled out that visuospatial perception and music

perception have a shared neural basis, and that visuospatial cues would enhance music

perception, including pitch. In line with this possibility, the musical training procedure of

Petersen and colleagues (2012) contained several exercises where the CI participants

could benefit from visuospatial cues, and this kind of training led to enhancement of

music perception in general. This suggests that in the rehabilitation of music perception

for CI users visuospatial cues like movement in play songs would be beneficial.

5.2 Implications for stress perception and auditory working
memory

5.2.1 The role of acoustic cues and auditory working memory in stress
perception

For CI children, higher levels of word stress perception were associated with lower

thresholds for (better) discrimination of intensity, and higher levels of sentence stress

perception were associated with lower thresholds for pitch (f0) and intensity

discrimination, pitch (f0)  discrimination  being  the  strongest  contributor.  The  link  of

discrimination of pitch (f0) to word stress perception was absent for NH adults. The links

were not explained by variation in auditory working memory. The connections of

discrimination to perception of sentence stress resemble findings for adults and children

implanted later than those studied here (Meister et al., 2011; O’Halpin, 2010). The link

of intensity discrimination to word stress perception was a novel finding, as was also the

finding  that  for  CI  children  perception  of  stress  was  positively  correlated  with

performance in auditory working memory task, the link being supported by the similar

connection to word stress for NH adults.

These results imply that in rehabilitation of stress perception, discrimination of pitch

and intensity should be emphasized, and that CI devices should be developed towards

better transmission of these acoustic cues. Evidently, auditory working memory plays an

important role and should be controlled for when perception of stress is studied, and

further, auditory working memory training should be addressed in the rehabilitation of
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stress perception. Based on the present results, musical activities might enhance all

abovementioned aspects.

5.2.2 The role of musical activities in stress, pitch and intensity perception
and auditory working memory

Intriguingly, those CI children who had participated in supervised musical activities

outside of the home (CIm children) performed at least equivalently to the NH group for

stress perception, discrimination of acoustic cues for stress, and  forward digit span, while

other CI children (CIn children) performed consistently more poorly than both the NH

children and the CIm children (Study III). It seems that musical activities before our first

measurements were important for these skills, giving evidence on the positive role of the

early onset of musical training. In addition, only CIm children developed from T1 to T2

for auditory working memory, implying that musical training at later ages (up until to 13

years of age) is important for the development of this cognitive skill of CI children. Only

CIm children also developed with age for intensity discrimination, even though the latter

result did not remain significant when auditory working memory was controlled for.

Evidently, the better development of intensity discrimination in CIm children was

connected to their better development of auditory working memory.

The superior perception of word and sentence stress and better development of

discrimination of intensity for CI children attending supervised musical activities

compared to other CI children were novel findings. However, longitudinal experimental

studies of NH children show positive impact of musical training to skills closely

associated to stress perception (perception of emotional prosody, Thompson et al., 2004;

verbal  memory,  Ho  et  al.,  2003;  Roden  et  al.,  2012).  The  advanced  pitch  (f0)

discrimination of musically active CI children is in line with the findings from NH

listeners in Study IV and from previous studies, showing advanced pitch (f0) perception

for musically trained individuals (adults: Deguchi et al., 2012; Micheyl et al., 2006; Schön

et al., 2004; Tervaniemi et al., 2005; children, Magne et al., 2006; Parbery-Clark et al.,

2009). Importantly, the longitudinal study of Moreno and colleagues (2009) shows that

musical training improves the perception of pitch in speech by NH children, and musical

training also seems to improve pitch (f0) perception for CI children (Chen et al., 2012)

and adults using CIs (Petersen et al., 2012). Moreover, the CIm and CIn children did not
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differ in factors related to CIs or thresholds for hearing, and maternal education and age

were controlled for in statistical analyses. Beneficial effects of musical training have been

expected in the CI population (Shahin, 2011). It is even possible that, due to the poorer

baseline  in  auditory  skills,  the  outcomes  of  musical  training  could  be  stronger  for  CI

children than for NH children. Indeed, we found striking differences between CIm and

CIn children. Therefore, the present findings support the interpretation that musical

activities, including singing, enhance the perception of word and sentence stress as well

as pitch and intensity perception.

