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Maximizing influence in graphs, typically applied to Social Networks, is the problem of finding a set
of nodes with the highest overall influence on the entire graph. In marketing domain for example,
it is used to find the set of people who have the highest influence on their local communities. As a
result, instead of blindly marketing a product to a large group of people, the product is marketed
to this group of selected users, and they will in turn help spreading the word. The problem has
been studied extensively, and several state of the art methods have been proposed. But all of
these methods have one common flaw, none of them are scalable. Even on small graphs, current
methods take extremely long amount of time and introduction of bigger data sets have rendered
some of these methods completely useless. Over the past two decades, collection of data has become
easier and a very common practice. This is mostly credited to the advancements in hardware and
software technologies as well as the introduction of World Wide Web. To overcome issues related to
big data sets, large scale data processing platforms have been developed to tackle scalability issues
of problems similar to the influence maximization. Most notably are the two frameworks called
Hadoop and Spark that contain many features for simple data processing, machine learning and
graph processing. In this thesis work, some of the current influence maximization algorithms are
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different sizes are performed and the results are reported.
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1 Introduction

Over the past two decades with the introduction of social networks, the study of
interactions between people have gained a lot of attention. Social networks, rep-
resented using a graph of relationships between people, carry a lot of information
about the individuals. Sociologists have studied social networks to better under-
stand what derives people to form friendships, groups and communities. Journalists
and public figures have used social networks such as Twitter and Facebook to report
the news and communicate with people. And last but not least, marketing experts
have used social networks to better understand the market, and increase the benefit
by performing targeted advertisement.

Influence maximization is one of the marketing applications in social networks. It
emphasizes on the effect of individuals on each other and how utilizing it can increase
a product’s popularity. Domingo and Richardson [DpR01] were the first to study
the spread of information in markets. They proposed a method to estimate the
value of customers in terms of the network. Based on this method, increase in
profitability can be easily determined when an item is advertised to a customer.
Kempe et al. [KKT03] formally defined the problem of Influence Maximization. By
studying how influence is propagated under two models: Independent Cascade and
Linear Threshold, the problem is defined as finding an initial set of vertices(called
active set or seeds), that will influence the most number of vertices. Influence
maximization is proven to be anNP-hard problem. Kempe et al. provided a greedy
algorithm for solving it but this solution suffered from scalability issues. Even on
small graphs, finding the initial active set requires a substantial amount of time and
resources. Following Kempe’s work, many attempted to reduce the running time of
the algorithm. Leskovec et al. [LKG07] and Chen et al. [CWY09] proposed methods
that reduced the running time greatly. However, the proposed methods only worked
well on small graphs and none of them can be applied to large scale graphs that are
very common nowadays.

In the last decade a new field in computer science called Big Data, has emerged
that involves working with massive amount of data. Given the widespread usage
of internet, it is no surprise that a large amount of data is being generated daily.
Amazon, Facebook and Twitter store information about their users, governments
store data of their citizens, infrastructures, health care and economy. These are only
a few examples, and many other organizations are collecting data, and storing it to
help derive their businesses. Storage and processing of data at this scale requires an
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immense amount of effort. Big data technologies focus on building tools for efficient
collection, storage, and processing of the data.

Probably the most notable big data frameworks are Hadoop and Spark. Hadoop is
an open source project that is based on Google’s MapReduce framework introduced
by Dean and Ghemawat [DjG04]. It was originally developed to include the map
reduce framework and a file system, called Hadoop Distributed File System(HDFS),
capable of catering terabytes or even petabytes of data reliably and efficiently. How-
ever, Hadoop now includes a wide array of frameworks, each one designed for special
purposes. Some examples of these frameworks are Hive that provides a SQL interface
to the data and Mahout which is a machine learning framework. Spark is another
open source project. It approaches data processing differently from the traditional
map reduce and tries to address some of the issues in Hadoop. Both Hadoop and
Spark include a framework for processing data in graph format. They provide effi-
cient storage and implementation of some of the well known graph algorithms, such
as connected component and page rank. These frameworks are:

• Giraph, an open source project based on Google’s Pregel framework by Malewicz
et al. [MAB10]. It is built on top of Hadoop’s map reduce

• GraphX, an open source project on top of Spark

The aim of this thesis is to study the problem of influence maximization, current
state of the art solutions, as well as their advantages and disadvantages. The thesis
also includes an investigation of applicability of running influence maximization
algorithms on large scale graphs. It highlights why some of the earlier methods
are not suitable in big data domain. And finally, it proposes solutions for solving
influence maximization in large scale graphs.

The rest of this document is structured as follows. Section 2 presents the history
of influence maximization problem, solutions that have been proposed and their
advantages and disadvantages. In section 3 Big Data frameworks, their history and
the current states of them are discussed. Two of the very common frameworks, i.e.
Hadoop and Spark, are studied in detail. In section 4, an overview of large scale
graph processing, followed by Giraph and GraphX details are presented. Section 5
studies the scalability issue of influence maximization. Several methods either novel
or based on previous methods are proposed and the implementation details are
discussed. In section 6 and 7 details of experiments and their results are explained.
And finally, section 8 concludes the thesis and mentions future works and open
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problems related to influence maximization.
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2 Influence Maximization

Effective marketing and advertisement methods have been a major application of
Knowledge Discovery and Data mining. Prior to Domingo and Richardson [DpR01]
the focus has always been on direct marketing. Contrary to traditional mass mar-
keting, where a product was marketed to all the customers, in direct marketing the
goal is to find the most potential and profitable costumers. While direct marketing
is a great tool for increasing the profit, it only targets individuals and disregards the
relationship between users. People’s decision in purchasing an item is not only influ-
enced by the product itself, but also by friends, colleagues and acquaintances. With
introduction of Internet and social networks, gathering information about users be-
came easier and more feasible. Social networks nowadays contain information about
millions of people. They also contain information related to people’s relationship
with each other. Utilizing these information can make marketing more profitable, by
targeting people that are more likely to promote the product to their acquaintances.

Domingo and Richardson [DpR01] discussed the use case of influence maximization
in marketing, calling it Viral Marketing. They have modeled a market as a social
network consisting of users and products. In such a network, probability of users
buying products not only depends on the product itself but also on the neighbors of
the user and the set of marketing actions being applied to the network. Hence the
market can be formulated as join probability distribution. Through these a func-
tion was devised that calculates the global lift in profit given a marketing action
was applied to some users. Starting from an initial configuration, using different
optimization algorithms a local maxima for the function can be reached. They ex-
perimented on a collaborative filtering data set (MovieLens1) in which users have
rated a list of movies. They have first constructed the network with the user ratings,
by choosing similar users (calculating the Pearson correlation coefficient of users) as
neighbors. They have performed experiments on the data set and compared their
method with mass marketing and direct marketing. Their method has increased
the profit the most. Due to non-linearity of the model, it did not scale well for
bigger size networks, hence they have proposed a new linear model in another paper
[DpR02]. Not only the new model decreased the computation time, they simplified
the equation for calculating the network value of customers, and made it easier to
incorporate more complex marketing action. They have experimented with Epin-

1https://movielens.org/
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ions2 data set, which is a website where users can rate items. It also has a feature
called trusted users, where each user can select many other users as trusted sources
of reviews. Domingo et al. [DpR02], hence, applied their model to the data set, by
considering trusted users of a user as his neighbors. Their experiments showed that
a continuous marketing action (a marketing action that can have unlimited values,
such as a discount) performs much better than boolean marketing actions (one that
can either be true or false, such as whether or not a discount should be given to a
user with no regards for the amount of the discount).

These two papers, are considered the first works in influence maximization. Several
other authors have used the concepts here to further improve and propose new
methods for calculating the spread of nodes through a network.

2.1 Information Diffusion Models

With introduction of Social Networks, the topic of information diffusion has gain
interest in research community. Information diffusion models describe how informa-
tion and data are being propagated and transferred in social networks. Information
diffusion is not only limited to social networks, for many years the topic has been
studied to better understand for example how a disease is being spread among peo-
ple or how contaminated water would affect a water pipe network. In influence
maximization, two information diffusion models stand out among others.

