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Abstract
The adverse effects of alcohol consumption during pregnancy are known, but the molecular

events that lead to the phenotypic characteristics are unclear. To unravel the molecular

mechanisms, we have used a mouse model of gestational ethanol exposure, which is

based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation

(GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to

the developmental stage early in the fourth week post-fertilization in human. During this ex-

posure period, dynamic epigenetic reprogramming takes place and the embryo is vulnera-

ble to the effects of environmental factors. Thus, we hypothesize that early ethanol

exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations

in gene regulation and life-long changes in brain structure and function. Genome-wide anal-

ysis of gene expression in the mouse hippocampus revealed altered expression of 23

genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28.

We confirmed this result by using two other tissues, where three candidate genes are

known to express actively. Interestingly, we found a similar trend of upregulated gene ex-

pression in bone marrow and main olfactory epithelium. In addition, we observed altered

DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus.

Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring

(P60): we detected ethanol-induced enlargement of the left hippocampus and decreased

volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation

can cause changes in DNA methylation, gene expression, and brain structure of offspring.

Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced

disorders: changes in gene regulation may have already taken place in embryonic stem

cells and therefore can be seen in different tissue types later in life.
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Introduction
Exposure to an adverse environment during pregnancy can harm the developing fetus and
have life-long effects on the individual’s health and wellbeing. Maternal alcohol consump-
tion during pregnancy is a leading cause of nongenetic mental retardation and birth defects
in the Western world [1], [2]. It can produce fetal alcohol spectrum disorders (FASD), which
is an umbrella term for all alcohol-related neurodevelopmental disorders and birth defects.
Fetal alcohol syndrome (FAS) with growth restriction, craniofacial dysmorphology, and cen-
tral nervous system defects represents the most severe end of the FASD continuum. There
are several factors contributing to the complex phenotype of alcohol-induced disorders, such
as genetic susceptibility, drinking pattern, amount of alcohol, and timing of drinking [3].
Alcohol consumption during early embryogenesis, particularly the time frame around
gastrulation when pregnancy may be unknown, has been shown to lead to a high FAS inci-
dence [4], [5], [6].

There is growing evidence to support that the epigenome mediates gene-environment inter-
actions [7], but the molecular mechanisms linking disorders and early life events are unclear.
Previous animal studies have shown that ethanol exposure during embryonic development can
affect gene expression via epigenetic modifications, such as DNA methylation [8], [9], [10],
[11] and non-coding RNAs [11]. The beginning of embryonic development is a period of high
DNA synthetic rate and dynamic epigenetic reprogramming [12], [13]. This period appears to
be particularly vulnerable to the effects of environmental factors [9], [14], [15], [16], [17], [18]
and disruption of these processes can have long-term effects on development [9], [19], [20].

We hypothesize that early gestational ethanol exposure alters the epigenetic reprogramming
of the embryo, which leads to alterations in gene regulation and embryonic development, and
causes life-long changes in brain structure, function, and behaviour. Previously, we have devel-
oped a mouse model of early gestational ethanol exposure, based on maternal ad libitum inges-
tion of 10% (v/v) ethanol between gestational days 0.5–8.5 [9]. This period encompasses pre-
implantation, implantation, gastrulation, and the beginning of neurulation. This exposure is
considered moderate and chronic, and the exposure period is developmentally equivalent to
the first three-four weeks of human pregnancy (clinical gestation age from week three to the
beginning of week six). To keep maternal stress as low as possible, we have used mouse strain
C57BL/6, which has a strong drinking preference for 10% alcohol [21], [22].

Our previous study demonstrated, for the first time, that ethanol can cause permanent
changes to the phenotype of offspring by altering the epigenotype of the early embryo [9]. We
discovered that exposure to ethanol increases the DNA-methylation and probability of tran-
scriptional silencing of an epigenetically sensitive allele Agouti viable yellow (Avy) in the off-
spring. The exposure also caused significant gene expression changes in their liver tissue. The
phenotype of the offspring was highly variable, but reminiscent of human FAS with craniofa-
cial dysmorphology and postnatal growth restriction [9], [19]. Increased hyperlocomotion and,
unexpectedly, significant improvement in spatial memory in a water maze has also been ob-
served in this mouse model [20].

The aim of this study was to characterize potential changes in the epigenetic regulation of
genes in hippocampi caused by early gestational ethanol exposure. The hippocampus is known
to be particularly vulnerable to the effects of ethanol. Previous rodent studies have shown that
prenatal exposure can reduce the number of hippocampal cells [23], [24], [25], decrease neuro-
genesis [26], [27], and alter the morphology of neurons [28], [29]. We wanted to see if our ex-
posure is capable of inducing changes in the DNAmethylation of other genes along with the
epigenetically-sensitive Avy, leading to altered gene expression. By using a genome-wide gene
expression array we found altered expression of 23 genes and three microRNAs in the
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hippocampi of ethanol-exposed adolescent male offspring at postnatal day (P) 28. We also
found site-specific changes in DNA methylation in three CpG islands.

To confirm our array results in hippocampus and to prove our hypothesis of early changes
in gene regulation, we tested if similar changes can be detected in gene expression in other tis-
sues. The epigenetic changes in the early embryo that occur prior to cell differentiation are am-
plified during development by cell divisions, and thus affect numerous cells of different tissue
types in the fully grown organism. We selected three candidate genes of which two, Olfr601
andH2-M10.3, are known to be expressed actively in the main olfactory epithelium (MOE)
and one, Vpreb2, in bone marrow. Interestingly, we observed significant ethanol-induced upre-
gulated gene expression in two genes in these three tissues.

