
Advances in Streamlining Software Delivery on the Web and
its Relations to Embedded Systems

Kasper Hirvikoski

Master’s thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, April 20, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33736547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Kasper Hirvikoski

Advances in Streamlining Software Delivery on the Web and its Relations to Embedded Systems

Computer Science

Master’s thesis April 20, 2015 68

agile, CD, CI, deployment pipeline, embedded systems, experimentation, lean, software delivery, web

Software delivery has evolved notably over the years, starting from plan-driven methodologies
and lately moving to principles and practises shaped by Agile and Lean ideologies. The
emphasis has moved from thoroughly documenting software requirements to a more people-
oriented approach of building software in collaboration with users and experimenting with
different approaches. Customers are directly integrated into the process. Users cannot always
identify software needs before interacting with actual implementations. Building software is
not only about building products in the right way, but also about building the right products.
Developers need to experiment with different approaches, directly and indirectly. Not only do
users value practical software, but the development process must also emphasise on the quality
of the product or service. Development processes have formed to support these ideologies. To
enable a short feedback-cycle, features are deployed often to production.

A software is primarily delivered through a pipeline consisting of tree stages: development,
staging and production. Developers develop features by writing code, verify these by writing
related tests, interact and test software in a production-like “staging” environment, and finally
deploy features to production. Many practises have formed to support this deployment pipeline,
notably Continuous Integration, Deployment and Experimentation. These practises focus on
improving the flow of how software is being developed, tested, deployed and experimented
with. The Internet has provided a thriving environment for using new practises. Due to the
distributed nature of the web, features can be deployed without the need of any interaction
from users. Users might not even notice the change.

Obviously, there are other environments where many of these practises are much harder
to achieve. Embedded systems, which have a dedicated function within a larger mechanical
or electrical system, require hardware to accompany the software. Related processes and
environments have their limitations. Hardware development can only be iterative to a certain
degree. Producing hardware takes up front design and time. Experimentation is more
expensive. Many stringent contexts require processes with assurances and transparency —
usually provided by documentation and long-testing phases.

In this thesis, I explore how advances in streamlining software delivery on the web has
influenced the development of embedded systems. I conducted six interviews with people
working on embedded systems, to get their view and incite discussion about the development of
embedded systems. Though many concerns and obstacles are presented, the field is struggling
with the same issues that Agile and Lean development are trying to resolve. Plan-driven
approaches are still used, but distinct features of iterative development can be observed. On
the leading edge, organisations are actively working on streamlining software and hardware
delivery for embedded systems. Many of the advances are based on how Agile and Lean
development are being used for user-focused software, particularly on the web.

ACM Computing Classification System (CCS):
– General and reference~Experimentation
– Computer systems organization~Embedded systems
– Software and its engineering~Agile software development
– Software and its engineering~Software development techniques

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Software Delivery 3
2.1 Adapting to Change . 6
2.2 Being Agile . 7
2.3 Ensuring Quality . 8
2.4 Processes and Practises . 10
2.5 From Agile to Lean . 11
2.6 Focusing on the Essential . 13

3 Deployment Pipeline 14
3.1 From Development to Production 15
3.2 Continuous Integration . 17
3.3 Continuous Deployment . 18
3.4 Continuous Experimentation 19
3.5 Using Web as a Platform . 20

4 Towards Embedded Systems 22
4.1 Embracing Agile Development 23
4.2 Integrating Hardware and Software Development 25
4.3 Historical Perspective . 28
4.4 Using Hardware as a Platform 29
4.5 Adapting for Deployment Pipeline 31

5 Views from Embedded Settings 34
5.1 About Processes . 36
5.2 A Stringent Context . 38
5.3 Variables Hard to Understand 41
5.4 Comparing to Agile and Lean 43
5.5 Pursuing New Ideologies . 45
5.6 Adapting to Change . 47
5.7 Experimenting . 50
5.8 Building Hardware for Software 52
5.9 Overview of the Presented Cases 54

6 Conclusions 57

7 Acknowledgements 59

References 59

iii

1 Introduction
Software delivery on the web has evolved over the years into a rather
established process. A software is developed iteratively through multi-
ple phases, which ensure the user’s requirements and the quality of the
product or service. These phases form what is called the deployment
pipeline [Fow06, HF11, Fow13a, Fow13b].

A deployment pipeline nowadays usually consists of at least three stages:
development, staging and production. Organisations alter these depending
on their size and needs. Using modern iterative and incremental processes,
a software is developed feature-by-feature by iterating through these steps.
Development starts in the development stage where developers build the
feature requested by the customer or user. The feature is then tested in the
staging phase, which represents the production setting. When the feature
has been validated, it is then deployed to production. If necessary, each
stage can be repeated until the feature is accepted. Each step is short and
features are deployed frequently — in some cases even multiple times a
day [O’R11, Sny13, Rub14].

Software engineering consists of various different processes and practises
for ensuring the quality of a product or service — nowadays more or less
based on Agile and Lean ideologies and practises [Ōno88, BBvB+01a, Fow05,
Mon12]. At the low level, developers use source code management to keep
track of changes to the software and to collaborate with other team members.
To reinforce that features work as intended, developers write tests. Teams
can also use more social methods — such as reviewing each other’s code —
to validate the implementations. Many of these practises are included in
Continuous Integration and Continuous Deployment [Fow06, HF11, Fow13a,
Fow13b]. Software changes are frequently integrated, tested and deployed —
automatically in each stage. The first two form Continuous Integration and
the latter Continuous Deployment. If any stage fails, the process starts from
the beginning.

The web enables the use of the deployment pipeline and its practises
in an unprecedented way [KLSH09]. Due to the distributed nature of the
Internet, software can be deployed as needed and the user always sees the
newest version without the need of any interaction. This eases the use of
many cutting-edge methods [KLSH09, FGMM14]. Deploying software as
needed has allowed developers to experiment with different implementations
of a feature. Changes can target anything from a more optimised algorithm
to something more user-faced, such as improvements to the user experience
of a product [KLSH09]. These experimentation practises have started to
formalise as Continuous Experimentation [FGMM14].

Not all software can be developed easily this way. Many embedded
systems, which have a dedicated function within a larger mechanical or
electrical system, require hardware to accompany the software. Many of the

1

features are not user-focused and are limited by environments and hardware.
This presents a variety of challenges to overcome. Hardware can require
thorough planning and iterating can take time. Contexts such as cross-
platform support, robotics, aerospace and other embedded systems pose
interesting cases. Many of these contexts can at a glance seem regarded
as models for more traditional sequential software engineering processes
with heavy planning, documentation and long development phases. Partly,
this is still the case. However, even NASA’s earlier space missions have
iterated on the successes and failures of previous ones [LB03]. Even though
it can be more difficult, software related to hardware can be build and
tested iteratively [LB03]. New approaches from prototyping electronics to
3D-printing have provided novel ways for building hardware iteratively.

This raises an interesting research topic — presenting the advances in
streamlining software delivery on the web and relating its practises and their
advantages and challenges in the context of embedded systems. Using case
studies it is identified which Agile and Lean practises are used, how they
could be improved and how new practises could be incorporated to embedded
settings. Moreover, the aim is to identify if modern Continuous Integration,
Deployment and Experimentation practises are used. Not just in a strict
sense, but trying to discover what practises are possible in such settings. Can
we determine how they compare to the way the web is utilised as a platform?

My hypothesis is that there should be no reason why many of these
practises could not be successfully used and cleverly adapted to hardware
settings. (In the context of this thesis, I also refer to embedded settings as
hardware related.) Progress is an organisational issue above all. My research
method for this thesis was reviewing the current practises in literature
and industry. I also conducted several semi-structured interviews with the
academia and industry working on embedded systems, to get a view on if
and how the deployment pipeline has changed the development of hardware
related products.

This thesis is structured into seven chapters. Following the introduction,
Chapter 2 outlines how software delivery has progressed from a structureless
process following a code-and-fix mentality, to what is now considered the
leading edge of iterative development. This sets the scene for understanding
the rationality behind being adaptive to change, and how the user is an
essential part of the process. Chapter 3 describes how software delivery has
embraced primarily a three staged pipeline for deploying new features to
users, and how the web has provided an effective platform for the deployment
pipeline to exist by streamlining and automating many of the practises used
by modern development. Chapter 4 delves into the challenges related to
delivering software that is firmly linked to hardware. It deliberates about how
the deployment pipeline could be integrated into these embedded systems.
Chapter 5 presents the results from the interviews collected from the field.
The idea is to incite discussion, through the view of people working on

2

embedded systems, about what is the current state of software delivery in
such settings and how it could be improved. Finally, Chapter 6 concludes
this work by making conclusions about the gathered knowledge and this is
followed by final acknowledgements.

2 Software Delivery
Software development has changed notably in the past few decades, nonethe-
less it still being a young field. Most software development can be seen as dis-
ordered chaos with a mentality of coding first and fixing later [Boe88, Fow05].
A software is built without much of an underlying plan and the design of
the system is a result of many short term decisions. This can work well if
the system is small, but as it grows, adding new features becomes easily too
much to handle.

Going back, it was not until 1968, when the term software engineering was
introduced by the NATO Science Committee [NR69]. By that time, it was
considered that software development had drifted into a crisis, where a wider
gap was forming between the objectives and end results of software projects.
Additionally, it was getting increasingly difficult to plan the length and cost of
development. A typical issue was a long and manual test phase after a system
was considered “feature complete” [Fow05]. As a consequence, projects did
not meet their deadlines and budgets. A collective effort was put in place to
establish a more formalised method for software development — similar to
traditional engineering such as building bridges. It was considered necessary
that the foundation for delivering software should be more theoretical, with
laid principles and practises [NR69]. Software development had to become
more predictable and efficient. By 1969, the term software engineering had
become well-established in the field [BR70].

Software development processes began to form. One of the primary
functions of software processes was to determine the flow and order of how
software is developed in stages [Boe88]. Notably in 1970, Winston W. Royce
published a paper that described a formal approach for sequentially devel-
oping a software based on previously used practises [Roy70]. It was only
later named as the Waterfall model [Boe88, LB03]. See figure 1. The process
consists of multiple stages that should be carried after the previous has
been reviewed and verified. It begins by mapping the requirements for the
entire software, then proceeding to designing the architecture, followed by
implementing the plan, verifying the result is according to the set require-
ments, and finally maintaining the product [Roy70]. Generally, all this is
considered as a linear timeline with a start and end. Each stage is planned
and documented thoroughly. The concept thus being that as each step
progresses, the specification of the software becomes further detailed.

However, contrary to what has been referred, Royce presented the model

3

Requirements

Design

Implementation

Verification

Maintenance

Figure 1: Waterfall Model

as a somewhat flawed, non-working model [Roy70]. If any of the stages fail,
serious reconsideration of the plan or implementation might be necessary.
Therefor sequentially following the stages would not produce what was
intended and inevitably previous stages would need to be revisited [Roy70].
Royce still found the approach fundamentally sound and proposed the method
should be carried out twice — a glimpse of iteration [Roy70, Boe88]. It
should begin by creating a prototype and only then proceed in executing
the improved plan. Nevertheless, this was overlooked and the single pass
Waterfall model became the dominant software development process for
software standards in government and industry [Boe88, LB03]. It is still
used widely in some fields. It is noteworthy to mention that Royce has later
been stated as a supporter for iterative approaches [LB03].

Engineering methodologies, also called as plan-driven methods, are con-
sidered heavy. They also have not been noted for being terribly success-
ful [Fow05]. The Waterfall model has been criticised as too linear, controlled,
managed and documentation-oriented [Boe88, LB03, Fow05]. Waterfall
pushes high-risk and difficult elements of development towards the end of
the project [VB09]. Royce considered a software completed only when in
addition to its implementation the documentation of it was acceptable —
sometimes hundreds or even thousands of pages [Roy70]. It was declared
that developers should prioritise keeping the documentation up to date over
everything.

More lightweight iterative processes were proposed as opponents for
sequential software development in the later parts of the nineteen hun-
dreds [LB03]. In fact, early applications of iterative and incremental develop-
ment dates as far back as the mid-1950s — with many names such as incre-

4

mental, evolutionary, spiral and staged development [Boe88, LB03, Fow05].
All of these sought in developing a useful compromise between no process
and too much process [Fow05]. They also focused to be less documentation-
oriented and in many ways more code-oriented. It was considered that the
documentation for a project should be the code itself, not some external
specification.

Fast-forward to 2001, when a group of software developers met to discuss
new lightweight development principles. As the result of these discussions, a
manifesto for Agile software development was published [BBvB+01a]. Four
principles were proposed for Agile software development: focusing on individ-
uals and interactions over processes and tools, focusing on working software
over comprehensive documentation, focusing on customer collaboration over
contract negotiation and responding to change over following a plan. The
manifesto does not dismiss the significance of the latter, but considers the
former even more valuable [BBvB+01a]. From thereon, iterative processes
have started to gain mainstream traction in the field [LB03, Fow05].

Software development is now considered as an ongoing process, where a
product should be build in small increments, iteratively going through the
development stages and repeating this process as long as required. Software
delivery moved from a linear approach to a more recurrent cycle. See figure 2.
The principal notion is not to resist change. Most of the ideas were not new
and had been successfully used already in the industry for a long time before
the manifesto [Fow05]. At that time, an urge revived to treat the ideas more
seriously. Instead of planning, designing and implementing a whole software
once, a software should be build iteratively by repeating all of these steps
in shorter more controllable parts. Hence, any issue or miss-communication
could be discovered early on and fixed accordingly.

Plan

Design

Code

Test

Figure 2: Iterative Development

5

2.1 Adapting to Change

The demands for software products are continuously shifting. It is not always
obvious what the users want. In some cases, users do not know what they
are looking for, until you show them what they need. It is hard to know what
the value of a feature is before you see it in reality [Fow05]. Reality allows
the user to see and learn how a feature works. An average client has little
knowledge on how software products work or how they are built. Therefor,
it is exceedingly difficult for a client to map specifically what they require
from a software product. Software development should be more people than
process-oriented [Fow05]. This requires a different kind of relationship with
a customer. Generally, a user can be considered as the customer — the
terms user and client are one and the same. What is notable, even Royce
emphasised, although loosely, the value of customer commitment during
development [Roy70].

In most cases, rigorously planning a software beforehand will not work
[LB03]. It is not uncommon that an idea will change quite a bit during its
lifetime. A key problem that plan-driven methods face is the separation
of design [LB03, Fow05]. The concept is similar to traditional engineering:
engineers will build a precise plan, which will then be followed by a different
set of people. In such, architects and engineers would first design a bridge
and then a construction company would build it. A classic example is
how Henry Ford standardised car parts and assembly techniques so that
even low-skilled workers with specialised machines could manufacture low-
priced cars to the masses [Pop02]. This lead to an explosion of indirect
labour from production planning, engineering to management. All of this
required a lot of overhead [Pop02]. Designing, which involves creative and
more talented individuals, is far more difficult and less predictable than
construction [Fow05]. Commonly expensive as well. Construction on the
other hand, although more labour intensive, is considered more predictable
and straightforward after a plan has been completed. The premise is that
by following this methodology in software engineering, we could reasonably
predict the time and cost of software “construction”.

When Royce first defined the Waterfall model, he stated that the docu-
mentation of a software is both its specification and design [Roy70]. Without
documentation, there would be no design nor communication. Still to this
day, no one has found a solid way of designing software in a manner that
the plans can be thoroughly verified before construction [Fow05]. A design
can look good on paper, but be seriously flawed when you actually program
it. When building a bridge, the cost of the design is fractional to the cost of
construction [Fow05]. It was thought beneficial that “low-skilled” program-
mers would produce the code, while a few “talented” architects and designers
did the critical thinking [Pop02]. Naturally, this lead to a Waterfall-like
process with different people involved in different stages. In software, the

6

time spent implementing is fractional to the time spent designing. Essentially,
coding is designing. Coding requires creative and talented people. People
are considered one of the most important factors in software development.
Developers should be in control of technical decisions. There are serious flaws
in separating different tasks to different specialists, but this is how software
engineering was regarded as [Roy70]. It is still quite common that a developer
writing the code and a tester writing the tests, are not the same person. The
metaphor for traditional engineering is in practise flawed [Fow05]. Many
projects simply fail in what they are trying to achieve and as a consequence
the results will never be used [LB03]. Some reports have indicated that one
of the top reasons for project failures is related to Waterfall-practises [LB03].

Andy Whitlock, a product strategist, drew a fitting mental picture about
changes [Whi14]. You see the road ahead as a clear and straight path to an
objective you have set. What you do not always realise, is that the path will
have its twists and turns along the way. What you can really only do, is to
plan to a certain point ahead. The rest of your path will be a gloomy fog
in the distance. You need to be ready to make difficult choices along the
way. Agile development tries to create a framework, where processes and
practises can take these requirements into consideration. Even to the point
of changing the process itself [Fow05].

2.2 Being Agile

Prominently, being “agile” means effectively responding and adapting to
change and not resisting it. After all software is supposed to be soft [Fow05].
These course corrections are rapid and adaptive. The highest priority is
to satisfy the customer trough continuously delivering valuable software
from early on [BBvB+01b]. Software should be delivered frequently in short
increments. These increments, also referred as iterations in Agile development,
should take no more than a couple of weeks to a couple of months — the
shorter the better [Fow05]. After each iteration, a working software is
delivered with a subset of the required features. These features should be
as carefully tested as a final delivery. Throughout the project, one of the
ways for a team to respond to change is by having effective communication
among all stakeholders for the product daily. The best means for conveying
information is face-to-face conversation — not documentation [BBvB+01b].
At every iteration the customer has control over the process by getting
a look on the progress and then altering the direction as needed. This
continuous feedback has been attributed as a key factor for success in Agile
projects [DD08].

Commonly a stakeholder represents the views for the users or clients.
By taking the stakeholders as part of the team, developers can react when
something is not working as intended. Early on, the importance of customer
reviews and acceptance was already noted in the Spiral model, which dates as

7

early as the 1980s [Boe88]. Studies also show that developers see the ongoing
presence of stakeholders helpful for development [DD08]. An Agile process
is driven by the customer’s descriptions of what is required [BBvB+01b].
These requirements may be short-lived and that must be kept in focus.
Changes are unavoidable [Fow05]. Users’ desires evolve and this must be
harnessed to the customer’s competitive advantage [BBvB+01b, Fow05].
Even if deciding a stable set of requirements would be possible, outside forces
are changing the value of features too fast [Fow05]. It is not uncommon
for requirements to change even late in development. If you cannot get a
fixed set of requirements, you cannot get a predictable plan. This is what
makes plan-driven development inefficient. Royce stated that required design
changes can be so disruptive that the software requirements upon which the
design is based on, and which provide the rationale for everything, can be
breached [Roy70]. Even so, predictability is highly desirable [Fow05]. It is
an essential force in what makes a model work. Adaptivity is about making
unpredictability predictable. This creates a framework for risk-control in the
project.

One key premiss for Agile development is to reduce the burden of the
process. Working software is the primary measure of progress [BBvB+01b].
A process should not hinder the work of a team — on the contrary it should
permit the team to function to its full extent. By organising a team to be
in control of the process, the framework facilitates rapid and incremental
delivery of software. Still, no process will make up for the skill of the
individuals working on the project [Boe88, Fow05]. Projects should be based
on motivated individuals [BBvB+01b]. Motivation is maintained by creating
a constructive environment and giving the necessary support when needed.
Trusting the team is of utmost importance [BBvB+01b]. Morale has direct
effects on the productivity of people [Fow05, LTR+14].

One of the weaknesses of adaptability is that in its essence it implies that
the usual notion of fixed-priced software development does not work [Pop02,
TFR02, Fow05, HOAB12]. Instead completely new approaches have to be
used. Contracts should allow incremental deliveries which are not pre-defined
in the contract, yet still ensuring the customer receives business value [Pop02].
You cannot fix scope, time and price in the same way as plan-driven methods
have tried. The usual agile approach is to fix time and price and allow
the scope to vary in a predetermined manner. Value is not only created
by building software on-time and on-cost, but by building software that is
valuable to the customer. Yet, value unquestionably still is a philosophical
problem.

2.3 Ensuring Quality

Assuring quality is not an easy task. Applying measurements to software
development is demanding. Something as simple as productivity is exceed-

8

ingly difficult to quantify. Let alone defining the value of something — from
monetary significance to anything related user interpretations. ISO 9000
-standard defines quality as the extent of how well the characteristics of a
product or service fulfil all of the requirements, the needs and expectations,
set by the stakeholders [ISO05]. IEEE defines software quality as the degree
to which a system, component or process meets the specified requirements
as well as the customer’s and user’s needs or expectations [IEE06]. Both
definitions focus strongly on fulfilling the user’s needs. In this sense, quality
and value have similar interpretations. It is also relatively hard to distinguish
what is success. Most of times this is based on the impressions of the people
involved, though sometimes some kind of measurement can be used as an
indicator. These indicators can for instance focus on time and monetary
value. That is to say, how much of time or money has been spent during the
project and how much has been received.

Software development is challenging. Users perceive quality as working
software, but most of all emphasising good technical design and implemen-
tation makes the development process easier. People, time and money are
limiting factors for ensuring quality. Strict deadlines and scarce resources have
direct effects. Furthermore, human factors play a considerable role [DD08].
Several empirical studies reinforce the significance of Agile development pro-
cesses and practises as improving quality in software [DD08, SS10, DNBM12].
Evidently being “agile” should in the long term make development more
predictable and eventually lead to shorter development times and minimised
costs [DD08]. This provides an environment for being adaptive.