• Linear Threshold Model:
Consider a graph G = (V,E), where all the nodes can be either active or non-
active. Inactive nodes may become active as more of their neighbors become
active but the reverse is not possible. In Linear Threshold Model (LT), each
node v is influenced by each of its neighbor u according to a weight bu,v such
that

∑
uneighbor of v bu,v ≤ 1. The process starts with an initial set of active

nodes and at the beginning of the process each node v will randomly chose
a weight threshold 0 < θv < 1, this value determines the tendency of node v
to become active. The diffusion process moves forward deterministically in a
series of discrete time steps t and continues until no new node becomes active.
In each time step t, all of the active nodes from step t− 1 remain active and
any non-active node v is activated if

∑
u activeneighbor of v bu,v ≥ θv. θv is chosen

randomly to indicate our lack of knowledge about node’s influenceability.
2http://www.epinions.com/
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• Independent Cascade Model:
Independent Cascade Model (IC) is a stochastic undeterministic process. Same
as linear threshold model, it starts with an initial set of active nodes and the
process continues in a series of discrete time steps. In each time step t, all
of the active nodes from step t− 1 will remain active and any node that was
activated in step t− 1 tries to activate all of its neighbors. The probability of
a node u activating one of its neighbors v is defined by a system property pu,v.
The process continues until no more new nodes can become active. Every
node will try to activate its neighbors independently of other nodes, and if
during one time step, a node v first becomes active by node u the rest of
v’s neighbors can skip the activation process. It is important to note that
in each time step only nodes that became active in the previous time step
will try to activate their neighbors. This means each activated node will only
have one chance of activating its neighbors in the entire diffusion process.
In classical Independent Cascade, the activation probability pu,v (probability
of u activating v) is defined as a system property and it either takes one
constant value or a value randomly chosen from a small set of values. There
are different methods for choosing the activation probability, and some of them
are described in section 2.3.

2.2 Influence Maximization Problem

Kempe et al. [KKT03] were the first to formulate Influence maximization as an
optimization problem and proved that the problem is NP-hard. By studying how
influence propagates through networks using the two diffusion models discussed ear-
lier (IC and LT), they have formally expressed Domingos and Richardson’s [DpR01]
optimization problem in the context of the above models. Both diffusion models
involve an initial set of nodes A, the influence of the set A denoted by σ(A) is then
defined as the number of nodes at the end of the process. Formally, the influence
maximization problem can be defined as:
Given a graph G = (V,E), find a subset A ⊆ V , that maximizes the function f(A),
which is the size of the spread function σ(A) under either of the diffusion models
subject to |A| = k where k is the budget. Mathematically it is defined as:

• A = argmaxA∈Pk(V ) f(A)

• where f(A) = |σ(A)| and Pk(V ) = {V ′ : V ′ ⊆ V, |V ′| = k}
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Finding the optimal set is NP-hard but they proposed an approximation algorithm
for the problem which guarantees the solution to be a factor of (1 − 1/e − ε) of
the optimal solution (slightly better that 63%). Approximate solution for these
models is developed based on submodular functions by Nemhauser et al. [NEM78].
A function f is submodular if it satisfies a natural ”diminishing returns” property.
It means that the marginal gain of adding a node v to a set A is always greater than
or equal to adding v to a super set of A .

f(A ∪ {v})− f(A) ≥ f(S ∪ {v})− f(S), where A ⊆ S

The greedy algorithm proposed by Kempe et al. [KKT03] is described in Algorithm
1. They have run experiments on co-authorship in physics theory section of arXiv 3

Algorithm 1 Influence Maximization: Greedy Algorithm [KKT03]
Require: G(V,E): Graph G, with Vertex set V and Edge set E
Require: k: Initial Set Size
S = ∅
for i = 1 to k do

for every v ∈ V and v /∈ S do
δv = σ(v)

end for
v∗ = argmaxv{δv}
S = S ∪ v∗

end for
Output S: Set of initial active vertices

data set. The results show that their greedy algorithm performs better than other
methods such as random selection, high-degree or central nodes. Both in estimating
the spread and also in the greedy method, σ(S) has to be calculated. But since
both of the diffusion processes involve random elements(θv in Linear Threshold and
activation of new nodes in Independent Cascade) to achieve a better estimate of the
total spread, the models have to be run many times and the spread is calculated as
the average of all the runs. The nature of the spread function makes the algorithm
highly non scalable. Even on medium sized graphs running the simulation will take a
lot of time, but on the other hand a good solution is only guaranteed if the simulation
is run many times. The value of σ(v) does not only depend on v itself, but it also

3www.arxiv.org
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depends on the other active nodes. Hence in each iteration of the algorithm where a
new node is added to the active vertices list, the value of σ(v) has to be recalculated.
This will greatly affect the performance of the greedy method.

Leskovec et al. [LKG07] in their Cost effective outbreak detection in networks, took
upon the task of optimizing the greedy method. Although they did not work on
solving the problem of maximizing influence, they have proven their method can
be adapted to the problem of maximizing the influence using the greedy algorithm.
They studied two problems from different domains which share some similarities
with influence maximization. The first problem is finding the best placement of
sensors in a water network, so that contaminated water can be detected as quickly as
possible. The other problem is blog network, which is to find blogs that contains the
maximum amount of news that cascades from different sources in shortest possible
time. Their advanced greedy method, called CELF, utilizes the submodularity of
the objective function, which reduces the amount of computation needed to be made
in each iteration. Their method is 700 times faster than a simple greedy function.
Their observation is that, if A is subset of B, the marginal gain of adding a node
to B is always less than or equal to the marginal gain of adding the same node to
A. Hence, instead of recomputing the gain for all the node in each iteration, we
can go through the nodes in decreasing order of their spread and recompute their
values. The change is usually very small and most of the times the value on top of
the list stays on top. Algorithm 2 describes CELF method. As can be seen from the
algorithm description, the difference between CELF and the normal Greedy method,
is that in CELF, deltav is pre-calculated for all the vertices first, then starting from
the biggest value, in each iteration δu is recalculated for vertex u if the value is still
higher than the next vertex in the list, then node u is added to S otherwise the next
vertex is chosen. As in the previous algorithm, σ(v) is the expected spread of the
node v under the IC model.

Chen et al. [CWY09] proposed several different methods for solving the problem
of influence maximization. The first group of algorithms, were improvements upon
Kempe et al. [KKT03] and Leskovec et al. [LKG07] greedy methods. In their greedy
method, they have modified the simulation process. Instead of trying to activate
nodes based on the edge probability one by one, they have first created a new Graph
G′ which is sampled from the original graph based on the edge probability. Now
the process of estimating the spread of initial set S is just finding the number of
reachable nodes in G′ from S, this process is repeated many times and the result is
the average for all of the G′ sampled Graphs. Although this method is much faster
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Algorithm 2 CELF Algorithm [LKG07]
Require: G(V,E): Graph G, with Vertex set V and Edge set E
Require: k: Initial Set Size
S = ∅
for i = 1 to k do

set δv = σ(v) for v ∈ V \ S
while TRUE do do

u = argmaxv∈V \S δv

δu = σ(S ∪ {u})− σ(S)
if δu ≥ maxv∈V \(S∪{u})δv then

S = S ∪ {u}
break

end if
end while

end for
Output S: Set of initial active vertices

than the original greedy method, it cannot compete with CELF [LKG07] method,
since in their method only in the first iteration the spread for all the nodes are
calculated and from the second iteration onward, due to submodularity only the
spread for a few of the nodes are recalculated. Hence, they have combined their
new Greedy method with CELF, where in the first iteration they use the sample
graphs to calculate the spread and in the following iterations CELF is used. The
second class of algorithms they have proposed are a set of heuristics for finding the
seed set that maximizes the influence. Prior to their work, heuristics have been
considered inferior to the Greedy method and while that is true for many of the
heuristics, such as degree, random, distance and etc., their proposed heuristic called
DegreeDiscountIC managed to achieve almost the same spread with the greedy
method while outperforming the greedy methods by orders of magnitude. Details
of the algorithm DegreeDiscountIC is explained in section 5.

Other notable heuristic method is of Saito and Kimura [KmS06]. They have in-
vestigated the scalability issue of IC model’s simulations. They have argued that
currently IC model requires many iterations of simulation and each iteration took a
lot of processing time and power. They have proposed two natural special cases of
the IC model that provide a good estimate of the spread without the need for run-
ning the simulations. They define the Shortest-Path Model(SPM) which is a special
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case of the IC model in which each node v has the chance to become active only
at step = d(S, v), where if S is the initial set, d(S, v) is the distance of S to node
v. This means that each node is activated only through the shortest paths from the
initial active set. The other model they have proposed named SP1M, which is each
node v has the chance to become active only at steps t = d(S, v) and t = d(S, v)+1.
Through these two models they have proposed methods for calculating the spread of
an initial active set S. They have proved that the result achieved using this method
is also within a bound of the best solution. In their experiments, they have assigned
a uniform probably to each edge with two different values p = 0.1 and p = 0.01.
The experiments showed that the estimation of the spread for IC model increases
as p increases while the processing times for the SPM and SP1M hardly changes.

