
Department of Computer Science
Series of Publications A

Report A-2015-3

Efficient Construction of Fundamental Data
Structures in Large-Scale Text Indexing

Dominik Kempa

To be presented, with the permission of the Faculty of Science of
the University of Helsinki, for public criticism in Linus Torvalds
Auditorium (B123), Exactum, Gustaf Hällströmin katu 2b, on
October 2nd, 2015, at 10 o’clock in the morning.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33736404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisors
Juha Kärkkäinen, University of Helsinki, Finland
Esko Ukkonen, University of Helsinki, Finland

Pre-examiners
Johannes Fischer, Technische Universität Dortmund, Germany
Jorma Tarhio, Aalto University, Finland

Opponent
Gonzalo Navarro, University of Chile, Chile

Custos
Esko Ukkonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/
Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright c© 2015 Dominik Kempa
ISSN 1238-8645
ISBN 978-951-51-1535-5 (paperback)
ISBN 978-951-51-1536-2 (PDF)
Computing Reviews (1998) Classification: E.1, E.4, F.2.2
Helsinki 2015
Unigrafia

Efficient Construction of Fundamental Data Structures in
Large-Scale Text Indexing

Dominik Kempa

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
dominik.kempa@cs.helsinki.fi
http://www.cs.helsinki.fi/dominik.kempa/

PhD Thesis, Series of Publications A, Report A-2015-3
Helsinki, September 2015, 68 + 88 pages
ISSN 1238-8645
ISBN 978-951-51-1535-5 (paperback)
ISBN 978-951-51-1536-2 (PDF)

Abstract

This thesis studies efficient algorithms for constructing the most fundamen-
tal data structures used as building blocks in (compressed) full-text indexes.
Full-text indexes are data structures that allow efficiently searching for oc-
currences of a query string in a (much larger) text. We are mostly interested
in large-scale indexing, that is, dealing with input instances that cannot be
processed entirely in internal memory and thus a much slower, external
memory needs to be used. Specifically, we focus on three data structures:
the suffix array, the LCP array and the Lempel-Ziv (LZ77) parsing. These
are routinely found as components or used as auxiliary data structures in
the construction of many modern full-text indexes.

The suffix array is a list of all suffixes of a text in lexicographical order.
Despite its simplicity, the suffix array is a powerful tool used extensively
not only in indexing but also in data compression, string combinatorics
or computational biology. The first contribution of this thesis is an im-
proved algorithm for external memory suffix array construction based on
constructing suffix arrays for blocks of text and merging them into the full
suffix array.

In many applications, the suffix array needs to be augmented with the
information about the longest common prefix between each two adjacent
suffixes in lexicographical order. The array containing such information is

iii

iv

called the longest-common-prefix (LCP) array. The second contribution of
this thesis is the first algorithm for computing the LCP array in external
memory that is not an extension of a suffix-sorting algorithm.

When the input text is highly repetitive, the general-purpose text indexes
are usually outperformed (particularly in space usage) by specialized in-
dexes. One of the most popular families of such indexes is based on the
Lempel-Ziv (LZ77) parsing. LZ77 parsing is the encoding of text that re-
places long repeating substrings with references to other occurrences. In
addition to indexing, LZ77 is a heavily used tool in data compression. The
third contribution of this thesis is a series of new algorithms to compute
the LZ77 parsing, both in RAM and in external memory.

The algorithms introduced in this thesis significantly improve upon the
prior art. For example: (i) our new approach for constructing the LCP
array in external memory is faster than the previously best algorithm by a
factor of 2–4 and simultaneously reduces the disk space usage by a factor of
four; (ii) a parallel version of our improved suffix array construction algo-
rithm is able to handle inputs much larger than considered in the literature
so far. In our experiments, computing the suffix array of a 1 TiB file with
the new algorithm took a little over a week and required only 7.2 TiB of
disk space (including input and output), whereas on the same machine the
previously best algorithm would require 3.5 times as much disk space and
take about four times longer.

Computing Reviews (1998) Categories and Subject
Descriptors:
E.1 [Data Structures]: String data structures
E.4 [Coding and Information Theory]: Data compaction and

compression - Lempel-Ziv compression, Burrows-Wheeler transform
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical

Algorithms and Problems - text indexing

General Terms:
algorithms, experimentation, performance

Additional Key Words and Phrases:
external memory algorithms, algorithm engineering, full-text indexes,
suffix array, LCP array, Burrows-Wheeler transform, Lempel-Ziv
factorization, Lempel-Ziv parsing, LZ77, string processing, data
compression

Acknowledgements

First, I would like to thank my supervisors, Juha Kärkkäinen and Esko
Ukkonen, for their excellent guidance, dedication and support throughout
my entire PhD studies. I would also like to thank Simon Puglisi for being
an exceptional mentor in numerous aspects of scientific and everyday life. I
am grateful to pre-examiners Johannes Fischer and Jorma Tarhio for their
feedback, and to Marina Kurtén for improving the language of this thesis.

During my studies I was lucky to find myself surrounded by a num-
ber of talented researchers in the field of string algorithms and bioinfor-
matics, including Djamal Belazzougui, Fabio Cunial, Travis Gagie, Pekka
Mikkola, Veli Mäkinen, Leena Salmela, Jouni Sirén, Alexandru Tomescu,
Daniel Valenzuela, and Niko Välimäki. I wish to thank you all for inspiring
discussions and for enjoyable company outside of working hours.

I would like to acknowledge the efficient organization and friendly atmo-
sphere of the Department of Computer Science at the University of Helsinki
that has provided me with excellent working conditions, administrative sup-
port, and IT infrastructure. I also want to thank the IT staff, in particular
Ville Hautakangas, Jani Jaakkola, and Pekka Niklander for excellent IT
services.

This research has been supported by the Department of Computer Sci-
ence at the University of Helsinki, the Finnish Centre of Excellence for Al-
gorithmic Data Analysis Research (ALGODAN), the Doctoral Programme
in Computer Science (DoCS), and the Helsinki Institute for Information
Technology (HIIT).

Lastly, and most importantly, I would like to thank my parents, Maria
and Tadeusz Kempa, for their encouragement and unconditional support.

Helsinki, 6th of September, 2015
Dominik Kempa

v

vi

Original Papers

The thesis consists of a summarizing overview and the following five peer-
reviewed publications, referred to as Paper I–V. These publications are
reproduced at the end of the thesis. None of the publications have been
used in previous dissertations.

I. Juha Kärkkäinen and Dominik Kempa. Engineering a Lightweight
External Memory Suffix Array Construction Algorithm. Ac-
cepted for publication in Mathematics in Computer Science.

II. Juha Kärkkäinen and Dominik Kempa. LCP Array Construction
in External Memory. Extended version of the paper accepted to
the 13th Symposium on Experimental Algorithms (SEA 2014), LNCS
8504, pages 412–423, 2014. Submitted to ACM Journal of Experi-
mental Algorithmics (special issue of SEA 2014).

III. Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lazy
Lempel-Ziv Factorization Algorithms. Accepted for publication
in ACM Journal of Experimental Algorithmics (special issue of the
2013 Workshop on Algorithm Engineering and Experiments (ALENEX
2013)).

IV. Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight
Lempel-Ziv Parsing. 12th Symposium on Experimental Algorithms
(SEA 2013), LNCS 7933, pages 139–150, 2013.

V. Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-
Ziv Parsing in External Memory. 2014 Data Compression Con-
ference (DCC 2014), pages 153–162, 2014.

Implementations of all algorithms presented in the papers are available
at http://www.cs.helsinki.fi/group/pads/.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Original papers and contributions 3
1.3 Outline . 4

2 Preliminaries 7
2.1 Strings . 7
2.2 Full-text indexes . 7
2.3 Computational model . 9

3 Suffix array construction 11
3.1 Preliminaries . 12
3.2 Algorithm description . 13

3.2.1 Overview . 13
3.2.2 Constructing partial suffix array 14
3.2.3 Constructing the gap array 15
3.2.4 Merging partial suffix arrays 17
3.2.5 Theoretical analysis 18
3.2.6 Implementation details 19

3.3 Practical performance . 20
3.4 Parallelizing the computation 21

4 LCP array construction 23
4.1 Preliminaries . 24
4.2 The Φ algorithm . 24
4.3 The new algorithm . 24

4.3.1 Eliminating random access to text 25
4.3.2 Handling long LCPs 27
4.3.3 Reducing the number of boundary crossings 27
4.3.4 Theoretical analysis 28
4.3.5 Implementation details 29

ix

x Contents

4.4 Practical performance . 31

5 LZ77 parsing in internal memory 33
5.1 Preliminaries . 34
5.2 Precomputing NSV/PSV 35
5.3 NSV/PSV queries . 37
5.4 Scan-based algorithm . 40

5.4.1 Overview . 40
5.4.2 Computing matching statistics in small space 41

5.5 Practical performance . 42

6 LZ77 parsing in external memory 45
6.1 LPF-based algorithm . 45
6.2 External memory LZscan 48
6.3 Semi-external LZ77 parsing 49
6.4 Practical performance . 50

7 Conclusions 55

References 59

Symbols and abbreviations 67

Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the problems of efficiently indexing large
collections of textual data. Sources of such data include multi-author
databases of documents, such as Wikipedia [75], collections of versioned
source code, and web crawls [24]. More recently, with the advent of high-
throughput DNA-sequencing machines [20, 33], enormous volumes of ge-
nomic data that requires indexing have been released. These databases
keep growing in size. A plan of sequencing genomes of up to one hundred
thousand citizens was recently announced by the British government [1].
This project will produce half a petabyte of data.

The field of compressed full-text indexing, which combines aspects of in-
formation theory, data compression, and combinatorial pattern matching,
aims to address the problem of storing and searching such data. Com-
pressed full-text indexes are data structures that require small space (close
to the data in compressed form) but that simultaneously support various
types of queries over the underlying data (searching, for example) without
decompressing the data. The area has been witness to intense research
in the past decade [63], and several of its fruits are now widely used in
molecular biology [75].

With the drastic increase in the size of data requiring indexing, scalable
construction of these indexes has emerged as a pressing open problem.
While the resulting compressed indexes are often small enough to fit in
RAM [55], the input data and intermediate data structures used for building
the index are too big for RAM and require efficient use of much slower
external memory [22].

1

2 1 Introduction

The aim of this thesis is to address the problem of efficient construction
of full-text indexes for very large inputs. Rather than optimizing a con-
struction of specific index, we focus on the construction of the basic data
structures that are building blocks of many existing indexes. Aside from
indexing, these data structures also have many other applications in string
processing.

Our methodology is best described as algorithm engineering [72]. In
a classical methodology, the algorithm is usually first designed to achieve
good time/space complexity in a particular theoretical model. The im-
plementation is then often performed by practitioners, i.e., the result is a
combined effort of at least two parties.

In contrast, in algorithm engineering, the design, analysis, implemen-
tation, and experimental evaluation of the algorithm is the cycle driving
algorithmic research. All phases form a feedback loop that cycles through
until the final design emerges. This way, the discrepancy between theoret-
ical models and actual hardware (e.g., cache misses) is greatly reduced. As
a result, the implementation shares some design load and vice-versa.

• The first data structure studied in this thesis is the suffix array, a
lexicographically sorted list of suffixes of text. It was introduced [58,
36] as a space-efficient alternative to suffix trees [79]. The suffix array
is a simple, yet powerful data structure. It provides efficient and often
optimal solutions to many problems involving pattern matching and
pattern discovery on large data sets, arising in practically important
domains such as biological sequence analysis [65].

Being space-efficient, the suffix array is widely used in practice. For
example, it is vital in construction of text indexes, such as FM-
index [23], which relies on the existence of suffix array samples. Fur-
thermore, the main component of FM-index is the Burrows-Wheeler
transform (BWT) [11] – a transformation of input text that can ei-
ther be obtained from the suffix array or by modifying the suffix array
construction algorithm to produce BWT instead of or in addition to
the suffix array. Either way, the advancements in suffix array con-
struction automatically translate to faster index construction.

• The second data structure studied in this thesis is the longest-common-
prefix (LCP) array [58]. It stores the lengths of common prefixes
between adjacent suffixes in the suffix array. The LCP array is an
essential component of many text indexes, including both traditional
indexes such as enhanced suffix array [3] and compressed variants,
such as compressed suffix tree [34, 66].

1.2 Original papers and contributions 3

The LCP array is also the most commonly used addition to the suffix
array. Modern textbooks spend dozens of pages describing applica-
tions, where the suffix array needs to be augmented with the LCP
array to achieve optimal time complexity [65].

• The third data structure we consider is the Lempel-Ziv factoriza-
tion [82] (also known as LZ77 parsing). It is a partition of the text
into substrings (called phrases), such that each phrase has another
occurrence to the left and the total number of phrases is minimized.
LZ77 parsing (or a grammar derived from LZ77 parsing) is a basic
ingredient of many text indexes designed for storing and searching
highly repetitive sequences [55, 32, 30, 21, 31].

LZ77 also has numerous other applications outside indexing, e.g., effi-
cient detection of repetitions in strings [51, 6]. It is also the computa-
tional bottleneck in many popular lossless compressors, such as gzip
or 7zip [70] (the latter being one of the most powerful general-purpose
compressors).

1.2 Original papers and contributions

Below we give a brief summary of each of the papers used in the thesis
together with the author’s contribution.

Paper I. We describe a novel algorithm for constructing the suffix array
in external memory. The basic idea of the algorithm goes back 20 years [15],
but we describe several new improvements that make the algorithm much
faster. The resulting algorithm is the fastest suffix array construction algo-
rithm when the size of the text is within a factor of about five from the size
of the RAM in either direction (which is a common situation in practice),
and uses about three times less disk space than competitors.

I was responsible for implementation, experiments and writing the cor-
responding section of the paper.

Paper II. We give the first external memory algorithm for constructing
the LCP array from the suffix array of the input text. The only previ-
ously known way to construct the LCP array in external memory was to
modify a suffix array construction algorithm to output the LCP array as
a by-product. Compared to previous methods, our approach results in an
algorithm that is about three times faster and uses about a quarter of the
disk space.

4 1 Introduction

I co-designed and implemented the algorithm, performed the experi-
ments, and co-wrote the paper.

Paper III. In this paper we give several new algorithms for constructing
the LZ77 parsing in internal memory. The new algorithms consistently
outperform all previous methods in practice, both in runtime and space
usage. All the studied algorithms are “large space” in the sense that they
require Θ(n log n) bits of working space for a string of length n.

I was involved in the design and analysis of the new algorithms and
implemented most of the algorithms.

Paper IV. This paper introduces a new algorithm for computing the
LZ77 parsing in O(dn) time and using O((n log n)/d) bits of working space
for any d ≥ 1, thus addressing the shortcoming of algorithms in Paper III.
The algorithm still operates in internal memory, but allows reducing the
working space to little over what is necessary to hold the text.

My main contribution was implementing the algorithms and carrying
out the experiments. I participated in the design of the new algorithm for
matching statistics inversion.

Paper V. In this paper we study the problem of computing LZ77 parsing,
when the text (greatly) exceeds the amount of available RAM, thus making
even the algorithm from Paper IV unusable. We propose three new algo-
rithms and show that each of the algorithms has its niche (a combination
of input and system parameters), where it is the best of all algorithms.

Design of the algorithms was a joint work. I also implemented the
algorithms and wrote the experimental section of the paper.

1.3 Outline

The present overview summarizes the original papers I–V and is organized
as follows. Chapter 2 of the overview contains preliminary definitions and
the computational model used to analyze the algorithms.

Chapter 3 describes the new external-memory suffix array construction
algorithm. The text is based on Paper I. At the end of the chapter we
include a discussion about the possible improvements and our follow-up
work on the algorithm, namely, implementing the algorithm in the multi-
core architecture.

