
PERSONAL VERSION

This is a so-called personal version (author's manuscript as accepted for publishing after the
review process but prior to final layout and copyediting) of the article: Widenius, M M & Nyman,
L M 2014, 'The Business of Open Source Software: A Primer' Technology Innovation
Management Review, vol January, 756, pp. 4-11.
http://timreview.ca/article/756

This version is stored in the Institutional Repository of the Hanken School of Economics,
DHANKEN. Readers are asked to use the official publication in references.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33736436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://timreview.ca/article/756

Technology Innovation Management Review January 2014

4www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

Introduction

In a world built on openness, in which licensing dic-
tates that the product is not only free of charge, but can
be freely copied, modified, and redistributed by enthu-
siasts and competitors alike, how can anyone possibly
make money on open source? The question of how one
can monetize open source software is a significant one.
The quest for, and dissemination of, its answer was the
spark that started what was to become the Technology
Innovation Management Review (Lavigne, 2007: timreview
.ca/article/92; McPhee, 2011: timreview.ca/article/465).

Although much has been learned during the years since
the emergence of open source and the business that
grew to surround it, there are still few articles that at-
tempt to summarize its dynamics. Perhaps the most
well known of those efforts is Hecker’s “Setting up
Shop” (1998; tinyurl.com/28n7o3), which largely focused
on what strategies could be employed utilizing open
source. Now that open source is a much more mature
field than it was back then, we can focus on document-
ing what entrepreneurs have done rather than could do.

The goal of this article is to concisely explain the nuts
and bolts of how the business of open source works, in-
cluding sufficient detail to serve as a useful primer on

the topic – a springboard for further reading. Our focus
is on approaches that generate income based on open
source software and its development (e.g., not hard-
ware manufacturers with an open source involvement).

The article is structured as follows. First, we offer a brief
look at some of the main corporate motivations in open
source. Second, we cover the most common types of
open source licenses and the main aspects and con-
cerns for businesses and programmers regarding licens-
ing. Third, we outline the most significant points in a
piece of software’s earning potential. Finally, we briefly
describe the more common business models in use
today, and we examine their pros and cons from the
standpoints of both the developers and entrepreneurs.
Included at the end of the article is a list of recommend-
ations for further reading.

Background: Corporate Motivations

The adoption of open source code allows businesses to
harness the creativity and labour of both their employ-
ees and their customers in a way that is not available to
firms employing only proprietary software licenses. In-
deed, where developer motivations include many social
motivations, firms have tended to emphasize economic
and technological reasons for entering and contribut-

This article is meant as a primer for those interested in gaining a basic understanding of
the business of open source software. Thus, we cover four main areas: i) what motivates
businesses to get involved in open source; ii) common open source licenses and how they
relate to community and corporate interests; iii) issues regarding the monetization of an
open source program; and iv) open source business models currently employed. This art-
icle is particularly suitable for people who want a general understanding of the business of
open source software; people who want to understand the significant issues regarding an
open source program's potential to generate income; and entrepreneurs who want to cre-
ate a company around open source code.

Ideology isn't what has sold the open source model.
It started gaining attention when it was obvious that
open source was the best method of developing and
improving the highest quality technology.

Linus Torvalds
Software Engineer and creator of the Linux kernel

“ ”

http://timreview.ca/article/92
http://timreview.ca/article/92
http://timreview.ca/article/465
http://hecker.org/writings/setting-up-shop

Technology Innovation Management Review January 2014

5www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

ing to open source (Bonaccorsi and Rossi, 2003;
tinyurl.com/lfx847l). In addition to the possibility of a
shortened development time (e.g., Dahlander, 2007;
tinyurl.com/kg8wdd6), open source projects commonly re-
port a wider adoption of their code (e.g., West, 2003;
tinyurl.com/6s68jno) and receive more high-quality feed-
back and bug reports than closed source projects (see
Schindler [2007; tinyurl.com/mv8eea9] for a comparison).
Open source licensing also enables a faster average
time from discovery to solution (Schindler, 2007;
tinyurl.com/mv8eea9). Indeed, open source products have
been often shown to be superior to their proprietary
counterparts (e.g., Wheeler, 2007; tinyurl.com/r1yk). Fur-
thermore, companies can see development of their
product in directions they did not realize was signific-
ant to their users, as well as the development of fea-
tures that are too far from the firm’s core business to
receive in-house funding for development. As an ex-
ample, only two of the more than 20 language connect-
ors for MySQL were programmed in house; the rest
were developed and submitted by the community.

