
The PATS Problem: Search Methods and Reliability

Tuomo Lempiäinen

Minor subject thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, 21st May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33736543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Tuomo Lempiäinen

The PATS Problem: Search Methods and Reliability

Computer Science

Minor subject thesis 21st May 2015 27

DNA self-assembly, tile assembly model, pattern assembly, tile set synthesis

Kumpula Campus Library and the digital repository HELDA

This work studies an NP-hard combinatorial optimisation problem, the Pattern self-Assembly
Tile set Synthesis (PATS) problem, which stems from the field of DNA self-assembly. In
this problem, we are given a coloured rectangular pattern as input, and the task is to find a
minimal set of unit square tiles that self-assemble that pattern in the abstract Tile Assembly
Model (aTAM).

We present two new search methods for the PATS problem: a heuristic algorithm that
conducts a search in the lattice of partitions of the input grid, and a declarative approach
that uses the Answer Set Programming (ASP) paradigm. The former is based on a previous
algorithm by Göös and Orponen (DNA 2010), and performs better in finding relatively small
solutions even for quite large input patterns. The latter proves to find the optimal solution
quickly in cases where it is small.

In addition to the search procedures, we develop a method for estimating the reliability
of solutions to the PATS problem from a stochastic point of view. It turns out that tile sets
found by our procedures, as well as small tile sets in general, have a higher probability of
error-free assembly compared to those that can be found by previous methods.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Preliminaries 3
2.1 The Abstract Tile Assembly Model 3
2.2 The PATS Problem . 4
2.3 Computational Complexity and Problem Variants 6

3 The Search Space of Partitions 7
3.1 Most General Tile Assignments 8
3.2 A Partition-Search Algorithm 9

4 A Heuristic Partition-Search Algorithm 11
4.1 Results . 13

5 Answer Set Programming 14
5.1 An ASP model for PATS . 14
5.2 Results . 17

6 The Reliability of Tile Systems 19
6.1 The Kinetic Tile Assembly Model 19
6.2 Computing the Reliability of a Tile System 20
6.3 Results . 23

7 Conclusions 23

ii

1 Introduction
The idea of manipulating matter and performing computation at the molecu-
lar scale was first proposed by Richard Feynman in his visionary 1959 talk
There’s Plenty of Room at the Bottom. Nanotechnology as a field emerged
in the 1980s, and has extensively advanced ever since. Due to its ability
to store information, DNA is often the material of choice for producing
molecular-scale structures and devices. The physical properties of DNA, as
well as methods to synthesise it, are already well understood [5].

Since the traditional top-down approach to control material is often simply
not possible at molecular scales, self-assembly—the process of individual
components assembling themselves into complex structures based on local
interactions—has emerged as a viable alternative. Self-assembly also has the
advantage of enabling massive parallelism: millions of copies of a structure
could be formed simultaneously in a single test tube.

DNA self-assembly can be viewed from two different angles: on one hand,
as a method to build nanoscale structures, and on the other hand, as a model
of computation. In the former, the goal is to design DNA sequences that
automatically assemble into the desired structure—to be used, for example,
as a scaffold for other particles. In the latter, the goal is to encode the input
of a computational problem into DNA strands such that interactions between
the strands eventually produce an encoding of the desired output.

Seeman [25] did pioneering work with DNA nanotechnology in the 1980s,
while the field of algorithmic self-assembly was initiated by the seminal
experiment of Adleman [1] in 1994. Since the concept of autonomous self-
assembly is intrinsically related to computation, the desire to build ever more
complex structures in a systematic manner has brought these two approaches
together in recent years.

A prominent direction of research is the attempt to build two-dimensional
DNA templates, to which functional units can be attached. One way to
implement such a template is to self-assemble it from square units called tiles.
A tile is a DNA complex that has a short single-stranded sticky end on each
of its four edges. Several methods to build such tiles out of DNA are known,
the most important being double-crossover tiles [32] and DNA origami [22].
Sticky ends with Watson-Crick complementary sequences can hybridise and
hence bind tiles to each other. This forms the physical background for the
work in this thesis. Our considerations take place within the abstract Tile
Assembly Model (aTAM) of Winfree [29–31], which provides a simplified
combinatorial model for the behaviour of DNA tiles.

To enable the formation of aperiodic structures, such as electronic circuits,
where different components will be attached to different tiles in the template,
the template needs to be addressable. Each position of the desired lattice
can be assigned a colour based on the component that will be attached
to that position. Also tile types, that is, combinations of four sticky ends,

1

can be coloured based on the component attached to tiles of that type. To
self-assemble the target structure, one then needs to find a set of coloured
tile types that will implement the desired colour pattern.

A straightforward way to construct such a set of tile types is to use a
unique tile type for each position of the pattern. However, it is often possible
to find a significantly smaller tile set, where some tile types are used in
several positions of the pattern—essentially, they are doing computation to
assemble the structure. This reduces the amount of laboratory work required
for chemical implementation of the tile system, since the cardinality of the
tile set is proportional to the number of distinct DNA strands that need to
be synthesised. Ma and Lombardi [19] formulated this as a combinatorial
optimisation problem called the Pattern self-Assembly Tile set Synthesis
(PATS) problem and proposed two greedy algorithms for finding solutions.

Göös and Orponen [10] continued the work of Ma and Lombardi by devel-
oping an exhaustive PS-BB (partition search branch-and-bound) algorithm
for finding minimum-size tile sets. However, their algorithm is feasible only
for small patterns—at most roughly 7× 7 tiles. This is to be expected, since
the PATS problem was subsequently proved to be NP-hard [4].

In this thesis, we continue the quest for small tile sets by presenting two
new search methods. First, we adapt the so-called partition-search framework
of Göös and Orponen to construct a heuristic PS-H (partition-search with
heuristics) algorithm that can often find rather small, but not necessarily
minimal, tile sets for large pattern sizes. We also note that the performance
of the heuristic algorithm can be improved significantly by running several
independent short runs with different random seeds. Second, we formulate
the PATS problem as an Answer Set Programming (ASP) [17] task, and
make use of a generic ASP solver to find solutions to it. We investigate the
performance of both methods experimentally and show that they outperform
the baseline. Our methods are complementary to each other in the sense
that the ASP approach suits well for large input patterns that have a very
small solution, while the heuristic algorithm as able to find reasonably small
tile sets also in more general situations.

Since the physical self-assembly process is inherently stochastic, it is of
interest to asses the reliability of tile sets, that is, the probability that they
assemble the desired target pattern without errors. As our third contribution,
we develop a method for estimating this quantity, based on Winfree’s analysis
of a kinetic version of the tile assembly model [31]. We present data on the
reliability of tile sets found by the PS-BB and PS-H algorithms, and obtain
that our PS-H approach constitutes an improvement over PS-BB also in this
respect.

2

Acknowledgements

This thesis is largely based on a conference report [16] by myself and co-
authors. The work has also appeared in a subsequent journal article [9]. The
experimental performance results reported in this work were obtained on
the Triton computing cluster provided by the Science-IT project of Aalto
University.

I would like to thank Pekka Orponen and Eugen Czeizler for guidance and
fruitful collaboration, Jukka Suomela for allowing me to spend a portion of my
working hours on the aforementioned publications while being employed at
another project, and finally, Jyrki Kivinen and Matti Järvisalo for examining
this thesis as well as their patience with the rather slow writing process.

2 Preliminaries
In this section, we first review the abstract Tile Assembly Model (aTAM)
introduced by Winfree [29–31], and then define the PATS problem introduced
by Ma and Lombardi [19]. Our presentation of the aTAM is largely inspired
by that of Rothemund and Winfree [23].

2.1 The Abstract Tile Assembly Model

The aTAM is an extension of the theory of Wang tiles [11, 28], designed
specifically for modelling the self-assembly of molecules, such as DNA. The
basic building blocks of the aTAM are unit square tiles, with different glues
on their edges. Each glue represents a molecular binding domain that can
bind the tile to another tile having a compatible glue on its abutting edge.
There is a finite number of different tile types (sequences of four glues), each
available in an unlimited number of copies. The tiles grow an assembly on a
two-dimensional grid by addition of a single tile at a time, starting from a
given seed assembly.