Chapter 4 discusses the external-memory LCP array construction and
includes the new algorithm from Paper II. The chapter takes an approach

1.3 Outline 5

at the algorithm exposition that differs from the original paper. We take
an internal-memory algorithm and gradually transform it into external-
memory algorithm, explaining intuitions and design decisions on the way.

Chapter 5 contains a description of several new algorithms computing
the LZ77 factorization in internal memory, as well as an overview of ex-
isting approaches. Several of the concepts and methods introduced in the
chapter are then developed into fully external memory algorithms in the
next chapter. The material in this chapter is based on Papers III and IV.

In Chapter 6 we discuss the computation of LZ77 parsing in external-
memory. The chapter includes new algorithms from Paper V, some of
which require the suffix and LCP array as an input. Thus, the chapter
also motivates and consolidates the findings from previous chapters. As an
extension to Paper V, we describe a modification to the most scalable of the
algorithms (EM-LPF) that significantly reduces the peak disk space usage
and present its experimental evaluation. We also revised some experiments
from Paper V to include the new algorithms developed since its publication.

The overview ends with a brief summary and discussion on future work
in Chapter 7.

6 1 Introduction

Chapter 2

Preliminaries

2.1 Strings

Let Σ = {0, 1, . . . , σ − 1} be an alphabet of size σ. The elements of Σ are
called letters or characters. A finite sequence of letters is called a string
or text. The length of string S is denoted |S| and the (i + 1)th letter of
string S is denoted by S[i], that is, for |S| = n the elements of S are S[0],
S[1], . . . , S[n− 1].

A subsequence S[i], . . . , S[j] for 0 ≤ i ≤ j < n is called a substring of S
and is denoted as S[i..j]. We write S[i..j), 0 ≤ i ≤ j ≤ n as a shorthand
for S[i..j− 1]. When i = j, S[i..j) is an empty string, also denoted by ε. A
substring S[i..j) of S is called a prefix of S if i = 0 and a suffix of S if j = n.
A prefix/substring/suffix S′ of S is called proper if S′ 6= S. A concatenation
of two strings S and S′ is SS′ = S[0] . . . S[|S| − 1]S′[0] . . . S′[|S′| − 1].

We define the lexicographical order between the strings as follows. For
any S and S′ we have S < S′ iff S is a proper prefix of S′ or there exists
i < min(|S|, |S′|) such that S[0..i) = S′[0..i) and S[i] < S′[i].

2.2 Full-text indexes

Suffix array and Burrows-Wheeler transform. Let T be a text of
length n. The suffix array (SA) of T is an array SAT[0..n) containing a per-
mutation of integers {0, . . . , n−1} such that T[SAT[0]..n) < T[SAT[1]..n) <
. . . < T[SAT[n− 1]..n). Whenever T is clear from the context we drop the
subscript and just write SA.

The inverse suffix array (ISA) of T is defined as an array ISA[0..n) such
that ISA[SA[i]] = i. In other words, ISA[j] is the rank (number of smaller

7

8 2 Preliminaries

i SA[i] LCP[i] BWT[i] T[SA[i]..|T|)
0 3 0 b aabbabbab

1 10 1 b ab

2 1 2 b abaabbabbab

3 7 2 b abbab

4 4 5 a abbabbab

5 11 0 a b

6 2 1 a baabbabbab

7 9 2 b bab

8 0 3 $ babaabbabbab

9 6 3 b babbab

10 8 1 a bbab

11 5 4 a bbabbab

Table 2.1: Suffix array, LCP array and Burrows-Wheeler transform for text
T = babaabbabbab.

suffixes) of suffix j in ascending lexicographical order of all suffixes of T. 1

The Burrows-Wheeler transform (BWT) of T is an array BWT[0..n)
such that BWT[i] = T[SA[i] − 1] if SA[i] > 0 and BWT[i] = $ otherwise,
where $ 6∈ Σ is a special symbol smaller than all other symbols in the
alphabet.

LCP array. The LCP array of a text T is defined as an array LCP[0..n),
such that LCP[i] = lcp(SA[i],SA[i − 1]), i ∈ [1..n) and LCP[0] = 0, where
lcp(i1, i2) denotes the length of the longest common prefix of suffix i1 and i2
of T. An example of suffix array, LCP array and BWT is given in Table 2.1.

LZ77. For a string T, the longest previous factor (LPF) at position j,
denoted LPFT[j], is a pair (pj , `j) such that, pj < j, T[pj ..pj+`j) = T[j..j+
`j) and `j > 0 is maximized. When T[j] is the leftmost occurrence of a
symbol, we define pj = T[j] and `j = 0. In other words, T[j..j + `j) is the
longest prefix of T[j..n) that also occurs at some position pj < j in T. Note
that pj is not unique but `i is.

The LZ77 factorization (or LZ77 parsing) of T is a partition T =
f1f2 · · · fz defined recursively as follows. Assume that f1 · · · fi−1 is the LZ77
parsing of T[0..j). Then the next element of the parsing is fi = T[j..j + `),
where ` = max{1, `j}. The substring fi for i = 1, . . . , z is called an
LZ-factor or LZ-phrase. Each LZ-factor fi is encoded as LPF[j], where
j = |f1 · · · fi−1|. If `j > 0, then the substring T[pj ..pj + `j) is called the

1Whenever possible, i is used to denote the positions in the lexicographical order, and
j to denote the positions in the text order, e.g., we write SA[i], ISA[j].

2.3 Computational model 9

LPF
pi `ii b a b b a b a b b b a b

b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b
b a b b a b a b b b a b

0

1

2

3

4

5

6

7

8

9

10

11

0
0
1
3
2
4
3
2
4
3
2
1

b
a

0
0
1
0
1
2
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10 11

LZ77: (b,0),(a,0),(0,1),(0,3),(1,3),(3,3)

Figure 2.1: Example of the LPF array and LZ77 parsing for text T =
babbababbbab.

source of the LZ-factor fi. The example of LPF pairs and LZ77 parsing is
given in Figure 2.1.

2.3 Computational model

For the analysis of internal-memory algorithms we assume the standard
RAM model, where all elementary arithmetic operations on log n-bit words
(including multiplication) take constant time.

To analyze the external memory algorithms we use the standard Exter-
nal Memory (EM) model [78]. In this model, the memory in the system
consists of a fast random-access memory of size M (measured in log n-bit
words) and slow secondary memory (disk) of unbounded size. The CPU
can at any point access any cell in RAM, but not on disk. Any access
to data on disk requires transferring the whole block of B log n-bit words
from disk to RAM first. Similarly, writing data to disk is also performed
in blocks. The performance measures of an algorithm in this model are:

• time complexity: the number of operations performed by the CPU,
measured as in the standard RAM model,

• I/O complexity: the number of blocks moved between disk and RAM.
A single transfer (read of write) of a block is called an I/O,

10 2 Preliminaries

• peak disk space usage: the maximum number of disk blocks used by
the algorithm at any time, over the course of the whole algorithm.

Throughout this thesis we use the following fundamental result.

Theorem 2.1 ([4]). The I/O complexity of sorting n (tuples of) integers
in the EM model is Θ((n/B) logM/B(n/B)).

We will often writeO(sort(n)) as a shorthand forO((n/B) logM/B(n/B)).
To simplify the analysis, in this thesis we make the following weak

assumptions about the basic model parameters: M = O(n) (where n is
the length of the input text measured in characters), M = Ω(log n) and
B = O

(
M1−ε) for some constant ε > 0.

Chapter 3

Suffix array construction

The suffix array [36, 58] of a string, a lexicographically sorted list of all its
suffixes, is one of the most important data structures in string processing.
It serves as a prerequisite to many efficient string algorithms [65] and plays
a central role in text indexing [63].

Over the years, many internal-memory suffix sorting algorithms have
been proposed. Some of those algorithms achieve the optimal O(n) time
complexity [46, 50, 64], use little or almost no extra working space and
are very fast in practice [61, 60]. All those algorithms, however, require
Ω(n log n) bits of space, and thus can only be used for inputs that are a
few times smaller than the size of RAM. For many real world inputs such
as Wikipedia or DNA databases this is not enough.

To escape the limitations of RAM, external-memory algorithms for suf-
fix array construction have been proposed, some of which have theoreti-
cally optimal I/O complexity O((n/B) logM/B(n/B)) and time complexity
O(n logM/B(n/B)) [47, 10]. These algorithms can operate within a moder-
ate RAM budget. The biggest obstacle in their use is, however, a substantial
disk space usage. The currently fastest implementation with optimal I/O
complexity, eSAIS, requires 28n bytes of disk space for input of n bytes,
assuming each integer is represented using 40 bits.

In this chapter we describe a new external-memory algorithm for suffix
array construction called SAscan. The algorithm has Ω(n2/M) time com-
plexity, thus for large values of n/M it is outperformed by eSAIS. However,
when the input size n is within some small factor from the RAM size M
(which is a common situation in practice), SAscan is the fastest suffix-
sorting algorithm. The algorithm is also very space efficient, it requires
very little disk space in addition to what is necessary to store input text
and output suffix array. The algorithm is based on the BWT construction

11

12 3 Suffix array construction

i gapX:Y[i] SAX:Y[i] T[SAX:Y[i]..|T|)
0 0 3 aabbabbab

1 1 1 abaabbabbab

2 3 2 baabbabbab

3 1 0 babaabbabbab

4 3

i SAT[i] T[SAT[i]..|T|)
0 3 aabbabbab

1 10 ab

2 1 abaabbabbab

3 7 abbab

4 4 abbabbab

5 11 b

6 2 baabbabbab

7 9 bab

8 0 babaabbabbab

9 6 babbab

10 8 bbab

11 5 bbabbab

Figure 3.1: Example of the partial suffix array and gap array. Input
string are T = babaabbabbab, X = T[0..4) = baba, and Y = T[4..|T|) =
abbabbab. Observe that the sequence of suffixes in SAX:Y (left) is a subse-
quence of SAXY = SAT (right).

algorithm of Ferragina et al. [22]. 1 Our description of the algorithm loosely
follows the original, but we highlight the changes and improvements that
we made. The material is based on Paper I.

3.1 Preliminaries

To represent a lexicographical ordering of a subset of suffixes we first in-
troduce a slight variation of a suffix array. Let X,Y be strings and let
m = |X|. A partial suffix array SAX:Y is an array SAX:Y[0..m) contain-
ing a permutation of integers {0, . . . ,m − 1} such that X[SAX:Y[0]..m)Y <
X[SAX:Y[1]..m)Y < . . . < X[SAX:Y[m− 1]..m)Y.

Partial suffix arrays play a central role in the new algorithm introduced
in this chapter. The key property of SAX:Y is that it contains all suffixes
of XY with the starting position in X in exactly the same order as the full
suffix array SAXY. Therefore SAXY can be obtained by interleaving the
elements of SAX:Y and SAY. The example of partial suffix array is given in
Figure 3.1.

1Although originally designed to construct BWT, the algorithm of Ferragina et al.
can be easily modified to compute the suffix array instead of or in addition to BWT.
Analogously, our algorithm can be modified to compute the BWT.

3.2 Algorithm description 13

3.2 Algorithm description

3.2.1 Overview

Let T[0..n) be the input text and let m be a positive integer. The algorithm
divides the input text into d = dn/me segments2, each of size (at most) m.
The segments are processed right-to-left. Each of the segments is processed
in RAM, thus m is chosen so that all data structures built during the
segment processing can fit in RAM. During the segment processing we also
use disk space, but all accesses are purely sequential.

Denote the currently processed segment by X and let Y be the concate-
nation of the segments to the right of X. For simplicity assume that the size
of X is exactly m. Suppose that SAY was already computed and is stored
on disk. The goal is to have SAXY when the processing of the segment X is
finished.

To accomplish this, we first compute the partial suffix array SAX:Y[0..m).
The details of this step are described in Section 3.2.2. For now, we observe
that the suffixes in SAX:Y are in the same relative order as the suffixes in
SAXY, thus to merge SAX:Y with SAY to obtain SAXY we need to know how
many suffixes of Y should be placed between any pair of lexicographically
adjacent suffixes of XY starting in X. This information is computed and
stored in the form of gap array gapX:Y[0..m] which is formally defined as
follows. Let si = SAX:Y[i]. For i ∈ (0..m),

gapX:Y[i] = |{s ∈ [0..|Y|) : X[si−1..m)Y < Y[s..|Y|) < X[si..m)Y}|.

The remaining values are defined as:

gapX:Y[0] = |{s ∈ [0..|Y|) : Y[s..|Y|) < X[s0..m)Y}|,
gapX:Y[m] = |{s ∈ [0..|Y|) : X[sm−1..m)Y < Y[s..|Y|)}|.

The example of gap array is given in Figure 3.1. The details of gapX:Y

array construction are described in Section 3.2.3. Once the gap array has
been computed, we can easily merge SAX:Y with SAY to obtain SAXY. Doing
this for every segment would introduce a lot of I/O, thus we approach the
merging differently. At the end of segment processing, we write SAX:Y and
gapX:Y to disk instead. Once all segments have been processed, we perform
a combined merging of all partial suffix arrays into the final suffix array.
The details of this step are described in Section 3.2.4.

2Unlike in Paper I, we use the term segment, rather than block to denote the contiguous
sequence of characters in the text. This is to unify the notation in the thesis and to avoid
the confusion with disk blocks (which are basic units of I/O in the EM model).

14 3 Suffix array construction

Handling long suffix comparison. During construction of SAX:Y we
need to compare suffixes of XY starting in X. This may require Ω(|Y|)
symbol comparisons if we perform it naively, and since we can have |Y| �
|X|, it would introduce a lot of I/O.

To speed up comparisons of suffixes with long common prefix we intro-
duce the gtY bitvector. Formally, for i ∈ [0..|Y|),

gtY[i] =

{
1 : if Y[i..|Y|) > Y
0 : if Y[i..|Y|) ≤ Y

.

With gtY, comparing two suffixes of XY starting in X requires accessing
at most m symbols of Y. This is formalized as follows.

Observation 3.1. For 0 ≤ i < j < m the comparison

X[i..m)Y < X[j..m)Y

is equivalent to

X[i..m) < X[j..m)Y[0..j−i) or X[i..m) = X[j..m)Y[0..j−i) and gtY[j−i] = 1.

From now we assume that when we process segment X, the bitvector
gtY is available on disk and that in addition to SAX:Y and gapX:Y we also
produce gtXY as an output (to use for the next segment).

3.2.2 Constructing partial suffix array

We now have a closer look at the construction of the partial suffix array.
Assume that X is the current segment under consideration and Y is the
concatenation of the segments to the right of X. The goal is to obtain
SAX:Y.

The main idea is to compute a new string X′ with the property SAX′ =
SAX:Y. This approach allows using a highly optimized existing implementa-
tion for suffix sorting and replacing it with a faster algorithm in the future,
if such becomes available. The string X′ is defined as:

X′[i] =

{
X[i] : if X[i..m)Y < X[m− 1]Y
X[i] + 1 : if X[i..m)Y ≥ X[m− 1]Y

.

The above construction is only possible if X does not contain a symbol
with the maximal value in the alphabet (σ− 1). If this is not the case, but
there is at least one symbol c ∈ Σ that does not occur in X, then we can
decrease all symbols larger than c in X (which does not affect the ordering
of suffixes) and thus free the maximal symbol. If none of the previous cases

3.2 Algorithm description 15

hold, we cannot directly apply the transformation. However, this case too
can be solved, though it may result in X′ that is larger than X by a factor
of 1 + (2/σ). The details of this construction are described in Paper I.

Lemma 3.2. SAX′ = SAX:Y.