The better perceptual skills found for CIm children might be partially related to the

slower tempo and the predictable pitch and intensity changes in music and songs

compared to speech (Patel, 2014), which both might be beneficial for CI children. The

advanced pitch (f0)  perception  of  musically  active  CI  children  is  also  in  line  with  the

suggestion that musical training enhances the processing of rapid spectrotemporal

changes (Tallal & Gaab, 2006). Notably, the low baseline frequency in the stimulus for

pitch discrimination thresholds may have allowed musically trained CI children to follow

the temporal cue for pitch (Green et al., 2002; Laneau & Wouters, 2004), or to follow a

combination of temporal and place cues (Goldstein, 1973; Moore, 2003a, 2014).

As discussed earlier, the good pitch perception could also be partially related to the

integration of proprioceptive cues with auditory cues for pitch (f0) in those CI children

who sing. This may be related to the present findings, because the emphasis in the

supervised activities was on singing. However, the participation in supervised musical

activities outside of the home may have additional benefits for pitch (f0) perception of CI

children. It is known that deafness since birth has effects on the development of peripheral

visual neural system, leading to better attention towards and better perception of motion

in the periphery of the visual field (Hauthau et al., 2013; Neville & Lawson, 1987). In the

supervised musical activities, which were group activities (musical play schools, Lindfors

Foundation speech-music groups), the CIm children had an opportunity to see the

movements of others, and in these activities, the pitch movements were often visualized

with hand cues or toys. Moreover, the CIm children were exposed to musical instrument

playing by others and by themselves in their supervised musical activities and some of

them at home (see section 3.1.1). Thus, they could see how the pitch (f0) was produced

with the keyboards or other instruments. Early-implanted children may be good

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292606/#c8
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multisensory integrators (Schorr et al., 2005). They may be able to integrate the

visuospatial cues provided by group musical activities with their auditory pitch (f0)

perception, and even with proprioceptive sensations related to pitch (f0).

Hearing pitch (f0) changes from several musical instruments and voices of varying

timbre in the music groups may also have led to better perception of pitch independent of

timbre by the CIm group than by the CIn group. In line with this proposal, Galvin et al.

(2008) found that the CI adults who had participated in musical training were largely

unaffected by instrument timbre in the perception of melodic contour, while the

performance of the other CI listeners varied across instruments. Timbre-independent

perception of pitch may have played a role especially in the present pitch discrimination

task, where the stimulus was synthesized and unfamiliar to the children.

Auditory working memory. The striking findings on similar auditory working memory

for CIm and NH children and better auditory working memory for CIm children than for

CIn children are in line with the superior auditory working memory for musically trained

adults and children (George & Coch, 2011; Lee et al., 2007; Strait et al., 2012; for a

review, Besson et al., 2011). Moreover, the development over time (between our

measurements) only for the CIm group is consistent with findings from longitudinal and

intervention studies showing that music training enhances forward digit span of 4–6 years

of old NH children and verbal memory of school-aged NH children (Fujioka et al., 2006;

Roden  et  al.,  2012).  It  has  been  found  previously  that  CI  children  do  not  reach  NH

children’s auditory working memory capacity (Pisoni et al., 2011), echoing the present

finding for the CIn children. Therefore, the present results suggest that supervised musical

activities with others can have a crucial impact on the auditory working memory

development of CI children.

The statistical results suggested that within the CI group, singing at home and musical

activities outside of the home had some influence on performance on the digit span task

at T1 and in the development of auditory working memory before T1. However, singing

at  home  was  not  connected  to  the  development  of  digit  span  between  T1  and  T2.

Therefore, singing by the child at home and participation in supervised musical activities

outside of the home may tap different subcomponents of auditory working memory. The

interlink between the performance on the digit span task, P3a responses and singing of
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the CI children may indicate that singing is connected to the updating of auditory working

memory. Singing is probably related to the central executive working memory

subcomponent (Miyake et al., 2000). Musical activities outside of the home in turn might

tap the short-term memory component of auditory working memory i, e, the capacity to

hold items temporarily in memory (Baddeley, 2003).

Sentence stress perception was also better with more singing by the CI children

themselves, which in turn was connected to parental singing. It has been found that infant-

directed speech, where the parents naturally use exaggerated pitch contours and

emphasize the important words with sentence stress, directs the infant’s attention to the

speech (Thiessen et al., 2005). In the present study, singing was also related to earlier

attention shift towards sound changes, and these responses seem to reflect updating of

auditory memory. It is well possible that both sentence stress perception and singing are

related to updating of auditory working memory, which underlies especially the

connection of perception of sentence stress to singing. Taken together, the results from

this  thesis  thus  suggest  that  both  singing  at  home and  musical  activities  outside  of  the

home with others are needed to get the best benefits from musical activities for CI

children.

