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1 Introduction
In 2015 in the United States alone, the revenue of the dating business was
estimated to be at around $2 billion dollars with an annual growth rate of
5% and with over 3900 companies involved [24]. Every fifth American adult
aged 25–34 has tried online dating and 2/3 of them have gone on a date with
someone they met online [51]. The largest of online dating sites boast tens
of millions of registered users [66], and dating site Match.com self-reportedly
has over 2.39 million active subscribers in North America with a revenue of
over $850 million in 2014 [41].

Given the massive user bases of these dating sites, there is need and
value in helping users combat information overload by filtering the most
relevant partner candidates of the abundant pool of choices. Otherwise
users have a hard time finding a partner, as they have to browse through
and communicate with potentially hundreds, if not even thousands, of users
and profiles. While important attributes such as age, location, gender, and
relationship preference can be used to cut down on the number of viable
candidates, the leftover set may still be huge especially for users living in
densely populated areas.

Recommender systems are a means to combat this information overload
and provide users with candidate recommendations personalized to their
preference and profile. Moreover, there is value in such recommender systems,
even for smaller dating sites, because users’ attention and time can be devoted
to only a handful of choices at a time and poor matches may lead to repeated
rejections and discouragement [52].

Recommender systems may also be used to reduce the burden of popular
users, who may receive unruly amounts of messages, and relieve the anguish
of unpopular users and users who continually get rejected by balancing the
way users occur in recommendations.

From the viewpoint of a dating service provider, a recommender has the
potential of becoming a part of the core business, if not the core business
itself. It could be claimed, perhaps a bit hyperbolically, that Amazon.com is
just as much in the retail business as it is in the recommendation business
[19]. Many of the largest online services, such as Netflix, YouTube, Facebook,
and Spotify, utilize recommender systems in their core products and derive
measurable revenue or website traffic from those systems [18, 70].

In this thesis, we introduce recommendation algorithms tailored to the
online dating domain and then empirically analyze and compare their per-
formance on a real-world historical data set gathered from an online dating
service operating in Finnish markets. The scope of the analysis is limited
to offline data. Although much research has been published on evaluating
individual recommenders for online dating, there is less published research
evaluating and comparing methods across authors.

A further contribution of this thesis is the development of a novel rec-
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ommendation method for online dating that utilizes multi-armed bandits,
Bayesian statistics, and elements of previously published methods. The
method attempts to alleviate some of the problems unresolved by previous
methods; however, further real-world evaluation and research is required
before any strong claims can be made about its effectiveness.

The structure of this thesis is as follows. In Section 2 we give a brief
introduction to recommender systems and online dating. In particular, we
highlight special characteristics of the dating domain that need be taken into
consideration when developing recommenders.

In Section 3 we introduce a special class of recommenders, called reciprocal
recommenders, that have been proposed for the online dating domain. We
describe four of them in detail, explaining their inner workings, rationale,
advantages and disadvantages.

Because the presented existing methods do not handle the cold-start prob-
lem satisfactorily, in Section 4, we describe our novel reciprocal recommender,
which we refer to as the Thompson sampling approach. It handles cold-
start users properly, while still maintaining support for truly personalized
recommendations with high coverage.

Section 5 relates to the data set used in the evaluation and comparison
of methods. In this section, we explain how the data set was arrived at, how
it was divided into training and test sets for evaluation, and how profiles
were obtained by means of data preprocessing. The section concludes with
exploratory analysis of the data in an attempt to understand its characteristics
and lend support to some of the claims made in Section 2.2.1.

Section 6 presents the evaluation and comparison of the reciprocal rec-
ommenders. To begin with, the evaluation set-up is described, after which
different measures of success are introduced. Then, the performance of each
of the methods on different measures are presented, after which a discussion
ensues on which method one should choose in what situation.

Section 7 concludes the thesis and provides ideas for future research.

2 Background
In this section, a brief introduction to recommender systems is provided,
followed by a discussion of the problem domain under consideration—that is
online dating. An especially distinctive quality pertaining to online dating
not usually encountered in recommender system literature is reciprocity,
which is the need for both parties, the recommendee and the recommended,
to share mutual interest in each other. We thus delve into this property,
and finally end the section by listing some other domains were this property
holds importance.
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2.1 Recommender systems

Recommender systems are tools, algorithms, or software that provide users
with suggestions, or recommendations, of items that may be of use or of
interest to them. Depending on the application domain, the items may
be anything from books, CDs, movies to services, vacations, or even drug
treatments. Recommender systems are designed to help a user make a
decision, whether it be buying a book, choosing a movie to watch, renting a
car, booking a vacation, or deciding which drug to prescribe a patient [57].

One of the primary motivations for using a recommender system is
to overcome information overload, which refers to the problem of making
a decision in the presence of overwhelmingly many choices or too much
information [3, 47, 57]. Recommender systems also have value in guiding
inexperienced users to items that are of utility to them [57].

A recommender system can also provide value to a service provider. It
can be used to to sell more items, diversify items sold, increase user loyalty,
or learn more about customers’ preferences [57].

Recommendations are often personalized to the user currently being
recommended to [3, 47, 57], i.e., the active user or the recommendee. The
emergence of e-commerce sites, for example, has introduced product catalogs
consisting of hundreds of thousands or even hundreds of millions (Ama-
zon.com) of items [59]. Because users have nor the time or expertise to sift
through such a paramount selection, the need for personalization is apparent
to help users find suitable products to purchase [57, 59].

To be able to provide personalized recommendations, a recommender
system need understand the preferences of a user. These are collected either
explicitly by allowing users to give ratings or thumps up and down signals,
or implicitly by interpreting interest from user actions, e.g., what products
they click on in a web store [57]. The more feedback data are amassed on a
user, the more accurate a user model can be built for personalization.

To decide which items to recommend to a user, a recommender must be
able to predict (or compare) the utility that different items have to a user
[57]. Given user u and item i, the true utility R(u, i) of the item to the user
is estimated by R̂(u, i). In top-k recommendation, given a large set of items
i1, . . . , iN , the system computes R̂(u, i1), . . . , R̂(u, iN ) and provides a list of
recommendations ij1 , . . . , ijK in descending order of utility, where k > 0 is
an integer for which K << N [3, 57].

Based on work by Burke [11], there are six recommendation algorithm
approaches for predicting utility of items. Out of those six, three are topical
to this thesis: content-based recommendation, collaborative filtering, and
hybrid recommenders.

Content-based recommenders exploit the items a user has liked in the past
to recommend new similar items. Similarity of items is based on comparing
associated structured features, such as keyword vectors. A user model is
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aggregated from features of items a user has expressed interest in, and utility
of new items is estimated by calculating similarity to said user model [57].

Collaborative filtering is based on the observation that people often rely
on others’ opinions when making everyday decisions. Collaborative filtering
recommends to an active user items that users with similar taste (neighbors)
have liked. Similarity in taste is based on the similarity of rating history,
e.g., whether two users have liked and disliked similar items in the past. The
assumption is that because two users shared similar taste in the past, they
will continue to like and dislike items similarly in the future as well [57].

The advantages of content-based recommenders compared to collaborative
filtering are as follows. Firstly, recommendations are based solely on feedback
provided by the active user, and no feedback are needed from neighbors.
Secondly, it is easy to explain to a user how his or her previous actions have
lead to the presented recommendations by comparing features of user’s model
to recommended items. In collaborative filtering, explaining the causal link is
harder because it relates to neighbors. Thirdly, content-based recommenders
do not suffer from the new-item problem (collaborative filtering methods
do), in which a new item cannot be recommended because no one has yet
provided feedback on it [57].

One disadvantage of content-based methods is the need for a structured
representation of items. Item representations are often limited and sometimes
do not contain enough information to discriminate between items of use and
no use. For example, a simple keyword vector cannot model the correlations
between words. On the other hand, an overly complicated representation
will require unruly amounts of data to work reliably. There is also the issue
of whether enough information can even be obtained about the items given
available resources and time. Collaborative filtering does not require any
information about items [57].

Another disadvantage of content-based methods is overspecialization. As
content-based recommenders are based on recommending items similar to
what a user has liked in the past, they tend not to recommend unexpected
items unless such considerations are taken into account when developing the
methods. Collaborative filtering can recommend unexpected items, provided
an active user’s neighbors have expressed diverse interests [57].

An issue affecting both collaborative filtering and content-based rec-
ommenders is the cold-start problem [60], in which a new user cannot be
provided accurate recommendations because enough feedback data has not
been gathered on them. If a new user is asked to explicitly rate some items
or define their user model, then the problem may be somewhat alleviated
[20, 57].

Hybrid recommenders combine multiple recommendation approaches in
hopes to use aspects of some to address the shortcomings of others, and
vice versa. In the context of this thesis, the main focus is on combining
collaborative filtering with content-based recommendation to alleviate the
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cold-start and new-item problems. There are several ways of combining
recommenders [57].

Before moving on, it is worth noting that even though in this thesis recom-
mender systems are viewed from an algorithmic point of view, recommender
system research as a discipline lies on the crossroads of machine learning,
information retrieval, and human-computer interaction. Specifically, the
importance of good user experience and user interface design to the perceived
trust and credibility of recommendations should not be underestimated [57].

2.2 Reciprocity

Reciprocal refers to something being "given or felt by each toward the other;
mutual" [1]. In domains where people are looking for other people, the
need to consider the preference of both parties emerges [52]. In traditional
recommendation domains, items are inanimate products or services, whereas
in people-to-people domains, they have preferences of their own and often
limited availability (a person can actively communicate with only so many
people at a time) [52].

In this section, we delve into online dating as an example of a reciprocal
domain. We start off by describing the typical use case of an online dating
service and identify special characteristics that should be taken into consid-
eration when developing a recommender for the domain. One of the most
important characteristics is reciprocity [52], for which special consideration
need be taken when developing recommenders. The section is concluded by
a brief introduction to other domains that exhibit reciprocity.

2.2.1 Online dating

Users sign up to online dating services (often) for the purpose of finding
another person to form a relationship with. The relationship types seeked
are numerous: short-term to long-term, friendship to romantic. Users are
associated with profiles that contain basic information about them and their
preferences. To communicate with others, users exchange messages consisting
of text and pictures.

A typical (successful) interaction in an online dating website goes as
follows.

1. User A registers on the site and fills in his or her profile with information
such as: age, gender, height, interests, location, hair color, photo, self-
description, preferred age, gender, and so forth.

2. User A searches for interesting profiles, views them, and sends a message
to an interesting user B.

3. User B, if active, views the message and the profile of user A and
decides whether to respond.
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4. If interest is reciprocal, the discussion continues.

5. At some point users A and B may exchange contact details and meet
offline, perhaps later on establishing a relationship.

This is just one example of a use case in online dating. Some users wait to
receive initiatives instead of actively approaching users themselves, and some
may just be interested in viewing profiles without sending any messages.

Typically, a user has to purchase tokens or a subscription in order to send
and/or view unconstrained messages albeit some online dating services are
free-of-charge to the user and are funded by other means, e.g., advertisement
revenues. Many services allow users to send predefined messages without any
payment, but in order to exchange contact details, tokens or membership
must be acquired [52].

It is important to understand the unique challenges and limitations that
online dating poses when designing a suitable recommender system. To that
end, let us go through some of these characteristics as originally presented
by Pizzato et al. [52, 56] to highlight the difference to traditional product
recommendation.

The main differences can be summarized as: reciprocity, existence of rich
detailed user profiles, profilic presence of cold-start users, limited availability
of users, and the duality of roles a user can take.

Whilst in traditional recommender systems the success of a list of rec-
ommendations can be assessed by measuring the active user’s response, in
reciprocal domains, success can be viewed from three perspectives: the active
user, the candidate, and whether interest was mutual for both parties, i.e.,
reciprocal.

Indeed, as users of online dating are (typically) looking for partners to
connect with, satisfying the preferences of both parties is paramount. This
implies that recommender systems need to take reciprocity into consideration
when, for example, estimating the utility of a recommendation.

In traditional product recommendation, users are rather reluctant to
explicitly supply information about their preferences, nor the less their
personal information. Sometimes users are not even aware of what their
preferences are [4, 9]. However, in online dating, because they want to find
a partner and are aware that this depends not only on them, but also on
the other party and in providing the other party with a reasonably accurate
profile of themselves, users are willing to provide rich detailed profiles about
themselves and their preferences. This information is valuable and should be
utilized by a recommender to improve recommendation performance.

Regarding user models, compared to traditional product recommendation,
where we perhaps have only an implicit knowledge source available, in online
dating, several knowledge sources are combined to build a user model. A
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user explicitly provides information about themselves and their preferences 1.
As messaging behavior and/or profile browsing history data of the user is
collected over time, an implicit source of preference data becomes available.
All three sources (the explicit profile, the explicit preferences, and the implicit
preferences) can be utilized in building a recommeder’s user model. (As a
side note, in traditional domains personal information about a user is rarely
utilized in recommendation.)

One challenge of online dating has to do with the abundance of cold-start
users. In traditional product recommendation, a satisfied user has a long
history with the service, as they continually come back to it to receive quality
recommendations. If an online dating recommender succeeds in its task, i.e.,
producing recommendations that lead to relationships, served users will leave
the site and may never return. Also dissatisfied users may quit the service
early on because of costs and the anguish of not finding a date. Thus for
many users, use of the service is short-lived and detailed implicit preferences
are not gathered over a long period of time. It is thus imperative that a
recommender for online dating be able to handle cold-start users well.

Another unique aspect of online dating is the limitedness of the items
(other users). A single user can be in serious contact with only so many
different users at one point in time. If a user receives too many initiatives,
they may stop replying entirely or start replying negatively to new initiatives.
In the worst case, the popular user may become distressed by the amount of
messages and quit the service.

On the other hand, if a recommendee receives too many negative responses
when sending initiatives to his or her recommendations, it may discourage
the user. It is thus vital not to overburden popular users by overrepresenting
them in recommendations. This poses a challenge since it is known that,
for example, collaborative filtering has a tendency to favor popular items
[22, 25]. Limitedness is not such a large problem in traditional product
recommendation because the same product can commonly be bought by
several people.

Last but not least is the duality of roles a user can take in online dating.
In traditional product recommendation, users often take a proactive role,
engaging with the system to find new items of interest. In online dating,
a user can either be proactive or reactive. Proactive users actively send
initiatives to other (recommended) users. Reactive users wait for someone
to contact them first. Stereotypically male are proactive and female reactive,
but a recommender should take into account that the role of a user may
change during the course of time.

When designing a recommender for the dating domain, it is important
not to neglect reactive and unpopular users in the presented recommen-
dations because otherwise they will not be found and initiated, leading to

1Explicit preferences are not utilized in methods presented in Section 3 and Section 4.
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dissatisfaction with service. There may be merit in favoring reactive users
over proactive users in recommendations since proactive users will engage
in unprompted discussion anyway. Diversity of recommendations is impor-
tant from the viewpoint of limited availability. In traditional domains, on
the other hand, it may be just fine if some products are never present in
recommendations.

Some of the points raised here have been empirically validated on an
Australian data set by Pizzato et al [52]. They validated that users understand
and are aware of reciprocity in their messaging behavior, i.e., they generally
take into consideration a candidate’s preference before initating paid contact.
They also showed that profile completedness affects number of initiatives
received, implying that users benefit from spending time on filling in their
profile.

Pizzato et al. provide evidence that users’ activity in online dating is
short-lived; they noticed that 25% of users quit the service 4 weeks after
signing up. Regarding proactiveness and reactiveness, Pizzato et al. [52]
notice from data that men tend to be more proactive and women reactive,
confirming that users take on different roles in online dating. Pizzato et al.
also plot success rate as a function of user popularity and notice that indeed,
popular users are less likely to respond positively.

