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Abstract 

The massive outpourings of Karoo and Ferrar continental flood basalts (CFBs) ~180 Ma ago mark 

the initial Jurassic rifting stages of the Gondwana supercontinent. The origin and sources of these 

eruptions have been debated for decades, largely due to difficulties in defining their parental melt 

and mantle source characteristics. Recent findings of Fe- and Mg-rich dikes (depleted ferropicrite 

suite) from Vestfjella, western Dronning Maud Land, Antarctica, have shed light on the 

composition of the deep sub-Gondwanan mantle: these magmas have been connected to upper 

mantle sources presently sampled by the Southwest Indian Ocean mid-ocean ridge basalts (SWIR 

MORBs) or to high 3He/4He plume-entrained non-chondritic primitive mantle sources formed early 

in Earth’s history. In an attempt to determine their He isotopic composition and relative 

contributions from magmatic, cosmogenic, and radiogenic He sources, we performed in-vacuo 

stepwise crushing and melting analyses of olivine mineral separates, some of which were abraded to 

remove the outer layer of the grains. The best estimate for the mantle isotopic composition is given 

by a sample with the highest amount of He released (> 50%) during the first crushing step of an 

abraded coarse fraction. It has a 3He/4He of 7.03 ± 0.23 (2σ) times the atmospheric ratio (Ra), which 

is indistinguishable from those measured from SWIR MORBs (6.3‒7.3 Ra; source 3He/4He ~6.4–

7.6 Ra at 180 Ma) and notably lower than in the most primitive lavas from the North Atlantic 

Igneous Province (up to 50 Ra), considered to represent the epitome magmas from non-chondritic 

primitive mantle sources. Previously published trace element and isotopic (Sr, Nd, and Pb) 

compositions do not suggest a direct genetic link to any modern hotspot of Indian or southern 

Atlantic Oceans. Although influence of a mantle plume cannot be ruled out, the high magma 

temperatures and SWIR MORB-like geochemistry of the suite are best explained by supercontinent 

insulation of a precursory Indian Ocean upper mantle source. Such a model is also supported by the 

majority of the recent studies on the structure, geochronology, and petrology of the Karoo CFBs. 
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1. Introduction 

 

The Karoo continental flood basalts (CFBs) erupted between the landmasses of modern Africa and 

Antarctica when they were a part of the Gondwana supercontinent ~180 Ma ago (e.g., Jourdan et 

al., 2005). The Karoo CFBs, and temporally and spatially related Ferrar CFBs (Fig. 1; often called 

the Karoo-Ferrar province), exhibit strongly lithosphere-influenced geochemical characteristics 
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(e.g., Hawkesworth et al., 1984; Sweeney et al., 1994; Molzahn et al., 1996; Luttinen and Furnes, 

2000; Jourdan et al., 2007a; Neumann et al., 2011). This has led to difficulties in constraining their 

primary melt and mantle source characteristics, and, therefore, in defining their ultimate origins. 

 Recently, a group of rare Mg-rich dikes, the Vestfjella depleted ferropicrite suite, was 

described from the Vestfjella mountain range that forms an Antarctic extension of the Karoo CFB 

province (Fig. 2; Heinonen and Luttinen, 2008). These dikes exhibit no evidence of lithospheric 

sources or contamination and thus provide important information on the composition of the 

sublithospheric mantle during Karoo magmatism. Their generation requires that a positive thermal 

anomaly existed in the upper mantle during Karoo magmatism (Heinonen and Luttinen, 2010; 

Heinonen et al., 2015). On the basis of the major element, trace element, and isotopic (Sr, Nd, Pb, 

and Os) composition of the dikes, their origins have been linked to high-pressure (5–6 GPa) melting 

of hot asthenospheric mantle that has since cooled and is presently sampled by the modern mid-

ocean ridge basalts of the Southwest Indian Ridge (SWIR MORBs; Heinonen et al., 2010), the 

modern successor of the Africa-Antarctica rift zone (Fig. 1). The isotopic compositions also overlap 

with non-chondritic primitive mantle reservoir recently suggested to be a major component in CFB 

plume sources (Jackson and Carlson, 2011). 

 Helium isotopes are a powerful indicator of ancient relatively undegassed mantle sources, 

having low (Th+U)/He and high 3He/4He (up to 50 times the atmospheric ratio, i.e., 50 Ra), and 

often referred to as primitive or primordial (e.g., Lupton and Craig, 1975; Kurz et al., 1982). 

Although such sources may be considered controversial in the context of whole mantle convection 

models, most of the models suggest a lower mantle origin (e.g., Class and Goldstein, 2005). High 
3He/4He have been found in several hotspot-related rocks (e.g., Hawaii, Galapagos, and Iceland), 

and in the high-Mg rocks from the North Atlantic Volcanic Province (NAIP; Graham et al., 1998; 

Stuart et al., 2003; Starkey et al., 2009), which were used to estimate the trace element composition 

of a non-chondritic primitive mantle source (Jackson et al., 2010). In contrast, MORBs show 

relatively low 3He/4He values on average (~8 ±1 Ra; Kurz and Jenkins, 1981; Graham, 2002), with 

SWIR MORBs on the low end of the MORB spectrum (3He/4He = 6.3–7.3 Ra; Georgen et al., 

2003). 

 Helium isotopic compositions have not previously been reported for the Karoo CFBs or 

related rocks. This is due to the scarcity of primitive samples with fresh olivine or glass containing 

primary magmatic gas inclusions that would be suitable for He measurements, along with the 

Jurassic age of the samples. Most existing global He data are from zero age basalts, which 

minimizes the complexities of post-crystallization addition of nucleogenic (produced mainly by 
6Li(n,α)3H(β-) reactions), cosmogenic (from spallation near the Earth’s surface), and radiogenic 

(generated by α-decay of U and Th) He, all of which can overprint the magmatic signature (see 

Kurz, 1986; Graham et al., 1998). 