Why would singing and supervised musical activities with others have different roles,

singing advancing neural attention functions and updating of auditory working memory

and supervised musical activities affecting processing in short-term memory? Singing at

home by the child is an activity where the child usually sings alone, without competing

sounds. The child repeats the same songs many times and singing is done by their own

free choice, without feedback from others. Learning as a consequence of singing by

oneself is probably largely based on iteration and trial and error, and the motivation to

sing is based on the rewarding effects of singing. In contrast, in musical activities outside

of the home, the auditory environment and singing tasks are more demanding. There are

competing sounds, the child has to adapt his/her singing to the singing of others, and the

child is expected to learn new songs, not only to repeat the already learnt ones. Moreover,

there are lots of visual cues provided by others, which may lead to better learning related

to short-term memory and to better behavioural performance than singing by oneself.

Perhaps the visuospatial cues provided by others, the tasks becoming more demanding

over time and feedback (Klingberg et al., 2005; in CI children, Kronenberger et al., 2011)
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are all needed to enhance short-term memory, while singing without external guidance

improves the updating of the auditory working memory component related to digit span.

5.2.3 Music perception and word stress perception are connected via
rhythm: Implications for CI children

Better word stress perception was connected to better music perception for NH adults,

especially in the Off-beat subtest of the MBEA (Study IV). The link between duration

discrimination and word stress perception was absent for CI children implying that

discrimination of simple tone duration would not drive the link with stress perception.

However, the link could be driven by the perception of how the tones unfold over time in

music and speech.

In the present word-stress task, there were two strong accents, or one strong accent and

another weaker accent, in otherwise similar target words. The unfolding of these accent

patterns over time indicated the auditory targets. It is possible that some listeners

perceived the changes in accent patterns similarly to changes in musical meter, which is

also implemented in the accentual patterns (beat) unfolding over time (Geiser et al., 2009;

Hannon et al., 2004). So the link between word stress and performance of the Off-beat

task for NH adults might reflect the fact that those who are better at perceiving musical

meter are better at detecting word stress patterns.

Interestingly, the link of musical activities to word stress perception in CI children was

extremely strong in the composite model (Study III). The ability to discriminate changes

in intensity, which enables the perception of beat and meter, contributed to perception of

word stress by CI children, and discrimination of intensity improved for CI children with

more participation in supervised musical activities. The overall pattern of results leads to

the question of whether supervised musical activities of CI children also led to

enhancement of meter perception through enhanced intensity perception. This could

contribute to the strong connection of supervised musical activities to word stress

perception by CI children.

From the perspective of musical neuroscience, the present results suggest that music

and speech share similar neural resources in the domain of rhythm. There are several other

studies implying such a connection. For instance, musicians have been found to perceive
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the  metric  structure  of  words  more  precisely  than  non-musicians  (Marie  et  al.,  2011).

Further, the results of Cason and Schön (2012), Bolger and colleagues (2013) and Cason

and colleagues (2015) show that musical rhythm and especially meter drives enhanced

perception of speech. Most importantly, the link of rhythm perception to word stress

perception suggests that, in the rehabilitation of CI children, improving rhythm perception

in music might be a way to improve word stress perception. Evidently, rhythmic exercises

should be not omitted from the rehabilitation of word stress perception by CI children.

5.3 Implications for speech, language and other development of
CI children

The present findings on connections of musical activities and singing to auditory

attention, to perception of word and sentence stress, to pitch perception and to auditory

working memory as well as the connection found between rhythm perception and word

stress perception, all have wider importance than discussed above.

The earlier and increased P3a responses for CI singers are highly important, suggesting

that CI singers have better auditory attention functions in general. Attention towards

sounds can enhance the representations of sounds, including speech, in the auditory cortex

and brainstem (Fritz et al., 2007; Strait et al., 2014; Woods & Alain, 2009; Woods et al.,

2009). The efficient functioning of auditory attention is also important for perception and

learning of degraded auditory stimuli, including speech with CIs (Beer et al., 2011;

Houston et al., 2014; Wild et al., 2012), and therefore also for language acquisition with