Cheng et al. [CSH13] have addressed both the accuracy and scalability of the so-
lutions using the greedy methods. They have pointed out the main bottleneck in
methods based on Kempe et al. [KKT03] are in the Monte Carlo simulation steps.
They have proven that the objective function is not entirely sub-modular due to the
randomness in the simulations, and hence to compensate for that many Monte Carlo
simulations have to be run in each step of the algorithm which greatly reduces the
performance. They proposed a new method called StaticGreedy which computes a
series of snapshots at the beginning of the algorithm and reuses those for every step
of the greedy algorithm. A snapshot is a Graph G′ = (V,E ′), which is a subgraph
of G where an edge E(u, v) is remained with the probability p(u, v) and deleted
otherwise. Before the main steps of the algorithm many snapshots are produced
and averaged to estimate the spread function. Two main differences between this
method and the previous ones are:

• Monte Carlo simulations are conducted on static snapshots, which are sampled
before the greedy process of selecting seed nodes

• The same set of snapshots are reused in every iteration to estimate the influence
spread of the active set, which explains the meaning of ”static”

They have performed experiment and compared their methods with the normal
Greedy methods. None of the other greedy methods are any match with Static-
Greedy in terms of speed and scalability.

Zhuo et al. [ZZG13] propsed a new Greedy algorithm called Upper Bound based Lazy
Forward algorithm(UBLF). They have tried to bound the number of Monte Carlo
simulation calls, similar to CELF algorithm [LKG07]. CELF increased the speed of
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Algorithm 3 UBLF Algorithm [ZZG13]
Require: G(V,E): Graph G, with Vertex set V and Edge set E
Require: PP : Propagation probability matrix of G
Require: k: Initial Set Size
S = ∅ and δ = (I − PP )−1.1
for i = 1 to k do

set I(v) = 0 for v ∈ V \ S
while TRUE do do

u = argmaxv∈V \S δv

if I(u) = 0 then
δu = σ(S ∪ {u})− σ(S)
I(u) = 1

end if
if δu ≥ maxv∈V \(S∪{u})δv then

S = S ∪ {u}
break

end if
end while

end for
Output S: Set of initial active vertices

the original algorithm by a factor 700 on average case, but still on its first iteration
it has to calculate the spread of every vertex. While that is reasonably fast and will
give good result on small networks, it will not perform well on medium sized graphs
let alone large scale graphs. To that extent, even running the simulations for all the
vertices once is not feasible. Zhuo et al. [ZZG13] provided a mathematically proven
upper bound for spread function of any initial set. In UBLF, instead of running
simulations for each vertex in the first iteration, they find the upper bound which
can be found in constant time. Having the initial values for all the nodes, they used
the same technique as CELF. They started calculating the spread for vertices in
order of their initial estimated spread, if the estimated spread was still bigger than
the rest of nodes, the node was chosen and added to the seed set. Computation
continues until desired number of initial seeds are achieved. Algorithm 3 describes
UBLF. The matrix PP is constructed from the graph, where each value (u, v) in the
matrix corresponds to the edge e = (u, v); value of the edge that connects u to v. S
consists of the seed set, the output of the algorithm i.e. nodes with highest influence
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propagation and I is the identity matrix. Before starting the iterative process, vector
δ is calculated. In each iteration of the algorithm, vertices with the maximum δ are
chosen, if Monte Carlo simulation is not yet run for them, the algorithm will run the
simulation, and if the value of δu is still greater than the node with second highest
δ then u is added to to the set S . The process continues for k iteration, where k is
the desired size of the output. σ(v) is the expected spread of v under the IC model.
Experimental results shows that UBLF manages to reduce more than 95% Monte
Carlo simulations needed and is at least 2 to 5 times faster than CELF method.

2.3 Learning Influence Probabilities

Another aspect of Influence Maximization problem is the assignment of probabilities
to edges, which denotes the probability of a node influencing its neighbor through
an edge. In both IC and LT models, different strategies are applied. In one method,
fixed probabilities are assigned to all the edges. Other methods, includes assigning
probabilities to edges chosen randomly from the set 0.1, 0.01, 0.001. Another strat-
egy, typically referred to as the Weighted Cascade uses the inverse of the in-degree
of each vertex as the influence probability. That means, an already activated node u
can activate node v with probability of 1/dv, provided there is an edge between the
nodes. Of all the methods discussed before, none of them truly capture the behavior
of the network. It is obvious that in a social network people are affected by their
friends differently. Saito et al. [SNK08] were the first to study how to predict the
edge probabilities based on the past behavior of the users. Based on the propaga-
tion made in IC model, they introduced a probabilistic model and using Expectation
Maximization they tried to find the best assignment of probabilities to edges.

Goyal et al. [GBL10] have also tackled the problem of forming the social graph whose
edges have the probability of a user influencing the others based on a log of actions.
Based on the General Threshold model that simultaneously generalizes the Linear
Threshold and Independent Cascade models and an action log of past behaviors of
the users, formatted as Actions(User, Action, T ime) where each entry indicates, an
action made by a user at a specific time. Graph G = (V,E, T ) is constructed based
on the relationship of users in the graph, where T indicates the time a specific edge
was added to the graph (i.e. a relation was formed between two users). Hence, the
objective function is defined as p : E → [0, 1]∗ [0, 1] assigning both directions of each
edge (u, v) in E the probabilities : pv,u and pu,v. Using simple counting methods,
they have scanned the data set, and estimated the edge probability pv,u based on
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the action of node v and the subsequent action made by u. If these two actions
happened within a predefined time, the probability of v influencing u was increased.
They have also proposed more advanced methods of estimating the probability pv,u
which is outside of the scope of this thesis. In another paper, Goyal et al. [GBL11]
have also tackled the problem of influence maximization directly. Instead of first
learning the edge probabilities and then finding the optimum seed set, they have
proposed a method to directly find the optimal seed set based on the action log.
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3 Big Data

Information and data has always been gathered for analysis, improvements, and
predictions in different branches of science. It has helped governments to better
govern countries, it has helped companies to better understand their costumers, and
it has helped researchers and scientists to solve problems. With introduction of
World Wide Web4 exchange and collection of data has become a lot simpler. Big
firms and companies started to collect users’ information, browsing behavior and
other related data. Petabytes of data are being stored and exchanged everyday,
and these data contain valuable information that is being used for solving a lot of
problems using data mining and machine learning methods. Processing this amount
of data, has never been an easy task and prior to introduction of Big Data tech-
nologies, this processing and analyzing has been always done using expensive server
systems that are able to process millions to billions of bytes of data in a second.
Google’s revolutionary papers has drastically changed the field. Ghemawat et al.
[GGL03] introduced The Google’s Distributed File System; a file system built for
storing petabytes of data. It is scalable, meaning more storage units can be easily
added, and it is being deployed on commodity hardware, meaning it does not re-
quire any sophisticated and expensive piece of hardware to use. Dean et al. [DjG04]
introduced MapReduce, a framework for processing large amount of data, again it is
scalable and it can be deployed on commodity hardware. Although the source code
of either of these two technologies were never released by Google, but based on the
publications Doug Cutting created the open source project Hadoop which imple-
ments both MapReduce (Hadoop’s MapReduce) and Google File System (Hadoop
Distributed File System or HDFS for short). Since then, Hadoop has become Big
Data standard and several new technologies and project have been added to it.