More formally, we work on the two-dimensional grid of integer positions,
Z× Z. We use the four cardinal directions D = {N,E, S,W} (north, east,
south and west) as functions from the grid to itself: N(x, y) = (x, y + 1),
E(x, y) = (x + 1, y), S(x, y) = (x, y − 1) and W (x, y) = (x − 1, y). Note
that N = S−1 and E = W−1. Let Σ be a finite set of glue types. A tile
type t over Σ is a quadruple t = (σN (t), σE(t), σS(t), σW (t)) ∈ Σ4 of glue
types for each of the four sides. A tile set T ⊆ Σ4 is a finite collection of
different tile types. A glue strength function is a function s : Σ×Σ→ N such
that s(σ, σ′) = s(σ′, σ) for all σ, σ′ ∈ Σ, that is, it associates a non-negative
integer strength to each pair of glue types. In this work we consider only
glue strength functions s such that s(σ, σ′) > 0 only if σ = σ′. For each
σ ∈ Σ, we call s(σ, σ) the strength of the glue type σ.

3

A tile assembly A is a partial function A : Z× Z→ Σ4 that describes a
collection of tiles positioned on certain locations of the grid. The domain
of A, denoted by dom(A), is the set of locations (x, y) to which a tile
has been assigned in A. A tile assembly system (TAS) T is a quadruple
T = (T,S, s, τ) consisting of a tile set T , a tile assembly S (the seed
assembly), a glue strength function s and a temperature parameter τ ∈ N.
Given an existing tile assembly, such as the seed assembly S, a tile of
type t ∈ T can adjoin the assembly if the total binding strength between
the tile and the assembly, given by the function s, is at least as large as
the temperature threshold τ . Tiles cannot be rotated, that is, when a tile
of type t adjoins the assembly, its glue σD(t) is matched against a glue
in direction D for each D ∈ D. Note that the types of tiles in the seed
assembly S do not need to be in T , but that an assembly can be further
extended only by tiles of a type from T .

Formally, given a TAS T , we define self-assembly as a relation →T

between tile assemblies. We say that assembly A produces directly assembly
A′, in symbols A →T A′, if there exists a location (x, y) ∈ Z× Z r dom(A)
and a tile type t ∈ T such that dom(A′) = dom(A) ∪ {(x, y)}, A′(x, y) = t,
A′(x′, y′) = A(x′, y′) for all (x′, y′) ∈ dom(A) and∑

D∈D
D(x,y)∈dom(A)

s(σD(t), σD−1(A(D(x, y)))) ≥ τ.

Let →∗T be the reflexive transitive closure of →T . The TAS T produces
an assembly A if S →∗T A, that is, if A is an extension of the seed assembly S.
Let Prod(T) = {A | S →∗T A} be the set of all assemblies produced by T .
A terminal assembly is an assembly A ∈ Prod(T) such that there does
not exist any assembly A′ satisfying A →T A′. We denote the set of all
terminal assemblies by Term(T). The TAS T is deterministic if for each
assembly A ∈ Prod(T) and each location (x, y) ∈ Z×Z there exists at most
one tile type t ∈ T that can adjoin A at (x, y).

2.2 The PATS Problem

Given natural numbers m,n ∈ N, we denote by [m] and [m,n] the sets
{1, 2, . . . ,m} and {m,m+ 1, . . . , n}, respectively. A surjective function
c : [m]× [n]→ [k] defines a k-coloured pattern of size m×n. Given a TAS T
with tile set T , a tile colouring is a function d : T → [k] that associates each
tile type with one of the k colours.

In the PATS problem, we are given a finite pattern, and our task is to
find a TAS T admitting a tile colouring such that each terminal assembly
of T implements the desired pattern. It is of course trivial to construct a
TAS with a distinct tile for each location of the pattern. However, we aim
to minimise |T |, the number of distinct tiles needed. In this context, we

4

(a)

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
1

(b)

0

0

0

0

0 1
1

0
1

0 1
1

0
1

0
0

1
1

1 1
1

1
0

1
1

1
0

1
1

1
0

0 0 0 0 0 0 0

(c)

0 1
1

0
1

1
1

1
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 1
1

0
1

0
0

1
1

1
1

0
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0 1
1

0
1

1
1

1
0

1
1

1
0

1
1

1
0

0
0

1
1

0
0

0
0

0
0

0
0

0 1
1

0
1

0
0

1
1

0
0

0
0

0
0

0
0

1
1

0
1

0
0

1
1

0
0

0
0

0 1
1

0
1

1
1

1
0

0
0

1
1

0
0

0
0

1
1

0
1

1
1

1
0

0
0

1
1

0 1
1

0
1

0
0

1
1

1
1

0
1

0
0

1
1

1
1

0
1

0
0

1
1

1
1

0
1

1 1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

0 0 0 0 0 0 0

(d)

Figure 1: (a) A 7× 7 instance of the PATS problem (the Sierpinski triangle
pattern). (b) A set of four tiles that self-assembles the pattern in (a). (c) An
L-shaped seed and unfinished assembly process. (d) The finished assembly.

assume the seed assembly is L-shaped, that is, it consists of the west and
south borders. See Figure 1 for an illustration. Formally, we define the PATS
problem as a decision problem as follows.

Definition 1 (The PATS Problem).
Given: A k-coloured pattern c : [m]× [n]→ [k] and an integer K.
Find: A TAS T = (T,S, s, 2) that satisfies the following conditions.

P1. All tile types in T have only glue types of strength 1.
P2. The domain of S is [0,m] × {0} ∪ {0} × [0, n] and all the

terminal assemblies have domain [0,m]× [0, n].
P3. There exists a tile colouring d : T → [k] such that each ter-

minal assembly A ∈ Term(T) satisfies d(A(x, y)) = c(x, y)
for all (x, y) ∈ [m]× [n].

P4. The size of T is at most K.

By using an L-shaped seed assembly, we make a clear distinction between
the complexity of assembling the boundaries and the complexity of the

5

pattern itself. It is possible to self-assemble the boundaries using m+ n+ 1
tiles of distinct types having glues of strength 2 on their abutting edges.
However, our approach also allows using other techniques, such as DNA
origami [22], for constructing the borders. One experiment utilising such
design for DNA tile assembly is due to Fujibayashi et al. [6].

Due to the L-shaped seed assembly and constraint P1, a tile can adjoin an
assembly at location (x, y) only if the assembly already has tiles at locations
W (x, y) and S(x, y). From this we get the following characterisation for the
determinism of solutions to the PATS problem [10].

Lemma 2. A TAS T = (T,S, s, 2) that satisfies conditions P1 and P2, and
where each tile type appears in at least one terminal assembly, is deterministic
if and only if for all pairs of glue types (σ1, σ2) ∈ Σ× Σ there exists at most
one tile type t ∈ T such that σW (t) = σ1 and σS(t) = σ2.

Using the above lemma, it is easy to prove the following result [10], which
simplifies the search for optimal solutions to the PATS problem.

Lemma 3. All optimal solutions to the PATS problem are deterministic.

Proof. Let T = (T,S, s, 2) be an optimal solution to the PATS problem.
Assume that T is not deterministic. By Lemma 2 there exist tile types
t1, t2 ∈ T, t1 6= t2, such that σW (t1) = σW (t2) and σS(t1) = σS(t2). Consider
now a TAS T ′ = (T r {t1},S, s, 2) and a terminal assembly A ∈ Term(T ′).
Since t1 can adjoin assembly A at location (x, y) if and only if t2 can adjoin A
at (x, y), we have A ∈ Term(T) and hence Term(T ′) ⊆ Term(T). Thus also
T ′ satisfies conditions P1–P3. Now T is not optimal, a contradiction.