 Here we present the first He isotopic data for rocks related to the Karoo CFBs (Vestfjella 

depleted ferropicrite suite). In order to estimate the effects of possible cosmogenic or radiogenic He, 

some of the carefully hand-picked olivine fractions were abraded (to remove the outer layer at the 

groundmass/phenocryst interface), step crushed in vacuum, and melted. In addition to He data, our 

analysis of the ultimate mantle source of the Vestfjella depleted ferropicrite suite is corroborated by 

detailed isotopic and trace element comparisons with relevant hotspot-related rocks. 
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Fig. 1. Present-day location of Karoo-Ferrar CFBs (and related dikes), Etendeka CFBs, Madagascar CFBs, Southwest 

Indian Ridge, and relevant oceanic plateaus, seamounts, and oceanic islands (stars) depicted. Gray diamonds indicate 

SWIR MORB samples that are geochemically (namely on the basis of Sr, Nd, and Pb isotopes) most similar to the 

depleted ferropicrite suite (AGU22-8-1, AGU22-9-2, AGU53-3-3, MELPROT-5-11-17, MELPROT-5-14-81, 

MELPROT-5-15-54, MELPROT-5-17-22, MELPROT-5-25-217, MELPROT-5-29-34, MELPROT-5-30-75, 

MELPROT-5-42-11; Hamelin and Allegre, 1985; le Roex et al., 1989; Mahoney et al., 1989, 1992; Janney et al., 2005). 

 

2. Sample selection and analytical methods 

 

2.1. Samples 

 

Five ferropicritic and meimechitic dike rock samples (MgO = 17–24 wt. %; FeOtot = 13–15 wt. %) 

representing the well-characterized ~185.5 ±1.8 Ma (40Ar/39Ar plateau age; Luttinen et al., 2015) 

depleted ferropicrite suite of Vestfjella (Heinonen and Luttinen, 2008), western Dronning Maud 

Land, were selected for He isotopic analysis. The dikes were emplaced through a heterogeneous 

crust consisting of early-phase Karoo CFBs, Permian sedimentary rocks, and a crystalline basement 

of Archean to Phanerozoic age (Fig. 2a; see Groenewald et al., 1995). The samples were selected 

for the presence of fresh olivine and the field work emphasis was in obtaining unaltered, 

representative, samples for whole-rock geochemistry without consideration of in-situ 3He 

production by cosmic rays. All the samples contain olivine phenocrysts that are larger than 1 mm in 

diameter, and exhibit very fine-grained groundmass indicative of crystallization relatively close to 

the surface. The coordinates and field characteristics, and detailed petrographical and geochemical 

descriptions of the samples are presented in Heinonen and Luttinen (2008, 2010) and Heinonen et 

al. (2010). 

 Four of the samples are from Basen nunatak that is composed dominantly of near-horizontal 

Karoo CFB flows and reaches the height of 580 m, about 400 m above the present ice surface (h ≈ 

200 m; Fig. 2b). It exhibits a vertical ~300 m cliff on its northwestern (~distal) side and steeply 

dipping partially ice- and snow-covered slope on its southeastern (~proximal) side. Sample 
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AL/B16-98 represents an in-situ weathered dike from the exposed northeast corner of Basen (h ≈ 

480 m). Dike-derived boulders AL/B1b-03, AL/B7-03, and AL/B9-03 were sampled from the 

coarse glacial drift deposits (h ≈ 450–470 m) in the ‘backyard’ of the Aboa and Wasa research 

stations close to the edge of the glacier on the southwestern slope of the nunatak (Fig. 2b). The 

boulder sampled by AL/B1b-03 exhibits chilled margin against sandstone that is likely to represent 

Permian sedimentary rock formations underlying the Vestfjella CFBs. It indicates that the boulders 

have been glacially transported on top of the nunatak from the valleys that surround it.  

 Sample AL/WM1e-98 was collected from an in-situ weathered dike (h ≈ 600 m) at West-

Muren, a ridge-like nunatak, composed of Karoo CFBs and related intrusive rocks and exposed 

~100 km southwest from Basen (Fig. 2c). The nunatak stands out only few meters above the ice 

surface (h ≈ 600 m) on its northwestern (~proximal) side whereas its southeastern (~distal) side dips 

steeply towards the ice surface on the bottom of the ‘Muren valley’ (h ≈ 500 m). 

 

 
Fig. 2. Distribution of Jurassic CFBs in western Dronning Maud Land (a) and depleted ferropicrite suite sampling sites 

relevant to this study (b, c) shown. Location of Aboa (Finnish) and Wasa (Swedish) research stations shown in (b). 

Arrow marked with “G” indicates the approximate primary ice flow direction and stippled lines indicate steep cliffs in 

(b) and (c). H.U.S. = H. U. Sverdrupfjella. 

 

2.2. Analytical methods 

 

The samples were crushed multiple times with jaw crusher and several size fractions were separated 

from the crushed bulk sample with sieves. Although the largest olivine phenocrysts recorded on the 

basis of petrographical studies were over 4 mm in diameter, fractions with grain size of more than 1 

mm did not contain pure olivine grains. In most samples, 0.25–0.5 mm fraction was found to be 
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optimum in terms of pure olivine that was still large enough for hand-picking. The relatively small 

grain size of pure olivine meant that at least ~1000 grains per sample had to be hand-picked to 

obtain enough material for abrasion and step-crushing analyses (see below). Earlier petrographical 

studies had revealed that many olivine grains contain large crystallized melt inclusions (Ø up to 0.8 

mm) with igneous amphibole (Heinonen and Luttinen, 2010), but preliminary SEM-screenings of 

some of the fractions indicated that the olivines likely broke along these inclusions during crushing. 

The size and amount of the melt inclusions that survived the crushing are small (Ø < 0.05 mm, ~5 

inclusions per 100 grains in a cross-section). 

 In order to estimate the effect of radiogenic 4He implanted to the olivines from the 

surrounding groundmass after crystallization, at least one fraction from each sample was abraded to 

remove the outer portions of the grains. The stainless steel abrasion chamber was of the design 

traditionally used for zircon abrasion (Krogh, 1982), using pure nitrogen gas as the propellant. The 

fractions were abraded as long as needed to achieve a mass loss of 25–40% (depending on the grain 

size of the fraction), resulting in the removal of 20 μm thick 4He-contaminated rims of the grains 

and uniform oval to round grain shapes (see Aciego et al., 2007). In addition to olivine fractions, 

one fraction consisting entirely of groundmass was separated from boulder sample AL/B9-03 

(without abrasion). 