3.1 Hadoop

Hadoop consists of two major parts. MapReduce which is a parallel programming
paradigm. It is designed to run on distributed systems with many commodity com-
puters. It involves three main steps, namely Map, Reduce and Shuffle. The first two
are defined by the user. Map operations are run in parallel and they process the
data individually, data is divided into different portions and each one is processed
by a mapper. The result of the mappers are send to a Reduce task(or several) where

4http://webfoundation.org/about/vision/history-of-the-web/
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the results are combined. A shuffle operation is usually performed on the result of
the Map tasks so that similar data are all send to the same node. Algorithm 4 is
a simple algorithm for counting words in a series of documents. The popularity of

Algorithm 4 Word Count in Hadoop
function map(String name, String document)

//name: document name
//document: document contents
for each word w in document do

emit (w, 1)
end for

end function

function reduce(String word, Iterator partialCounts)
//word: a word
//partialCounts: a list of aggregated partial counts
sum = 0
for each pc in partialCounts do

sum += ParseInt(pc)
emit (word, sum)

end for
end function

Hadoop’s MapReduce framework rises from the fact that many complexities of the
system is being handled automatically by the framework. In most typical use cases,
the user only needs to provide the method for Mappers and Reducers. Framework
will take care of compiling and distributing the code to all of the nodes, and running
them in parallel. As previously mentioned it is fault tolerant, it means if during the
processing a task fails, the framework will restart the task, and if a node encounters
a problem Hadoop will move the computation to another node. It is scalable, which
means the program will try to utilize as many nodes and resources as possible based
on the size of the input data and amount of available resources, and programmers
do not need to concern themselves with that while writing the code. There are also
many advanced options that users can do to further optimize the program, but they
are generally not required for simple tasks. The other great feature of MapReduce
and Hadoop is that it is available in many different languages; Java, Python, C++,
Scala and many more. Figure 1 shows how the word count program will be executed
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on a cluster.

Newer versions of Hadoop and MapReduce employs more sophisticated resource
manager and scheduler called YARN developed by Vavilapalli et al. [VVM13].
YARN essentially provides container for running different applications and it is
not limited to MapReduce. Spark, Storm and even simple Java programs can be
run on YARN. YARN is more or a less cluster manager program and overviews
the resource and allocates resources to different jobs being submitted to it. It has
become available as part of Hadoop 2.0 technology stack.

Figure 1: MapReduce paradigm 5

Hadoop Distributed File System (HDFS) is a distributed file system, designed to run
on commodity hardware. It provides high throughput access to application data and
it is fault tolerant. Though initially designed for Hadoop’s MapReduce framework,
it has been used in many different applications and frameworks.

It is fault tolerant, meaning if a node in a cluster fails, the data is not destroyed.
5http://dme.rwth-aachen.de/en/research/projects/mapreduce
6http://hortonworks.com/hadoop/hdfs/
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Figure 2: HDFS Architecture 6

HDFS employs a feature called Data Replication, which indicates the number of
times each object is being replicated. Figure 2 shows the high level architecture of
HDFS. NameNode keeps track of where all the same instances of the data is stored
and in case a node fails it knows where to look for it. HDFS emphasizes that moving
computation is much cheaper than moving data, it is true since HDFS is designed
to store big data sets, terabytes or even petabytes of data, hence in conjunction
with MapReduce, instead of moving the data around, the computation is done on
the node containing the data. It is designed for high throughput rather than low
latency so it is not ideal for streaming applications, although several improvements
are being made to further decrease the latency and making it suitable for real time
streaming applications. Similar to MapReduce it is design to work across hetero-
geneous hardware and software platforms. This means that nodes in the cluster do
not have to be identical and even running the same operating system. Hadoop runs
on JVM, as a result of this it is operating system agnostic.
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3.2 Spark

Apache Spark was originally developed by Zaharia et al. [ZCF10] in AMPLab at UC
Berkeley. The main idea was to solve MapReduce’s problems. In contrast to MapRe-
duce’s 2 stage program (Map and Reduce), Spark employs an iterative paradigm.
It allows users to load data into memory and perform many operations on the data,
this is ideal for a lot of Machine learning problems. The underlying frameworks work
on entities called Resilient Distributed Datasets (RDDs) introduced by Zaharia et
al. [ZCD12].

RDD is a read only and partitioned collection of data. It can be created from
storage or other RDDs. There are two types operation on RDDs, transformations
and actions. Transformations are operations that will create a new RDD from the
existing one, for example filter is a transformation operation. The power of RDDs
lie in their internal structure, they do not need to be materialized all the time. If
an RDD is created using a transformation, it will hold information about how the
transformation was made and only apply them to the data once the user requests
that through an action or caching of the data set. Actions are operations that will
materialize the data set. Users can also ask the RDD to be stored in memory if
they know they are going to use it many times. These characteristics of RDD makes
them the perfect tool for performing iterative applications. Many machine learning
algorithms require iterative calls to the same data set. This is one of MapReduce’s
deficiencies since every algorithm and job has to be written in terms of Map and
Reduces. Spark with the help of RDDs allows many of the well known machine
learning algorithms to be implemented easily. With success of Spark, it has become
part of the Hadoop framework. Recent versions can now run on top of Yarn and
they have integration with HDFS and other Hadoop components.

A typical Spark program consists of a driver program that launches multiple workers.
Worker programs are run on data nodes. Upon execution of a program, Spark will
try to send the computation to where the data is, hence minimizing the network
traffic. Spark tracks where the RDDs and their partitions are. Figure 3 shows a the
general overview of how a Spark application is executed.

Users can control RDDs behavior by persisting it to memory or disk. Tests per-
formed on Spark showed that it is 100 times faster than MapReduce and it is able
to run applications that are not even possible to run using MapReduce. Spark is
fault tolerant by means of RDDs. Driver always keeps track of the changes made
to the RDDs, and they can be recreated from previous stages. So if a node con-
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Figure 3: Spark Program, Zahaeria et al. [ZCF10]

taining some partitions of RDDs is lost, the partitions can be recreated using these
information.

Figure 4: Spark stages and RDDs Zahaeria et al. [ZCD12]
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Figure 4 shows how Spark computes job stages. Boxes with solid outlines are
RDDs(A, B, ..., G). Partitions are shaded rectangles, in black if they are cached.
To run an action on RDD G, the scheduler builds stages at wide dependencies and
pipelines narrow transformations inside each stage. In this case, stage 1 does not
need to run since B is cached, so we run 2 and then 3. If any of the stages fail, the
computation will restart from the last healthy RDD. Also if a node containing some
specific partitions of an RDD fails, the RDD will be transferred to another node and
the computation will be restarted.
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4 Large Scale Graph Processing Framework

Large data sets come in many different formats. They are not limited to documents,
texts, or key value pairs. One of the more common representation of data is graph.
Not only they contain information about individual entities, but graphs also store
information about the relationship between these entities. They have been used in
many different fields of science to represent data. The most prominent example of
a graph data set is the World Wide Web, which is a collection of digital pages on
Internet and each page may have links to several other pages.

In this section, two of the widely used graph frameworks designed specifically for
handling large scale graphs, are discussed in detail. Both of these frameworks have
been used to implement the methods discussed in section 6. Interestingly, one
common computation model used in many of these graph frameworks is based on
a model introduced by Valiant [Val90] in 1990, called Bulk Synchronous Parallel
(BSP). A BSP computation model consists of three components:

• A component capable of local processing

• A network for transferring messages

• A hardware which synchronizes the components

BSP programs are run in a series of global steps, called supersteps. In each superstep,
first, every node runs the task assigned to them locally, and then they send messages
over the network to other components. Before the next superstep begins, a barrier
is set in place that synchronizes all of the nodes and makes sure all the computation
and network transfers of the current superstep are finished. Malewicz et al. [MAB10]
developed a system called Pregel at Google, which is based on the BSP model and is
designed for implementing graph related algorithms. Pregel works by using vertices
of the graphs as computation nodes. In each superstep, all vertices perform local
computations. During this phase they only have access to the data internal to the
specific vertex which includes the vertex properties and the messages that were
sent to the vertex in the previous superstep. After the computation step is done,
all vertices may forward a series of messages to other vertices. The messages are
usually send through edges, i.e. only vertices connected by an edge communicate
with each other, but that is not necessarily the case all the time. Pregel also takes
care of the synchronization barrier and makes sure a new superstep does not begin
until the current superstep is finished on all of the vertices.
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4.1 Giraph

Apache Giraph is an iterative graph processing framework, built on top of Apache
Hadoop. It is the open source version of Pregel and is now being actively developed
by several companies. It is being used in many real case scenarios. For example,
Facebook is using it to analyze the graphs formed by users and their connection
with their friends7. In a typical Giraph program, input graph is usually stored and
read from the HDFS. Once the program starts, Giraph will read the graph and
partition the vertices across several nodes. Users can decide how to partition the
vertices based on the type of problems they are trying to solve. Giraph by default
uses a Hash Partitioner to partition the vertices. Generally it is a good idea to
provide a custom partitioner that works best with the specific problem that is being
solved. For example in most of the Giraph programs, in the communication phase,
messages are sent along the edges of the graph, so if vertices that are connected
to each other are partitioned to the same computation node, the network overhead
will be reduced significantly. Figure 5 shows how computation is done in Giraph.