Observe that for each TAS T = (T,S, s, 2), the pair (Prod(T),→∗T) is
a partially ordered set. If T is deterministic and satisfies conditions P1 and
P2, it is straightforward to see that (Prod(T),→∗T) is a lattice, and there is
only one maximal element in Prod(T), that is, Term(T) = {P} for some
assembly P ∈ Prod(T). In that case we say that T uniquely produces P.

2.3 Computational Complexity and Problem Variants

The PATS problem was originally claimed to be NP-complete by Ma and
Lombardi [18, 19]. To the best of our knowledge, the first adequate proof
was provided by Czeizler and Popa [3, 4].

Seki [26] defined a more restricted problem, k-PATS, where the input
pattern consists of at most k colours for some constant k. He proved a
stronger result, stating that the k-PATS problem is NP-complete for k = 60.
Subsequently, Kari, Kopecki and Seki [15] defined a new problem variant,
multiple bound PATS, where an upper bound for the number of tile types
of each colour is given. They showed that this problem is NP-complete

6

for 3-colour patterns. They also presented a proof more concise than the
previous ones for the NP-completeness of the original PATS problem.

It was conjectured that 2-PATS is NP-complete, but it took some time
to reach that goal. The first improvement from 60-PATS was the proof of
Johnsen, Kao and Seki [12] showing that 29-PATS is NP-complete. In a
recent breakthrough, Kari et al. [14] finally obtained that 2-PATS is NP-
complete. A crucial part of their result relies on a computer-assisted proof,
which requires approximately one year of computation time. Subsequently, a
manually-checkable proof for 11-PATS was discovered [13].

3 The Search Space of Partitions
In this section, we present the partition-search framework that was introduced
by Göös and Orponen [10] as a basis for their branch-and-bound algorithm
and that also serves as a basis for our heuristic algorithm.

Let X be the set of all partitions of the set [m] × [n]. We say that
partition P ∈ X is coarser than partition P ′ ∈ X or that P ′ is a refinement
of P , and write P v P ′, if for all partition classes p′ ∈ P ′ there is a partition
class p ∈ P such that p′ ⊆ p.

We associate a partition P (c) of the set [m]× [n] with each k-colouring
c : [m]× [n]→ [k] by defining

P (c) =
{
c−1(i)

∣∣∣ i ∈ [k]
}
.

Here c−1(i) = {(m,n) | c(m,n) = i} is the preimage of i for each i ∈ [k]. We
also associate a partition P (T) of the set [m]× [n] with every deterministic
TAS T = (T,S, s, 2) that satisfies conditions P1 and P2. We set

P (T) =
{
P−1(t) ∩ [m]× [n]

∣∣∣ t ∈ P([m]× [n])
}
,

where P is the assembly uniquely produced by T . If all tile types t ∈ T
appear in the terminal assembly P, we have |P (T)| = |T |. Now we can
restate condition P3 in the definition of the PATS problem in terms of
partitions. TAS T satisfies P3 if and only if

P (c) v P(T).

We say that a partition P is constructible if P = P (T) for some deterministic
TAS T that satisfies P1 and P2.

To sum up, we can rephrase the PATS problem as a problem of finding a
certain kind of partition as follows.

Lemma 4. An optimal solution T to the PATS problem given by colouring
c : [m]×[n]→ k corresponds to a partition P ∈ X such that P is constructible,
P (c) v P and |P | is minimal.

7

3.1 Most General Tile Assignments

Next we will describe a polynomial-time algorithm for deciding the construct-
ibility of a given partition in X. For this we need the following concept.

Definition 5. Let P be a partition of [m]× [n]. A most general tile assign-
ment (MGTA) is a function f : P → Σ4 such that the following conditions
hold.

A1. If x, y ∈ [m] × [n], D(x) = y for some D ∈ D and x ∈ px ∈ P ,
y ∈ py ∈ P , then σD(f(px)) = σD−1(f(py)).

A2. For all functions g : P → Σ4 that satisfy condition A1 we have

σD1(f(p1)) = σD2(f(p2)) =⇒ σD1(g(p1)) = σD2(g(p2))

for all (p1, D1), (p2, D2) ∈ P ×D.

Informally, condition A1 states that any two adjacent positions agree on the
glue on their abutting edges, and condition A2 states that there are no other
assignments that express more variation in glues while still satisfying A1.

Given a partition P ∈ X and an assignment f : P → Σ4, we can merge
glues a ∈ Σ4 and b ∈ Σ4 to obtain from f a new assignment g : P → Σ4 that
is defined as follows:

σD(g(p)) =
{
a, if σD(f(p)) = b,

σD(f(p)), otherwise

for all (p,D) ∈ P ×D.
We can generate a MGTA for a given partition P ∈ X as follows. Let

x1, x2, . . . , xmn be some enumeration of all the positions in [m] × [n]. Let
f0 : P → Σ4 be a function that assigns a unique glue type to each tile type
edge, that is, the mapping (p,D) 7→ σD(f(p)) injective. Assuming that fi−1
is defined for some i ∈ [mn], let pi be the class of P for which xi ∈ pi. If
N(xi) ∈ [m]× [n], let pN

i be the class of P for which N(xi) ∈ pN
i and merge

the glues σN (fi−1(pi)) and σS(fi−1(pN
i)) to obtain assignment f ′i from fi−1.

Otherwise, set f ′i = fi−1. Similarly, if E(xi) ∈ [m]× [n], let pE
i be the class

of P for which E(xi) ∈ pE
i and merge the glues σE(f ′i(pi)) and σW (f ′i(pE

i))
to obtain assignment fi from f ′i . This iterative definition gives us a sequence
of assignments f0, f1, . . . , fmn.

Lemma 6. The assignment fmn : P → Σ4 generated by the above algorithm
is a MGTA.

Proof. The glues on each pair of abutting edges are merged in some step of
the process generating fmn. Thus fmn satisfies condition A1. On the other
hand, glues are only merged if they appear on abutting edges. This implies
that if fmn assigns the same glues to two edges, then any assignment g
satisfying A1 also does, and hence fmn satisfies also condition A2.

8

Lemma 7. For each partition P of [m]× [n], MGTAs f : P → Σ4 are unique
up to permuting the glues.

Proof. Given an MGTA f : P → Σ4, we associate with it a partition Pf on
P ×D such that (p1, D1) and (p2, D2) are in the same equivalence class of
Pf if and only if σD1(f(p1)) = σD2(f(p2)). Consider two MGTAs f, g : P →
Σ4. Definition 5 implies that for all (p1, D1), (p2, D2) ∈ P × D we have
σD1(f(p1)) = σD2(f(p2)) if and only if σD1(g(p1)) = σD2(g(p2)). It follows
that we have Pf = Pg. Now there is a permutation h : Σ → Σ such that
h(σD(f(p))) = σD(g(p)) for all (p,D) ∈ P ×D.

Due to the above lemma, we can choose for each P ∈ X some canonical
representative from the class of all MGTAs f : P → Σ4. We call it the MGTA
for P.

Lemma 8. A partition P ∈ X is constructible if and only if the MGTA
f : P → Σ4 for P is injective and the set f(P) of tiles is deterministic.

Proof. Assume that P ∈ X is constructible. Let T be a deterministic TAS
satisfying conditions P1 and P2 such that P = P (T). Let g : P → Σ4 be the
tile assignment induced by the uniquely produced assembly of T . Clearly g
satisfies condition A1. Now, if f is not injective, condition A2 implies that g
is not injective, which is a contradiction by the definition of g. If the tile set
f(P) is not deterministic, condition A2 implies that T is not deterministic,
a contradiction.

For the other direction, assume that MGTA f : P → Σ4 is injective
and f(P) is deterministic. Define s : Σ × Σ → N such that s(σ, σ′) = 1 if
σ = σ′ and s(σ, σ′) = 0 otherwise. As f(P) is deterministic, it is possible
to define a seed assembly S : ([0,m]× {0}) ∪ ({0} × [0, n])→ Σ4 such that
tiles in f(P) can adjoin S only in accordance with f . Consider now the TAS
T = (f(P),S, s, 2). By definition, T is deterministic and satisfies P1 and
P2. It is easy to see that T uniquely produces a terminal assembly P that
agrees with f , and consequently, P (T) v P . Since f is injective, we have
|P | = |f(P)| = |P (T)|, which implies P (T) = P .