In an earlier study by Akehurst et al. [6], it is shown that implicitly
gathered preferences are a better predictor of reciprocated initiatives than
explicit preferences. Therefore, when enough messaging behavior data are
amassed on an individual, it would be beneficial to utilize that data [52].
This discrepancy between implict and explicit profiles may be due to the
fact that users tend to have problems formulating their preferences in an
accurate manner [7].

In addition to the above studies, in Section 5.2, we perform exploratory
analysis on our data set and lend support to some of the characteristics
presented in this section.

2.2.2 Other reciprocal domains

There are other domains where reciprocity holds importance although they
may exhibit additional considerations of their own that must be taken into
account when developing or choosing suitable recommenders. Domains
in which reciprocal recommenders seem suitable exhibit the following two
properties [52]:

1. The items being recommended are people.

2. Both sides of the recommendation must share interest in each other.

A third property that is not strictly required, but that often crops up
when the term reciprocity is used in conjunction with recommender systems,
is that there is an asymmetrical relationship between two groups of users.

8



Take the case of a recruitment service where job seekers are recommended
employers or employers are recommended job seekers based on posted job
ads and resumes. The two sides play different roles, but both sides are
represented by a person. There is some published work [38, 40, 68] on
developing reciprocal recommenders for such recruitment services.

Other reciprocal domains that have been mention in passing in previous
research are mentor-mentee matching, business partner identification [53], as
well as finding flatmates, selecting reviewers for papers, and finding experts
and research collaborators [52]. Reciprocal recommenders can also be used
to recommend friends on social websites in the likes of Facebook or LinkedIn.

3 Reciprocal recommenders
In reciprocal domains, such as online dating, where the items being rec-
ommended are other users with preferences of their own, a reciprocal rec-
ommender [54] is a recommender that utilizes the preferences of both the
recommendee and the candidate when generating recommendations. Other
terms that have been used to refer to this class of recommenders are people-to-
people recommenders [30, 52] and the dating specific, matchmaking algorithms
[10, 49]. The first of the two is perhaps more commonly used to refer to
the type of recommenders found in traditional social network research, for
example, for recommending friends on a social website like Facebook.

To start off this section, we present an overview of recommendation
methods that have been proposed in the realm of online dating. We then
proceed to build up formal notation for our online dating domain so as to
avoid repetition and to accurately describe the methods in subsections that
follow.

In the latter subsections, considered reciprocal recommendation algo-
rithms are introduced and their implementations carefully explained step-
by-step. Some rationale and background is provided as well, along with
analysis of advantages and disadvantages on a qualitative level. The empiri-
cal comparison of these methods on historical real-world data is presented
in Section 6. For a characterization of the data set itself, please refer to
Section 5.

It should be noted that the methods presented may contain minor modifi-
cations and may not exactly represent those presented in the original research
papers. The reason for this is that often specifics such as parameter values
or algorithmic details are not covered thoroughly in the original papers, our
data set has differences to the articles’, or it was found out in our work that
some modifications seemed to perform better on our data set. All deviations
made consciously are pointed out in the subsections that follow.

The algorithms chosen for deeper study are ones found in literature
that the author of this thesis found were well explained and that had some
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intuitive rationale behind them. As the byproduct of this thesis was an
actual prototype recommender system for a commercial dating site, it was
deemed important to start with the most established of methods that may
yield at least some improvement and that the methods have been empirically
validated on real-world data in previous studies.

3.1 Overview of approaches

Most matchmaking systems today deployed in the real-world are proprietary
and a level of secrecy surrounds them as they are valued trade secrets. Online
dating sites such as Match.com and eHarmony, both powered by recommen-
dation systems, have neither publicly released the details of their algorithms
with the exception of some high-level descriptions of their methodologies.

One of the first published studies on applying recommender systems to
online dating was by Brozovsky et al. [10] in 2007. They reported on applying
the typical user-user and item-item collaborative filtering on a ratings data
set from a Czech online dating service where users rate the attractiveness of
others on a scale from 1 to 10. They did not consider reciprocity, but did
state it as a consideration for future research.

Based on articles searched and collected by the author of this thesis, at
around 2010, a surge of publications from different authors appeared on
applying recommender systems to online dating [13, 14, 34, 54]. After that,
there have been tens of additional publications on the topic.

Kunegis et al. [36], for example, borrowed the concept of split-complex
numbers from abstract algebra to model two orthogonal relationship types:
like/dislike and similar/dissimilar. They then noticed that split-complex
adjacency matrices go hand in hand with singular value decomposition in a
way that allows generation of recommendations. The study was performed
on ratings data and considered user-user interaction data only.

Diaz et al. [14] approached the problem of recommendation in online
dating from an information retrieval perspective, proposing to learn a global
reciprocal ranking function (learning to rank). Their method is quite involved
containing hundreds of engineered features, gradient boosted decision trees
supplied with data preprocessed by logistic regression, and using regular
expressions on message bodies to capture whether contact information such
as phone numbers or email addresses have been exchanged between users.

Multiple hybrid and content-boosted recommenders for online dating are
presented by Kim et al. [28]. They especially focus on the acute problem of
cold-start users and based on empirical evaluation conclude that two methods
rise above the rest. The first one follows the same idea as CCR (Section 3.5),
and the second utilizes compatible subgroup rules (Section 3.6) to seed and
generate the input for collaborative filtering. The latter seems to perform
slightly better on cold-start users but is conceptually and computationally
rather complex.
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Much work on recommenders for online dating has been authored by
a research group from the University of Sydney led by Luiz Pizzato. For
example, the methods RECON and CCR presented later in this section
are by this group. Another interesting method they have proposed is a
stochastic matching approach [56], which addresses the known bias that
recommender systems have towards popular items [22, 25]. The idea is
to match everyone with someone and avoid overburdening popular users
by ensuring that a user receives the same number of recommendations as
they have been recommended to others. Given a list of user pairs and
probabilities that each will have a successful relationship, the task then
becomes to optimize the total number of successful matches by selecting an
appropriate combination of pairs.

Some authors have approached the problem of recommendation in online
dating from an explicitly graph-centric viewpoint: mapping users to nodes
and messages as edges in-between. BehvPred takes into consideration not
only messages but also visits to user profiles to form such edges [63]. The
resulting (gender-)bipartite graph is then partitioned into 8 loose groups,
users are fuzzily assigned to them, and the collective behavior of the groups
are used to generate recommendations.

Kutty et al. [37] also interpreted messaging behavior as a bipartite graph,
but in addition attached user profile information to nodes. The resulting
"attributed bipartite graph" was then used as the basis for developing a rather
involved match-making procedure that utilizes concepts from social network
research and graph theory.

Another graph-based method, MEET [38], models users as nodes but
instead of messages, uses user profile data to form the weighted edges of a
bipartite graph. Weights are calculated using two-way relevance based on
similarity of user profiles. The graph is then partitioned into specialized
subgraphs for computational scalability using co-clustering methods. Each
subgraph is further refined by building a second set of edges based on messages
and attaching user availability information to nodes. Recommendations are
produced by performing graph inference on the local subgraphs.

Numerous variations of collaborative filtering to the reciprocal domain of
online dating have been proposed as well [34, 67, 69]. An especially interesting
discovery was made by Xia et al. [67], who noticed that the recommenders they
tested performed differently depending on the gender of the recommendee. In
particular, men benefited from a reciprocal recommender more than women
hinting that women may be more conscientious towards the preferences of
their candidates than men. Interestingly, they also noticed that collaborative
filtering seemed to beat content-based recommendations by a long shot.

One recurrent trade-off that keeps coming up in the description of these
methods is the degree to which user profiles versus interaction history (e.g.,
messages) should be used to calculate similarity between users or interest
towards users [67]. Data sparsity is a concern when utilizing interactions, but
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user profiles may not always be accurate because they are manually input by
users themselves. Lack of self-awareness or desire to have a more attractive
profile affect accuracy of profiles [52]. Indeed, there are known behavioral
factors that cause people to misrepresent themselves in online dating profiles,
e.g., men overestimating their height and women underestimating their weight
[23].

3.2 Notation

The notation presented is partly based on work by Pizzato et al. [53] with
additional concepts to cater for the multitude of methods presented. The two
important broad level concepts here are user profiles and messaging history
which we formally define in that order.

Let A be the set of profile attributes such as age, gender, height, have
children, want children, eye color, hair color, religion, etc. Each attribute
is associated with either a discrete or a continuous set of values, e.g.,
ahair color = {”blonde”, ”brown”, ”gray”, ”black”} or alike arts ∈ [0, 1]. Most
of the attributes (described in detail later, in Table 5 and Table 6) are of
discrete nature, i.e., countable and finite. These attributes are also referred
to as nominal or categorical in statistical parlance.

Let x be a user. Then the profile of user x is represented as

Ux = {va : for all attributes a ∈ A} ,

where va is the value of attribute a ∈ A for user x. When the situation
demands, Ux,a is used to refer to the value of attribute a for the profile of
user x.

Alongside profiles we also have historical messaging data. The first
message sent by a user to another user is called an initiative. There may
exist a maximum of one initiative between two users. Hence one of them has
to be the initiator.

Denote by Mx,∗ the set of users user x has sent an initiative to. Similarly,
denote by M∗,x the set of users who have sent an initiative to user x.

An initiative will receive either a positive, a negative, or no response from
the recipient. To differentiate between positive, negative, and no response
messages, we use superscript symbols +, −, and null, respectively. For
example, M+

x,∗ is the set of users that have responded positively (reciprocated)
to the initiative of user x, and M−∗,x is the set of users that have sent an
initiative to x but to whom user x has responded negatively (rejected).

A recommendation algorithm produces a list of candidates as output
for each active user. That is an ordered list of candidate users Rx for
each recommendee x. Terms recommendee, active user, and target user
are used interchangeably to refer to the user currently being recommended
to. Recommendation list size may vary, and as is shown in Section 6, the
performance of methods do vary by list size. A recommendation list will
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Figure 1: An example of a user preference. For convenience distributions for
only 3 attributes are shown.

never contain the active user itself (x 6∈ Rx) nor will it contain users that
the active user has had previous interactions with, in other words, it holds
that Rx ∩ (Mx,∗ ∪M∗,x) = ∅.

3.3 RECON: content-based approach

RECON [53] is a reciprocal content-based recommender that utilizes messag-
ing behavior and profile attributes to calculate recommendations. The main
idea is that for each user we build a distribution per profile attribute in order
to model the preferences of the user. These distributions are calculated and
aggregated based on profiles the active user has indicated interest towards,
based on his or her messaging behavior. Having the preferences of a user
captured as profile attribute distributions, we can then easily calculate the
compatibility between the user’s preferences and unmet users’ profiles. These
compatibility scores then serve as the basis for making recommendations.

Being a content-based recommender, RECON utilizes the past behavior
of a user to provide individual recommendations for them. Falling back to the
traditional user-item terminology used in recommendation system research,
the recommender analyzes the items (other users) the user has previously
interacted with and then builds a structured model of the items’ contents in
a hope to capture the preferences of the user. The recommendation process
then simply matches the contents of new items to the model. This results
in a numerical score per new item that can be used to predict the level of
interest a user may have in said item. When the built model is accurate, this
method can work very well [57].

Taking a high-level view of the recommendation process of RECON, we
can identify three separate steps: 1) build a preference model for each user;
2) use the preference model of each user to calculate similarity scores with
unmet users; 3) finally, for each user, create a ranked recommendation list
based on the compatibility scores calculated in the previous step.

The algorithm begins by building a preference model for each user based
on their historical messaging behavior. The output is a set of categorical
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distributions, one for each attribute, as exemplified in the bar plots of Figure 1.
The figure is essentially saying that out of previous messaging partners this
user has expressed interest in, 59% had a profile image, a majority of 90%
were not smokers, and that the candidates have tended towards people with
a mid or high level of education. Another way of thinking about these
distributions is that they capture the preferences of the user. In this case,
the user is not that picky about whether a candidate has a profile image or
not, but the user will likely not prefer smokers.

The technical procedure for building these user preferences is outlined
in Algorithm 1. The first step is to find out which users the active user x
has expressed interest in. These are not only users Mx,∗ that x has sent
initiatives to but also users M+

∗,x, the users whose initiatives x has responded
positively to. The union of these two sets, denoted H, is then the base set
from which the preference model is constructed.

Algorithm 1 RECON: Building a preference model for a user
Require: user x has expressed interest in at least one user. (H 6= ∅)

1: function BuildPreferenceModel(User x)
2: H ← Mx,∗ ∪M+

∗,x
3: for each discrete attribute a ∈ A do
4: for each value v ∈ a do
5: pa,v ← count of users in H with attribute a = v.
6: pa,v ← pa,v

|H|

7: for each continuous attribute a ∈ A do
8: pa ← mean of value of attribute a for users in H.
9: return p

Building up the preference model is a two-stage process. First of all, for
discrete attributes, we enumerate through all attribute-value pairs calculating
the occurrences of each in the profiles of users in H. We then divide each
count with the number of users in H. This effectively normalizes the counts
by attribute so that for each attribute a ∈ A:

∑
v∈a va = 1, meaning that

counts becomes proportions.
The second stage involves continuous attributes in the range of [0, 1].

This is our own extension to RECON, as the original research by Pizzato
et al. [53] addressed only discrete-valued attributes. For each continuous
attribute, we simply take the mean value over all users H.

The result of this procedure is a set of categorical distributions as illus-
trated in Figure 1. In the case of continuous attributes, the distributions
break down essentially to Bernoulli distributions because there is only one
category with parameter p ∈ [0, 1].

The next step of RECON involves calculating compatibility scores. Let
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us jump right in with an example. Suppose there were only the 3 attributes
as illustrated in Figure 1 and that the presented example distributions were
for a user named Mike. Say we also have user Anjelica with an image,
who does not smoke, and who has a mid-level education. Calculating the
compatibility of Mike with Anjelica involves looking at Mike’s distribution
for each attribute and in each case, picking the value that matches with
Anjelica’s profile. The proportions of these values are summed and divided
by the number of attributes to get a value between [0, 1]. The calculation
boils down to

Compatibility (Mike, Anjelica) = 0.59 + 0.90 + 0.60
3 ≈ 0.697.

For the case of continuous attributes, which are assumed to be in [0, 1],
multiplication is used. So say that in addition to the 3 attributes presented
in Figure 1, there is a fourth (continuous) attribute "like arts" that indicates
the level of interest a user has towards arts. If the preference model (plike arts)
of user Mike has a value of 0.8 and the profile of Anjelica a value of 0.5,
then the term 0.5 × 0.8 is added to the numerator of the equation above,
and the denominator is incremented to be 4.

The actual method for calculating compatibility scores has a few addi-
tional corner cases and is presented in Algorithm 2. Firstly, if the active
user has no preference model, we default to returning 0.001. The reasoning
will become apparent in subsequent paragraphs. Suffice to say that in this
situation, we do not have a user preference because the user has not sent or
responded positively to any messages. Therefore we have nothing to work
with to generate scores. Returning a small constant means, as we will soon
see, that when recommending to the "preferenceless" user, we only consider
the preferences of the candidates.