 The He isotopic measurements were performed at Woods Hole Oceanographic Institution 

(WHOI) using a dual collection and statically operated He isotope mass spectrometer that has a 

Nier-type ion source (locally referred to as MS2). The instrument and the procedure have been 

described many times in the literature, e.g., by Kurz et al. (2004). The 4He blank was always below 

3 ∙ 10-11 cm3 (STP) and small relative to the gas released from the samples. In basaltic phenocryst 

samples, He released by crushing in vacuum fractions is typically dominated by gas and melt 

inclusions (e.g., Kurz et al., 1996). The Vestfjella samples are intrusive, however, and may not have 

the same gas geochemistry. In most cases, the samples were crushed and analyzed in 20-stroke 

steps to evaluate the efficiency of gas extraction and possible post-eruption contamination 

(successive steps should increasingly release cosmogenic/radiogenic He from the olivine matrix). 

After the crushing extraction, the remaining olivine powder was melted in a single heating step and 

the gas analyzed to determine the bulk He isotopic composition. 

  

3. Results and interpretation of the He isotopic measurements 

 

3.1. Results 

 

The results of the He measurements are shown in Table 1 and illustrated in Fig. 3. The released He 

contents vary from 0.001 to 0.2 μcc/g (STP) by crushing and from 0.02 to 19 μcc/g (STP) by 

melting: the highest amount of He was released from sample AL/WM1e-98 and from the AL/B9-03 

groundmass sample having radiogenic isotopic signatures (3He/4He < 2 Ra). In the stepwise 

crushing measurements, the amount of He decreased with every step, except in the case of 

AL/WM1e-98 and the abraded fractions of AL/B16-98 and AL/B7-03, in all of which the second 

step exhibited lower He concentrations than the third (last) step. The fraction of total He released by 

crushing is generally below 40 %, except in the first crushing step of abraded 0.5–1 mm fraction of 

AL/B1b-03 (51 % of total He released). The relatively low He amount released by crushing may be 

the result of the rarity of melt inclusions in the olivine fractions (see section 2.2). The total He 
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released by melting of the AL/B9-03 groundmass fraction (4.8 μcc/g (STP)) is within the range of 

radiogenic 4He production values (3.8–6.4 μcc/g (STP)) calculated for an age of 180 Ma and using 

whole-rock U (0.10 ppm) and Th (0.32 ppm) with and without subtraction of ~40 wt.% of olivine 

phenocrysts (as suggested by the mineral mode of the sample; Heinonen and Luttinen, 2010) having 

0 ppm of U and Th.  

 The measured 3He/4He varies from 0.14 (±0.01, 2σ) Ra to 7.03 (±0.23) Ra by crushing and 

from 0.04 (±0.01) Ra to 15.38 (±0.47) Ra by melting. The first crushing step of abraded 0.5–1 mm 

fraction of AL/B1b-03 exhibits the highest crush value of 7.03 (±0.23) Ra. In the stepwise 

measurements, the samples that showed anomalous release of He (AL/WM1e-98 and abraded 

AL/B16-98 and AL/B7-03) also yielded the highest 3He/4He in the second step. Apart from the 

abraded 0.25–1 mm fraction of AL/B1b-03 that was crushed in five steps, the rest of the stepwise 

measurements gave the highest 3He/4He in the first step, although in the case of AL/B16-98 all 

crush 3He/4He values are within error. 

 

 
Fig. 3. Helium content and isotopic composition released by crushing of the depleted ferropicrite suite olivine fractions 

shown in 3He/4He (R/Ra) vs. He (μccSTP/g) (a) and 3He/4He (R/Ra) vs. He fraction released (%) (b). He fraction has 

been calculated for total He released, including the melt analysis. 2σ analytical error or maximum effect of nucleogenic 
3He production as the negative error of relevant analyses (Table 1) shown for 3He/4He (if larger than symbol size). 

Successive step crushing analyses of each sample fraction show decrease in He contents (i.e. proceed from right to left 

in the diagrams), except in the case of abraded AL/B7-03, AL/B16-98, and AL/WM1e-98 fractions, for which the light 

dashed lines connect results from step crushing for clarity (Table 1). Note that in the case of AL/B9-03 fractions and 

unabraded AL/B16-98 fraction, there are only data available for a single crush analysis (Table 1). The dark arrows 

illustrate interpretation of magmatic and radiogenic components in the olivine mineral separates. a = abraded fraction, 

ua = unabraded fraction. 
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Table 1 Helium isotopic composition of the Vestfjella depleted ferropicrite suite 
Sample features* olivine Ø weight step 4He  4He  3He/4He 2σ N-3He err.# 

    [mm]  [g]   [μccSTP/g] [%] (R/Ra) (R/Ra) (R/Ra) 