This chronic and moderate early gestational ethanol exposure pattern has previously dem-
onstrated distinct phenotypic effects in offspring, but thus far the impact on the structures of
the central nervous system remains unclear. To determine the effects on neuronal development
that ultimately lead to alterations in offspring brain structure, we performed magnetic reso-
nance imaging (MRI) for adult male offspring (P60) and observed changes in the volumes of
hippocampus, olfactory bulb (OB), and ventricles. Most interestingly, we found asymmetry in
the volumes of the brain structures: left hippocampus was significantly larger and left OB
smaller in the ethanol-exposed offspring.

Materials and Methods

Ethic Statement
All the animals were handled and maintained with instructions, orders and ethical principles
of EU-directive (European Union). All animal work was approved by the Animal Experiment
Board in Finland (ESAVI/3312/04.10.03/2011, ESAVI/976/04.10.07/2013).

Study design and animals
The mice in this study were inbred, genetically identical, C57BL/6J Rcc (Harlan, Netherlands).
The experiments were performed in two animal houses, where all environmental factors (e.g.
cage type, environmental enrichment) were standardized for both experimental groups. In
total, 18 control (123 offspring, 74 male offspring), 19 ethanol-exposed (137 offspring, 75 male
offspring) and 19 cross-fostering control dams were used in this study. Ethanol exposure did
not significantly alter litter size (control 6.8±1.6, ethanol-exposed 7.2±1.9, mean±SD, Student’s
t-test p = 0.5). The females (8–10 weeks old) were caged with males and the day of plugging
was designated gestational day (GD) 0.5. The male was removed from the cage and the water
bottle was replaced with a bottle containing 10% (v/v) ethanol. The ethanol solution was
changed and consumption was measured every 24 hours. The average daily consumption of
10% ethanol during GD 0.5–8.5 was 3.2±0.6 (mean±SD) ml/mouse/day (or 12g±2.6g ethanol/
kg body weight/day). It has been shown that in female mice, consumption of 10% (w/v) ethanol
at 14 g ethanol/kg body weight/day produces an average peak blood alcohol level of�120mg/
dl [30]. A 0.12% blood alcohol level, or approximately 0.10% like in this study, is a realistic
human exposure considering that the maximum legal blood alcohol level for driving in Organi-
zation for Economic Cooperation and Development (OECD) countries varies from 0.02–
0.08% [31]. Pregnant females were allowed free access to the 10% ethanol bottle and food at all
time, but water was not available during the exposure period. On the final day of exposure,
(GD8.5) the ethanol bottle was replaced with a bottle of tap water. The control females drank
tap water through the whole procedure.

A cross-fostering procedure was used to exclude potential alcohol-induced changes in ma-
ternal behaviour or care, which could affect the offspring epigenome. The litter from the
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ethanol-exposed dam was transferred into the cage of the control dam and vice versa within
one day of birth. Cross-fostering control offspring were not used as controls in our study. The
offspring were left with the dams until weaning at 3 weeks of age. To avoid the potential effects
of hierarchy for gene expression in the brain we housed offspring individually for a week.
Four-week-old (P28) offspring were sacrificed by cervical dislocation and hippocampi, olfacto-
ry bulbs, main olfactory epithelium, and bone marrow from hind-limb bones were dissected.
Male mice designated for MRI were housed with male siblings for 5.5 weeks after weaning until
anaesthetized and perfused as adults (P57-P60, mainly P60).

Expression studies
Gene Expression Array. For the expression array the hippocampus RNA was extracted

by using AllPrep DNA/RNA/Protein Mini Kit and miRNeasy Mini Kit (Qiagen, Valencia,
CA, USA). The quality was confirmed by BioAnalyzer (Agilent RNA 600 Nano, Agilent, Ger-
many) and only samples with RNA Integrity Numbers (RINs) above 9 were accepted. The
Affymetrix Mouse Exon 1.0 ST Array was used to analyse gene expression in the hippocampi
of five control and five ethanol-exposed four-week-old male offspring (from two and three lit-
ters, respectively).

The exon array probe expression values were normalized first with the MEAP algorithm
[32], [33], [34] followed by background and noise corrections. The normalized probe signals
were transformed into gene expression values using MEAP. The analysis was done in the freely
available Anduril computational framework [35]. Differential gene expression analysis was
performed with statistical significance (Student’s t-test) and fold-change. Genes with nominal
p-value less than 0.05 and fold-change (log2-space) more than 1.5 were considered to be
differentially expressed.

Quantitative real-time PCR. The hippocampus, main olfactory epithelium, and bone
marrow RNA for TaqMan procedure was extracted by AllPrep DNA/RNA/Protein Mini Kit or
NucleoSpin RNA II kit (hippocampus) (Qiagen, Valencia, CA, USA and Macherey-Nagel,
Düren, Germany), Allprep DNA/RNAMini Kit (MOE) (Qiagen, Valencia, CA, USA), and
TRIzol Reagent (bone marrow) (Ambion, Carlsbad, CA, USA). After DNAse treatment (RQ1
RNase-Free DNase, Promega, Madison, WI, USA), cDNA synthesis was performed by using
the iScript cDNA Synthesis Kit (BIO-RAD Laboratories, Hercules, CA, USA). TaqMan was
performed by using TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA,
USA) and iTaq Universal Probes Supermix kit (BIO-RAD, Laboratories, Hercules, CA, USA).
Reaction conditions were as specified by Applied Biosystems. Taqman Assays used for analysis
were Olfr601 (Mm01280848_s1), H2-M10.3 (Mm01277728_g1), and Vpreb2
(Mm00785621_s1), and housekeeping gene Rps16 (Mm01617542_g1) as a reference gene for
both: MOE and bone marrow. According to our experiments and previous alcohol studies,
Rps16 was a convenient reference gene for this study [36].