3.2 A Partition-Search Algorithm

Now we are ready to describe how the search for tile sets is carried out. The
basic idea, originating from Ma and Lombardi [19] and the experimental
work of Park et al. [21], is as follows. First, form an initial tile set of size
mn, such that there is a different tile type for each position in [m] × [n].
Then, merge tiles types in some order to reduce the number of different tiles
used. Using the auxiliary concepts and results above, we can formalise this
approach as an exhaustive search in the set of all partitions of [m] × [n].
Assume that we are given a fixed k-coloured pattern c : [m]× [n]→ [k].

9

The search starts from the initial partition I = {{x} | x ∈ [m]× [n]} that
is clearly always constructible. In the beginning, we construct an MGTA for
I, and then update it incrementally for every visited partition. We will define
the set C(P) ⊆ X of children of P for every partition P ∈ X. The children
are formed by merging classes of the partition that is currently being visited,
and hence P ′ ∈ C(P) implies P ′ v P . When visiting a partition P ∈ X, the
algorithms determines if it is constructible, and proceeds as follows:

C1. P is constructible:

1. If P (c) 6v P , we drop this branch of the search, since for all
descendants P ′ v P we have P (c) 6v P ′, and hence P ′ does
not give us a solution.

2. If P (c) v P , we can use the MGTA f for P to obtain a
feasible solution T = (f(P),S, s, 2) for the PATS problems
instance c. Then, we consider partitions P [p1, p2] where the
classes p1, p2 ∈ P are merged. If p1 and p2 are of different
colour, we have P (c) 6v P [p1, p2], and thus it is enough to visit
the following children of P :

C(P) = {P [p1, p2] | p1, p2∈P, p1 6=p2,∃k∈P (c) : p1, p2⊆k} .

C2. P is not constructible: We can find classes p1, p2 ∈ P , p1 6= p2 such
that σS(f(p1)) = σS(f(p2)) and σW (f(p1)) = σW (f(p2)). Now we
merge p1 and p2, that is, C(P) = {P [p1, p2]}.

It is not immediately clear that we do not lose any constructible partitions
in the case C2. The following lemma shows that this does not happen.

Lemma 9. Let P ∈ X be a non-constructible partition, f the MGTA for
P and p1, p2 ∈ P , p1 6= p2 classes such that σS(f(p1)) = σS(f(p2)) and
σW (f(p1)) = σW (f(p2)). Then all constructible partitions P ′ v P satisfy
P ′ v P [p1, p2].

Proof. Let g : P ′ → Σ4 be the MGTA for P ′. Since P ′ v P , we can define a
tile assignment g′ : P → Σ4 such that for each p ∈ P we have g′(p) = g(q),
where q ∈ P ′ is the unique class with p ⊆ q. Now g′ satisfies condition A1,
and thus condition A2 together with the assumption implies that σS(g′(p1)) =
σS(g′(p2)) and σW (g′(p1)) = σW (g′(p2)). Since P ′ is constructible, we cannot
have σS(g(q1)) = σS(g(q2)) and σW (g(q1)) = σW (g(q2)) for any distinct
classes q1, q2 ∈ P ′. It follows that p1 ⊆ q and p2 ⊆ q for some q ∈ P ′. This
shows that P ′ v P [p1, p2].

Göös and Orponen [10] use the above framework to build their branch-
and-bound algorithm, which we call PS-BB. They define a method to prune
the search space of partitions so that no partition is visited twice, that is, the

10

search structure is a tree. In addition, they give an efficient lower bound to
the size of partitions that can be found in a given search branch. This makes
it possible to drop certain branches that are not going to yield an optimal
solution. Our approach is rather different, as we will see in the next section.

4 A Heuristic Partition-Search Algorithm
The PS-BB algorithm utilises effective pruning methods to reduce the search
space. Even though it offers significant reduction in the size of tile sets
compared to earlier approaches, it is in most cases still too slow for patterns
of practical size. Often it is not important to find a provably minimal solution,
but to find a reasonably small solution in a reasonable amount of time. To
address this objective, we present in the following a modification of the basic
PS-BB algorithm with a number of search-guiding heuristics. We call this
approach the partition-search with heuristics (PS-H) algorithm scheme.

Whereas the pruning methods of the PS-BB algorithm try to reduce the
size of the search space in a “balanced” way, the PS-H algorithm attempts
to “greedily” optimise the order in which the coarsenings of a partition are
explored, in the hope of being directly led to close-to-optimal solutions. Such
opportunism may be expected to pay off in case the success probability of the
greedy exploration is sufficiently high, and the process is restarted sufficiently
often, or equivalently, several runs are explored in parallel.

The basic heuristic idea is to try to minimise the effect that a merge
operation has on partition classes other than those which are combined.
This can be achieved by preferring to merge classes already having as many
common glues as possible. In this way one hopes to extend the number of steps
the search takes before it runs into a conflict. For example, when merging
classes p and q such that σN (f(p)) = σN (f(q)) and σE(f(p)) = σE(f(q)),
the glues on the west and south edges of all other classes are unaffected. This
way, the search avoids proceeding to a partition which is not constructible
after the merge operation is completed. Secondarily, we prefer merging
classes which already cover a large number of sites in [m] × [n]. That is,
one tries to grow a small number of large classes instead of growing all the
classes at an equal rate.

We define the concept of the number of common glues formally as follows.

Definition 10. Given a partition P and an MGTA f for P , the num-
ber of common glues between classes p, q ∈ P is defined by the function
G : P × P → [0, 4],

G(p, q) =
∑

D∈D
g(σD(f(p)), σD(f(q))),

where, for all σ1, σ2 ∈ Σ, g(σ1, σ2) = 1 if σ1 = σ2 and g(σ1, σ2) = 0 otherwise.

11

Except for the bounding function, the PS-BB algorithm allows an arbit-
rary ordering {pi, qi}, i = 1, . . . , N , for the children (coarsenings) P [pi, qi] of
a constructible partition P . In the PS-H algorithm, we choose the ordering
using the following heuristics. First form the set

H := {{p, q} | p, q ∈ P, p 6= q, ∃r ∈ P (c) : p, q ⊆ r}

of class pairs of same colour, and then repeat the following process until H
is empty.

1. Set K := H.

2. Maximise the number of common glues:

K := {{p, q} ∈ K | G(p, q) ≥ G(u, v) for all {u, v} ∈ K}.

3. Maximise the size of the larger class:

K := {{p, q} ∈ K | max{|p|, |q|} ≥ max{|u|, |v|} for all {u, v} ∈ K}.

4. Maximise the size of the smaller class:

K := {{p, q} ∈ K | min{|p|, |q|} ≥ min{|u|, |v|} for all {u, v} ∈ K}.

5. Pick some pair {p, q} ∈ K at random and visit the partition P [p, q].

6. Remove {p, q} from H:

H := H r {{p, q}}.

The PS-H algorithm also omits the pruning process utilised by the PS-BB
algorithm. That way, it aims to get to the small solutions quickly by reducing
the computational resources used in a single merge operation.

Since step H5 of the heuristics above leaves room for randomisation, the
PS-H algorithm performs differently with different random seeds. While
some of the randomised runs may lead to small solutions quickly, others
may get sidetracked into worthless expanses of the solution space. We make
the best of this situation by running several executions of the algorithm in
parallel, or equivalently, restarting the search several times with a different
random seed. The notation PS-Hn denotes the heuristic partition-search
algorithm with n parallel search threads. The solution found by the PS-Hn

algorithm is the smallest solution found by any of the n parallel threads.