Proof. Suppose the claim does not hold, i.e., there exists as least one pair
of indices i, j ∈ [0..m) such that lexicographical ordering between pairs of
suffixes X[i..m)Y and X[j..m)Y is different from the ordering of X′[i..m) and
X′[j..m). Without the loss of generality we assume i < j. Among all such
pairs, let i, j be the pair with the largest j and assume X[i..m)Y < X[j..m)Y
and X′[i..m) > X′[j..m) (the other case, X[i..m)Y > X[j..m)Y, X′[i..m) <
X′[j..m) is analogous).

The relation between suffixes implies that X[i] ≤ X[j] and X′[i] ≥ X′[j].
However, from the definition of X′ we have X′[i] ∈ {X[i],X[i] + 1} (and
analogously for j) thus only four cases are possible:

1. X[i] + 1 = X[j], X′[i] = X[i] + 1, X′[j] = X[j],

2. X[i] = X[j], X′[i] = X[i] + 1, X′[j] = X[j],

3. X[i] = X[j], X′[i] = X[i], X′[j] = X[j],

4. X[i] = X[j], X′[i] = X[i] + 1, X′[j] = X[j] + 1.

Cases 1. and 2. are not possible, because the definition of X′ would
imply that X[i..m)Y ≥ X[m − 1]Y and X[j..m)Y < X[m − 1]Y and thus
X[j..m)Y < X[i..m)Y which contradicts the initial assumption.

Thus, either 3. or 4. must hold. In both cases X[i] = X[j] and X′[i] =
X′[j]. From that we obtain that either X[i + 1..m)Y < X[j + 1..m)Y and
X′[i + 1..m) > X′[j + 1..m) or j = m − 1. Since we assumed that j was
the largest with such property, it must be j = m − 1. Then we obtain
X[i..m)Y < X[j..m)Y = X[m − 1]Y thus from the definition of X′ we have
X′[i] = X[i] and X′[j] = X[j] + 1 which contradicts both cases 3. and 4.

The comparison X[i..m)Y < X[m − 1]Y can be performed for all i ∈
[0..m) in O(m) time using a modified string matching algorithm [42]. We
omit the details. Thus, computing SAX:Y takes O(m) time.

3.2.3 Constructing the gap array

In this section we describe how to compute the gapX:Y array. The con-
struction starts with segment X and SAX:Y in RAM. We first compute the
partial Burrows Wheeler transform BWTX:Y[0..m) defined as follows. For
i ∈ [0..m),

16 3 Suffix array construction

Algorithm ComputeGap

1: r ← 0
2: for i← |Y| − 1 downto 0 do
3: c← Y[i]
4: r ← C[c] + rankc(BWTX:Y, r)
5: if c = X[m− 1] and gtY[i+ 1] = 1 then r ← r + 1
6: gapX:Y[r]← gapX:Y[r] + 1

Figure 3.2: Construction of gapX:Y array.

BWTX:Y[i] =

{
X[SAX:Y[i]− 1] : if SAX:Y[i] > 0
$: otherwise

.

We assume that $ 6∈ Σ is a special symbol smaller than all other symbols
in the alphabet. BWTX:Y is easy to compute from X and SAX:Y in internal
memory.

Once BWTX:Y is computed, we preprocess it for rank queries. A rank
query rankc(S, i) for a string S, c ∈ [0..σ) and i ∈ [0..|S|] is defined as the
number of occurrences of symbol c in prefix S[0..i). A single rank query
can be answered inO(log(2 + (log σ/ log logn))) time using a data structure
occupying O(m) space [7].

Finally, with a single scan of X, we compute the array C[0..σ), where

C[c] = |{i ∈ [0..m) : X[i] < c}|.
We are now ready to start the computation of the gap array. The

pseudo-code of the algorithm is given in Figure 3.2. The algorithm is essen-
tially the backward search procedure, used for pattern matching in com-
pressed text indexes [23]. The correctness of the algorithm is preserved due
to the following invariant that holds at the beginning of the for-loop:

• r is the number of suffixes of XY starting in X that are lexicographi-
cally smaller than Y[i+ 1..|Y|).

The invariant is trivially satisfied for i = |Y| − 1. To see that lines 4–5
preserve the invariant, note that for any suffix X[j..m)Y < cY[i+ 1..m) we
either have:

• X[j] < c (type I suffix),

• j < m− 1, X[j] = c, and X[j + 1..m)Y < Y[i+ 1..m) (type II suffix),

• j = m− 1, X[j] = c, and Y < Y[i+ 1..m) (type III suffix).

3.2 Algorithm description 17

Algorithm Merge

1: for k = 0 to dn/me − 1 do ik ← 0
2: for i = 0 to n− 1 do
3: k ← 0
4: while gapk[ik] > 0 do
5: gapk[ik]← gapk[ik]− 1
6: k ← k + 1
7: SAT[i]← SAk[ik] + km
8: ik ← ik + 1

Figure 3.3: Merging suffix arrays.

There is exactly C[c] suffixes of type I and rankc(BWTX:Y, r) suffixes of
type II. The type III suffix is accounted for in line 5. The comparison
Y < Y[i+ 1..m) is implemented with equivalent check gtY[i+ 1] = 1.

All accesses to Y and gtY in ComputeGap are sequential, and thus can
be efficiently implemented in external memory.

During this step we also compute gtXY. To do this, we first scan SAX:Y

to find the position iXY such that SAX:Y[iXY] = 0. During that scan we can
easily compute gtXY[0..m): simply set gtXY[SAX:Y[i]] = 1 for all i > iXY.
The remaining bits of gtXY are computed in ComputeGap using the fact that
gtXY[m + i] = 1 iff ri > iXY, where ri is the value of r at the end of the
for-loop processing Y[i].

3.2.4 Merging partial suffix arrays

The last step of the algorithm is merging the partial suffix arrays of the
segments into the full suffix array of the text SAT. The algorithm presented
here is the first improvement of Paper I over the original algorithm of
Ferragina et al. for BWT construction [22]. In the original algorithm, the
partial BWT of the segment BWTX:Y was merged with BWTY immediately
after segment processing. The new method delays the merging until the
very end of the algorithm which substantially reduces the I/O volume and
speeds up the algorithm.

For k ∈ [0..dn/me), by Xk denote the (k + 1)-th text segment from the
left and let Yk = Xk+1 · · ·Xdn/me−1, SAk = SAXk:Yk

, and gapk = gapXk:Yk
.

The algorithm is given in Figure 3.3. A single step of the computation
consists of finding the segment that contains the next suffix (among all
suffixes of the text) in lexicographical order (lines 3–6), moving the suffix
from the partial suffix array of that segment into the suffix array of the text

18 3 Suffix array construction

(line 7) and updating the auxiliary information (line 8). The correctness
of the algorithm relies on the following invariant. At the beginning of the
main for-loop, for any k ∈ [0..dn/me),

• ik is the number of suffixes already moved from SAk to SAT,

• gapk[ik] is the number of suffixes remaining in SAk+1, . . . , SAdn/me−1

that are smaller than SAk[ik].

The merging algorithm reads multiple files simultaneously, thus needs
a small buffer of size B for each. We can afford this only if n/m ≤M/B. If
this is not true, we need to perform multiway (M/B)-ary merge. Thus, in
the general case the I/O complexity of merging is O((n/B) logM/B(n/B)).

3.2.5 Theoretical analysis

We now analyze the complexity of the algorithm in the standard exter-
nal memory (EM) model. All data structures required when processing a
segment need O(m log n) bits, thus we set m = Θ(M).

The time complexity is dominated by rank queries. We perform Θ(n2/m)
queries, and each takes O(log(2 + (log σ/ log logn))) [7]. All other opera-
tions in the algorithm take O

(
n2/m

)
time.

To construct all gap arrays, the algorithm reads O
(
n2/m

)
characters

from disk. Each character takes log σ bits and a single I/O transfers B log n
bits, hence in total the gap array construction requires O

(
n2/(MB logσ n)

)
I/Os. Finally, taking into account the I/O complexityO((n/B) logM/B(n/B))
of the final multiway merging gives the following result.

Theorem 3.3. Given the text of length n over an alphabet of size σ, the
associated suffix array can be computed with the algorithm described above
in

O
(
n2

M
log

(
2 +

log σ

log log n

))
time

and

O
(
n2 log σ

MB log n
+
n

B
logM

B

n

B

)
I/Os.

To simplify the I/O complexity, we make a (weak) assumption that
M ≥ B logσ n. Then, either n ≤M2/B and the I/O complexity is O(n/B)
or n > M2/B in which case the first term always dominates. Thus, when
M ≥ B logσ n the I/O complexity simplifies to

O
(
n

B

(
1 +

n log σ

M log n

))
.

3.2 Algorithm description 19

The algorithm of Ferragina et al. (modified to compute SA rather than
BWT) has the I/O complexity O

(
n2/(MB)

)
, which is dominated by partial

suffix arrays merging. Our improved algorithm with delayed merging thus
improves the I/O complexity by a factor logσ n.

3.2.6 Implementation details

For a concrete analysis, assume that m ≤ 232, n ≤ 240, and σ ≤ 256. Thus,
all positions in the text can be encoded using 40-bit integers.

To determine the exact value of constant M/m, we now have a look at
RAM consumption during different steps of segment processing.

The first step is the construction of SAX:Y, which from Lemma 3.2 is
equivalent to suffix-sorting the modified string X′. For that task, we use
divsufsort [60], a highly optimized suffix array construction algorithm by
Yuta Mori. It essentially requires no extra space, thus we only need to
keep X′ and the output suffix array in RAM, for a total of 5m bytes.

The second step is the construction of the gap array. In this step we
need to simultaneously keep the gap array gapX:Y and the rank data struc-
ture built over BWTX:Y in RAM. To compute BWTX:Y we scan SAX:Y and
overwrite each entry SAX:Y[i] with BWTX:Y[i]. The resulting BWTX:Y is
then copied into the array storing the current text segment (which is no
longer needed) and SAX:Y is released.

To represent the gap array we use the fact that although single gap
values can be very large, the average value is not larger than n/m. Conse-
quently, we only reserve m bytes for the gap array. Whenever the algorithm
attempts to increment the gap entry gapX:Y[i] = 255, we set gapX:Y[i] = 0
and store i into a separate list of wrapped-around counters E. The size
of E in the worst case is n/64 bytes, but in most practical situations it is
very small. Only the most recent elements of E are stored in RAM in a
small buffer. The buffer is flushed to disk, whenever it gets full and thus
handling E requires a negligible amount of RAM. This gap representation
is the second improvement of Paper I over the algorithm of Ferragina et
al. [22]. In their algorithm each gap value is represented using 32 bits.

A space-efficient implementation of the gap array allows using the rank
data structure of size 4m without increasing the peak RAM usage of 5m
needed to store X and SAX:Y in the first step. In our implementation we use
an improved version of rank data structure of Ferragina et al., which is the
third contribution of Paper I. Our improvements are based on the alphabet
partitioning technique [7] and fixed block boosting [45]. The resulting data
structure is about 40% faster than the original and uses less than 4.2m bytes
of RAM. Thus in total, the peak RAM usage when processing a segment of

20 3 Suffix array construction

size m is 5.2m. As a result, our algorithm uses about 35% larger segments
(compared the algorithm of Ferragina et al.), i.e., the number of segments
(and thus overall runtime) is decreased by 35%.

The disk space usage peak occurs during the last stage, when we merge
the partial suffix arrays into the final suffix array, and consists of

• n bytes for input text,

• 4n bytes for partial suffix arrays,

• 5n bytes for the output suffix array,

• 1.5n bytes for the vbyte-encoded [80] gap arrays (assuming m ≤ 128n.
If this is not true, the gap can take more space, but for such ratio
n/m the algorithm is not competitive with other algorithms in terms
of speed).

In total, the disk space usage is about 11.5n bytes. It can be reduced,
if the partial suffix arrays are stored in small files, which are deleted imme-
diately after they are processed. The free space is reclaimed by the output
suffix array, i.e., the merging is performed almost in-place. This results
in the reduction of the peak disk space usage to about 6.5n bytes. This
improvement was not included in the version used for experiments in Pa-
per I but has been subsequently incorporated into the parallel version of
the SAscan, which we discuss at the end of this chapter.

3.3 Practical performance

In Paper I we performed the experimental comparison of SAscan to eSAIS,
the best suffix-sorting algorithm in previous studies [10]. The SAscan algo-
rithm was implemented as described in Section 3.2.6. In particular, we use
40-bit integers to represent the positions in the string, which is consistent
with the version of eSAIS used in experiments.

The experiments were performed on a variety of different inputs and
two different hardware configurations. Each of our improvements:

• replacing the 32-bit gap array with an 8-bit representation and thus
reducing the number of segments by 35%,

• improving the rank data structure by applying the alphabet parti-
tioning [7] and fixed block boosting [45] techniques,

• delaying the merging of partial suffix arrays,

results in a significant runtime reduction. The combined effect of our im-
provements was a speedup by a factor of about 3.5 compared to the BWT

3.4 Parallelizing the computation 21

construction algorithm of Ferragina et al. Compared to eSAIS, SAscan is
faster up to a point, where the text is 4.7–7.4 times the size of internal
memory.

3.4 Parallelizing the computation

The algorithm presented in this section is the fastest way to build the
suffix array but only up to a point, where the text is about five times
the RAM size. The runtime of the algorithm is, however, not I/O-bound,
but dominated by the rank queries during gap array construction. This
motivated us to investigate the SAscan algorithm in the multi-core setting
and has led to a very substantial further speed-up. On a machine with 12
physical cores, the parallel implementation of SAscan, called pSAscan [43],
moves the point, up to which the algorithm is faster than eSAIS to about
80 times the size of RAM. This allowed us to suffix-sort a 1 TiB file in a
little over 8 days using 7.2 TiB of disk space.

On the way to this result, we also implemented the in-RAM parallel
version of SAscan which turned out to be faster (by a factor of about two)
and more space efficient (by a factor of at least two) than the previously
best internal-memory parallel suffix-sorting algorithm.

Some of the experiments in this thesis (see Chapter 6) were revised to
include, in addition to SAscan, also its parallel version pSAscan.

22 3 Suffix array construction

Chapter 4

LCP array construction

In many applications, the suffix array needs to be augmented with the
longest-common-prefix (LCP) array, which stores the lengths of longest
common prefixes between lexicographically adjacent suffixes.

The LCP array construction in internal memory is a very well studied
topic. The historically first algorithm runs in linear time but uses a lot of
space (3n integers in addition to the input text). Many algorithms followed,
aiming at either improving the space or runtime [56, 59, 71, 44, 74, 35, 9, 26].
Some of the algorithms (e.g., [71, 44]) can be made semi-external, i.e., they
only require that the text is kept in the main memory and all remaining data
structures are efficiently stored and accessed from the secondary memory.
The fully external-memory construction, however, remains a problem.

The only previously known way to compute the LCP array in external
memory is to use an external memory suffix array construction algorithm
modified to compute the LCP array as a by-product [47, 10]. While this
modification does not affect the time or I/O complexity of the algorithm, it
significantly increases the running time and, more importantly, disk space
usage. So much, in fact, that the disk space usage becomes the main
limitation in the scalability of these algorithms. For example, the disk
space usage of eSAIS [10] – currently the fastest external-memory algorithm
computing both suffix and LCP array – is 54n bytes for a text of n bytes.

In this chapter we describe the first standalone algorithm constructing
the LCP array in external memory. The algorithm, called LCPscan, does
not augment the suffix array construction, but takes the text and the suffix
array as an input, thus it can be combined with any suffix array construction
algorithm, including a better one developed in the future. LCPscan can
be seen as an external-memory version of the internal-memory algorithm
of [44]. In our experiments, LCPscan is faster and uses less than a quarter
of the disk space, compared to eSAIS. The material is based on Paper II.