In addition to focusing on satisfying the customer’s needs, Agile devel-
opment promotes continuous attention on technical excellence and good
design practises [BBvB+01b]. Even so, this should not be accomplished by
hindering simplicity. Simplicity maximises the amount of work that can be
accomplished. The Agile Manifesto states that the best requirements, designs
and architectures emerge from self-organising teams [BBvB+01b]. After reg-
ular intervals, the team members reflect on how they have performed and
how they can become more effective. This is how the team can then tune and
adjust its behaviour appropriately. The problem with traditional engineering
is the separation of responsibility [Pop02]. Employees are not expected to
take responsibility for the quality of a product. By giving responsibility back,
you add accountability to the process. Developers will take quality more
seriously.

Achieving quality is above all an ambition. No process or practise will
account for quality if the developers are not willing to pursue it. A team
must set mutual working principles which define how development will aim to
deliver quality. These include anything from coding conventions to reviewing
each other’s work. Quality should be a concerted effort. Above all, value is
qualitative, rather than a quantitative metric.

The Agile practises also have their critics. Firstly, there is a lot of

9

preconceptions about being Agile, mostly driven by seeing the process as
supporting no design nor documentation [HMP+10]. Secondly, one of the
biggest criticism is that there is a shortage of (theoretical) scientific support
for many of the claims made by the Agile community [DD08, DNBM12].
Practises are rarely applicable by the book and therefor they are rarely used
as such. However, empirical studies have shown favourable results, and lately
the amount of studies has increased significantly [DD08, SS10, DNBM12].
Agile development has also been critiqued for a lack of focus on the design and
architecture behind software. Additionally, Agile development has a strong
focus on small teams and as such many have struggled in seeing them used
in larger distributed environments [TFR02]. One of the concerns has been
how to handle subcontracting which tends to lean heavily on documentation
and contracts. Regarding embedded systems, there are issues in adopting
Agile principles and practises to safety-critical environments, where processes
need assurances [TFR02]. It is no surprise that it takes time and effort to
introduce the methods properly [DD08]. In most cases, once you get past
the first obstacles many of these hurdles are not blocking.

2.4 Processes and Practises

Processes and practises assist the development process. They create the
framework and guidelines within a team can develop a suitable environment
to deliver software [Kni07]. Martin Fowler discusses about a process as a
part of the design [Fow05]. Processes and practices also help to maintain
quality. Agile development has become well known and organisations are
showing interest in adopting these methods [DD08].

At the low level, developers use source code management to keep track of
changes to the software and to collaborate with other team members. Source
code management enables multiple developers to work on a single project,
while also creating a history for the entire project. When a problem arises,
developers can go back in time to look at the source code at any given point
in time. To ensure features work as intended, developers use automated
test cases to verify expected behaviour. There is a clear correlation between
higher test coverage resulting in fewer errors in software [MNDT09]. By and
large, tested code has a better chance of indicating errors than untested
code. Teams can also use more social methods — such as reviewing each
other’s code — to validate the implementations. Pair programming, coding
dojos and hackathons provide tools for improving skills and solving complex
problems together [DD08, HHLV13, RKDB+13].

Most iterative development processes vary by the iteration length and
how iterations are time-boxed — from a couple of weeks to a couple of
months [LB03]. Agile development only provides a framework for software
delivery. It does not specify concretely how development should be organ-
ised. Instead, development methods are incorporated to give focus on how

10

software should be developed. Most notably, Scrum and Extreme Program-
ming have created a structure for Agile development [LB03, Fow05, SS10].
Scrum provides a framework for managing development. It focuses on how
development should be planned, managed and scheduled. It does not provide
any strict development practises, instead it gives guidelines for how customer
requirements should be discovered, prioritised, and how the development of
these features is split into iterations.

Scrum has been strengthened with ideas and practises which focus on
simple design, small releases and coding standards. These also include test-
driven development, refactoring, pair programming, collective ownership of
the code, utilising on-site customers and continuous integration. These are
defined in Extreme Programming [Bec00]. Continuous Integration aims at
creating a process where developers integrate new features in small chunks and
as often as possible into the software. In test-driven development, features
are developed by writing the expectations for a feature as tests before
actually implementing the code. When possible, code should also always
be refactored to improve existing implementations. In pair programming,
developers develop features in pairs.

Extreme Programming practises have been easier to be studied than
management processes such as Scrum [DD08, DNBM12, KRM+13]. Most
of the practises have been regarded as improving the quality of software
and most developers tend to support them [DD08, SS10]. What is more,
these practises make software development progress visually and aurally
available. This increases the confidence that you are building what users
want. Teams also improve the quality of their work: communication and
understanding is improved, knowledge is transferred among the team and
developers are more confident about their work. This in turn increases morale
and productivity [SS10, LTR+14]. A productive team is a right mixture of
talented people. A team will not work if its members cannot work together.
Regardless, it is still clear that many of the practises need more theoretical
and empirical studies to validate their claims [DD08].

2.5 From Agile to Lean

As time has passed, developers have simplified software delivery even more.
Agile has turned into Lean. Popularised, being “lean” means reducing the
amount of “waste” around software development. Craig Larman and Bas
Vodde have criticised this simplification [LV09]. Above all, lean thinking is
defined by respect for people and continuous improvement (kaizen). You
need to challenge everything and embrace change. One way to achieve this
is to remove anything from the process that does not have direct benefit
for the team or software. Some principles for Lean development are: elim-
inating waste, amplifying learning, deciding as late as possible, delivering
as fast as possible, empowering the team, building integrity in and seeing

11

the whole [PP03]. Lean refers to an approach in manufacturing that was
originally developed by Toyota in the 1950s [Fow08]. It became well known
for the rest of the world in the 1990s when westerners started to explore why
Japanese where leading in so many industries. Principles of lean thinking
are universal and have been applied successfully in many disciplines [Pop02].
Many of the ideas presented by Lean Manufacturing have influenced the roots
of Agile in software development. Both place notable attention on adaptive
planning and people-focused approaches. In recent history, the software
community has started to embrace Lean principles with more clarity [Fow08].
Agile and Lean are deeply entwined — you are not only agile or lean, you
are both agile and lean.

Lean is characterised by doing work just-in-time, not too early and not
too late. Instead of dealing with a lot of up front design, just-in-time delivers
a better paradigm by focusing on what is currently needed [Pop02]. The
principle is to structure processes so that they do nothing but add value
and as fast as possible. This is accomplished by removing unnecessary waste
and moving decision-making to the developers. Mass-production requires
immensive amounts of work to create a process that does not directly add
any value. This takes time, time that is of the essence. Being “lean” means
reducing this framework to the minimum and providing customers value with
significantly fewer resources. As a notable example, Pierre Omidyar created
the popular commerce platform eBay by responding to daily requests for
improvements to the service [Pop02]. Many of these improvements where
integrated overnight.

Iterations have in some cases even turned into building single features at
a time. The idea of time-boxed iterations has become less important: you
build a single feature and once done, continue to the next one. Instead of
building a frame for a ship, a development process should essentially start
with building a boat first. To evaluate an idea, developers should begin by
developing a minimum viable product (MVP) to validate the implementation
has value [Rie11]. Note that the emphasis is on viable, the product still needs
to be well thought. The notion is that sometimes ideas can be evaluated
quicker by implementing them rather than spending time with a committee
to decide the requirements [Pop02]. Even Royce hinted on prototyping in
the Waterfall model and later the Spiral model integrated this as a principal
concept [Roy70, Boe88]. Only a minimal effort should be put in place to
specify the overall nature of a product. Being “adaptive” has transformed
into quantitatively assessing what effects changes have. This so called build-
measure-learn cycle (see figure 3) or continuous innovation has transformed
how features are developed and validated [Rie11]. Either you change your
heading by pivoting or you persevere with the choice you have made.

This mentality of continually innovating has become popular among
software startups — a mentality referred to as Lean Startups [Rie11]. An
entrepreneur with a big vision and stubborn determination can charge through

12

Build

MeasureLearn

Figure 3: Build-Measure-Learn Cycle

obstacles and make whatever their ambition is. The passion, energy and
vision that people can bring to new ventures are resources that should
not be disregarded. However, it is difficult to choose when to take a new
direction. These decisions can be backed by anything from intuition to
external indicators such as user feedback. In any case, making changes
requires courage and determination. The build-measure-learn cycle makes it
possible to test reactions, learn and iterate. Making decisions purely based
on intuition can be risky according to Eric Ries [Rie11]. Learning, adapting
and making changes should be guided by data. It has even been suggested
that experiments with negative user effects should be conducted — to a point
of even worsening the user experience [KLSH09, KDF+12, Bos12]. Still,
personally, I would argue that these experimentations need to be carefully
planned. Not all users tend to agree with the use of somewhat unethical
experimentation practises [RM13]. If a minimum viable product does not
focus at all on the user experience, there is a high chance that users will seek
for alternative options.

2.6 Focusing on the Essential

In Lean development, you eliminate waste by using activities and resources
that are only absolutely necessary. Everything else is waste. The idea
of doing things right has been widely misused as a justification for doing
plan-driven development with heavy planning [Pop02]. Instead, software
should be developed with short incremental cycles to ensure feedback and
learning. This way, developers learn when something can be adjusted and
most of all the customer can have an influence. You concentrate on building
features that will bring value by moving other decisions to as late as possible.
Commitment should be delayed until there is certain demand that indicates
what the users really want.

By delivering as fast as possible, you ensure you can concretely see
whether the feature has value or not. Development should centre on the
people that have most effectiveness. Responsibility should not be transferred

13

away from these people. Developers should have control on all aspects of
the process. If something does not work, they have the chance to make
a difference. Developers should be able to challenge their skills instead of
separating different tasks to different people. Maintaining responsibility and
keeping a keen awareness and interest on the process builds integrity. All
the skills required to build the product should reside in the team: from
understanding the customer’s needs, to architecture, design, development,
testing and management. When these principles are applied to software
development, it is more probable that you see the product in its entirety.
Fundamentally, Lean development tries to not hide the unknown.

Like Agile development, Lean development is more or less a mindset. It
emphasis certain aspects of the process that guide development. Developers
still have a lot of flexibility in how they utilise these guidelines in their work.
In any case, Lean development has also brought some popular practises
such as Kanban, which is a visual way of organising work into tasks and
limiting the amount of work currently in progress [Mon12]. These tasks are
for example written down on sticky notes and their progress is made evident
by moving them through different production stages: to do, doing and done1.
At any given time, only a limited of amount of tasks can be on each stage.

3 Deployment Pipeline
Someone thinks of a good idea, but how do we deliver a feature as effortlessly
as possible? In many software projects, releasing new features is a manually
intensive process. Previously, delivering software to users occurred at the
very end of the project [HOAB12]. This should not be the case, because
releasing software has a tendency to fail. Fixing major production issues
after deployment can be hard to accomplish. For example, it is crucial to
determine whether a software will work in its intended environment and not
just on the developer’s own machine.

A deployment pipeline is the foundation for many modern software
development practises. Anything that can be treated as construction should
be automated [Fow05]. One of the obstacles of building and testing software,
is that you want to be able to proceed effortlessly so that you can get
feedback on the process [Fow13b]. Deploying software manually is a fragile
and time-consuming process. Ideally a software should be able to be deployed
by anyone with the simplicity of pushing a button. No struggle in finding
out the steps to do so and automated ways in discovering if something has
gone wrong — along with rollbacking when this happens. To ensure quality,
you have a comprehensive set of test cases for your code. Running these
tests manually can take a lengthy time. A deployment pipeline handles
this by breaking up your build — with automated scripts and tasks — into

1Organisations use for example walls in their offices as Kanban boards.

14

multiple stages. Each stage increases your trust that everything is working
as expected.

Jez Humble and David Farley describe three common anti-patterns for
software delivery: deploying software manually, deploying to a production-
like environment only after development is complete, and manually managing
production environments [HF11]. Most applications are rather complex
to deploy and the process involves many moving parts. Eventually this
leaves the process prone to human error. The purpose of a deployment
pipeline is to provide automated and frequent releases of features. Any
change in the software should trigger a feedback process. Features should
be deployed so that developers receive feedback and can act upon this.
According to Humble and Farley, features should be considered complete
only when they are deployed to production — reflecting many ideas behind
Agile and Lean development [HF11]. The end result of the process is a
production ready software or a cloud deployment. Without a deployment
pipeline, development undoubtedly slows down. One is not truly incited to
develop features incrementally.

Development Staging Production

Figure 4: Deployment Pipeline

Typically a deployment pipeline consists of at least three stages: devel-
opment, staging and production [HF11]. See figure 4. These stages can be
automated or require human interaction. Fundamentally, the purpose of
a deployment pipeline is to detect any changes that will lead to issues in
production [Fow13b]. In addition, it gives visibility about changes in the
development process. This visibility makes development progress easier to
follow.

3.1 From Development to Production

Developing a software feature starts with the developer. Developers carry
out ideas and turn them into code that implement a feature. Everything
that is required to build an application should reside in a shared code
repository [HF11]. This source code management keeps track of changes
and makes it possible for several people to work on the same project. It
also creates an invaluable history, where developers can go back in time and
look through how the project has evolved over time. Notably, this makes

15

troubleshooting easier. A developer should be able to pull a local copy of the
shared repository and with minimal effort — such as installing the required
programming frameworks — get the application building and running. All
this should be a straightforward process.

A developer should be encouraged to implement features in small chunks.
Continuously integrating code is most of all a practise, not a tool [HF11].
Development practises require a degree of commitment and discipline from
developers. Developers write code, related automated test cases and manually
test whether the feature is working as desired. There are several levels
of testing from unit, integration to acceptance testing. These all focus
on different assurances: unit testing is used to test low-level components,
integration testing is used to test integrations between different components
and higher level acceptance testing is used to test overall behaviour of
the whole system. Developers also interact with the actual software while
developing. After finishing, a developer runs all existing test cases for the
project to make sure that any local changes have not broken anything else
in the application. Finally, the work is integrated back into the shared
repository.

A development machine is only local. An application can seemingly work
as expected on a local environment, but this must be verified against the
production setting. Once the feature has been integrated into the repository,
it is then immediately tested in a production-like setting, usually called as
“staging”. A server runs the scripts and task related to building and testing
the application. These include tests cases and any other checks that make
sure the code is adequate. A task can include anything from analysing code
style and conventions, spotting human errors to measuring the test coverage
of code. If anything fails, the developers should notice the issues relatively
soon and fix them accordingly. The idea of staging is to simulate a production
environment. Tests should be run under this controlled environment to make
sure the software works as intended once deployed.

Finally, the last step includes deploying the application to production.
It is not always feasible or desired to deploy software straight to produc-
tion. Staging software adds a secondary barrier to verify the application.
Customers can also see if the feature works as intended and any changes
can still be made before actually deploying the feature to users. In web-
applications, features can even be deployed gradually, starting from a subset
of users [Bos12]. If all goes well, gradually more servers will be deployed with
the new feature. At any point in time, the deployment can be rollbacked to
a previous version if any issues are raised.

In addition, managing the staging and production environments should
be made as easy as possible. An application stack should be simple to
maintain and all related configurations should reside in a repository [HF11].
Any developer should be able to create a production environment precisely,
preferably in an automated fashion. Virtualisation and service-oriented

16

platforms can help to achieve this.

3.2 Continuous Integration

Continuous Integration (CI) is a development practise where members of a
team integrate their work frequently, usually multiple times a day [Fow06].
This leads to multiple integrations of the software every day. As described
previously, each integration is verified by an automated build and test process
to detect any errors as soon as possible. Less time is spent in trying to find
bugs, because they are discovered early. Only if the source builds and tests
without any error, can the overall build be considered good [Fow06]. If and
when a developer breaks the build, it is their responsibility to promptly fix
and repeat until the shared state is functional.

An essence for continuously integrating, is maintaining a controlled source
code repository [Fow06]. Software projects involve a lot of files and manually
keeping track of these is hard. Source code management allows developers to
keep track of changes to the source code and to collaborate with other team
members. Any individual developer works only a few hours at time from
this shared project state. After the work is done, the developer integrates
their changes back into the repository.

Integration is a way of communicating with the team. Frequent integra-
tions let team members know about changes to the software. This eases any
changes necessary in their work. Developers can also see whether their work
conflicts with any other team member. It also encourages developers the
keep their work in as small chunks as possible. This significantly reduces
the amount of integration problems by shortening the integration cycle and
removing any unpredictability. Conflicts that stay undetected for weeks are
hard to resolve [Fow06]. It is common for developers to also have social
practises for verifying code. New features might not be integrated to the
main branch of the repository until they have been reviewed by other team
members.

The integration process is run locally, but in addition the process is run
on a separate automated integration machine, a CI-server [Fow06]. A build
can be started manually, but most of the time this process is automated as
soon as the developer integrates their work back to the shared repository.
This prevents any flaws that might not be discovered on a local environment.
On a CI-server, the build should never stay in a failed state for long.

Continuous Integration assumes a comprehensive test suite for the soft-
ware. The tests are a integral part of the integration and build processes
which in affect results in a stable platform for future development. It is
easy to add new features since it is easy to integrate and test them against
previous functionality. An integrated system and well-tested software is key
for bringing a sense of reality and progress into a project [Fow05]. Doc-
umentation can hide flaws that have not yet been discovered. Untested

17

code can hide even more flaws. Practises such as test-driven development
enhance integration by introducing programmers into writing simultaneously
tests while writing production code. In addition, writing tests before the
actual implementation is a design practise which emphasis focus on coding
structures. Of course, you cannot rely on tests to find every single bug, but
imperfect tests are better than no test at all [Fow06]. It has been stated that
projects that use CI, tend to have dramatically less bugs [Fow06].

3.3 Continuous Deployment

Continuous Deployment is a development practise where you build soft-
ware throughout its lifecycle so that it is deployed automatically at any
given point in time [Fow13a]. Continuous Deployment requires that your
pipeline enables you to do Continuous Delivery. The difference between
Continuous Delivery and Deployment is that the first enables you to deliver
new versions of your software easily with a push of a button whenever you
so desire, the latter instead automates this process by doing deployments
automatically to production, resulting in many production deployments each
day [O’R11, Sny13, Rub14]. The ability to delivery software functionality
frequently to users subsequently enables to continuously learn from real-time
usage [HOAB12]. Usage data can be utilised throughout development, deliv-
ery and deployment. As a result the feedback-cycle becomes even shorter.

You achieve Continuous Deployment by continuously integrating the fea-
tures completed by the development team. Teams prioritise keeping software
in a deployable state. Features are integrated, built and automatically tested
to detect any issues. If no issues are raised, the software can be deployed
automatically to production. By making small changes, there is a lower risk
of something going wrong. When this happens, it is likely that these issues
will be easier to fix.

The value of doing continuous deployments is that the current version
of the software can be deployed at a moments notice without panic. Re-
sources are not wasted in doing manual tasks. Deploying software frequently
gives a sense of believable progress, not just developers declaring features
done [Fow13a]. In addition of requiring extensive automation throughout
the deployment pipeline, the process also implies a close and collaborative
working relationship from developers to system specialists involved in de-
livering software [HOAB12, Fow13a]. Lately this has been referred to as a
“DevOps culture” [Fow13a]. In practise, developers should have control on
how software is hosted and this should not be mainly outsourced [HF11].
Developers can make appropriate choices based on these decisions.

Continuous Deployment also provides a way of making the latest version
of the software being always accessible. Other developers and customers
can then effortlessly demonstrate, explore and see what has changed since
the previous version. This enables stakeholders to test the system and give

18

feedback. A substantial risk in the effort of building something is whether or
not it is useful to the user. The earlier you have the chance of evaluating
the value of a feature (similarly to MVP and minimum viable feature), the
quicker you can get feedback on it. Using the web has enabled the possibility
to deploy and explore features on a subset of users [Fow06, Fow13a]. This
can be used as a factor in making decisions about how to proceed.

3.4 Continuous Experimentation

Innovation is a moving force for organisations, but notoriously hard to get
right [BE12]. The world is never static, being able to figure out what works
and what does not, can mean the difference between being on the top or
becoming invisible [KLSH09]. Innovation is maintained by balancing between
the number of ideas presented and those being practical. The web has for
instance provided a platform for easily establishing a causal relationship
between changes and their influence on user-observed behaviour [KLSH09].

In the simplest form of these controlled experimentations, users are
randomly assigned to two different variants of a feature: a) the Control and b)
the Treatment. The Control represents the existing version of the feature and
the Treatment a new version being evaluated. At large, this is called as A/B
testing. Data is collected with predetermined metrics from these experiments
— metrics such as how the user behaves with a certain feature. From these
results one can determine by statistical analysis which implementation is
better, although surprisingly not always why. Different implementations can
have very unexpected results [KLSH09, KDF+12, McK12]. It is intriguing
how poor we are at assessing the value of our ideas — many assumptions
are simply wrong [BE12, KDF+12]. Regardless of these assumptions having
significant effects, features are built because developers believe they are
useful. Even worse, these opinions can come from managers not familiar with
the area in question [KLSH09, BE12, Bos12]. Of course, the significance of
intuition and luck should not purely be belittled.