12

4.1 Results

In this section, we present results on the performance of the PS-Hn algorithm
for n = 1, 2, 4, 8, 16, 32 and compare it to the previous PS-BB algorithm. Our
implementation of the PS-H algorithm is based on the DFS implementation
of the PS-BB algorithm used by Göös and Orponen [10]. We consider several
different finite 2-coloured input patterns, two of which were analysed also
previously [10] using the PS-BB algorithm: the discrete Sierpinski triangles
of sizes 32 × 32 (Figure 2(a)) and 64 × 64, and the binary counter of size
32×32 (Figure 2(b)). We introduce a 2-coloured “tree” pattern of size 23×23
(Figure 2(c)). Furthermore, as a potentially more practical example, we run
our experiments on a 15-coloured pattern of size 20 × 10, which is based
on a CMOS full adder design proposed in the context of carbon nanotube
circuits [2, 9]. While the Sierpinski triangle and binary counter patterns are
known to have minimal solutions of 4 tiles, the minimal solutions for the
tree pattern and the full adder pattern are unknown. The experiments were
conducted on a high performance computing cluster equipped with 2.6 GHz
AMD Opteron 2435 processors and Scientific Linux 6 operating system.

Figure 3 presents the evolution of the “current best solution” as a function
of time for the (a) 32× 32 and (c) 64× 64 Sierpinski triangle patterns. To
allow fair comparison, Figures 3(b) and 3(d) present the same data with
respect to the total processing time taken by all the executions that run
in parallel. The experiments were repeated 21 times and the median of
the results is depicted. In 37% of all the individual runs1 conducted, the
PS-H algorithm was able to find the optimal 4-tile solution for the 32× 32
Sierpinski triangle pattern in less than 30 seconds. A similar percentage for
the 64× 64 Sierpinski triangle pattern is 34% in one hour. Remarkably, the
algorithm performs only from 1030 to 1035 and from 4102 to 4107 merge
steps before arriving at the optimal solution for the 32 × 32 and 64 × 64
patterns, respectively. In other words, the search rarely needs to backtrack.
In contrast, the smallest solutions found by the PS-BB algorithm have 42
tiles, reached after 1.4 · 106 merge steps, and 95 tiles, reached after 5.9 · 106

merge steps.
In Figure 4 we present the corresponding results for the 32× 32 binary

counter and 23×23 tree patterns. The size of the smallest solutions found by
the PS-H32 algorithm were 20 (cf. 307 by PS-BB) and 25 (cf. 192 by PS-BB)
tiles, respectively. In the case of the tree pattern, the parallelisation brings
significant advantage over a single run. Finally, Figures 5(a)–5(b) show the
results for the 20× 10 15-colour CMOS full adder pattern. In this case, the
improvement over the previous PS-BB algorithm is less clear. The PS-H32
algorithm is able to find a solution of 58 tiles, whereas the PS-BB algorithm
gives a solution of 69 tiles.

1In total there were 1 · 21 + 2 · 21 + 4 · 21 + · · · + 32 · 21 = 1323 runs for each input
pattern.

13

(a) (b)

(c)

Figure 2: (a) The 32× 32 Sierpinski triangle pattern. (b) The 32× 32 binary
counter pattern. (c) The 23× 23 “tree” pattern.

5 Answer Set Programming

5.1 An ASP model for PATS

Answer Set Programming (ASP) [17] is a declarative logic programming
paradigm for solving difficult combinatorial search problems. In ASP, a
problem is described as a logic program, and an answer set solver is then
used to compute stable models (answer sets) of the logic program. The ASP
paradigm can be applied also to the PATS problem. In the following we
give a brief description on how to transform the PATS problem to an ASP
program using a modelling language that is accepted by ASP grounders such
as lparse [27] or gringo [7]. The ASP code is given in Listing 1.

14

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Parallel CPU time in seconds

32x32 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total CPU time in seconds

32x32 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Parallel CPU time in seconds

64x64 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(c)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total CPU time in seconds

64x64 Sierpinski triangle pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(d)

Figure 3: Evolution of the smallest tile set found for the 32× 32 and 64× 64
Sierpinski triangle patterns as a function of time. The time axes measure (a),
(c) CPU time and (b), (d) CPU time multiplied by the number of parallel
executions.

First, we define a constant for each position of the grid [m]× [n], each
colour, each available tile type and each available glue type. After that,
a number of choice rules are introduced to associate a tile type with each
position of the grid, a glue type with each of the four sides of the tile types
and a colour with each of the tile types. Next, we use basic rules to make
the glues of every pair of adjacent tiles match and to make the tile system
deterministic, that is, to ensure that every tile type has a unique pair of
glues on its W and S edges. Finally, we compile the target pattern to a set
of rules that associate every position of the grid with the desired colour.

15

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Parallel CPU time in seconds

32x32 binary counter pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total CPU time in seconds

32x32 binary counter pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Parallel CPU time in seconds

23x23 tree pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(c)

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total CPU time in seconds

23x23 tree pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(d)

Figure 4: Evolution of the smallest tile set found for the 32 × 32 binary
counter and 23 × 23 tree patterns as a function of time. The time axes
measure (a), (c) CPU time and (b), (d) CPU time multiplied by the number
of parallel executions.

The above-described program is given to a grounder, which computes
an equivalent variable-free program. The variable-free program is forwarded
to an answer set solver, which then outputs a tile type for each position of
the grid, given that such a solution exists. We run the programs repeatedly
and increment the number of available tile and glue types, until a solution is
found.

16

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Parallel CPU time in seconds

20x10 CMOS full adder 15-colour pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(a)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

S
iz

e
 o

f
th

e
 s

m
a

lle
s
t

ti
le

 s
e

t
fo

u
n

d

Total CPU time in seconds

20x10 CMOS full adder 15-colour pattern

PS-BB
PS-H1
PS-H2
PS-H4
PS-H8

PS-H16
PS-H32

(b)

Figure 5: Evolution of the smallest tile set found for the 20× 10 full adder
pattern as a function of time. The time axes measure (a) CPU time and (b)
CPU time multiplied by the number of parallel executions.

5.2 Results

We used grounder gringo 3.0.5 [7] and answer set solver clasp 2.1.3 [8] with
default settings to run our experiments. A traditional solver, smodels [20],
was also considered, but clasp proved to be significantly faster in solving
instances of the PATS problem. We consider two patterns having a minimal
solution of 4 tiles: the Sierpinski triangle and binary counter patterns. The
programs were executed for patterns of sizes 8 × 8, 16 × 16, . . . , 256 × 256.
We repeated the experiments 21 times with different random seeds and the
median running time is presented in Figure 6(a) for the Sierpinski triangle
pattern and in Figure 6(b) for the binary counter pattern. The results
include the running time of both the grounder and the solver as well as all
the incremental steps needed until a solution is found. We were able to
find the minimal solution for both the 256× 256 Sierpinski triangle pattern
and the 256× 256 binary counter pattern in approximately 31 minutes of
(median) running time. The results were obtained on the same computing
cluster as the results in Section 4.1.

Based on the above results, the ASP approach performs very well when
considering patterns with a small optimal solution. However, the running
time seems to increase dramatically with patterns that have a larger optimal
solution. Indeed, we were not able to find solutions for the 23 × 23 tree
pattern or the 20× 10 CMOS full adder pattern using the ASP approach.

17

1 pos(1..x, 1..y).
2 col(1..k).
3 tile(1..t).
4 glue(1..g).

5 1 { pos_tile(X, Y, T) : tile(T) } 1 :- pos(X, Y).

6 1 { glue_w(T, G) : glue(G) } 1 :- tile(T).
7 1 { glue_s(T, G) : glue(G) } 1 :- tile(T).
8 1 { glue_n(T, G) : glue(G) } 1 :- tile(T).
9 1 { glue_e(T, G) : glue(G) } 1 :- tile(T).

10 1 { tile_c(T, C) : col(C) } 1 :- tile(T).

11 :- glue(Gw ; Gs), tile(T1 ; T2), T1 != T2, glue_w(T1, Gw), glue_w(T2, Gw),
glue_s(T1, Gs), glue_s(T2, Gs).