Figure 5: Giraph Work Flow 8

Each Giraph cluster has a master node and one or more worker nodes. Master node
has the responsibility of reading the graph and partitioning it based on the given
partitioner, coordinate the job and the supersteps. Master node is also responsible

7https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-
apache-giraph/

8http://giraph.apache.org/
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for the synchronization of vertices and making sure that a new superstep does not
begin until all the vertices have finished their computation. Each worker node
contains several vertices and run the actual program, and coordinate with the master
and other nodes through a set of messages send along the edges or directly to
other vertices. Vertices in a Giraph program can be in either of the two states;
Active or Not Active. Generally the program continues while all the vertices are
active. Vertices themselves are responsible for setting their status after they have
finished computing. If a vertex receives a message from other vertices, its state
will automatically change to Active. The figure 6 shows supersteps involved with
computing the single source shortest path for a simple graph.

Figure 6: Single Source Shortest Path 9

The input graph consists of 3 vertices, and 2 edges. The goal of the program is to
find the shortest path from every vertex to the left most vertex. Red lines separate
supersteps and in the first superstep, the value of all the vertices except for the
source is assigned to infinity. At the end of each superstep, distance upper bounds
(vertex value + smallest edge value) is send to the destination of the edges and
vertices’s values are set to the smallest message they have received. The execution
stops when all the vertices have the distance from the source vertex.

Although Giraph has many advantages over MapReduce, it is still has some limi-
tations. In one Giraph job many iterations can be done, but if graphs should go
through several transformations, that would require multiple Giraph jobs, which
means that the data has be written to HDFS after each job. This adds a lot of IO

9http://giraph.apache.org/intro.html
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overhead. A lot of the Machine learning and graph problems are iterative in nature,
which will cause Giraph to have severe performance issues in some of these cases.

4.2 GraphX

GraphX is a light API written on top of Spark. It uses the powerful RDD abstraction
as the basis of its computation, by storing vertices and edges in separate RDDs.
Similar to Spark, it works well for iterative algorithms and it comes packaged with
many of the well known graph algorithms such as, PageRank, Label Propagation,
Connected Components and others. Several important components of GraphX are:

• VertexRDD: an RDD object consists of a vertex id and a data type. It carries
some extra features in comparison to the traditional RDDs, such as ensuring
vertex ids are unique and optimized joins among different vertex groups. It
offers several methods for mapping values, filtering vertices(while preserving
their id) and finding difference of two vertex groups.

• EdgeRDD: similar to VertexRDD, it is a subclass of RDD, which organizes
the edges into blocks based on some predefined partitioning strategies. It sup-
ports three extra methods; mapValues which maps the values while preserving
the structure, reverse which reverse the edge directions while preserving the
attributes, and innerJoin which joins two EdgeRDD objects, using the source
and destination ids as keys.

The key feature of GraphX comes from the way vertices and edges are stored.
GraphX employs different partitioning strategies for storing vertices and edges.
While each one have their own advantages and disadvantages, the overall goal is
to reduce the amount of communications along the edges by having all the vertices
close to each other in one computation node to avoid network traffic. The details of
GraphX and how it behaves under the hood are beyond the scope of this document.
Xin et al. [XRG13] described GraphX in detail and GraphX website10 includes more
information about the internal architecture of the system. GraphX also provides a
Pregel like API, that users should only provide the vertex program and the commu-
nication strategy. This is one of main advantages of GraphX over Giraph and other
similar graph processing frameworks. A GraphX’s graph is like any other object

10https://spark.apache.org/graphx/
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in Spark environment, and all the transformations and actions available in Spark
package can be applied to vertices and edges of the graph.
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5 Big Data and Network Influence Maximization

The original greedy method proposed by Kempe et al. [KKT03] provided a reliable
solution to the problem of maximizing influence in graphs. Several other researchers
have worked on finding algorithms that find better solutions in terms of accuracy,
but most of the researches done in recent years were involved around improving the
efficiency of the original method. CELF [LKG07], CELF++ by Goyal’s [GLW11]
and Zhuo et al. [ZZG13] methods have considerably increased the speed of the origi-
nal Greedy method. Cheng et al. [CSH13] proposed the StaticGreedy method which
combined with CELF further improved the speed of the greedy method. However,
none of the proposed methods are scalable and they can only operate on small to
medium sized graphs. The bottleneck for the greedy method lies in the function it is
trying to optimize. As discussed in the previous sections, the spread function under
the Independent Cascade (and Linear Threshold) model cannot be determined ex-
actly due to the edge probabilities. Hence, Monte Carlo method is being used which
consists of running the IC model many times (up to 10000 for accurate result) and
then averaging over all the simulations.

Currently, there are companies and organizations that have graphs of millions to
billions of nodes with even more edges, and none of the optimization methods dis-
cussed above can be applied to any of these graphs. Even on the most powerful
clusters running the random process for one iteration takes a lot of time, essentially
rendering these methods completely useless. The other group of methods discussed
in the previous sections were heuristic methods. They can range from very simple
methods such as finding the nodes with highest in or out degree to more sophisti-
cated ones such as Single Discount and Degree Discount discussed by Chen et al.
[CWY09] or SPM and SP1M proposed by Saito and Kimura [KmS06]. The advan-
tages of heuristic methods are that they are very fast and they can scale to graphs of
any sizes, however the accuracy of the solution is not as good as the greedy method.

In the rest of this section, first the literature on influence maximization for big data
and then details of the methods implemented are discussed. Some of methods are
fairly simple heuristics and some are based on the methods discussed in previous
sections with tweaks that make it possible to implement them on large scale graphs.
Changes have to be made to the original algorithms in order to implement the meth-
ods using graph frameworks built for processing large graphs. These frameworks are
imposing certain set of restrictions that will make applying some classes of algo-
rithms more difficult. Bulk Synchronous Processing is the base of all the large scale
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graph frameworks where they are using the method of Think Like a Vertex, which
means each vertex is a virtual computation abstraction. Although this has many
benefits but when it comes to classical IC and LT models, some difficulties will rise.
In BSP model, usually algorithms that only need local data are implemented a lot
simpler. Howevern, in influence maximization we need global access to the net-
work to find out how many new nodes were affected by adding a node to the initial
seed. The whole process is a randomized simulation that should be run hundreds
or thousands of times to get a better and more accurate result. Large scale data
processing usually suffers in this area, because initializing jobs given huge amount
of data whether it is in graph format or others, takes some time and that is some-
thing that should be avoided. The main challenges when implementing the methods
using BSP models are hence, finding ways to avoid the iterative and simulation like
implementation and trying to generalize the whole simulation cycle into one BSP
job.

5.1 Monte Carlo Simulation

On the baseline of most of the methods, lies the Monte Carlo Simulations. It
represent the Independent Cascade propagation process. Given an initial seed, it will
calculate the expected spread, by running the process thousands of times and report
the average spread for the initial active set. The distributed method differs from the
original implementation in the way the propagation is spread through vertices. In
single machine computation, for each vertex in the graph, if the vertex is active it
will try to influence all of its neighbors only once and the process continues until no
new vertices become active. In distributed implementation, all of the vertices will
try to activate their neighbors at once.

Each vertex carries information about its state. As can be seen from the algorithm,
in each iteration of the simulation, every active vertex will try to activate its neigh-
bors, and then change its state to tried so it doesn’t try to activate again in the
next iterations. If a vertex is activated, its state is changed to active and it is added
to the active set. The process continues until all of the vertices in active set A have
tried activating the neighbors and no new vertex is added. The final result is the
average of all the spreads for every simulation iteration. This is a time consuming
procedure because of the number of iterations in the simulation. But this algorithm
is not being used in any of the main methods for finding the initial seeds and it is
rather for estimating the spread of a seed. I am only using the procedure to have
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Algorithm 5 Monte Carlo Simulation for Independent Cascade Model
Require: G(V,E): Graph G, with Vertex set V and Edge set E
Require: S: initial active vertices
Require: R: # of simulation iterations
si = 0 for all 0 < i < R

for i = 1 to R do
A = S

for each v ∈ A do
if vstate 6= tried then

for for each u ∈ vneighbors do
try to activate u
if ustate = active then

A = A ∪ {u}
end if

end for
vstate = tried

end if
end for
si = |A|

end for
sp = avg(s)

Output sp: Spread of the initial set S through out graph G

a baseline of how good an initial seed is and running it even with few number of
iterations should give an acceptable estimate.