The second edge case on lines 11-12 is when a value has zero occurrences in
an attribute’s distribution. Such is the case, for example, when a compatibility
score is calculated between two male users where the user of the first operand
has not had historical messaging activity with males, in other words, his
behavior has lead us to deduce that he is strictly heterosexual.2

The attentive reader may have noticed that the compatibility score algo-
rithm just introduced calculates a one-way compatibility: the compatibility
that Mike would like Anjelica. But as we are discussing reciprocal recom-
menders, the degree to which Anjelica likes Mike is also important. Indeed,
RECON considers this by calculating compatibility both ways and combining
them by their harmonic mean:

2As a side note, in a real-world production system one should probably rely on the
explicitly stated sexual preference of a user, as automatically inferring this and generating
recommendations based on this could be a bit intrusive from a user experience standpoint.
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Algorithm 2 RECON: Calculating one-way compatibility (adapted) [53]

1: function Compatibility(User x, User y)
2: if user x has no preference model then
3: return 0.001
4: else
5: s ← 0
6: p ← Fetch preference model of user x
7: Uy ← Extract profile of user y
8: for each discrete attribute a ∈ A do
9: v ← value of a in profile Uy
10: q ← pa,v ∈ [0, 1]
11: if q = 0 then
12: return 0
13: else
14: s ← s+ q

15: for each continuous attribute a ∈ A do
16: r ← value of a in profile Uy (in [0, 1])
17: q ← pa ∈ [0, 1]
18: s ← s+ qr

19: return s / |A|

2
Compatibility (Mike, Anjelica)−1 + Compatibility (Anjelica, Mike)−1 .

Why the harmonic mean? The harmonic mean is biased towards smaller
values. If Mike does not match Anjelica’s preference well, for example, if
Anjelica prefers highly educated men that have profile images set up but
Mike has neither a profile image or is highly educated, the compatibility
score may be, say 0.1. Then the harmonic mean between the users will be
around 0.175 while the traditional arithmetic mean will be 0.399.

Pizzato et al. [52] point out that intuitively it makes sense not to assign
large scores to user pairs whose preference towards each other differ consid-
erably because both users’ preferences matter when looking for a partner.
They also briefly allude to their experience according to which best results
were obtained when two-way scores were in-between but biased towards lower
values. Empirical data for this claim, however, is not presented.

Having discussed how to build preference models and how to calculate
two-way scores between pairs of users, we are now ready to explore RECON’s
main procedure, Algorithm 3. This algorithm produces the desired list of
recommended candidates. It is presented from the viewpoint of a single user;
for a real implementation, one may want to calculate the recommendations
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for all users in one-pass in order to avoid the overhead of building preference
models multiple times.

Algorithm 3 RECON: The main procedure, adapted from [53]

1: function RECON(User x, Recommendation list size N)
2: px ← BuildPreferenceModel(x)
3: R ← (Mx,∗ ∪M∗,x){ . unmet users
4: sy ← 0 ∀ y ∈ R . two-way scores
5: for each candidate y ∈ R do
6: a ← Compatibility(x, y)
7: if a > 0 then
8: py ← BuildPreferenceModel(y)
9: b ← Compatibility(y, x)
10: sy ← 2

a−1+b−1 . harmonic mean
11: R ← descending list 〈y1, y2, ..., yj〉 where syi ≥ syi+1∀i
12: return N first elements of R

The algorithm starts off by building a preference model for active user
x, finding all users who have not communicated with x, and initializing all
two-way scores to be zero. It then iterates through the candidates, calculating
a two-way score between each and user x. Finally, the candidates are sorted
in descending order by their two-way score and the first N candidates are
returned.

The advantages of RECON are that it is conceptually quite simple and it
provides highly personalized recommendations based only on the interaction
history of the active user. This means that it is able to adjust to individual
tastes that may differ considerably from the typical preferences of a user’s
cohort. An additional advantage of RECON is that it supports homosexual
and bisexual preferences out of the box. Even proportions between genders
are modeled in the preference model.

Although the necessity to address cold-start users is conveyed multiple
times in the article introducing RECON [53], a major drawback of the method
has to do with them. RECON is able to provide new and reactive users
with recommendations well enough using only the one-way preferences of
the candidates. It does not, however, fair so well in recommending cold-start
users to old users because the 0.001 score returned for them will result in
them being situated at the back of recommendation lists. The case is even
worse when recommending cold-start users to cold-start users because all
two-way scores will be 0.001, providing no mechanism for discriminating
between matches. A large portion of online dating users are cold-start users,
making the problem prominent.

A second drawback has to do with attributes. Each of them contribute
equally to the final score so their relative importance to each other should
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be more or less the same. Correlations between attributes may cause latent
features to be scored multiple times. For example, attributes ahave children
and aage are presumably quite correlated.

Another headache may be caused by attributes whose distributions are
highly skewed. As will be discussed in Section 5.1, left-out attribute "country"
had value "Finland" as its overwhelming majority. Because of sheer numbers,
most users would attain a distribution for country that is also highly-skewed
towards Finland. This does not, however, necessarily mean that they prefer
people who live in Finland, and this could strip them from seeing some
interesting candidates living abroad.

These attribute-related problems may be alleviated by careful feature
engineering. The employed solution for solving the skewness problem in this
thesis was to just leave out problematic attributes as is discussed in detail in
Section 5.1. Some correlation was allowed between attributes as it did not
seem to hurt performance, but this is something that could be studied more
rigorously.

A weighting scheme for the attributes could also be considered. Park
[49] studied a preference model for online dating similar to RECON where
attributes are initially weighted by user-defined weights. After gathering
messaging behavior, the weights are slowly tuned towards the implicit pref-
erences of the user by learning a logistic regression model and transforming
its weights. However, to the author of this thesis, it was left unclear on
what theoretical basis those transformations were made. Moreover, they only
tested their method on simulated artificial data.

Regarding the problem of cold-start users, it was suggested in later work
that a weighted harmonic mean could be used in Algorithm 3 with zero
weights for users without preferences [52]. We tested this strategy, but it did
not lead to better success rate or recall (defined in Section 6.1).

3.4 RECON with negative preferences

We also implemented an extension of RECON that alongside positive prefer-
ence also maintains a negative preference model [55]. This negative preference
model aggregates the attribute values of senders whose initiatives the target
user has rejected (responded negatively to). For example, if a user is very
strict about preferring only non-smokers, this may be reflected in his or
her negative preference which in turn reduces the compatibility score with
smokers. But only if the user has behaved so in their messaging history.

Adaptation of negative preferences is quite straightforward. First of all,
to build the negative preference model, we change line 2 of Algorithm 1 to
use base set H = M−∗,x. These are users whose initiatives user x has rejected.
This change provides us with a negative preference model that we distinguish
from the positive p with an overline p. Moreover, we can make use of the
same compatibility score calculation as presented in Algorithm 2 but instead
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use the negative preference model p in place of the positive one.
The main algorithm of RECON, Algorithm 3, needs to be modified so

that the calculation of variables a and b combines the scores obtained with
preference models p and p. Let us abbreviate the original compatibility
function Compatibility to C+. When instead used with negative model p,
let us denote it as C−. The following formula introduced by Pizzato et al.
[55] is used to calculate the combined compatibility score between two users
x and y:

C±(x, y) = 1
2
[
C+(x, y) + (1− C−(x, y))

]
∈ [0, 1]

The above formula takes the average of two scores, the first of which is the
same score used in basic RECON, which measures how well user y matches
the positive preference of user x. The second score measures how much user
y matches the negative preference of user x. The better the match the closer
C−(x, y) is to one, hence bringing the term 1−C−(x, y) closer to zero. This
of course, in turn, lowers the value of the combined score C±(x, y).

Broadly speaking, a combined score near 1 indicates that a candidate
matches the positive preference of a user well, but differs quite a bit from the
negative preference. Scores of around 0.5 indicate that a candidate matches
the positive preference well, as well as the negative. Values close to zero
indicate that positive preference is not matched at all, worse yet, the negative
preference is matched very well.

As a side note and just for clarification, the combined scores are calculated
before the two-way scores. That is to say the harmonic mean is applied to
the combined compatibility scores C± in Algorithm 3.

The rationale of using RECON with combined preferences instead of
just positive preferences is two-fold. First and foremost, in the empirical
evaluation conducted by Pizzato et al. [55], it was found that extending
RECON with negative preferences resulted in statistically significant im-
provements of success rate (Section 6.1) for recommendation lists of size 1
and 5. Secondly, accounting for negative preferences resulted in a sharp drop
in failure rate (Section 6.1) for small list sizes below 40. In other words, the
chance of receiving a rejection from sending an initiative to a candidate in
the recommendation list was lowered.

On a qualitative level, RECON with negatives serves to reduce, as put
eloquently by Pizzato et al. [55], "the anguish of repeated rejection". Being
repeatedly rejected or overburdening popular users with messages may lead
to churn [55]. It is also valuable to discard undesirable recommendations
from a recommendee’s list of candidates, as this increases the utility of the
recommendations. In some cases, there may be no good recommendations
available for a preference; then at least reducing the risk of rejection may be
valuable [55]. Lastly, making use of rejections means utilizing more available
data, which might have rippling effects on success rate.

One idea for improving the recommendation performance of RECON
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with negatives would be to weight the terms C+ and C− of the combined
compatibility score according to the amount of initiatives and replies available.
In other words, if for a single user we had 25 positive replies and initiatives
available, and 2 negative replies available, we would weight C+ higher than
C− to account for the fact that the positive preference model is based on
more data and is thus likely more accurate.

3.5 CCR: hybrid approach

Content-Collaborative Reciprocal (CCR) [5] is a hybrid approach to reciprocal
recommendation that combines ideas of content-based recommenders and
collaborative filtering to especially address challenges introduced by cold-
start users. As discussed earlier in Section 2.2, cold-start users constitute a
large portion of the user base in online dating.

The recommender is composed of three high-level steps:

1. Given a user x, find the set of similar users Sx, or neighbors, by
comparing selected profile attributes.

2. For each neighbor s in Sx, find the users they have had reciprocal
interest in (i.e., the setM+

s,∗∪M+
∗,s). All these users form the candidate

set Cx.

3. Rank the candidates in Cx by tallying their positive and negative
interactions with users in Sx.

The content-based part of this hybrid recommender is Step 1 in which we
find similar users. This involves comparing the profile of the recommendee
to other users. Steps 2 and 3 are based on collaborative filtering: we find
candidate users based on neighbors’ interactions and then rank them based
on the collective behavior of the neighbors. Conceptually, CCR is rather
simple, but as usual, the technical details contain a few complexities.

There is one considerable assumption in this method that stems from its
reliance on collective behavior. This assumption is that similar people like
and dislike similar people and are liked and disliked by similar people. Take
the case of user Mike who likes Anjelica and Ruby but dislikes Jill. On
the other side, Anjelica dislikes Mike but Ruby and Jill both like him. If
we deem new user Bob similar to Mike (e.g., same age range, location and
body type), we could make an educated guess that the above relations may
apply to new user Bob as well.

The aforementioned hypothesis was empirically validated by Akehurst et
al. [5] on a real-world online dating data set. First of all, they established 5
conceptual interaction groups that relate to a user x. These are x likes, x is
liked by, x dislikes, x is disliked by, and x is reciprocally liked by. They then
performed a correlation analysis to determine the relationship between profile
similarity and users’ interaction groups given two users a and b. To make a
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Attribute distance Ordering
Dheight <155 cm, 156–160 cm, ..., >200 cm
Deducation level low, mid, high
Dsmoking no, occasionally, yes
Dhave children no, yes

Table 1: Ordering of (some of) the attributes considered in the distance
function D.

long story short, they observed moderate correlations (around 0.5) between
profile similarity and similarity of users’ interaction groups. Coefficients of
0.5 are considered reasonably high in studies involving humans [5].

Having discussed the rationale, let us now delve into the technical details
of CCR. The steps of the algorithm are presented in the logical order they
were outlined earlier, and with that in mind, let us begin with Step 1.

The first step of the algorithm involves finding a set of similar users Sx
to the active user x. To determine similarity between two users, we need a
similarity function or its inverse, a distance function. The distance function
D presented here is a variation of the one presented by Akehurst et al. [5],
as their profile attributes were slightly different and they did not consider
location in their study. The selected attributes reflect those used in the
original study with the additional inclusion of the location attribute.

The profile attributes used by the distance metric are age, height, body
type, education level, smoking, have children, and location. The distance
function D is composed of a set of attribute distance functions and it is
simply the sum of them (with a multiplier for age because of its importance):

D(x, y) = 2Dage(x, y) +Dheight(x, y)
+Dbody type(x, y) +Deducation level(x, y)
+Dsmoking(x, y) +Dhave children(x, y) +Dlocation(x, y)

Each attribute distance returns 0, 1, or 2. If either x or y has missing
value n/a then 2 is always returned. Dage is 0 when the absolute difference
between ages is 0-5 units, 1 when the difference is 5-10 units, and 2 otherwise.
Dlocation is the minimum number of adjacent territories that need to be
traversed to get from the location of user x to the location of user y. The
territories are shown in the right-hand side of Figure 5, and the maximum
value is 2 even if sometimes 3 regions need to be crossed.

For each of the nominal attributes listed in Table 1, an ordering is defined,
and then distance is defined as distance between values in the list.

Again, the maximum distance is capped to 2. For example, one user
may have height in the range of 156–160 cm while another user is >200 cm.
Although their distance in the ordered list of values is greater than two, the
attribute distance value used is 2.
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Finally, we have Dbody type. This is rather tricky to define because there
is no inherent or naturally occurring ordering that one could resort to. The
following order is used for the three values: ’slim’, ’average’, ’stocky OR full
figured’. The missing value ’muscular OR athletic’ is defined to have distance
of 0 with itself, 1 with slim and average, and 2 otherwise.

With the attribute distance functions defined, it is now easy to see that
the codomain of function D is {0, 1, 2, . . . , 16}. The lower the value, the
more similar two users are to each other.

Whether or not this is the best way to define similarity/distance is open
to further investigation. Our implementation follows, quite closely given our
data set, what was presented by Akehurst et al. [5]. They had conducted
data analysis to figure out 7 attributes that should be used. Out of those
7, this study used 6, leaving out civil status which was found to be rather
age correlated and skewed. Likewise the inclusion of location was another
necessary deviation, as the original study considered only users living in the
same area.

Given the distance function D, similarity between active user x and all
other users of the same gender is calculated. The other users are grouped
by their distance to x resulting in a maximum of 16 different groups. This
more or less concludes Step 1.

Step 2, the generation of candidates, is outlined in Algorithm 4. The
procedure is given current user x, neighbors Sx grouped by distance (as
calculated in Step 1), and two integer parameter k and c. Parameter k
controls the minimum number of neighbors to analyze, and c is the minimum
desired number of unique candidates to collect. (Note, however, that this
does not imply that c or more candidates will necessarily be returned. This
is because the main loop may terminate prematurely if neighbors are run
out of, i.e., d > 16.)

The procedure goes through the neighbors Sx in order of distance d such
that at each iteration a random neighbor s with distance d is chosen and
removed from Sx. If there are no such neighbors, d is incremented until there
are. All users neighbor s has had positive interactions with, i.e., users of
set M+

s,∗ ∪M+
∗,s, are added to set of viable candidates Cx, provided active

user x has not had previous interactions with them (hence the intersection
with R on Line 12). This process in continued until k neighbors have been
evaluated and c unique candidates have been gathered, or, there are no more
neighbors left.

The double constraint involving integers k and c is in place to ensure two
things. First of all, to make sure that enough candidates are accumulated,
and secondly, to make sure that enough neighbors are considered because oth-
erwise messaging behavior of highly-active users may dominate the generated
candidate set [5].