By joining an open source development effort, corpora-
tions can also influence the direction of its develop-
ment. Furthermore, open source has been identified as
a strategy for implementing long-term sustainable soft-
ware systems (e.g., Lundell and Gamalielsson, 2011;
tinyurl.com/n24dw4u). Open source can also be adopted as
a competitive strategy, for example through making the
functionality of a competitor’s product freely available
(Fitzgerald, 2006; tinyurl.com/al995aj). Open source can
also be of value to companies that offer products other
than software, for example by promoting open source
in areas that facilitate the deployment of their hardware
(Fitzgerald, 2006; tinyurl.com/al995aj).

Open Source Licenses

A basic understanding of licensing is important for en-
trepreneurs and programmers alike. License choice de-
cides what can be done with a program and what other
programs (or, rather, licenses) it can and cannot be
combined with. All open source licenses guarantee
users the rights to use the program, access the source
code, modify the source code, and redistribute the pro-
gram in its original or modified form. However, beyond
these basic rights, licenses differ in significant ways.
Based on these differences, open source licenses are
commonly divided into three main categories: i) per-
missive licenses, ii) weak copyleft licenses, and iii)
strong copyleft licenses. The licensing requirements of
copyleft licenses are only triggered upon distribution.

This means that, for personal use, one can do largely
whatever one wants with open source code, but if and
when one distributes a program the stipulations of the
license are triggered and must then be complied with.
Note, however, that the AGPL license has some minor
restrictions, which will be discussed later.

One of the most important elements of, and differences
between, open source license types relates to a concept
called license compatibility. License compatibility is a
term used to describe the issue of which licenses can be
combined. Particularly, from a business perspective, li-
cense compatibility considers which licenses can be
combined with proprietary software. A further issue,
though one of lesser interest, is that of the right to
change the license, in particular whether one is allowed
to change an open source license to a proprietary one.
For businesses, this may be of interest as a source of
free code. The issue of changing to a proprietary license
splits the developer community into two camps. Those
who are for it generally want to ensure (or at the very
least do not mind) that their code is as valuable to cor-
porate interests as possible. Those who are against it
generally want to ensure that the open source project
remains a freely available community good in perpetu-
ity. The issue of license combining (including embed-
ding) and license change is summarized in Table 1.

Permissive licenses
Permissive licenses allow a high degree of freedom to
use and reuse (or fork) the code. It is not an extreme
oversimplification to distil the permissive licenses
down to the message: “here’s the code, do whatever
you want with it”. (Commonly, one needs to distribute
a copy of the copyright with the code, but in practice,

Table 1. Post-distribution rights of open source license
types

http://dx.doi.org/10.1007/s12130-006-1003-9
http://dx.doi.org/10.1093/icc/dtm026
http://dx.doi.org/10.1016/S0048-7333(03)00052-0
http://blogs.cio.com/esther_schindler/enterprise_developers_programming_speed_check_time_to_fix_bugs_not_so_much
http://blogs.cio.com/esther_schindler/enterprise_developers_programming_speed_check_time_to_fix_bugs_not_so_much
http://www.dwheeler.com/oss_fs_why.html
http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-5650
http://misq.org/the-transformation-of-open-source-software.html
http://misq.org/the-transformation-of-open-source-software.html

Technology Innovation Management Review January 2014

6www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

this need not be more complicated than including a
readme file.) In other words, it is possible to fork a per-
missively licensed program and make it closed source.
(As an example, both Apple’s OS X and iOS operating
systems contain code that was copied from per-
missively licensed open source projects, most notably
BSD: tinyurl.com/kffrf.) An issue which sets the permissive
licenses apart from the copyleft licenses is that, once
the source code is compiled, one does not need to dis-
tribute the original source code with the compiled (i.e.,
binary) version of the program. Among the more com-
mon permissive licenses are the Apache (tinyurl.com/
kmenxch), MIT (tinyurl.com/3vfsyal), and BSD (tinyurl.com/
lejoxn7) licenses.

Weak copyleft licenses (LGPL)
Weak copyleft licenses, such as the GNU Lesser General
Public License (LGPL; tinyurl.com/mp4w4lw), can be com-
bined with proprietary code, but cannot be relicensed
under a proprietary license. So, although a firm’s pro-
prietary program can remain proprietary, even when
combined with the LGPL, the LGPL-licensed program
cannot be made proprietary. Furthermore, any modific-
ations to an LGPL program must also be licensed under
the LGPL. The Mozilla Public License (MPL; mozilla.org/
MPL/) is also a weak copyleft license.