23

24 4 LCP array construction

i 0 1 2 3 4 5 6 7 8 9 10 11
T[i] b a b a a b b a b b a b

SA[i] 3 10 1 7 4 11 2 9 0 6 8 5
ISA[i] 8 2 6 0 4 11 9 3 10 7 1 5

Φ[i] 9 10 11 12 7 8 0 1 6 2 3 4
LCP[i] 0 1 2 2 5 0 1 2 3 3 1 4

PLCP[i] 3 2 1 0 5 4 3 2 1 2 1 0
i+ PLCP[i] 3 3 3 3 9 9 9 9 9 11 11 11

Table 4.1: Examples of the arrays used by the algorithm for the text T =
babaabbabbab.

4.1 Preliminaries

The key to almost all efficient algorithms constructing the LCP array is the
computation of LCP values in text order rather than in the lexicographical
order. The permuted LCP array PLCP[0..n) is the LCP array permuted
from the lexicographical order into the text order. Formally, for i ∈ [0..n),

PLCP[SA[i]] = LCP[i].

It is useful to also consider the alternative definition: PLCP[j] = lcp(j,Φ[j]),
j ∈ [0..n), where Φ[0..n) is defined as Φ[SA[i]] = SA[i − 1], i ∈ [1..n) and
Φ[SA[0]] = n. The key property of the PLCP array is summarized in the
following Lemma (see Table 4.1 for an example).

Lemma 4.1 ([48, 44]). For j ∈ [1..n), PLCP[j] ≥ PLCP[j − 1]− 1.

4.2 The Φ algorithm

Our starting point is the internal-memory algorithm described by Kärkkäinen
et al. [44]. It is currently the fastest algorithm to compute the LCP array in
RAM, given the text and suffix array. The algorithm is given in Figure 4.1

The algorithm starts by computing the Φ array from SA. Next, it
computes all PLCP values using Lemma 4.1. This ensures that the total
number of steps in the while loop in line 5 is O(n) and thus the whole
algorithm runs in linear time. Finally, it permutes PLCP to LCP array.

4.3 The new algorithm

On a high level, our new algorithm is an external memory version of the Φ
algorithm. Let us now have a look in detail at how each of the steps of the
Φ algorithm can be adapted to external memory.

4.3 The new algorithm 25

Algorithm Φ(T,SA)
// Step I

1: Φ[SA[0]]← n
2: for i← 1 to n− 1 do
3: Φ[SA[i]]← SA[i− 1]

// Step II
4: `← 0
5: for j ← 0 to n− 1 do
6: while max(j,Φ[j]) + ` < n and T[j + `] = T[Φ[j] + `] do
7: `← `+ 1
8: PLCP[j]← `
9: `← max(`− 1, 0)

// Step III
10: for i← 0 to n− 1 do
11: LCP[i]← PLCP[SA[i]]

Figure 4.1: The Φ algorithm.

First, observe that Step I and III are easy to implement in exter-
nal memory using sorting. In Step I we scan the suffix array creating
a triple (SA[i],SA[i − 1], i) for every i ∈ [1..n). The triples are sorted
by the first component to obtain sequence (j,Φ[j], ISA[j]). For the third
step we observe that the instruction LCP[i]← PLCP[SA[i]] is equivalent to
LCP[ISA[j]] ← PLCP[j], thus we can implement this step by sorting the
pairs (ISA[j],PLCP[j]) by the first component. The resulting sequence is
(i, LCP[i]).

Let us have a closer look at Step II. The access to PLCP and Φ array,
and the first access to T in line 6 are sequential and thus can be efficiently
implemented in external memory. The main issue is the second access to
the text in line 6, since the value Φ[j] + ` changes when j changes.

Our solution is to divide the text into dn/me segments, each of size m
(except possibly the last one), where m is such that m characters of text fit
in RAM. Each of the segments is loaded once into the main memory. We
organize the computation, so that when the segment T[s..e) is loaded into
RAM, the random accesses to the text are restricted only to interval [s..e).

4.3.1 Eliminating random access to text

When processing the segment T[s..e), we first sort all pairs (j,Φ[j]), j ∈
[s..e) by the second component. In the rest of the algorithm, the pairs

26 4 LCP array construction

Procedure ProcessSegment(s, e,T,Φ[s..e))
1: Q← {(j,Φ[j]) : j ∈ [s..e)}
2: sort Q by the second component
3: Φprev ← 0, `prev ← 0
4: for (j,Φ[j]) ∈ Q do
5: `← max(0,Φprev + `prev − Φ[j])
6: while max(j,Φ[j]) + ` < n and T[j + `] = T[Φ[j] + `] do
7: `← `+ 1
8: L← L ∪ {(j, `)}
9: Φprev ← Φ[j], `prev ← `
10: sort L by the first component
11: PLCP[s..e)← {` : (j, `) ∈ L}
12: return PLCP[s..e)

Figure 4.2: Processing of the text segment T[s..e) in LCPscan.

(j,Φ[j]) are processed in this order.
Suppose we have just completed the lcp computation for the pair (j,Φ[j]).

Let ` = lcp(j,Φ[j]), i.e., the last symbol comparison was between T[j + `]
and T[Φ[j] + `]. Let (j′,Φ[j′]) be the next pair to be processed. We have
Φ[j′] > Φ[j], but not necessarily Φ[j] + ` ≤ Φ[j′], thus to access T[Φ[j′]] we
might need to go back in the text. This can be avoided using the following
generalization of Lemma 4.1.

Lemma 4.2. Let j, j′ ∈ [0..n). If j ≤ j′, then j+PLCP[j] ≤ j′+PLCP[j′].
Symmetrically, if Φ[j] ≤ Φ[j′], then Φ[j] + PLCP[j] ≤ Φ[j′] + PLCP[j′].

Proof. The claim of Lemma 4.1 is equivalent to j + PLCP[j] ≤ (j + 1) +
PLCP[j + 1]. Iteratively applying this result gives the first claim. The
second claim follows by symmetry.

The above Lemma gives Φ[j] + ` ≤ Φ[j′] + lcp(j′,Φ[j′]), thus when
computing lcp(j′,Φ[j′]) we can skip the first max(0,Φ[j]+`−Φ[j′]) symbols
and continue where we left off when processing the pair (j,Φ[j]).

Therefore, processing the pairs in this order restricts random access to
text only to segment T[s..e), but at the cost of scanning the whole text
to implement the remaining sequential access. The pseudo-code of the
procedure processing segment T[s..e) is given in Figure 4.2.

Note that after changing the order in which we process pairs (j,Φ[j]),
we no longer obtain the PLCP values in correct order, thus first we collect
them in a set L (line 8) and sort at the end of the procedure (lines 10–11).

4.3 The new algorithm 27

4.3.2 Handling long LCPs

The above algorithm guarantees that for any pair (j,Φ[j]) processed in lines
4–9 we have j ∈ [s..e). However, when lcp(j,Φ[j]) is larger than e − j we
need to access symbols past the text segment T[s..e). To prevent this, we
modify the algorithm as follows.

Whenever during processing a pair (j,Φ[j]) we have j + ` = e in line
6, we pause the lcp computation for that pair and store (j,Φ[j]) in the set
Re. The computation of the pairs stored in Re is resumed when we start
processing the segment beginning at position e. Formally, at the end of
processing the segment T[s..e) we have

Re = {(j,Φ[j]) : j < e and j + lcp(j,Φ[j]) ≥ e}.

Therefore, the procedure for processing the segment T[s..e) now also
receives Rs as an extra input from the previous segment. It is already
sorted by the second component, hence it can be easily merged on-the-fly
with Q. More precisely, in line 4, we either take the first element of Q or
Rs, depending on which one has a smaller second component, and continue
the lcp computation. If the next processed element is (j,Φ[j]) ∈ Rs, we set
`′ ← s − j when we start processing the triple. Otherwise, we set `′ ← 0.
Line 5 becomes:

5 : `← max(`′,Φprev + `prev − Φ[j]).

This way, the computation of lcp(j,Φ[j]) is resumed for elements of Rs,
rather than started from scratch. The computation of pairs from Q is not
affected.

The output of processing T[s..e) is no longer PLCP[s..e), because some
lcp computations were postponed to the next segment. However, Lemma 4.2
implies that if (j, ·) ∈ Re then (j′, ·) ∈ Re for any j′ > j, thus the output is
in fact PLCP[s′..e′) for some s′ ≤ s and e′ ≤ e, i.e., we still obtain values of
PLCP in correct order.

4.3.3 Reducing the number of boundary crossings

The size of Rs and Re is Θ(n) in the worst case, since a single lcp value
can span several segments. Thus, over the whole algorithm, the total size
of these sets can be as large as Θ(n2/m), e.g., for T = an. This translates
to enormous extra I/O, since these sets contain pairs of integers.

To prevent this, we will use the technique of irreducible lcp values in-
troduced in [44].

28 4 LCP array construction

Definition 4.3. An lcp value PLCP[j] is said to be reducible if T[j − 1] =
T[Φ[j]− 1]. Otherwise, in particular when j = 0 or Φ[j] ∈ {0, n}, the value
is irreducible.

The following Lemma shows that it is easy to compute all reducible lcp
values once irreducible lcp values are known.

Lemma 4.4 ([44]). If PLCP[j] is reducible then PLCP[j] = PLCP[j−1]−1.

Furthermore, Kärkkäinen et al. [44] have shown that the sum of ir-
reducible lcp values is at most 2n log n. The constant factor was later
improved by Kärkkäinen et al. [40].

Lemma 4.5 ([40]). The sum of all irreducible lcp values is ≤ n log n.

The above tools are used to modify the algorithm as follows. When
creating the set Q in line 1 of the algorithm in Figure 4.2, we only include the
pairs (j,Φ[j]) such that PLCP[j] is irreducible. The remaining (reducible)
values can be easily computed in line 11 using Lemma 4.4.

To determine all j such that PLCP[j] is irreducible we use the following
Lemma (we omit the proof that can be found in Paper II).

Lemma 4.6. PLCP[j] is reducible iff j > 0 and Φ[j − 1] = Φ[j] − 1 and
PLCP[j − 1] > 0.

The first and second condition can be checked while scanning Φ[j] in
line 1 of Figure 4.2. All positions satisfying the third condition can be
precomputed, since PLCP[j−1] = 0 implies that j−1 is the starting position
of the lexicographically smallest suffix starting with T[j − 1]. There is at
most σ such suffixes and they can be computed from SA if the symbol
frequencies in T are known. To compute the symbol frequencies we scan
(for small σ) or sort (for large σ) the text.

With the above modification, the number of segment boundary crossings
is reduced to O(n+ (n log n)/m) (see Lemma 4.5), which is O(n) under a
reasonable assumption m = Ω(log n). Therefore, the total size of sets Rs
and Re over the whole algorithm is O(n).

4.3.4 Theoretical analysis

We now analyse the complexity of the algorithm in the standard external
memory model.

4.3 The new algorithm 29

Theorem 4.7. Given the text of length n over an alphabet of size σ and its
suffix array, the associated LCP array can be computed with the algorithm
described above in

O
(

n2

M(logσ n)2
+ n logM

B

n

B

)
time

and

O
(

n2

MB(logσ n)2
+
n

B
logM

B

n

B

)
I/Os

in the standard external memory model.

Proof. The text is divided into segments of size m, where m is chosen so
that m text characters can fit in RAM. The size of RAM is M log n bits,
thus we can fit m = Θ(M logσ n) symbols in that space. For each segment,
we scan the whole text, which takes O(n/(B logσ n)) I/Os. To estimate
the number of operations, we observe that comparing ` text symbol takes
O(1 + `/ logσ n) time, assuming we pack logσ n symbols into a machine
word. For a single segment, this amounts to O(m+ n/ logσ n) operations
in total. This gives the first term in the complexities.

All other operations in the algorithm involve streaming and sorting
tuples of integers. The total number of elements involved in each of these
operations is O(n). This gives the second term in the complexities.

4.3.5 Implementation details

In the implementation of the algorithm used in experiments we assume that
each text symbol is represented using 1 byte and each integer needs 5 bytes.
The implementation is therefore capable of handling texts up to 1 TiB.

For external memory sorting we use the STXXL library [19]. The library
operates using the concept of pipelining. That is, rather than writing the
result of one step of computation to disk and loading it into RAM at the
beginning of the next step, we perform two steps simultaneously: the output
of the first step is directly fed as an input to the next stage.

All steps of the computation in LCPscan are implemented using the
above methodology. For example, when we obtain Φ values as the second
component of triples (j,Φ[j], ISA[j]) in the first step, we do not write Φ[j]
values to disk. Instead, we immediately form the pairs (j,Φ[j]) which are
then sorted by the second component.

Using pipelining all through the algorithm, and assuming that the ex-
ternal memory sorting requires only a single pass over the input, the I/O
volume of LCPscan is 71n+ 40r+ dn/men bytes, where r is the number of
irreducible lcp values.

30 4 LCP array construction

The peak disk space usage occurs during the step described above, when
we read the triples (j,Φ[j], ISA[j]) from disk and write ISA[j] and pairs
(j,Φ[j]) sorted by the second component to disk. All that data takes 30n
bytes of disk space in the worst case. In addition we have the suffix array
and text on disk occupying 6n bytes, for a total of 36n bytes.

Reducing disk space usage. To reduce the peak disk space usage, we
split the text into q parts of sizes n1, n2, . . . , nq and execute the algorithm
separately for each part. More precisely, in the first step we scan SA and
form a triple (SA[i],SA[i − 1], i) only if SA[i] belongs to the current part.
The rest of the algorithm can be easily modified, because the main data
structures used in the algorithm (ISA, Φ, PLCP) are all indexed in text
order, i.e., we simply compute and store contiguous ranges of these arrays
rather than full arrays.

The output of the algorithm for a single part is a subsequence of the
LCP array containing only the entries LCP[i] such that SA[i] belongs to the
current part. Once all parts have been processed, they are merged using
SA to determine the order.

The disadvantage of this partial processing is that enumerating the
triples that belong to the currently processed part, requires scanning the
whole suffix array. These extra scans and the merging of LCP subsequences
add 15n+ 5(q−1) bytes to the I/O volume, e.g., for q = 4, the I/O volume
is 101n+ 40r + dn/men.

With the above technique, the peak disk space usage during the most
disk-demanding step is reduced to 6n + 5

∑j−1
i=1 ni + 30nj for the jth part.

The optimal division of text into q parts (i.e., the division that minimizes
the maximum of the above expression over all parts) is:

n1 =
6q−1

6q − 5q
n,

n2 =
5

6
n1,

. . .

nq =
5

6
nq−1.

With q = 10 the peak disk space usage of LCPscan is reduced to less
than 12n. This is only n bytes more than is required for input (suffix array
and text occupying 6n bytes in total) and output (the LCP array occupying
5n bytes).

4.4 Practical performance 31

Algorithm Runtime Peak disk usage I/O volume
eSAIS (SA only) 5.0 days 2.8 TiB 30.5 TiB
pSAscan 2.2 days 0.9 TiB 16.1 TiB
LCPscan 1.6 days 1.9 TiB 16.9 TiB
eSAIS (SA+LCP) 9.9 days 6.0 TiB 60.3 TiB
eSAIS (SA) + LCPscan 6.6 days 3.4 TiB 47.5 TiB
pSAscan + LCPscan 3.8 days 1.9 TiB 33.0 TiB

Table 4.2: Summary of experiments on the 120 GiB testfile (Wikipedia
XML) using 3.5 GiB of RAM.