The third and final step of the algorithm involves ranking the unmet
candidates Cx according to their negative and positive interactions with
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Algorithm 4 CCR: Candidate generation bounded by a double constraint

1: function GenerateCandidates(user x, neighbors Sx, k ∈ N, c ∈ N)
2: R ← (Mx,∗ ∪M∗,x){ . unmet users
3: Cx ← ∅ . candidates
4: d ← 0
5: repeat
6: if Sx does not contain a neighbor with distance d then
7: increment d until that is the case or d > 16.
8: if d > 16 then
9: break loop

10: s ← choose a random neighbor from Sx with distance d
11: remove s from Sx
12: Cx ← Cx ∪ (R ∩ (M+

s,∗ ∪M+
∗,s))

13: until at least k neighbors evaluated and |Cx| ≥ c
14: return candidates Cx

users L, which we denote to stand for the set of neighbors that were popped
from Sx during Algorithm 4. For each candidate c ∈ Cx, we calculate the
level of support:

Support (c, L) =
∑
s∈L

I(c ∈M+
s,∗ ∪M+

∗,s)−
∑
s∈L

I(c ∈M−s,∗ ∪M−∗,s),

I(A) is an indicator variable taking value 1 when A is true and 0 otherwise.
The above formula, for a candidate c, counts the number of times c has
responded positively to or has received a positive reply from a user in Sx.
It then subtracts the number of times c has responded negatively to or has
received a negative reply from a user in Sx. The resulting value indicates
how reciprocally liked candidate c is with users Sx.

The final list of recommendations is obtained by sorting the candidates
in descending order of support and cutting the list to the desired list size
N—assuming there even are that many candidates. In our implementation,
ties are broken arbitrarily.

The ranking method ensures that if a candidate c liked and was liked
collectively by similar users to x, then that candidate should be put higher
in the recommendation list for x. This intuitively seems to make sense.
Another benefit of ranking by support is that it alleviates the burden of
popular users who tend to respond negatively more often thereby pushing
their support down [5]. This in turn also reduces the chance of rejection
from the recommendee’s perspective.

An alternative ranking measure for CCR was proposed in a later study by
Akehurst et al. [6], in which they studied the discrepancy between explicitly
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stated preferences and implicit preferences gathered from user behavior
data. They proposed that for each recommendee x, a NBTree model [31]
(a decision tree with naive Bayes models on its leaves) be learned to model
the preferences of the user—in a similar fashion as was done in RECON.
The learned preference models would then be used to assign probabilities
to candidates for the ranking phase, effectively replacing Step 3 with a
content-based method, and thereby leaving Step 2 to be the only one to
utilize collaborative filtering.

Yet in the results of their study, they found the NBTree ranking to be
no better than the original support-based ranking [6]. As a matter of fact,
their main contribution was to show that explicit preferences are not as good
predictors of messaging success as implicit ones [6]. Based on these facts,
time was not invested during this thesis on implementing the alternative
ranking procedure. However, it does seem like an interesting idea for further
study.

Regarding Algorithm 4, the parameters used in the original study were
k = 100 and c = 250. We found k = 400 and c = 250 to work better for our
data. Different choices of sensible values did not impact performance in any
major way, but an extensive study of the effect of combinations of parameter
values was not conducted.

A disadvantage of CCR compared to RECON is that it does not sup-
port other gender preferences than heterosexual. Modifications to choosing
neighbors and candidates would have to be made to support homosexual or
bisexual preferences.

Like RECON, CCR is able to immediately provide recommendations to a
cold-start user based on their profile. However, it uses collective behavior of
neighbors instead of one-way profile preference to accomplish this which may
yield more reciprocal recommendations. This ensures that new (proactive)
users receive quality recommendations from the get-go.

That being said, CCR cannot (similar to RECON) effectively recommend
a cold-start user to other users because of lack of interactions. Specifically
speaking, because a cold-start user y has had no or few interactions, when
gathering neighbors for a recommendee x, the probability of y having had
an interaction with a neighbor of x is small, and in the case of user y having
no interaction history, the probability is zero implying that there is no way
user y could appear in the recommendations for active user x.

As personal messaging data are amassed on an active user, the method
still provides recommendations based solely on neighbors’ interactions. There-
fore the method is unable to provide personalized recommendations on an
individual level.

An advantage of CCR stems from its ability to utilize messaging data
across similar users to generate recommendations. Moreover, the reliance
on profile attributes is weaker than in RECON because they are only taken
advantage of when calculating distances whereas RECON extensively utilizes
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profile attributes.
Another method called SIM-CF developed independently by Kim et al.

[28] follows the same basic idea as CCR. Interestingly, it was found out in
their study that this simple hybrid approach works pretty well despite its
relative simplicity.

3.6 Multiple compatible subgroups

Multiple compatible subgroups [30] (earlier work [29]) is based on the idea of
using profile attributes to partition the user base into subgroups. Given an
attribute, it is possible to divide the male and female users into subgroups by
attribute value and then measure the reciprocal interest each subgroup of one
gender has towards the subgroups of the other. These subgroup relations are
then encoded as rules which are attached to users for the eventual generation
of recommendations.

The method presented here is based on the premise that similar people
have similar preferences. In sociological studies concerning homophily, it
has been recorded that people with similar traits, forming subgroups, tend
to have similar preferences as well [43]. An empirical correlation study by
Akehurst et al. [5] summarized in Section 3.5 on CCR also lends support to
this theory.

To begin the exposition, we define notation pertaining to multiple com-
patible subgroups, after which we will go through the technical details of the
actual recommendation process, which is rather involved.

A subgroup is defined as a set of users of same gender with identical values
for a set of attributes. Take for example subgroup A that contains men
aged 28–32 that are highly educated and occasionally smoke. Subgroup B
containing females aged 23–27 who are also highly educated and occasional
smokers may be a compatible subgroup, which loosely means that A is more
interested in B compared to other subgroups.

A (multiple) compatible subgroup rule,

a1 = v1 ∧ a2 = v2 ∧ · · · ∧ am = vm ⇒ a1 ∈W1 ∧ a2 ∈W2 ∧ · · · ∧ am ∈Wm,

embodies the relationship between a subgroup and its compatible subgroup(s).
The rule consists of attributes a1, . . . , am, where 1 ≤ m ≤ |A|, and respective
values vi and sets of valuesWi. The conjunction of clauses before the arrow is
the condition and what comes after is the conclusion. Specifically, the former
defines a sender subgroup and the latter defines its (multiple) compatible
subgroups. When the profile of an active user matches the condition (values
v1, . . . , vm match with profile), then the conclusion of the rule can be used
to choose candidates that are members of compatible subgroups.

Extending a rule r with attribute a ∈ A, value v, and value set W results
in a new rule r′ that has clause a = v conjuncted to the condition and a ∈W
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conjuncted to the conclusion. Attribute a must not have been previously
included in r. The new rule r′ is more specific than previous rule r.

Function n(r) returns the number of initiatives sent by the subgroup of
the condition of rule r (sender subgroup) to the (compatible) subgroups of
the conclusion. Likewise n+(r) returns the number of reciprocated initiatives
— those that were positively replied to. The success rate of a rule is then
defined as success(r) = n+(r)/n(r).

The multiple compatible subgroups recommendation process involves two
stages. The first stage involves finding compatible subgroup rules for each
user x, and the second stage involves evaluating these rules to generate and
rank candidates for the final recommendation lists Rx.

Algorithm 5 delineates the steps of rule set construction. It takes as
input the active user x and base success rate s, which is the proportion
of initiatives sent by all users of same gender as x that were reciprocated
(positively replied to).

The algorithm starts off by initializing a cosmetic rule for gender to reflect
the fact that the user set is already considered bipartite (male-female). List
rules is initialized as a singleton consisting solely of this rule.

Algorithm 5 Multiple compatible subgroups: rule set construction

1: function ConstructRules(user x, success rate s ∈ [0, 1])
2: A′ ← A \ {agender}
3: if x is male then
4: r ← (agender = "male"⇒ agender ∈ {"female"})
5: else
6: r ← (agender = "female"⇒ agender ∈ {"male"})
7: rules ← list 〈r〉
8: loop
9: ra, sa ← ExtractRule(r, a, Ux,a) for all a ∈ A′
10: α ← arg maxa∈A′ sa
11: if success rate sα improvement over s insignificant then
12: break loop
13: A′ ← A′ \ {α}
14: r, s ← rα, sα
15: append r to rules
16: return rules

On each iteration, a rule ra and its success rate sa is extracted for
each attribute a not yet included in current rule r. The extracted rules
ra are extensions of the rule r. The rule rα with largest success rate is
chosen as new base rule r, but only if it increases the success rate and the
increase is statistically significant. The final lines of the loop body involve
straightforward bookkeeping to prepare for the next iteration.
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Figure 2: Given a previous success rate of s = 0.12, and with n = 30
initiatives of which n+ = 5 have received positive reply, a p-value of around
0.2882 is obtained by summing the probability mass of (gray) bars n+ to n,
which is equivalent to Equation 1. Hence H0 is not rejected.

To asses whether the increase in success rate has statistical significance,
a one-way binomial test is employed on previous round’s success rate s, the
number of initiatives n(rα) sent by the sender subgroup of the new rule rα,
and the number of positive replies n+(rα) by the compatible subgroups of
rule rα.

The null hypothesis H0 is that the success rate of new rule rα is no better
than the success rate s of current rule [65]. Under the null hypothesis, given
evidence n = n(rα) and n+ = n+(rα), we obtain a p-value of

prα =
n∑

k=n+

Bin(k; s, n) =
n∑

k=n+

(
n

k

)
sk(1− s)n−k. (1)

Operating on a significance level of 5%, we reject the null hypothesis when
prα < 0.05 [65], and proceed to add rule rα to collection rules. Otherwise, we
terminate iteration because success rate increase was deemed insignificant.
An example of not rejecting H0 is given in Figure 2.

The precise statistical test used in the original study was not mentioned.
In previous work by Kim et al. [28], in which they consider rules where only
a single compatible subgroup is allowed, binomial tests were used. These
tests make sense in our context as well because we can think of an initiative
as a Bernoulli trial with two possible outcomes: positive reply (successful),
or negative or no reply (unsuccessful). Given a series of independent and
identically distributed Bernoulli trials, the number of successful outcomes is
modeled by the binomial distribution [65].

Going back to Algorithm 5, sub-procedure ExtractRule is invoked to
find a rule and its success rate were attribute a used to expand the current
rule r. Let us go through this sub-procedure as presented in Algorithm 6.

First off, sets X and Y are initialized so that both conform to the previous
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Algorithm 6 Multiple compatible subgroups: rule extraction
Require: v is value of attribute a for active user

1: function ExtractRule(previous rule r, attribute a, value v)
2: X ← all users defined by condition of r and for whom a = v
3: Y ← all users defined by conclusion of r
4: for each value w of attribute a do
5: Yw ← users of Y for whom a = w
6: sx ← positive reply rate of initiatives sent from X to Yw
7: sy ← positive reply rate of initiatives sent from Yw to X
8: βw ← 2

s−1
x +s−1

y
. harmonic mean

9: µ, σ ← mean and standard deviation of values βw
10: W ← {w : βw ≥ µ+ σ/2}
11: ra ← expand r with attribute a, value v and value set W
12: sa ← SG(ra)
13: return rule ra and success rate sa

rule r. The former contains all users that adhere to the condition and the
latter those that adhere to the conclusion. Additionally, users of X are
filtered by condition a = v according to would-be rule ra.

To determine which compatible subgroups to include in the conclusion of
would-be rule ra, attribute values w corresponding to compatible subgroups
are iterated through. On each iteration, the harmonic mean (denoted βw) of
positive reply rates between users of X and users of Yw (filtered from Y by
a = w) is calculated. The positive reply rate of initiatives sent from users of
set A to users B is calculated as∑

a∈A |M+
a,∗ ∩B|∑

a∈A |Ma,∗ ∩B|
∈ [0, 1].

Set W , representing the selected compatible subgroups, is then composed
of attribute values w whose score βw is at least 0.5 standard deviations above
the mean. Lastly, candidate rule ra is constructed from a, v, and W , and
it alongside its success rate are returned. An example of this algorithm in
action is illustrated in Figure 3.

The motivation for using harmonic mean was discussed in Section 3.3.
The use of threshold µ + σ/2 is a heuristic. This heuristic is based on
(unshown) preliminary analysis done by Kim et al. [30] and in this thesis no
reason was found to change it, as it seemed to work well enough.

That completes our exposition to the rule set construction step of the
recommender. After assigning rules to users, candidates must be generated
and ranked for recommendations.

Given user x with a sequence of rules r1, . . . , rn ordered by increasing
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Figure 3: An illustration of rule extraction given attribute "height". Threshold
µ+ σ/2 is drawn as a horizontal red line. Subgroups whose bar rises above
threshold are chosen for value set W . Adapted from Kim et al. [30].

specificity (i.e., ri+1 is more specific than ri, as is output by Algorithm 5),
candidates are chosen by collecting all unmet users belonging to the com-
patible subgroups of rules r1, . . . , rn. Candidates are then ranked using the
following criteria, with ties broken at each level by using subsequent criteria:

1. In descending order by the most specific rule that applies. For example,
if rk is the most specific rule that applies to user Jim and rl, where
k < l, is the most specific rule that applies to Bob, then Bob is ranked
above Jim.

2. In descending order of individual positive reply rate rounded to two
digits. If rule rk is the most specific that applies to Bob and Jim then
the candidate with higher positive reply rate is ranked above the other.
If candidate is a cold-start user, the base success rate of all users is
used in comparison.

3. In descending order of number of positive replies.

4. In descending order of number of received initiatives.

5. Remaining ties are randomly broken.

The last step then is to cut the recommendation lists so that N or less
candidates are left.

To the author of this thesis, implementing multiple compatible subgroups
required the most interpretation of all methods presented thus far. Details on
how exactly statistical significance was calculated and whether the comparison
was made to the success rate of the previous round or always to the base rate
was left unclear in the method description. Furthermore, regarding ranking,
there was no mention on how to handle cold-start users for whom we have
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no individual positive reply rates. These missing details were addressed as
given above.

An advantage of the multiple compatible subgroups method is that it
is able to recommend cold-start users to old users, vice versa, as well as
recommend cold-start users to other cold-start users. As candidates are
picked from compatible subgroups based on profile attributes, the actual
messaging behavior of a candidate is downplayed (although it still impacts
secondary, tertiary and quaternary ranking).

This global property of the method also has its downside. Recommenda-
tions are not personalized for the individual user but are rather based on
the sender subgroup that the current user happens to belong to by virtue
of their profile. In particular, if the user has preferences that are unlike
those of his or her peers, the user will be presented with recommendations
that may not be to his or her liking. Any messaging behavior gathered later
on will not impact the recommendations received (except for removing met
users from recommendations), but only the position of the user in others’
recommendations will be impacted.

The method is heavily based on male-female preferences and would require
some adaptation and modification for non-heterosexual dating domains.
Notably, the notion of a bipartite graph should be extended to allow for
male-male, female-female, and bisexual preferences.

Further work on the method could involve better secondary ranking of
cold-start users, who are currently assigned the base success rate effectively
pushing them down in recommendations. Kim et al. [28] combined subgroup
rules with collaborative filtering but did so only for compatible subgroup
rules with singe value conclusions [29]. As a further line of research, they
suggested hybridizing multiple compatible subgroup rules as well.

Lastly, the generated rules might have utility in and by themselves. In an
unsupervised setting, for example, one could look for co-occurring attribute
values in conclusions, and use the discovered patterns to gain knowledge
about the data set.

4 Thompson sampling approach
Each of the methods presented in detail in Section 3 suffer from drawbacks
that may render their recommendation performance subpar. RECON and
CCR have problems dealing with cold-start users, while multiple compatible
subgroups method cannot offer truly personalized recommendations. We
decided to develop a novel method that incorporates the strengths of each of
the previous methods, while attempting to avoid their downsides.

