
PERSONAL VERSION

This is a so-called personal version (author's manuscript as accepted for publishing after the
review process but prior to final layout and copyediting) of the article: Nyman, L M & Lindman,
J 2013 , ' Code Forking, Governance, and Sustainability in Open Source Software ' Technology
Innovation Management Review, vol January, no. 2013, pp. 7-12 .
http://timreview.ca/article/644

This version is stored in the Institutional Repository of the Hanken School of Economics,
DHANKEN. Readers are asked to use the official publication in references.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33736521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://timreview.ca/article/644

CODE FORKING, GOVERNANCE, AND SUSTAINABILITY IN
OPEN SOURCE SOFTWARE

Linus Nyman Post-doctoral, Information Systems Science, Hanken School of

Economics

Juho Lindman Assistant professor, Information Systems Science, Hanken School of

Economics juho.lindman@hanken.fi

The ability to fork code – a central freedom of open source software – is what keeps communities
vibrant and companies honest.

Glyn Moody

Technology writer and journalist

Abstract

The right to fork open source code is at the core of open source licensing. All open

source licenses grant the right to fork their code, that is to start a new development

effort using an existing code as its base. Thus, code forking represents the single

greatest tool available for guaranteeing sustainability in open source software. In

addition to bolstering program sustainability, code forking directly affects the

governance of open source initiatives. Forking, and even the mere possibility of forking

code, affects the governance and sustainability of open source initiatives on three

distinct levels: software, community, and ecosystem. On the software level, the right to

fork makes planned obsolescence, versioning, vendor lock-in, end-of-support issues,

and similar initiatives all but impossible to implement. On the community level, forking

impacts both sustainability and governance through the power it grants the community

to safeguard against unfavourable actions by corporations or project leaders. On the

business-ecosystem level forking can serve as a catalyst for innovation while

simultaneously promoting better quality software through natural selection. Thus,

forking helps keep open source initiatives relevant and presents opportunities for the

development and commercialization of current and abandoned programs.

1

1 INTRODUCTION

This article addresses the question of how the right to fork open source projects – to

use the source code of an existing program to start a new, independent version – works

as a governance mechanism to provide sustainability in open source software. The

concept of sustainability is under debate, with numerous rubrics against which the

sustainability of a product may be measured (e.g., Connelly, 2007;

tinyurl.com/atjcgq3; Davison, 2001; tinyurl.com/aukl5ch; McManus, 1996;

tinyurl.com/a5usfo3). Within the context of the current study, sustainability is

defined as the possibility of an open source program to continue to serve the needs of

its developers and users.

While code forking may lead to redundant independent efforts, it represents the single

greatest tool available for guaranteeing sustainability in open source software. In this

article, we examine code forking within open source initiatives and discuss the

managerial implications of code forking. The article is structured as follows: first, we

offer some background on code forking; second, we look at how code forking affects

governance on the three levels mentioned; finally, we explain the relevance of these

findings and their management implications.

1.1 Background

Code forking has often been viewed in a negative light. At the core of this negative view

is the continued use of a restrictive, and perhaps outdated, definition of the term

forking. Until recently, the term fork was mainly used to describe a situation in which a

developer community had split into competing camps, each continuing work on their

own, incompatible version of the software (see, for example, Raymond, 1999;

tinyurl.com/3ald3; Fogel, 2006; tinyurl.com/3dx2py). Hence, the negative tone

found in discussions of forking has been related to concerns regarding the hindered

progress, wasted resources, and potential demise of one or both of the projects. In

recent years, the term forking has come to be used in a much broader context,

encompassing all cases in which one takes an existing code base and implements it in a

separate project (see, for instance, GitHub; tinyurl.com/7uc94sk). In the context of

this study, we adhere to this broader definition of forking.

While there are many reasons why projects are forked, the most common reason is the

desire to modify the original program to better address a specific need (Nyman and

2

Mikkonen, 2011; tinyurl.com/arntyur). Forks may also be planned, temporary

divergences intended to test new ideas and features, with the intention of later

integrating effective improvements back into the original (Nyman and Mikkonen, 2011;

tinyurl.com/arntyur; see also GitHub; tinyurl.com/7uc94sk). The right to fork

code is built into the very definition of what it means to be an open source program.

The third criteria of the Open Source Initiative’s (OSI; opensource.org/osd.html)

definition of open source states that the license “must allow modifications and derived

works.” Similarly, the Free Software Foundation’s Free Software Definition (FSD;

gnu.org/philosophy/free-sw.html) states that users have the freedom to “run,

copy, distribute, study, change and improve the software.” All spinoff initiatives can be

considered forks as they are “modified or derived” (OSI) or “copied, changed and

improved”. The possibility of forking any project affects the governance and

sustainability of all open source programs.