Controlled experiments provide a methodology to reliably evaluate the
value of ideas [KR04, KLSH09, McK12, Rho14, Wan14]. Passive feedback
can provide more valuable information than actively trying to ask feedback
from users. Users can be blinded by how they act with features. By building
a system for experimentation, the cost of testing and failure becomes small.
This encourages innovation by enabling experimentation. Failing fast and
knowing when an idea is not great is essential in making course corrections and
developing better ideas. When we fail fast, we can also make improvements
more faster. Due to the distributed nature of the web, these experimentations
can be done in the background. New versions of features can be deployed
frequently without the user even noticing these changes. This provides a
thriving environment for experimentation. Experimentation can be used to
understand what users truly want [Wan14].

19

Continuous Experimentation is a development practise where you build
an environment where you can continuously deploy new features and en-
hancements to the user and experiment with these [FGMM14]. As a result,
developers can continuously get direct feedback from the user by observing
usage behaviour. This requires an environment where you automatically de-
ploy new features, collect metrics from usage, analyse them and furthermore
integrate the results into the development process. Instead of heavy up front
testing, alerts and post-deployment fixing should be tried [FGMM14]. When
an issue is discovered, the feature can be rollbacked promptly, sometimes
even automatically. The adoption of cloud computing has clearly shown a
new approach of adding frequent and rigorous experimentation to the de-
velopment process [Bos12]. Continuous Experimentation makes substantial
use of minimum viable products and features as the basis for an hypothesis
and experiment. Choices are made by analysing the data gathered from
this minimal implementation. A hypothesis is either supported by the data
or not. It is necessary to base decisions on sound evidence rather than
guesswork [FGMM14]. Controlling every aspect of development process will
not work, instead you need to sustain a culture where teams can move and
innovate with the experimentation system [Rie11].

Indeed, the leading edge of Continuous Experimentation is even starting
to favour experiments over predefined test cases [New15]. Instead of rigor-
ously testing features beforehand, automatic analytics are run in production.
Heuristics are used to immediately discovers issues and alert about their con-
sequences. Lately this has been referred to as Canary testing2 [HF11, Sat14].
Changes are rolled out slowly to a small subset of users before eventually
rolling out features to the entire infrastructure. Canary testing is being
used actively by companies like Google and Netflix [Whi11, Sch13]. Actually
testing in production is as production-like as it can get. Another variation of
production-testing is called Blue–Green deployment where you maintain two
practically identical production environments. One of these serves as a backup
to enable hot-switching between the two alternatives. Some traffic can even
simultaneously be fed to the blue variant and some to the green one, enabling
the use of experimental practises [Fow10, HF11]. Recently, Continuous Ex-
perimentation has become popular among companies building web-products
such as Etsy, Facebook and Twitter [McK12, Boh13, New13, Rho14, Wan14].

3.5 Using Web as a Platform

People have barely touched the surface of what the web can provide. The
acceleration of digital products and services means the web will become
more and more irreplaceable for software-intensive products and services.
Cloud computing has emerged as a new model for hosting and delivering

2As cruel as it can sound, canaries where used to test whether toxic gases where present
in coal mines.

20

services over the Internet [ZCB10]. Infrastructure has become more cheaper,
more powerful and more available than ever before — this made many
of the current practises impossible back in the day [Roy70]. The cost of
infrastructure is becoming negligible [ZCB10, Bos12]. Cloud computing has
enabled for general utilities such as computing power and storage to be
leased and released over the network as necessary. This is highly scalable
and adaptive, mirroring many of the Agile and Lean ideologies. Organisation
can start small and increase resources only when there is rise in demand.
One of the key benefits is the simplicity associated with not having to deal
with hardware constraints [BE12].

Cloud computing uses a service-driven model. Typically, cloud computing
provides three categories of services: infrastructure such as computing and
storage (Infrastructure as a Service), platforms such as operating systems and
software development frameworks (Platform as a Service) and on-demand
software applications (Software as a Service) [ZCB10]. It is no surprise that
many of these services have become platforms for the deployment pipeline.
Amongst all, this movement has generated service-oriented platforms that
provide many of the common functionalities involved in software delivery.
There is a clear trend for continuously testing and experimenting with new
innovative functionalities and deploying these regularly to users [BE12].
Particularly web-applications and services can be developed and deployed
with ease. Collecting data is a well-established strategy [HOB14].

Feature

Shared
Repository

Continuous
Integration

Staging

Production

tested and integrated into

built and tested in

verified in

deployed to

Development Staging Production

Figure 5: A Deployment Pipeline Flow

Using cloud-based services has transformed software delivery: there is a
fundamental shift in how products and services are developed and deployed.
For instance, a popular paradigm nowadays is to use GitHub for shared code
repositories and project management, Travis CI for continuous integration
and Heroku for web-application deployments [Git, Tra, Her]. Many of these

21

services provide very high-levels of interaction. A developer can push local
changes to GitHub, GitHub can then start the continuous integration build
on Travis CI automatically, and if successful the software can be deployed to
Heroku. The use of cloud-based testing is accelerating: tests and analytics can
be run post-deployment [RK14]. See figure 5 for an example of a deployment
pipeline flow.

4 Towards Embedded Systems
Software is considered “soft”, hardware “hard”. Initially, software was only
considered a convenient way to configure mechanisms for electronic sys-
tems [BE12]. It is not always obvious how products or features that combine
software with hardware can be developed step-by-step. This combination,
usually referred to as an embedded system, provides challenges on being agile
and adaptive. Many of the Agile practises such as an identifiable customer, co-
located development and minimal architectural design are outright opposite
of what hardware-related embedded system development currently is [RA03].
There is a wide range of applications using embedded systems and the com-
plexity and required functionality of these is increasing [KRM+13, EHOS14].
Intricate systems are getting increasingly difficult to verify and validate.

The industry has started to recognise that setting requirements for
products is the most difficult and decisive part of a software development
process. All of this requires new thinking on how hardware products are being
developed. Eminently, this is why Agile and Lean philosophies are starting
to get attention on the embedded field, not only for small organisation but
for large ones as well. Prominently, while teams have succeeded in adopting
Agile software practises, the organisation level is still governed by plan-driven
approaches [EB12, EHOS14]. Notably, a previous background in Agile and
Lean practises seems to influence many of the development practises in
embedded systems [KRM+13].

Nevertheless, there is still uncertainty whether the same agile ideologies
and practises can improve the product development of embedded systems as
much as they have reshaped the way user-focused software is being developed.
Agile methods were not targeted for developing embedded systems, where
usually the object (end-user) is not a person but instead a hardware. This
manifests itself as limited customer–developer interaction. A development
process tends to be focused on the integration of the whole product rather
than being driven by features. There are restrictions that are inescapable.
For instance, it is not practical to develop a new working hardware prototype
for each iteration. This does not alleviate the fact that experimentation is
still required, because hardware constraints tend to have direct effects on
later stages of development. Still, studies show that the use of Agile and
Lean methodologies do have a positive effect also on the development of

22

embedded systems by reducing development times and improving the overall
development process and quality of products [CWR10, KRM+13]. Agile
methods can be used with success if the underlying restrictions are addressed
accordingly [RA03]. Even Boehm observed in the 1980s that iterative de-
velopment suited equally both software and hardware development [Boe88].
Lehtonen et al. researched agility in embedded systems particularly from the
perspective of well-being at work [LTR+14]. Using case studies, they conclude
that increasing communication and being able to estimate workload clearly
improve the meaningfulness, satisfaction and motivation of individuals.

4.1 Embracing Agile Development

It has become clear that methods and practises need to be adapted to suit
each specific field [VB09, CWR10, HMP+10, JLP12, KRM+13]. There is no
silver bullet. There are also adaptations of Agile that may be more suitable
for plan-driven and large-scale environments, such as Scaled Agile [Sca].
The wide diversity of products and their domain-specific problems are very
distinct. No single method will work, but rather a combination of best
practises need to be utilised. The research field on embedded systems is still
very young and most of the input is coming from the industry, which in turn
does not tend to share internal practises to the public [KRM+13]. Some
doubt has been casted on whether current Agile and Lean practises alone are
sufficient in embedded settings — especially when related to safety-critical
environments [TFR02, EB12]. Hardware–software systems are playing an
increasing role in our everyday life making safety considerations a paramount
concern [CWR10]. It is obvious though that agile and formal software
development are not incompatible and features from plan-driven development
can be adopted in Agile development. Agile practises such as test-driven
development, early and exploratory releases, and pair reviews support many
of the requirements for formal development [TFR02, VB09, CWR10, JLP12].
Importantly, this provides a feedback-cycle for improving development.

The most explored Agile methods in embedded systems are unsurprisingly
Scrum and Extreme Programming [KRM+13]. However when applied in
an embedded context, many of these Agile practises have different focuses
than in plain software development. A different focus makes sense, since the
practises are considered mostly as a baseline for practical usage instead of
rigid guidelines. For example, in the context of embedded systems, refac-
toring may focus on making improvements to the speed, memory or power
consumption instead of improving the quality of code. As a compromise,
sometimes these improvements result in even hurting the simplicity and
clarity of the code. In example, performance and software reliability are
key factors [RA03, EHOS14]. Systems have to perform tasks within defined
time slots. Refactoring can even be risky, since hardware is very sensitive to
changes in timing. Small changes can have somewhat large effects. Many

23

of these effects are impossible to tell without hands-on experience with the
hardware [RA03].

Embedded systems have a dedicated function within a larger mechanical
or electrical system. This requires hardware to accompany the software.
An embedded system is a specialised computer-based system designed for a
dedicated task or purpose. There is a clear distinction between embedded
software and embedded systems [KRM+13]. The former is constrained usually
by restrictions set by the hardware, but the latter is not only constrained by
the hardware itself, but also restrictions set by the development process of
hardware. To simplify, an embedded software is part of an embedded system.
An embedded software targets an existing system, whilst an embedded system
involves building a hardware product and its software from the ground up. I
have set my perspective to emphasise not only the hardware aspect, but also
the hardware development process as a key part of software development in
embedded systems. Embedded systems can vary from mobile phones, cameras,
robots to aeroplanes. Many of these systems require thorough planning and
this is why plan-driven methodologies have been used extensively. Even so,
requirement changes are still very prominent, not all requirements can be
mapped before starting product development.

Increasing requirements and unpredictability from clients for embed-
ded systems has led to the adoption of Agile methods in hardware envi-
ronments. Customer collaboration has become invaluable. Nonetheless,
this is still a relatively new shift. Organisations have started to become
more aware of the advantages that agility has brought to software projects,
but the use of Agile and Lean practises is not widespread in the em-
bedded field [CWR10, EB12, KRM+13]. One of the biggest barriers on
adopting new practises is organisational — mostly caused by conservative
views [Pop02, HOAB12]. Another big barrier are the technical challenges
related to the context [KRM+13].

A cultural change is essential [HOAB12, KRM+13]. Acceptance and
knowledge of Agile methods are still rather limited in industrial settings
related to embedded systems [HMP+10]. The support for continuing with
current plan-driven methods is conflicted with the desire to get the benefits
from Agile practises. It is important to have a comprehensive view of the
whole organisation [KRM+13]. In a large organisation, it is not only sufficient
to look at how single teams work, but how the organisation works as a whole.
In current practises, teams are often well ahead of the organisation as a
whole [HOAB12]. An organisation should understand what they are trying to
achieve with Agile and Lean methodologies. Not all companies should adopt
practises the same way [KRM+13]. As a solution, piloting and coaching
new practises has been suggested to overcome resistance and convince on
the advantages of iterative practises [CWR10, EB12, HMP+10, KRM+13].
Piloting can indicate what adjustments are called for in adopting Agile
practises within the organisation. People familiar with the practises tend to

24

see the benefits more easily. Mental acceptance is crucial for Agile and Lean
practises to work [HMP+10]. Otherwise there is substantial risk that Agile
practises will be adopted to suit plan-driven approaches and not the other
way around.

4.2 Integrating Hardware and Software Development

A challenge in developing embedded systems is to integrate hardware and
software development [EB12, EHOS14]. Developing embedded systems faces
the same challenges which were posed by seeing software development as an
engineering practise. Software and hardware development are still rather
separated. Larger organisations are struggling with aligning hardware and
software development cycles and practises [EHOS14]. Face-to-face con-
versation might not be sufficient and other means of communication are
necessary [RA03]. Usually the hardware is not a major part of the software
development until very late in the project [RA03]. Hardware development is
more expensive and has longer lead times, i.e. how long it takes from initiation
to the completion of production process [EHOS14]. Different teams handle
different aspects of the process: engineers design the hardware and developers
the software. Furthermore, different people have different domain knowledge,
which hinders the principle of shared responsibility [KRM+13, EHOS14].
Software development in embedded systems is mostly driven by the hard-
ware [BE12]. An organisation is typically more experienced either in software
or hardware development, balancing between these two is a skill.

The Agile notion of moving most control related to software to devel-
opment teams is hard to accomplish. Hardware development should be
deeply intertwined with software development. This has been referred as a
hardware–software co-design. Developers and engineers should work on small
teams more closely on systems to get the most out of Agile development.
Clearly this requires cross-functional teams to transition to an Agile research
and development (R&D) approach [HOAB12, EHOS14]. An engineering
process should be transparent to all stakeholders [KRM+13]. There is an
apparent need for developing software and hardware simultaneously [RA03].
It is true that some of the architecture emerges through experience gained
during development, but initial design cannot be avoided. Some organisa-
tions developing mass-produced embedded systems have been successful in
allowing agility for individual teams to define their own ways on working to
facilitate speed, shorter iterations and improving quality [EHOS14]. A key
issue is how companies scale these practises beyond single teams.

One the most common approaches to develop embedded systems is to use
an integration-centric approach, i.e. V-model [EB12, EHOS14]. See figure 6
for a typical approach for applying Agile development in an integration-
centric V-model approach. Commonly, hardware and software development
are separated into two parallel streams and the work is only integrated

25

Requirements

System Design

Module Design

Implementation

Module Test

System Test

Verification

Agile Loop

Figure 6: V-model [EHOS14]

into a product later in the development process. Early in the development,
requirements are allocated to hardware and software components by a central
engineering team. This is followed by multiple development teams imple-
menting the requirements allocated to each component. The work of each
team, hardware and software, is synchronised to a common project model.
After the components are finalised, they are integrated together to form
complete systems. Once this is completed, a system level testing can be
conducted. At worst, this is were most of the integration problems are
discovered. Typically, unit tests are written in the module testing phase,
integration tests in the system test phase and finally acceptance tests in the
verification phase, meaning that at each level the verification of the system
increases. This cycle is repeated several times according to the project’s
stages.

Typically one integration cycle lasts at least six months, meaning that
complete systems require lead times of multiple years. Software and hardware
cycles have a very weak link between them and they do not follow each
other. The culture is to focus on predictability by foreseeing activities
months ahead. A prime purpose of this stage gate model is to ensure the
feasibility of releasing large investments for the following stages after each
stage completes. Essentially this results in a linear approach where teams
are dependant on others, thus forming bottlenecks. Generally the idea
of introducing Agile methodologies is to try to increase the rate of new
features being developed within this cycle — mostly in a component or
module development phase. Above all, software development is driven by
the hardware in this approach [EB12]. In this process, at each level going

26

down, the specification of the project is getting more detailed and at each
level going up, the verification is increasing.

Another key issue is that hardware and software development usually relies
on many suppliers [EB12, HOAB12, EHOS14]. A situation that distinctly
makes the development process complex. It is uncommon that an organisation
can do everything related to hardware development (or production) in-house.
Different suppliers provide components and factories combine them into
hardware products. This also includes subcontracting different software
components to different companies. Communication can be slow between
all these moving parts. Not to mention difficult contractual matters. To get
the benefits from Agile development and embrace shorter loops, all of these
suppliers must follow similar principles and essentially abandon plan-driven
processes.

Predictability may be desired in some circumstances. Organisations
such as NASA are prime examples where software development must be
predictable. NASA’s space operations consist of plenty of procedure, time,
large teams and stable requirements [Fow05]. Having said that, NASA is also
a prime example of an organisation where iterative development has been
used with good results [LB03]. The challenge is to combine predictability
with the dynamic capabilities of modern iterative development [EHOS14].

It is true that defining fully elaborated requirements work in certain ap-
plications where for example real-time requirements and safety are important
criteria [Boe88, KRM+13]. At least some sort of top-level documentation
is required to support iterative development, most of times purely required
by legislation, but also for managing and conveying information among the
different levels of stakeholders involved in the project [KRM+13, EHOS14].
Regulatory standards can be rather rigorous, although they mostly do not
impose any particular software development processes or practises [CWR10].
Traditionally, safety regulations have been most regulated in the medical,
nuclear and avionics sectors [JLP12]. Lately, this has extended to the au-
tomotive and railway sectors, as the use of software has increased in these
fields. Within the aerospace industry for example, nearly all Agile practises
can be mapped to regulatory standards — albeit the industry has been
slow in adopting them [VB09, CWR10]. This is also true for the railway
industry [JLP12]. Though difficult, a transition is possible by incorporating
and adapting Agile methods into existing processes [VB09].

In embedded systems, the role of architecture and up front design cannot
be avoided. In a regulated environment, there is a burden of proof which must
demonstrate the compliance of the process [CWR10]. This makes it very rigid.
It is imperative that there is full traceability throughout the development
lifecycle. This obviously is a challenge for Agile and Lean practises. In
any case, it has been suggested that Extreme Programming’s focus on test-
driven development and the use of source control management can act as
documentation and assist traceability. Also, Agile development in no way

27

dismisses the importance of documentation. What it does emphasise however,
is creating methods that make documentation easier to handle instead of
making it a barrier for iterative and adaptive development. Organisations
need to organise support for light-weight documentation methods such as issue
trackers, wikis, whiteboards and even cameras [HMP+10]. Some advocate
using auto-generated documentation as much as possible [VB09, JLP12].

4.3 Historical Perspective

History has many successful examples of the usage for iterative development
in software development in embedded systems [LB03]. The X-15 hypersonic
jet applied iterative and incremental development already back in the 1950s.
In fact, the X-15 was only a hardware project. In the 1960s this knowl-
edge was carried through to NASA, where iterative development was used
in Project Mercury’s software. The project used surprisingly short itera-
tions that only lasted a half-day. Interestingly, they also applied Extreme
Programming practises such as test-driven development. Essentially, the
platform for Project Mercury allowed the development team to build the
system incrementally.

Later in the 1970s, the US Department of Defence used iterative develop-
ment on large, life-critical space and avionics systems [LB03]. As an other
example, the command and control system for the first US Trident submarine
also used iterative development. Although, the project still used very long
iterations taking as long as six months each. Other applications of iterative
development included TRW/Army Site Defence’s missile defence systems
and the US Navy’s Light Airborne Multipurpose System (LAMPS) part of a
weapons system. The missile defence software project progressed by the team
refining each iteration in response to the preceding iteration’s feedback, an
early use of reflection and learning by doing. LAMPS was one of the earliest
projects that used short iterations that only took one month per iteration.
The project succeeded, deliveries were on time and under budget [LB03].
Notably, since many Waterfall project had fell short on this.

Another remarkable story is the primary avionics software for NASA’s
space shuttle program in the late 1970s [LB03]. The motivation for using
iterative development came from need to be able to handle changing require-
ments for the shuttle program during its software development. NASA used
eight week iterations and these made feedback-driven refinements to specifica-
tions. In the early 1990s, a new-generation Canadian Automated Air Traffic
Control System was developed using risk-driven iterative development. The
project was also a success, despite its near-failure predecessor that applied
the famed Waterfall model [LB03]. Still, it used rather long iterations of six
months by modern standards.

Notably, all these examples are early examples of being agile, but it has
to be said that they only applied a fraction of ideas presented by current

28

ideologies. Recently, Agile and Lean practises have been used with good
results in the development of instruments, cameras, telecommunications
software, health-care equipment, the automotive industry, automated vehicles
and even aeroplanes and satellites [RA03, VB09, BE12, KRM+13, HOB14].

4.4 Using Hardware as a Platform

Hardware is something concrete (usually even bare metal). Not only being
something physical, but having many dependencies between components
and the way they interface together. It is usual that hardware sets tight
requirements for the software. The lifecycle of devices is measured in years,
sometimes decades — resulting in many legacy platforms [BE12]. Obviously
systems like traffic lights, railway signalling and ticketing systems for the
Underground are upgraded rarely in contrast to for instance mobile devices.
Maintaining these platforms requires legacy software and physical spare parts.
Embedded systems need to evolve to stay attractive for users especially in
sectors that are moving fast [BE12]. Product usage evolves over time and
features should be adjusted accordingly.

Most of the challenges regarding iterative development can be overcome
by designing a platform that can be easily extended and modified for differ-
ent needs [KRM+13]. A principal obstacle is caused by the lack of a base
product which can be improved continually [HOAB12]. This also includes
modularising the software into smaller more manageable components. Invest-
ing in hardware development is many times more expensive than investing
in software — requiring immense amounts of effort [BE12]. Let alone the
undertaking caused by deploying these systems to actual use. A single
product should be customisable for different customers instead of developing
completely separate products. Subsequently, hardware becomes a platform
for delivering value with software solutions. Increasingly software has become
the core for almost all hardware systems [BE12]. Software is the enabler for
new innovation. Keeping the process “lean” and reducing the unnecessary
can provide a competitive edge [CWR10].