12 glue_s(T2, G) :- pos_tile(X, Y, T1), pos_tile(X, Y+1, T2), glue_n(T1, G),
glue(G), tile(T1 ; T2), pos(X, Y).

13 glue_w(T2, G) :- pos_tile(X, Y, T1), pos_tile(X+1, Y, T2), glue_e(T1, G),
glue(G), tile(T1 ; T2), pos(X, Y).

Listing 1: An encoding of the PATS problem as an ASP instance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10000 20000 30000 40000 50000 60000

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

Pattern size

Sierpinski triangle pattern

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10000 20000 30000 40000 50000 60000

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

Pattern size

Binary counter pattern

(b)

Figure 6: Running time of gringo and clasp for the minimal solutions of
the (a) Sierpinski triangle and (b) binary counter patterns as a function of
pattern size.

18

6 The Reliability of Tile Systems
In this section, we first review the kinetic Tile Assembly Model (kTAM) and
then utilise it to develop a method to compute the reliability of a given tile
system.

6.1 The Kinetic Tile Assembly Model

The kinetic Tile Assembly Model (kTAM) was introduced by Winfree [29,
31] to take into account the stochastic nature of self-assembly. In kTAM, re-
actions are allowed only between an assembly and a single tile. The reactions
in question are association of new tiles to the existing assembly (forward
reaction) and dissociation of tiles from the assembly (reverse reaction). It is
assumed that association of tiles does not depend on the compatibility of
glues on abutting edges; tiles can be attached to any position with at least
one adjacent tile in place. The rate of the forward reaction is denoted by
rf and it is proportional to the concentration of single tiles in the solution.
The rate rr,b, b ∈ {0, 1, 2, 3, 4}, of the reverse reaction, on the other hand,
depends exponentially on the strength of the bonds formed by glues. Tiles
that are connected to the assembly by fewer matching sticky ends have a
higher probability of dissociation than those connected by stronger bonds.

For a tile type t, the rate rf of the association reaction of t is

rf = kf [t], (in /sec)

where [t] is the concentration of single tiles of type t in the solution and
kf is a parameter that depends on temperature as well as the kind of tiles
used. According to Winfree [31], the parameter is in the case of DNA
double-crossover (DX) tiles given by

kf = Afe
−Ef /RT ,

where Af = 5 · 108 /M/sec, Ef = 4000 cal/mol, R = 2 cal/mol/K and T is
the temperature (in K). This is what we will use in our computations.

The rate of the dissociation reaction for a tile that is connected to the
assembly by total bond strength of b (in the sense of aTAM) is given by

rr,b = kfe
∆Go

b/RT ,

where ∆Go
b is the standard free energy that is needed to break b bonds. In

the case of DX tiles, where the glues are implemented using single-stranded
DNA molecules having a length of 5 bases, we can estimate ∆Go

b using the
nearest-neighbour model [24] to be

∆Go
b = e5b(11− 4000 K

T)+3 cal/mol.

19

Here b = 0 corresponds to the case where a tile has no bonds at all with the
assembly, whereas for example b = 2 corresponds to a situation where a tile
has formed bonds using two of its sticky ends.

To make handling of the model easier, the free parameters in the formulas
of the rate constants rf and rr,b are re-distributed into just two dimensionless
parameters, Gmc and Gse. The first parameter depends on tile concentration
at the beginning of the self-assembly process, while the second depends on
the temperature. The rate constants can then be written as follows:

rf = k̂fe
−Gmc , rr,b = k̂fe

−bGse .

For DX tiles, k̂f = e3kf is needed in order to take into account possible
entropic factors, such as orientation or location of tiles in the solution. This
kind of re-distribution of parameters is possible, since in kTAM it is assumed
that all tile types have initially similar concentrations and that the decrease
of concentrations during the assembly process is negligible [31].

6.2 Computing the Reliability of a Tile System

By choosing appropriate physical conditions, the probability of errors in the
assembly process can be made arbitrarily low, at the cost of reducing the
assembly rate [31]. However, we would like to be able to compare the error
probability of different tile sets producing the same finite pattern, under the
same physical conditions. Given the amount of time the assembly process is
allowed to take, we define the reliability of a tile set to be the probability that
the assembly process of the tile system in question completes without any
incorrect tiles being present in the terminal configuration. In the following,
we present a method for computing the reliability of a tile set, based on
Winfree’s analysis of the kTAM [31], and the notion of kinetic trapping
introduced within.

We call the W and S edges of a tile its input edges. First, we derive
the probability of the correct tile being frozen at a particular site under
the condition that the site already has correct tiles on its input edges. Let
M1

i,j and M2
i,j be the number of tile types having one mismatching and two

mismatching input glues, respectively, between them and the correct tile
type for site (i, j) ∈ [m]× [n]. Now, for a deterministic tile set T , the total
number of tiles is |T | = 1 +M1

i,j +M2
i,j for any (i, j) ∈ [m]× [n]. Given that

a site has the correct tiles on its input edges, a tile is correct for that site if
and only if it has two matches on its input edges.

In what follows, we assume that correct tiles are attached at sites (i−1, j)
and (i, j − 1). The model for kinetic trapping [31] gives us a continuous-time
Markov process with four distinct cases in the situation preceding the site
(i, j) being frozen by further growth. To each of these cases we can associate
an “off-rate” for the system to exit its current state: (E) An empty site, with

20

off-rate |T |rf . (C) The correct tile, with off-rate rr,2. (A) A tile with one
match, with off-rate rr,1. (I) A tile with no matches, with off-rate rr,0.

Additionally, we have two sink states, FC and FI, which represent frozen
correct and frozen incorrect tiles, respectively. The rate of a site being frozen
is equal to the rate of growth r∗ = rf − rr,2. Thus, the overall off-rates for
C, A and I are rr,2 + r∗, rr,1 + r∗ and rr,0 + r∗, respectively.

Let pS(t) denote the probability of the site being in state S after t seconds
for all S ∈ {E,C,A, I,FC,FI}. We have pE(0) = 1 and pS(0) = 0 for all
S 6= E, since the site is initially empty. To compute the frozen distribution,
we write the rate equations for the model of kinetic trapping fromWinfree [31]
and obtain the following master equation:

Mp(t) :=

−|T |rf rr,2 rr,1 rr,0 0 0
rf −rr,2 − r∗ 0 0 0 0

M1
i,jrf 0 −rr,1 − r∗ 0 0 0

M2
i,jrf 0 0 −rr,0 − r∗ 0 0
0 r∗ 0 0 0 0
0 0 r∗ r∗ 0 0

pE(t)
pC(t)
pA(t)
pI(t)
pFC(t)
pFI(t)

,

where Mp(t) = ṗ(t), that is, the derivative of p with respect to time, and
each element M(i, i) represents the off-rate of the ith state, while each
element M(i, j), i 6= j, represents the transition rate from the jth state to
the ith state.

To compute the steady-state probability of the site being frozen with the
correct tile, that is, pFC(∞), we make use of the steady state of the related
flow problem [31] by setting

Mp(∞) =
[
−1 0 0 0 pFC(∞) pFI(∞)

]T
,

that is, there is one unit of new material flowing into state E, and different
amounts of it accumulate in states FC and FI. This gives us a system of
linear equations. By solving it we obtain a value for pFC(∞), namely

pFC(∞) =
1

r∗+rr,2

1
r∗+rr,2

+ M1
i,j

r∗+rr,1
+ M2

i,j

r∗+rr,0

.

This equals the probability of a tile with two matching glues being frozen on
the site, that is,

Pr(Ci,j |Ci−1,j ∩ Ci,j−1) = pFC(∞),

where Ci,j denotes the event of the correct tile being frozen at site (i, j).
The assembly process can be thought of as a sequence of tile addition

steps (a1, a2, . . . , aN) where ak = (ik, jk), k = 1, 2, . . . , N , denotes a tile
being frozen at site (ik, jk). Due to the fact that the assembly process

21

of the tile systems considered here proceeds uniformly from south-west to
north-east, we have that {(ik − 1, jk), (ik, jk − 1)} ⊆ {a1, a2, . . . , ak−1} for
all ak = (ik, jk). We assume that tiles elsewhere in the configuration do not
affect the probability. Now we can compute the probability of a finite-size
pattern of size N assembling without any errors, that is, the reliability of
that pattern:

Pr(correct pattern) = Pr(Ca1 ∩ Ca2 ∩ · · · ∩ CaN)
= Pr(Ca1) Pr(Ca2 |Ca1) · · ·Pr(CaN |Ca1 ∩ · · · ∩ CaN−1)
=
∏
i,j

Pr(Ci,j |Ci−1,j ∩ Ci,j−1).