Software is editable, interactive, reprogrammable, distributed, and open (Kallinikos et

al., 2010; tinyurl.com/4zn6cun). These characteristics dictate that software is prone

to being changed, repaired, and updated rather than remaining fixed from the early

stages of the design process. The openness combined with the granular composition of

the software offer new ways of governance (Benkler, 2006; tinyurl.com/6ftot3). This

governance is not tied to over-appropriating a natural resource (Ostrom, 1991;

tinyurl.com/b8rc2pu), but rather related to ways in which a group of developers,

following institutional rules, collectively produce a public good (Schweik et al., 2010;

tinyurl.com/aqxy2jp).

3

2 THREE LEVELS OF GOVERNANCE

2.1 Software level

The nature of the industry dictates that programs cannot maintain a stable steady state

for an extended period of time. They must continue to evolve in order to remain useful

and relevant. Without continual adaptation, a program will progressively become less

satisfactory (Lehman, 1980; tinyurl.com/b2mpkw3). Conversely, truly successful

software is able to adapt and even outlive the hardware for which it was originally

written (Brooks, 1975; tinyurl.com/awg3rrw). Therefore, the ability to change and

evolve is a key component of software sustainability. Although stagnation may be a

precursor to obsolescence, obsolescence need not creep into a project over time; it is

often a design feature.

Popularized in the 1950s by American industrial designer Brooks Stevens (The

Economist, 2009; tinyurl.com/ahws66g), the concept of planned obsolescence

stands in stark contrast to the concept of sustainability. Stevens defined planned

obsolescence as the act of instilling in the buyer “the desire to own something a little

newer, a little better, a little sooner than is necessary” (Brooks Stevens’ biography;

tinyurl.com/bbs8a3c). Considered “an engine of technological progress” by some

(Fishman et al., 1993; tinyurl.com/bye2n5r), yet increasingly problematized in the

business ethics literature (Guiltinan, 2009; tinyurl.com/alr2c92), planned

obsolescence is part of every consumer’s life. Although contemporary software

development and distribution have characteristics that differ substantially from the

industrial products of the 1950s, the revenue models of companies in the software

marketplace often welcome elements such as system versioning, to encourage

repurchases of a newer version of the same system, or vendor lock-ins that limit the

customer choice to certain providers of system or product (for a further review, see

Combs, 2000; tinyurl.com/aq2wl7h). Newer versions of programs may introduce

compatibility problems with earlier operating systems or programs (e.g., lack of

backwards compatibility in Internet Explorer, Microsoft Office, or OS X’s OpenStep

APIs). Some programs also introduce new file formats, which can cause compatibility

issues with earlier versions of the program (e.g., docx vs. doc). Furthermore, end-of-life

announcements and concerns over end-of-support deadlines may encourage users to

upgrade, regardless of the real need to do so.

4

The right to fork code makes implementing such elements impracticable in open

source. The right to improve a program, the right to combine many programs, and the

right to make a program compatible with other programs and versions are all

fundamental rights that are built into the very definition of open source. Research has

shown these rights are often exercised (Fitzgerald, 2006; tinyurl.com/al995aj). The

result of this constant collaborative improvement in open source systems is that any

program with the support of the open source community can enjoy assured relevance

rather than planned obsolescence. Furthermore, with renewed community interest,

programs that have decayed and fallen into disuse can be revived and updated by

forking the code from the original program. In fact, this is a fairly common practice: of

the almost 400 forks studied by Nyman and Mikkonen (2011; tinyurl.com/arntyur),

7% involved the reviving of an abandoned project. As long as there is sufficient

community interest in a project, forking can allow for constant improvement in

software functionality.

2.2 Community level

The possibility to fork is central to the governance of any open source community. The

shared ownership of open source projects allows anyone to fork a project at any time.

Therefore, no one person or group has a “magical hold” over the project (Fogel, 2006;

tinyurl.com/ahbh8nt). Since a fork involving a split of the community can hurt

overall productivity, Fogel notes that the potential to fork a program is “the

indispensable ingredient that binds developers together”.