Our method casts the problem of recommendation as a multi-armed bandit
problem3 and is inspired by a Bayesian approach to multi-armed bandits

3In the K-armed bandit problem [8], a player is faced by K slot machines, each having
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called Thompson sampling [12]—hence the name of our approach. Our
method combines some of the best elements of earlier algorithms: RECON’s
preference model but in a probabilistic formulation, CCR’s profile distance
function for similarity, and ranking criteria as well as success rates between
groups of users from the multiple compatible subgroups method.

Using these components, users are first presented recommendations ac-
cording to the demography they happen to belong to. As messaging behavior
data is amassed on an individual, their preference model can be steered
towards their demonstrated preferences. Hence cold-start users are handled
appropriately, whilst still being able to provide personalized recommendations
when data become available.

This procedure could be implemented without bandits. Bandits introduce
a degree of randomness to the recommendation process that allows for
occasional surprises and perhaps even serendipitous recommendations. These
are recommendations that are both surprising and useful to (or liked by) the
user [22, 42, 57]. It has been argued that focusing solely on the accuracy of
recommenders is harmful and that alternative metrics such as serendipity
should be considered in conjunction when optimizing for user experience
[42]. Another motivation for adding randomization components is to increase
the (catalog) coverage, i.e., the number of distinct candidates across all
recommendations [22]. These metrics are discussed further in Section 6.1.

Our method consists of two major steps—two phases during which each
a pass is made through the entire recommendation list of an active user.
On the first pass, slots of the recommendation list are allocated for specific
clusters of users. Not until the second pass is the list substantiated with
actual candidates to stand in place of the allocated clusters.

4.1 Statistical models

Before describing the two phases of the recommendation process, we briefly
describe the Bayesian statistics we will be utilizing along with relevant
statistical models.

At the heart of Bayesian statistics is Bayes’ theorem. Given data D and
a hypothesis space H, the probability of hypothesis H ∈ H when having
observed data D is given by

p(H |D) = p(D |H) p(H)
p(D) = p(D |H) p(H)∫

H p(D |H ′)p(H ′)dH ′
.

Above, we treat the hypothesis H as a random variable. Term p(H)
implies a prior distribution over hypothesis space H which models our
subjective belief in the different alternatives before observing any data.

a reward distribution unknown to the player. Given a limited number of pulls, the task of
the player is to come up with an optimal strategy of pulling the K different levers so as to
maxmize the sum of received rewards.
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This is set by us before observing any data. Likelihood p(D |H) is the
probability of observing data D given hypothesis H were true. It is often a
straightforward calculation based on the probability mass/density function
of a statistical model(s). Finally, P (D) is the probability of observing data
D.

Concretely speaking, the hypothesis space H is often represented as a
parameter or vector of parameters (as will become apparent in the next
paragraphs). Secondly, when simply comparing hypotheses, we can drop the
computationally challenging denominator P (D) from the equation, as it only
serves to normalize the result and is constant with respect to hypotheses
H ∈ H.

Given a Bernoulli trial, or an event with two possible outcomes—success
(1) and failure (0)—in which the probability of success stays constant over
subsequent trials, the probability of success is modeled by the simple Bernoulli
distribution: p(X = 1) = p and p(X = 0) = 1− p, where p ∈ R, 0 < p < 1 is
the success probability parameter.

Given some historical trial data D, we may estimate p to be the ratio
of successes occurring in D. This is called maximum likelihood estimation.
However, because we are working with Bayesian statistics, we treat p as
a random variable, and instead update the distribution of p to reflect our
newly gained knowledge.

Before any data however, the hypothesis space ]0, 1[ for p is modeled
using the Beta distribution: p ∼ Beta(α, β). Hyperparameters α > 0 and
β > 0 control the shape of the distribution. Increasing α shifts the density
peak closer to 1 and β shifts it closer to 0. Their sum controls the steepness
of the peak. This reflects the prior distribution p(H), or, our subjective
belief on how p is distributed.

After observing data D, we can calculate an "updated" Beta distribution
p | D ∼ Beta(α + a, β + b) where a is the number of successes and b the
number of failures observed in data D. This is the posterior distribution
p(D |H) and accounts for the data witnessed. The statistics work out nicely
because the Beta distribution is a conjugate prior of the Bernoulli distribution.
Otherwise, p(D |H) may not have a closed-form solution.

The above scenario can be repeated multiple times, i.e., the posterior
distribution updated with new data to gain a new posterior distribution.
After each update, the density peak for p slowly converges towards the true
success rate probability because more data are utilized.

If instead of just success and failure, there are several outcomes or
categories, e.g., red, black, blue, or green, the Categorical distribution can
be used to calculate the probability of a certain category occurring. Given
K categories, each having an event probability pi of occurring, where i ∈
1, . . . ,K and

∑
pi = 1, the probability mass function is quite simply given

by f(i) = p(x = i) = pi.
The multivariate generalization of the Beta distribution is called the
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Dirichlet distribution, and it serves as a conjugate prior to the Categorical
distribution. Its shape is controlled by positive hyperparameters α1, . . . , αK .
It models our belief in different event probability vectors (p1, . . . , pK) ∼
Dirichlet(K,α1, . . . αK) that serve as parameters to the Categorical distri-
bution. Given data D of occurrences of categories, the calculation of the
posterior distribution is done in similar fashion to the Bernoulli-Beta model,
i.e., (p1, . . . , pK) | D ∼ Dirichlet(K,α1 + a1, . . . , αK + aK) where ai the
number of times the i:th category was observed in data D.

4.2 First pass: cluster assignment

The first phase begins with the use of the distance function D of CCR
(presented in Section 3.5) to calculate the distance between users of same
gender. Both male and female users are then hierarchically clustered based
on the distances using an agglomerative (bottom-up) approach based on
Ward’s minimum variance criterion [64]. (The exact variant of the method
is Ward1 without squaring the input distance matrix [45].) The resulting
hierarchies are then cut (or merged) so that k clusters remain per gender.

Given clusters I1, . . . , Ik of male and J1, . . . , Jk of female users, the
messaging relationships between them are modeled using multi-armed bandits
represented as Beta distributions.

Take the example of user Mike in cluster Ii sending a message to Ruby in Jj .
This process can be modeled as a Bernoulli trial in which the reply of Ruby de-
termines whether the outcome is 1 (positive reply) or 0 (otherwise). Given all
initiatives and replies between users of cluster Ii and Jj , and assuming naively
that there is one true probability sij governing whether any user of Ii and of
Jj would have a reciprocal interaction, using maximum likelihood estimation,
the probability estimate becomes sij = #positive replies /#initiatives.

However, instead of a single point estimate, to be Bayesian, a distribution
is put over sij to model the uncertainty of the estimate and to allow for
randomness in the lever pulling phase of the bandit algorithm. The logical
model for the distribution here is the Beta distribution sij ∼ Beta(α, β),
where α > 0 is the number of positive replies (reciprocations) occurring
between clusters Ii, and Jj , and β > 0 is the number of initiatives that were
not replied to or negatively replied to.

Historical messaging data are used to calculate parameters αij and βij
for Beta distributions sij ∼ Beta(αij + α0, βij + β0) for each pair of clusters
i, j ∈ [1, k]. The exact calculations are delineated below.

αij =
∑
x∈Ii
|M+

x,∗ ∩ Jj |+
∑
x∈Jj
|M+

x,∗ ∩ Ii|

βij =
∑
x∈Ii
|Mx,∗ ∩ Jj |+

∑
x∈Jj
|Mx,∗ ∩ Ii| − αij
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Pseudocounts α0 and β0 are used to set prior distributions over sij . Our
strategy is to set them so as to have the mode of prior distributions be equal
to the positive reply rate across all messages (disregarding clusters). Let
0 < c < 1 be this reply rate (desired mode). Then from the equation of
mode for the Beta distribution, the relationship between variables α0 and β0
is derived:

c = α0 − 1
α0 + β0 − 2 =⇒ α0 = c(β0 − 2) + 1

1− c (α0, β0 > 1)

Now we are left with one parameter β0 from which we can infer α0. The
exact value for β0 depends on how certain we are of the prior, and it is left
as a tunable parameter.

Given user x ∈ Ii and candidate c ∈ Jj , to calculate the probability of a
reciprocal interaction occurring between them, in a Bayesian context, the
posterior predictive distribution can be used,

p(Ii ↔ Jj = 1 |M,α0, β0) =
∫ 1

0
p(Ii ↔ Jj = 1 | sij)p(sij |M,α0, β0)dsi,j

=
∫ 1

0
sijp(sij | αij , βij , α0, β0)dsi,j

= E[sij | αij , βij , α0, β0]

= αij + α0
αij + α0 + βij + β0

,

where M represents all available messaging data.
However, in order to induce randomness into the recommendation proce-

dure, instead of using the predictive distribution, the posterior distribution
Beta(αij + α0, βij + β0) is sampled for a reply rate. In the sampling process,
the number of historical initiatives observed beforehand accounts for the
variability of the reply rates drawn. Specifically: more historical data leads
to more certainty, ergo, less variability.

The first pass of the recommendation process is outlined in Algorithm 7.
The first lines involve clustering of users and counting the αij , βij parameter
pairs, as was described in detail earlier. After preliminary work is done, the
recommendation list is pre-allocated with clusters of the opposite sex by
pulling the levers of respective bandits. In other words, given cluster ω of
the active user x, the bandit for each pair (Iω, Jj) j ∈ [1, k] is sampled and
the resulting draws compared. Whichever j had the largest sample is given
the slot of the current iteration n, assuming there are enough users left in
the cluster to fill in the slot.

4.3 Second pass: candidate assignment

After the first pass, each element of the recommendation list is assigned to a
cluster. But exactly which user should be chosen in each case, is still unre-
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Algorithm 7 Thompson sampling approach: 1st pass

1: function FirstPass(user x, recommendation list size N , k ∈ N, β0 > 1)
2: Split users by gender into sets I (same gender as x) and J
3: Split users of each gender into k clusters: I1, . . . , Ik and J1, . . . , Jk
4: αij ← Count positive replies between clusters Ii and Jj
5: βij ← Count negative and no replies between clusters Ii and Jj
6: ω ← cluster of user x
7: slots ← {}
8: mj ← 0 ∀j
9: for each slot n ∈ 1, . . . , N do . assign slots

10: for each cluster j ∈ 1, . . . , k do . pull levers
11: if mj < |Jj | then
12: sωj ← draw sample from Beta(αωj + α0, βωj + β0)
13: ĵ ← arg maxj sωj
14: slots[n] ← ĵ
15: mĵ ← m

ĵ
+ 1

16: return SecondPass(x, slots)

solved. To make that final selection, the second pass of the recommendation
process is invoked, in which the personal preferences of the active user is
considered.

The preferences of a user are modeled using a series of independent
Categorical-Dirichlet models, one per attribute. Given attribute a ∈ A with
K distinct values v1, . . . , vK , the probability of an active user x preferring a
user with some value v is distributed according to the Categorical distribution
v ∼ Categorical(K,pa), where pa = (p1, . . . , pK) is a vector of proportions
for each distinct attribute value and for which conditions pi ∈ [0, 1] and∑
pi = 1 hold. For any value vk, the probability is given by the probability

mass function: p(a = vk) = fa(k ; pa) = pk.
Being Bayesian, parameter pa of the Categorical distribution is interpreted

as a random vector which is distributed according to its conjugate prior, the
Dirichlet distribution: pa ∼ Dirichlet(K,αa), where αa = (αa,1, . . . , αa,K)
is a vector of positive pseudocounts for each distinct value v1, . . . , vK .

Having historical messaging data of user x available, the posterior Dirich-
let distribution for attribute a is described by:

ca = (ca,1, . . . , ca,K)
p | (Mx,∗ ∪M+

∗,x),αa ∼ Dirichlet(K, ca +αa)

The set Mx,∗ ∪M+
∗,x consists of profiles user x has sent initiatives to or

has positively replied to. From these profiles a vector of counts ca ∈ NK
for values v1, . . . , vK of attribute a are aggregated. The counts are used to
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update the Dirichlet distribution to reflect the supposed preferences of the
active user x.

For cold-start users for whom no messaging data are available, the prior
distribution can be used as such, with pseudocounts αa = (1, . . . , 1), making
the prior distribution effectively uniform. The resulting model, however, is
not very useful because it cannot differentiate between and rank the users
within the clusters—the very problem we are out to solve. For this reason, in
addition to counts ca and αa, the positive interactions of l nearest neighbors
w.r.t. distance D of user x are used to form a second count vector da ∈ NK .
As the magnitude of counts obtained in this manner tend to be considerably
higher than the counts ca (because we are counting the interactions of l
neighbors), we divide the vector by the sum of its elements (number of
interactions).

Given user x and user y of opposite gender, the probability of a match,
or both users liking each other, given messaging data M , is modeled as:

p(x↔ y |M) = p(x→ y, y → x |M) ⊥⊥= p(x→ y |M) p(y → x |M)

Preferences of both users are considered for reciprocity and it is assumed
they are independent. A one-way probability is then calculated as:

p(x→ y |M) = p(y | c(x),d(x),α) = p(A = Uy | c(x),d(x),α)
⊥⊥=
∏
a∈A

p(a = Uy,a | c(x)
a ,d(x)

a ,αa)

=
∏
a∈A

fa(Uy,a;p(x)
a )

Above Uy is the profile of user y, fa is the probability mass function for
attribute a, c(x) and d(x) refer to counts related to user x across all attributes
a ∈ A, whilst α are user-independent pseudocounts across all attributes.
Vector p(x)

a refers to an actual parameterization of a categorical distribution
and is obtained as an affine transformation of c(x)

a , d(x)
a , and αa (Shown

soon, in Line 11 of Algorithm 8).
The probability of user x preferring user y thus reduces to the probability

of user x preferring the candidate’s profile attributes Uy (compared to all
other possible combinations of profile attributes). A naive assumption is
made that attributes are independent of each other, which is not really true
since, for example, hair color and age are most likely correlated. Nevertheless,
the model can still prove useful even in the presence of such correlations
since Naive Bayes classifiers, making similar independence assumptions, often
work surprising well in the presence of feature correlation [58].

Algorithm 8 describes the second pass in whole. Lines 3 to 9 are the steps
necessary for calculating the above counts for a single user. After they have
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been calculated, the next step is to arrange the candidates in each considered
cluster, after which the final recommendation list assignments can be made.

Algorithm 8 Thompson sampling approach: 2nd pass
Require: Counts c(y) and d(y) are known in advance for each candidate y.

1: function SecondPass(user x, slots, l ∈ N , pseudocounts α)
2: R ← (Mx,∗ ∪M∗,x){ . unmet users
3: Z ← l nearest neighbors of x (same gender)
4: for attribute a ∈ A do . Initialize counts
5: for value v of attribute a do
6: ca,v ← |

{
y ∈Mx,∗ ∪M+

∗,x : Uy,a = v
}
|

7: da,v ← 0
8: for neighbor z ∈ Z do
9: da,v ← da,v + |

{
y ∈Mz,∗ ∪M+

∗,z : Uy,a = v
}
|

10: for attribute a ∈ A do
11: p

(x)
a ← draw sample from Dirichlet(K, ca + da∑

v
da,v

+αa)

12: for each unique cluster index j ∈ slots do . arrange candidates
13: nj ← number of occurrences of j in slots
14: for each user y ∈ Jj ∩R do
15: pyx ← p(y → x |M)
16: pxy ←

∏
a fa(Uy,a;p

(x)
a )

17: sy ← pyxpxy
18: ry ← positive reply rate of y
19: Cj ← keep nj users from Jj ∩R with largest sy
20: Rank users of Cj by sy and ry; re-arrange by mean rank
21: recs ← empty list . build recommendation list
22: for i ∈ 1, . . . , length(slots) do
23: recs[i] ← pop head of Cslots[i]

24: return recommendation list recs

Unmet candidates are arranged within clusters by probability of two-way
preference between the active user x and candidate y. However, instead of
directly evaluating p(x↔ y |M), the preferences of user x, i.e., p(x)

a ∀a ∈ A,
are sampled from the respective Dirichlet posterior distributions. This is
done in furtherance of randomness. Variation of samples depends, again,
on the amount of messaging data available on active user x. In contrast to
sampling, for the candidates, the posterior predictive distributions are used
as such without any sampling.