MOEs from 10 control and 10 ethanol-exposed offspring (males from 7 and 5 litters, respec-
tively) were used in TaqMan procedures for Olfr601 and nine controls and nine ethanol-ex-
posed offspring (males from 5 and 4 litters, respectively) for H2-M10.3 (Fig 1). Five control
and five ethanol-exposed offspring (males from 4 and 3 litters, respectively) were used in Taq-
Man for Vpreb2 in bone marrow. The qPCR was performed by using the Applied Biosystems
7500 Fast Real Time PCR System (Applied Biosystems, Carlsbad, CA, USA), samples were ana-
lysed in triplicates and relative values of expression of genes of interest were determined for
each sample using the ΔΔCt method [37]. One tailed Student’s t-test was used to assess differ-
ences in relative gene expressions in controls and ethanol-exposed samples.
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Methylation studies
For bisulfite sequencing, hippocampus and MOE samples were extracted using commercial
kits (AllPrep DNA/RNA/Protein Mini Kit and Allprep DNA/RNAMini Kit, Qiagen, Valencia,
CA, USA and NucleoSpin RNA II kit, Macherey-Nagel, Düren, Germany) and standard phe-
nol-chloroform protocol. Prior to bisulphite conversion, some hippocampus samples extracted
by commercial kits were cleaned by Genomic DNA Clean and Concentrator kit (Zymo Re-
search, Irvine, CA, USA). MOE DNA was cleaned by Proteinase K (Macherey-Nagel, Düren,
Germany) and Genomic DNA Clean and Concentrator kit (Zymo Research, Irvine, CA, USA).
Sodium bisulphite conversion of hippocampus and main olfactory epithelium DNA was car-
ried out using the EZ methylation kit (Zymo Research, Irvine, CA, USA). For each mouse, one
to two bisulphite conversions and 1–2 independent PCR reactions were performed. PCR prim-
ers (Sigma-Aldrich, Helsinki, Finland) were designed by using the MethPrim program (The Li
Lab, Department of Urology, UCSF) (S1 Table) and the AmpliTaq Gold PCR kit (Applied Bio-
systems, Carlsbad, CA, USA) was used according to the manufacturer´s protocol. 2 μl of bisul-
phite treated DNA was used as a template in 25 μl PCR reactions. PCR conditions were: 95°C
10 min; 40 cycles of 95°C 35 s, 56–60°C 35 s (depending on primers), 72°C 1 min; followed by
72°C 10 min. Nested PCR with 0.5 μl -2 μl of template and 35 cycles were used for some PCR
fragments (S1 Table). PCR fragments were gel-isolated with NucleoSpin Gel and PCR Clean-
up kit (Macherey-Nagel, Düren, Germany) and ligated into the pGEM-T Vector system I (Pro-
mega, Madison, WI, USA). Transformation was performed by using standard protocol with
100 μl of DH5α competent cells (Invitrogen, Carlsbad, CA, USA) on ampicillin (100 μg/ml)
LB-plates equilibrated with IPTG (Bioline, Taunton, MA, USA) and X-Gal (Promega,
Madison, WI, USA). White bacterial colonies were increased in 2 ml of LB and 20 μl of ampi-
cillin (100 μg/ml) overnight. Plasmids were extracted by using NucleoSpin Plasmid and Plas-
mid EasyPure kits (Macherey-Nagel, Düren, Germany) and sequenced in the Institute for
Molecular Medicine Finland (Helsinki, Finland).

Six CpG islands of five candidate genes differentially expressed in ethanol-exposed offspring
in hippocampus expression arrays were bisulphite sequenced: Olfr110 (7 control and 7 ethanol-
exposed offspring, males from 5 and 6 litters, respectively, average amount of clones per mouse
was 9), Olrf601 (10+8 offspring, males from 4 and 4 litters, on average 10 clones/mouse),
Vmn2r64(1) (8+8 offspring, males from 4 and 4 litters, on average 10 clones/mouse), Vmn2r64
(2) (7+7 offspring, males from 5 and 6 litters, respectively, on average 9 clones/mouse), Vpreb2
(6+6 offspring, males from 3 and 4 litters, respectively, on average 9 clones/mouse), and
Hist1h2ai (6+5 offspring, males from 4 and 3 litters, respectively, on average 7 clones/mouse).

Fig 1. Effects of gestational alcohol exposure on gene expression in main olfactory epithelium and bonemarrow.Quantitative PCR studies showed
increased expression ofOlfr601 in main olfactory epithelium (MOE) and Vpreb2 in bone marrow (*p<0.05 and ***p<0.001, respectively, one-tailed Student’s
t-test) of ethanol-exposed (EtOH) offspring relative to reference gene Rps16. Expression ofH2-M10.3 was not significantly changed in MOE (p = 0.35, one-
tailed Student’s t-test). Each dot represents an individual four-week-old (P28) male mouse. Bars are averaged values ± SD.

doi:10.1371/journal.pone.0124931.g001
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Hist1h2ai has a long CpG island covering the whole gene-body and promoter region, from
which we investigated 43 CpGs (Fig 2). One CpG island of Olfr601 in MOE (5+5 offspring,
males from 3 and 3 litters, on average 9 clones/mouse) was also sequenced (Fig 3F). Sequences
were analyzed with BiQ Analyzer [38]. Any clones with lower than 90% conversion rate were
excluded from the dataset. The information of CpG-islands was based on the data of the Na-
tional Center for Biotechnology. Two additional CpG sites for Vmn2r64(2) were found (CpG9
and CpG10 in Fig 4B). CpG content in the islands was about 50% or above. Non-parametric
Mann-Whitney’s analysis was used to calculate the difference in both, overall DNAmethylation
of CpG islands and site-specific DNAmethylation between two experimental groups.