AL/B1b-03 boulder 0.5‒1 
 

1 0.0158 22.7 4.52 0.17 -0.07 

 
MgO = 19 wt.% unabraded 

 
2 0.0083 11.9 5.01 0.20 -0.13 

 
FeOtot = 13 wt.% 

  
3 0.0050 7.2 4.06 0.20 -0.21 

 
U = 0.13 ppm 

 
0.263 crushTOT 0.0291 41.8 4.58 0.18 -0.04 

 
Th = 0.43 ppm 

 
0.251 melt 0.0405 58.2 4.23 0.14 -0.03 

  
    TOTAL 0.0696 100 4.38 0.16 -0.01 

  
0.25‒1 

 
1 0.0095 23.9 4.11 0.18 -0.11 

  
abraded 

 
2 0.0040 10.0 5.05 0.29 -0.26 

    
3 0.0028 7.0 4.86 0.31 -0.37 

    
4 0.0022 5.4 4.03 0.30 -0.48 

    
5 0.0012 3.0 5.15 0.47 -0.88 

    
6 0.0011 2.8 5.13 0.56 -0.93 

   
0.220 crushTOT 0.0207 52.3 4.50 0.27 -0.05 

   
0.206 melt 0.0189 47.7 8.10 0.26 -0.06 

  
    TOTAL 0.0395 100 6.22 0.27 -0.03 

  
0.5‒1 

 
1 0.0303 51.1 7.03 0.23 -0.03 

  
abraded 

 
2 0.0041 7.0 4.95 0.28 -0.25 

    
3 0.0023 3.9 5.03 0.33 -0.45 

   
0.209 crushTOT 0.0367 62.0 6.67 0.24 -0.03 

   
0.194 melt 0.0225 38.0 7.25 0.24 -0.05 

        TOTAL 0.0592 100 6.89 0.24 -0.02 

AL/B7-03 boulder 0.5‒1 
 

1 0.0151 18.2 4.70 0.18 -0.05 

 
MgO = 19 wt.% unabraded 

 
2 0.0071 8.6 3.16 0.16 -0.11 

 
FeOtot = 13 wt.% 

  
3 0.0039 4.7 3.19 0.21 -0.20 

 
U = 0.14 ppm 

 
0.208 crushTOT 0.0261 31.5 4.06 0.18 -0.03 

 
Th = 0.45 ppm 

 
0.199 melt 0.0568 68.5 3.97 0.13 -0.01 

  
    TOTAL 0.0829 100 3.99 0.15 -0.01 

  
0.25‒0.5 

 
1 0.0257 29.6 2.28 0.08 -0.03 

  
abraded 

 
2 0.0034 3.9 4.49 0.24 -0.23 

    
3 0.0103 11.8 2.11 0.10 -0.07 

   
0.315 crushTOT 0.0393 45.3 2.43 0.10 -0.02 

   
0.305 melt 0.0476 54.7 6.40 0.19 -0.02 

        TOTAL 0.0869 100 4.60 0.15 -0.01 

AL/B9-03 boulder 0.25‒1 0.332 crushTOT 0.0249 26.6 4.49 0.24 -0.02 

 
MgO = 24 wt.% abraded 0.322 melt 0.0684 73.4 3.67 0.20 -0.01 

 
FeOtot = 13 wt.%     TOTAL 0.0933 100 3.89 0.21 0.00 

 
U = 0.10 ppm gm 0.300 crushTOT 0.2001 4.0 0.14 0.01 0.00 

 
Th = 0.32 ppm unabraded 0.289 melt 4.7690 96.0 0.11 0.01 0.00 

        TOTAL 4.9691 100 0.11 0.01 0.00 

AL/B16-98 dike 0.5‒1 0.279 crushTOT 0.0249 26.6 6.14 0.19 -0.02 

 
MgO = 17 wt.% unabraded 0.264 melt 0.0684 73.4 10.26 0.31 -0.01 

 
FeOtot = 15 wt.%     TOTAL 0.0933 100 8.86 0.27 -0.06 

 
U = 0.21 ppm 0.25‒0.5 

 
1 0.0171 23.4 5.57 0.29 -0.05 

 
Th = 0.86 ppm abraded 

 
2 0.0046 6.4 5.35 0.34 -0.20 

    
3 0.0064 8.8 5.22 0.30 -0.14 

   
0.258 crushTOT 0.0281 38.6 5.46 0.30 -0.03 

   
0.245 melt 0.0449 61.4 15.38 0.47 -0.02 

        TOTAL 0.0730 100 11.55 0.40 -0.01 

AL/WM1e-98 dike 0.25‒0.5 
 

1 0.1223 0.6 0.44 0.03 -0.01 

 
MgO = 19 wt.% abraded 

 
2 0.0187 0.1 1.50 0.10 -0.07 

 
FeOtot = 15 wt.% 

  
3 0.0845 0.4 0.21 0.02 -0.02 

 
U = 0.15 ppm 

 
0.153 crushTOT 0.2255 1.2 0.44 0.03 -0.01 

 
Th = 0.49 ppm 

 
0.138 melt 19.2000 98.8 0.04 0.01 0.00 

    
TOTAL 19.4255 100 0.04 0.01 0.00 
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* Whole-rock geochemical data from Heinonen and Luttinen (2008); # Maximum effect of nucleogenic 3He growth on the R/Ra value 

calculated using the equations presented by Andrews (1985), neutron capture cross-sections provided for 17 elements presented by 

Andrews and Kay (1982), and whole-rock chemistry presented by Heinonen and Luttinen (2008). Li, B, Cl, and Co contents of the 

samples are unknown but required for the calculations, so they were estimated using the following trace element ratios: K/Li = 

118.64(La/Yb) + 17.77(see Ryan and Langmuir, 1993), B/K = 0.001 (see Ryan and Langmuir, 1993), Cl/K = 0.04 (see Stronick and 

Haase, 2004), and Ni/Co = 6 (see Le Roux et al., 2011). 

 

3.2. Constraining the magmatic 3He/4He composition 

 

Determination of magmatic 3He/4He in Jurassic samples is complicated by post-crystallization 

addition of nucleogenic 3He from 6Li(n,α)3H(β-), cosmogenic 3He (by spallation), and radiogenic 
4He (formed by the α-decay of U and Th) from the groundmass (e.g., Graham et al., 1998).  

 Nucleogenic 3He addition in 180 Ma was calculated following the equations presented by 

Andrews (1985) and using neutron capture cross-sections provided for 17 elements presented by 

Andrews and Kay (1982). The neutron capture probabilities and neutron production rates were 

calculated using whole-rock chemistry of the samples. This treatment yields an upper limit to 

possible influence of nucleogenic 3He, because pure olivine has considerably lower U and Th 

contents compared to the whole-rock values and thus likely smaller α-particle flux for inducing the 

Li reaction. The calculated effect of nucleogenic 3He production is generally very small, but in the 

few cases in which 3He contents are low (third and further crushing steps of AL/B1b-03 fractions), 

the net effect of estimated maximum nucleogenic 3He production exceeds the 2σ error of the 
3He/4He value (Table 1). In these analyses it is presented as a negative uncertainty (Table 1; Fig. 3), 

even though nucleogenic 3He is likely to be released mainly during melting of the crushed powder. 