5.2 Single Cycle Influence Maximization

Based on Kempe et al. [KKT03] Independent Cascade method, Single Cycle Influ-
ence Maximization is a novel method, which is a simpler but a less accurate version
of the original algorithm. Implemented using the BSP paradigm, it finds the ver-
tices with maximum influence spread in one iteration, by simulating the Independent
Cascade process for all the vertices at once.

Each vertex contains information about the number of nodes it has affected, and
the list of nodes it is affected by. The algorithm is written as point of view of a
vertex, that means every vertex executes these steps until the master decides the
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Algorithm 6 Single Cycle Influence Maximization
if superstep == 0 then

add your own id to list of influencedBy an increase vertex value by one
try to activate all neighbors by sending its own id

else
receive message from every one (message is the id of the vertex)
for each message received do

if it is already in your influencedby list then
vote to halt

else
activate all neighbors by using the message
add to influecedBy list
notify source vertex
vote to halt

end if
end for

end if

computation has ended. The program ends either when all of the vertices have
changed their state to not active or a limit for number of supersteps is reached.
Each vertex sends its own id at the first superstep to all of its neighbors, the reason
the vertex id is being sent and not just a simple boolean value is that each vertex
has to know who has activated it and store their id and send a message back to
them. In the first iteration, when vertices activate their neighbors, any successful
activation will be carried on with the affected vertex. For example, if vertex v2 was
activated by vertex v1 and now it is trying to activate vertex v3 it will send both
its own id v2 and id of the vertex that activated it v1. Subsequently when v3 tries
to activate its neighbors it will send its own id as well as v1 and v2. When a vertex
is activated it will send a message back to the source of the activation, informing it
that it has been activated and the source can now increment its total spread by 1.
At the end of the procedure, each vertex has a value indicating its expected spread.
The top k vertices are reported as the best initial seed. While this method is fast,
it has some draw backs:

• Activation of a new node is done through only one single random process,
based on edge weight.
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• All nodes are performing the activation process independent of other nodes.
Depending on network structure this could have some effects on the final result

• Since each vertex is sending it’s own id and id of vertices that it has been
affected by, it might create network traffic.

Point one indicates that the result may vary between different runs since we are only
running the simulation once. In the original greedy algorithm, in each iteration one
vertex is added to the current initial set and the spread is recalculated, then the
vertex that increases the spread the most is chosen to be added next. But here all
of the vertices are operating in silos, disregarding the network effect. Consider an
example where two neighboring vertices, individually has the highest spread among
all vertices. Algorithm 6 will report both of them in the final result, but in reality
having two neighboring nodes is not a very good idea, since nodes affected by one
are usually affected by the neighbor as well. The last point about network traffic,
in worst case scenarios this might be extremely inefficient and in some cases bring
the whole cluster down. However, it is hardly the case in real big graphs, since first
of all most of the big graphs are extremely sparse and the propagation probabilities
are so small that a vertex id hardly has to travel more than a few nodes. Testing
on larger graphs however revealed another flaw of this method. Since vertices have
to store the list of other vertices that have activated them in memory, in big graphs
that usually leads to the program crashing because of memory being full. In section
6 this issue is explained.

5.3 Token Based Implementation

Another novel method based on the Single Cycle algorithm, where the simulation
aspect of the Independent Cascade model is taken into account. In this algorithm,
each vertex, instead of trying to activate its neighbors only once, it will try many
times. Vertices will keep many tokens with unique ids. Each token can be tracked
back to the vertex itself. In each superstep a vertex will try to activate its neighbors
once with every token. If a node is activated using a token, it will notify the original
source vertex, so that the vertex can increment its internal counter for that specific
token. Once no new nodes are activated, the program ends and all the vertices will
report the average of token counters as their expected spread. Top k nodes are
then selected as the initial seed. The number of tokens for each vertex determines
the accuracy of the algorithm. While having thousands of tokens will increase the
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Algorithm 7 Token Based Influence Maximization
if superstep == 0 then

add your own id to list of influencedBy an increase all token counter values by
one

for each token do
activate all neighbors using the token

end for
else

receive message from every one (message is the id of the vertex)
for each message received do

extract token out of the message
if token is already in your influencedby list then

vote to halt
else

activate all neighbors by using the token
add to influecedBy token list
notify source vertex
vote to halt

end if
end for

end if

accuracy of the final spread, in real graphs this is not practical because that means
each vertex has to carry a lot of extra information. Choosing the best number of
tokens hence is a trade off between a better solution and a faster algorithm. Similar
to previous method, depending on the structure of the graph, this method may
produce a lot of network overhead, due to the amount of communication that is
being done between nodes. Also it will require a bigger storage since each vertex
has to store the spread for many different simulations. So choosing the number of
the simulation, not only slows down the process, but it will also increases the risk
of a crash in the system, due to size and network overhead. Similar to Single Cycle
method, Token Based method has also failed to provide the result on very large
graphs.
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5.4 Edge Sampling

Edge Sampling is another novel method inspired by Chen et al. [CWY09] and Cheng
et al. [CSH13]. In Edge Sampling the Independent Cascade process is tackled differ-
ently. This method is still using one or a few Monte Carlo Simulations, so in theory
it is not as accurate as the Greedy methods, but it can achieve very good results
and the number of Simulations can be easily extended as the procedure is very fast.
In each iteration of the simulation, instead of having each vertex try to activate
its neighbors based on edge probability, a subgraph G′ is being sampled from the
original graph G based on the edge probabilities. Each edge e will remain in the
subgraph G′ with probability of ew, where ew is the weight of the edge. G′ is now
a graph with many unconnected components, in this new graph we can define each
vertex v’s estimated spread that belong to connected component C as vspread = |C|.
The reason for that is since the edges are already sampled by their probabilities,
that means any existing edge will propagate the message. Here we can report the
top k vertices as the solution.

As discussed in Single Cycle Influence Maximization section, one draw back of
blindly choosing the vertices with the highest estimated spread was that, vertices
that are neighbors or are in the same connected components, will not contribute
much to the final spread since having both in the initial seed is redundant. However,
in this method since we know each vertex belongs to which connected components,
instead of reporting the top k vertices, we can report one vertex from the top k

connected components, that is the connected components with highest number of
vertices in them. The algorithm can also decrease the noise of the randomness by
using many sampled subgraphs and averaging the best vertices from all of the sam-
ples. The algorithm’s definition is presented in Algorithm 8. As with other methods,
some modifications have to be made to make this method more suitable in parallel
frameworks. The connected components can be efficiently calculated in parallel us-
ing BSP model. It is already implemented as part of the GraphX library. To further
optimize the algorithm, changes have been made to the connected component algo-
rithm of GraphX. Since for each vertex, we only need the size of its corresponding
connected component, we can modify the original algorithm to instead of reporting
the connected component id, it will report the size of the connected component.
The result of the new connected component algorithm would then be the list of
vertices, each vertex carrying its id and corresponding connected components size.
In this method, the connected component size is equal to the expected spread for
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Algorithm 8 Edge Sampling
Require: G(V,E): Graph G, with Vertex set V and Edge set E
Require: R: # of iterations
Require: k: Initial Set Size
vtotal = 0 for all v ∈ G
for i = 1 to R do

sample G′ from G based on edge probabilities
C = connected components if G′

for every vertex v ∈ G′ do
vtotal = vtotal + |Cv| where v ∈ Cv

end for
end for
for every vertex v ∈ G do

vspread = vtotal/R

end for
S = top k vertices based on vspread
Output S: Set of initial active vertices

each vertex.

The algorithm starts by initializing the list of all the vertices. Every vertex’s ex-
pected spread is 0 at the beginning. In each iteration of the simulation, the sizes are
updated based on the connected component size. The update can be done simply
by doing a join. Vertex joins are very efficient in GraphX, and can be done very
quickly. Increasing the number of simulations will increase the accuracy, but it also
slows down the process.