CIs. Good attention functions are also necessary for any kind of learning and though this,

for good academic success (Kronenberger et al., 2013, among others). Those CI children

who sing regularly may thus benefit from their better attention functions for learning in

general, from music perception to speech perception and language skills and beyond

these. Even if the enhanced and early P3a responses were not related to general

enhancement of auditory attention, they would nevertheless reflect good neural

discrimination and efficient attention shift towards auditory changes. This is necessary in

order to process rapidly changing auditory scenes like in traffic, or in schools, daycare

centres and other places where attention should be directed quickly towards important

sounds. The present results suggest a better quality of life for CI singers.
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Improved perception of word and sentence stress can lead to better segmentation of

words from continuous speech, and through this, to better language skills (Friedrich et

al., 2009; Houston et al., 2004; Jusczyk et al., 1999; Mattys et al., 1999, 2005; Vroomen

et al., 1998), especially for CI children (see section 1.4). Similarly, good perception of

sentence stress, expressed mainly as changes in pitch, can enhance the language

development of young children (Fernald & Mazzie, 1991; Thiessen et al., 2005).

Detecting pitch variations in general may be important. Newborns can detect pitch (f0)

variations in speech and may begin to use these to aid language acquisition (Sambeth et

al., 2008). Variation in pitch in infant-directed speech aids development of vowel

categories (Trainor & Desjardins, 2002), pitch variations in songs improve infant’s

perception of the phonetic content of speech (Lebedeva & Kuhl, 2010), and even adults

benefit from sentence stress, produced only by pitch variation, in learning of new words

(Filippi et al., 2014). Because detailed phonetic cues are not available to CI children, it

can be assumed that any enhancement of access to these prosodic cues with musical

activities would have a strong impact on overall speech and language development.

Children with CIs typically show poor auditory working memory (Harris et al., 2013;

Kronenberger et al., 2011; Kronenberger et al., 2014; Pisoni & Cleary, 2003, Pisoni et al.,

2011). Deficits in working memory may also become a problem when the task carries a

high cognitive load, like in hearing in background noise, in perception of spoken

sentences,  or in formulating sentences based on a picture (Beer et  al.,  2011).  Auditory

working memory for CI children is also strongly connected to their language learning and

reading skills (Kronenberger et al., 2011; Ingvalson et al., 2014; Pisoni & Cleary, 2003;

Pisoni et al., 2011). For NH children, auditory working memory plays a crucial role in

language learning (Baddeley, 2003; Baddeley et al., 1998). Therefore, the similar digit

span for CIm children and for NH children, and development over time only by the

musically active children, are utmost important findings. The present results on

enhancement of auditory working memory functions bode well for the language

development and academic success of musically active children.

Last but not least, superior music perception with singing or other musical activities

may enhance their quality of life through the entire life span. Music is highly attractive

for young children, and it also attracts young CI children (Trehub et al., 2009). Even at

later  ages,  it  induces  emotions  and  is  a  way  to  express  them  (Reybrouck  &  Brattico,



82

2015), it helps in regulation of emotions (Saarikallio, 2010), it gives us pleasure and

rewards us (Zatorre & Salimpoor, 2013) and it aids in maintaining the healthy functioning

of memory and other cognitive functions in old age (Särkämö et al., 2014). Importantly,

good perception of music, including perception of rhythm and meter, as indicated by the

results of this thesis, can also have positive effects on word stress and speech perception

and language learning. Even though CI children do not achieve as good perception of

music as NH children, this does not prevent them from enjoying music or singing (Trehub

et al., 2009). There seems to be a reciprocal relationship between skills and interest and

motivation, beginning in the preschool period (Aunola et al., 2006; Fisher et al., 2012), i.

e., interest and motivation towards learning a particular skill leads to better learning and

performance. Therefore, it is important for the development of CI children to give parents

and professionals the message that supporting the music enjoyment of CI children might

be beneficial for their music perception and, with this, for their quality of life.

5.4 Limitations of the study

The results of the present thesis show consistent advantages for those CI children who

sing at home or take part musical activities outside of the home with emphasis on singing.

The musical instrument playing of CI children in general was not regular. Only few of

them  had  access  to  musical  instruments  at  home,  and  so  it  was  impossible  to  study

specifically the advantages of instrument playing. Therefore, the present thesis cannot

give interpretable results on whether musical instrument playing is beneficial for CI

children.

Due to the young age of the participants, we could not have a good control over the

focus of selective auditory attention. That is, the participants could not do another

challenging task when they heard the to-be-ignored sound sequence (see for example,

Alho  et  al.,  1997;  Alho  et  al.,  in  press).  Further  studies  should  assess  the  attention

functions of older CI children with more challenging experimental paradigms.