4.4 Practical performance

We implemented the LCPscan algorithm with all the optimizations de-
scribed above. Since there are no other existing standalone methods for
LCP array construction in external memory, we compare it to eSAIS [10],
the fastest algorithm computing both the suffix and LCP array in external
memory. eSAIS can also compute only the suffix array. In our experiments
we measure the difference in runtime between these two modes and com-
pare to LCPscan. In all experiments with LCPscan we used q = 10, i.e., the
input was processed in ten parts. Paper II contains detailed experimental
results. For all files, LCPscan is faster than eSAIS by a factor 2–4, while
simultaneously using less than a quarter of disk space.

In the second experiment we assume that we start the computation
with the text only. The results are given in Table 4.2. The combination
of LCPscan and eSAIS (used only for construction of SA) achieves a 33%
speed-up and 43% disk space usage reduction, compared to eSAIS comput-
ing both suffix and LCP array.

Separating the LCP array construction from suffix sorting allows re-
placing eSAIS with other algorithm. Using the recent parallel suffix array
construction algorithm called pSAscan (see Section 3.4), we obtained fur-
ther improvement in runtime and disk space usage by about 44%.

Additional experiments showing the advantage of separating the LCP
array computation from suffix sorting (in the context of external memory
Lempel-Ziv parsing) are shown in Chapter 6.

32 4 LCP array construction

Chapter 5

LZ77 parsing in internal memory

Lempel-Ziv (LZ77) parsing is a method of encoding the text that takes ad-
vantage of fragments occurring in several positions to achieve compression.
The method is used in several popular lossless compressors such as gzip
or 7-zip [70]. The parsing also has applications in other domains, such as
efficient computation of all repetitions in a string [51] or approximation of
the smallest context-free grammar [13].

In recent years LZ77 has received increasing attention due to a new
problem, namely, indexing highly repetitive collections. Such data is abun-
dant nowadays: genomic collections produced by high-throughput sequenc-
ing machines [20, 57], versioned collections of source code and multi-author
documents, such as Wikipedia [75] or web crawls [24].

LZ77 exploits a high degree of repetitions particularly well, and several
LZ77-based or grammar-based (where grammar can be derived from LZ77
parsing) indexes have been proposed [54, 30, 31, 21, 32]. In many of the
above applications, including index construction, computing the parsing is
a bottleneck [54, 32].

Time-optimal solutions to LZ77 parsing have been known for years [3,
18, 16] (see also the recent survey [5] for the overview of the prior art), but
the increasing need for efficient parsing algorithms has recently spawned
several new algorithms. Many of the solutions [69, 81, 76, 52, 8] focus on
achieving a good time complexity, O(n · polylog(n)), while using a space
close to what is necessary to hold the text, i.e., O(n log σ) bits. These
algorithms usually rely on sophisticated data structures and thus are mostly
of theoretical interest.

A considerable amount of effort also went into developing algorithms
that are primarily concerned with practical performance [14, 67, 38, 37].
In this thesis we focus on that group. This chapter gives a unified view

33

34 5 LZ77 parsing in internal memory

of existing and several new practical algorithms for computing the LZ77
parsing that improve upon the prior solutions in terms of time and space.
For now, we restrict the discussion to internal-memory algorithms. Using
disk space in the LZ77 parsing is the topic of the next chapter. The material
in this chapter is based on Papers III and IV.

5.1 Preliminaries

LZ77 parsing via LPF array. One way to compute the LZ77 parsing
is to compute all LPF values LPF[0..n) and with a single scan select the
ones in the parsing. Crochemore and Ilie describe two algorithms using this
approach [16, 18]. Both algorithms take the suffix array as an input. The
main difference is that the first algorithm uses direct symbol comparisons
to compute lcp values and thus requires access to the text. The second
algorithm takes, in addition to SA, the LCP array as an input and thus
does not require access to the text at all. Both algorithms run in O(n)
time. Ohlebusch and Gog [67] have shown how the second algorithm can
be improved by interleaving the computation of the LCP and the LPF
array. The modification does affect the time complexity, but the resulting
algorithm runs faster in practice.

Lazy LZ77 parsing. It is known that the number of phrases in the LZ77
parsing, denoted by z, satisfies z = O(n/ logσ n) [39]. Therefore, unless the
alphabet is very large, we have z = o(n) and most of the LPF pairs are not
used in the parsing. Skipping the computation of these unused LPF pairs
could speed up the LZ77 parsing, since typically computing each LPF pair
attracts at least one cache miss. However, the exact positions that can be
omitted cannot be identified ahead of time. They can only be detected, if
we postpone the computation of lcp values until it is absolutely necessary.
This approach is known as lazy Lempel-Ziv parsing [49, 37, 41].

The main tools used by the algorithms using the lazy approach are next
and previous smaller value (NSV/PSV) arrays. For i ∈ [0..n), let

NSVlex[i] = min{i′ ∈ [i+ 1..n) | SA[i′] < SA[i]},
PSVlex[i] = max{i′ ∈ [0..i) | SA[i′] < SA[i]}.

If any of the sets on the right is empty we set NSVlex[i] = −1 and PSVlex[i] =
−1. The above arrays are defined with respect to the suffix array, i.e., in

5.2 Precomputing NSV/PSV 35

Algorithm Parse

1: j ← 0
2: while j < n do
3: nsv ← compute NSVtext[j]
4: psv ← compute PSVtext[j]
5: j ← Factor(j, nsv, psv)

Procedure Factor(j, nsv, psv)
1: `nsv ← lcp(j, nsv)
2: `psv ← lcp(j, psv)
3: if `nsv > `psv then
4: (p, `)← (nsv, `nsv)
5: else
6: (p, `)← (psv, `psv)
7: if ` = 0 then p← T[j]
8: output factor (p, `)
9: return j + max(1, `)

Figure 5.1: Computing the LZ77 parsing from NSVtext and PSVtext values.
We assume that lcp(j, j′) returns 0 if j′ 6∈ [0..n).

lexicographical order. It is useful to also define them in text order:

NSVtext[j] = SA[NSVlex[ISA[j]]], (5.1)

PSVtext[j] = SA[PSVlex[ISA[j]]]. (5.2)

If NSVlex[ISA[j]] = −1 (or PSVlex[ISA[j]] = −1), we set NSVtext[j] = −1
(PSVtext[j] = −1). The NSV/PSV arrays can be used to compute the
LPF pairs of the text using the following Lemma. Recall, that we denote
LPF[j] = (pj , `j).

Lemma 5.1 ([18]). For any j ∈ [0..n), it holds `j = max{`nsv, `psv}, where
`nsv = lcp(j,NSVtext[j]) and `psv = lcp(j,PSVtext[j]).

The algorithm for computing the LZ77 parsing from NSVtext and PSVtext

arrays is given in Figure 5.1. Whenever the procedure Factor returns after
performing ` symbols comparisons, j is advanced by at least `/2 in line 5
of Parse, thus the algorithm runs in O(n) time.

The problem of computing the LZ77 parsing can therefore be reduced
to computing NSVtext/PSVtext values.

5.2 Precomputing NSV/PSV

Our first approach to implement access to NSV/PSV arrays is to simply
precompute all values. This idea was first proposed by Goto and Ban-
nai [37]. They describe three new linear-time algorithms, which all first
compute either NSVtext/PSVtext or NSVlex/PSVlex arrays and then use them
to compute the parsing. The fastest of the three algorithms is called BGS.
The first contribution of Paper III is the improved version of the BGS al-
gorithm. Our changes do not affect the time complexity, but make the
algorithm faster and more space efficient.

36 5 LZ77 parsing in internal memory

Algorithm ComputeNSV/PSV

1: SA[−1]← −1 // bottom of the stack
2: SA[n]← −1 // empties the stack at the end
3: top← −1 // top of the stack
4: for i← 0 to n do
5: while SA[top] > SA[i] do
6: NSVtext[SA[top]]← SA[i]
7: PSVtext[SA[top]]← SA[top− 1]
8: top← top− 1 // pop from stack
9: top← top+ 1
10: SA[top]← SA[i] // push to stack

Figure 5.2: Computation of NSVtext and PSVtext arrays.

The first step of the algorithm is the computation of SA for the input
text. This can be done in linear time and (1 + ε)n log n bits of working
space1 (for any ε > 0), including the space for output SA and assuming
integer alphabet [47].

The next step is the computation of the NSVtext/PSVtext values from
the text and SA. The algorithm is given in Figure 5.2. To simplify the
pseudocode, we assume that SA[−1] and SA[n] are valid addresses. The
algorithm scans the suffix array while maintaining the stack of suffixes.
After processing suffix SA[i], the content of the stack (top to bottom) is:
SA[i], PSVtext[SA[i]], PSVtext[PSVtext[SA[i]]], . . . ,−1. Our procedure differs
from the one of Goto and Bannai in the following ways:

• We compute NSVtext and PSVtext directly, rather than computing
NSVlex and PSVlex first and then permuting it with the help of ISA
and SA.

• In the BGS algorithm the PSV value is stored whenever it is pushed
to the stack. We delay this and always write NSV and PSV values
together. This reduces the number of cache misses, since the arrays
NSVtext and PSVtext are stored interleaved.

• Rather than storing the content of the stack in a separate array, we
overwrite the suffix array with the stack. This is possible, because
the stack is never larger than the already used part of SA.

1By working space we mean the space used by the algorithm in addition to the input
and output. In some cases the working space includes the output and in those cases we
explicitly mention that.

5.3 NSV/PSV queries 37

Algorithm Parse

1: for i← 0 to n− 1 do
2: ISA[SA[i]]← i
3: j ← 0
4: while j < n do
5: i← ISA[j]
6: nsv ← compute NSVlex[i]
7: psv ← compute PSVlex[i]
8: j ← Factor(j,SA[nsv],SA[psv])

Figure 5.3: Computing the LZ77 parsing with NSVlex and PSVlex values.

The new algorithm uses three integer arrays and thus requires 3n log n
bits of working space, which is n log n bits less than the BGS algorithm 2.

Further optimizations. Paper III describes several further improve-
ments to the algorithm. For example, it is sufficient to only precompute the
PSVtext array in the preprocessing stage and then in the parsing stage the
value NSVtext can be obtained from SA and PSVtext, assuming we can over-
write PSVtext. The resulting algorithm uses only 2n log n bits of working
space.

The suffix array can be left untouched after the computation. This may
be desirable if we want to reuse it later for other purpose. To achieve this,
the top of the stack is stored in a fixed-size buffer (to save cache misses)
while the rest is implicitly stored in the PSVtext array.

5.3 NSV/PSV queries

In this section we describe a family of algorithms that abandon precom-
puted NSV/PSV arrays in favor of data structures capable of answering
NSV/PSV queries on demand. This approach leads to one of the most
space-efficient internal memory algorithms. The new family of algorithms
is the second contribution of Paper III.

We start by rewriting the basic parsing algorithm in Figure 5.1 to use
NSVlex/PSVlex values instead of NSVtext/PSVtext (see Eqs 5.1 and 5.2). The
new version is given in Figure 5.3.

The PSV/NSV values in lines 6–7 can be found simply by scanning SA
from ISA[j] in both directions until the value smaller than j is detected.

2We point out that one of the algorithms described by Goto and Bannai [37] also uses
3n logn bits of working space but is notably slower than BGS for non-artificial inputs.

38 5 LZ77 parsing in internal memory

Despite the O(nz) worst-case time complexity, this approach works well on
many types of data. However, an artificially designed input can cause the
algorithm to slow down dramatically [49].

To prevent long scans of SA, we use the NSV/PSV data structure.
Among the existing data structures for this task (see [25] for a theoretical
overview), we found the practical data structure of Abeliuk et al. [2] to
work best in our case. It uses (n log n)/b̂ bits of space and answers queries
in O(b̂ + n/b̂) time. For b̂ = log n the algorithm in Figure 5.3 runs in
O(n+ z log n) time and uses 2n log n+n bits of working space. To simplify
the analysis, in the remaining part of this section we assume b̂ = log n.

Reducing space usage. Computing and storing the full ISA requires
significant time and space. In the parsing stage, however, only z elements of
ISA are used. This can be exploited as follows. For some fixed constant k >
0 we store ISA[j] only if j mod k = 0. Those are called sample positions.
Then, an arbitrary value of ISA can be computed using the so-called LF-
mapping LF[0..n), which is defined with the equality

ISA[j − 1] = LF[ISA[j]].

Thus, for any j ∈ [0..n), ISA[j] = LFs[ISA[kj′]], where j′ = dj/ke and
s = kj′ − j ∈ [0..k). The problem therefore is reduced to the ability of
answering LF queries fast and in small space.

Compact representations of LF-mapping are well studied in the context
of compressed text indexes [63]. In most of these applications, typically
only the Burrows-Wheeler transform BWT[0..n) is available (but not the
plain suffix array). Then, the LF-mapping can be computed using the
formula

LF[i] = C[BWT[i]] + rankBWT[i](BWT, i),

where C[c] is the total number of symbols smaller than c in BWT[0..n) and
rankc(BWT, i) is the number of occurrences of c in BWT[0..i) (see [23]). In
these applications, BWT is often replaced with wavelet trees, which support
efficient access/rank queries (and much more, see the recent survey [62]).

The above approach does not, however, take any advantage of the suffix
array in the uncompressed form, which is available in our algorithm. This
additional information allows designing a faster and smaller representation
of LF-mapping. Let b > 0 be a fixed constant and let BWT′[0..n) be
the array obtained by replacing BWT[i′] with a special symbol # 6∈ Σ if
rankBWT[i′](BWT, i′) is not a multiple of b. 3 From the definition of BWT′

3Here we assume that 0 is not a multiple of b.

5.3 NSV/PSV queries 39

we have, for any i ∈ [0..n) and c ∈ Σ,

rankc(BWT, i)− b ≤ b · rankc(BWT′, i) < rankc(BWT, i).

Thus, we can obtain ISA[j − 1] from ISA[j] as follows. First, compute
p := C[BWT[i]] + b · rankBWT[i](BWT′, i), where i = ISA[j] and then scan
SA(p..p+b] to find position p′ such that SA[p′] = j−1, that is, ISA[j−1] = p′.

Note that we do not need to explicitly store BWT since we can compute
it using the suffix array when needed. Sequential scans of SA do not intro-
duce many cache misses and thus are very fast in practice. What remains
is to show how to implement rank queries over BWT′.

For each symbol c ∈ Σ we store all occurrences of c in BWT′ in a
sorted array S[c], storing at most n/b integers over all symbols. To answer
rankc(BWT′, i), we binary search the c’s list to find the largest i′ such that
S[i′] < i and return i′ + 1 as the result. Thus computing a single LF value
using BWT′ takes O(b+ log(n/b)) time.

The LZ77 parsing algorithm using the above techniques to reduce the
space occupied by ISA runs in O(n+ z log n+ zkb+ zk log(n/b)) time and
uses (n+n/k+n/b) log n+n+O(σ log n) bits of working space. Setting b =
log n and k = O(1) gives running time O(n+ z log n) using (n+n/k) log n+
2n + O(σ log n) bits of working space. Given z = O(n/ logσ n), the time
complexity is O(n log σ). The exact choice of k is the main parameter
controlling the time-space tradeoff in the algorithm.

Further space reduction for highly repetitive data. In Paper III we
describe an alternative representation of the rank data structure over BWT
that is faster and more space efficient if the text is highly repetitive. For
such text, the BWT tends to contain long runs of equal symbols [57]. Each
run BWT[i1..i2) is encoded using a triple (i1, i2− i1, rankBWT[i1](BWT, i1)).
All triples are sorted by the first element and runs of different symbols are
stored in separate lists.

To answer rankBWT[i](BWT, i), we binary search the list of triples en-
coding runs of BWT[i] to find the triple (i′, `, t) such that i′ ≤ i < i′ + `
and return t+ i− i′ as the answer.