One of the concerns among open source communities is what Lerner and Tirole (2002;

tinyurl.com/bfmaxl4) call the hijacking of the code. Hijacking occurs when a

commercial vendor attempts to privatize a project’s source code. The 2008 acquisition

of MySQL, (mysql.com), an open source relational database management system, by

Sun Microsystems and subsequent acquisition of Sun by Oracle is an example of a case

involving community concern over potential hijacking. It had been argued that such a

series of acquisitions would lead to the collapse of both MySQL and the open source

movement at large (Foremski, 2006; tinyurl.com/yesjhw7). Responding to such

claims, Moody (2009; tinyurl.com/cbrq7g) noted that, while open source companies

can be bought, open source communities cannot. Forking provides the community that

supports an open source project with a way to spin off their own version of the project

in case of such an acquisition. Indeed, this is what happened in the case of MYSQL. The

5

original MySQL developer, Michael (“Monty”) Widenius, forked the MySQL code and

started a new version under a different name, MariaDB, due to concerns regarding the

governance and future openness of the MySQL code (for details, see Widenius' blog

[February 5, 2009; tinyurl.com/btr9bm6 and December 12, 2009;

tinyurl.com/ba58vpp] and press release (tinyurl.com/auvaxbn)).

Similarly, in 2010, community concerns regarding governance led to a forking of the

OpenOffice (OO; openoffice.org) project. The Document Foundation, which included

a team of long-term contributors to OO, forked the OO code to begin LibreOffice;

(libreoffice.org). The spinoff project emphasized the importance of a “transparent,

collaborative, and inclusive” government (The Document Foundation;

tinyurl.com/bzmw5p2). A recent analysis of the LibreOffice project indicates that

this fork has resulted in a sustainable community with no signs of stagnation

(Gamalielsson and Lundell, 2012; tinyurl.com/a9ev4hu). Given that forking ensures

that any project can continue as long as there is sufficient community interest, we have

previously described forking as the “invisible hand of sustainability” in open source

software (Nyman et al., 2011; tinyurl.com/b8bzorg).

Commonly, forking occurs due to a community’s desire to create different functionality

or focus the project in a new direction. Such forks are based on a difference in software

requirements or focus, rather than a distrust of the project leaders. When they address

disparate community needs, different versions can prosper.

In a traditional company, it is the management, headed by the CEO and board of

directors, that controls the company and provides the impetus for continued

development. While the vision of the leadership is similarly integral to the eventual

success of any open source project, their continued control is more fragile and hinges

upon their relationship with and responses to the community. Forking cannot be

prevented by business models or governance systems. The key lies in appropriate

resource allocation and careful community management. Managers must strike a

delicate balance between providing a driving force while appeasing and unifying the

community. (For an overview of open source governance models, see OSS Watch;

tinyurl.com/bjqpnkn for discussion on building technical communities, see

Skerrett, 2008; timreview.ca/article/160; for discussion on open source

community management, see Byron, 2009; [timreview.ca/article/258]).

6

2.3 Business-ecosystem level

Within the dynamic world of open source software, natural selection acts as a culling

force, constantly choosing only the fittest code to survive (Torvalds, 2001;

tinyurl.com/aaxqux7). However, the right to fork means that any company can

duplicate any competitor’s open source software distributions; thus, competitive

advantage cannot depend on the quality of the code alone. However, it is worth

stressing that possibility does not equal success. The right to fork a commercially

successful program with the intention of competing for the same customer base still

leaves the would-be competitor with issues regarding trademarks, brand value and

recognition, as well as the existing developer and user base of the original program.

Even though forking allows companies to compete with identical open source software,

it is nevertheless cooperation that is considered to be the key to corporate success

(Skerrett, 2011; timreview.ca/article/409; Muegge, 2011;

timreview.ca/article/495).

Open source software is free, but it is also increasingly developed and supported for

commercial gains (Wheeler, 2009; timreview.ca/article/229). While the right to

fork may seem to make for a harsh business environment, open source companies can

and do thrive. With its billion-dollar revenue, (tinyurl.com/b7py36u) Red Hat is one

such example. While their revenue primarily comes from subscriptions and services

related to their software (see Suehle’s [2012; timreview.ca/article/513] TIM Review

Q&A for a more in-depth look at the secret of Red Hat’s success), Red Hat’s programs

themselves are largely based on forks of programs by other developers. This

phenomenon of combining forked programs is not unique to Red Hat: the hundreds of

different Linux distributions (tinyurl.com/85r9o) are all made possible by the

forking of existing products and repackaging them as a new release.

Forking lays the building blocks for innovators to introduce new functionalities into the

market, and the plethora of online forges have hundreds of thousands of programs

available for forking and reuse in any new, creative way the user can imagine, allowing

for the rapid adaptation to the needs of end users. Hence, the practice of forking allows

for the development of a robust, responsive software ecosystem that is able to meet an

abundance of demands (Nyman et al., 2012; tinyurl.com/acg3fp2).