Strong copyleft licenses (GPL)
Much like the LGPL is synonymous with weak copyleft,
the GNU General Public License (GPL; tinyurl.com/2459b5)
is synonymous with strong copyleft. Hence, we will fo-
cus our discussion of strong copyleft licenses on the
GPL. Although use of the GPL is in decline (Aslett, 2011;
tinyurl.com/7ujq7sj), as of the writing of this article, it is
still the most common open source license overall
(Black Duck Knowledgebase; tinyurl.com/nl4z94t). The
GPL requires any modifications to the code to also be li-
censed under the GPL. From a business perspective,
the key issue to be aware of is that combining or embed-
ding a program with the GPL necessitates the (re)licens-
ing of all connected software so that it is also under the
GPL. In practice, this means open sourcing any propri-
etary programs connected to a GPL-licensed program,
and is therefore something many firms seek to avoid.
Importantly, programs licensed under a GPL license
cannot be re-licensed under a more permissive license
(i.e., neither as LGPL or permissive).

A general comment regarding license change is that
one can commonly change a license to a more restrict-
ive license type but not to a more permissive one. Fur-
thermore, only the permissive licenses can be changed
to proprietary.

With the rise of cloud computing, a variation of the GPL
license worth special mention is the Affero General Pub-
lic License (AGPL; tinyurl.com/lzmmq8n). The AGPL differs
from the GPL in that online use of a program is con-
sidered distribution, thus triggering the requirement for
license compliance (i.e., source code access is required)
even though a physical copy of the program has not
been distributed. In other words, using an AGPL-li-
censed program in the cloud necessitates distribution
of source code.

Choosing a license
Open source licensing is a more complex topic than
can be covered in detail here. Furthermore, because leg-
al precedent is rather limited, there are issues regarding
licensing that are still subject to interpretation and that
are coloured, among other things, by pragmatic versus
ideological concerns. Thus, what may and may not be
done under certain conditions is to some extent a mat-
ter of opinion. We recommend a close study of licens-
ing before any final licensing decisions are made. For
further reading, please refer to the links at the end of
this article.

On the Business of Open Source

Establishing a sufficient, steady income is a significant
challenge in creating a company around open source
software. Thus, although open source is a superior de-
velopment model, there is no guarantee that one's pro-
gram will make enough money to fund its continued
development. Of particular significance to the business
of open source are the questions of program ownership
and location in the software stack, because these factors
affect what business models one can choose from. In
particular, the answers to these questions help decide
whether one can employ what is arguably the most luc-
rative open source business model: dual licensing.

Ownership of code
A company or person that owns the rights to the code
they develop can sell closed source copies of the code,
which is a standard practice with proprietary programs.
The dual licensing, business source, and (to a lesser ex-
tent) open core business models, which will be de-
scribed in further detail later, require ownership of the
code.

Location in the software stack (and “embedded” programs)
Most software relies on other software to run. This
concept of software codependence is most apparent in
the so-called software stack. On the top of the stack is
the application: a word processing program, a photo ed-

http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
http://apache.org/licenses/LICENSE-2.0.html
http://apache.org/licenses/LICENSE-2.0.html
http://opensource.org/licenses/MIT
http://linfo.org/bsdlicense.html
http://linfo.org/bsdlicense.html
http://gnu.org/licenses/lgpl.html
http://mozilla.org/MPL/
http://mozilla.org/MPL/
http://gnu.org/licenses/gpl.html
http://blogs.the451group.com/opensource/2011/12/15/on-the-continuing-decline-of-the-gpl/
http://blackducksoftware.com/resources/data/top-20-licenses
http://gnu.org/licenses/agpl-3.0.html

Technology Innovation Management Review January 2014

7www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

itor, a game, etc. Digging deeper, one can find elements
such as databases, middleware, and an operating sys-
tem. It is not important for the purposes of this article
to understand the layers or functions of a software
stack; it is merely enough to know that such layers exist
and that a program’s location in the stack is significant
to its overall importance to the stack. Programs higher
up in the stack rely on programs lower down to func-
tion, but not the other way around. Whereas a word
processor needs an operating system to be able to run,
an operating system does not need a word processor
for it to function. One way for an open source program
to gain potential value is having other programs rely on
it: by being embedded in the software stack and by be-
ing a required component for applications and other
programs to function properly – or even run at all.