 The effect of cosmogenic 3He addition is difficult to estimate, because all of the sampling 

sites have experienced at least some exposure to cosmic rays and exposure age constraints are 

lacking. Although the radiocarbon ages of snow petrel nesting sites at Vestfjella do not exceed 9000 

BP (Lintinen and Nenonen, 1997), preliminary 10Be age data indicates that at least some of the 

outcrops may have been exposed for tens of thousands of years (P. Lintinen, personal 

communication), and it is not possible to exclude multiple exposures produced by glacial advance 

and retreat. Highest melt 3He/4He (10–15 Ra) is shown by AL/B16-98 fractions (Table 1), collected 

from an in-situ weathered dike on Basen nunatak: their 3He/4He has likely been affected by at least 

some cosmogenic 3He addition. Assuming initial 3He/4He of 7 Ra (see below) and no radiogenic 

input of 4He, and using the mean global sea level high latitude cosmogenic 3He production rate of 

120 atoms g-1 yr-1 (Goehring et al., 2010) and scaling factor of 1.25 for Antarctica (Stone, 2000), the 

melt Ra value of 15 Ra shown by the abraded AL/B16-98 fraction would have been produced in 

~100 ka. Outcrop exposure ages of such magnitude within a few hundred meters above the present 

ice/bedrock contact have been reported from elsewhere in western Dronning Maud Land and East 

Antarctica (e.g., Liu et al., 2010). Relatively lower melt 3He/4He values (0–8 Ra) are shown by the 

boulders and dike sample AL/WM1e-98, all collected very close to the continental ice sheet (Fig. 

2). Although we cannot rule out cosmogenic 3He influence in these cases either, it has likely been 

less than for AL/B16-98. Importantly, AL/B16-98 shows similar crush 3He/4He values with the 

boulder samples (Fig. 3), indicating that possible cosmogenic 3He is primarily entrained in the 

olivine crystal lattice and has not significantly equilibrated with the gas-bearing inclusions. 

 The presence of radiogenic 4He in the unabraded fractions is revealed by the fact that they 

show lower melt 3He/4He than the abraded fractions of the same sample (Table 1; Fig. 3). The 

abrasion probably did not remove all of the implanted radiogenic 4He, however. For example, the 
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very low crush and melt Ra (< 2) and high He contents of sample AL/WM1e-98 suggest strong 

overprinting by radiogenic 4He: the groundmass in this sample is very fine-grained and average 

olivine grain size relatively small making the olivine fraction more vulnerable to groundmass 

influence and abrasion treatment less effective. This hypothesis is substantiated in Fig. 3a, in which 

the crushing step analyses of AL/WM1e-98 trend towards the groundmass reference sample. 

Relatively low crush 3He/4He values (≤ 4 Ra) are also shown by some other fractions that include 

small grain sizes (Ø < 0.5 mm) or were not abraded (Table 1; Fig. 3).  

 The abraded coarse (Ø = 0.5–1 mm) fraction of AL/B1b-03 shows the highest total crush 
3He/4He (6.67 Ra) and step crush 3He/4He (7.03 Ra; first step). It is also the only fraction that 

released over 50% of He during the first crushing step (Fig. 3b), indicating that the olivines 

contained a relatively high amount of gas-bearing inclusions. Although we cannot exclude some 

effect of radiogenic 4He addition in this case, we interpret the value of 7.03 (±0.23) Ra, given by the 

first crushing step of an abraded coarse olivine fraction, as the best estimate for the magmatic 
3He/4He of the depleted ferropicrite suite. It is very unlikely that the variably treated sample 

fractions all descended from 3He/4He values as high as shown by some of the CFB-related picrites 

from NAIP (~50 Ra; Stuart et al., 2003; Starkey et al., 2009) to a rather homogeneous average crush 
3He/4He value of 4.79 Ra (σ = 1.32; excluding the strongly 4He-overprinted AL/WM1e-98).  

 

4. Geochemical comparison with basalts from SWIR and relevant hotspots 

 

4.1. He isotopes 

 

The closest estimate for the magmatic He isotopic composition (7.03 Ra) of the depleted ferropicrite 

suite is compared with the magmatic He isotopic compositions of SWIR MORB, and oceanic 

plateaus, seamounts, and oceanic islands of the southern Indian and Atlantic Oceans (Fig. 1) in Fig. 

4.  

 It is important to note that the 3He/4He values presented for the oceanic lavas in Fig. 4 are 

measured values and the data has not been age-corrected for radiogenic ingrowth of 4He in the 

mantle source. Preliminary estimates for the He isotopic evolution of SWIR MORB sources in 180 

Ma can be calculated using U (0.0047 ppm), Th (0.0137 ppm), and 3He (44–170 ∙ 10-6 μcc/g (STP)) 

contents representative of depleted mantle (Salters and Stracke, 2004; Porcelli and Ballentine, 2002) 

and present-day 3He/4He of 6.3–7.3 Ra (Georgen et al., 2003). Such sources would exhibit 3He/4He 

of 6.4–7.6 Ra at 180 Ma (i.e., 0.1–0.3 Ra higher relative to present-day values), which indicates 

negligible effect for the age-correction at least in this case. Calculation of age-corrections for the 

mantle sources of oceanic islands is hampered by the lack of knowledge on U, Th, and He 

compositions of the different mantle components, but the above example indicates that changes of 

more than ~1 Ra in 180 Ma would require relatively U- and Th-enriched and/or He-depleted mantle 

compositions.  

 Many of the oceanic hotspot-derived volcanic formations exhibit relatively high present-day 
3He/4He (>8 Ra). Values similar to the depleted ferropicrite suite (i.e. ~6–8 Ra) have been measured 

from SWIR MORB, Comoros Islands, Gough Island, Prince Edward Islands, Tristan da Cunha, 

Crozet Islands (Possession & East Islands), and Kerguelen Islands, although in the case of the latter, 

many samples show comparatively high 3He/4He (Fig. 4). The He isotopic similarity to the Prince 

Edward Islands is of particular interest, as the Marion hotspot presumed to feed the volcanism there 
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has been considered as a possible instigator of the Karoo volcanism as well (e.g., Richards et al., 

1989).  