Let r be the number of runs in BWT. The above rank representation
takes 3r log n bits of space and answers queries in O(log r) time. Thus,
the parsing algorithms runs in O(n+ zk log r + z log n) time and uses (n+
n/k) log n + 3r log n + n + O(σ log n) bits of working space. Compared to
previous approach, the space usage is reduced if r is significantly smaller
than n.

40 5 LZ77 parsing in internal memory

5.4 Scan-based algorithm

All algorithms described so far in this chapter require at least n log n bits
of working space. This limits their scalability to texts that are a few times
smaller than the available RAM. To process larger inputs we either need
more space-efficient algorithms or we need to resolve to using external mem-
ory. In this section we focus on the first option, namely, using much less
than n log n bits of working space. This may be desirable, if the external
memory is slow or very limited. Algorithms using external memory are the
topic of the next chapter.

We propose an algorithm called LZscan that, for any d ≥ 1, uses
O((n log n)/d) bits of working space and runs in O(ndtrank) time, where
O(trank) is the time complexity of the rank query. This section is based on
Paper IV.

5.4.1 Overview

The general approach of LZscan is similar to the algorithms for suffix and
LCP array construction from Chapter 3 and 4. The text is divided into
d = dn/me segments of size m (except possibly the last one) and each
of the segments is processed separately. To process a single segment, the
algorithm uses O(m log n) = O((n log n)/d) bits of working space. The
segments are processed left-to-right.

Assume that we are currently processing segment X = T[s..e) and let
W be the concatenation of all segments to the left of X. Our goal is to
compute LPFT[s..e). For simplicity assume that no phrase or its source
crosses segment boundaries. Then the parsing of X can be easily obtained
with a single scan over LPFT[s..e). The details of handling phrases crossing
segment boundaries can be found in Paper IV and are omitted here.

Every LPFT[j], j ∈ [s..e) can be classified into one of two types, de-
pending on whether pj ≥ s (type I) or pj < s (type II). Type-I LPFs can
be easily computed from X in O(m) time and space using one of many
linear-time LPF array construction algorithms [17]. To compute type-II
LPFs we first need to introduce a new concept.

Definition 5.2. Given two strings X and W, we define the matching
statistics of X with respect to W as an array MSX:W[0..|X|) such that
MSX:W[j] = (p̂j , ̂̀j), where X[j..j+ ̂̀

j) is the longest substring of X starting

at position j that also occurs in W and X[j..j + ̂̀
j) = W[p̂j ..p̂j + ̂̀

j). Note
that p̂j is not uniquely defined.

5.4 Scan-based algorithm 41

It is easy to see that the computation of all type-II LPFs is equivalent
to the computation of MSX:W.

5.4.2 Computing matching statistics in small space

Every efficient algorithm computing MSX:W that we are aware of (see,
e.g., [68, 3, 12]) starts by building an O(|W|)-size data structure and thus
cannot be applied here, since we want to use only |X| log n bits of space and
it is possible that |W| � |X|. Our solution is to first compute MSW:X. This
only involves linear-size data structures on X which we can afford. Then,
we invert MSW:X into MSX:W.

Inverting matching statistics. The matching statistic inversion is a
novel procedure described in Paper IV that allows efficient computation of
MSX:W using O(|X| log n) bits of space. The pseudo-code of the inversion
algorithm is given in Paper IV (Fig. 1). The data structures required
during inversion are SAX and LCPX which both take O(|X| log n) bits of
space. The procedure also needs MSW:X, but every element is accessed
only once and thus does not need to be stored. The computation of MSX:W

is therefore reduced to enumerating all values of MSW:X.

Computing MSW:X. A standard approach for computing matching statis-
tics [68] when |W| � |X| works as follows. We scan W right-to-left and for
any j = |W| − 1, . . . , 0, we compute a pair (Pj , ̂̀j), where Pj is the interval
of positions Pj = [sj ..ej) such that SAX[sj ..ej) contains all suffixes of X

prefixed with W[j..j + ̂̀
j).

4 Thus MSW:X[j] = (p, ̂̀j), where p is any value

in SAX[sj ..ej). Computing (Pj , ̂̀j) requires only access to W[j], (Pj+1, ̂̀j+1)
and some indexing data structures on X. Among others, these data struc-
tures include BWTX that was preprocessed for rank queries. The time to
compute (Pj , ̂̀j) is dominated by the rank query on BWTX. Thus, if by
O(trank) we denote the time of a single rank query, the whole procedure
runs in O(|W|trank) time. Over all segments this amounts to O(ndtrank)
operations.

LZscan uses a slightly modified approach to compute the matching
statistics, which we found to be more effective in practice. The scan is
performed right-to-left, similar to [68] but instead of maintaining a range
Pj , we only keep a single element p ∈ Pj . For the purpose of matching
statistics inversion, this is sufficient. Intuitively, the new method is faster
in practice, because rather than updating two endpoints of the range, we

4In fact, in [68] the matching statistics are defined as MSW:X[j] = (Pj , ̂̀j)

42 5 LZ77 parsing in internal memory

just update a single element, which reduces the number of rank queries by
a factor of two.

Skipping repetitions. Segments are processed left-to-right, thus, when
we begin processing X, the factorization of W has already been computed.
Knowing the repetition structure of W can sometimes be used to skip the
computation of (Pj , ̂̀j) for a contiguous range of positions. Suppose W[i..i+
`) is an LZ-factor. Thus, there must be another occurrence of W[i..i + `)
starting at some position i′ < i. If a source of any phrase in the parsing
of X is completely contained in W[i..i + `), it can be replaced with the
equivalent source contained in W[i′..i′+`). Thus, if at any point during the
computation of matching statistics we find MSW:X[j] = (p, ̂̀j) that satisfies

i ≤ j < j + ̂̀
j ≤ i + `, we can ignore MSW:X[j] in the matching statistics

inversion. Furthermore, for any j′ ∈ [i..j), we must also have i ≤ j′+ ̂̀j′ ≤
i+ `, hence we can skip all such j′ and resume the computation at position
i− 1. This saves time but prevents the computation of MSW:X[i− 1] using
the standard method, since it requires MSW:X[i]. In this case, we compute
MSW:X[i−1] using string binary search over the suffix array of X. The string
binary search is slower than the normal computation of MSW:X[i − 1], so
we only use this technique, if ̂̀j ≥ t, where t is some predefined threshold.
We found t = 40 to give the best performance in our experiments.

5.5 Practical performance

Paper III contains an experimental comparison of the new “large space”
(i.e., using Ω(n log n) bits of working space) algorithms presented in this
section to all relevant prior work.

The new algorithm for precomputing the NSV/PSV arrays using 3n log n
bits of working space results in the fastest linear-time algorithm for LZ77
parsing. Its optimized version, using 2n log n bits of space achieves a
very similar performance. Furthermore, the new algorithms for computing
NSV/PSV can be easily modified to solve more general problem, namely
computing all LPF values. In our experiments, the new algorithms are the
fastest way to obtain the full LPF array.

In the comparison of large space algorithms we also included the new
family of algorithms that use data structures capable of answering NSV/PSV
queries rather than precomputing all NSV/PSV values. The basic version
of the algorithm using a little over 2n log n bits of space achieves a very sim-
ilar performance to linear-time algorithms using 2n log n bits of space. The
space-efficient version of the algorithm allows using much less than 2n log n

5.5 Practical performance 43

bits of space (1.25n log n in our experiments) and is at most 2 times slower
than the basic version. For non-repetitive data, this is many times faster
than the previously best algorithm at this memory level.

In Paper IV we compared the LZscan algorithm to other lightweight al-
gorithms, all based on compressed text indexes [53, 67]. In our experiments,
LZscan achieves the best time-space tradeoff of all algorithms although not
by a significant margin. The algorithm, however, notably dominates other
solutions on highly repetitive data. This is mainly due to the technique
that reuses the already computed part of factorization to partially skip the
computation of matching statistics.

44 5 LZ77 parsing in internal memory

Chapter 6

LZ77 parsing in external memory

In this chapter we investigate how to compute the LZ77 parsing for inputs
that exceed the size of internal memory. This is particularly important
for large highly repetitive collections, which do not fit in RAM, but the
resulting LZ77 parsing (and the index built upon it) does.

Some of the new algorithms in this chapter rely on the prior compu-
tation of suffix or LCP array. In particular, the most scalable of the al-
gorithms (EM-LPF) requires both arrays. Thus, this chapter additionally
motivates the findings from previous chapters.

To the best of our knowledge, we are the first to directly address the
problem of external-memory LZ77 parsing. The material in this chapter is
based on Paper V. As an extension of the paper, we describe a modification
of the EM-LPF algorithm that reduces the disk space usage, and revise the
experiments to include the recently published algorithms.

6.1 LPF-based algorithm

Similar to Chapter 5, our first attempt to compute the LZ77 parsing is to
compute (and store to disk) the full LPF array of the input string. Then
the parsing is easily obtained with a single scan of the LPF array.

Computing the LPF array. Our external memory algorithm construct-
ing the LFP array, called EM-LPF, is an adaptation of the internal-memory
LPF computation of Crochemore, Ilie and Smyth [18].

The algorithm takes the suffix and LCP array of the text as input. In
Paper V we used eSAIS to compute both arrays, since it was the fastest
algorithm that could compute the LCP array for inputs that are larger
than the available RAM. In this section we present the extended set of

45

46 6 LZ77 parsing in external memory

Algorithm EM-LPF

1: S ← {(−1,−1)}
2: for i← 0 to n do
3: if i = n then (j, `)← (n, 0) // empties the stack
4: else (j, `)← (SA[i], LCP[i])
5: while S 6= ∅ do
6: (js, `s)← top(S)
7: if j < js then
8: pop(S)
9: if ` < `s then
10: (j′, ·)← top(S)
11: LPF[js]← (j′, `s)
12: else
13: LPF[js]← (j, `)
14: `← `s
15: else if j > js and `s ≥ ` then
16: pop(S)
17: (j′, ·)← top(S)
18: LPF[js]← (j′, `s)
19: else break
20: push(S, (j, `))
21: return LPF[0..n)

Figure 6.1: LPF array construction in external memory.

experiments, including the algorithms published in the meantime, namely,
we consider the combination pSAscan + LCPscan from Chapters 3 and 4
as a replacement of eSAIS.

The algorithm is given in Figure 6.1. For clarity, we present the internal-
memory version and explain how to implement it in external memory.
Compared to the original algorithm of Crochemore et al. [18], we made
the following modifications:

• The algorithm computes the LPF array, as defined in Chapter 5 (i.e.,
as a sequence of pairs encoding both the length and the position of the
previous occurrence), which is necessary for the purpose of computing
the Lempel-Ziv parsing. The original algorithm only computes the
length-component.

• The suffix array value SA[i] in the original algorithm is encoded on
stack by index i. We store the actual value SA[i] instead and thus
avoid random access to SA.

• The original algorithm in some cases modifies the LCP array. In our

6.1 LPF-based algorithm 47

version, every value read from the LCP array is copied (and modified,
if necessary) onto stack and from then on it is always accessed from
there.

As seen in Figure 6.1 the resulting algorithm only requires sequential
access to SA and LCP, thus we can stream those arrays from disk using two
small buffers.

The only non-sequential operations are assignments LPF[js]← (j, `) in
lines 11, 13, and 18. However, each position in LPF is assigned a value only
once. We can therefore implement these assignments in external memory
by sorting the triples (js, j, `) by the first component. The EM sorting is
performed with the STXXL library [19].

Finally, the algorithm requires some space for the stack. Crochemore
et al. [18] proved that at any point during the algorithm, the stack size is
bounded by O(

√
n). For all inputs we tried in experiments, the stack never

grows beyond a negligible size. However, to prevent the worst case, we use
an external-memory stack from the STXXL library, which only keeps the
top O(B) items in RAM and the rest is stored on disk.

Correctness. Let LPF[j] = (pj , `j). As shown by Lemma 5.1, to find pj
it suffices to consider two positions in T, namely: PSVtext[j] and NSVtext[j].
These positions, however, are not the only valid candidates for pj . For
i ∈ [0..n), let

PSV
′
lex[i] = min{i′ ∈ [0..i) | SA[i′] < SA[i] and

lcp(SA[i],SA[i′]) = lcp(SA[i], SA[PSVlex[i]])}.

As before, we also define

PSV
′
text[j] = SA[PSV

′
lex[ISA[j]]].

It is easy to see from the definition that PSV
′
text[j] can replace PSVtext[j] as

a candidate for pj . The correctness of EM-LPF is based on the following
invariant: after processing the pair (SA[i], LCP[i]), the content of the stack
(top to bottom) is: (SA[i], ·), (PSV

′
text[SA[i]], ·), (PSV

′
text[PSV

′
text[SA[i]]], ·),

. . . , (−1, ·). Note that it is the same as in the internal-memory algorithm
from Section 5.2, except PSVtext has been replaced with PSV

′
text. The sec-

ond component of each pair (p, `) on stack is the length of lcp between
suffix p and the next suffix on the stack (PSV

′
text[p]).

48 6 LZ77 parsing in external memory

I/O complexity. The I/O complexity of the LPF array construction
is dominated by the external-memory sorting of n triples of integers and
therefore is equal to O(sort(n)). If the SA and LCP array is constructed
using eSAIS or another algorithm with sorting complexity, the I/O com-
plexity of the whole algorithm stays the same. Replacing eSAIS with the
combination (p)SAscan + LCPscan increases the I/O complexity to that
of (p)SAscan (see Chapter 3).

Reducing the disk space usage. Each element of the triple (js, j, `)
processed by the algorithm in Figure 6.1 needs log n bits of space. The al-
gorithm sorts n triples, thus the disk space required by the external-memory
sorting is 3n log n bits. In some applications, this can be prohibitively high.
Depending on the used suffix and LCP array construction algorithms, it can
even dominate the peak disk space usage of the whole algorithm, e.g., this
is the case when using the combination (p)SAscan + LCPscan.

The disk space usage of the external-memory sorting can be reduced
using a similar technique as in Chapter 4. We divide the LPF array into
q equal-sized parts and run q rounds of the algorithm. In each round we
compute one part of the LPF array. More precisely, the triples computed
in lines 11, 13, and 18 are only included in the sorting, if js belongs to
the currently processed part. After a single round of processing is finished,
we immediately scan the computed part of the LPF array (to obtain LZ-
factors) and then discard it, before starting the next round. This way, the
disk space usage of the sorting is reduced to (3n log n)/q bits.

A single round of processing requires scanning the whole SA and LCP
array. With q parts the I/O volume is increased by 2(q − 1)n log n bits.

The above technique was not described in Paper V, thus the section on
practical performance in this chapter contains a small experiment showing
its effect on the runtime.

6.2 External memory LZscan

A different approach to LZ77 factorization for inputs exceeding the size of
RAM is an external-memory variant of the LZscan algorithm described in
Chapter 5 that we call EM-LZscan. The key differences compared to the
internal-memory version are:

• The text is stored and accessed from disk, rather than internal mem-
ory. This is possible, since the single step of matching statistics com-
putation requires only access to a single character and all characters
are accessed sequentially.

6.3 Semi-external LZ77 parsing 49

• All of RAM is designated for the data structures used during the
computation of MSW:X and the matching statistics inversion. These
data structures take O(m) words, and so we use m = Θ(M).

Assuming that each symbol needs log σ bits, computing MSW:X takes
(|W| log σ)/(B log n) I/Os. Given m = Θ(M), the text is divided into
Θ(n/M) segments. The total I/O complexity of the algorithm is therefore

O
(
n2 log σ

MB log n

)
.

The CPU complexity becomes

O
(
n2 · trank

M

)
.