We have computed the probability in terms of Gmc and Gse. Given
the desired assembly rate, we want to minimise the error probability by
choosing values for Gmc and Gse appropriately. If the assembly process is
allowed to take t seconds, the needed assembly rate for an m× n pattern is
approximately r∗ =

√
m2+n2

t . In order to simplify the computations, we use
the approximation

Pr(Ci,j |Ci−1,j ∩ Ci,j−1) =
1

r∗+rr,2

1
r∗+rr,2

+ M1
i,j

r∗+rr,1
+ M2

i,j

r∗+rr,0

≈ 1
1 +M1

i,j
r∗+rr,2
r∗+rr,1

.

For small error probability and 2Gse > Gmc > Gse,

Pr(¬Ci,j |Ci−1,j ∩ Ci,j−1) ≈M1
i,j

r∗ + rr,2
r∗ + rr,1

≈M1
i,je
−(Gmc−Gse) =: M1

i,je
−4G.

From
r∗ = rf − rr,2 = k̂f (e−Gmc − e−2Gse)

we can derive
Gse = −1

2 log(e−Gmc − r∗

k̂f

).

Now we can write 4G as a function of Gmc:

4G(Gmc) = Gmc −Gse = Gmc + 1
2 log(e−Gmc − r∗

k̂f

).

We find the maximum of 4G, and thus the minimal error probability, by
differentiation:

Gmc = − log(2 r
∗

k̂f

).

Thus, if the assembly time is t seconds, the maximal reliability is achieved at

Gmc = − log(2
√
m2 + n2

tk̂f

), Gse = −1
2 log(

√
m2 + n2

tk̂f

).

22

6.3 Results

In this section, we present results on computing the reliability of tile sets
using the method given above. We assume that the assembly process takes
place in room temperature (298 K). As a result, we use the value kf =
Afe

−Ef /RT ≈ 6 · 105 /M/sec for the forward reaction rate.
Figure 7(a) shows the reliability of the 4-tile solution to the Sierpinski

triangle pattern as a function of pattern size, using five distinct assembly
times. As is to be expected, the longer the assembly time, the better the
reliability.

We also applied the method for computing the reliability to tile sets found
by the partition-search algorithms. Our results show that the heuristics used
in the PS-H algorithm improve not only the size of the tile sets found, but also
the reliability of those tile sets. This can be easily understood by considering
the following: The reliability of a tile set is largely determined by the number
of tile types that have the same glue as some other tile type on either one of
their input edges. Since the PS-H algorithm prefers merging class pairs with
common glues, it reduces the number of such tile types effectively.

Figures 7(b)–7(d) present the reliability of tile sets found by the PS-H and
PS-BB algorithms for the 32× 32 Sierpinski triangle pattern, with assembly
times of one hour, one day (24 hours) and one week. The runs were repeated
100 times; the mean reliability of each tile set size as well as the 10th and
90th percentiles are shown.

As for reliability, we expect a large set of runs of the PS-BB algorithm to
produce a somewhat decent sample of all the possible tile sets for a pattern.
Based on this, large and small tile sets seem to have a high reliability while
medium-size tile sets are clearly less reliable on average. This observation
reduces the problem of finding reliable tile sets back to the problem of
finding small tile sets. However, it is important to note that artefacts of the
algorithm may have an effect on the exact reliability of the tile sets found.

7 Conclusions
We have presented two new methods for constructing solutions to the PATS
problem: the heuristic PS-H algorithm and the declarative ASP approach.
Our experiments show that ASP is very efficient when the instance happens
to have a solution consisting only of a few tile types, whereas the PS-H
algorithm outperforms previous methods in a more general setting. We have
also developed a method for estimating the reliability of tile sets, and found
out that the PS-H approach is an improvement also in this respect.

Future work could include developing polynomial-time algorithms with
a guaranteed approximation ratio for the PATS problem. The declarative
approach could probably be applied to instances with larger optimal solutions
by developing a more efficient ASP or Boolean satisfiability encoding.

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

R
e

lia
b

ili
ty

Pattern size

4-tile solution

1 s
30 s

3 min
15 min

1 h

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e

lia
b

ili
ty

Solution size

One hour assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e

lia
b

ili
ty

Solution size

One day assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

R
e

lia
b

ili
ty

Solution size

One week assembly time

PS-BB 10%, 90% fractiles
PS-BB mean

PS-H 10%, 90% fractiles
PS-H mean

(d)

Figure 7: (a) The reliability of the minimal tile set as a function of pattern
size for the Sierpinski triangle pattern, using several different assembly times.
(b)–(d) The reliability of solutions for the 32× 32 Sierpinski triangle pattern
found by the PS-H and PS-BB algorithms, allowing assembly time of one
hour, one day and one week.

References
[1] Leonard M. Adleman. Molecular computation of solutions to combin-

atorial problems. In Science 266.5187 (1994), pages 1021–1024. doi:
10.1126/science.7973651.

[2] Eugen Czeizler, Tuomo Lempiäinen and Pekka Orponen. A design
framework for carbon nanotube circuits affixed on DNA origami
tiles. In Proceedings of the 8th Annual Conference on Foundations

24

http://dx.doi.org/10.1126/science.7973651

of Nanoscience: Self-Assembled Architectures and Devices (FNANO
2011), pages 186–187. Poster abstract. 2011.

[3] Eugen Czeizler and Alexandru Popa. Synthesizing minimal tile sets for
complex patterns in the framework of patterned DNA self-assembly. In
Proceedings of the 18th International Conference on DNA Computing
and Molecular Programming (DNA 2012), pages 58–72. Springer,
Berlin, Germany, 2012. doi: 10.1007/978-3-642-32208-2_5.

[4] Eugen Czeizler and Alexandru Popa. Synthesizing minimal tile sets for
complex patterns in the framework of patterned DNA self-assembly.
In Theoretical Computer Science 499 (2013), pages 23–37. doi: 10.
1016/j.tcs.2013.05.009.

[5] David Doty. Theory of algorithmic self-assembly. In Communications of
the ACM 55.12 (2012), pages 78–88. doi: 10.1145/2380656.2380675.

[6] Kenichi Fujibayashi, Rizal Hariadi, Sung Ha Park, Erik Winfree and
Satoshi Murata. Toward reliable algorithmic self-assembly of DNA
tiles: a fixed-width cellular automaton pattern. In Nano Letters 8.7
(2008), pages 1791–1797. doi: 10.1021/nl0722830.

[7] Martin Gebser, Roland Kaminski, Arne König and Torsten Schaub.
Advances in gringo series 3. In Proceedings of the 11th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2011), pages 345–351. Springer, Berlin, Germany, 2011. doi:
10.1007/978-3-642-20895-9_39.

[8] Martin Gebser, Benjamin Kaufmann, André Neumann and Torsten
Schaub. Conflict-driven answer set solving. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007),
pages 386–392. AAAI, Menlo Park, California, USA, 2007.

[9] Mika Göös, Tuomo Lempiäinen, Eugen Czeizler and Pekka Orponen.
Search methods for tile sets in patterned DNA self-assembly. In Journal
of Computer and System Sciences 80.1 (2014), pages 297–319. doi:
10.1016/j.jcss.2013.08.003.

[10] Mika Göös and Pekka Orponen. Synthesizing minimal tile sets for
patterned DNA self-assembly. In Proceedings of the 16th International
Conference on DNA Computing and Molecular Programming (DNA
2010), pages 71–82. Springer, Berlin, Germany, 2011. doi: 10.1007/
978-3-642-18305-8_7.