After the candidates of a cluster Jj have been ordered, the nj largest
are chosen, where nj is the number of cluster slot assignments. Next,
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these candidates are assigned two distinct ordinal ranks: one by preference
probability sy and the other by positive reply rate ry. If a candidate has
received zero initiatives, the base positive reply rate of their gender is used
instead. For each user, the ranks are summed and divided by two resulting
in the mean rank. Users are then re-arranged based on this score with ties
broken arbitrarily.

Assembling the recommendation list is the final, trivial step. Iterating
through the cluster slot assignments, candidates are picked from within the
clusters in order of mean rank.

4.4 Considerations

Our method consists of four separate parameters. Number of clusters k ∈ N,
number of pseudo negative-or-no replies β0 > 1, number of nearest neighbors
to use l ∈ N, and attribute pseudocounts α. Attribute pseudocounts were
set to induce uniform priors (αa,v = 1 for all a, v). The effect of number
of nearest neighbors l used seemed to have little effect on key measures
(Section 6.1)—a value of 40 worked well. We set β0 = 30; a larger value leads
to a sharper distribution, and vice versa.

The most important attribute with regards to key measures seemed to be
the number of clusters k. A systematic study of the parameter was performed
with other parameters fixed. Testing number of clusters k at 5, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 150, 200, we noticed that increasing k improves
coverage while reducing success rate and recall. A sweet spot seemed to be
k = 40 at which improvement of coverage plateaued, but success rate and
recall did not suffer too much. (See Section 6.1 for measures.)

Further development of our approach could include ideas like employing
alternative clustering methods or distance functions, finding a way to utilize
negative replies separately from no replies, using a probabilistically sound
model for sorting and ranking candidates during the second pass, and instead
of relying on the naive assumption that attributes are independent, model
dependencies using tree-augmented Naive Bayes [21] or learn the conditional
independencies via Bayesian networks [50].

One idea that we were unable to get working well is utilizing individual
messaging behavior during FirstPass by assigning a bandit to each user
that is initialized according to the cluster he or she belongs to. This bandit
could then be refined according to the messaging behavior we have amassed
on said user. The problem here is that the number of initiatives sent between
clusters are magnitudes larger than between individual users. Some sort of
multiplier should be used, but how exactly should one come up with one is
not obvious. We tried different multipliers, but were unable to see any major
improvements in key measures.

Another adjustment that could be made is normalizing da less aggressively.
In the above presented method, the impact of da is small and mostly affects
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Profiles
Total number 26538
Male 15117 (≈ 57%)
Female 11421 (≈ 43%)

Table 2: Summary of profiles data.

Initiatives
Total number 294740
Training set 174636 (≈ 59%)
Test set 120104 (≈ 41%)
Positively replied to (reciprocated) 25831 (≈ 8.8%)
Negatively replied to (rejected) 189101 (≈ 64%)

Table 3: Summary of initiatives data.

users with little to none messaging behavior data available.

5 Data set
In this section, the historical real-world data set used for evaluating and
comparing the algorithms of Section 3 and Section 4 is presented. In next
Section 6, the evaluation set-up alongside its results are presented.

To start off this section, a brief summary of the considered data set is
given, followed up by a walk-through of how it was obtained by means of
data wrangling and transformation and how it was divided into training and
test sets. In the subsection that follows, profile attributes as well as selecting
and engineering them are described, and in the last subsection, a series of
exploratory analyses are presented that characterize the data.

A snapshot of user profiles and messaging history data was sampled
from an online dating website operating in Finnish markets. The data set
consisted of messages exchanged and profiles that had logged in during the
4-month period from October 2014 to January 2015. The final data set, after
filtering and transformation, is summarized in Table 2 and Table 3.

Only users with undeleted profiles that had not been flagged as scammers,
who had not blocked communications, and who had finished creating their
profiles, were included in the data. Messages between two users were included
only if both participants satisfied the above requirements. As a final step,
users who were not involved in at least one message, as either sender or
receiver, were left out. (Table 2 and Table 3 describe the state of affairs after
all these steps.)

We decided to focus on self-reported heterosexual users because this sexual
orientation was overwhelmingly represented in our data set and it eased the
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workload of implementing the recommendation algorithms. The applicability
of each method to non-traditional gender preferences is discussed in Section 3.
In particular, RECON (Section 3.3) provides support for non-traditional
gender preferences out-of-the-box.

Regarding historical messaging data, the metadata of message chains
between users were analyzed to determine the initiator and the number of
messages sent in each direction. Whether any of the initiator’s messages
were read and if any were deleted, was also recorded.

In notation presented in Section 3.2, it is defined that an initiative
may receive a positive (reciprocated), negative (rejected), or no reply at
all. The presented recommender algorithms take advantage of these labels
to differentiate between successful and unsuccessful interactions. However,
in the context of the online dating site that we studied, replies were not
accompanied by explicit positive or negative labels.

To deduce such labels, two basic approaches came to mind: 1) use
number of messages exchanged and their direction to determine whether the
initiative was reciprocated, or "positively replied to" so to speak; 2) use a
natural language processing technique called sentiment analysis [48] on reply
message bodies to determine the mood of the text. The former was settled
on because of its simplicity. Finnish is notoriously hard to analyze because
of its numerous grammatical cases, complex inflections and liberal use of
compound words [33]. Moreover, we were unable to find a Finnish sentiment
analyzer with a permissive license and even if we had, a new question of
whether or not the produced results would have been precise enough may
have arisen.

An initiative begins with the first message in a chain. An initiative is
reciprocated (or positively replied to, or successful) when the chain consists
of at least three messages sent from sender to receiver, and three messages
sent from receiver to sender.

Take the hypothetical discussion below:

A Hello. You seem like an interesting person. Would you like to have a
chat?

B Hi there. I actually just started seeing someone. I wish you the best of
luck in future endeavors!

A Oh, I see. Well, thank you for replying.

Clearly just responding to a message is not strong enough evidence that
two users have initiated a meaningful contact. Even a couple back and forths
may still be considered plain good manners. In a video presentation4 by
Co-Founder Christian Rudder of dating site OkCupid, it was mentioned in
passing that their analysts have defined two messages in both directions to

4https://www.youtube.com/watch?v=YX1gTVa1N78&t=16m21s
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indicate a match. To err on the side of caution, three messages was used in
this study. Admittedly, the choice of value is rather ad hoc and arbitrary.

An initiative is defined as rejected (or negatively replied to) when the
number of messages sent in each direction is 2 or less and the recipient has
read or deleted some of the messages. The thinking here is that sometimes
initiatives are sent to users who no longer use the service. We do not wish
to label such initiatives as rejected so we require that at least one of the
received messages be acted upon. On the other hand, if a recipient has read
or deleted a message but has not replied or has replied with one or two
messages (to politely decline?), it provides evidence that the interest was not
mutual. Finally, whether or not the messages were deleted, only a couple
back and forths imply that the discussion did not sustain for long enough
for a "real connection" to occur between users.

Notice that we equate rejecting with negatively replying. The latter
implies sending a message, which the recipient does not have to do under our
definition. Reading or deleting a message from the initiator is enough. In this
thesis, negative replies are primarily used to model the negative preferences
of a recipient so whether an actual reply occurred or not is irrelevant. Finally,
it should be kept in mind that in addition to positive and negative replies,
there are initiatives that receive no reply. In Section 3.2, these were labeled
as null.

A caveat concerning these two definitions is that non-predefined messaging
costs money. In some cases, the recipient may not be willing to pay for
membership to respond. However in such a situation, the receiver is unable
to even read the message so false positives are avoided. Furthermore, users
of the service may delete old messages from their inbox to keep things in
check. In the later case, we still consider initiatives to be reciprocated if the
number of messages in both directions is 3 or more.

With the aforementioned interpretations of reciprocation and rejection,
it could be said that our task has changed from that of matchmaking to
predicting messaging partners. This is true, but we are still operating
within the realms of a dating site where people get into discussions to,
presumably, find a partner or friend. Therefore, if we predict two users to
have lengthy discussion potential, we are also likely finding good partner
matches. Moreover, from a business viewpoint, it is desirable to help users
find messaging partners because that will increase their overall engagement
with the dating service.

As our goal is to be able to evaluate and compare the recommender algo-
rithms on this data, some of the data need be withheld from the algorithms
in the learning phase. The initiatives were split into training and test sets.
All initiatives initiated between October 1st and December 1st became the
training data that was available for the recommender algorithms to learn
from. Initiatives from December 14th to January 19th became the test set
against which each recommender would be evaluated and compared. The
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Test data

Time

Training data

Figure 4: An illustration on how initiatives and their replies were collected
and divided into training and test sets. Gray blocks indicate pause periods
during which only replies were collected.

splitting was chosen so that approximately 60% of the initiatives were in the
training and the remaining 40% in the test set.

In addition to the training and test periods, two week pauses were held
after each period to collect any remaining replies (positive and negative)
to initiatives of the previous period and to ensure that the training and
test periods were properly insulated from each other so as to minimize
temporal coupling. Any replies that occurred after pauses (to initiatives
occurring before the respective pause) were simply ignored, as otherwise the
recommenders might have had access to information regarding who is active
during the test period. Initiatives sent during pause periods were ignored. A
broad view of the periods and pauses is given in Figure 4.

Profile data were not separated into training and test periods because
they would be readily available in a real world situation (and the task is to
predict reciprocated initiatives not profile features). It should be noted that
we did not have access to changes made to profiles during the 4-month period.
The data collected are the state of the profiles on February 2nd. This means
that if a user, for example, moved to another region during the train-test
period, we only had a record of their latest location and assume they lived
there during the entire period. Ideally we would have access to the profile
attributes in their exact state, whenever a user participated in messages.

5.1 Preprocessing profile data

For user profiles to be useful, an analysis of the raw attributes must be
performed and then acted upon. Some attributes we may do without, for
they may serve only to worsen the results of the recommenders. RECON
(Section 3.3) in particular is sensitive to the distributions and correlations of
attributes.

On the contrary to disclusion, new attributes may be created to capture
hidden features or to fix the granularity of the data by zooming in our out
to an appropriate level of detail. Combining (or collapsing) values of an
attribute may serve the aforestated goals as well. It is also imperative to
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registration date last login date has image
birthday age preference gender preference

relationship preferences zodiac sign self-introduction
partner description gender civil status

have children want children smoking
drinking eye color hair color
height body ethnicity
religion industry education

1st language 2nd language country
region locality general interests

music genres sports #albums
#images user id profile image

Table 4: Raw profile features extracted from original database before per-
forming preprocessing and feature engineering.

have the data in a format that the algorithms can handle. For example, most
methods presented in Section 3 work on categorical data but not on ordinal
or interval type data.

The process described here is often referred to as feature engineering
[15], or more generally, data preprocessing [62]. The two goals are 1) to
ensure that the data are compatible with the algorithms; 2) to squeeze extra
performance from the data. The process often involves hours of manual labor
in order to get the data into a format that is performant [15].

The raw attributes extracted from our profiles database are listed in
Table 4. The attributes that were used without any modification are: has
(profile) image, gender, have children, want children, smoking, drinking, hair
color, height, body, and region. Each of these are rather self-explanatory
and seemingly important in online dating.

Some attributes were used under the hoods but were not that interesting
from the algorithms’ point of view. User ids, gender preferences, registration
dates, and last login dates are used to match profiles to initiatives and in
selection of users for training and test periods. Having said that, registration
dates could be used to identify new users and last login dates actively
participating users, both which may be interesting qualities to people looking
for dates. Gender preferences are of course crucial to users, however, in this
study we focused on users with heterosexual preferences.

Many attributes were discarded because they did not have any apparent
use or predictive capability, their distributions were too skewed, or analyzing
them would have required significant attention and time.

Zodiac signs were left out because there is no reason to believe that they
would have much significance. Ethnicity was left out because it was very
skewed (91% European). Also 1st language and country were very skewed
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(93% Finnish, 98% Finland) and thus dropped. We did not see an immediate
need to include 2nd language although it could be used to detect whether a
person is a native speaker. Age (range) preference was not used (because of
lack of time), but it could provide good prior knowledge for cold-start users
of the age of people they are searching for.

Number of albums, #albums, was also discarded, as a more accurate
representation of how many images a user has is given by attribute #images,
and #albums is just a technicality of how the user has divided those images.

The problem with locality and industry was that there were too many
values for them to be useful and hence they were not included. There were
over 300 localities some of which only had reportedly one person living
in them. It was thus felt that coarser attribute region would work better.
Although for some larger localities, it could prove useful to distinguish
them from the region they reside in, e.g., capital Helsinki from surrounding
region Uusimaa. However, this consideration was not implemented into our
preprocessing.

Industry (of employment) had over 26 options with a miscellaneous
category having a majority of 18% of users. It was not immediately apparent
how the industries should be grouped together for the attribute to be more
useful.

Self-description and (ideal) partner description are free-text attributes
that were not used because they would have required some heavy feature
engineering to be useful. Studies have shown that free-text attributes are
the second most important factor affecting the perceived attractiveness of a
profile in online dating [17]. Finnish is a challenging language for text mining
[33]. That being said, recently emerged free-to-use tools can lemmatize
Finnish words into their base form enabling the use of bag of words and
tf-idf models [39]. Given more time, this would definitely be one aspect we
would have looked further into.

The most important predictor of profile attractiveness, profile images,
were not tackled either [17]. This is a hard problem most likely warranting
an entire body of research of its own, not only regarding how to get semantic
information out of an image, but also on how to utilize this information in
online dating. The author of this thesis is not aware of such work in the
context of online dating matchmaking. Eigenfaces, as studied by Sirovich
et al. [61], could be used to model positive and negative "average" faces as
was done in a recent project 5. Deep learning, a topic very much in vogue, is
currently being harnessed for the task of generating sentences from images
[27]. Perhaps future research on applying this work in online dating could
yield interesting results.

Several attributes were either transformed or their values combined to
create new categories. Birthdays were transformed into ages, and the numeric

5http://crockpotveggies.com/2015/02/09/automating-tinder-with-eigenfaces.html
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(a) Regional map of Finland.6 (b) Attribute "location" created by merg-
ing adjacent regions (color-coded).7

Figure 5: Geographical attributes

ages were turned into age groups by intervals of five. Religions with few
users were clumped into a miscellaneous group. Education backgrounds
were divided into ’low’, ’mid’, and ’high’ depending on whether they have
attended upper-secondary and/or college-level studies. Eye colors of different
shades but same base color were combined as well. For example, "dark
brown" was clumped together with "brown". Number of images, #images,
was transformed into a discrete attribute "total images" of three intervals.

Civil status values were very age skewed with older users preferring labels
"divorced" or "widowed" and younger users preferring "single" to refer to the
same inherent idea. Also reserved older people were usually married while
younger were in a relationship. Values ’widowed’, ’divorced’, and ’single’
were combined, ’married’ and ’in relationship’ were combined. Value ’living
separately’ was left as is. Arguably some semantic distinctions are lost, but
on the other hand, we alleviate the strong correlations with age while still
keeping the most important distinction intact.