The benefits of the web and cloud computing extend well beyond web-
applications [BE12]. Remote deployments are possible on embedded systems.
Microprocessor-based architectures have made it possible to update systems
with new software releases [RA03]. These architectures are combined with
application-specific integrated circuits that are customised for a particular
use. A current trend is connecting these systems, from cameras to cars, to the
Internet, sometimes also referred as the Internet of Things [BE12, HOB14].
This enables Continuous Delivery on embedded systems, though not always
Continuous Deployment.

Helena Holmström Olsson and Jan Bosch state three issues: 1) post-
deployment data is being used for new products rather than for improving
existing systems, 2) post-deployment data is used for troubleshooting and

29

support rather than for innovating new features and 3) post-deployment
data is being used to understand operation and performance rather than for
providing insight in individual feature usage [HOB14].

Operation

Diagnostics

Usage

Improvement

Innovation

Real-Time
Data Collection

Instrumentation

Data
Analysis

Continuous
Deployment

Continuous
Experimentation

Figure 7: Levels of Data Usage, adapted from [HOB14]

Although cloud computing currently is applied in delivering software
to the web, these techniques could be applied basically to any product
that is able to collect and provide data about its usage — including even
software-intensive embedded systems [BE12, Bos12]. See figure 7 for how
data can be put to use at different levels of operation. Data can be used in
the research and development process of embedded products. This enables
Continuous Experimentation on embedded systems. The organisation can
spend time to developing the right things instead of fixing mistakes in
needless functionality [HOAB12]. By and large, organisation have significant
quantities of data, but little is used for research and development [HOB14].
For example, cars can collect real-time fuel consumption data and telecom
devices real-time bandwidth data [Bos12]. Previously these points of interest
where only collected for management purposes, now data could be used for
development purposes as well. Still, post-deployment data is mostly used
as input for development of successor products, but surprisingly not for
improving features on current products [HOB14].

Service-oriented models have started to find their way to more embedded
settings [BE12, Bos12]. Organisations are moving towards software-houses to
be able to concentrate on bringing value through software. While high-quality

30

hardware systems are still important, it is no longer the only differentiator
between organisations and what makes a product competitive [EHOS14]. In
some cases, hardware products are being leased instead of them being expen-
sive investments. Mobile phones and even cars are starting to take advantage
of frequent, post-deployment updates to their software. Organisation are
also interested in collecting usage and other performance related metrics.
Instead of freezing requirements before starting product development, the
requirements evolve and have effect on how users use the products. Users
are becoming increasingly accustomed to frequent updates that add value.
Consequently this also increases the expectations for users. Traditional static
and unconnected hardware are fast becoming unsustainable. Upgrading is
expensive and integrating new solutions involve risk and complexities that
can be hard to predict.

In embedded systems, software is deployed as part of the overall system,
including its hardware. Instead of servers, the software is deployed to the des-
tination point. The process obviously requires changes to the architecture of
the platforms to facilitate remote deployments and experimentation. Notably
creating structures to collect data from performance to usage, analysing these,
creating experiments and enabling remote deployments [BE12]. The ability
to evolve and conduct experiences must be supported in a safe and controlled
manner [BE12]. Bosch refers to this as building an innovation experiment sys-
tem, well suited for connected embedded systems [BE12, Bos12]. A research
and development system responds to actual customer feedback collected from
experimenting and testing features that the users actually need [HOAB12].
Many embedded systems are deployed in customer locations. For that reason,
there is demand for customers who can see the benefits for Continuous Exper-
imentation and are willing to explore the concepts in production [HOAB12].
Furthermore, connecting devices to the Internet obviously poses security and
privacy issues that must be taken to account [BE12].

New approaches such as electronic testing platforms like Arduino, 3D-
printing and laser-cutting are bringing hardware development to the gen-
eral public [Ard]. Lately, it has become even possible to print circuit
boards [Vol15]. Previously all these activities where limited to specific
industries. Experimenting with hardware products is getting even more
accessible. Microprocessor-based architectures can be rapidly expanded
and used in a variety of different applications [KRM+13]. Now, building a
prototype for experimentation purposes is within reach.

4.5 Adapting for Deployment Pipeline

Embedded development is exploration-driven by nature: the development pro-
cess includes extensive research and development resources [EHOS14]. Still,
testing is the cornerstone of embedded systems [RA03, HOAB12, KRM+13,
EHOS14, Ngy15]. Bugs tend to be hard to detect. Trying to detect whether

31

they are caused by the software or hardware is demanding on its own. A bug
might be caused by something completely not related to software [Ngy15].
Most of the software implementations need to be tested against the hard-
ware since most of the code is dependant on it. Hardware development
has slow development cycles, even lasting several years. Developers need to
verify proper co-operation between the software and hardware. The more
complex the interactions are, the more important experimentation is. A
reason why hardware simulation is an essential practise. This is problem-
atic since test environments in the embedded domain have very different
performance and memory constraints. Real-time requirements are hard to
satisfy [RA03, HMP+10]. Testing can take several days to achieve on actual
hardware — if developers even have certified access to hardware environ-
ments [VB09]. The overhead of processes can make the lead time of simple
bug fixes to several weeks. It is also common that stringent contexts such as
aerospace need separate review teams — also required by regulation [VB09].
In these contexts, developers have very strict access to only specific sections
of code. Implementation and testing need to be carried out by separate
people to satisfy regulations [VB09, JLP12].

The concept of running tests relentlessly on a target platform is hard to
accomplish. Performance and memory constraints often prevent installing
and running all tests on the hardware at the same time. It also takes
significantly longer than in modern computers. Anyway, the basic principal
of Continuous Integration is not hard to achieve in embedded settings —
especially when related to unit testing [RA03, KRM+13]. Higher level of
assurance related to integration and acceptance testing is harder to achieve.
As with plain software development, automatic testing will help to identify
failures in an early stage. It will also increase awareness on what effect each
build has on the overall system. People should not do the job of computers,
Continuous Integration handles many error prone tasks [Ngy15].

Organisations developing embedded systems are starting to seek for
opportunities presented by Continuous Deployment [HOAB12]. However,
there is still a rather long leap for frequently delivering new features to users.
Sometimes this is not even possible within internal processes. The need for
both Continuous Integration and Deployment are well understood, but their
implementation is unfortunately rather hard to accomplish without more
deep changes. A key focus is for an organisation to develop a fully automated
testing infrastructure to continuously verify development [HOAB12]. Without
a doubt, the distributed nature of web is a valuable platform for enabling
remote deployments as well as collecting, analysing and experimenting with
data.

With the high cost associated with testing new ideas, experimentation
should be a well thought and simple process. Organisations are inclined to
use observation techniques and expert reviews in pre-deployment research
and development, but there is less evidence on organisations using methods

32

focused on continuously collecting customer feedback [HOB14]. Turning
most promising ideas from concepts to prototypes should receive significant
attention [BE12]. Iterating on features in embedded systems should be
possible with short cycles pursuing Agile practises. Many current processes,
such as the V-model, are focused in creating a process focused in rigid
milestones to try to minimise losses instead of experimenting in small steps.
An obvious cause for mundane innovation [BE12]. Instead, organisations
should focus on maximising the amount of iterations by reducing the related
costs for each iteration. Post-deployment data can provide understanding of
the operation and performance of embedded systems, but in addition how
the users use different features [BE12, HOB14]. See figure 8 for the steps
related for moving towards Continuous Experimentation.

Traditional
Development

Agile R&D

Continuous
Integration

Continuous
Deployment

Continuous
Experimentation

Figure 8: Towards Continuous Experimentation, adapted from [HOAB12]

Specific solutions are required to mitigate the restriction in scaling the
deployment pipeline for embedded systems. A special test environment may
be needed in environments where the implications of feature changes are
broad and the customer may have reluctance towards experimenting with new
features [FGMM14]. To avoid safety concern, Jan Bosch and Ulrik Eklund
have suggested separating experimentation systems from the development
of critical components [BE12]. Setting up an experimentation cycle can be
rather challenging for developing software that requires hardware. Longer
release cycles with hardware and potential synchronisation problems between
the development schedules is an issue [FGMM14]. An experimentation
system can be used to guide research and development efforts [HOAB12].

In certain life-critical environments, experimentation can just be too
expensive or undesirable to achieve [BE12]. Heavyweight sequential processes
are outside of Agile research and development [EHOS14]. Heavy verification

33

and validation is required in contexts such as aerospace3. This is why
simulation becomes important [KRM+13]. Simulation enables developers to
work on software simultaneously while hardware is being evolved. Developers
should be able to experiment by simulating in a production-like setting. The
problem is that simulation is never really “production-like”. At least in the
sense we are able to achieve in web-development by replicating environments.
Software most likely will behave differently on the actual hardware.

On the leading edge, some organisation are even pushing web design
philosophies and frameworks to native mobile applications to tackle the rigid
environment of embedded systems [Boh13, GZ14]. In another example, the
UC Berkeley Solar Vehicle Team is using Travis CI as a platform to test their
embedded software that powers their solar vehicle [Ngy15]. A promising
sign.

5 Views from Embedded Settings
I conducted six semi-structured interviews with seven people working in the
academia and industry on embedded systems to get their view on if and how
Agile and Lean methodologies and the deployment pipeline has changed the
development of embedded systems. The interview consisted of the following
topics:

Process

1. Do you consider that your organisation follows the principles and
practises of Agile and Lean development? Which of these principles
have most significance?

2. If so, has this recently changed the way you develop products or features
into production?

3. Do you approach development from the point-of-view of the whole
product or by single features?

4. Please describe the process behind developing an idea into a single
feature. How long does it take?

5. Do you recognise distinct development, staging and production envi-
ronments in your process?

6. If so, are these automated?
3Watch a fascinating video, where Elon Musk gives a tour of SpaceX’s facilities.

https://youtube.com/watch?v=TQ6tZtGrShg

34

Adapting to Change

7. How easy or hard is it to adapt changes in hardware related products?

8. Can you deploy software changes automatically or even remotely?

9. How do you keep software and hardware development in sync?

10. How short iterations do you use to adjust for feedback from your
stakeholders?

Experimentation

11. Do you have an automated process for deploying or experimenting a
feature?

12. How do you experiment with software related to hardware?

13. How do you value an idea (prototypes, minimum-viable products, A/B
testing)?

14. Related to hardware, has new approaches such as electronic testing
platforms, 3D-printing or laser-cutting changed your process?

Many of the mentioned topics and terms are prone to many interpretations.
Thus their meaning is somewhat ambiguous. To address this, I started the
interviews by introducing the topics and relaying my understanding on
the concepts. This way we shared understanding on what I was trying to
ask. I conducted the interviews both face-to-face on location and via email,
which ever suited best for the situation. Each interview included additional
discussion about interesting topics which arose during the conversations.
Some of the interviews where more in-depth than others.

Most of the interviews are from European organisations or subsidiaries
of multinational corporations in Finland. The participants include: Lauri
Koivulehto from Airbus Defence and Space Oy, Stefan Baggström and
Marko Taipale from GE Healthcare Finland Oy, Tatjana Petkovic from
Space Systems Finland Ltd, Niklas Holsti from Tidorum Ltd and Harri
Holopainen from ZenRobotics Ltd [Koi15, BT15, Pet15, Hol15b, Hol15a].
My interviews included also one participant from academia in Switzerland:
Maximilian Kriegleder from ETH Zürich, Institute for Dynamic Systems and
Control [Kri15].

These cases cover a wide range of sectors from telecom, medical, aerospace
to robotics. Representing the industry, Airbus Defence and Space Oy works
in Finland in the telecom-sector, GE Healthcare Finland Oy produces health-
care equipment and services, Space Systems Finland Ltd works on safety-
critical embedded systems, Niklas Holsti has an extensive background in
the aerospace industry in Finland and finally ZenRobotics Ltd works on

35

waste sorting robots. As for the academia, ETH Zürich, Institute for Dy-
namic Systems and Control experiments among other things with intelligent
quadcopters, more specifically the Distributed Flight Array4, famous from
TED [D’A13].

What is obvious is that the embedded field is very diverse. Different
sectors and organisations have very divergent practises and opinions. No
objective conclusion can be made for the whole industry and these interviews
should be considered as inciting discussion rather than giving absolute truths.
In the following chapters, I approach the topics from three perspectives:
the process, adapting to change and experimentation. I also describe inter-
esting views and findings presented by the interviewees. Some of the key
findings include the challenges associated with developing embedded systems
— varying for each context, but also having similar characteristics. The
cases also present some interesting approaches adopted by forward viewing
organisations. Finally, I conclude with an overview of the interviews and
present some smaller findings related to deployment pipeline and its web
counterpart.

5.1 About Processes

The Waterfall model has turned
into a cliché that crumbles fast
under inspection.

Harri Holopainen [Hol15a]

According to the interviews, the notion of Agile and Lean principles and
practises being suitable for the development of embedded systems is primarily
accepted [BT15, Hol15a, Koi15, Kri15, Pet15]. Software and hardware de-
velopment is a dialogue [BT15]. Yet there are some industries, such as flight
related embedded systems in aerospace, where generally Agile development
is not used at all [Hol15b]. This partly contradicts the previous findings from
literature, albeit this can be caused by different interpretations [LB03]. In two
cases, distinct Agile methodologies, such as Scrum, are used [BT15, Pet15].
One case has gone even further by adopting Lean principles as part of the
organisational strategy [BT15].

It seems, a plan-driven model is still more or less a consensus and widely
used among many interviewed embedded sectors [Hol15b, Koi15]. However,
this does not prohibit the use of iterative and incremental development
within the surrounding process [Hol15b]. Holopainen considers that the
Waterfall-model has turned into a cliché that crumbles fast under inspection
— the surrounding world is not linear [Hol15a]. In fact, iterative develop-
ment is being used at least to some extent along plan-driven methodologies.

4A set of sophisticated quadcopters working together to accomplish tasks.

36

Depending on the interpretation, this can be considered iterative plan-driven
development. As common, many of these plan-driven methods do not stay
generally on schedule or budget, mostly because requirements are finalised
too late [Hol15b]. Holsti does not see the existing plan-driven processes to be
of blame, but rather the reason lies in the inexperience of customers, causing
them underestimating the amount of necessary work [Hol15b]. Yet, what is
obvious among all interviews Agile or not, is that most embedded products
are being developed from the point-of-view of the whole product with an
emphasis on an overall picture. Even so, a wide adoption of Agile and Lean
principles and practises is planned in most of the interviewed organisation
currently focused in plan-driven approaches [Koi15].

What is obvious, is that due to the very different environments, spotting
distinct deployment pipeline practises is indeed hard. Each organisation
uses different practises to deliver software to production. Software processes
form under pressure from clients and environments [Hol15a, Hol15b, Koi15].
Methodologies range from plan-driven methods such as the Waterfall and
V-models to Agile and Lean implementations [BT15, Hol15a, Hol15b, Koi15,
Pet15]. In one case relating to the academia, no distinct process was used
since the project was merely focused on experimentation [Kri15]. Some
automatic deployment pipeline practises can be used in the development and
production stages [BT15, Hol15a, Hol15b, Koi15, Pet15]. Most of these relate
to using Continuous Integration practises, such as source control management,
automated testing and static analysis of source code. Also social methods,
such as peer reviewing are used [Hol15b]. Continuous Deployment is possible,
but utilised to varying degrees [BT15, Hol15a, Hol15b, Koi15, Pet15]. For GE,
Continuous Delivery is being used in software products [BT15]. Yet currently,
some modern deployment pipeline practises, such as experimentation driven
testing popular from modern web-development, have no straight equivalent
in the processes used to develop embedded systems. The overall flow is not
as automatic: testing procedures are somewhat manual, deploying features
to production is slow and requires distribution. Experimentation practises
focus on the pre-production design phase instead of post-deployment. The
individual components are there, but no where near as stable and connected
than in web-development.

Where Agile methods are suitable, work is driven by customer and end-
user needs — as well as views on future needs [BT15, Pet15]. In the case
of developing a satellite navigation system in Space Systems Finland Ltd,
a typical lifecycle of a feature is: recorded, prioritised, assigned to a “work
package” (comparable to a sprint) and finally implemented with unit and
acceptance tests and released [Pet15]. Corresponding to the knowledge on
how Agile development is organised. Hardware development follows a similar
lifecycle and this can be accomplished due to extendable platforms. Petkovic
mentions they have been able to develop hardware iteratively without sig-
nificant troubles, at least so far [Pet15]. According to Petkovic, the most

37

significant Agile and Lean principles are those emphasising customer col-
laboration and flexible planning [Pet15]. The development follows short
iterations varying from a few weeks to several months depending on how fea-
tures have been prioritised by the (end-)customers needs. The overall process
follows Agile development and Scrum, but not entirely by the book [Pet15].
Progress meetings are held weekly, rather than daily. Although the emphasis
is still on communicating and exchanging ideas daily whenever necessary.
The customer may be involved even daily, though most likely only weekly.
Relating to end-users, the length of the feedback-cycle varies on the urgency
of the issue — anything from iterating daily to a few months.

When reflecting on hardware development, Holopainen considers the
processes are in good shape related to developing integrated circuits [Hol15a].
Indeed, really complex logic can be incorporated inside circuits, but the
software and hardware placed of top of these is rather limiting. What is
lacking is piecing together intricate hardware development together with
software development to build products as whole. Typically, hardware man-
ufacturing is modular and this works well. Hardware can be manufactured
by integrating existing components as a hardware platform to get desired
functionality. When developing embedded software, the case is not the same.
There is a absence of existing modular software implementations to interface
with hardware [Hol15a]. Most software functionalities have to be build from
the ground up. Again, an opposite of how web-development can be achieved
with an abundance of existing frameworks.

According to Holopainen, iterative and incremental development is the
only way to proceed with development, if the definition and requirements of
what you are trying to accomplish are missing [Hol15a]. In every project, the
essential problem is to establish the requirements. An increasing amount of
customers understand the problem, but phrasing desires remains a problem.
Agile development suits a context where the problem can be broken down
into pieces. Relating to web-development, many of the existing problems
have been solved already, even multiple times. Web-development is an
ideal context for Agile and Lean development. A short feedback-cycle is
an immense resource. Iterating is supported by data that can be used
to analyse what features bring most value. Unfortunately, Holopainen
contemplates that Agile development is way ahead of how embedded systems
are developed [Hol15a]. Regardless, as such the bad attributes of the context
are not a fault of Agile development — or a reason to not utilise it.

5.2 A Stringent Context

As a stringent example, the aerospace industry takes great lengths to supervise
and manage change — evidently a reason why plan-driven methodologies such
as Waterfall and V-models are being extensively used [Hol15b]. One simply
cannot experiment with launching a satellite to space with frail approaches.

38

Controlling change is a significant part of software projects in this critical
industry. The industry is regulated and the quality of software projects is
evaluated throughout the process with standardised processes. Typically,
these plan-driven methods are not however linear. Not all requirements
can be determined up front and iteration is needed throughout the process.
Single teams and developers can work with even short iterations implementing
features. What is key though, this iteration is handled within plan-driven
processes. Therefor the V-model is generally used, since it focuses on a
process where gradually refined requirements are accompanied by gradually
increasing verification, enabling the use of some iteration at the low level.
(See figure 6 on page 26.) Requirements and software implementing these is
delivered incrementally, part-by-part. In total, the whole process can take up
to several years. Hardware and software development are highly separated
and embedded systems are being developed by subcontracting software for
specific components of space equipment.

Subcontractors working on the software of embedded systems are on
the bottom of the development chain — there is no doubt this requires
considerable amounts of documentation for communication [BT15, Hol15b].
Procedures around documenting and reviewing requirements are extremely
rigorous [Hol15b]. To be Agile, the whole chain would need to be agile.
Software producers implement software for fairly set requirements at a fairly
set price. Flexible contracts recommended for Agile development would
not work for this, nor being flexible about scheduling. In principle, the
customer tries everything to minimise additional costs generated by changing
requirements. Essentially this has removed the ability to be even agile and
experiment [Hol15b]. These stringent requirements have created standardised
processes in the aerospace industry, which expect that the need for change
comes solely from customers and is not formed by experimentation conducted
by the developers. Change requests and their effect is thoroughly documented
and integrated into the plan-driven process. In essence, a process must stay
intact to be verifiable [Hol15b]. Still, Holsti does note that requirements
tend to see a lot of smaller and even larger refinements [Hol15b]. These
have effects on every single stage of the process. Essentially the plan-driven
method is repeated multiple times throughout the lifecycle of the program,
therefor resulting in iteration and incremental delivery of features. Most of
these changes are caused by refinements in the hardware of the embedded
system. A customer can also become aware of something in the hardware
that is not working as previously expected. A small change in the hardware
can require alterations in multiple tiers of the software components [Hol15b].
These changes do not only have effect on how a feature works, but a small
change can also have peculiar effects on the hardware itself: for instance
changes in software workload can cause the voltage on the hardware to spike
resulting in unreliable operation.