Magnetic resonance imaging (MRI)
Tissue preparation. Control (n = 8 males from 4 litters) and ethanol-exposed (n = 13

males from 4 litters) mice (P60) were first anaesthetised with an overdose of 100–200 mg/kg
pentobarbital (Mebunat, Orion Pharma, Espoo, Finland) i.p. In a deep anaesthesia the mice
were transcardially perfused first with 1x phosphate buffered saline (PBS) for 5–10 min fol-
lowed by 4% paraformaldehyde in 0.1 M PBS, pH 7.4 (5 ml/min, 4°C) for 10 min. The brain
was removed from the skull and postfixed in 4% PFA overnight. After this it was washed in
0.9% NaCl for at least 24 h before MRI. Before ex vivoMRI, all the brains were immersed in
perfluoropolyether (Galden HS240, Ausimont, Milano, Italy) to avoid signal from the solution.

Data acquisition and analysis. MRI experiments were carried out in a vertical 9.4 T mag-
net (Oxford Instruments PLC, Abingdon, UK) interfaced to a Varian DirectDrive console
(Varian Inc, Palo Alto, CA) using a quadrature volume RF-coil (diameter 20 mm, Rapid Bio-
medical GmbH, Rimpar, Germany) for transmitting and receiving. Diffusion tensor imaging
(DTI) data were acquired using a diffusion-weighted spin echo sequence (TR = 1.0 s and

Fig 2. Schematic structures of five candidate genes with six CpG islands. Five candidate genes with six
CpG islands were chosen for bisulphite sequencing: Vomeronasal type 2 receptor 64 (Vmn2r64, 2 CpG
islands (1 and 2),Olfactory receptor genes 110 (Olfr110) and 601 (Olfr601), Pre-B lymphocyte gene 2
(Vpreb2), and Histone cluster 1 H2ai (Hist1h2ai). Exons are illustrated in black and CpG islands in white. The
bisulphite sequenced part of CpG island of Hist1h2ai is illustrated in grey.

doi:10.1371/journal.pone.0124931.g002
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TE = 26 ms) using 12 diffusion weighting directions with the following parameters: δ = 4.5 ms,
Δ = 17 ms and b-value = 1000 s/mm2, and one data set without diffusion weighting. The FOV
of 20 x 10 x 10 mm3 was covered with a 128 x 64 x 64 points. Data were zero padded to 256 x
128 x 128 points resulting in spatial resolution of 78.1 x 78.1 x 78.1 μm3. Total scan time was
15 hours.

All data were corrected for eddy current distortions [39], [40] using the FMRIB Software Li-
brary (FSL 4.0) software (http://www.fmrib.ox.ac.uk/fsl/). We calculated the diffusion tensor,
and the eigenvectors and eigenvalues obtained from the diffusion tensor were used to create
maps of fractional anisotropy (FA) [41].

Fig 3. DNAmethylation levels of CpG islands of five candidate genes in control and ethanol-exposed offspring.DNAmethylation levels of CpG
islands in Vmn2r64 [A: upstream CpG island (1) and B: CpG island in gene-body (2)],Olfr110 (C, upstream), Vpreb2 (D, in gene-body), and Olfr601 (E, in
gene-body) in hippocampus (HC) andOlfr601 (F, in gene-body) in main olfactory epithelium (MOE). Each dot represents an average of methylation percent
of clones in a particular CpG island from individual control or ethanol-exposed (EtOH) male offspring (P28).

doi:10.1371/journal.pone.0124931.g003
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The volumetric analysis was performed on FA maps using in-house built AEDES Matlab
software (http://aedes.uef.fi/) (Matlab R2012a). FA maps provided an excellent tissue contrast
to outline manually anatomical brain areas selected in this study. We measured total brain vol-
ume included cerebrum (olfactory bulbs (OB), basal ganglia, limbic system and cortex), thala-
mus, midbrain and cerebellum. As selected brain areas, we calculated the volumes of lateral
ventricles, hemispheres, hippocampi, olfactory bulbs, and cerebellum. Their volumes were nor-
malized to the total brain volume. Body weight, and whole brain and left/right hemispheres
volumes were used as such in the calculations. Cohen´s d was calculated to study the effect size
between controls and ethanol-exposed mice considering large effect size d values�0.8 or�-0.8

Fig 4. Site-specific DNAmethylation levels of six CpG islands in control and ethanol-exposed offspring (P28). Site-specific methylation levels of
Vmn2r64 [A: upstream island (1) and B: CpG island in gene-body (2)],Olfr110 (C, upstream), Vpreb2 (D, in gene-body), and Olfr601 (E, in gene-body) in
hippocampus (HC) andOlfr601 (F, in gene-body) in main olfactory epithelium (MOE). The methylation levels of CpG1 in Vmn2r64 (1)(A), CpG3 inOlfr110 (C),
and CpG1 inOlfr601 (E) were significantly changed between the two experimental groups (*p<0.05, Mann-Whitney). Notable changes are marked by
diamonds (♦): CpG4 and CpG5 inOlfr110 (p = 0.07 and p = 0.11, Mann-Whitney, respectively). Controls are illustrated in white and ethanol-exposed offspring
in grey bars.

doi:10.1371/journal.pone.0124931.g004
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[42]. Positive d values indicated increase in volume when negative d values showed decrease in
volume after ethanol exposure.