 Picrites from NAIP, especially the ones that have been linked to non-chondritic primitive 

mantle sources, show very high 3He/4He (up to 50 Ra; Stuart et al., 2003; Starkey et al., 2009; not 

shown in Fig. 4), considerably different from the magmatic value of the depleted ferropicrite suite. 

Unfortunately, no data exist for the Madagascar CFBs or Paraná-Etendeka CFBs, so a helium 

isotopic comparison is not possible. 

 

 
Fig. 4. Magmatic 3He/4He (R/Ra; the most reasonable estimate, see text) of the Vestfjella depleted ferropicrite suite, 

SWIR MORB, and relevant oceanic plateaus, seamounts, and oceanic islands compared (see Fig. 1). Strongly DM-

influenced samples have not been included and a part of the data points represent anomalous ridge segments next to 

hotspots. Crozet Islands exhibit clear division into two distinct 3He/4He components (Possession & East Is. and 

Penguins Is.). Helium isotopic data for Madagascar CFBs, Etendeka CFBs, Conrad rise or Kerguelen plateau has not 

been published. The presented 3He/4He ratios are the measured ones and have not been age-corrected: the 3He/4He of 

the mantle sources is likely to change less than ~1 Ra in 180 Ma (e.g., ~0.1–0.3 Ra for the SWIR MORB source; see 

Section 4.1.). Data sources: Kurz et al. (1982); Hilton et al. (1995); Graham et al. (1999); Sarda et al. (2000); Hanyu et 

al. (2001); Georgen et al. (2003); Class et al. (2005); Doucet et al. (2006); Nicolaysen et al. (2007); Füri et al. (2011); 

Breton et al. (2013). 

 

4.2. Sr, Nd, and Pb isotopes 

 

Given the uncertainties in defining the magmatic 3He/4He (see section 3.2.), it is also important to 

consider other isotopic systems in the context of Indian Ocean and CFB magmatism. In Sr-Nd-Pb 

isotopic space (Figs. 5–6; all data calculated at 180 Ma; none available for Discovery Seamounts, 

Meteor Rise, or Shona Ridge), the great majority of the oceanic hotspots of the southern Indian and 

Atlantic Oceans exhibit compositions (i.e., relatively high 87Sr/86Sr and 206Pb/204Pb, and low εNd) 

that indicate relative long-term enrichment in incompatible trace elements, and are distinct from 

those of the depleted ferropicrite suite and SWIR MORB. The depleted mantle source end-member 

of the Etendeka CFBs exhibits similar 87Sr/86Sr, εNd, 
206Pb/204Pb, and 208Pb/204Pb to the depleted 

ferropicrite suite, but 207Pb/204Pb is notably higher.  

 Similar age-corrected Sr, Nd, and Pb isotopic compositions with the depleted ferropicrite suite 

are found from NAIP, Madagascar CFBs, and SWIR MORB (Figs. 5–6). In the case of Madagascar 

CFBs, the high-Fe-Ti basalts and picrites having the highest εNd and lowest 206Pb/204Pb (similar to 
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that of the depleted ferropicrite suite) have been linked to contribution from Indian Ocean upper 

mantle sources (those of modern SWIR MORB), whereas the compositions of the more 206Pb/204Pb-

enriched basalts have been linked to contribution from the Marion plume (Storey et al., 1997). In 

the case of SWIR MORB, the basalts that derive from sources isotopically most similar to the 

depleted ferropicrite suite at 180 Ma are found between 22°E and 47°E (Fig. 1). It is important to 

note that the SWIR MORBs that show influence of Marion hotspot (found between 36–39°E) or 

DUPAL isotopic signature (i.e. high 208Pb/204Pb and 207Pb/204Pb at a given 206Pb/204Pb; found 

between 39 and 41°E) are not included in these samples (see Janney et al., 2005). 

 

 
Fig. 5. Representative εNd vs. 87Sr/86Sr compositions shown for the Vestfjella depleted ferropicrite suite and the 

estimated depleted sublithospheric sources of Etendeka CFBs (uncontaminated Horingbaai picrites), Madagascar CFBs 

(only samples with εNd > 5 included), NAIP (only uncontaminated samples included), SWIR MORBs, and relevant 

oceanic plateaus, seamounts, and oceanic islands (see Fig. 1; Prince Edward Islands and Kerguelen hotspot-related 

rocks shown separately for the sake of discussion) at 180 Ma. The age-corrected source compositions for rocks younger 

than ~180 Ma have been estimated by first calculating the initial isotopic composition of the rocks where relevant 

(NAIP at 60 Ma, Madagascar at 90 Ma, Kerguelen plateau at 110 Ma, and Etendeka at 132 Ma; corrections for < 30 Ma 

rocks neglected) and then using 87Rb/86Sr and 147Sm/144Nd calculated on the basis of depleted MORB mantle (DMM; 

Workman and Hart, 2005) and bulk silicate Earth (BSE; Workman and Hart, 2005) evolution trend at the initial moment 

to calculate the isotopic composition of the source at 180 Ma; for example, in the case of a modern mantle-derived 

volcanic rock, the equations for present-day 87Rb/86Sr and 147Sm/144Nd of the source are 37.439(87Sr/86Sr)i − 26.287 and 

105.25(143Nd/144Nd)i − 53.759, respectively. Continuous depletion of DMM is neglected as it does not have a significant 

effect in time scales relevant to this study. Data sources: Lightfoot et al. (1997); Storey et al. (1997); Graham et al. 

(1998); Melluso et al. (2001, 2005); Thompson et al. (2001); Stuart et al. (2003); Kent et al. (2004); Heinonen and 

Luttinen (2008); Starkey et al. 2009; Heinonen et al. (2010); data for SWIR MORBs compiled from PetDB 

(www.earthchem.org/petdb) and data for oceanic plateaus, seamounts, and oceanic islands compiled from GEOROC 

(www.georoc.mpch-mainz.gwdg.de). 
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Fig. 6. Representative 207Pb/204Pb (a) and 208Pb/204Pb (b) vs. 206Pb/204Pb compositions shown for the Vestfjella depleted 

ferropicrite suite, Vestfjella enriched ferropicrite suite and the estimated depleted sublithospheric sources of Etendeka 

CFBs (uncontaminated Horingbaai picrites), Madagascar CFBs (only samples with εNd > 5 included), NAIP (only 

uncontaminated samples included), SWIR MORBs, and relevant oceanic plateaus, seamounts, and oceanic islands (Fig. 