Business Models

Although a business model can usefully be seen as
something much more complex than merely a revenue
source (e.g., West, 2007: tinyurl.com/dxsemd; Bailetti, 2009:
timreview.ca/article/226), at its essence is the question of
how the firm can create value for the customer while
simultaneously extracting some of that value for itself
(West, 2005; tinyurl.com/ov69jb8). For the purposes of this
article, we make use of very broad brush strokes in our
interpretation, using the term “business model” to in-
dicate the way in which a company delivers value to a
set of customers at a profit (e.g., Johnson, 2010;
tinyurl.com/m9uf6xe). Recommended reading for more in-
depth analyses of questions related to business models
are offered at the end of the article.

The business models of open source can be divided in
two main categories: those that require complete (or at
least partial) ownership of the code and those that do
not. Table 2 outlines the criteria for selecting an open
source business model; however, it should be noted
that these business models need not be mutually ex-
clusive.

Support contracts and services
Support and services are closely related approaches; in
fact, companies that provide one commonly also
provide the other. Thus, although they could be separ-
ated, we have chosen to group them under one head-
ing. The services business model is one in which
income is generated by offering services in the form of,
for example, training, consulting, or extensions devel-
opment around an open source product. Companies
that offer services will commonly also offer long-term
support contracts, thereby achieving a more stable in-
come than by merely focusing on one-off services. Two
of the main challenges with the support and services
approach are the lack of scalability and that the typical
profit margin of 20–30% is not enough to pay for full-
time developers for the project.

The availability of support and services is an important
factor for customers (e.g., Shanker, 2012; timreview.ca/
article/635) and can be considered a necessary element
for software to become truly successful. Bear in mind
that, although support should be offered, it need not be
provided by the same company that develops the soft-
ware. Examples of a support and services providers are
Red Hat (redhat.com) and SkySQL (skysql.com). For more
information on Red Hat's approach, see Suehle (2012;
timreview.ca/article/635).

Open core or commercial extensions
Open core is a business model in which the core of a
program is open source, with additional closed source
features provided for a fee. Open core has gained much
momentum over the past few years. However, it is an
approach primarily focused on appealing to the ven-
ture capitalist rather than the end user (Prentice, 2010;
tinyurl.com/pqpmptk). The economic rationale is clear-cut,
but the reaction of the community and customers may
not be as easy to estimate. Although pragmatic firm mo-
tivations are accepted by the community provided they
comply with the rules of the community (Bonaccorsi
and Rossi, 2003; tinyurl.com/lfx847l), some developers see

Table 2. Criteria for business model selection

http://www.joelwest.org/Papers/West2007-WP.pdf
http://timreview.ca/article/226
http://openinnovation.berkeley.edu/ranp_chapters/05.pdf
http://www.seizingthewhitespace.com/book
http://timreview.ca/article/635
http://redhat.com
http://skysql.com
http://timreview.ca/article/635
http://blogs.gartner.com/brian_prentice/2010/03/23/open-sources-reality-distortion-field/
http://dx.doi.org/10.1007/s12130-006-1003-9

Technology Innovation Management Review January 2014

8www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

the open core approach a breach of those rules. The
proponents of free software criticize it on ideological
grounds and proponents of open source software criti-
cize it on technical grounds, due to the restrictions to
the development model caused by limited access to the
code. From the perspective of the end user, open core
forces vendor lock-in and is furthermore faulted with
not delivering and sustaining the cost savings and flex-
ibility of open source software (e.g., Phipps, 2012;
tinyurl.com/9tjv8c9). Potential outcomes of adopting this
model may include problems in attracting and main-
taining developers (see Dahlander and Magnusson,
2005: tinyurl.com/88djuec; 2008: tinyurl.com/6w6k95q), or even
the emergence of a competing fork (Nyman, 2013;
tinyurl.com/mahze3o).

However, it should be noted that there are successful
open core projects, which show that the approach can
work. If considering an open core approach, it is worth
bearing in mind that the more useful the core product
is, the greater the potential community interest will be.
Thus, making non-critical parts of the program closed
will lessen the potential negative effect on developer in-
terest in the project. A time-limited hybrid licensing
(Sprewell, 2010; tinyurl.com/n8zeoqr), in which the closed
source components of open core become open source
after a 1–5 year delay, has been proposed to help meet
the demands of both users and developers. However,
we posit that the business source approach explained
below may be a more mutually beneficial means to the
same end. Examples of open core are not as easy to
come by as the frequent discussion of the topic over the
past few years would imply. Perhaps the best-known ex-
ample is MySQL (mysql.com), which offered dual licens-
ing of an identical product (a closed source and a GPL
version) under its previous owners, but has changed to
an open core approach for its free version after it was
purchased by Oracle (Young, 2011; tinyurl.com/3hyxttc).