Results

Early gestational ethanol exposure leads to altered gene expression in
adolescent hippocampus, bone marrow and main olfactory epithelium
To detect genome-wide changes in gene expression in hippocampus, we performed expression
arrays for four-week-old C57BL/6JRcc male mice from gestational ethanol group (five samples)
and controls (five samples). We discovered altered gene expression of 23 genes and three
microRNAs (nominal p-values<0.05, FC�1.5) (Table 1).

Functionally, the most interesting gene on the array was Histone cluster 1 H2ai (Hist1h2ai),
a linker histone that interacts with linker DNA between nucleosomes, affecting the compaction
of chromatin structure. There were also two interesting differentially expressed microRNAs:
miR290 andmiR138-2 (Table 1).miR290 is associated with gene regulation in the early embryo

Table 1. Altered gene expression of 23 genes and three microRNAs in hippocampus of ethanol-exposed offspring (P28).

Upregulated genes:
Gene p-value fold change Gene name Location MGI ID

Defb14 0.017 1.7 defensin beta 14 8 A1.3 8 2675345

Olfr937 0.048 1.6 olfactory receptor 937 9 A5 3030771

Cxcr1 0.012 1.6 chemokine (C-X-C motif) receptor 1 1 C3 2448715

H2-M10.3 0.03 1.5 histocompatibility 2, M region locus 10.3 17 B1 1276524

Krtap6-1 0.038 2.1 keratin associated protein 6–1 16 C3.3 1330228

Vpreb2 0.013 1.6 pre-B lymphocyte gene 2 16 A3 98937

Tas2r124 0.006 1.6 taste receptor, type 2, member 124 6 G1 2681267

Olfr601 0.005 1.7 olfactory receptor 601 7 E3 3030435

Mir138-2 0.023 1.5 microRNA 138–2 8 C5 3618733

Gm7168 0.015 3.7 predicted gene 7168 17 A2 3643198

Olfr553 0.01 1.7 olfactory receptor 553 7 E3 3030387

Obox5 0.039 1.6 oocyte specific homeobox 5 7 A2 2149035

Olfr1305 0.0003 1.7 olfactory receptor 1305 2 E5 3031139

Mir290 0.01 1.9 microRNA 290 7 A1 3711323

Mup18 0.022 1.7 major urinary protein 18 4 B3 3705220

Ssxb8 0.014 1.8 synovial sarcoma, X member B, breakpoint 8 X A1.1 2446777

Downregulated genes:

Gene p-value fold change Gene name Location MGI ID

Olfr967 0.018 0.6 olfactory receptor 967 9 A5.1; 9 3030801

Olfr51 0.012 0.6 olfactory receptor 51 11 B1.3 1333747

Mir16-2 0.032 0.6 microRNA 16–2 3 E1 3618690

C87414 0.041 0.4 expressed sequence C87414 5 E2 2141341

Hist1h2ai 0.023 0.6 histone cluster 1, H2ai 13 A3.1 2448457

Gm904 0.014 0.5 predicted gene 904 13 A5 2685750

Gm15632 0.048 0.5 predicted gene 15632 15 A1 3783076

Krtap27-1 0.004 0.6 keratin associated protein 27–1 16 C3.3 3646229

Olfr110 0.034 0.6 olfactory receptor 110 17 B1 2177493

Vmn2r64 0.032 0.4 vomeronasal type 2 receptor 64 7 B4 3646456

Nominal p-values <0.05, FC � 1.5.

doi:10.1371/journal.pone.0124931.t001
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and the maintenance of the pluripotent cell state [43], [44] andmiR138, the mature form of
miR138-2, is associated with the size of dendritic spines in rat hippocampal neurons [45].

The group of genes with altered expression consists of a number of G-protein coupled che-
mosensory receptors: olfactory receptor genes, which are actively expressed in main olfactory
epithelium (Olfr937, Olfr967, Olfr51, Olfr601, Olfr553, Olfr1305, Olfr110) and vomeronasal re-
ceptor gene (Vmn2r64), which is known to be expressed in the epithelium of the vomeronasal
organ. Taste receptor, type 2,member 124 (Tas2r124) is expressed actively in taste receptor cells
in tongue and palate. Three of the up-regulated genes, defencing beta 14 (Defb14), chemokine
(C-X-C motif) receptor 1 (Cxcr1) and pre-B lymphocyte gene 2 (Vpreb2), are known to be in-
volved in the function or development of the immune system. H2-M10.3 belongs to the major
histocompatibility complex class Ib molecules, but not to the family of classical class I MHC
genes, which present antigens to cytotoxic T cells.H2-M10 genes have been observed to have
complex and nonrandom combinations of coexpressions in neurons with vomeronasal receptor
genes (Vmn2r) [46], [47]. A recent study has shown that H2-M10 genes are required for ultra-
sensitive chemodetection by a subset of vomeronasal sensory neurons [48].

The expression levels of the differentially expressed genes observed in hippocampus were
low and impossible to verify by quantitative PCR (TaqMan). To verify our array results we in-
vestigated if similar upregulated expression of Olfr601 and H2-M10.3 can be seen in both, hip-
pocampus and MOE, and Vpreb2 in hippocampus and bone marrow. Interestingly, we
observed significant upregulated expression in two of the three genes in the tested tissues of
ethanol-exposed offspring, Olfr601 in MOE and Vpreb2 in bone marrow (p = 0.04 and
p<0.001, respectively, one-tailed Student’s t-test) (Fig 1). No significant difference was ob-
served for H2-M10.3 expression between ethanol-exposed and control offspring in MOE
(p = 0.35, one-tailed Student’s t-test).