It is important to note that the study design cannot define the causality, and the

differences found here could be a consequence of some predispositions which we could

not find. To confirm causality,  the CI children should have been randomly assigned to

musical activity groups, like those attending musical activities outside of the home and
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those  who  do  not,  or  to  those  who  sing  a  lot  alone  at  home  and  those  who  do  not.

Unfortunately, this was not possible due to the small number of early-implanted children

in Finland (less than 300, CI children living in areas distant from each other). Further, the

rather small number of participants may restrict the generalization of the results. The

small number of each type of CI device and processing strategy is also a weakness, and

very little can be said about the role of these aspects in the results.

It cannot be completely ruled out that since no loudness-balancing between the

standard and the deviants in pitch was done, due to the young age of the participants, the

changes in pitch may have caused changes in loudness due to the functioning of the CI

(see Introduction, section 1.1), partially leading to significant responses even for the

smallest, one semitone changes. Moreover, we conducted many statistical analyses, but

we corrected for multiple testing only for the post-hoc tests (Studies I, II and III). This

might have sometimes led to type 1 errors, i.e., some connections could be significant by

chance. As this was the first study of most of the aspects under investigation, we preferred

to avoid type 2 errors. Therefore, we feel that the best solution was to use relatively liberal

correction procedures.
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6 Conclusions

This thesis investigated speech- and music-related brain processes and task performance

for CI children and for NH children. With regard to the development of music-related

brain processes, we found well-formed ERP waveforms for CI children, resembling those

for  the  NH  group.  However,  many  times  the  ERP  responses  implied  impoverished

processing for the CI children, especially in the case of timbre and pitch. We also found

different development of ERP responses between CI and NH groups. However, this was

sometimes caused by the different development of these responses between CI singers

and CI non-singers. With regard to the perception of word and sentence stress and related

auditory cues as well  as to development of auditory working memory, the CI children

participating in supervised musical activities performed and developed similarly to the

NH  children  while  the  other  CI  children  performed  or  developed  less  well  than  NH

children.

With regard to the quality of musical activities, we found that more singing of the CI

children is related to clear advantages in the development of P3a, i.e., auditory attention

shift towards sound changes, especially in pitch and timbre, and to perception of sentence

stress. More supervised musical activities outside of the home were found to be related

to advantages in the development of perception of word and sentence stress and related

auditory cues (including pitch) and in auditory working memory. Therefore, both types

of musical activities may have their own specific role in shaping the development of

pitch-related auditory skills important for language development and quality of life of CI

children. Advantages with musical activities were found already at T1 (especially for

perception of pitch and prosody), but also between TI and T2 (for auditory attention shift

and auditory working memory). This suggests that musical activities might have effects

not only at an early age, but also later, up until age of 13 years.

The results of this thesis hopefully will help professionals to build up the rehabilitation

of music and speech perception more efficiently, even if it is impossible to give every CI

child an opportunity to take part in musical activities. In improving perception of stress it

seems to be worth especially addressing perception of pitch (f0), intensity and rhythm, as

well as auditory working memory. Moreover, in improving perception of music,

visuospatial cues seem to be beneficial. The results have implications for theories on the



85

connections between music and speech. They also give more evidence suggesting that

speech and music processing are connected not only via pitch and timbre, but also via

rhythm. For the ERP research field, the present results give new evidence indicating that

P3a responses reflect updating of auditory working memory. Further, they imply that

early P3a can affect MMN.

The novel findings here should be followed up, and hopefully, this thesis gives some

guidelines as to how to do it. Furthermore, experimental studies are needed to confirm

that musical activities enhance the skills under investigation in this study, and also speech,

language and performance in everyday life. However, there is a high risk that while

waiting these results, many CI children will miss an opportunity to take part in music.

Therefore, meanwhile, parents should be encouraged to find ways to make CI children -

as well as themselves - enjoy singing, because this can have no foreseeable negative

effects. Professionals should search for ways to enable CI children to attend supervised

musical activities outside of the home, independently of the parents’ socioeconomic

status, and spread the message that despite the difficulties of CI users in perceiving pitch,

CI children can take part in and benefit from musical activities at home, school and

daycare centres. The combination of singing at home and taking part in supervised

musical activities outside of the home might be the best way to optimize the quality of

life of early-implanted children.
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APPENDIX 1. The clusters extracted from the questionnaire, the questions included in each cluster and partial correlations
(age controlled; rp) between the mean of the answers included in cluster A and the answers given by the parents.