[11] Branko Grünbaum and G. C. Shephard. Tilings and Patterns. W. H.
Freeman and Company, New York, NY, USA, 1987.

25

http://dx.doi.org/10.1007/978-3-642-32208-2_5
http://dx.doi.org/10.1016/j.tcs.2013.05.009
http://dx.doi.org/10.1016/j.tcs.2013.05.009
http://dx.doi.org/10.1145/2380656.2380675
http://dx.doi.org/10.1021/nl0722830
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1016/j.jcss.2013.08.003
http://dx.doi.org/10.1007/978-3-642-18305-8_7
http://dx.doi.org/10.1007/978-3-642-18305-8_7

[12] Aleck C. Johnsen, Ming-Yang Kao and Shinnosuke Seki. Computing
minimum tile sets to self-assemble color patterns. In Proceedings of
the 24th International Symposium on Algorithms and Computation
(ISAAC 2013), pages 699–710. Springer, 2013. doi: 10.1007/978-3-
642-45030-3_65.

[13] Aleck Johnsen, Ming-Yang Kao and Shinnosuke Seki. A manually-
checkable proof for the NP-hardness of 11-color pattern self-assembly
tile set synthesis. 2014. arXiv: 1409.1619 [cs.DM].

[14] Lila Kari, Steffen Kopecki, Pierre-Étienne Meunier, Matthew J. Patitz
and Shinnosuke Seki. Binary pattern tile set synthesis is NP-hard.
In Proceedings of the 42nd International Colloquium on Automata,
Languages, and Programming (ICALP 2015). 2015. Forthcoming.

[15] Lila Kari, Steffen Kopecki and Shinnosuke Seki. 3-color bounded
patterned self-assembly. In Proceedings of the 19th International Con-
ference on DNA Computing and Molecular Programming (DNA 2013),
pages 105–117. Springer, 2013. doi: 10.1007/978-3-319-01928-4_8.

[16] Tuomo Lempiäinen, Eugen Czeizler and Pekka Orponen. Synthesizing
small and reliable tile sets for patterned DNA self-assembly. In Pro-
ceedings of the 17th International Conference on DNA Computing and
Molecular Programming (DNA 2011), pages 145–159. Springer, Berlin,
Germany, 2011. doi: 10.1007/978-3-642-23638-9_13.

[17] Vladimir Lifschitz. What is answer set programming? In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008),
pages 1594–1597. AAAI, Menlo Park, California, USA, 2008.

[18] Xiaojun Ma and F. Lombardi. On the computational complexity of
tile set synthesis for DNA self-assembly. In IEEE Transactions on
Circuits and Systems II: Express Briefs 56.1 (2009), pages 31–35. doi:
10.1109/TCSII.2008.2010161.

[19] Xiaojun Ma and Fabrizio Lombardi. Synthesis of tile sets for DNA
self-assembly. In IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27.5 (2008), pages 963–967. doi:
10.1109/TCAD.2008.917973.

[20] Ilkka Niemelä and Patrik Simons. Smodels – an implementation of the
stable model and well-founded semantics for normal logic programs. In
Proceedings of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 1997), pages 420–429. Springer,
Berlin, Germany, 1997. doi: 10.1007/3-540-63255-7_32.

[21] Sung Ha Park, Hao Yan, John H. Reif, Thomas H. LaBean and Gleb
Finkelstein. Electronic nanostructures templated on self-assembled
DNA scaffolds. In Nanotechnology 15.10 (2004), S525–S527. doi:
10.1088/0957-4484/15/10/005.

26

http://dx.doi.org/10.1007/978-3-642-45030-3_65
http://dx.doi.org/10.1007/978-3-642-45030-3_65
http://arxiv.org/abs/1409.1619
http://dx.doi.org/10.1007/978-3-319-01928-4_8
http://dx.doi.org/10.1007/978-3-642-23638-9_13
http://dx.doi.org/10.1109/TCSII.2008.2010161
http://dx.doi.org/10.1109/TCAD.2008.917973
http://dx.doi.org/10.1007/3-540-63255-7_32
http://dx.doi.org/10.1088/0957-4484/15/10/005

[22] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes
and patterns. In Nature 440 (2006), pages 297–302. doi: 10.1038/
nature04586.

[23] Paul W. K. Rothemund and Erik Winfree. The program-size complexity
of self-assembled squares. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC 2000), pages 459–468.
ACM, New York, NY, USA, 2000. doi: 10.1145/335305.335358.

[24] John SantaLucia Jr., Hatim T. Allawi and P. Ananda Seneviratne.
Improved nearest-neighbor parameters for predicting DNA duplex
stability. In Biochemistry 35.11 (1996), pages 3555–3562. doi: 10.
1021/bi951907q.

[25] Nadrian C. Seeman. Nucleic acid junctions and lattices. In Journal of
Theoretical Biology 99.2 (1982), pages 237–247. doi: 10.1016/0022-
5193(82)90002-9.

[26] Shinnosuke Seki. Combinatorial optimization in pattern assembly. In
Proceedings of the 12th International Conference on Unconventional
Computation and Natural Computation (UCNC 2013), pages 220–231.
Springer, Berlin, Germany, 2013. doi: 10.1007/978-3-642-39074-
6_21.

[27] Tommi Syrjänen. Implementation of Local Grounding for Logic Pro-
grams with Stable Model Semantics. Technical Report B18. Helsinki
University of Technology, Digital Systems Laboratory, 1998. url:
http://www.tcs.hut.fi/Publications/info/bibdb.HUT- TCS-
B18.shtml.

[28] Hao Wang. Proving theorems by pattern recognition – II. In Bell
System Technical Journal 40.1 (1961), pages 1–41.

[29] Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis. Califor-
nia Institute of Technology, 1998. url: http://resolver.caltech.
edu/CaltechETD:etd-05192003-110022.

[30] Erik Winfree. On the computational power of DNA annealing and
ligation. In Proceedings of a Mini DIMACS Workshop on DNA Based
Computers (1995), pages 199–221. American Mathematical Society,
Providence, RI, USA, 1996.

[31] Erik Winfree. Simulations of Computing by Self-Assembly. Technical
Report CaltechCSTR:1998.22. California Institute of Technology, 1998.
url: http://resolver.caltech.edu/CaltechCSTR:1998.22.

[32] Erik Winfree, Furong Liu, Lisa A. Wenzler and Nadrian C. Seeman.
Design and self-assembly of two-dimensional DNA crystals. In Nature
394 (1998), pages 539–544. doi: 10.1038/28998.

27

http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1145/335305.335358
http://dx.doi.org/10.1021/bi951907q
http://dx.doi.org/10.1021/bi951907q
http://dx.doi.org/10.1016/0022-5193(82)90002-9
http://dx.doi.org/10.1016/0022-5193(82)90002-9
http://dx.doi.org/10.1007/978-3-642-39074-6_21
http://dx.doi.org/10.1007/978-3-642-39074-6_21
http://www.tcs.hut.fi/Publications/info/bibdb.HUT-TCS-B18.shtml
http://www.tcs.hut.fi/Publications/info/bibdb.HUT-TCS-B18.shtml
http://resolver.caltech.edu/CaltechETD:etd-05192003-110022
http://resolver.caltech.edu/CaltechETD:etd-05192003-110022
http://resolver.caltech.edu/CaltechCSTR:1998.22
http://dx.doi.org/10.1038/28998

	Introduction
	Preliminaries
	The Abstract Tile Assembly Model
	The PATS Problem
	Computational Complexity and Problem Variants

	The Search Space of Partitions
	Most General Tile Assignments
	A Partition-Search Algorithm

	A Heuristic Partition-Search Algorithm
	Results

	Answer Set Programming
	An ASP model for PATS
	Results

	The Reliability of Tile Systems
	The Kinetic Tile Assembly Model
	Computing the Reliability of a Tile System
	Results

	Conclusions