Yet, almost without exception, software for embedded systems in space

39

equipments is developed in stages that represent the needs presented by the
customer [Hol15b]. Often a dominant factor is that a hardware platform
matures in phases. Hardware is being developed and built in separate
components and these are then assembled at different paces according to the
schedule of the overall project. Almost always, the hardware is assembled
by the customer who subcontracts the software development. Only some
core parts of the software are built in-house. A software producer rarely
has access to the necessary clean rooms5 or knowledge required for this
process. Developers do not have a chance to experiment with different
software approaches, nor do they have the equipment to do so. Ultimately,
the whole product is integrated in the customer’s location. Developers
implement software features required for each specific assembly- and testing
stage in very confined settings. What developers can do, is to test features
by simulating the hardware, since most hardware does not even exist during
development of software components. This can be accomplished either by
specific hardware platforms for simulation or simulators based entirely on
software. Simulation also enables to instrument and debug how the code
behaves. Acceptance testing is based on the customers requirements and
is specified early on the development process — typically side-by-side to
programming. Unit tests are derived also from the customers requirements
which are fined down to technical specifications that match the software’s
architecture. More social methods such as peer reviewing code is conducted
before writing unit tests to match the requirements and to follow general
code standards [Hol15b].

Aerospace is probably one of the most regulated environments for devel-
oping embedded systems along with medical, nuclear and other sectors which
include strict requirements set by human safety. Aerospace is also a special
industry in the sense that software is subcontracted from software producers
and hardware and software development are directly apart. Subcontracting
was also mentioned as an issue for GE [BT15]. Another type of a strin-
gent context is caused by conservative customers [Koi15]. Due to historical
reasons, the support for plan-driven methodologies has deeply rooted into
organisations. Even less stringent environment, where organisation control
both hardware and software aspects of development, still use plan-driven
methodologies. This includes the telecom-sector, although Agile development
is starting to get traction in this sector as well [LTR+14, Koi15].

Developing embedded systems takes relative long. For aerospace projects
this takes several years [Hol15b]. For Airbus Defence and Space, developing
telecom-products from an idea to production takes two to three years [Koi15].
The lead time is long since considerable research and development resources
are required. According to Koivulehto, developing principal releases to

5In aerospace, hardware is assembled in clean rooms, where the environment has a low
level of pollutants such as dust.

40

existing products takes about one year [Koi15]. Single medium-sized features
can be delivered in about six months. Primarily, Airbus uses the Waterfall-
model for managing development. At this moment, only one product has
been developed entirely using iterative practises [Koi15]. This was a software
product which had a single customer, but was large and exceptionally complex.
The client was able to define the product in stages and review the features
after each iteration. The product was delivered in two years, although before
this a whole year was required to accept the process through the client’s
internal acceptance process. Notably, the client was extremely satisfied with
the results delivered by iterative development [Koi15].

Currently Koivulehto, does not consider iterative development can sub-
stantially expedite the development process of single features to production
for Airbus — caused by the surrounding process and customer require-
ments [Koi15]. However, Koivulehto does acknowledge that Agile develop-
ment has its benefits in reducing the amount of bugs in software, ensuring
the product will really do what it was intended to do, and the product will
be deployable as soon as it is complete. Discovering bugs before additional
functionality is added is especially beneficial. Most of all, Agile development
enables to deploy development versions early in test bed -environments used
to trial new functionalities. These versions can be much more stable than
what can be achieved with traditional sequential development.

5.3 Variables Hard to Understand

Even if regulatory restrictions are not an significant issue, the context can still
be tricky. ZenRobotics is working on waste sorting robots [Hol15a]. Clearly,
robotics have their own safety-concerns, but these are more easily managed.
These industrial robots recycle waste — primarily chunks of wood, metal,
concrete and plastic — moving on a conveyer belt, and sort them according
to their material. Usually this kind of material consists of demolition waste,
the pieces are of different shapes, sizes and weights. Currently, ZenRobotics
has a robotic waste sorting line in SITA’s (SUEZ environnement) recycling
facilities in Helsinki [SIT, Hol15a]. This production environment represents
ZenRobotics prime customer. The development is done for the client’s sector.
In other words, the only identifiable customer is the facility. What is distinct
from the other cases, is that ZenRobotics has direct access to the client’s
production environment.

ZenRobotics considers itself primarily as a software house. In practise,
while developing an embedded system as a solution for sorting waste, they
have been “forced” to also develop hardware [Hol15a]. One of the biggest
problems is that a software company developing hardware can fail if too
much time and money is spend building the platform. This is why, existing
components are used. Holopainen thinks back on how their development
started with a naive presumption and hope that developing a hardware

41

platform backed by intelligent software solutions would be easy [Hol15a].
Simplistically put, their goal was to harness basic industrial robots, such
as those used to build cars, and a computer system to recycle waste. Far
from the truth. In practise, their solution requires multiple servers inside
an air-conditioned shipping container, kilometres of cable, switches, custom-
hardware including cameras and sensors, and robots built from custom-to-
order industrial robot components.

Using existing hardware platforms for innovative approaches is hard.
Industrial robots have been designed to repeat single movements precisely
for decades [Hol15a]. Each component can have disparate issues relating to
the use case. Industrial robots do not adapt well to unpredictable move-
ment. Obviously, robots weighing up to half a ton move rigidly and there
is significant risk in breaking the hardware if they crash into something —
particularly since ZenRobotics uses the robots to pick up arbitrarily shaped
and sized objects. This requires precise movement that takes multitudes of
variables in consideration. In addition, industrial robots have safety-features
that can in effect close the entire line. Using robots originally designed for
assembly lines is out of defined use scenarios. All this calls for robots that can
withstand free movement and pick anything from rubber boots to concrete
blocks. If you miscalculate, the robot can crash into the object. At first,
robot manufacturers where nervous about the use case, but as it stands, this
is not a major issue anymore. The robots are built from off-the-shelf compo-
nents, although ZenRobotics has strict requirements relating to durability
and mobility.

Many of these previously mentioned issues are solved by software solu-
tions [Hol15a]. For the customer, the value comes from intelligent robots
achieved by software. In practise software patches hardware. Initially, the
plan was to develop an artificial intelligence with software which could specify
how a moving object could be picked up. The reality is something different.
Software implementations can be fine-tuned for years. It is exceptionally
hard to get feedback from a robot. Commonly, a robot does not have any
exact data about its function, aside from some basic information about
operational durations and wait times. Picking up objects with different
shapes, sizes and weights on a moving conveyer belt is no straightforward
task — the amount of variables is baffling to comprehend. On the ground,
scales are used to weight the waste, 3D-cameras construct a time series of
the objects moving on the line, approximation is used evaluate volume and
calculate mass, and finally a robot arm is commanded to make a series of
movements to pick up the object and throw it to a specific basket according
to the object’s material. A key problem is related to how the software can be
certain that the data is correct. Have all variables been taken into account?
The amount of parameters is immense and defining these is tricky. As you
might expect, building an embedded system to handle all these concerns is no
easy endeavour, although possible as evidenced by ZenRobotics. Eventually,

42

Holopainen describes, customers can experiment with small adjustments and
teach the system about new waste types [Hol15a].

Web-applications can collect exact performance and behavioural data.
Collecting data about how an embedded system consisting of robots performs,
requires the use of cameras and above all people to observe operation [Hol15a].
Using people is necessary to know how well the system has performed. For
instance, if one needs to estimate how well the robots have sorted wood, a
person must physically go on-site, run and measure the system and finally
manually go trough the sorted material and evaluate whether the robot line
is behaving as expected. Practically, a customer can only give feedback
on whether the system is working at a higher level. Improving the system
cannot be accomplished by simple modifications that are remotely deployed to
production. A short feedback-cycle can require hours of labour intensive work.
An impression of how something works is not always valuable. An engineer
and developer can see different problems with different solutions. Some
problems can be fixed by hardware modifications, some by software. Some
fixes can work on a certain day, but seemingly not the next day for instance
because of sensor readings. Even software developers have to understand the
problems, to have enough knowledge to be a part of the development work.
Cross-functional teams are beneficial, but not always as simple to achieve
as thought [BT15, Hol15a]. This is why many engineering and development
teams are still rather separated. The idea of a “DevOps” environment in
the development of embedded systems is not achieved [BT15]. Holopainen is
afraid that Agile development does not really solve this problem caused by
variables hard to understand, since these problems are hard to comprehend
even at the organisation level [Hol15a].

5.4 Comparing to Agile and Lean

According to Holsti, many of the concepts in developing embedded systems in
stringent contexts are the complete opposite of what is regarded as valuable in
Agile principles [Hol15b]. Processes and tools bring more predictability and
repeatability to critical contexts than focusing on individuals or interactions.
Comprehensive documentation is seen as the only way for customers to
verify the software works and all its requirements and validations have been
met. This can require documentation that can be anything from hundreds
to thousands of pages long. Customers are reluctant to repeat tests and
instead rely on documented assurances. A typical avionics software can
contain up to several hundred requirements and at least the same amount of
validation tests. These acceptance tests are written by separate people, this
is a requirement by the process. The sequential approach of subcontracting
software for embedded systems evidently leads to contract negotiation instead
of customer collaboration, although customers are still a valuable part of
the process. Even though managing change is central, changes are still

43

unavoidable and producers must be prepared to respond to change. So
responding to change is still a challenge.

Regarding Lean principles, according to Holsti formal procedures in for
example aerospace do not contain enormous amounts of unnecessary “waste”
— although they might seem as very heavy [Hol15b]. Even substantial
documentation is in the end about bringing value to the customer. The
amount of procedure corresponds to the life-critical nature of a project. The
less this is an issue, the more you can question the amount of heavy processes
around the project. In mission-critical components, a single software mistake
can effectively destroy hardware or make it unusable. Life-critical components
need to be verified by a third party. Holsti notes the most waste is primarily
caused by changing processes and tools presented by customers [Hol15b]. In
essence, the software provider needs to learn a new process for each single
project. Clients may have adopted new processes during the duration of a
previous project. Regrettably, a subcontractor is bound to these processes
set by the customer. Amplifying learning is a good aim, but creating own
practises is hard to do, because customers dictate the process. This practise
is rationalised by the necessity of focusing on the critical and transparent
needs of the process. It is not enough to “build the right product”, but also
“build the product right” [Hol15b]. It is very common for the industry to
make decisions as late as possible, although most of these are still confined
by hardware decisions made earlier. Delivering software as fast as possible is
not necessary, since most likely the customer does not have any hardware to
test it early on, thus this does not provide any benefit. Even though, time is
of essence in the integration and assembly phases. For instance, satellites
have strict launch windows that must be met. Software fixes are required
at a days’ notice [Hol15b]. Relating to empowering the team the practises
vary, some customer requirements can go as far as presenting pseudocode
for developers, though most enable more contribution from the developers.
There are some cases where developers tend to only execute a plan specified
by the customer [Hol15b]. In a stringent environment, software development
cannot only rely on trust and integrity, thus quality and product assurance
are in an important role. Most of all, in hardware environments seeing the
whole can be extremely difficult. You cannot always comprehend how many
factors can play a role in hardware environments [Hol15a, Hol15b].

Being “lean” in embedded system development is primarily about min-
imising the risks and resources relating to hardware development [Hol15a].
Engineers often have an urge to develop their own implementations instead of
relying on existing ones. To get around the problems presented by hardware,
smart software solutions are used. In practise, changing hardware is simply
too expensive and software development must give way.

44

5.5 Pursuing New Ideologies

Of all the cases, GE Healthcare Finland Oy leads by far with the adoption
of new ideologies presented by Agile and Lean development — for instance
Scaled Agile Framework is being used in projects [Sca, BT15]. GE is a
massive multinational corporation working in many sectors. In Finland,
GE Healthcare is working on embedded systems for health-care equipment,
for example patient monitors among other things. GE is on the frontier of
switching to Agile and Lean methodologies, although plan-driven methods
are still being used in some existing projects. In fact, the organisation has
appointed coaches to teach new practises to employees [BT15].

Regarding Agile development, Taipale considers the main contribution to
be the concept of iterations [BT15]. Iterating is a healthy way of observing
the surrounding world and how processes are formed. Everything is about
iteration. You optimise existing practises and prepare for the future. Accord-
ing to Taipale, Agile and Lean principles approach development from slightly
different perspectives: Agile is more suited for software development and
Lean for product development [BT15]. Lean is directed to optimising the
flow of product development. All this is not of course guaranteed, Taipale
has seen cases where Agile development has gone as far destroying a project’s
flow [BT15].

Baggström appreciates the emphasis on respecting individuality [BT15].
It is easy for processes not to be focused on people and instead overburden
projects. Especially since at the end, an organisation’s objective is to deliver
products. Too often products are unfinished, when they should not be.
Agile and Lean development are about being adaptive for change. They are
about bringing transparency to the process. According to Baggström, Lean
development is about preparing the process for change and pivots — nothing
will last for certainty [BT15]. At GE this is accomplished by pursuing new
ideologies. Demos are used as presentations, progress is visible and the need
for abstraction caused by procedure is lowered by following practical trends
and finding the right path instead of having a rigid management.

In fact a couple years ago, GE took Agile and Lean ideologies as part
of their key believes: customers determine our success, stay lean to go fast,
empower and inspire each other, learn and adapt to win and deliver results
in an uncertain world [BT15]. It is easy to notice the resemblance of these
believes to the Agile Manifesto and Lean principles. GE has also enlisted
Ries, the founder of Lean Startup, to develop a new process called FastWorks
suitable for GE’s context [GE13, Clo14, Pow14, BT15]. FastWorks is GE’s
implementation of the Lean Startup principles. It incorporates some cus-
tom principles, practises and tools for identifying customer needs, analysing
and prioritising these and experimenting with business and financing mod-
els [BT15]. FastWorks is utilised in concert with the Scaled Agile Framework
to provide a way of working and how teams and support are organised.

45

Moreover, FastWorks provides a way of finding and exploring value. GE
is now transforming its culture throughout the organisation to be leaner,
faster and closer to users — in effect acting like a startup building products
from health-care to gas turbines [GE13, Clo14, Pow14]. In the same time
improving costs, speed and sales [Pow14]. The use of Scrum, Kanban and
Scrumban are directly connected to applying FastWorks. Sprints are very
short: from two to six weeks. In practise, according to Baggström and
Taipale, how this works is very dependant on people and teams working
on projects. Management and communication between different teams and
people is crucial [BT15].

GE’s FastWorks is a very novel approach for developing products, even
embedded systems [BT15]. Minimum viable products are at the core of
experimenting with embedded systems. MVPs are not only about products
suitable for production, but also about validating ideas. Regarding software
development, even A/B testing is being used. FastWorks can also be used
in more hardware related practises, such as simulating hardware and even
3D-modelling and printing. At the leading edge, hardware development has
been incorporated with software development and engineers are working
with developers in cross-functional teams [BT15]. Even so, unfortunately
most of software development still starts after the hardware design has been
completed.

Undeniably in large organisations, projects have very different levels of
management all the way from project managers to higher level organisational
management. Waterfall is still being used especially in older projects at
GE [BT15]. As it stands, most of the leadership expect to get the benefits
of Agile development, but have not yet fully internalised its principles and
practises [BT15]. Agile practises work very differently at the level of an
individual, team, management or business. In addition, a concern is how
well Agile development improves efficiency and looks after the development
process. Iterative development can obviously be used as part of plan-driven
development [BT15, Hol15b]. As GE works on a safety-critical sector in
Finland, legislation, standards and authorities expect to get some formal
assurances about processes and products. What Baggström and Taipale
stress is that this does not however mean that only written documentation
can provide this — issue trackers, source code management and test cases
are used at GE to provide mandatory assurances [BT15]. At the same time,
all these practises provide a stable foundation for being iterative.

Whether you can develop embedded systems from the point-of-view of
single features or if an overall definition and analysis is required, depends
directly on what you are trying to achieve [BT15]. Rarely can the development
of new products be conducted feature-by-feature — an overall definition is
required. On the other hand, development can be directed by features when
existing products are being improved or updated. Even new products can
be based on previous hardware. For GE, a customer can have an influence

46

in product development, but not directly [BT15]. It is still uncertain, how
well end-user feedback actually reaches developers. Products are developed
as a result of internal product development — this includes hardware and
software. Evidently, this is another reason that enables agility for GE.
Feedback can be collected from local customers or by using special experts
that have knowledge of the sector. It seems, it is exceptionally beneficial to
be a production house that has control on every aspect of the product. In
fact, GE is increasingly identifying itself as a software house. Most value is
brought by software solutions [BT15].

Although GE has found a way in being very Agile and Lean even in
developing embedded systems, hardware sets limitations on how a deployment
pipeline can be established [BT15]. Continuous Deployment is easy to achieve
in software projects, but not directly for hardware platforms. Continuous
Integrations can be achieved by simulating the hardware, but rarely on
the actual hardware. Building software and running large test suites on
embedded systems can take simply too long. A complete opposite of what can
be accomplished for web-applications. Unfortunately, this does not enable
live software delivery. Yet, developers can still easily install new software
for embedded systems — usually this is only a one-step process that can be
triggered remotely. As many of GE’s products are being used in customer
locations for example in hospitals, Continuous Deployment is most of all a
problem involving actual hardware distribution. This environment causes
concerns caused by patient safety. This is also why remote deployments are
now allowed [BT15]. Nevertheless, Baggström and Taipale comment that
strategies for enabling remote deployments are being actively sought out,
because of the many benefits this would open up [BT15]. At the present
time, features are bundled into larger updates and the distribution of these
takes times and customer resources. Unfortunately, according to Baggström
updates happen too seldom [BT15].

5.6 Adapting to Change

In general, it is not difficult to adopt hardware changes in software, because
the best practise is to abstract as much of the hardware as possible. New
hardware usually only requires a new driver to be adopted and the character-
istics of the hardware to be accounted in software. Most high-level algorithms
should not be affected by this. Typical software approaches to prepare for
changes include building modular software components and abstracting data
processing and computing [BT15, Hol15a, Hol15b, Koi15, Kri15, Pet15]. It
is extremely rare that software development can change the existing hard-
ware. Quite the contrary, software must compensate many obstacles set by
hardware. In some cases, software developer can however find flaws that
prevent implementing a software feature reliably for hardware [Hol15b]. This
might cause hardware changes.

47

No matter what process you use, you will need to be able make changes.
Without communication any process will fail. Following how the Waterfall
model works, an idea must be presented during the development of the
previous release to be accepted as an feature-candidate for screening in
the next release [Koi15]. As per usual for plan-driven methodologies, a
customer primarily does not participate on the development stage after the
requirements have been frozen. Even so, if some requirements cannot be
accomplished or are incompletely defined, the requirement can be opened
and the customer participates in the resulting modification process [Hol15b,
Koi15]. Developers and the customer can make change requests that may
consist of new features, even late in the development process [Hol15b, Koi15].

Even if the customer cannot specify all requirements at the start of the
project, this does not mean that they want to test software in development
to evaluate whether the specification has succeeded and what additions and
changes are required for next phases — especially in aerospace [Hol15b].
Requirements are set in incremental steps due to strict schedules. Software
requirements can only be finished when related hardware components and
their software interfaces have been finalised. This usually happens once the
hardware is practically complete. Another reason for incremental require-
ments is the lack of time. Customers simply do not have the resources to
specify each requirements in one attempt and this is why requirements are
evolved in stages whenever the customer specifically requires the functionality
in the product. As a side note, in my opinion, this sound exactly why Agile
development should be used. Partly it is, since iterative and incremental
development can definitely be used within the development, but the overall
process around the project is governed by requirements set in the plan-driven
process. Currently agility and experimentation happens in the system level
design and planning of an embedded system for instance as brainstorming
ideas [Hol15b].

For ZenRobotics, the hardware environment is a strain [Hol15a]. Another
strain is not getting valuable data about the behaviour of how the embedded
system is working. When development is focused in a entirely new product
segment, customers do not know what to expect, neither do developers. The
need for continuous iterations springs from the unknown.

Nowadays powerful processors, either embedded in the systems or on
separate computers, make it possible to do development driven by fea-
tures [BT15, Koi15]. Usually this is not hindered by the hardware itself,
as much as the process. Hardware behaviour and performance is not lin-
ear [Hol15a]. Often, hardware applications require specific timing. These
aspects change quite a bit. Computing power is not universal across platforms.
Nevertheless, hardware performance has reached levels, where hardware is
not a limiting factor for software development. For Airbus, most hardware
platforms enable remote deployments for at least the application-part of
the system through networks [Koi15]. Even satellites can be upgraded with

48

remote deployments and this capability is generally used [Hol15b].
Kriegleder considers remote deployments for drones very feasible, but

has not found the need for it — most likely due to the prototype environ-
ment [Kri15]. What is intriguing in the context of the Distributed Flight
Array, is that all of intricate computing is done remotely and transmitted
wirelessly to the drones which execute the commands on integrated systems.
In future, operation could potentially be moved from the hardware to the
cloud as a service [Kri15]. Of course, specific boot related procedures cannot
be updated and architectural alterations are necessary. For instance, critical
components need to be isolated from the upgrade process [Kri15]. The
possibility for remote deployments has enabled upgrading systems flexibly
with new features and fixing existing ones. Instead of technological limita-
tions, the process is slowed by customer requirements [BT15, Hol15b, Koi15].
Customers have requirements related to acceptance testing and have security
and safety concerns. This is one reason why software updates can be delayed
far into the future [BT15, Hol15b, Koi15].