Business source
Business source is a business model that employs two
different licenses with a time delay. In this business
model, the source code is openly distributed and freely
editable. However, for a set amount of time, a pre-
defined segment of users (0.1–1% is suggested) have to
pay to be allowed to use it. After this initial time period
(3 years is suggested), the license automatically
changes to an open source license. Business source is a
new entrant in the field of open source licensing, which
we first detailed in the June 2013 issue of the Techno-
logy Innovation Management Review (Widenius and Ny-

man, 2013; timreview.ca/article/691). It was created to help
simultaneously meet the needs of both the open source
community and the open source entrepreneur; being
too restrictive in one's licensing can harm community
growth, whereas being too permissive can harm busi-
ness growth. Though a newly introduced concept, there
are already reports of companies switching to business
source, with both developers and owners pleased with
the results (Widenius, 2013; tinyurl.com/mkurs58). For a
more in-depth presentation of the business source ap-
proach, with a sample license, see Widenius and Ny-
man (2013; timreview.ca/article/691).

Dual licensing
Dual licensing is a business model in which a program
is offered under two separate licenses, commonly one
version under a copyleft, GPL-style license and another
under a commercial, closed source license allowing for
proprietary use (and combining with other proprietary
software). Traditionally, the source for both versions is
identical, except for changes in the copyright. Dual li-
censing is the best option for programs that are embed-
ded, and for which one owns the code. The primary
customers are companies who want to include software
in their own packages, but who do not want to release
their code under open source, as is required by the
GPL. Its excellent scalability makes dual licensing the
most potentially lucrative of the business models
presented herein. The first ever program to adopt a
dual licensing approach was Ghostscript (tinyurl.com/
2p6zmt); MySQL (msql.com) – (before and during its own-
ership by Sun – was the second program to utilize this
approach, and the first to use GPL as the open source li-
cense.

Software as a service
Software as a service (SaaS) is a fairly new business
model in which connectors and application program-
ming interfaces are open source but the server code
they connect to is not accessible to the end user. For in-
stance, one may use an application that can access cer-
tain data on a server, but not be able to access the
actual source code (of, for example, the database man-
agement system) on the server one accesses. Although
SaaS is not directly related to open source, it is included
here because it can incorporate open source compon-
ents. Examples of SaaS businesses are Salesforce (sales
force.com) and Web of Trust (mywot.com); in building their
service, they may use open source software on their
servers, but this software is not distributed to their
users.

http://dx.doi.org/10.1016/j.respol.2005.02.003
http://blogs.computerworlduk.com/simon-says/2010/06/open-core-is-bad-for-you/index.htm
http://dx.doi.org/10.1016/j.lrp.2008.09.003
http://hanken.halvi.helsinki.fi/portal/en/publications/freedom-and-forking%285ebc2222-402b-498b-9998-fb95d7a57dee%29.html
http://www.phoronix.com/scan.php?page=article&item=sprewell_licensing
http://mysql.com
http://blogs.oracle.com/MySQL/entry/new_commercial_extensions_for_mysql
http://timreview.ca/article/691
http://monty-says.blogspot.fi/2013/06/business-source-software-license-with.html
http://timreview.ca/article/691
http://en.wikipedia.org/wiki/Ghostscript
http://en.wikipedia.org/wiki/Ghostscript
http://msql.com
http://salesforce.com
http://salesforce.com
http://mywot.com

Technology Innovation Management Review January 2014

9 www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

Managerial Implications

When deciding whether or not to start an open source
project, the following managerial implications should
be considered:

1. Before starting a new open source project, check if a
similar project already exists. Participating in an act-
ive program is preferable to starting a new fork. If
there are similar programs that have been aban-
doned, do some research to find out why they were
abandoned. Repositories such as GitHub (github.com)
and SourceForge (sourceforge.net) have a myriad of
abandoned programs.

2. Find a company or a group of users that want to work
with you to define the scope of the project. From the
start, you will want to have users using the product
while it is still in development.

3. Two of the most important decisions will be business
model and license. If you are planning on relying on
community participation, be mindful of their reac-
tions to both business model and license choices.
See the end of this article for further reading on com-
munity.