Clusters Questions                                                                                                                                                            rp

Cluster A B20A How often have the siblings played an instrument with the child between measurements (the child
has been playing or singing along)?1 .046

(the child has been playing or singing along)?1 .407
“Music b23 How often has your child heard his/her parents play during the last year?1 .425
activity at B28 How often has your child heard his/her parents play an instrument between measurements?1 .315
home” b3 Does your child play an instrument at home? If yes, how often would you estimate?1 .641**

b8 Does/did your child’s daycare include music or singing hours? How many times a week? -.044

b28 How often has your child heard his/her parents play on previous years?1 .232
b29 How often has your child heard his/her parents play during the first year after implantation? 1 .309
b15 How often has your child heard his/her siblings play an instrument during the last year?1 .512
b17 How often has your child heard his/her siblings play on previous years?1 .524
b18 How often has your child heard his/her siblings sing on previous years?1 .710**
B19 How often has your child heard his/her siblings play an instrument between measurements?1 .684**
B1A Has your child been playing an instrument at home between measurements?1 .698**
B22B How often have the siblings sung with the child before first measurements (child has been playing
or singing along)?1 .569*

b16 How often has your child heard his/her siblings sing during the last year?1 .743***
B22A How often have the siblings sung with the child between measurements (child has been playing
or singing along)?1 .367

b24 How often has your child heard his/her parents sing during the last year?1 .707**
b26 How often has your child heard his/her parents sing on previous years?1 .732***
b27 How often has your child heard his/her parents sing during the first year after implantation?1 .641**
B2A Has your child been singing at home during the time between measurements?1 .414
B21 How often has your child heard his/her siblings sing between measurements?1 .633**
B23 How often did you parents sing in front of the child between measurements?1 .699**
B24 How often did you parents sing interacting with your child i.e. the child was listening to you keeping
ye contact with you and/or tried to participate in the singing (e.g. sang along) between .490*
measurements?1

B26 How often did you parents sing interacting with your child (see B24 above) before the previous
measurements?1 .398

Cluster B
B10a If the child responds to the music on TV, how does he/she respond? a. gets anxious or irritated; b. smiles or
laughs; c. makes sounds; d. claps spontaneously; e. dances spontaneously; f. moves according to the song
spontaneously; g. sings lyrics spontaneously; h. asks questions; i. never responds in any way; j. other.2

B11 How many times a week did your child watch (and listen to) children’s music videos or DVDs between
measurements?_ Less frequently than weekly_
B14 How many times a week did your child watch (and listen to) children’s music videos or DVDs before the
measurements?_ Less frequently than weekly_

Cluster C B15 How many times a week did your child listen to music from CD:s (without visualization) before the
measurements?_ Less frequently than weekly_

Cluster D B4 Does your child sing at home? If yes, how often?1

Cluster E E0 How many times in a week does the child have music lessons at school/daycare?

Cluster F b11a How many times a week has your child been listening to music (CDs, DVDs, television) on his/her free time (at
home, car journeys etc.) during the last year?_ Less frequently than weekly _
b11b How many times a week has your child been listening to music (CDs, DVDs, television) on his/her free time (at
home, car journeys etc.) before the last year?_ Less frequently than weekly _

Cluster G B13 How many times a week did your child watch (and listen to) children’s programs, videos or DVDs that had
singing and other music in the background before the previous measurements?_ Less frequently than weekly _

Cluster H
b7 Has your child had a supervised music hobby already previously for example in a music school? What kind of hobby
was it? (e.g. musical play school, rhythm group, band, playing an instrument). For how many months has your child
had the hobby?

Cluster I E4 How many minutes in a week does the child have music lessons/singing at school/daycare?

Cluster J b10 Has your child attended other supervised musical activities outside the home? (e.g. ballet, other dance, rhythmic
gymnastics, aerobics)? For how many months approximately has the child attended the activities?

Children with CIs, df  = 17; Normal hearing children, df = 20 – 24; * p ≤ .050; ** p ≤ .010; *** p < .001; b = question at
T1; B = question at T2; B and b were answered by parents; E =  was answered by personnel at school or daycare; 1Every
 week_ every other week _ occasionally_ not at all_ if weekly, how many times a week; 2Based on van Besouv et al, 2010.
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