In fact, some orbiters have been launched to space before all the soft-
ware needed in the operations at the destination location has been com-
pleted [Hol15b]. If the travel takes several years, a software can be completed
and sent remotely to the orbiter within time. Embedded systems in aerospace
tend to see more changes directly after launch and towards the end of the
mission. Software functionalities are tested after launch and degradation
in hardware can require software modifications to compensate wear and
malfunction later in time. Even so, for instance for orbiters, the functionali-
ties and technical features such as speed, stability, accuracy, power usage,
heat dissipation and environmental factors are critical for the operation and
objectives of space missions. This is why requirements have to be set at the
very beginning of projects. Patently, there are very limited opportunities to
do hardware alterations in space.

Holsti explains that in the aerospace industry value is not delivered by
experimenting with features [Hol15b]. It is rather delivered by improving
quality aspects related to requirements set by the customer: keeping on
schedule, reducing errors in the documentation and software, but also by being
adaptive to changes caused by refined requirements. In fact, customers are
starting to demand certain amounts of flexibility in contracts — organisations
are expected to allow changes during the development process.

For Airbus, keeping hardware and software development in sync is rela-
tively easy to accomplish since rarely a customer has new hardware require-
ments during development [Koi15]. This reflects similar views presented in
the other interviews. Most value is ultimately provided by software features.
Hardware dependant programming is required during hardware develop-
ment to make hardware features accessible and testable. Partly this work
is carried out by hardware architects, partly in co-operation with software
architects [Koi15]. At the application level, the hardware is utilised with

49

specified application interfaces (API). In the telecom-industry, the products
consists of multiple tiers of interfaces. Abstracting hardware assist software
development [Koi15]. API changes are avoided between development unless
absolutely necessary.

5.7 Experimenting

Experimentation with software is convenient [Hol15a]. If an approach fails,
another one can be used with relative ease. Even a complex software can be
rebuild when needed. This is largely even accepted as a norm in the industry.
Clearly for some, developing embedded systems is experiment driven by
nature [Hol15a, Kri15]. Working on an unpredictable and new field requires
iteration.

One case, the Distributed Flight Array, merely focuses on an experimen-
tation driven approach on developing autonomous quadcopters [Kri15]. The
development is not focused in building a product for customers, but rather in
studying involved prototypes. As it stands, no distinct methodology is being
used, although in principle Agile and Lean ideologies can be identified. New
ideas are iterated quickly and often. Software and hardware components
are developed by building an extendable system architecture upon which
new features can be added incrementally using the bottom-up approach —
starting from smaller components and adding new ones step-by-step. By
pursuing a modular approach, such that features are independent of each
other, features can be easily exchanged with different implementations. Ac-
cording to Kriegleder, how long this takes depends on whether a feature
is low-level or high-level. Development is accomplished by experimenting
with proof-of-concept prototypes and identifying useful features and then
agreeing how they interface with the rest of the system. Instead of backing up
architectural design with documentation, tools such as the Robot Operating
System, can be used in the development of robot hardware to define interfaces
properly [ROS].

According to Holsti, incremental delivery of embedded systems in aerospace
entirely lacks the experimentation and test-driven feel which is natural to Ag-
ile and Lean development [Hol15b]. He acknowledges that this view is limited
since an abundance of software in this field is targeted for strictly hardware.
There is not a particular human user for the software product. Either way,
aerospace does have some segments that require human focused aspects, such
as user interfaces for manned space flights and planetary probes [Hol15b].
The usability perspective of these is an obvious place to be adaptive and to
experiment with prototypes.

For ZenRobotics, the embedded system is so complex that free-flow
experimentation cannot be achieved [Hol15a]. Developers cannot focus
development on experimentation and test-driven approaches. The more
complex a system is, the more structure you need to maintain it. While

50

working on artificial intelligence, causal relationships can be hard to define.
A small change can change everything. There is no way, a developer can
understand all the complexities relating to the system. Measuring what
improvements these changes make is hard.

Experimenting with hardware is expensive [BT15, Hol15a, Hol15b]. Hard-
ware development is a very capital intensive domain — to exaggerate, a
hardware system can be outdated once finished [Hol15a]. An organisation
cannot fail with hardware development since the losses can be considerable.

In the case of aerospace, there is usually a limited amount of prototypes
available and most likely developers do not have access to them [Hol15b].
Neither do developers have access to necessary clean rooms to construct
hardware. Therefor organisations working on software usually have access
to hardware-prototypes that are supposed to work similarly to production
units. Simulators can replicate intricate functionality, anything from micro-
processors, discrete internal components (timing, data gathering and I/O),
instruments (signals, cooling, optics and telescopes) to the co-operation
of the entire platform. Simulation environments are highly sophisticated
and in aerospace the validation of software features is carried mostly in
these environments. Once the software is delivered to the customer, can
additional test be run with actual hardware environments. Even if hard-
ware and software development would be in-house, Holsti ponders that the
formal requirements for aerospace would not provide a platform for ad-hoc
experimentation [Hol15b]. At least not in commercial applications.

Simulation is highlighted by most interviewees. Kriegleder emphasises
simulation platforms [Kri15]. Writing automated tests and simulation are
an important part of building embedded systems. For drones, the developers
use sophisticated simulation platforms that can even simulate on-board
software for the hardware in such that most high-level algorithms can be
tested thoroughly in simulation.

Obviously, hardware design and build processes require some amount of
experimentation from a design point of view. Usually these requirements
are tested with prototypes [BT15, Hol15a, Hol15b, Koi15, Kri15, Pet15]. All
these design requirements tell, at least generally, what are the needs for
hardware and how they interface with software [Hol15b]. An embedded
system, its computational power and I/O interfaces determine how large and
heavy the actual hardware will need to be and how much it will consume
power. For instance for a satellite, all these requirements need to be taken
into account already in the design stage [Hol15b]. All this work is done
before the software is commissioned. Thus not much is left to experiment
hardware and software co-operation in the later stages of development pro-
cesses. Avionics software work with exact data and consist of rather simple
algorithms [Hol15b]. Experimentation is not required it the same sense as
when building web-software. Specifying requirements for exact data is much
more easier than dealing with potentially imperfect data that is harder to

51

predict. A reversed situation that commonly occurs in user-faced software.
For Airbus, the problem with experimentation are the very conservative

customers [Koi15]. Proof-of-concept projects are conducted before starting
larger product development projects. These experiments provide valuable
information whether a project is realisable. Key factors to consider are
features, schedule, investment costs and product costs [Koi15]. Many clients
want to test new features thoroughly in their own test bed -environments.
This takes time. Unfortunately, Koivulehto does not think that their clientele
will allow for developers to experiment in their production settings [Koi15].
This also prevents for deploying features straight into production. Customers
supervise and manage production environments tightly.

Koivulehto states several factors that influence feature evaluation in the
telecom-industry: research and development costs, effect on production cost,
competitiveness, suitability for the architecture and company product strat-
egy [Koi15]. Holsti emphasises that typically in subcontracting, developers
do not have a chance in evaluating features [Hol15b]. At most, software
developers can negotiate on for instance software performance and data
related factors. Cost-benefit evaluation is done primarily during system level
development, well before software is part of the picture. For Kriegleder, fea-
ture value is brought by experimentation interest [Kri15]. For Agile and Lean
contexts, value is determined by direct customer collaboration [BT15, Pet15].

5.8 Building Hardware for Software

A right question to ask is,
whether you are actually building
software for hardware or
hardware for software.

Stefan Baggström [BT15]

When a (small) organisation is involved in every aspect of an embedded
system, developers most likely have insight on even the low-level hardware
aspects in addition to the high-level implementations [Kri15]. In such a case,
developing software for hardware is easier to accomplish. Cross-functional
teams come more and more important when organisational structures are
larger. Knowledge must be easy to obtain. Hardware development is much
harder to grasp than understanding how existing solutions work. The most
important thing for the development of embedded systems is to enable a
faster feedback-cycle [BT15, Hol15a].

A right question to ask is, whether you are actually building software
for hardware or hardware for software [BT15]. The optimal choice would
probably be the latter. Obviously, this most likely is not the case when
the development process follows plan-driven approaches. In Agile and Lean

52

contexts the separation is not always so clear. Petkovic considers this a
difficult question to answer [Pet15]. Software and hardware are built to
satisfy certain needs. Whenever possible, the needs are first addressed with
software. Sometimes hardware changes are necessary and done too.

Hardware manufacturing processes have evolved rapidly. Since hardware
development is expensive, component manufacturers have invested large
sums to improve manufacturing technologies [Hol15a]. This has brought new
possibilities for software developers to investigate new prospects involving
hardware products. As embedded systems mature, it is much more easier to
establish what the value of a feature is. Experimentation is a good objective,
but what Holopainen highlights is that rarely one can know or estimate
the cost or development time — or even if the feature is plausible [Hol15a].
Evidently, research and development projects are used to define and evaluate
problems and their implementations.

It is not uncommon that the aerospace industry uses existing implemen-
tation as part of new projects [Hol15b]. This can be particularly tricky. A
change in the operational environment of for example a satellite has effect
on how the software behaves. The satellite might need to transmit data
to the ground station less often or more frequently depending where it is
orbiting. Regarding the future, Holsti would like to see simulation platforms
evolve. In many cases, the software provider must build their own simulation
environments, which obviously poses risks [Hol15b].

Koivulehto hopes that instead of dedicated hardware, in the future prod-
ucts would be implemented with more general-purpose platforms [Koi15].
Cost-effective, versatile and low-powered microprocessor based platforms
provide extendable bases. Platforms can be used for advanced software
solutions in embedded systems. In addition, improving modularisation is
central — from part suppliers to manufacturers and system integrators. A
key question to ask is what is the value of slightly different hardware imple-
mentations for similar functionalities [Koi15]. Kriegleder highlights the need
for standardisation especially relating to how hardware is abstracted [Kri15].

Baggström and Taipale want to see more cross-functional teams working
on embedded systems [BT15]. Collaboration needs to be increased. Pro-
cess delivery must be expanded to include even hardware. Unfortunately
legislation and conservative customers slows this evolution down.

Consumers require less dedicated hardware devices and evidently services
are moving to the Internet of Things [Koi15]. At the same time, hardware
platforms are being designed for end-users [BT15]. Possibilities are expanding.
The cost of computations is fast becoming negligible [Hol15a]. One interesting
area of development is sensors. The supply of sensors is increasing and they
are getting truly capable. Hardware platforms can be equipped with hardware
components that are not currently used by software [BT15]. Components,
such as acceleration sensors, can future-proof hardware. More sophisticated
sensors will eventually evolve practises and make data gathering much easier

53

and faster.
In the future, Holopainen would like to see hardware adapt a data-driven

approach [Hol15a]. Existing hardware components should be more data-
aware. When developing artificial intelligence, human involvement is still
central. Currently, artificial intelligence is more or less based on crowd-
sourced data. Hopefully, the systems will eventually be capable of learning
new things on their own, thus reducing the amount of human involvement.
According to Koivulehto, manufacturers should learn to take advantage
of end-user field testing and usage observation [Koi15]. Platforms should
provide this functionality straightforwardly, bug reports and feedback should
be easy to collect. Users tend to find irritating bugs in products, but rarely
this information is relayed to developers — even if the organisation would
have resources and would be willing to amend them.

There are many new and novel approaches such as electronic testing plat-
forms, 3D-printing and laser-cutting that are universally seen as a beneficial
aid for experimenting with hardware. Many of these have been around for
many years, but only now are they starting to be viable for cost-effective ex-
perimentation. Essentially, hardware development can be effortlessly moved
in-house with software development. Engineers and developers can do most
of the early prototyping and evaluation of design choices internally [Kri15]. If
prototypes are produced in low quantities, practises such as 3D-printing and
laser-cutting are in fact a necessary requirement in terms of cost. Kriegleder
describes how they can utilise off-the-shelf electronics for drones and extend
them relatively easily with custom electronics to enable full control over
the hardware and its on-board software [Kri15]. For the Distributed Flight
Array, the whole embedded system is fully developed in-house including all
mechanics, electronics and software.

5.9 Overview of the Presented Cases

To conclude, according to the interviews, iterative development can be
achieved within plan-driven methods in embedded systems and this is often
the case. On the leading edge, prominent Agile and Lean development
practises are used. One interesting example is how GE has taken this as
far as adapting a Lean Startup ideology throughout its organisation [BT15].
Still, many limitations and requirements are imposed by working with hard-
ware. These include rigidity of hardware, stringent contexts, variables hard
to understand, separate teams, subcontracting challenges and conservative
customers. See table 1 on the following page for an overview of the findings
from the interviewed cases.

54

Ta
bl
e
1:

Su
m
m
ar
y
of

In
te
rv
ie
w
s

C
as

e
C

on
te

xt
P

ro
ce

ss
In

te
gr

at
io

n
D

ep
lo

ym
en

t
E

xp
er

im
en

ta
ti

on

A
er
os
pa

ce
(N

ik
la
s

H
ol
st
i)

–
av
io
ni
cs

–
dr
iv
en

by
ha

rd
w
ar
e

–
V
-m

od
el

ap
pr
oa
ch

w
it
h
it
-

er
at
iv
e
in
cr
em

en
ts

–
ob

je
ct
iv
e
to

m
an

ag
e
ch
an

ge
–

ke
ep

in
g

on
sc
he

du
le

an
d

bu
dg

et
is

tr
ic
ky

–
so
ft
w
ar
e
is

su
bc

on
tr
ac
te
d,

cu
st
om

er
di
ct
at
es

pr
oc
es
s

–
he

av
ily

re
gu

la
te
d
an

d
st
an

-
da

rd
is
ed

,
co
ns
id
er
ab

le
em

-
ph

as
is

on
do

cu
m
en
ta
tio

n
–
re
qu

ire
m
en
t-
dr
iv
en

,r
eq
ui
re
-

m
en
ts

ar
e
fr
oz
en

ea
rly

on
–
de

ve
lo
pm

en
t
ta
ke
s
se
ve
ra
l

ye
ar
s

–
A
gi
le

an
d

Le
an

de
ve
lo
p-

m
en
t
no

t
us
ed

–
R
&
D

is
ut
ili
se
d
in

th
e
“s
ys
-

te
m

le
ve
l”

de
si
gn

ph
as
e

–
m
an

ua
lly

in
te
ns
iv
e

–
de

ve
lo
pe

rs
w
ri
te

un
it
te
st
s

w
ith

co
de

–
se
pa

ra
te

in
te
gr
at
io
n,

ac
ce
p-

ta
nc
e
an

d
va
lid

at
io
n
te
st
s

–
va
lid

at
io
n

te
st
s

w
ri
tt
en

by
se
pa

ra
te

de
ve
lo
pe

rs
(r
e-

qu
ire

d
by

th
e
pr
oc
es
s)

–
pe

er
re
vi
ew

in
g
an

d
st
at
ic

co
de

an
al
ys
is

us
ed

–
pr
ac
ti
ca
lly

no
ha

rd
w
ar
e
to

te
st

du
rin

g
de

ve
lo
pm

en
t

–
si
m
ul
at
io
n
us
ed

to
te
st

be
-

ha
vi
ou

r
–
ve
ri
fic

at
io
n
an

d
va
lid

at
io
n

co
nd

uc
te
d
by

th
ird

pa
rt
ie
s

–
cu

st
om

er
ca
n
ru
n
te
st
s
in

th
e
pr
od

uc
tio

n
en
vi
ro
nm

en
t

–
re
m
ot
e
de

pl
oy

m
en
ts

po
ss
i-

bl
e
an

d
un

iv
er
sa
lly

us
ed

–
so
ftw

ar
e
m
ig
ht

no
tb

e
re
ad

y
be

fo
re

la
un

ch
–
de

gr
ad

at
io
n
an

d
w
ea
r
co
m
-

pe
ns
at
ed

w
ith

po
st
-d
ep

lo
ye
d

so
ftw

ar
e

–
ha

rd
w
ar
e
pr
ac
tic

al
ly

lo
ck
ed

af
te
r
m
is
si
on

st
ar
ts

–
la
ck
s
an

ex
pe

ri
m
en
ta
ti
on

an
d
te
st
-d
riv

en
fe
el

–
cu

st
om

er
dr
iv
es

ch
an

ge
,d

e-
ve
lo
pe

rs
ca
nn

ot
ch
oo

se
fe
a-

tu
re
s

–
de

al
in
g
w
ith

ex
ac
t
da

ta
–
de

ve
lo
pe

rs
do

no
t
ha

ve
ne

c-
es
sa
ry

kn
ow

le
dg

e
or

ac
ce
ss

to
ex
pe

rim
en
t
w
ith

ha
rd
w
ar
e

–
so
ftw

ar
e
an

d
ha

rd
w
ar
e
sim

-
ul
at
io
n

is
us
ed

to
m
an

ag
e

w
id
e
ra
ng

e
of

co
nc
er
ns

–
3D

-p
rin

tin
g
pr
ac
tis

es
w
he

re
us
ed

al
re
ad

y
15

ye
ar
s
ag
o

A
ir
bu

s
D
ef
en

ce
an

d
Sp

ac
e
O
y

–
te
le
co
m

–
pr
im

ar
ily

W
at
er
fa
ll
ba

se
d

–
to

th
is

da
y,

it
er
at
iv
e
de

ve
l-

op
m
en
t
us
ed

in
on

e
so
ftw

ar
e

pr
oj
ec
t

–
fr
om

id
ea

to
pr
od

uc
ti
on

ta
ke
s
tw

o
to

th
re
e
ye
ar
s,

pr
i-

m
ar
y
re
le
as
es

ab
ou

to
ne

ye
ar
,

si
ng

le
fe
at
ur
es

si
x
m
on

th
s

–
A
gi
le

an
d

Le
an

de
ve
lo
p-

m
en
t
po

ss
ib
le

–
w
id
el
y

ad
op

ti
ng

it
er
at
iv
e

de
ve
lo
pm

en
t
is

pl
an

ne
d

–
so
m
e
au

to
m
at
io
n

us
ed

in
te
st
in
g
an

d
st
ag

in
g,

th
ou

gh
no

t
w
id
el
y
ac
ro
ss

pr
od

uc
ts

–
cu
st
om

er
s
us
e
te
st

be
d
en

-
vi
ro
nm

en
ts

–
re
m
ot
e
de

pl
oy

m
en
ts

po
ss
i-

bl
e

–
no

ha
rd
w
ar
e
lim

ita
tio

ns
–

se
cu

ri
ty

co
nc
er
ns

an
d

ac
ce
pt
an

ce
-t
es
ti
ng

sl
ow

do
w
n

–
pr
oo

f-o
f-c

on
ce
pt

ex
pe

rim
en

-
ta
tio

n
in

R
&
D

–
po

w
er
fu
lp

ro
ce
ss
or
s
en

ab
le

fe
at
ur
e-
dr
iv
en

de
ve
lo
pm

en
t

–
co
ns
er
va
tiv

e
cu
st
om

er
s

–
cu
st
om

er
s
ow

n,
su
pe

rv
is
e

an
d
m
an

ag
e
pr
od

uc
tio

n
en
vi
-

ro
nm

en
ts

tig
ht
ly

E
T
H

Zü
ri
ch
,

In
st
it
ut
e

fo
r

D
yn

am
ic

Sy
st
em

s
an

d
C
on

tr
ol

–
dr
on

es
–

no
cu

s-
to
m
er

–
dr
iv
en

by
ex
pe

rim
en
ta
tio

n
–
no

di
st
in
ct

pr
oc
es
s

–
in
vo
lv
ed

in
ev
er
y
as
pe

ct
of

th
e
sy
st
em

–
bo

tt
om

-u
p
de

ve
lo
pm

en
te

m
-

ph
as
is
in
g
on

ar
ch
ite

ct
ur
e

–
de

ve
lo
pm

en
t
tim

e
de

pe
nd

s
on

fe
at
ur
e

–
A
gi
le

an
d
Le

an
ch
ar
ac
te
ris

-
tic

s

–
au

to
m
at
ed

te
st
s

–
so
ph

is
tic

at
ed

si
m
ul
at
io
n

–
no

au
to
m
at
ed

in
te
gr
at
io
n

pr
ac
tis

es

–
re
m
ot
e

de
pl
oy

m
en
t

no
t

us
ed

–
no

A
/B

te
st
in
g
pr
ac
ti
se
s,

on
ly

pa
ra
m
et
er

tu
ni
ng

–
ite

ra
tin

g
qu

ic
kl
y
an

d
of
te
n

w
ith

pr
ot
ot
yp

in
g

–
m
od

ul
ar

ap
pr
oa
ch

–
off

-t
he
-s
he

lf
pl
at
fo
rm

s
–

in
-h
ou

se
m
ec
ha

ni
cs
,
el
ec
-

tr
on

ic
s
an

d
so
ftw

ar
e

–
3D

-p
ri
nt
in
g

an
d

la
se
r-

cu
tt
in
g

ne
ce
ss
ar
y

fo
r

lo
w

qu
an

tit
y
de
ve
lo
pm

en
t

55

Ta
bl
e
1:

Su
m
m
ar
y
of

In
te
rv
ie
w
s

C
as

e
C

on
te

xt
P

ro
ce

ss
In

te
gr

at
io

n
D

ep
lo

ym
en

t
E

xp
er

im
en

ta
ti

on
G
E

H
ea
lt
hc

ar
e

Fi
nl
an

d
O
y

–
he

al
th
-

ca
re

–
la
rg
e
or
-

ga
ni
sa
tio

n

–
co
nt
ro
ls

ev
er
y

as
pe

ct
of

pr
od

uc
t
de

ve
lo
pm

en
t

–
m
ov

in
g
fa
st

to
w
ar
ds

A
gi
le

an
d
Le

an
de

ve
lo
pm

en
t

–
so
m
e
ex
is
ti
ng

pr
oj
ec
ts

st
ill

us
e
W
at
er
fa
ll

–
Fa

st
W
or
ks
:
Le

an
St
ar
tu
p,

Sc
ru
m
,K

an
ba

n
an

d
Sc

ru
m
-

ba
n

–
sp
rin

ts
la
st

tw
o
to

six
w
ee
ks

–
ne

w
do

cu
m
en
ta
ti
on

ap
-

pr
oa

ch
es
:

te
st
in
g,

G
it

an
d

JI
R
A

–
di
st
in
ct

de
ve
lo
pm

en
t,
st
ag

-
in
g
an

d
pr
od

uc
ti
on

en
vi
ro
n-

m
en
ts

–
au

to
m
at
ed

pr
oc
es
se
s

fo
r

un
it
,i
nt
eg
ra
ti
on

an
d
ac
ce
p-

ta
nc
e
te
st
in
g

–
C
on

tin
uo

us
In
te
gr
at
io
n
po

s-
si
bl
e
th
ro
ug

h
ha

rd
w
ar
e
si
m
-

ul
at
io
n

–
te
st
in
g
on

ha
rd
w
ar
e
is

slo
w

–
A
/B

te
st
in
g
us
ed

in
so
ft
-

w
ar
e
de

ve
lo
pm

en
t

–
lo
ng

te
st
in
g
ph

as
es

ca
us
ed

by
sa
fe
ty
-c
on

ce
rn
s

–
C
on

tin
uo

us
D
el
iv
er
y
is
us
ed

in
so
ftw

ar
e
pr
oj
ec
ts

–
lo
ca
lly

so
ftw

ar
e
de

pl
oy
m
en
t

is
us
ua

lly
a
on

e-
st
ep

pr
oc
es
s

fo
r
ha

rd
w
ar
e

–
pr
od

uc
ts

us
ed

in
cr
it
ic
al

cu
st
om

er
en
vi
ro
nm

en
ts
:
up

-
da

te
s
ha

pp
en

sl
ow

ly
–
ow

n
cl
ou

d
in
fr
as
tr
uc
tu
re

–
M
V
P
co
nc

ep
ti
n
Fa

st
W
or
ks

–
pr
ot
ot
yp

in
g

–
3D

-m
od

el
lin

g
an

d
pr
in
ti
ng

ut
ili
se
d

–
de

ve
lo
pe

rs
ca
n
ex
pe

ri
m
en
t

w
ith

ha
rd
w
ar
e

–
he

ur
ist

ic
sb

ei
ng

us
ed

in
te
st
-

in
g
an

d
pr
od

uc
tio

n

Sp
ac
e

Sy
st
em

s
Fi
nl
an

d
Lt

d
–

sa
te
lli
te

na
vi
ga

ti
on

sy
st
em

–
dr
iv
en

by
cu

st
om

er
an

d
en

d-
us
er

ne
ed

s,
as

w
el
la

s
vi
ew

s
ab

ou
t
fu
tu
re

–
A
gi
le

so
ft
w
ar
e
an

d
ha

rd
-

w
ar
e
de

ve
lo
pm

en
t

–
m
et
ho

d
fo
llo

w
s
Sc
ru
m

–
ha

rd
w
ar
e
de

ve
lo
pe

d
it
er
a-

tiv
el
y

–
ap

pr
oa

ch
ed

fr
om

th
e
po

in
t-

of
-v
ie
w

of
th
e
w
ho

le
pr
od

uc
t

an
d
si
ng

le
fe
at
ur
es

–
sp
rin

t
le
ng

th
be

tw
ee
n
a
fe
w

w
ee
ks

to
se
ve
ra
lm

on
th
s

–
fe
at
ur
es

im
pl
em

en
te
d
w
ith

un
it

an
d
ac
ce
pt
an

ce
te
st
s

–
re
m
ot
e
de

pl
oy
m
en
tp

os
sib

le
–
au

to
m
at
ed

pr
oc
es
se
s
fo
r
de

-
pl
oy

in
g
an

d
ex
pe

rim
en
tin

g
–

so
ft
w
ar
e

de
pl
oy
ed

af
te
r

sp
rin

t
is

co
m
pl
et
ed

–
pr
ot
ot
yp

in
g

–
sim

ul
at
io
n
is

us
ed

to
ex
pe

r-
im

en
t
w
ith

ha
rd
w
ar
e

–
ha

rd
w
ar
e
is

ex
te
nd

ab
le

–
de

ve
lo
pm

en
t

ki
ts

ha
ve

pr
ov
en

us
ef
ul

Ze
nR

ob
ot
ic
s
Lt

d
–
ro
bo

tic
s

–
A
I

–
it
er
at
iv
e
an

d
in
cr
em

en
ta
l

de
ve
lo
pm

en
t

–
A
gi
le

an
d

Le
an

ac
kn

ow
l-

ed
ge
d

–
co
m
pl
ex

an
d

ph
ys
ic
al

do
-

m
ai
n

–
so
ftw

ar
e
ho

us
e
fo
rc
ed

to
de

-
ve
lo
p
ha

rd
w
ar
e

–
cr
os
s-
fu
nc
tio

na
lt
ea
m
s

–
ac
ce
ss

to
cl
ie
nt
’s
pr
od

uc
tio

n
en
vi
ro
nm

en
t

–
st
ab

ili
se
d
pl
at
fo
rm

,i
nf
ra
s-

tr
uc

tu
ra
lc

ha
ng

es
ta
ke

ab
ou

t
on

e
ye
ar

–
un

it
an

d
in
te
gr
at
io
n
te
st
in
g

us
ed

as
ba

si
s

–
te
st
in
g

re
qu

ir
es

ph
ys
ic
al

ha
rd
w
ar
e
an

d
m
an

ua
ll
ab

ou
r

–
de

fin
in
g

ca
us
al
-e
ffe

ct
s

le
ng

th
en

s
in
te
gr
at
io
n

–
so
ft
w
ar
e
ca
n

be
de

pl
oy
ed

re
m
ot
el
y

–
en
vi
ro
nm

en
t
is

tr
ic
ky

an
d

de
pl
oy
in
g
ne

w
fe
at
ur
es

ta
ke
s

tim
e

–
off

-t
he
-s
he

lf
co
m
po

ne
nt
s

–
ro
bo

ts
co
st

up
w
ar
ds

ha
lf
a

m
ill
io
n

–
in
st
al
la
ti
on

ta
ke
s
se
ve
ra
l

m
on

th
s

–
co
m
pr
eh

en
si
on

ha
rd

to
ac
hi
ev
e

–
R
&
D

us
ed

to
ev
al
ua

te
fe
a-

tu
re
s

–
in

th
e

fu
tu
re
,

cr
ow

d-
so
ur
ci
ng

co
ul
d

be
us
ed

to
te
ac
h
w
as
te

m
at
er
ia
ls

56

6 Conclusions
Software delivery on the web has evolved over the years into a rather estab-
lished process. A software is developed iteratively through multiple phases.
A clear focus is set to ensure that user requirements and the quality of
the product or service are fulfilled. A deployment pipeline has become the
basis for current development practises. Nowadays, a deployment pipeline
usually consists of at least three stages: development, staging and production.
Using modern iterative and incremental processes, a software is developed
feature-by-feature by iterating through these steps. Each step is short and
features are deployed frequently to production.

Software development consists of a variety of processes and practises
for ensuring the quality of a product or service. At the present time, these
are based on Agile and Lean ideologies and practises. Software changes are
frequently integrated, tested and deployed, as automatically as possible. The
first two form Continuous Integration and the latter Continuous Deployment.
If any stage fails, the process starts from beginning. The web enables the
use of the deployment pipeline and its practises in an unparalleled way.
Due to the distributed nature of the Internet, software can be deployed as
needed. Users see the newest features without the need of any interaction.
Deploying software with ease has allowed developers to experiment with
different implementations of a feature. These practises have started to
formalise as Continuous Experimentation.

Not all software can be developed easily this way. Embedded systems,
which have a dedicated function within a larger mechanical or electrical
system, require hardware to accompany the software. Commonly, software
is being built for the hardware, not a user. The hardware also imposes
limitations for the process. This presents a variety of challenges to overcome.
Hardware can require thorough planning and iterating and deploying features
can take time. The case studies presented in this thesis highlight several issues
relating to adopting Agile and Lean ideologies and practises. Understandably,
case studies prevent from making objective conclusions about the whole
industry. They do however give interesting insight that will hopefully incite
discussions for future research. Hardware development is substantially more
rigid: stringent contexts, tricky problems and conservative customers slow
down progress. Processes are not as evolved as among web-development. A
fluent deployment pipeline is dependant on a stable process. Yet, there are
cases that are leading the way. Evidently, the problem can be solved.

If truth be told, iterative and incremental development in its essentials
is rather far from being agile or lean. It definitely is a step towards so,
but Agile and Lean ideologies are much more. In embedded systems, it
is hard to balance between fast software development and the stability of
production environments. Developing software for users, especially in the
realm of web development, is on the very leading edge of modern development.

57

Currently, organisations working on embedded systems are moving away
from strict plan-driven methodologies and adapting iterative and incremental
approaches. Those who have strict process requirements are able to do
iterative plan-driven development. The iterative nature can be seen within
the surrounding process. However, it seems that many concerns remain.
Many of these are closely related to those concerns that Agile and Lean
development are trying to solve. There is space for being more agile and
adaptive in the embedded sector. There is space for using new practises.
The greatest benefit for Agile development is to know quickly when you
are failing. Fail fast, fail often, fail early. Many of the contexts related to
embedded systems will become so complex that utilising Agile and Lean
development is inevitable.

Agile and Lean development is much more harder to utilise when devel-
oping embedded systems, particularly relating to some stringent contexts.
Requirements arrive from technical needs, not expectations set by users.
What is clear though, this does not require the use of plan-driven method-
ologies. There is no real reason why Agile and Lean practises could not
be utilised in these contexts — maybe apart from very stringent contexts
related to medical, nuclear and aerospace sectors. Iterative and incremen-
tal delivery of software in embedded systems is common, though it still is
governed by top-level plan-driven methodologies such as the Waterfall or
V-model. Subcontracting software development is based on a documented
process: written quotation, contract negotiation and accountability through
documented deliveries. Applying smaller iterations to subcontracting could
lead to a even more worse situation, only lengthening and making the process
more heavy [Hol15b]. Many fascinating approaches relating to experimenting
and building hardware are becoming more accessible: from electronic testing
platforms to 3D-printing and laser-cutting. These are applied in even the
most stringent contexts, such as experimenting with prototypes of aeroplane
cockpits [Air15].

Evidently, some embedded systems are more or less build for hardware,
not users. An identifiable user for a satellite, such as a meteorologist or
hiker using a GPS-device, can be hard to imagine and is at least very distant
from the actual system. These systems are very autonomous and designed
to be so. For user-focused software, such as web-applications, many user
requirements are at start very vague. Users cannot specifically explain
what they desire or need from a product or service. Uncertainty obviously
provides an outstanding environment for being Agile and Lean. Software
development for embedded systems is about making necessary compromises
between hardware and software development.

A collective effort is essential. It is likely that small, agile and adaptive
companies will lead the way, existing rigid larger companies will struggle.
It seems the current consensus is that Agile methodologies are mostly in
place for developing user-focused software. Though, personally I do not see

58

why hardware could not be developed with an Agile and Lean mindset in
the future. Web-applications are developed in collaboration with customers
and users — directly and indirectly. Human needs and expectations tend to
evolve continuously. Continuously delivering software makes sense, even if the
software is not complete. This enables many of the current experimentation
based approaches in delivering software to customers.

Embedded systems are becoming the centre of our lives. The future of
embedded systems will probably consist of even more autonomous machines,
ranging from anything from drones to automated transportation. More and
more value is brought by software. Hardware will start resemble software.
Hardware platforms will provide interfaces and interaction for data, while
computation will be handled in the cloud. This flexibility of software de-
velopment is vastly expanding to different contexts. From this perspective,
embedded systems presents an interesting area for future research. Many of
the issues highlighted by Agile and Lean development are still to be resolved.
Streamlining software delivery can be refined in embedded systems. The clear
question is what makes life easier and most of all, what makes development
easier.

7 Acknowledgements
I would like to express my gratitude to everyone who helped me to get
in contact with the embedded industry for the interviews. Most of all, I
would like to thank all the interviewees: Stefan Baggström, Harri Holopainen,
Niklas Holsti, Lauri Koivulehto, Maximilian Kriegleder, Tatjana Petkovic and
Marko Taipale [BT15, Hol15a, Hol15b, Koi15, Kri15, Pet15]. Additionally,
many thanks to Matti Luukkainen for supervising this thesis!

References
[Air15] Airbus: Focus on innovation: building your own cockpit,

2015. http://www.airbus.com/newsevents/news-events-
single/detail/focus-on-innovation-building-your-
own-cockpit/, (accessed 11 April 2015).

[Ard] Arduino. http://arduino.cc.

[BBvB+01a] Beck, Kent, Beedle, Mike, Bennekum, Arie van, Cockburn,
Alistair, Cunningham, Ward, Fowler, Martin, Grenning, James,
Highsmith, Jim, Hunt, Andrew, Jeffries, Ron, Kern, Jon, Mar-
ick, Brian, Martin, Robert C., Mellor, Steve, Schwaber, Ken,
Sutherland, Jeff, and Thomas, Dave: Manifesto for agile soft-
ware development, 2001. http://agilemanifesto.org, (ac-
cessed 13 January 2015).

59

http://www.airbus.com/newsevents/news-events-single/detail/focus-on-innovation-building-your-own-cockpit/
http://www.airbus.com/newsevents/news-events-single/detail/focus-on-innovation-building-your-own-cockpit/
http://www.airbus.com/newsevents/news-events-single/detail/focus-on-innovation-building-your-own-cockpit/
http://arduino.cc
http://agilemanifesto.org

[BBvB+01b] Beck, Kent, Beedle, Mike, Bennekum, Arie van, Cockburn,
Alistair, Cunningham, Ward, Fowler, Martin, Grenning, James,
Highsmith, Jim, Hunt, Andrew, Jeffries, Ron, Kern, Jon,
Marick, Brian, Martin, Robert C., Mellor, Steve, Schwaber,
Ken, Sutherland, Jeff, and Thomas, Dave: Principles be-
hind the Agile Manifesto, 2001. http://agilemanifesto.org/
principles.html, (accessed 10 February 2015).

[BE12] Bosch, Jan and Eklund, Ulrik: Eternal embedded software: To-
wards innovation experiment systems. In Margaria, Tiziana
and Steffen, Bernhard (editors): Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for
Mastering Change, volume 7609 of Lecture Notes in Com-
puter Science, page 19–31. Springer Berlin Heidelberg, 2012,
ISBN 9783642340253. http://dx.doi.org/10.1007/978-3-
642-34026-0_3.

[Bec00] Beck, Kent: Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000, ISBN 9780201616415.

[Boe88] Boehm, Barry W.: A spiral model of software develop-
ment and enhancement. Computer, 21(5):61–72, May 1988,
ISSN 00189162. http://dx.doi.org/10.1109/2.59.

[Boh13] Bohn, Dieter: How Facebook secretly redesigned
its iPhone app with your help. The Verge, 2013.
http://theverge.com/2013/9/18/4744904/how-facebook-
secretly-redesigned-its-iphone-app-with-your-help/,
(accessed 18 March 2015).

[Bos12] Bosch, Jan: Building products as innovation experiment systems.
In Cusumano, Michael A., Iyer, Bala, and Venkatraman, N.
(editors): Software Business, volume 114 of Lecture Notes in
Business Information Processing, page 27–39. Springer Berlin
Heidelberg, 2012, ISBN 9783642307454. http://dx.doi.org/
10.1007/978-3-642-30746-1_3.

[BR70] Buxton, John N. and Randell, Brian (editors): Software En-
gineering Techniques: Report of a Conference Sponsored by
the NATO Science Committee, Rome, Italy, 27–31 Oct. 1969,
Brussels, Scientific Affairs Division, NATO. 1970.

[BT15] Baggström, Stefan and Taipale, Marko. Personal correspon-
dence, 2015. GE Healthcare Finland Oy.

[Clo14] Clough, Richard: General Electric wants to act like a startup.
Bloomberg Business, 2014. http://bloomberg.com/bw/

60

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://dx.doi.org/10.1007/978-3-642-34026-0_3
http://dx.doi.org/10.1007/978-3-642-34026-0_3
http://dx.doi.org/10.1109/2.59
http://theverge.com/2013/9/18/4744904/how-facebook-secretly-redesigned-its-iphone-app-with-your-help/
http://theverge.com/2013/9/18/4744904/how-facebook-secretly-redesigned-its-iphone-app-with-your-help/
http://dx.doi.org/10.1007/978-3-642-30746-1_3
http://dx.doi.org/10.1007/978-3-642-30746-1_3
http://bloomberg.com/bw/articles/2014-08-07/ge-taps-lean-startup-ideas-for-faster-cheaper-product-rollout/
http://bloomberg.com/bw/articles/2014-08-07/ge-taps-lean-startup-ideas-for-faster-cheaper-product-rollout/

articles/2014-08-07/ge-taps-lean-startup-ideas-for-
faster-cheaper-product-rollout/, (accessed 10 April
2015).

[CWR10] Cawley, Oisín, Wang, Xiaofeng, and Richardson, Ita: Lean/agile
software development methodologies in regulated environments
– state of the art. In Abrahamsson, Pekka and Oza, Nilay
(editors): Lean Enterprise Software and Systems, volume 65
of Lecture Notes in Business Information Processing, page
31–36. Springer Berlin Heidelberg, 2010, ISBN 9783642164156.
http://dx.doi.org/10.1007/978-3-642-16416-3_4.

[D’A13] D’Andrea, Raffaello: The astounding athletic power
of quadcopters. TED, 2013. http://ted.com/talks/
raffaello_d_andrea_the_astounding_athletic_power_
of_quadcopters/, (accessed 1 April 2015).

[DD08] Dybå, Tore and Dingsør, Torgeir: Empirical studies of agile
software development: A systematic review. Information and
Software Technology, 50(9–10):833–859, 2008, ISSN 09505849.
http://dx.doi.org/10.1016/j.infsof.2008.01.006.

[DNBM12] Dingsøyr, Torgeir, Nerur, Sridhar, Balijepally, VenuGopal, and
Moe, Nils Brede: A decade of agile methodologies: Towards
explaining agile software development. Journal of Systems and
Software, 85(6):1213–1221, June 2012. http://dx.doi.org/
10.1016/j.jss.2012.02.033.

[EB12] Eklund, Ulrik and Bosch, Jan: Applying agile development
in mass-produced embedded systems. In Wohlin, Claes (ed-
itor): Agile Processes in Software Engineering and Ex-
treme Programming, volume 111 of Lecture Notes in Busi-
ness Information Processing, page 31–46. Springer Berlin
Heidelberg, 2012, ISBN 9783642303494. http://dx.doi.org/
10.1007/978-3-642-30350-0_3.

[EHOS14] Eklund, Ulrik, Holmström Olsson, Helena, and Strøm, Niels
Jørgen: Industrial challenges of scaling agile in mass-produced
embedded systems. In Dingsøyr, Torgeir, Moe, Nils Brede,
Tonelli, Roberto, Counsell, Steve, Gencel, Cigdem, and Pe-
tersen, Kai (editors): Agile Methods. Large-Scale Develop-
ment, Refactoring, Testing, and Estimation, volume 199 of
Lecture Notes in Business Information Processing, page 30–42.
Springer International Publishing, 2014, ISBN 9783319143576.
http://dx.doi.org/10.1007/978-3-319-14358-3_4.

61

http://bloomberg.com/bw/articles/2014-08-07/ge-taps-lean-startup-ideas-for-faster-cheaper-product-rollout/
http://bloomberg.com/bw/articles/2014-08-07/ge-taps-lean-startup-ideas-for-faster-cheaper-product-rollout/
http://bloomberg.com/bw/articles/2014-08-07/ge-taps-lean-startup-ideas-for-faster-cheaper-product-rollout/
http://dx.doi.org/10.1007/978-3-642-16416-3_4
http://ted.com/talks/raffaello_d_andrea_the_astounding_athletic_power_of_quadcopters/
http://ted.com/talks/raffaello_d_andrea_the_astounding_athletic_power_of_quadcopters/
http://ted.com/talks/raffaello_d_andrea_the_astounding_athletic_power_of_quadcopters/
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1007/978-3-642-30350-0_3
http://dx.doi.org/10.1007/978-3-642-30350-0_3
http://dx.doi.org/10.1007/978-3-319-14358-3_4

[FGMM14] Fagerholm, Fabian, Guinea, Alejandro Sanchez, Mäenpää,
Hanna, and Münch, Jürgen: Building blocks for continuous ex-
perimentation. In Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering, RCoSE 2014, page
26–35, New York, NY, USA, 2014. ACM, ISBN 9781450328562.
http://doi.acm.org/10.1145/2593812.2593816.