4. In choosing a business model, consider these ques-
tions: Do you want to concentrate on services or de-
velopment? Do you plan to have a big community or
work with a few big companies? Do you plan to take
in investors? And, if so, what is your exit plan?

5. In choosing a license, consider these questions: What
will your business model be? How much control do
you want to have over the use (and potential forks) of
your code? What kind of community do you want to
attract around the product?

6. If you plan to rely on community participation, re-
member to use community-creating tools to reach
and communicate with them: web pages, a forum or
knowledge-base, email lists, bug system, build sys-
tems, source code repository, etc. You can start by

hosting your project on GitHub, SourceForge, or an-
other repository, but you will eventually want to host
it yourself.

7. Significant enabling factors for creating a successful
business around open source are ownership of code
and embeddedness (a program's location in the soft-
ware stack). These same factors also largely determ-
ine what business models one can choose from.
Figure 1 provides a flowchart to help choose a busi-
ness model based on ownership, embeddedness, and
intentions for further development. If the flowchart
recommends against starting a business, consider
either partnering, or releasing the code (e.g., under
an Apache or BSD license) for someone else to con-
tinue developing the software.

Figure 1. Flowchart for choosing an open source business
model

http://github.com/
http://sourceforge.net/

Technology Innovation Management Review January 2014

10www.timreview.ca

Citation: Widenius, M. and L. Nyman. 2014. The
Business of Open Source Software: A Primer. Technology
Innovation Management Review. January 2014: 4–11.

Keywords: open, open source business models, open
source software development, open source licenses,
dual licensing, business source, open core,
entrepreneurship

About the Authors

Michael "Monty" Widenius is the founder and
original developer of MySQL and MariaDB. He has
been an entrepreneur since 1979 and is the founder
of MySQL Ab, Monty Program Ab, SkySQL, the Mari-
aDB Foundation, and Open Ocean capital.

Linus Nyman is a doctoral researcher at the Hanken
School of Economics in Helsinki, Finland, where he
is researching code forking in open source software.
A further research interest of his is free-to-play gam-
ing. He also lectures on corporate strategy, open
source software, and the new business models of the
Internet age. Linus has a Master’s degree in econom-
ics from the Hanken School of Economics.

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

Conclusion

Through this primer, we have given a brief answer to
the question: "How can one make money on open
source?" To the uninitiated, financing a business based
solely around the development of open source code
may perhaps seem somewhat enigmatic. Although chal-
lenging, it is nonetheless possible. Our goal in this art-
icle was to clarify this enigma by explaining some of its
most significant parts.

The possibilities for monetization of a program are de-
pendent on many factors, and key among them are
ownership of code, choice of license (including the is-
sue of license compatibility), and location in the soft-
ware stack. These factors in turn affect the choice of
business model.

As a primer, this article will hopefully provide a useful
introduction to the business of open source. It is not in-
tended to cover every aspect of open source businesses
in full detail, nor can it provide conclusive recommend-
ations that will apply in every case. However, in Table 3,
we have included a list of recommended reading for
those that want to dive deeper into the topic.

http://creativecommons.org/licenses/by/3.0

Technology Innovation Management Review January 2014

11www.timreview.ca

The Business of Open Source Software: A Primer
Michael “Monty” Widenius and Linus Nyman

Table 3. Recommended reading

http://lib.tkk.fi/Diss/2005/isbn9529187793/isbn9529187793.pdf
http://ifosslr.org
http://timreview.ca/article/416
http://www.dwheeler.com/essays/floss-license-slide.html
http://dx.doi.org/10.1145/1930488.1930533
http://dx.doi.org/10.1109/HICSS.2013.34
http://www.blackducksoftware.com/resources/data/top-20-licenses
http://opensource.org/licenses
http://www.gnu.org/licenses/license-list.html
http://www.joelwest.org/Papers/West2007-WP.pdf
http://timreview.ca/article/226
http://hecker.org/writings/setting-up-shop
http://timreview.ca/article/366
http://timreview.ca/article/513
http://dx.doi.org/10.1109/MS.2011.50
http://timreview.ca/article/691
http://timreview.ca/article/364
http://timreview.ca/article/463
http://timreview.ca/article/647
http://timreview.ca/article/436
http://timreview.ca/article/635
http://timreview.ca/article/54
http://timreview.ca/article/258
http://dx.doi.org/10.1080/13662710801970142