The old adage, "one man’s trash is another man’s treasure" is particularly salient in

open source software development. Soon after Nokia’s abandonment of the MeeGo

7

project in 2011 (press release; tinyurl.com/ad5lh6b; MeeGo summary;

tinyurl.com/9u4xrno), the Finnish company Jolla announced that it would create a

business around its revival, made possible by forking the original code (press release;

tinyurl.com/7bzbo9h). On July 16, 2012, Jolla announced a contract with D. Phone,

one of the largest cell phone retailers in China, and on November 21 they launched

Sailfish OS (tinyurl.com/a4yot8h). However, one does not need to be an open

source business to benefit from the right to fork. Forking can also aid companies who

choose to use an existing program, or develop it for personal use. The requirement in

open source to share one’s source code is linked with distribution, not modification,

which means that one can fork a program and modify it for in-house use without

having to supply the code to others. However, a working knowledge of licenses as well

as license compatibility (when combining programs) is crucial before undertaking such

an endeavour (for a discussion of licenses, see St. Laurent [2004;

tinyurl.com/befxwvc], Välimäki [2005; tinyurl.com/ahljzwu], or Meeker [2008;

tinyurl.com/am93qol] for a discussion of architectural design practices in the

combining of licenses, see Hammouda and colleagues [2010;

tinyurl.com/bfp82mw].

A summary of the ways in which forking can affect governance and help ensure

sustainability is provided in Table 1.

8

Table 1 Forking and its effect on governance

Level How Forking Provides
Sustainability Examples

Software

The right to fork protects against planned
obsolescence, versioning, and vendor
lock-in

Disuse due to decay can be countered by
forking and updating

Microsoft Word vs. LibreOffice

 Fairly common open source
practice (for examples, see
Nyman
[2011;tinyurl.com/arntyur])

Community

Prevents hijacking and other
unfavourable actions by project leaders or
owners through giving developers the
option to continue their own version of
the program

MariaDB forked from MySQL,
LibreOffice forked from
OpenOffice

Ecosystem

Increases innovative potential by allowing
for the combination and modification of
open source projects

Abandoned (or badly handled) projects
can be revived, creating new business
opportunities

Plethora of different Linux
distributions

Abandoned) MeeGo forked to
create Sailfish

Managerial Implications

Managers should consider the following implications of code forking:

• An abandoned project can become a business opportunity.

• Neither business models nor governance systems can completely prevent
forking. Thus, developer and community satisfaction is of key importance.

• A strong, vibrant community is a key issue to consider when implementing an
open source program. When acquiring systems, the potential of forking in
open source software – in particular when coupled with a strong community –
provides opportunities to avoid versioning and vendor lock-in to one provider
of a product or system. However, while community is important, it is not the
only factor to consider. For more on evaluating and selecting open source
software for corporate use, see the May 2008 issue of TIM Review, including
topical articles by Golden (2008; (timreview.ca/article/145), von Rotz
(2008; (timreview.ca/article/147), and Semeteys (2008;
(timreview.ca/article/146).

• There are thousands of open source programs already in existence, which can
be forked. If a need for software arises and open source is an option, begin by
analyzing what already exists on code repositories such as SourceForge;
(sourceforge.net) and GitHub; (github.com). Keep in mind that it is
distribution, not modification, that obligates the sharing of the source code.
Be sure to read up on licenses first!

9

3 CONCLUSION

Forking sits at the intersection of several different open source topics, such as software

development, governance, and company participation in communities and business

ecosystems. In the interest of clarity, we have simplified the categorization of the

multifaceted concept of forking. In actuality, there is overlap among the categories: a

strong community offers better insurance of sustainability of the software level, while

better software can more easily attract a bigger community. Both a poorly handled

community and an abandoned project can spawn a business ecosystem competitor.

The right to fork code is intrinsic to open source software and is guaranteed by all open

source licenses. This right to fork has a significant effect on governance and helps

ensure the sustainability of open source software. We have analyzed the effect of

forking on three different levels: the software level, the community level, and the

ecosystem level. On a software level, code forking serves as a governance mechanism

for sustainability by offering a way to overcome planned obsolescence and decay, as

well as versioning, lock-in, and related concerns. On a community level, code forking

ensures sustainability by providing the community with an escape hatch: the right to

start a new version of the program. Finally, on an ecosystem level, forking serves as a

core component of natural selection and as a catalyst for innovation. Online forges offer

a plethora of publically available programs that can serve as the building blocks of a

new creation. Current projects can be forked, abandoned projects can be revived and

commercialized, or programs can be combined in novel ways to better meet the needs

of both the developers and end users. It is the right to fork that moulds the governance

of open source projects and provides the dynamic vigour found in open source

computing today.