[Fow05] Fowler, Martin: The new methodology, 2005. http:
//martinfowler.com/articles/newMethodology.html, (ac-
cessed 13 January 2015).

[Fow06] Fowler, Martin: Continuous integration, 2006. http://
martinfowler.com/articles/continuousIntegration.html,
(accessed 13 January 2015).

[Fow08] Fowler, Martin: AgileVersusLean, 2008. http:
//martinfowler.com/bliki/AgileVersusLean.html, (ac-
cessed 4 March 2015).

[Fow10] Fowler, Martin: BlueGreenDeployment, 2010. http://
martinfowler.com/bliki/BlueGreenDeployment.html, (ac-
cessed 31 March 2015).

[Fow13a] Fowler, Martin: ContinuousDelivery, 2013. http:
//martinfowler.com/bliki/ContinuousDelivery.html,
(accessed 13 January 2015).

[Fow13b] Fowler, Martin: DeploymentPipeline, 2013. http:
//martinfowler.com/bliki/DeploymentPipeline.html,
(accessed 13 January 2015).

[GE13] GE: The biggest startup: Eric Ries and GE team
up to transform manufacturing. GE Reports, 2013.
http://www.gereports.com/post/82723688100/the-
biggest-startup-eric-ries-and-ge-team-up-to/, (ac-
cessed 10 April 2015).

[Git] GitHub. https://github.com.

[GZ14] Grant, Ari and Zhang, Kang: Airlock — Face-
book’s mobile A/B testing framework, 2014. https:
//code.facebook.com/posts/520580318041111/airlock-
facebook-s-mobile-a-b-testing-framework/, (accessed
18 March 2015).

[Her] Heroku. https://heroku.com.

62

http://doi.acm.org/10.1145/2593812.2593816
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/bliki/AgileVersusLean.html
http://martinfowler.com/bliki/AgileVersusLean.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/DeploymentPipeline.html
http://martinfowler.com/bliki/DeploymentPipeline.html
http://www.gereports.com/post/82723688100/the-biggest-startup-eric-ries-and-ge-team-up-to/
http://www.gereports.com/post/82723688100/the-biggest-startup-eric-ries-and-ge-team-up-to/
https://github.com
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://code.facebook.com/posts/520580318041111/airlock-facebook-s-mobile-a-b-testing-framework/
https://heroku.com

[HF11] Humble, Jez and Farley, David: Continuous Delivery: Reli-
able Software Releases through Build, Test, and Deployment
Automation. The Addison-Wesley Signature Series (Fowler).
Addison-Wesley, 2011, ISBN 9780321601919.

[HHLV13] Heinonen, Kenny, Hirvikoski, Kasper, Luukkainen, Matti, and
Vihavainen, Arto: Learning agile software engineering prac-
tices using coding dojo. In Proceedings of the 14th Annual
ACM SIGITE Conference on Information Technology Educa-
tion, SIGITE ’13, page 97–102, New York, NY, USA, 2013.
ACM, ISBN 9781450322393. http://doi.acm.org/10.1145/
2512276.2512306.

[HMP+10] Heidenberg, Jeanette, Matinlassi, Mari, Pikkarainen, Minna,
Hirkman, Piia, and Partanen, Jari: Systematic piloting of ag-
ile methods in the large: Two cases in embedded systems de-
velopment. In Ali Babar, M., Vierimaa, Matias, and Oivo,
Markku (editors): Product-Focused Software Process Improve-
ment, volume 6156 of Lecture Notes in Computer Science, page
47–61. Springer Berlin Heidelberg, 2010, ISBN 9783642137914.
http://dx.doi.org/10.1007/978-3-642-13792-1_6.

[HOAB12] Holmström Olsson, Helena, Alahyari, Hiva, and Bosch, Jan:
Climbing the “stairway to heaven” — a multiple-case study
exploring barriers in the transition from agile development
towards continuous deployment of software. In Software En-
gineering and Advanced Applications (SEAA), 2012 38th EU-
ROMICRO Conference on, page 392–399. IEEE, September
2012. http://dx.doi.org/10.1109/SEAA.2012.54.

[HOB14] Holmström Olsson, Helena and Bosch, Jan: Post-deployment
data collection in software-intensive embedded products. In
Bosch, Jan (editor): Continuous Software Engineering,
page 143–154. Springer International Publishing, 2014,
ISBN 9783319112824. http://dx.doi.org/10.1007/978-3-
319-11283-1_12.

[Hol15a] Holopainen, Harri. Personal correspondence, 2015. ZenRobotics
Ltd.

[Hol15b] Holsti, Niklas. Personal correspondence, 2015. Tidorum Ltd.

[IEE06] IEEE: IEEE standard for developing a software project life cycle
process. IEEE Std 1074-2006 (Revision of IEEE Std 1074-1997),
2006. http://dx.doi.org/10.1109/IEEESTD.2006.219190.

63

http://doi.acm.org/10.1145/2512276.2512306
http://doi.acm.org/10.1145/2512276.2512306
http://dx.doi.org/10.1007/978-3-642-13792-1_6
http://dx.doi.org/10.1109/SEAA.2012.54
http://dx.doi.org/10.1007/978-3-319-11283-1_12
http://dx.doi.org/10.1007/978-3-319-11283-1_12
http://dx.doi.org/10.1109/IEEESTD.2006.219190

[ISO05] ISO: Quality management systems — fundamentals and vocab-
ulary. 2005. http://iso.org/iso/home/store/catalogue_
ics/catalogue_detail_ics.htm?csnumber=42180.

[JLP12] Jonsson, Henrik, Larsson, Stig, and Punnekkat, Sasikumar: Ag-
ile practices in regulated railway software development. In Soft-
ware Reliability Engineering Workshops (ISSREW), 2012 IEEE
23rd International Symposium on, page 355–360. IEEE, Novem-
ber 2012. http://dx.doi.org/10.1109/ISSREW.2012.80.

[KDF+12] Kohavi, Ron, Deng, Alex, Frasca, Brian, Longbotham, Roger,
Walker, Toby, and Xu, Ya: Trustworthy online controlled ex-
periments: Five puzzling outcomes explained. In Proceedings of
the 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’12, page 786–794,
New York, NY, USA, 2012. ACM, ISBN 9781450314626. http:
//doi.acm.org/10.1145/2339530.2339653.

[KLSH09] Kohavi, Ron, Longbotham, Roger, Sommerfield, Dan, and
Henne, Randal M.: Controlled experiments on the web: sur-
vey and practical guide. Data Mining and Knowledge Discov-
ery, 18(1):140–181, 2009, ISSN 13845810. http://dx.doi.org/
10.1007/s10618-008-0114-1.

[Kni07] Kniberg, Henrik: Scrum and XP from the Trenches. InfoQ,
2007, ISBN 9781430322641.

[Koi15] Koivulehto, Lauri. Personal correspondence, 2015. Airbus
Defence and Space Oy.

[KR04] Kohavi, Ronny and Round, Matt: Front line internet analyt-
ics at Amazon.com, 2004. http://ai.stanford.edu/~ronnyk/
emetricsAmazon.pdf, (accessed 18 March 2015).

[Kri15] Kriegleder, Maximilian. Personal correspondence, 2015. ETH
Zürich, Institute for Dynamic Systems and Control.

[KRM+13] Kaisti, Matti, Rantala, Ville, Mujunen, Tapio, Hyrynsalmi,
Sami, Könnölä, Kaisa, Mäkilä, Tuomas, and Lehtonen, Teijo:
Agile methods for embedded systems development — a literature
review and a mapping study. EURASIP Journal on Embedded
Systems, 2013(1), 2013. http://dx.doi.org/10.1186/1687-
3963-2013-15.

[LB03] Larman, Craig and Basili, Victor R.: Iterative and incremen-
tal developments: a brief history. Computer, 36(6):47–56,
June 2003, ISSN 00189162. http://dx.doi.org/10.1109/
MC.2003.1204375.

64

http://iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=42180
http://iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=42180
http://dx.doi.org/10.1109/ISSREW.2012.80
http://doi.acm.org/10.1145/2339530.2339653
http://doi.acm.org/10.1145/2339530.2339653
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1007/s10618-008-0114-1
http://ai.stanford.edu/~ronnyk/emetricsAmazon.pdf
http://ai.stanford.edu/~ronnyk/emetricsAmazon.pdf
http://dx.doi.org/10.1186/1687-3963-2013-15
http://dx.doi.org/10.1186/1687-3963-2013-15
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/MC.2003.1204375

[LTR+14] Lehtonen, Teijo, Tuomivaara, Seppo, Rantala, Ville, Känsälä,
Marja, Mäkilä, Tuomas, Jokela, Tero, Könnölä, Kaisa, Kaisti,
Matti, Suomi, Samuli, Ylitolva, Marko, and Isomäki, Minna:
Sulautettujen järjestelmien ketterä käsikirja. University of
Turku, 2014, ISBN 9789512958382. http://embedded.utu.fi/
kasikirja/, (available in Finnish).

[LV09] Larman, Craig and Vodde, Bas: Scaling Lean & Agile Devel-
opment: Thinking and Organizational Tools for Large-Scale
Scrum. Addison-Wesley, 2009, ISBN 9780321480965.

[McK12] McKinley, Dan: Design for continuous experimentation,
2012. http://slideshare.net/danmckinley/design-for-
continuous-experimentation/, (accessed 18 March 2015).

[MNDT09] Mockus, Audris, Nagappan, Nachiappan, and Dinh-Trong,
Trung T.: Test coverage and post-verification defects: A mul-
tiple case study. In Empirical Software Engineering and Mea-
surement, 2009. ESEM 2009. 3rd International Symposium
on, page 291–301, October 2009. http://dx.doi.org/10.1109/
ESEM.2009.5315981.

[Mon12] Monden, Yasuhiro: Toyota Production System: An Inte-
grated Approach to Just-In-Time, 4th edn. CRC Press, 2012,
ISBN 9781439820971.

[New13] Newton, Casey: Building a better nest: Inside
Twitter’s continuous redesign. The Verge, 2013.
http://theverge.com/2013/12/23/5238802/building-
a-better-nest-inside-twitters-continuous-redesign/,
(accessed 18 March 2015).

[New15] Newman, Sam: Building Microservices. O’Reilly Media, 2015,
ISBN 9781491950333.

[Ngy15] Ngyuen, Christopher: UC Berkeley CalSol team runs on
Travis CI, 2015. http://blog.travis-ci.com/2015-03-19-
uc-berkeley-calsol-team-runs-on-travis-ci/, (accessed
21 March 2015).

[NR69] Naur, Peter and Randell, Brian (editors): Software Engineer-
ing: Report of a Conference Sponsored by the NATO Science
Committee, Garmisch, Germany, 7–11 Oct. 1968, Brussels,
Scientific Affairs Division, NATO. 1969.

[Ōno88] Ōno, Taiichi: Toyota Production System: Beyond Large-Scale
Production. Productivity Press, 1988, ISBN 9780915299140.

65

http://embedded.utu.fi/kasikirja/
http://embedded.utu.fi/kasikirja/
http://slideshare.net/danmckinley/design-for-continuous-experimentation/
http://slideshare.net/danmckinley/design-for-continuous-experimentation/
http://dx.doi.org/10.1109/ESEM.2009.5315981
http://dx.doi.org/10.1109/ESEM.2009.5315981
http://theverge.com/2013/12/23/5238802/building-a-better-nest-inside-twitters-continuous-redesign/
http://theverge.com/2013/12/23/5238802/building-a-better-nest-inside-twitters-continuous-redesign/
http://blog.travis-ci.com/2015-03-19-uc-berkeley-calsol-team-runs-on-travis-ci/
http://blog.travis-ci.com/2015-03-19-uc-berkeley-calsol-team-runs-on-travis-ci/

[O’R11] O’Reilly: Velocity 2011: Jon Jenkins, “velocity cul-
ture”. YouTube, 2011. https://youtube.com/watch?v=
dxk8b9rSKOo, (accessed 13 January 2015).

[Pet15] Petkovic, Tatjana. Personal correspondence, 2015. Space
Systems Finland Ltd.

[Pop02] Poppendieck, Mary: Principles of lean thinking, 2002.
http://leanessays.com/2002/11/principles-of-lean-
thinking.html, (accessed 4 March 2015).

[Pow14] Power, Brad: How GE applies Lean Startup practices. Har-
vard Business Review, 2014. https://hbr.org/2014/04/how-
ge-applies-lean-startup-practices/, (accessed 10 April
2015).

[PP03] Poppendieck, Mary and Poppendieck, Tom: Lean Software De-
velopment: An Agile Toolkit. The Agile Software Development
Series. Addison-Wesley, 2003, ISBN 9780321150783.

[RA03] Ronkainen, Jussi and Abrahamsson, Pekka: Software devel-
opment under stringent hardware constraints: Do agile meth-
ods have a chance? In Marchesi, Michele and Succi, Gian-
carlo (editors): Extreme Programming and Agile Processes
in Software Engineering, volume 2675 of Lecture Notes in
Computer Science, page 73–79. Springer Berlin Heidelberg,
2003, ISBN 9783540402152. http://dx.doi.org/10.1007/3-
540-44870-5_10.

[Rho14] Rhoades, Lacy:Mobile app feature configuration and A/B exper-
iments, 2014. http://slideshare.net/lacyrhoades/mobile-
feature-configuration-and-ab-experiments/, (accessed
18 March 2015).

[Rie11] Ries, Eric: The Lean Startup: How Today’s Entrepreneurs Use
Continuous Innovation to Create Radically Successful Busi-
nesses. Crown Business, 2011, ISBN 9780307887894.

[RK14] Riungu-Kalliosaari, Leah: Empirical study on the adoption, use
and effects of cloud-based testing. PhD thesis, Lappeenranta
University of Technology, Computer Science, 2014.

[RKDB+13] Raatikainen, Mikko, Komssi, Marko, Dal Bianco, Vittorio,
Kindstöm, Klas, and Järvinen, Janne: Industrial experiences
of organizing a hackathon to assess a device-centric cloud
ecosystem. In Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual, page 790–799. IEEE,
July 2013. http://dx.doi.org/10.1109/COMPSAC.2013.130.

66

https://youtube.com/watch?v=dxk8b9rSKOo
https://youtube.com/watch?v=dxk8b9rSKOo
http://leanessays.com/2002/11/principles-of-lean-thinking.html
http://leanessays.com/2002/11/principles-of-lean-thinking.html
https://hbr.org/2014/04/how-ge-applies-lean-startup-practices/
https://hbr.org/2014/04/how-ge-applies-lean-startup-practices/
http://dx.doi.org/10.1007/3-540-44870-5_10
http://dx.doi.org/10.1007/3-540-44870-5_10
http://slideshare.net/lacyrhoades/mobile-feature-configuration-and-ab-experiments/
http://slideshare.net/lacyrhoades/mobile-feature-configuration-and-ab-experiments/
http://dx.doi.org/10.1109/COMPSAC.2013.130

[RM13] Rein, Alexander Derek and Münch, Jürgen: Feature prioritiza-
tion based on mock-purchase: A mobile case study. In Fitzgerald,
Brian, Conboy, Kieran, Power, Ken, Valerdi, Ricardo, Mor-
gan, Lorraine, and Stol, Klaas Jan (editors): Lean Enterprise
Software and Systems, volume 167 of Lecture Notes in Busi-
ness Information Processing, page 165–179. Springer Berlin
Heidelberg, 2013, ISBN 9783642449291. http://dx.doi.org/
10.1007/978-3-642-44930-7_11.

[ROS] Robot Operating System. http://ros.org.

[Roy70] Royce, Winston W.: Managing the development of large soft-
ware systems. In Proceedings of IEEE WESCON, 1970.

[Rub14] RubyKaigi: Continuous delivery at GitHub - RubyKaigi
2014. YouTube, 2014. https://youtube.com/watch?v=
Rhvri5cozTc, (accessed 13 January 2015).

[Sat14] Sato, Danilo: CanaryRelease. Martin Fowler, 2014. http://
martinfowler.com/bliki/CanaryRelease.html, (accessed 31
March 2015).

[Sca] Scaled Agile Framework. http://scaledagileframework.com.

[Sch13] Schmaus, Ben: Deploying the Netflix API. The Netflix
Tech Blog, 2013. http://techblog.netflix.com/2013/08/
deploying-netflix-api.html, (accessed 31 March 2015).

[SIT] SITA. http://sita.fi.

[Sny13] Snyder, Ross: Continuous deployment at Etsy: A tale
of two approaches, 2013. http://slideshare.net/
beamrider9/continuous-deployment-at-etsy-a-tale-
of-two-approaches/, (accessed 13 January 2015).

[SS10] Sfetsos, Panagiotis and Stamelos, Ioannis: Empirical studies
on quality in agile practices: A systematic literature review.
In Quality of Information and Communications Technology
(QUATIC), 2010 Seventh International Conference on the,
page 44–53, September 2010. http://dx.doi.org/10.1109/
QUATIC.2010.17.

[TFR02] Turk, Dan, France, Robert, and Rumpe, Bernhard: Limitations
of agile software processes. Third International Conference
on Extreme Programming and Flexible Processes in Software
Engineering, page 43–46, May 2002. http://arxiv.org/abs/
1409.6600.

67

http://dx.doi.org/10.1007/978-3-642-44930-7_11
http://dx.doi.org/10.1007/978-3-642-44930-7_11
http://ros.org
https://youtube.com/watch?v=Rhvri5cozTc
https://youtube.com/watch?v=Rhvri5cozTc
http://martinfowler.com/bliki/CanaryRelease.html
http://martinfowler.com/bliki/CanaryRelease.html
http://scaledagileframework.com
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://techblog.netflix.com/2013/08/deploying-netflix-api.html
http://sita.fi
http://slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches/
http://slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches/
http://slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches/
http://dx.doi.org/10.1109/QUATIC.2010.17
http://dx.doi.org/10.1109/QUATIC.2010.17
http://arxiv.org/abs/1409.6600
http://arxiv.org/abs/1409.6600

[Tra] Travis CI. https://travis-ci.org.

[VB09] VanderLeest, Steven H. and Buter, Andrew: Escape the
waterfall: Agile for aerospace. In Digital Avionics Sys-
tems Conference, 2009. DASC ’09. IEEE/AIAA 28th, pages
6.D.3–1–6.D.3–16. IEEE, October 2009. http://dx.doi.org/
10.1109/DASC.2009.5347438.

[Vol15] Voltera: Voltera: Your circuit board prototyping ma-
chine, 2015. https://kickstarter.com/projects/voltera/
voltera-your-circuit-board-prototyping-machine/, (ac-
cessed 6 March 2015).

[Wan14] Wang, Lynn: Etsy’s culture of continuous experimenta-
tion and A/B testing spurs mobile innovation. Appti-
mize, 2014. http://apptimize.com/blog/2014/01/etsy-
continuous-innovation-ab-testing/, (accessed 18 March
2015).

[Whi11] Whittaker, James: How Google tests software —
part four. Google Testing Blog, 2011. http:
//googletesting.blogspot.fi/2011/03/how-google-
tests-software-part-four.html, (accessed 31 March
2015).

[Whi14] Whitlock, Andy. Twitter, 2014. https://twitter.com/
andywhitlock/status/524545897737494528/, (accessed 22
February 2015).

[ZCB10] Zhang, Qi, Cheng, Lu, and Boutaba, Raouf: Cloud computing:
state-of-the-art and research challenges. Journal of Internet
Services and Applications, 1(1):7–18, 2010, ISSN 18674828.
http://dx.doi.org/10.1007/s13174-010-0007-6.

68

https://travis-ci.org
http://dx.doi.org/10.1109/DASC.2009.5347438
http://dx.doi.org/10.1109/DASC.2009.5347438
https://kickstarter.com/projects/voltera/voltera-your-circuit-board-prototyping-machine/
https://kickstarter.com/projects/voltera/voltera-your-circuit-board-prototyping-machine/
http://apptimize.com/blog/2014/01/etsy-continuous-innovation-ab-testing/
http://apptimize.com/blog/2014/01/etsy-continuous-innovation-ab-testing/
http://googletesting.blogspot.fi/2011/03/how-google-tests-software-part-four.html
http://googletesting.blogspot.fi/2011/03/how-google-tests-software-part-four.html
http://googletesting.blogspot.fi/2011/03/how-google-tests-software-part-four.html
https://twitter.com/andywhitlock/status/524545897737494528/
https://twitter.com/andywhitlock/status/524545897737494528/
http://dx.doi.org/10.1007/s13174-010-0007-6

	Introduction
	Software Delivery
	Adapting to Change
	Being Agile
	Ensuring Quality
	Processes and Practises
	From Agile to Lean
	Focusing on the Essential

	Deployment Pipeline
	From Development to Production
	Continuous Integration
	Continuous Deployment
	Continuous Experimentation
	Using Web as a Platform

	Towards Embedded Systems
	Embracing Agile Development
	Integrating Hardware and Software Development
	Historical Perspective
	Using Hardware as a Platform
	Adapting for Deployment Pipeline

	Views from Embedded Settings
	About Processes
	A Stringent Context
	Variables Hard to Understand
	Comparing to Agile and Lean
	Pursuing New Ideologies
	Adapting to Change
	Experimenting
	Building Hardware for Software
	Overview of the Presented Cases

	Conclusions
	Acknowledgements
	References