1; Prince Edward Islands and Kerguelen hotspot-related rocks shown separately for the sake of discussion) at 180 Ma. 

The age-corrected source compositions for rocks younger than ~180 Ma have been estimated in a similar way as 

explained in Fig. 5, except that 238U/204Pb and 232Th/204Pb of the sources were calculated on the basis of age-corrected 

D-DMM–DMM–E-DMM trend (Workman and Hart, 2005) and by assuming present-day (208Pb/204Pb)DMM of 37.7 

(Hart, 1988), (208Pb/204Pb)D-DMM of  36.9 (on the basis of correlation with global MORB 207Pb/204Pb), and (208Pb/204Pb)E-

DMM of 38.6 (on the basis of correlation with global MORB 207Pb/204Pb). Data sources: Lightfoot et al. (1997); Storey et 

al. (1997); Graham et al. (1998); Thompson et al. (2001); Jourdan et al. (2007b); Heinonen et al. (2010); Jackson et al. 

(2010); data for SWIR MORBs compiled from PetDB (www.earthchem.org/petdb) and data for oceanic plateaus, 

seamounts, and oceanic islands compiled from GEOROC (www.georoc.mpch-mainz.gwdg.de). 
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4.3. Trace elements 

 

Direct comparison of trace element characteristics of the depleted ferropicrite suite with SWIR 

MORBs and relevant CFBs and oceanic hotspots is hampered by the effects of possible secondary 

alteration and, notably, variable degrees and pressures of mantle melting. The Nb/Y vs. Zr/Y 

diagram (Fig. 7) introduced by Fitton et al. (1997), however, is not susceptible to discrepancies 

imposed by these processes. Firstly, Nb, Zr, and Y are high-field strength elements that are not 

easily mobilized by secondary processes. Secondly, although Nb/Y and Zr/Y show positive 

correlation with increasing pressure and decreasing degree of melting, Nb/Y at a given Zr/Y should 

not vary, unless the mantle source contained variable amounts of relatively Nb-enriched or -

depleted materials (Fitton et al., 1997). 

 Nb/Y vs. Zr/Y diagram has been found to be highly effective in distinguishing Nb-enriched 

plume-sources from Nb-depleted MORB sources in Iceland (Fitton et al., 1997, 2003). In global 

comparison, the great majority of OIBs, E-MORBs, and anomalous ridge segments, regardless of 

whether they are related to thermochemical plumes or not, exhibit ΔNb > 0 [ΔNb = 1.74 + 

log(Nb/Y) – 1.92log(Zr/Y); Fitton et al., 1997; see Fig. 7], whereas virtually all N-MORBs exhibit 

ΔNb < 0 (Fitton, 2007; see Fig. 7). 

 

 
Fig. 7. Nb/Y vs. Zr/Y diagram of the Vestfjella depleted ferropicrite suite, Rooi Rand dikes of Karoo, primitive 

Etendeka CFBs (uncontaminated Horingbaai picrites), primitive Madagascar CFBs (only samples with εNd > 5 

included), primitive NAIP picrites (only samples with εNd > 5 included), Marion hotspot basalts, and normal SWIR 

MORBs (see Figs. 5 and 6). The Iceland Plume Array and fields for N-MORB and OIB are after Fitton et al. (2003). 

NCPM marks the non-chondritic primitive mantle source suggested for the NAIP picrites that exhibit the highest 
3He/4He (Jackson and Jellinek, 2013). P and F arrows denote the approximate effects of increasing pressure and degree 

of melting, respectively (Fitton et al., 1997). Lithospheric mantle contamination could change Nb/Y at a given Zr/Y (see 

Heinonen et al., 2010) so it is important to use this diagram only for uncontaminated CFB samples. Data sources: 

Armstrong et al. (1984); Lightfoot et al. (1997); Storey et al. (1997); Melluso et al. (2001, 2005); Thompson et al. 

(2001); Stuart et al. (2003); Kent et al. (2004); Starkey et al. (2009); data for SWIR MORBs compiled from PetDB 

(www.earthchem.org/petdb) and data for Prince Edward Islands compiled from GEOROC (www.georoc.mpch-

mainz.gwdg.de). 
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 The uncontaminated depleted ferropicrite suite samples all have ΔNb < 0 and indicate that 

their sources were not Nb-enriched (Fig. 7). In fact, their Nb-Zr-Y systematics can be explained by 

high-pressure (+low-degree?) melting of MORB-like sources and they are connected to the field of 

N-MORBs and SWIR MORBs by the Rooi Rand dikes of southern Lebombo that mark the first 

phases of oceanization of the Africa-Antarctica rift (Jourdan et al., 2007b; Fig. 7; see also Heinonen 

et al., 2010). 

 In contrast to the depleted ferropicrite suite, the CFB-related primitive samples from NAIP, 

Etendeka, and Madagascar are composed of or include samples with ΔNb > 0. In the case of NAIP, 

complex mixing of Nb-enriched sources with Nb-depleted sources is indicated by the trace element 

and isotopic data (Stuart et al., 2003). The estimated trace element composition of the non-

chondritic primitive mantle source (Jackson and Jellinek, 2013), proposed as the main component 

for the most 3He/4He-enriched NAIP picrites (Jackson and Carlson, 2011), exhibits high ΔNb, and 

thus cannot represent a viable source for the depleted ferropicrite suite. The Nb-Zr-Y composition 

of Madagascar CFBs indicate mixing with MORB and Marion hotspot sources, compatible with 

what has been suggested for them on the basis of isotopic data (Storey et al., 1997). 