Altered site-specific DNAmethylation in ethanol-exposed offspring
To obtain information about the epigenetic status of the array candidate genes we performed
bisulphite sequencing for six CpG islands of five differentially expressed candidate genes. Two
of the candidate genes, Olfr110 and Vmn2r64, have CpG islands upstream of the genes and
Vmn2r64, Vpreb2, and Olfr601 have CpG islands in the gene-body (Fig 2). CpG islands of all
the genes except Hist1h2ai were highly methylated in both experimental groups (Fig 3). The
averages of total methylation levels of all clones were reminiscent and there were no significant
differences between ethanol-exposed offspring and controls (Fig 3). There was no difference in
DNAmethylation between ethanol-exposed and control offspring in Hist1h2ai either: in both
groups the CpG region that we investigated was hypomethylated.

In addition to overall DNA methylation of CpG islands, we calculated the CpG site-specific
DNAmethylation in each CpG island (Fig 4). In ethanol-exposed offspring, we observed nota-
ble hypermethylation in one CpG site in a CpG island upstream of Vmn2r64 (CpG1 p = 0.019,
non-parametric Mann-Whitney) (Fig 4A), in addition to hypomethylation in one CpG site
(CpG3 p = 0.023, Mann-Whitney), and hypermethylation in the next two CpG sites (CpG4
p = 0.07, CpG5 p = 0.11, Mann-Whitney) in an island upstream of Olfr110 (Fig 4C). The ex-
pressions of both genes were downregulated in ethanol-exposed offspring. Furthermore, we
found a significantly altered CpG site in exonic CpG island in Olfr601 (CpG1 p = 0.038, Mann-
Whitney) (Fig 4E). This CpG site is hypomethylated and the gene expression is upregulated in
hippocampus of ethanol-exposed offspring.

In addition to the hippocampus, we detected significantly upregulated expression of Olfr601
also in MOE of ethanol-exposed offspring (Fig 1). Due to this, we also sequenced an exonic
CpG island of Olfr601 in MOE to find potential similar changes in DNAmethylation caused
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by gestational ethanol-exposure. We did not observe similar significant ethanol-induced
changes in DNA methylation in the hippocampus and MOE, suggesting that this particular ex-
onic CpG site itself does not affect the regulation of Olfr601 expression (Fig 4F).

Structural brain abnormalities in ethanol-exposed offspring
MRI was performed for 8 control and 13 ethanol-exposed male offspring (P60). The offspring
exposed to ethanol showed a reduced body weight as compared to controls (d = -1.42) (Fig 5).

We found a small decrease in total brain volume (d = -0.29) after ethanol exposure (Fig 5).
We measured the effect of ethanol exposure on the size of the hippocampus, OB, ventricles and
cerebellum after normalizing their volumes to total brain volume. These regions have been the
most severely affected in earlier studies overlapping our ethanol exposure period [42], [49],
[50], [51]. There was a large increase in the volume of the hippocampi (d = 0.84), slightly in-
creased lateral ventricular volume (d = 0.65) and a large decrease in OB (d = -0.85) in ethanol-
exposed mice (Fig 5). These regions showed asymmetric changes between hemispheres: the left
hemisphere exhibited larger changes, such as a large increase in volume in the left hippocam-
pus (d = 1.32) and left ventricle (d = 0.83) and a large decrease in left OB (d = -1.40) (Fig 5).
We found a small decrease in the volume of both hemispheres without the contribution of the
lateral ventricles (d = -0.24), however, individual hemispheres showed slight asymmetric
changes (left: d = -0.27; right: d = -0.18) (Fig 5). No differences were seen in cerebellar volume
between controls and ethanol-exposed offspring (d = -0.02).

Examples of increase in ventricular volume are shown in Fig 6. Control mice showed small
lateral ventricular volume as compared to ethanol-exposed mice (Fig 6A and 6D), which varied
between animals (Fig 6B,6C and 6E,6F). The most relevant volumetric findings are presented
in Fig 7. Left hippocampal volume in ethanol-exposed mice was significantly higher as com-
pared to that in control mice (p<0.05, Mann-Whitney) and to the right hippocampus in the

Fig 5. Effect of ethanol exposure on brain regional volumes obtained fromMRI images, and body weight.Cohen´s d was calculated to study the effect
size between controls and ethanol-exposed adult male offspring (P60). Large effect size was considered when d values were� 0.8 (increase in volume) or�
-0.8 (decrease in volume) after ethanol exposure (dashed line on d = ± 0.8).

doi:10.1371/journal.pone.0124931.g005
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same animals (p<0.001, Wilcoxon test) (Fig 7A). Left olfactory bulb volume was found to be
significantly lower as compared to that in control mice (p<0.05, Mann-Whitney) (Fig 7B). The
ventricular volumes of both hemispheres appeared slightly larger than those in control mice,
however, no significant differences were found (Fig 7C).

Discussion

Altered DNAmethylation and gene expression in ethanol-exposed
offspring
We carried out gene expression arrays for the hippocampus of four-week-old male offspring.
According to our hypothesis, alcohol-induced alterations in the epigenome and gene expres-
sion in early stage of development are permanent and can be observed later in life. Because the
expression profile of a cell and a tissue depends on its function and developmental period, it is
challenging to catch primary alterations in gene expressions later in development. Due to that,
we took into consideration even very weakly expressed genes on our arrays despite the difficul-
ties to confirm these alterations with other methods.