6Derivative work based on work by user SokoWiki licensed under CC BY-SA 3.0.
7Derivative work based on work by Fallschirmjäger and licensed under public domain.
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Some attributes were tailored for specific recommenders. The distance
function of CCR (Section 3.5) requires calculating the physical distance
between two users. Adjacent regions were collapsed to form a new coarser
attribute "location". The final result along with original regions is shown
in Figure 5. The combining of regions was based on hierarchical clustering
of messaging data between users of different regions, historical provinces of
Finland from 1997, and making sure that each location had an adequately
sized representation in the user pool.

For RECON, continuous attributes were extracted from original variables
’general interests’, ’music genres’, and ’sports’. For each of these attributes, a
user may select several values (or none). For example, "basketball", "hockey",
and "gym" could be the choices for sports; "rock" and "pop" for music genres;
and "fishing", "politics", and "traveling" as general interests for a single user.
As there were several options (more than 20 for general interests and sports,
and over 10 for music), some collapsing of the choices was deemed necessary.

For each of the three original variables, an incidence matrix was formed
in which users represent rows and columns represent the different choices.
The values in the matrices are binary: 1 when user has chosen the value and
0 otherwise. Correlations between choices were then calculated and these
were turned into dissimilarities that were used to hierarchically cluster the
choices for each of the three original variables.

The formed clusters are tabulated in Table 6. The names for these clusters
were decided based on an intuitive grasp of what sort of original values were
included each. For example, cluster masculine of general interests contained
choices like "automobile", "motorbiking", "hunting", "spectator sports", and
so forth. A user is assigned a value between 0 and 1 for each cluster based on
the proportion of their choices that fall under each. Thus these values can be
interpreted as the degree of interest a user has towards a category of choices.
An additional requirement is that for a group, say "general interests", the
values for clusters of a single user sum up to be equal to one.

In addition to the above attributes, attributes "does sports" and "likes
music" were engineered by counting the number of choices a user has made
on the original multivalued attributes. These counts were discretized so as
to be available for all methods.

The final list of attributes alongside their values after data preprocessing
are presented in Table 5 and Table 6. Many attributes have a "n/a" (not
answered) value indicating that the value was not filled in by the user. In
some cases, such as religion, this may signal that the user does not feel the
attribute is relevant to them. In our methods, we mostly consider "n/a" as a
value of its own without any special meaning albeit there may be merit in
treating them specially, for example, by ignoring them in some cases.

As a final note, an observation about the data set in question. Finland
is known to be ethnically a homogeneous society [2]. This was reflected
in many of the attributes that we studied such as ethnicity, 1st language,
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and religion, each of which turned out to be too skewed to be useful. More
indirectly though, this could been seen in attributes such as eye color and
hair color that had certain values above the others. The challenge that
might be introduced by such attributes is the ability to differentiate between
candidates when making recommendations. Thankfully in this data set, there
were other, less ethnicity-related attributes.

Discrete
Attribute Values
age group 18-22, 23-27, 28-32, . . . , 68-72, 73->
gender male, female
has image true, false
have children yes, no
want children yes, maybe, not relevant at the moment, no, n/a
civil status single, living separately, reserved
smoking yes, occasionally, no, n/a
drinking yes, occasionally, no, n/a
eye color blue, green, brown, gray, multicolored, n/a
hair color brown, blond, dark, dyed, grayish, gray, bald, black, red,

ash blond, white, n/a
height < 155, 156-160, 161-165, . . . , 196-200, > 200, n/a (cm)
body type slim, average, muscular, full-figured, stocky, athletic, n/a
religion Lutheran, Orthodox, Catholic, Protestant, Pentecoastal,

Muslim, agnostic, atheist, other, n/a
education level low, mid, high, n/a
region 19 regions of Finland (2015), other
location8 See Figure 5.
does sports none, some, passionate
likes music none, some, passionate
total images 0, 1-3, 4 or more

Table 5: Final discrete attributes after preprocessing and feature engineering.
"n/a", not answered, indicates missing value.

8Used exclusively by CCR
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Continous
General interests
arts
culture
entertainment
feminine
masculine
Music interests
africanamerican
classical
indie
modern
popular
rock
Sport interests
feminine
masculine
intense
relaxed

Table 6: Final continuous attributes after preprocessing and feature engi-
neering. Each takes a value in the interval [0, 1]. For a single user, the sum
of each group (general, music and, spot) must add up to 1. These attributes
are used exclusively by RECON.

5.2 Exploratory analysis

To get a sense of the data set we are working with, in this section, some key
aspects of the data are characterized by showing the results of exploratory
analysis conducted on said data. Key characteristics are summarized as
tables and figures.

The value of conducting this analysis is two-fold. First of all, we are
able to empirically verify some of the claims made about online dating that
were presented in Section 2.2.1. Secondly, we get a sense of the data we are
working with, thereby enabling us to better develop and utilize methods that
suite the data in question.

In Table 7, the number of unique users active during the training and
the test period are tabulated. Also tabulated is the portion of users active
during the training period that were no longer active during the test period,
and the number of users active during the test period that were not yet
active during the training period.

A few interesting insights are worth noting. Around 36% of users in
the test set are cold-start users, which lends support to the claim that
cold-start users constitute a large portion of the user base in online dating.
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Users in training set 20296 Users in test set 17454
not in test set 9084 (≈ 45%) not in training set 6242 (≈ 36%)

Table 7: Users involved in initiatives during training and test periods.

No messaging behavior data are available for cold-start users meaning that
the recommender algorithms have little personal data to work with when
providing such users with recommendations. This is especially problematic
for RECON, and for CCR to some extent.

It should also be taken into account that 45% of users involved in the
training set are no longer active during the test period. In Section 6, in
which we introduce our set-up for the comparison of methods, it is noted
that we can safely skip generating recommendations for these users, as they
are not involved in interactions in the test set.

Taking a broader view of the two points presented above, it seems that user
involvement with the dating site is sometimes short-lived. Thus the ability
to provide cold-start users with quality recommendations is imperative. This
is one of the motivations for developing our Thompson sampling approach
(Section 4).

In Figure 6, users of the training period are distributed according to their
participation activity in (training) initiatives as both senders and receivers.

To the very left we can see that almost 40% of users have not sent a
single initiative. These users are either inactive or reactive. Reactive users
tend to send no or hardly any initiatives and wait for others to contact them.
To the very right we see that almost 20% of users are very active, i.e., sent
9 initiatives or more. The gray bars indicate popularity, with unpopular
users to the left, and highly popular users to the right. Because of limited
availability per user, it is crucial for the methods not only to recommend
popular users, as they may be easily overburdened with initiatives and choose
not to respond at all.

On the left side of Figure 7, the effect of gender on messaging proactiveness
is shown. Given a user x, their proactiveness is defined as

proactiveness(x) = |Mx,∗| − |M∗,x|
|Mx,∗|+ |M∗,x|

∈ [−1, 1].

A value of -1 indicates that a user only receives messages and 1 indicates
that they only send messages. A value close to zero indicates that a user
sends and receives initiatives equally.

From the left-hand side of Figure 7 we see that in our data set, female
users tend to be reactive and male users active. Interestingly, there is a
substantial portion of men that are highly reactive, which differs from the
results of a similar study presented for an Australian online dating data
set [52]. It is important to recommend reactive users alongside proactive
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Figure 6: Distribution of users (active in training period) by initiatives
sent and received during training period. Notice that users not involved in
messages have been filtered out as described earlier in this section. Thus
zero bars are underestimated with respect to the original data set.
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Figure 7: Effects of gender and popularity on messaging behavior. Figure
types adapted from Pizzato et al. [52] where similar experiments were run
on an Australian data set.

Range of initiatives received [1, 3) [3, 9) ≥ 9
Initiatives 5.3% 13.2% 81.5%
Reciprocated initiatives 24.3% 42.7% 33%

Table 8: Distribution of initiatives sent during training period by popularity
of receiver. Heading denotes the range of initiatives received for users in
each popularity group.

users even if much messaging data about reactive users are not available.
Otherwise, proactive users may not find them and they may leave the service
unsatisfied.

On the right-hand side of Figure 7, positive reply rate, the proportion of
initiatives a user positively replies to, is visualized as a function of number
of initiatives received. The graph seems to indicate that the more popular
a user is, the less likely they are to respond positively. This is because of
limited availability: a user can have meaningful communication with only
so many users at one point in time. A popular user can also be more picky
about who they respond to. It is important not to overburden popular users,
as this may lead to churn on both sides of an initiative.

Finally, in Table 8, the distribution of initiatives and reciprocated ini-
tiatives is studied in the context of receiver popularity. The importance of
balancing candidate popularity, so that not only popular users are recom-
mended, is once again highlighted.
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Although a majority of 81.5% of initiatives sent go to the most popular
users, reciprocated initiatives (those that were positively replied to) are more
evenly distributed across popularity groups. As the goal of a user of an
online dating site is to presumably find a partner or friend, it is clear that a
discussion must ensue before that can happen. The data seems to confirm
that such discussion potential can be found regardless of receiver popularity,
and that balancing recommendations across popularity groups is justified.

6 Comparative analysis of methods
Given algorithms of Section 3 and Section 4 and the data set described in
Section 5, in this section, we evaluate how well the different recommenders
perform, and in particular, how they compare. To that end, a variety of ways
of measuring success on historical data are first listed (Section 6.1). Then
the recommendations produced by the algorithms are put under scrutiny by
comparing them under the different measuring criteria (Section 6.2). The
section is concluded with a discussion of the results (Section 6.3).

The set-up of this evaluation was partly explained in the description
of the data set (Section 5). In essence, the training portion of initiatives
and all profile data are available for the recommenders to learn from. Each
recommender produces a list of recommendations for each user, and the
quality of these lists are evaluated based on different criteria, e.g., how well
initiatives occurring in the test set are predicted in the lists.

An intuition of this setting (See Figure 4) is that the training data is the
"past" and the test data is the "future". "Current time" is at the end of the
first pause. Based on past behavior, we want to see how well the different
methods are able to predict the future, very broadly speaking that is.

More elaborate evaluation protocols, such as traversing time step-by-step
and updating recommender models in the process, could be used instead,
and arguably, they may yield more accurate results [57]. However, the
computational costs associated with such methods were deemed to be too
high since our prototype recommender implementations do not support
incremental updates to models.

A final note about the evaluation set-up. The recommendees to whom
recommendations are given, as well as the candidates recommended, are lim-
ited to users who were involved in an initiative during the test period. Many
users active in the training period have no actions during the test period (as
witnessed in Table 7) and there is little reason to generate recommendations
for them in order evaluate the algorithms. Also the candidates are filtered for
the evaluation metrics to have more data to work on because much cannot
be inferred from candidates who have not been involved in messages in the
test period. This "post-filtering" step is performed after the core parts of
the algorithms have finished to make sure that unfair advantage is not given
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to them.

6.1 Measures of success on historical data

Notation from Section 3.2 is used to define the measures. The measures
introduced (with the exception of POP@N) have been widely applied in
reciprocal recommender evaluations [28, 37, 46, 52, 67, 69].

Let X be the set of all users (involved in test set), M the initiatives of
the test set, and N the desired size of the produced recommendation lists.
Under a given algorithm, for each recommendee x ∈ X, a recommendation
list Rx with maximum size of N is generated. These lists are then mass
evaluated per algorithm using the hereinafter introduced criteria.

Precision at N (P@N),

P@N =
∑
x |Rx ∩Mx,∗|∑

xN
= #initiatives in recommendations

#recommendations ,

gives the proportion of the recommendations that correspond to occurred
initiatives in the test set M regardless of reply type. It effectively measures
the desirability of the recommended candidates from the viewpoint of the
recommendee but not the candidate—it is in this sense a one-way measure.

Success rate at N (S@N),

S@N =
∑
x |Rx ∩M+

x,∗|∑
x |Rx ∩Mx,∗|

= #positive replies in recommendations
#initiatives in recommendations ,

(notice that M+
x,∗ ⊆Mx,∗) is the proportion of (occurred) initiatives in the

recommendations that are reciprocal (positively replied to). This is one of
the most important measures we will be comparing. Reciprocated initiatives
are a major goal because they translate to discussions between users of the
service and may lead them further on into an actual relationship—the very
reason users signed up on the site in the first place.

Failure rate at N (F@N),

F@N =
∑
x |Rx ∩M−x,∗|∑
x |Rx ∩Mx,∗|

= #negative replies in recommendations
#initiatives in recommendations

(notice that M−x,∗ ⊆Mx,∗) is the proportion of (ocurrred) initiatives in the
recommendations that have been rejected (negatively replied to). The smaller
the proportion, the better, as repeated rejections may cause users to leave
the service. Notice that this is not the opposite to success rate, as initiatives
may also receive no reply.

Recall at N (R@N),

R@N =
∑
x |Rx ∩M+

x,∗|∑
x |M+

x,∗|
= #positive replies in recommendations

#positive replies ,
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is the proportion of all known reciprocated initiatives that occur in the
recommendations [52]. Put differently, it measures how many of the known
reciprocated initiatives in the entire test set are to be found in the recom-
mendation lists. It measures how well the recommenders are able to predict
positive interactions that actually occurred under the old system.

(Catalog) Coverage at N (C@N),

C@N = |
⋃
xRx|
|X|

= #unique candidates
#unique users ,

measures the proportion of users that are present as candidates in the recom-
mendation lists [22, 52]. In online dating, where users have limited availability,
it is important not to overburden popular users and allow less popular users
to surface in recommendations as well. Therefore this measure is important
and ideally it should be close to one for a diverse set of recommendations.

Average popularity at N (POP@N),

POP@N = 1∑
x |Rx|

∑
x∈X

∑
r∈Rx

Ktrain(r),

where function Ktrain : X → N gives the number of initiatives a user has
received during the training period, is a novel measure used to compare
biases different methods have towards popular users. The higher the value,
the more the method favors popular users over less popular counterparts.

Besides the ones mentioned above, a great number of alternative measures
have been used in the evaluation of recommender systems as well. The F1
measure takes the harmonic mean between precision and recall (or in our
case, S@N and R@N) [38]. Another summarization of precision and recall
is the Area Under the ROC Curve (AUC) [57].

If one wishes to take positions of candidates in the lists into consideration,
a measure of ranking quality can be used. Normalized Discounted Cumulative
Gain (NDCG) discounts positions logarithmically and has been used in several
evaluations of reciprocal recommenders [14, 38, 63]. Other alternatives are
Average Precision (AP) and Expected Reciprocal Rank (ERR) [14, 36].
Given a list of recommendations, users will typically focus on the first ones
presented to them [26]. Thus, the ranking of recommendations matter. In
our case, instead of directly measuring ranking quality, we used more easily
interpretable measures and varied list size (@N) to capture patience.

If working with ratings data, e.g., attractiveness from 1 to 5, a more
appropriate measure than precision may be MAE (mean absolute error) or
NMAE (normalized mean absolute error) [10, 57].

A desired property of a modern recommender system is its ability to
produce serendipitous recommendations: recommendations that are both
surprising and useful to or liked by the recommendee [22, 42, 44, 57]. In
the case of traditional product recommendation, the feeling of serendipity
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is eloquently described by Ge et al. [22]: "A feeling like seeing at a display
window something you did not know that existed, but that perfectly fits your
lifestyle". In a movie recommendation setting, an accurate recommender
may suggest movies of the same genre and actors that a user has previously
watched. A serendipitous recommender would suggest movies with actors
unbeknown to the user, but that the user would later on discover he or she
likes.

Evaluating serendipity is hard because of the subjectivity of the measure
[22], and because a serendipitous recommender attempts to influence the
behavior of the recommendee. Methods of evaluating serendipity on historical
data have compared results produced by primitive recommenders, with high
accuracy and low unexpectedness, to those produced by a target recommender
[22, 44]. The usefulness of serendipity in reciprocal domains is unclear [52].