6.3 Semi-external LZ77 parsing

Our third algorithm computing the LZ77 parsing is semi-external, that is,
requires the input text to fit completely in RAM, but other data is stored
on disk. The algorithm, called SE-KKP, is based on the internal-memory
LZ77 parsing algorithm that precomputes all NSVtext/PSVtext values (see
Section 5.2). As before, the algorithm takes the input text T and the suffix
array of T as input. The main change is that the NSV/PSV arrays are now
stored on disk. After the computation of NSV/PSV values is completed,
the LZ77 parsing is obtained using the algorithm in Figure 5.1. It does
a single sequential scan of NSVtext/PSVtext, but requires random access to
the text, which therefore has to be kept in RAM.

The pseudo-code of the algorithm is given in Figure 6.2. Compared
to the original internal memory algorithm from Section 5.2, we need the
following changes:

• The stack no longer overwrites the SA. Instead we maintain a separate
stack. To guarantee a small memory footprint, we use an external-
memory stack from the STXXL library.

• Both NSVtext and PSVtext values are always computed and accessed
together, hence the arrays are stored interleaved in an array denoted
NPSVtext. This simplifies the external memory sorting and reduces
the disk seek time, when scanning NSVtext/PSVtext arrays in the final
step.

50 6 LZ77 parsing in external memory

Algorithm SE-KKP

1: S ← {−1}
2: for i← 0 to n do
3: if i = n then j ← −1 // empties the stack
4: else j ← SA[i]
5: js ← top(S)
6: while js > j do
7: pop(S)
8: NPSVtext[js]← (j, top(S))
9: js ← top(S)
10: push(S, j)
11: return NPSVtext[0..n)

Figure 6.2: Construction of the NSVtext/PSVtext arrays (stored interleaved
as a single array NPSVtext) in external memory.

The only non-sequential memory access in the algorithm is the assignment
NPSVtext[js]← (j, top(S)) in line 8. The solution is analogous to EM-LPF:
external memory sort of triples (js, j, top(S)) by the first component. As
before, the sorting is accomplished using the STXXL library.

SA construction. The remaining problem is the computation of SA. Any
external memory algorithms, such as eSAIS [10], could be used. However,
in this scenario, using an asymptotically slower algorithm such as SAscan
(see Chapter 3) could be a better choice. Since the RAM has to be large
enough to accommodate the text, we have n/M ≤ logσ n, e.g., for byte
alphabet and inputs up to 1 TiB, the ratio n/M never exceeds five. For
such ratios SAscan achieves comparable performance to eSAIS (possibly
even better, if we use its parallel version [43]) and uses much less disk
space.

I/O complexity. Sorting the triples in external memory takesO(sort(n))
= O((n/B) logM/B(n/B)) I/Os, which simplifies to O(n/B), assuming
M log n ≥ n log σ (see above). The complexity of suffix sorting under this
assumption is also O(n/B) for both eSAIS and (p)SAscan.

6.4 Practical performance

We now present an experimental evaluation of the algorithms described in
this chapter. For experiments we used a machine equipped with two 1.9

6.4 Practical performance 51

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

●
●
●
●

● ● ●
●

●
●

T
im

e

s
M

iB

Disk space usage

bytes
char

wiki

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

●
●
●
●

● ● ● ●
●

●

Disk space usage

bytes
char

countries

Figure 6.3: Runtime and disk space usage of EM-LPF with varying number
of parts (1–10). Both testfiles are of size 32 GiB.

GHz Intel Xeon E5-2420 CPUs with 12 cores in total, 120 GiB of RAM, and
7.2 TiB of disk space striped with RAID0 across 4 local disks of size 1.8 TiB
achieving a combined transfer rate of about 480 MiB/s. For experiments we
restricted the RAM size to 4 GiB, and the algorithms were allowed to use at
most 3.5 GiB. The OS was Linux (Ubuntu 12.04, 64bit). All programs were
compiled using g++ version 4.7.3 with -O3 -DNDEBUG options. The pSAscan
implementation uses the full parallelism on the machine. In experiments
we used two 32 GiB files:

• wiki: a prefix of English Wikipedia dump (dated 20140707) in the
XML format,

• countries: a concatenation of all versions (editing history) of four
Wikipedia articles about countries in the XML format. It contains a
large number of 1–5 KiB repetitions.

First, we investigate the optimization of EM-LPF reducing the disk
space usage. We run EM-LPF using the number of parts varying from 1
to 10 and measured the runtime and disk space usage. The results are
presented in Figure 6.3.

The repetitiveness of the input data does not have a significant effect on
the runtime. As the number of parts is increased, the algorithm gradually
slows down due to additional scans of SA. However, the slowdown is very
moderate, especially compared to the disk space reduction. With ten parts,
the runtime is increased by 64% (compared to the computation with one
part), but the working space of the algorithm (excludes input and output)
is reduced from 15n bytes to only 1.5n bytes.

text

EM-LZscan

LZ

Algorithm:

EM-LZscan

0 20 40 60 80 100

0
20

40
60

80
10

0

●

●

text

eSAIS/
(p)SAscan

LCPscanSA

LCP

LZ

EM-LPF

Algorithms:

eSAIS + LCPscan + EM-LPF

SAscan + LCPscan + EM-LPF

pSAscan + LCPscan + EM-LPF

0 20 40 60 80 100

0
20

40
60

80
10

0

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

●

●

text

eSAISlcp

EM-LPF

SA LCP

LZ

Algorithm:

eSAISlcp + EM-LPF

0 20 40 60 80 100

0
20

40
60

80
10

0

●

●

text

(p)SAscan

SE-KKP

SA

LZ

Algorithm:

pSAscan + SE-KKP

0 20 40 60 80 100

0
20

40
60

80
10

0

●

●

52 6 LZ77 parsing in external memory

Figure 6.4: An overview of different approaches to computing LZ77 parsing
in external memory.

6.4 Practical performance 53

0 4 8 12 16 20 24 28 32
0

2

4

6

8

10

12

●

●

●

●

●

●

●

● ●

T
im

e

s
M

iB

Input size GiB

wiki

0 4 8 12 16 20 24 28 32
0

2

4

6

8

10

12

● ● ● ● ● ● ● ●
● ●

Input size GiB

countries

Figure 6.5: Runtime comparison of algorithms computing LZ77 parsing in
external memory.

Algorithm Disk space

eSAIS 28n
eSAISlcp 54n
(p)SAscan 6.5n1

LCPscan (q = 10) 12n
EM-LPF (q = 10) 12.5n
SE-KKP 21n
EM-LZscan 1.5n

Table 6.1: Peak disk space usage (in bytes) of all algorithms used in exper-
iments.

In the second experiment, we compare the scalability of all approaches
for computing the LZ77 parsing in external memory. This is a revised
version of the experiment from Paper V. We additionally include LCPscan
(see Chapter 4), the space-efficient version of EM-LPF described in this
chapter, and pSAscan [43] – the parallel version of SAscan.

Figure 6.4 contains an overview of all algorithms included in the compar-
ison. By eSAIS we denote a version of the algorithm that only computes the
suffix array. A version computing suffix and LCP array is denoted eSAISlcp.
For both LCPscan and EM-LPF we used space-efficient implementations,
which perform the computation in q = 10 parts. Table 6.1 summarizes the
peak disk space usage (excluding the varying size output for the algorithms
that compute the LZ77 parsing) of all algorithms, assuming 40-bit integers

1Assuming that the segment size m satisfies m ≤ 232. If we allow m ≤ 240, the disk
space usage increases to 7.5n bytes

54 6 LZ77 parsing in external memory

and 8-bit text characters.
As seen from the results in Figure 6.5, the best solution varies, depend-

ing on the size of input and the degree of repetitiveness. For highly repet-
itive data (countries), the fastest algorithm is EM-LZscan – this is mostly
due to the technique that reuses the already computed part of factorization
to skip the computation of matching statistics (Section 5.4.2).

For non-repetitive input (wiki), EM-LZscan is outperformed by other
algorithms. The fastest solution in general is a combination pSAscan +
LCPscan + EM-LPF. For inputs not exceeding the size of RAM, the com-
bination pSAscan + SE-KKP runs about three times faster.

If the machine does not have many cores (and thus using a parallel
version of SAscan does not improve the runtime), the best solution would
be the combination SAscan + LCPscan + EM-LPF though only up to a
point, where the input is 6.8–10 times larger than the size of RAM. For
larger inputs, replacing SAscan with eSAIS gives a better performance,
although the disk space usage increases significantly.

Chapter 7

Conclusions

We now present an overview of the thesis. For each chapter we give a short
summary of the results and a discussion of open problems.

Chapter 3. We described a series of improvements to the suffix array
construction algorithm of Ferragina et al. [22]. The resulting algorithm
uses very little extra disk space and is faster than previous suffix-sorting
algorithms up to a point where the ratio between the length of the input
text and the RAM size is about five. Our follow-up work on parallelizing
the algorithm moves this point to about 80 times the size of RAM [43].

Many avenues for future work remain. First, it is possible that a similar
speedup from multiple processing units can be obtained on other platforms,
such as GPU. Furthermore, the modular structure of the algorithm (i.e.,
composing the suffix array from many, almost independently constructed
partial suffix arrays) could allow a distributed implementation.

Another potential improvement is exploiting the repetitions in the input
text to save the computation, similar to how it has been done with LZ77
factorization (see Chapters 5 and 6).

Finally, replacing the current rank data structure with some compressed
representation that takes less space but is not much slower would allow
using larger segments and thus improve the overall performance of the
algorithm. Recently, Tischler [77] proposed a semi-external algorithm for
suffix array construction that uses the same general approach as SAscan
but also heavily utilizes compressed representations (in particular for rank).
The algorithm has not been implemented yet, thus it remains to be seen if
this approach will work well in practice.

55

56 7 Conclusions

Chapter 4. We proposed the first algorithm computing the LCP array
in external memory that is not an extension of suffix array construction.
Despite having worse I/O complexity than the best external memory suffix
array construction algorithms [10, 47], the new algorithm is fast in practice
and uses very little disk space in addition to input and output.

The running time of LCPscan in our experiments is dominated by
the computation (not I/O) performed by the STXXL library during the
external-memory sort. Thus, the first avenue for future work is optimizing
the STXXL sorting. The scanning/sorting nature of the algorithm suggests
that it may also be possible to implement LCPscan in a distributed setting.

The I/O volume of LCPscan is about 100n, whereas the I/O volume of
the best semi-external LCP array construction algorithms (that require the
text to fit in RAM) is about 16n [44]. Thus, there is a big gap between the
two and the transition between the text that fit in RAM and the text that is
just a little too large to fit in RAM is not smooth. We are currently working
on addressing this issue by designing a new semi-external algorithm that
can handle texts slightly larger than RAM much faster than LCPscan.

Finally, it remains an open problem, whether the LCP array construc-
tion in external memory can match the I/O complexity of sorting n integers
O(sort(n)), without being an extension of the suffix array construction al-
gorithm. We are currently working on an algorithm with O(sort(n) log σ)
I/O complexity.

Chapter 5. We described three new algorithms (some of which have
many variants) for computing the LZ77 parsing in RAM, spanning a wide
range in the time/space spectrum. The new algorithms consistently out-
perform prior methods or use less space or both. As shown in Chapter 6,
some of the new methods generalize well to external memory.

One of the problems that remains unsolved is whether the LZ77 parsing
can be computed in linear time using n log n bits of working space for an
integer alphabet. By a suitable choice of parameters the algorithm based
on NSV/PSV queries described in Chapter 5 achieves (1 + ε)n log n+ n+
O(σ log n) working space and runs in O((n log σ)/ε) time, where ε > 0 is
a fixed constant. The linear-time algorithm of Goto and Bannai [38] uses
n log n+O(σ log n) bits of space, thus improving upon our result, but still
requires small σ. The closest to the final solution is the recent linear-
time algorithm of Fischer et al. [28]. Their algorithm works for σ = nO(1)

and uses (1 + ε)n log n + O(n) bits of working space which, unlike other
algorithms, includes also the space for output.

Another avenue for future work is parallelism. The only existing parallel

57

implementation of LZ77 factorization that we are aware of is due to Shun
and Zhao [73]. It achieves a good speedup but suffers from high memory
consumption. The LZscan algorithm has a similar structure to SAscan,
which was shown to greatly benefit from parallelism [43], thus a parallel
version of LZscan could also achieve a good speedup.

Finally, since the fastest algorithms for LZ parsing in our experiments
in Paper III depend on the degree of repetition (there are at least three
different algorithms that stand out), an interesting problem is estimating
the size of LZ77 parsing. Such a tool could guide the use of the best
algorithm. We are aware of two papers on this topic [27, 29], although
none of the algorithms have been implemented yet.

Chapter 6. We proposed three new algorithms for computing the LZ77
parsing in external memory. To the best of our knowledge, we are the
first to describe algorithms for this problem. In our experiments, the new
algorithms scale very well with the input and require moderate disk space.

As demonstrated by the experiments, there is a large discrepancy in the
efficiency of EM-LZscan between regular and highly-repetitive input. Thus,
the algorithms estimating the size of LZ77 parsing are not only needed in
internal memory (see above) but should also scale to external memory.

Finally, the problem that has received very little attention is LZ77 de-
coding. It has a simple linear-time solution in internal memory and runs
very fast in practice. However, when moving into external memory, the
problem becomes non-trivial due to lack of locality of LZ77 phrase sources.

Our implementations of all of the algorithms introduced in this thesis are
publicly available 1 and thus directly accessible for practitioners. This will
also allow the code to be customized and further developed. We hope that
our implementations (especially for the problems that were addressed for
the first time) will help to establish a baseline for researchers to benchmark
their algorithms and implementations in the future.

We speculate that with the rapid development of sequencing machines
and molecular biology in general, the line of research pursued in this the-
sis will keep gaining the attention and the need for practical algorithms
processing large amounts of textual data will grow. One of the commonly
anticipated scenarios involves increased use of distributed/cloud computing
for which many of our new algorithms are likely to adapt.

1http://www.cs.helsinki.fi/group/pads/

58 7 Conclusions

References

[1] Strategy for UK life sciences: One year on. https://www.gov.uk/

government/uploads/system/uploads/attachment_data/file/

36684/12-1346-strategy-for-uk-life-sciences-one-year-on.

pdf, 2012.

[2] A. Abeliuk, R. Cánovas, and G. Navarro. Practical compressed suffix
trees. Algorithms, 6(2):319–351, 2013.

[3] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. J. Discrete Algorithms, 2(1):53–86, 2004.

[4] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, 1988.

[5] A. Al-Hafeedh, M. Crochemore, L. Ilie, E. Kopylov, W. F. Smyth,
G. Tischler, and M. Yusufu. A comparison of index-based Lempel-Ziv
LZ77 factorization algorithms. ACM Comput. Surv., 45(1):5, 2012.

[6] G. Badkobeh, M. Crochemore, and C. Toopsuwan. Computing the
maximal-exponent repeats of an overlap-free string in linear time. In
Proceedings of the 19th International Symposium on String Processing
and Information Retrieval (SPIRE’12), volume 7608 of LNCS, pages
61–72. Springer, 2012.

[7] J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet parti-
tioning for compressed rank/select and applications. In Proceedings
of the 21st International Symposium on Algorithms and Computation
(ISAAC’10), volume 6507 of LNCS, pages 315–326. Springer, 2010.

[8] D. Belazzougui and S. J. Puglisi. Range predecessor and Lempel-Ziv
parsing. CoRR, abs/1507.07080, 2015.

[9] T. Beller, S. Gog, E. Ohlebusch, and T. Schnattinger. Computing the
longest common prefix array based on the Burrows-Wheeler transform.
J. Discrete Algorithms, 18:22–31, 2013.

59

60 References

[10] T. Bingmann, J. Fischer, and V. Osipov. Inducing suffix and LCP
arrays in external memory. In Proceedings of the 2013 Workshop on
Algorithm Engineering and Experiments (ALENEX’13), pages 88–102.
SIAM, 2013.