5.5 Degree Discount Heuristic

In previous section, Chen et al. [CWY09] heuristic for choosing the best vertices
for initial seed was discussed. Their method has several advantages that make it
easy to implement, and it is very fast and scalable. This method does not require a
simulation as it is a simple heuristic based on the degree of each vertex. According to
Chen et al. [CWY09] it yields an extremely good result which is in par with greedy
methods. Compared to other heuristic methods that will be discussed in the next
section, this method is more difficult to implement in a BSP model. The number of
iterations the algorithm runs depends on the seed size. Basically, after initializing
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Algorithm 9 Degree Discount [CWY09]
Require: G(V,E): Graph G, with Vertex set V and Edge set E
Require: k: Initial Set Size
S = ∅
for each vertex v do

compute its degree dv
ddv = dv

tv = 0

end for
for i = 1 to k do

u = argmaxv{ddv|v ∈ V S}
S = S ∪ {u}
for each neighbor v of u and v ∈ V S do

tv = tv + 1

ddv = dv − 2tv − (dv − tv)tvp)
end for

end for
Output S: Set of initial active vertices

all the vertices, in each iteration the best vertex is chosen and added to the seed
set. After that, the values for the neighbors of the selected vertex will be changed
based on the formula presented in the algorithm 9. This means for a seed set of size
k, the algorithm runs for k iterations. Although this method looks promising, the
underlying strategy is not very feasible to implement in BSP. As a result, it will not
scale to large graphs, at least using GraphX and Giraph frameworks.

5.6 Other Heuristics

Degree Discount heuristic discussed in previous section, is one of the many heuris-
tics methods that have been used in influence maximization. As explained earlier,
although heuristic methods are inferior to more complex methods such as the greedy
algorithm in terms of quality of the solution, they have one advantage over them.
These classes of solutions are highly scalable and can be easily applied to very large
graphs. Below is a list of some of the heuristics methods that have been used for
finding the initial set of active nodes in influence maximization problem.

Random: k random vertices are selected as the solution. This is used as a baseline
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for other methods to see if they perform better than just choosing nodes at random.
Degree: Degree of a vertex is defined as the number of edges connected to a vertex.
In this method, the vertices with the highest degree are chosen as the initial seed.
Single Discount: Improved version of Degree heuristic. After a vertex is chosen
as the seed, it is removed from the graph, that means all of its neighbors’ degree are
reduced by one. This yields a better result than degree heuristic, since it lowers the
chance of neighboring vertices to be selected as the initial seed.
Page Rank: Based on the popular Page Rank algorithm by Page et al. [PBM98],
the algorithm was originally used in Google’s search engine, to rank websites based
on their importance.
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6 Experiments

Two important aspects of solutions for influence maximization problem for large
scale graphs are:

• Quality which is measured by the spread of the solution found(initial active
set of vertices) under Independent Cascade model

• Scalability which is measured by the running time of the program.

In this section the details of the experiments, including the software and hardware
platform, data sets and methods are explained in detail.

6.1 Experiment Setup

Experiments are run on two different computation platforms. For the smaller data
sets, to test the accuracy and speed of the methods the experiments are run on a
single machine. The bigger data set is run on an EMR cluster. The details are
below.

• Single node setup :
A Macbook Pro with 2,4 GHz Intel Core i5 processor and 8 GB of memory.

• Cluster setup:
5 m3.xlarge Amazon EMR nodes. Each node has 4 CPU cores, 15 GB of
memory and 80 GB of SSD storage.

Except for the Greedy CELF method, which is implemented in a single threaded
Java application, the rest of methods and the simulations are implemented using
Apache Spark’s GraphX version 1.3.0 in Scala or Apache Hadoop’s Giraph version
2.0 in Java.

6.2 Data set

Below is an overview of the data sets used in the experiments. All of the data sets
are provided in an edge list format, where, in each line there are two vertex ids
separated by a tab character. The two vertices are end points of an edge.
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6.2.1 ArXiv collaboration network data set

A data set from the e-print arXiv11 is chosen for testing the algorithms on smaller
scale graphs. The data set contains academic collaboration for scientific research pa-
pers. In this data set, vertices represent researchers and edges define a collaboration
between two researchers on writing a scientific paper. The data set has been used
by several other researchers in the field of influence maximization and can provide a
good comparison for the quality of the methods. The High Energy Physics-Theory
graph, which contains papers from 1991 to 2003, with 15,233 nodes and 58,981
edges is used as a base comparison of the methods proposed in section 5 and state
of the art greedy method. The data set in this format was made publicly available
by Chen et al. [CWY09] and can be found here: http://research.microsoft.com/en-
us/people/weic/graphdata.zip.

6.2.2 LiveJournal Social Network

LiveJournal is a free online community with almost 10 million members, with many
of them being active. Similar to other types of social networks, users can form friend-
ship with other members. It consists of 4,847,571 vertices and 68,993,773 edges. This
is considerably larger than a lot of data sets usually used in influence maximization
research. The data set is publicly available at https://snap.stanford.edu/data/soc-
LiveJournal1.html.

6.3 Methods & Implementation details

List of influence maximization algorithms used in the experiments

• Single Cycle: Based on Single Cycle Influence Maximization algorithm. This
method is implemented using Apache Giraph for ease of implementation.

• Multi-attempt Single Cycle: Based on Token Based Influence Maximiza-
tion algorithm. Similar to single cycle, this method is also implemented in
Apache Giraph

• PageRank: Based on popular Page rank algorithm developed by Google.
Implemented using Spark’s Graphx.

11http://arxiv.org/
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• Degree: Simple method, that chooses nodes with highest degree. Imple-
mented using Spark’s Graphx.

• Degree Discount: Based on Degree Discount heuristic, discussed in previous
section. This method is also implemented using Spark’s Graphx.

• Edge Sampling: Based on Edge Sampling algorithm, this method is imple-
mented using Spark’s Graphx.

• Random: Choose initial seed randomly. This is used as base comparison.

Some of the methods proved to be easier to implement using certain framework.
There are subtle differences between, Graphx’s pregel API and Giraph’s pregel API.
Graphx’s pregel requires the user to supply three methods :

• Vertex program: Responsible for modifying the value of vertices. It receives
the messages for each vertex and perform internal calculations based on the
messages and vertex properties. The return type, is the same as the vertex
data type and cannot be changed.

• Send message: Inputs an EdgeTriplet data type, which contains the source,
and destination vertices along with their attributes, and edge data type. It
returns an Iterator which specifies the message and the destination the message
should be sent to.

• Merge messages: Merge messages intended for a destination vertex. It receives
two messages of the same type and return the combined message that should
have the same data type as the input messages.

Although, these three methods work along side each other, they are separated and do
not have access to the internal values of each other. This makes it very difficult and
not efficient to implement the two methods: Single Cycle and Token Based. These
two algorithms, are designed to act upon the message they receive immediately and
based on the value of each message, they have to decide either to forward a message
to neighboring vertices or not. This is unfortunately not possible in Graphx.

Giraph’s pregel API is designed differently. It consists of the following methods,
some of which are optional and do not need to be supplied by the user:

• compute : The most important method. It has to be supplied by the user. The
input to the method, is the vertex and all messages intended for that vertex.
User can modify the value of vertex, send messages to other vertices, and etc.
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• initialize: Called once at the beginning of the program. Generally used for
defining any aggregators or other global operations that will be used during
the run time of the program.

• preSuperStep: Called before every super step. It is not mandatory, but it is
generally used to update global values before the super step begins.

• postSuperStep: Similar to previous method, with the difference that it is run
after super step has ended.

• sendMessage: Method for sending messages to other vertices. It requires the id
of the destination vertex and the intended message. This method is generally
not overridden, and it is simply intended to send a message to another vertex.
It can be called many times from the compute method. Giraph takes care
of synchronization process. Generally all the messages are sent, once all the
compute methods for all the vertices are executed.

Giraph provides more freedom to run algorithms in pregel framework, as it leaves
the responsibility of sending messages to the user rather than enforcing it to be send
in every iteration. This makes, Giraph ideal for implementing the first two methods,
because the decision to either send or not send a message depends on the content
of the message itself.
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7 Results and Discussions

In this section, the results of running the algorithm discussed in section 5 are shown.
The spread and running time of different methods on different real graphs are re-
ported. In the last part of the section, several random graphs having common
characteristics found in real graphs are used to further analyze and explain the
advantages and disadvantages of each of these methods.

7.1 ArXiv collaboration network data set

In this section the result of running different methods on collaboration network data
set are explained. To calculate the spread for each method, multiple simulations
needed to be run. In these set of experiments number of simulations is set to
100. While increasing the number will make the result more accurate, it will also
increase the running time. Experiments have been run with different number of
simulations and the results show that the difference between number of simulations
is not very significant. Figure 7 shows the result of running search methods on

Figure 7: Search methods

collaboration graph. Clearly the greedy method is much better than all of the other
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methods. As discussed in previous chapters, the underlying approach of the other
three methods are similar and hence their spread is more or the less the same. Both
Edge sampling’s number of iterations and multicycle’s number of tokens are set to
100, and their results are a little better than single cycle. However, as explained
earlier both the noise from calculating the spread and the algorithms themselves
make it difficult to clearly distinguish their differences. Figure 8 shows the spread

Figure 8: Heuristic methods

of the heuristics methods on collaboration network graph. All heuristics methods
except random produce similar results. Page rank is slightly better than degree
and degree discount method, mostly because when calculating the importance of a
vertex, it doesn’t just consider its immediate neighbors. Comparing heuristics with
search methods shows that greedy methods is the best among all of the methods
and heuristics methods are performing better than edge sampling, single and multi
cycle methods.