The recommenders introduced in this thesis can produce recommendations
for everyone (although recommendation quality may be quite off). In cases
where this is not true, user coverage can be measured over subjects [28].

Evaluating on historical data puts limits to what can be measured and
the reliability of said measurements. Most prominently, the impact of a new
recommender on user behavior cannot be assessed. As the data set has been
gathered under the context of another system, either an old recommender or
no recommender, when evaluating against it, we assume that user behavior
would stay more or less similar had we deployed the new recommender before
the test period [57].

A few dilemmas ensue as well. First of all, we are confined in our measures
by the initiatives, reciprocations, and rejections occurring in the test set
gathered under the old system [55]. For many recommendee-candidate pairs,
it is impossible to deduce whether they would make a good match or not
without an entry in the data. Perhaps they found each others profiles under
the old system, but did not like each other enough to make contact? What
if they were a good match, but under the old system, they were just unable
to find each other? It is impossible to say with the data at hand. It is not
surprising then that many measures have to discard a large portion of the
recommendation lists in their evaluation.

The second point concerns the danger of local optimization. If we take
the test data to be the ultimate ground truth towards which we should strive
by all means, we may soon find ourselves following in the footsteps of the
old system. This is of course pointless because the entire point of developing
and evaluating these recommenders is to come up with a better one [35].

6.2 Results

Seven recommender systems were compared on criteria, introduced in the
previous section, measuring desirable traits of an online dating recommender.
Alongside the five main methods (RECON, RECON with negative preferences,
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Figure 8: Comparison of success rate S@N and recall R@N by recommen-
dation list size N . Dashed line represents the base rate in the test set.

CCR, multiple compatible subgroups, and Thompson sampling), a random
method was evaluted as a baseline, and an ensemble of methods named
’voting’ was evaluated as well.

The random method was implemented as a sort of a control to confirm
that the results obtained are meaningful. For each active user, it generates a
random list of unmet candidates of opposite sex who are within the explicitly
defined age preference range of the active user and the active user is in the
candidate’s respective range.

The voting ensemble allowed each of the three methods, CCR, multiple
compatible subgroups, and Thompson sampling, to vote on the position a
candidate should get on the final recommendation list. The votes were then
averaged per candidate and the final ranking produced.

Recommendation lists of maximum size 10, 20, 30, 50, 100, 200, and 250,
corresponding to different patience levels, were evaluated and are illustrated
in the plots that follow.

In Figure 8 the success rate and recall of the methods are compared. As
is to be expected, success rate falls and recall increases as a function of N .
The base success rate is marked as a thin dashed black line and reflects the
proportion of initiatives in the test set that were positively replied to. Notice
that recall at N (R@N) is inherently bounded above by list size N . This is
because if a user is known to have initiated 20 reciprocated initiatives, with
N = 10, only half of them could be returned in the best case scenario.
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Figure 9: Comparison of coverage C@N and average popularity POP@N
by recommendation list size N .

In Figure 9 coverage and average popularity are compared. As expected,
coverage increases with list size, with the exception of CCR that plateaus
at N = 50. Interestingly, coverages start off at quite different levels at
N = 10. Average popularity exhibits no consistent growth or decay behavior
throughout the different methods. Be that as it may, the methods do reside
at different levels with respect to each other.

In Figure 10 precision and failure rate of the methods are compared.
These measures are less important to our discussion but still worth studying.
Only RECON with negatives can truly prevent rejections, as it and the
random method are the only to achieve rates below base failure rate. The
ability to predict initiatives occurring during the test period is low throughout
all methods, as witnessed by the low values of precision.

6.3 Discussion

Given the results of the previous section, it is clear that different methods
shine on different criteria and that a trade-off has to be made when choosing
one.

The clear winners of success rate are the voting ensemble and multiple
compatible subgroups method. CCR and Thompson are in the mid-tier, and
RECONs perform worst but still above base rate. One reason RECONs’
peformance is not up to par with the rest may be because of their minimal
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Figure 10: Comparison of precision P@N and failure rate F@N by rec-
ommendation list size N . Dashed line represents the base rate in the test
set.

support for cold-start users. Rather unexpectedly, RECON with negatives
performs worse than RECON which goes against the results of the original
paper [55]. Why exactly this is, is not clear to the author of this thesis.

The high success rate of the multiple compatible subgroups method lends
support to the idea that recommending to users based on the demography they
belong to can lead to good recommendations. A concern with this approach
had to do with its inability to provide truly personalized recommendations.
For example, if a user’s taste differs radically from his or her cohort, produced
recommendations may not be to his or her liking. However, at least on average,
and on offline data, recommendation based on subgroups seems viable. It
is worth noting that success rate gains are also most likely procured by
the method handling cold-start users appropriately, at least compared to
RECON and CCR.

In recall, the recommenders start (N = 10) at approximately the same
point. As recommendation list size increases, RECON gains an upper hand,
and the growth of Thompson sampling stagnates with respect to others,
which may perhaps be caused by its randomization components.

On the other hand, when it comes to coverage, Thompson sampling seems
to benefit from randomization. RECONs perform very well on coverage as
well. CCR’s growth stagnates on coverage hinting at some inherent limit to
the portion of users it can recommend. This is worrisome because as was

58



discussed in Section 2.2.1, users have limited availability, and it is imperative
to have a diverse set of candidates in recommendations.

Recall is rather hard to interpret in our context because it measures
the portion of reciprocated initiatives that occurred in recommendations. A
method with bad recall does not necessarily produce irrelevant recommen-
dations. It may just be that its candidates do not correspond to occurred
initiatives in the data set at hand. On the contrary, a method with good re-
call is able to provide recommendations that correspond to actually occurred
reciprocated initiatives. This lends support to the idea that the method is
providing relevant recommendations, at least from the point of view of the
old system.

It is interesting that the ordering of methods for coverage is almost the
reverse of what is for success rate, i.e., a method with high success rate
has low coverage. We took notice of this phenomenon when developing our
Thompson sampling approach: increases in coverage tend to go hand in hand
with decreases in success rate. Perhaps by increasing coverage, we begin to
cover candidates that never reply positively, and this hurts success rate? It
would be interesting to study this point further, and to understand if both
quantities can be increased simultaneously or not.

The average popularity of candidates recommended by the methods varies
quite a lot. Multiple compatible subgroups method tends to recommend less
popular users, while RECONs and CCR favor popular candidates. Thompson
sampling and voting ensemble stay on middle ground.

There is uncertainty on how the popularity measure POP@N should be
interpreted. Average popularity being high is presumably undesirable, as it
indicates that only popular users are being recommended. Should one, then,
optimize for as low popularity as possible, or is there a middle ground to
be found instead? Perhaps measuring the spread of candidates’ popularity
could be of utility as well when comparing reciprocal recommenders.

With regards to failure rate, only RECON with negatives seems to prevent
negative replies from occurring compared to the baseline. Most methods
actually incur worse failure rate than the baseline (Thompson sampling
especially). On the other hand, users accepting recommendations from these
other methods and sending initiatives accordingly will at least more often
receive a negative response compared to none at all.

Since RECON, Thompson sampling, and multiple compatible subgroups
do not explicitly consider negative replies, it is not surprising that their
failure rate is not lowered. What is a bit surprising, is that CCR is unable
to reduce failure rate compared to the baseline even though it takes negative
replies into account when ranking users by support.

Lastly, RECON and RECON with negatives perform best in precision,
CCR resides in the middle, and the rest come last. In a situation where
reciprocity is less important and the attractiveness of recommendations
matters solely from the viewpoint of the recommendee, RECON seems like
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a good choice. However, it is the opinion of the author of this thesis that
although such recommendations may initially prove interesting to the user,
in the long run, optimizing only for precision may lead to recommending
candidates that do not reciprocate. Therefore the recommendee may become
bored and/or frustrated because of lack of response or abundance of negative
response. At least in online dating, success rate may be a more useful
quantity to aim for instead.

Although Pizzato et al. [55] argue for the usefulness of avoiding negative
replies, it is the opinion of the author of this thesis that failure rate is not
perhaps such an important quantity to optimize for. If we ignore reciprocated
initiatives for a moment, the two other options are: negative reply and no
reply. It is the author’s opinion that neither is really a better outcome than
the other. Conversely, some time-conscious users may appreciate an honest
"no" to no response at all.

If accuracy of predictions, i.e., success rate, is the most important quantity,
then voting ensemble or multiple compatible subgroups should be chosen.
Voting ensemble seems to have a slight upper hand in recall, coverage, and
precision, so it may be the better choice albeit it is a hard-to-interpret black
box model. If model interpretation matters, multiple compatible subgroups
could be preferred. In addition to ease of interpretation, multiple compatible
subgroups method also has lower average popularity than voting ensemble.

In recent recommender system research, it has been argued that focus
should not lie solely on prediction accuracy because recommendations based
purely on accuracy may not be useful to the user and may even hurt the
user experience [42].

Looking at the results of the previous section, it would seem as if Thomp-
son sampling provides balanced performance in different measures. To be
specific, a decent success rate is obtained without compromising much cov-
erage or favoring popular users. This means that a diverse set of users are
recommended while still retaining reciprocal interest. Moreover, as explained
in Section 4, it would seem as if the trade-off between coverage and success
rate (+ recall) can be tuned by changing the number of clusters used.

A concern with Thompson sampling is its low recall at large N. On the
other hand, as users tend to have limited patience and focus on the first
items presented to them [53], the smallest list sizes may matter the most, and
the difference in recall across methods is not so pronounced when N < 50.

An ideal method would most likely be one that attains high success
rate, very high coverage, and low popularity. The role of recall, precision,
and failure rate might be less important. Ideally, we would like Thompson
sampling to have even higher success rate and coverage than it currently
does.

It is important not to read these measures as absolute values, but rather
as a comparative study between the different methods [57]. Just because
voting ensemble attains a success rate of 25% at N = 50 on historical
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data, does not mean this result necessarily translates over to a real world
situation. Indeed, evaluation on historical offline data should be done before
deployment at design time, when developing and comparing algorithms [57].
After deploying the recommender system, an on-line evaluation with real
users should be performed to verify whether any true improvement ocurred
or not [57].

Furthermore, although we introduced several criteria to measure the
quality of recommendations, it is unclear which of them, if any, lead to core
business values: good user experience, users finding partners, as well as
paying and loyal customers. The only way to verify such questions is by
performing controlled experiments on a live system and/or doing focused
user studies with possible questionnaires [57]. Have we had more time and
resources, we would have performed split-testing on our novel Thompson
sampling method to verify whether it is useful or not and whether low recall
causes problems.

Until recently, published evaluations of reciprocal recommenders have
tended to be based solely on historical data. In recent work by Kryzwicki et al.
[35], the experience of deploying a reciprocal recommender system on a large,
real-world online dating site is reported. Several interesting discoveries and
lessons are shared. Firstly, they found out that performance of the methods
on real-world experiments were consistent with those done on historical data.
This lends support to the idea that comparing methods on historical data
is a worthwhile endeavor, allowing one to pre-filter methods that are worth
further testing in a production system. Secondly, they found that key metrics
stay at a consistent level months after deployment, indicating that quality of
recommendations is not a one-off phenomenon.

The astute reader may at this point question the very need for reciprocal
recommenders—do they really perform any better than classical collaborative
filtering or content-based recommenders? This question was not studied in
this thesis, but has been evaluated in previous research. Li et al. [38] showed
that CCR, RECON, and especially their own method MEET have benefits
over state-of-art (of year 2012) collaborative filtering methods in reciprocal
domains (online dating and a recruitment system to be precise). Zhao et
al. [69] compared baseline collaborative filtering to their hybrid reciprocal
recommender and noticed improvement in success rate and recall. Pizzato
et al. [53] compared RECON to a variant of the method that considers
only one-way preference, effectively rendering the method to be a typical
content-based recommender. They noticed clear improvements in success
rate and recall.

61



7 Conclusion
In this thesis, a special class of recommender systems for the domain of
online dating was presented, namely reciprocal recommenders. Based on
earlier work, a new reciprocal recommender was developed that attempts to
address issues not resolved by methods described in previous literature.

Our new method alongside four other introduced reciprocal recommenders
were evaluated on a historical data set gathered from a real-world online
dating service. The results show that no method is a clear winner across the
board; depending on the criteria being measured, different methods come on
top.

What was left unclear is the importance of the different measuring criteria,
i.e., how does success rate, recall, coverage, and average popularity affect
user experience, user loyalty, profits earned, as well as the likelihood of users
finding partners. Moreover, it is unclear if any of the (presented) offline
measures can predict such qualities, albeit some existing research provides
careful support for such an idea [35].

Future research should address these concern by performing live controlled
experiments on actual dating services with real users. Indeed, the novel
Thompson sampling approach introduced in this thesis requires more research
and especially real-world validation before anything conclusive can be said
about its recommendation performance. The author of this thesis would
point anyone interested in such research to the excellent work by Kohavi
et al. [32], which thoroughly covers the design and challenges of controlled
experiments on the web.

In addition to the offline comparison of methods and the development of
a new method, another contribution of this thesis is the exploratory analysis
conducted in Section 5.2 that lends additional support to the claims made in
Section 2.2.1 and originally by Pizzato et al. [52]. The data give support to
the abundance of cold-start users and proactive-reactive roles in online dating.
It also shows that reciprocated initiatives occur across popularity groups and
that popular users tend to respond positively less often, supporting the idea
of users having limited availability.

Criticism has been presented against matchmaking systems and online
dating in general. Finkel et al. [16] claim that access to a large pool of
candidates can cause people to make inferior decisions when choosing a
partner and that "...online dating profiles reduces three-dimensional people
to two-dimensional displays of information...". They also take note of the
fact that sometimes connections made via messaging do no translate well to
face-to-face connections outside the dating service. Especially matchmaking
systems are criticised for being based around principles that are not so
important to "relationship well-being", and it is pointed out that compelling
evidence has not been presented to support the effectiveness of matchmaking
algorithms.
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The author of this thesis agrees that the effectiveness of matchmaking
algorithms needs further study, but on the other hand, it seems from our
results and previously published results that recommenders for online dating
can do at least better than baseline random recommendation.

Future development of reciprocal recommender methods could involve
infusing content from external sources to improve utility of recommendations.
For example, the mobile dating application Tinder, which has disrupted the
online dating market with simple user profiles and like-dislike mechanics,
utilizes a user’s Facebook profile to display mutual friends and interests with
presented candidates. Such sort of infusing could also be taken advantage of
in a recommender to provide better user models for recommendation.

Another line of research could involve applying psychological and sociolog-
ical studies of online dating behavior to the development of recommendation
models. Encoding such assumptions into the prediction models could allow
better utilization of gathered data in furtherance of better recommendations.

Regarding the recommenders presented in Section 3 and Section 4, ideas
for future development of each were presented in their respective subsections.
To squeeze even more performance from these methods, heavier feature
selection and engineering of profile attributes could be performed. Especially
any information gained from profile photos and free-text descriptions could
be of significant use.

The value of context-aware recommenders, as well as serendipity and
transparency of recommendations, is unclear for the domain of online dat-
ing. Transparency is problematic because of privacy issues: explaining
recommendations given may require divulging preferences of the candidates
involved [52]. Serendipity may produce recommendations that go against
the preferences of the user, which may lead to distrust in the system [52].
Context-aware recommenders take into consideration the contextual situation
of a user, e.g., physical location or time of day. How contextual information
could benefit online dating, may be an interesting line of research to pursue.

IBISWorld forecasts that in the U.S. "niche and mobile-based dating
services will drive revenue growth" in 2015 in the dating service business
[24]. Developers of novel dating services can learn from research done in
online dating to develop services that allow people to find partners more
effectively than ever before. The author of this thesis believes that reciprocal
recommender systems can be a valuable part of such services.
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