Fig 6. 3D visualization of the ventricular volumes of control and ethanol-exposedmice (P60). The top
panel shows lateral ventricles of a control (A) and two ethanol-exposed mice (B and C). Fractional anisotropy
maps of the same animals are shown in the panel below (D-F). Red line outlines the left ventricle.

doi:10.1371/journal.pone.0124931.g006

Fig 7. Altered volumes of left and right hippocampi, olfactory bulbs, and lateral ventricles of ethanol-exposed offspring.Wilcoxon test was used to
access left-right differences within the same animals (#) and Mann-Whitney test to compare control and ethanol-exposed (EtOH) mice (*). #/*p<0.05 and
###p<0.001. Each dot represents an individual adult male mouse (P60). Control mice are illustrated in black and ethanol-exposed offspring in grey. Bars are
averaged values ± SD.

doi:10.1371/journal.pone.0124931.g007
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The microarrays revealed 23 candidate genes and three miRNAs: 15 of the 23 candidate
genes belong to gene families that have been associated with gestational ethanol exposure in
previous mouse studies. The transcript levels of Cxcr3, Defb15, Defb30, Krtap4-7, Tas2r126,
and Vmn2r54 have been reported to increase in the whole brain of C57BL/6J adult (P70) male
mice that were exposed to maternal 10% ethanol consumption before fertilization, throughout
gestation, and ten days after birth (P10) [52]. In addition, Hist1h3a,Hist1h4i, andHist3h2a
were all reported to downregulate in embryos that were cultured and treated with alcohol for
46 hours at early neurulation (E8.25) [53]. Despite different timings and doses of ethanol expo-
sure, the directions of altered expression of our candidate genes (Cxcr1, Defb14, Krtap6-1,
Tas2r124, Hist1h2ai) and genes in the same families mentioned above, were similar. Only in
one of the genes, Vmn2r64, the direction of change was opposite when compared with its fami-
ly member Vmn2r54 in the earlier study [52]. Members of olfactory receptor (Olfr) and keratin
associated protein (Krtap) gene families were both up- and downregulated on our array, which
suggests that the location and structure of chromatin could determine the effect of ethanol on
gene expression. Another whole mouse-embryo culture study also revealed significant changes
in DNA methylation in a large number of olfactory receptor genes and decreased methylation
inHist1h3d [8], which made olfactory receptor genes andHist1h2ai on our expression array
plausible candidate genes for methylation studies. In addition, Liu and colleagues observed a
considerable amount of alcohol-induced changes in DNAmethylation on chromosome 7 [8],
the most common location for our candidate genes: five of our 26 candidate genes and miR-
NAs are located on this chromosome.

Hist1h2ai, the most distinctive candidate gene considering its function, had a lower expres-
sion level in ethanol-exposed offspring. We examined only a part of a long CpG island, which
was hypomethylated in both experimental groups. The expression arrays revealed seven differ-
entially expressed olfactory receptor genes (Olfrs) in hippocampus of ethanol-exposed off-
spring. Olfrs detect volatile chemicals leading to the initial perception of smell in the brain. The
members of this large gene family are expressed normally in a monogenic and monoallelic fash-
ion in olfactory sensory neurons in MOE. Their expression is regulated in a specific epigenetic
manner, which has been compared to phenomena like genomic imprinting or X-chromosome
inactivation. It has been suggested thatOlfrs are silenced in MOE by hallmarks of constitutive
heterochromatin and at a later stage an enzymatic activity removes these hallmarks from a sto-
chastically chosen allele, allowing its transcriptional activity [54]. In addition to MOE, Olfrs are
known to also express in other tissues, such as brain, but their function remains unclear [55].

We searched for potential changes in DNAmethylation of Olfr110 and Vmn2r64. They
were both downregulated in our hippocampus array in ethanol-exposed offspring and both
have upstream CpG islands. Although the overall methylation level of the CpG islands was
similar between the experimental groups, we observed ethanol-induced CpG site-specific alter-
ations in four sites. These upstream regions could have a role in gene regulation, for example as
enhancers. Hypermethylated sites in both regulatory regions can disturb the binding of tran-
scription factors and thus slightly suppress gene expression. Although there is earlier evidence
of site-specific DNA methylation associating with decreased transcription [56], [57], functional
experiments will be needed to clarify whether these alterations in DNAmethylation are capable
of reducing the transcription of Vmn2r64 and Olfr110.

Expression array results are supported by our TaqMan study. Regardless of the difference be-
tween cell types and epigenetic profiles in these three tissues, it was possible to detect significant-
ly upregulated expression in two of the three tested genes. Olfr601 was upregulated in both the
hippocampus andMOE of ethanol-exposed offspring. Vpreb2 was upregulated in the hippocam-
pus and startlingly overexpressed in bone marrow. Vpreb2 is one of two mouse pre-B lymphocyte
genes, Vpreb1 and Vpreb2, that are involved in B-cell development. A previous study has shown
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that the expression of Vpreb2 is significantly lower compared to Vpreb1 and it is not needed for
the normal development of B cells [58]. Due to the unclear function of Vpreb2, further research
is needed to clarify if this alteration is caused by alcohol-induced activation of the immune sys-
tem or dysfunction of epigenetic gene regulation caused by gestational ethanol exposure.

We observed higher methylation in ethanol-exposed offspring in the exonic CpG island of
the upregulated Vpreb2 in the hippocampus. Gene-body DNA hypermethylation has been ob-
served to correlate positively with gene expression levels in previous studies [59], [60]. However,
we cannot rule out hydroxymethylation, which has recently been found; especially in embryonic
stem cells, adult nervous system, and bone marrow [61], [62]. It has been suggested that hydro-
xymethylation has a role in DNA demethylation and enhanced gene expression level [63], [64].