Table 1 shows the running time all of the methods except for the greedy method.
As explained in previous chapters, running time of all of the methods specified in
the table is independent of seed size, which is their biggest advantage. Figure 9
shows the running time of the greedy method based on seed size. To make the
comparison easier, running time of other methods are also shown in the figure. To
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method time (s)
random 0.84
degree 1.01

degreediscount 1.156
pagerank 2.338

edgesampling 7.73
singlecycle 45.2
multicycle 50.34

Table 1: Running time

find a seed set of size 100 on the collaboration network data set after applying
the CELF optimization, it takes almost 2 hours, and this graph is much smaller
than a typical big data graph. Being an NP-hard problem, the algorithm will not
scale linearly, this means for data sets that are 100 times bigger than collaboration
network, it might take thousands of time more to run the algorithm

Figure 9: Running time of different methods on collaboration network data set
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Figure 10: Spread of different methods on Live Journal Data set

7.2 Live Journal

Same as collaboration network data set, the number of simulations is set to 100.
Here the seed sizes are much larger, and the results are reported for seed sizes of
10000, 20000, 30000, 40000 and 50000. Due to its size, running the greedy method
is impossible, and both the single cycle and multi cycle as specified earlier run into
problems, because of the massive amount of data they have to store in memory.
For this data set, only edge sampling, degree, page rank and random seed selection
methods are executed and the results are reported. Figure 10 shows the spread
achieved by running different methods on the live journal data set. Horizontal axis
shows the seed size, and the vertical axis shows the total spread. From the figure it is
clearly obvious that page rank and edge sampling are superior to the other methods.
Random method is just used as a baseline to compare with the other methods.

Table 2 shows the running time of different algorithms. random and degree methods
as expected are very fast and page rank and edge sampling both run in acceptable
time given the input size. As explained earlier, greedy method cannot scale to graphs
of this size.
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method time (s)
random 21
degree 49

pagerank 206
edgesampling 705

Table 2: Running time

7.3 Artificial Graphs

In this section the spread of degree, pagerank and edge sampling methods on different
types of artificially generated graphs are investigated. As a baseline the spread of
random set of seeds are also drawn. Each of the graphs carry some specific properties
that distinguishes them from each other. As observed from the real graph examples
in the previous sections, edge sampling method is not always performing better than
the heuristics methods such as pagerank and degree. Here, it will be shown for which
types of graphs edge sampling method is performing better.

Figure 11: Random graph of 1000 vertices and 4000 edges

Figure 11 shows the spread on a graph with randomly generated edges. The source
and destination of edges are sampled randomly from all the vertices available. From
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the figure, it can be observed that pagerank and degree method are performing better
than edge sampling, although the difference in the final result is not significant.

Figure 12: Sparse graph with 1000 vertices and 1000 edges

Figure 12 shows the spread on a sparse graph. The graph is generated similar to
random but with a lot fewer edges. Similar to the random graphs, the spread of the
different methods do not differ significantly.

Figure 13 shows the spread on a skewed graph. Here the difference in the results
are more significant. As expected page rank and degree methods are performing
better than edge sampling. This can be explained by the fact that seeds are picked
from the more dense regions of the graph and page rank and degree are choosing
the nodes with highest amount of neighbors. Due to the nature of edge sampling
methods, it is possible that some nodes from the less denser area of the graph are
chosen as seed which have caused the spread for edge sampling method to be lower.

The vertices and edges in the graph of figure 14 are clustered into two set. The
smaller cluster is a fully connected component, which means all of the vertices are
connected to each other. Because of this all of the vertices from the smaller cluster
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Figure 13: Skewed graph with 1000 vertices and 4000 edges

have very high degree. This explains the reason why degree method is not performing
as well as edge sampling and page rank methods, both of which consider more global
information when choosing the seeds.

7.4 Discussion

From the experiments performed in this section, it is obvious that while none of
the methods are performing as good as the greedy method, some of them are good
candidates for influence maximization on large graphs. Pagerank, Degree and Edge
Sampling methods are very fast, and the spread achieved by these methods are
acceptable. Different properties of graphs, affect the performance of each of the
methods, hence the best way to chose the seed is to run all three methods on the
graph and compare the spread for different seed sizes. None of the methods depend
on the seed size, and running them once will return the list of vertices in order of
how good they are in increasing the spread in the graph. Users then can easily chose
the desired number of seeds. Pagerank and edge sampling, generally consider more
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Figure 14: Clustered graph with 1000 vertices and 10000 edges

global information than degree method. Degree method, might perform very good
on some types of graphs, even better than edge sampling, but it does not guarantee
the solution is good for all types of graphs.
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8 Conclusion

Influence maximization gained a lot of attention with introduction of social networks.
It is the problem of finding a set of vertices that could maximize the spread of
information throughout the network. This thesis was set out to study the influence
maximization, specially its application in marketing, and its current solutions in
detail. The study has also sought to provide a breakdown of the advantages and
disadvantages of the solutions to Influence maximization, specifically in terms of
scalability. Three main questions were studied in this thesis:

• Does the traditional greedy solution to Influence maximization apply to large
scale graphs?

• What are the characteristics of a solution for large scale graphs?

• And how do these solutions compare with the greedy method and with each
other in terms of quality?

Both the literature and the empirical findings in this thesis have shown the greedy
solution presented by Kempe et al. [KKT03] has scalability issues. Even on small
graphs it requires a substantial amount of time and resources. The greedy solution
has two main flaws that attribute to the scalability problem. First of all, it is
iterative, which means it requires tens of thousands of iterations in order to achieve
a good solution. Secondly, it cannot be parallelized due to the way the algorithm
is designed. At the core of their computation engines, all big data platforms rely
heavily on parallelism. Platforms such as Hadoop and Spark, take advantage of
big clusters of computers, by breaking down the program into several smaller tasks.
These tasks are then processed by multiple computation units simultaneously. As a
result, greedy method cannot be implemented on big data platforms. Other solutions
that were discussed; Pagerank, Degree and Edge sampling are all parallelizable.
Pagerank and Degree are simple heuristics that only require local information in
the graph, hence the program can be run for all the vertices in parallel. The Edge
sampling method that was introduced in the thesis, is a combination of the greedy
and the heuristics. Although it requires some iterations to achieve a better solution,
it is parallelizable and can be applied to graphs of any size.

In section 6, several experiments on different data sets were performed. In terms of
quality, the greedy method performs best on small graphs. Pagerank, Degree and
Edge sampling also performed quite well on the small data set, although none could
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match the greedy method. But on bigger data sets the greedy method could not
provide a solution within a reasonable amount of time. All other three methods
ran very fast and provided comparable solutions. However these solutions were not
consistent across different graphs. On some graphs, one method performed better
than the others, which was not the case in other graphs. Experiments on artificial
data sets revealed that the shape of the graph affects the solution provided by each
method. Pagerank and Edge sampling are able to provide a more consistent solution
across different types of graphs. Whereas, Degree method does not guarantee a
good solution all the time and it is heavily affected by the shape of the graph. All
three methods fall under the heuristics category. This means that, although the
experiments in this thesis showed that Pagerank and Edge sampling are performing
very well, they do not guarantee to provide the best solution for every data set.
Given that these methods run reasonably fast on large graphs, my recommendation
is to test all the methods on the desired graph, and choose the one that provides
the best solution.

Influence maximization is a vast topic and in this thesis only the basic problem
was covered. Several related topics were left out, and many other challenges still
remain. Finding a deterministic function (one that does not rely on the Monte Carlo
simulations) for the greedy method is one area that is still being studied. Topic based
influence maximization, i.e. users influencing each other differently with regards
to different topics is another area that was not covered in the thesis. Influence
degradation, a research area that involves dynamic influence probabilities that will
change over time, was also left out. The Edge sampling method presented here, is
utilizing some of the advanced features in Spark, such as in memory computation and
vertex partitioning. However, there is still room for improvement. Better memory
usage, faster connected component size computation, and more intelligent ranking
of seed nodes are areas that can be improved further.
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