[11] M. Burrows and D. J. Wheeler. A block sorting lossless data compres-
sion algorithm. Technical Report 124, Digital Equipment Corporation,
Palo Alto, California, 1994.

[12] W. I. Chang and E. L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4–5):327–344, 1994.

[13] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Rasala, A. Sahai, and a. shelat. Approximating the smallest gram-
mar: Kolmogorov complexity in natural models. In Proceedings of the
34th Annual ACM Symposium on Theory of Computing (STOC’02),
pages 792–801. ACM, 2002.

[14] G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel-Ziv factorization
using less time and space. Math. Comput. Sci., 1(4):605–623, 2008.

[15] A. Crauser and P. Ferragina. A theoretical and experimental study
on the construction of suffix arrays in external memory. Algorithmica,
32(1):1–35, 2002.

[16] M. Crochemore and L. Ilie. Computing longest previous factor in linear
time and applications. Inform. Process. Lett., 106(2):75–80, 2008.

[17] M. Crochemore, L. Ilie, C. S. Iliopoulos, M. Kubica, W. Rytter, and
T. Walen. LPF computation revisited. In Proceedings of the 20th
International Workshop on Combinatorial Algorithms (IWOCA’09),
volume 5874 of LNCS, pages 158–169. Springer, 2009.

[18] M. Crochemore, L. Ilie, and W. F. Smyth. A simple algorithm for com-
puting the Lempel-Ziv factorization. In Proceedings of the 2008 Data
Compression Conference (DCC’08), pages 482–488. IEEE Computer
Society, 2008.

[19] R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template
library for XXL data sets. Softw., Pract. Exper., 38(6):589–637, 2008.

[20] R. Durbin et al. 1000 genomes. http://www.1000genomes.org/, 2010.

[21] H. Ferrada, T. Gagie, T. Hirvola, and S. J. Puglisi. Hybrid indexes for
repetitive datasets. Phil. Trans. R. Soc. A, 372(2016), 2014.

References 61

[22] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and
compression in external memory. Algorithmica, 63(3):707–730, 2012.

[23] P. Ferragina and G. Manzini. Opportunistic data structures with appli-
cations. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science (FOCS’00), pages 390–398. IEEE Computer So-
ciety, 2000.

[24] P. Ferragina and G. Manzini. On compressing the textual web. In
Proceedings of the 3rd ACM International Conference on Web Search
and Data Mining (WSDM’10), pages 391–400. ACM, 2010.

[25] J. Fischer. Combined data structure for previous- and next-smaller-
values. Theor. Comput. Sci., 412(22):2451–2456, 2011.

[26] J. Fischer. Inducing the LCP-array. In Proceedings of the 2011 Algo-
rithms and Data Structures Symposium (WADS’11), volume 6844 of
LNCS, pages 374–385. Springer, 2011.

[27] J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka. Approx-
imating LZ77 via small-space multiple-pattern matching. In Proceed-
ings of the 23rd Annual European Symposium on Algorithms (ESA’15),
volume 9294 of LNCS, pages 533–544. Springer, 2015.

[28] J. Fischer, T. I, and D. Köppl. Lempel Ziv computation in small
space (LZ-CISS). In Proceedings of the 26th Annual Symposium on
Combinatorial Pattern Matching (CPM’15), volume 9133 of LNCS,
pages 172–184. Springer, 2015.

[29] T. Gagie. Approximating LZ77 in small space. CoRR, abs/1503.02416,
2015.

[30] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J.
Puglisi. A faster grammar-based self-index. In Proceedings of the 6th
International Conference on Language and Automata Theory and Ap-
plications (LATA’12), volume 7183 of LNCS, pages 240–251. Springer,
2012.

[31] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J.
Puglisi. LZ77-based self-indexing with faster pattern matching. In Pro-
ceedings of the 11th Latin American Symposium on Theoretical Infor-
matics (LATIN’14), volume 8392 of LNCS, pages 731–742. Springer,
2014.

62 References

[32] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster approximate
pattern matching in compressed repetitive texts. In Proceedings of
the 22nd International Symposium on Algorithms and Computation
(ISAAC’11), volume 7074 of LNCS, pages 653–662. Springer, 2011.

[33] Genome 10K Community of Scientists. A proposal to obtain whole-
genome sequence for 10,000 vertebrate species. J. Hered., 100:659–674,
2009.

[34] S. Gog. Compressed Suffix Trees: Design, Construction, and Applica-
tions. PhD thesis, Ulm University, 2011.

[35] S. Gog and E. Ohlebusch. Fast and lightweight LCP-array construction
algorithms. In Proceedings of the 2011 Workshop on Algorithm Engi-
neering and Experiments (ALENEX’11), pages 25–34. SIAM, 2011.

[36] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for
text: Pat trees and Pat arrays. In W. B. Frakes and R. Baeza-Yates,
editors, Information Retrieval: Data Structures & Algorithms, pages
66–82. Prentice–Hall, 1992.

[37] K. Goto and H. Bannai. Simpler and faster Lempel Ziv factorization.
In Proceedings of the 2013 Data Compression Conference (DCC’13),
pages 133–142. IEEE Computer Society, 2013.

[38] K. Goto and H. Bannai. Space efficient linear time Lempel-Ziv factor-
ization for small alphabets. In Proceedings of the 2014 Data Compres-
sion Conference (DCC’14), pages 163–172. IEEE Computer Society,
2014.

[39] J. Kärkkäinen. Repetition-Based Text Indexes. PhD thesis, University
of Helsinki, 1999.

[40] J. Kärkkäinen, D. Kempa, and M. Pia̧tkowski. Tighter bounds for
the sum of irreducible LCP values. In Proceedings of the 26th Annual
Symposium on Combinatorial Pattern Matching (CPM’15), volume
9133 of LNCS, pages 316–328. Springer, 2015.

[41] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Linear time Lempel-Ziv
factorization: simple, fast, small. In Proceedings of the 24th Annual
Symposium on Combinatorial Pattern Matching (CPM’13), volume
7922 of LNCS, pages 189–200. Springer, 2013.

References 63

[42] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. String range matching. In
Proceedings of the 25th Annual Symposium on Combinatorial Pattern
Matching (CPM’14), volume 8486 of LNCS, pages 232–241. Springer,
2014.

[43] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Parallel external memory
suffix sorting. In Proceedings of the 26th Annual Symposium on Com-
binatorial Pattern Matching (CPM’15), volume 9133 of LNCS, pages
329–342. Springer, 2015.

[44] J. Kärkkäinen, G. Manzini, and S. J. Puglisi. Permuted longest-
common-prefix array. In Proceedings of the 20th Annual Symposium
on Combinatorial Pattern Matching (CPM’09), volume 5577 of LNCS,
pages 181–192. Springer, 2009.

[45] J. Kärkkäinen and S. J. Puglisi. Fixed-block compression boosting in
FM-indexes. In Proceedings of the 18th International Symposium on
String Processing and Information Retrieval (SPIRE’11), volume 7024
of LNCS, pages 174–184. Springer, 2011.

[46] J. Kärkkäinen and P. Sanders. Simple linear work suffix array con-
struction. In Proceedings of the 30th International Colloquium on
Automata, Languages and Programming (ICALP’03), volume 2719 of
LNCS, pages 943–955. Springer, 2003.

[47] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array
construction. J. ACM, 53(6):918–936, 2006.

[48] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time
longest-common-prefix computation in suffix arrays and its applica-
tions. In Proceedings of the 12th Annual Symposium on Combinatorial
Pattern Matching (CPM’01), volume 2089 of LNCS, pages 181–192.
Springer, 2001.

[49] D. Kempa and S. J. Puglisi. Lempel-Ziv factorization: simple, fast,
practical. In Proceedings of the 2013 Workshop on Algorithm Engi-
neering and Experiments (ALENEX’13), pages 103–112. SIAM, 2013.

[50] P. Ko and S. Aluru. Space efficient linear time construction of suffix
arrays. J. Discrete Algorithms, 3(2-4):143–156, 2005.

[51] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word
in linear time. In Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science (FOCS’99), pages 596–604. IEEE Com-
puter Society, 1999.

64 References

[52] D. Kosolobov. Faster lightweight Lempel-Ziv parsing. In Proceedings
of the 40th International Symposium on Mathematical Foundations of
Computer Science (MFCS’15), volume 9235 of LNCS, pages 432–444.
Springer, 2015.

[53] S. Kreft and G. Navarro. LZ77-like compression with fast random
access. In Proceedings of the 2010 Data Compression Conference
(DCC’10), pages 239–248. IEEE Computer Society, 2010.

[54] S. Kreft and G. Navarro. Self-indexing based on LZ77. In Proceedings
of the 22nd Annual Symposium on Combinatorial Pattern Matching
(CPM’11), volume 6661 of LNCS, pages 41–54. Springer, 2011.

[55] S. Kreft and G. Navarro. On compressing and indexing repetitive
sequences. Theor. Comput. Sci., 483:115–133, 2013.

[56] V. Mäkinen. Compact suffix array — a space efficient full-text index.
Fund. Inform., 56(1–2):191–210, 2003.

[57] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and
retrieval of highly repetitive sequence collections. J. Comp. Biol.,
17(3):281–308, 2010.

[58] U. Manber and G. W. Myers. Suffix arrays: a new method for on-line
string searches. SIAM J. Comput., 22(5):935–948, 1993.

[59] G. Manzini. Two space saving tricks for linear time LCP array com-
putation. In Proceedings of the 14th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT’04), volume 3111 of LNCS,
pages 372–383. Springer, 2004.

[60] Y. Mori. libdivsufsort, a C library for suffix array construction.
http://code.google.com/p/libdivsufsort/.

[61] Y. Mori. SAIS, an implementation of the induced sorting algorithm.
https://sites.google.com/site/yuta256/sais.

[62] G. Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20,
2014.

[63] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Comput. Surv., 39(1):article 2, 2007.

[64] G. Nong, S. Zhang, and W. H. Chan. Two efficient algorithms for linear
time suffix array construction. IEEE Trans. Computers, 60(10):1471–
1484, 2011.

References 65

[65] E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome
Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag,
2013.

[66] E. Ohlebusch, J. Fischer, and S. Gog. CST++. In Proceedings of the
17th International Symposium on String Processing and Information
Retrieval (SPIRE’10), volume 6393 of LNCS, pages 322–333. Springer,
2010.

[67] E. Ohlebusch and S. Gog. Lempel-Ziv factorization revisited. In Pro-
ceedings of the 22nd Annual Symposium on Combinatorial Pattern
Matching (CPM’11), volume 6661 of LNCS, pages 15–26. Springer,
2011.

[68] E. Ohlebusch, S. Gog, and A. Kügel. Computing matching statis-
tics and maximal exact matches on compressed full-text indexes. In
Proceedings of the 17th International Symposium on String Processing
and Information Retrieval (SPIRE’10), volume 6393 of LNCS, pages
347–358. Springer, 2010.

[69] D. Okanohara and K. Sadakane. An online algorithm for finding the
longest previous factors. In Proceedings of the 16th Annual European
Symposium on Algorithms (ESA’08), volume 5193 of LNCS, pages
696–707. Springer, 2008.

[70] I. Pavlov. 7-zip. http://www.7-zip.org/, 2012.

[71] S. J. Puglisi and A. Turpin. Space-time tradeoffs for longest-common-
prefix array computation. In Proceedings of the 19th International
Symposium on Algorithms and Computation (ISAAC’08), volume 5369
of LNCS, pages 124–135. Springer, 2008.

[72] P. Sanders. Algorithm engineering - an attempt at a definition us-
ing sorting as an example. In Proceedings of the 2010 Workshop on
Algorithm Engineering and Experiments (ALENEX’10), pages 55–61.
SIAM, 2010.

[73] J. Shun and F. Zhao. Practical parallel Lempel-Ziv factorization.
In Proceedings of the 2013 Data Compression Conference (DCC’13),
pages 123–132. IEEE Computer Society, 2013.

[74] J. Sirén. Sampled longest common prefix array. In Proceedings
of the 21st Annual Symposium on Combinatorial Pattern Matching
(CPM’10), volume 6129 of LNCS, pages 227–237. Springer, 2010.

66 References

[75] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length com-
pressed indexes are superior for highly repetitive sequence collections.
In Proceedings of the 15th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE’08), volume 5280 of LNCS,
pages 164–175. Springer, 2008.

[76] T. A. Starikovskaya. Computing Lempel-Ziv factorization online. In
Proceedings of the 37th International Symposium on Mathematical
Foundations of Computer Science (MFCS’12), volume 7464 of LNCS,
pages 789–799. Springer, 2012.

[77] G. Tischler. Faster average case low memory semi-external construc-
tion of the Burrows–Wheeler transform. In Proceedings of the 2nd
International Conference on Algorithms for Big Data (ICABD’14),
volume 1146 of CEUR Workshop Proceedings, pages 61–68. CEUR-
WS.org, 2014.

[78] J. S. Vitter. Algorithms and data structures for external memory.
Found. Trends Theoretical Computer Science, 2(4):305–474, 2006.

[79] P. Weiner. Linear pattern matching algorithms. In Proceedings
of the 14th Annual Symposium on Switching and Automata Theory
(SWAT’73), pages 1–11. IEEE Computer Society, 1973.

[80] H. E. Williams and J. Zobel. Compressing integers for fast file access.
Comput. J., 42(3):193–201, 1999.

[81] J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda. Faster
compact on-line Lempel-Ziv factorization. In Proceedings of the 31st
International Symposium on Theoretical Aspects of Computer Science
(STACS’14), volume 25 of LIPIcs, pages 675–686, 2014.

[82] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

Symbols and abbreviations

Symbol Page Semantics
B 9 Disk block size (in log n-bit words)
BWT 8 Burrows-Wheeler transform
BWTS:S′ 15 BWT of string SS′ restricted to suffixes starting in S
C[c] 16 Number of occurrences of characters c′ < c in the text
GiB - Gibibyte (230 bytes)
ISA 7 Inverse of SA
KiB - Kibibyte (210 bytes)
LCP 8 Longest common prefix array
LF 38 LF-mapping
LPF[i] 8 Longest previous factor at position i
M 9 Size of RAM (in log n-bit words)
MiB - Mebibyte (220 bytes)
MSS:S′ 40 Matching statistics of string S wrt to string S′

NSVlex 34 NSV array in lexicographical order
NSVtext 35 NSV array in text order
PLCP 24 LCP array in text order
PSVlex 34 PSV array in lexicographical order
PSVtext 35 PSV array in text order
S - Stack
SA 7 Suffix array
SAS:S′ 12 SA of string SS′ restricted to suffixes starting in S
T 7 Input text
TiB - Tebibyte (240 bytes)
W 40 Concatenation of text segments to the left of X
X 13 Currently processed text segment
Y 13 Concatenation of text segments to the right of X
c - Character
d 13 Number of text segments
fi 8 ith factor in the LZ77 parsing
gapS:S′ 13 Gap array
i, j, k, ` - Non-negative integers
lcp(S, S′) 8 Length of the longest common prefix of strings S and S′

67

68 Symbols and abbreviations

Symbol Page Semantics
`i 8 The length-component of LPF[i]̂̀
i 40 The length-component of MS[i]
m 13 Length of segment of text
n 7 Length of text
ni 30 Length of text in the ith round of partial processing
pi 8 The position-component of LPF[i]
p̂i 40 The position-component of MS[i]
q 30 Number of partial processing rounds
r 39 Number of runs in BWT
rankc(S, i) 16 Number of occurrences of character c in S[0..i)
trank 40 Time complexity of a rank query
z 8 Number of phrases in the LZ77 parsing
Σ 7 Alphabet
Φ 24 An array such that Φ[SA[i]] = SA[i− 1]
σ 7 Alphabet size