Changes in brain structure caused by gestational alcohol exposure
The most interesting finding concerning brain structure in our mouse model is a trend of
asymmetry in hippocampi: enlarged left hippocampus in ethanol-exposed offspring. Our result
is similar to a human study, where hippocampal volumes in male adolescents with and without
a family history of alcoholism, prior to the initiation of alcohol use of the children themselves,
was examined [65]. The participants were typically from upper-middle to upper-class families
and they were excluded for any current or past medical, physical, or psychiatric problems [65],
[66]. It is tempting to hypothesize that the hippocampal phenotype in this study is primarily
caused by early gestational alcohol exposure as in our mouse model. Interestingly, enlargement
of hippocampus has been associated with longer-lasting spatial memory in birds [67], [68], and
an altered shape of hippocampus with taxi driving in London [69]. Enlarged hippocampus has
been observed in autistic children [70], [71] and may also be related to memory function in
this disorder [71]. Furthermore, increased hippocampal cell density and improved perfor-
mance in the Morris water-maze learning paradigm have been detected in the valproic acid rat
model of autism [72]. Whether the larger left hippocampus is causing improvement in spatial
memory observed in the Morris water-maze in the mouse model we have used in this study
[20] requires further research. Although numerous studies with rodents have shown that pre-
natal ethanol exposure impairs offspring’s spatial memory [73], [74], [75], [76], no effects or
even subtle improvement in hippocampal-dependent learning and memory tasks have also
been observed [77], [78], [79], [80], [81]. In addition to dose [80], timing of ethanol exposure
seems to be significant for the function of the hippocampus: acute ethanol exposure at postna-
tal day 7 (P7) causes impairment in hippocampal-dependent spatial memory in adult mice,
whereas there is no difference between controls and early ethanol-exposed (E8) offspring [81].

We also detected smaller OBs in the ethanol-exposed offspring. Reduced volume of OB in
ethanol-exposed offspring (P60), and also impaired odour discrimination, have been observed
in a mouse model, in which C57BL/6J dams consume 10% ethanol solution throughout preg-
nancy [42]. In this model, the exposure was initiated before fertilization and gradually de-
creased after the birth. They observed a decreased number of neural precursor cells in the
subependymal zone of the lateral ventricles, which is the region of adult neural stem cells. They
also detected a decreased number of new cells in the OB during the first few postnatal weeks.
Our study supports this result and indicates that ethanol exposure only for the first eight days
after fertilization is capable of reducing OB volume. Smaller OBs have also been seen in GD17
embryos in a study where pregnant C57BL/6J mice were administered a strong intraperitoneal
ethanol dose twice at GD8 [49].

MRI revealed enlargement of lateral ventricles in the ethanol-exposed offspring. Similar re-
sults have been seen in MRIs also in other FASD animal models [49], [50], [82], [83], [84], [85]
and in clinical studies of prenatal alcohol exposure [86], [87]. Alcohol-induced facial asymmetry
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[88] and altered symmetry of brain structures [65], [89], [90] have been observed in human stud-
ies. In our work, we detected more structural changes in the left side of the brain unlike in the
previous MRI study of gestational day 17 (GD17) embryos, whose dams were exposed for acute
ethanol insult GD8, in early neurulation stage [49]. They detected the most marked dispropor-
tional reduction of regional brain volumes on the right side and the changes were significant in
OB, hippocampus, and cerebellum. No difference in the size of cerebellums was observed here,
but in both studies, decreased OB volumes and increased ventricular volumes were detected.

In addition to the volumetric analysis, we performed ROI analysis of the dentate gyrus, genu,
and body of the corpus callosum and anterior commissure to search microstructural alterations
due to the ethanol exposure. No DTI parameters (fractional anisotropy, and axial, radial, and
mean diffusivities) showed significant differences when compared to control and ethanol-ex-
posed mice in those areas (data not shown). More detail analysis of DTI data needs further in-
vestigation in white and grey matter areas to study the effect of ethanol in tissue microstructure.

Conclusions
Our study has demonstrated that early, chronic and moderate gestational ethanol exposure af-
fects the development of the embryo and these early changes can be seen in altered DNAmeth-
ylation, gene expression, and brain structure in later life. The ethanol exposure period in our
mouse model developmentally corresponds to the first three-four weeks of human pregnancy,
a time period when women are often not aware of their pregnancy. Our results strengthen the
significance of environmental factors in early pregnancy and support the role of the epigenome
in this interaction.

All the tissues we have studied are regions of actively proliferating stem cells: neuronal pro-
genitor cells in hippocampus, OB (central nervous system) and MOE (peripheral nervous sys-
tem), and hematopoietic stem cells in bone marrow. This supports our hypothesis of early
alcohol-induced epigenetic changes: relatively subtle alterations in the gene regulation could
have occurred already in stem cells, affecting both neuronal and hematopoietic cell lines, and
can be observed in adult brain structures as well as altered gene expression in brain, bone mar-
row, and MOE. Although there is an increasing amount of studies that support epigenome in-
volvement in the effects of gestational ethanol exposure, the linkage between early epigenetic
changes, altered gene expression, and phenotype characteristics for FASD has not yet been
found. In our ongoing work, we aim to reveal the causal epigenetic alterations in early embry-
onic development and thus increase the understanding of the molecular mechanism behind
FASD. Epigenetic changes that alter gene regulation could be considered to be biomarkers and
would offer a new tool for the challenging diagnostics of alcohol-induced developmental disor-
ders. Biomarkers in blood, or other available biological samples, would indicate the severity of
damage caused by early ethanol exposure. This would enable early diagnosis and appropriate
support for development.
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