 

5. Implications for the Karoo CFBs and Indian Ocean magmatism 

 

The depleted ferropicrite suite exhibits considerable similarity to SWIR MORBs in terms of Sr, Nd, 

Pb, and He isotopic compositions and incompatible trace element characteristics (Figs. 4–7). Major 

element modeling indicates similar degrees of dominantly peridotitic mantle melting for both suites 

(~10% and ~10–20%, respectively; Langmuir et al., 1992; Heinonen and Luttinen, 2010) so they 

likely sampled mantle heterogeneity on a roughly equal scale. The presented results are thus 

compatible with a common mantle source for these rocks that are separated by an age of 180 Ma 

and were generated in distinct tectonic settings (see also Heinonen et al., 2010). In contrast, the He 

isotopic results and trace element systematics (Fig. 7) preclude significant contributions from non-

chondritic primitive mantle sources, and Sr, Nd, and Pb isotopic data preclude significant 

contributions from modern hotspots that are responsible for the generation of oceanic islands and 

plateaus in the Indian and southern Atlantic Oceans (Figs. 5 and 6).  

 One notable feature that is not directly compatible with the SWIR MORB sources for the 

depleted ferropicrite suite are the high crystallization temperatures (> 1600 °C; Heinonen and 

Luttinen, 2010) calculated on the basis of olivine-melt equilibria (method of Putirka et al., 2007). 

The calculations imply generation from a source that was heated more than 200 °C above ambient 

(and modern Indian Ocean) upper mantle temperature, despite the presence of igneous amphibole 

that indicates magmatic water contents of 1–2 wt. % for the parental melts (Heinonen and Luttinen, 

2010). Recent study using thermometry that relies on exchange of Al between co-crystallizing 

olivine and spinel, and is largely independent of pressure or melt composition, suggests that 

estimations on the basis of olivine-liquid equilibria overshoot the actual crystallization (and 

possibly also mantle source) temperatures by more than 100 °C, however (Heinonen et al., 2015). In 

any case, the mantle potential temperature required for the generation of the high-Mg depleted 

ferropicrite suite is likely to be at least ~100 °C above that of ambient upper mantle. 

 If a mantle plume is invoked as the cause for the elevated temperatures, two different 

scenarios could hypothetically explain the compositional similarity of the depleted ferropicrite suite 

to SWIR MORB: 1) plume contains material with MORB source signature or 2) upper mantle 
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material was entrained into a rising plume (see Kerr et al., 1995). Scenario 1 would be the first 

known Phanerozoic plume of such composition as modern plume-related rocks, even if having 

MORB-like high εNd, show either high ΔNb, high 3He/4He, and/or anomalous Pb isotopic 

compositions (e.g., Hawaii, Iceland; Kerr et al., 1995; Fitton, 2007; Figs. 6 and 7). Scenario 2 is 

hampered by the lack of evidence on even more magnesian and hot and/or isotopically distinct 

sublithospheric Karoo magmas that would have been expected to form within the plume itself (see 

Kerr et al., 1995). On the other hand, it is important to note that the great majority of the Karoo 

CFBs have been contaminated by or derive from the Gondwanan lithosphere (e.g., Hawkesworth et 

al., 1984; Sweeney et al., 1994; Luttinen and Furnes, 2000; Jourdan et al., 2007a; Neumann et al., 

2011): possible plume-derived geochemical signatures may thus have been overprinted beyond 

recognition (see Heinonen et al., 2014). Ellam et al. (1992) postulated mixing of lithospheric and 

plume sources on the basis of Os isotopic composition of the Mwenezi picrites in Africa, but the 

most recent studies on the Pb and Hf isotopic composition of these rocks led Ellam (2006) to favor 

predominant contribution from variably enriched lithospheric mantle instead. In addition to depleted 

ferropicrite suite and related Low-Nb magma type (Heinonen et al., 2010; Luttinen et al., 2015) of 

Vestfjella, the only Karoo magma types that are uncontaminated by the crust and are likely to 

derive dominantly from sublithospheric sources are the Vestfjella enriched ferropicrite suite 

(Heinonen and Luttinen, 2008; Heinonen et al., 2010), Group 3 dikes from Ahlmannryggen (Riley 

et al., 2005), and some high-εNd E-MORB Rooi Rand dikes from Africa (Armstrong et al., 1984; 

Duncan et al., 1990). The emplacement of the Rooi Rand dikes post-dates the main CFB phase by 

~10 Ma and is related to the onset of oceanization of the rifted margin (Jourdan et al., 2007b; see 

Fig. 7). The enriched ferropicrite suite and Group 3 dikes likely sampled recycled heterogeneities, 

but these magma types are not similar in isotopic composition with relevant modern hotspots, are 

not parental to Karoo CFBs, and are likely to pre-date (Group 3) and post-date (enriched ferropicrite 

suite) the main phase of Karoo magmatism (Riley et al., 2005; Heinonen and Luttinen, 2008; 

Heinonen et al., 2010, 2014). The suggested link between the modern Marion (or any other southern 

Indian Ocean or Atlantic) plume and Karoo CFBs is thus not currently supported by the 

geochemical data. Intriguingly, it could be argued that the generation of the Madagascar CFBs at 

~90 Ma marks the arrival of the Marion plume head to the Indian Ocean mantle lithosphere (Storey 

et al., 1997). 

 The viability of the mantle plume hypothesis as an explanation for the generation of a specific 

magmatic province should not be evaluated by geochemistry alone (e.g., Farnetani and Hofmann, 

2014). Several recent studies on the structure, geochronology, and petrology of the Karoo province 

are not readily compatible with the traditional mantle plume hypothesis (Le Gall et al., 2002, 2005; 

Watkeys, 2002; Jourdan et al., 2004, 2005, 2006, 2007a, 2009; Coltice et al., 2009; Hastie et al., 

2014; cf. Ferraccioli et al., 2005; Curtis et al., 2008). One of the preferred alternative models for the 

Karoo CFBs is the “internal mantle heating” model, which suggests an increase in the upper mantle 

potential temperatures of up to more than 100 °C beneath an insulating supercontinent (Coltice et 

al., 2009). Favorable plate boundary assemblies prior to Gondwana breakup may have further 

enhanced the effect of subcontinental heating (see Rolf et al., 2012; Hastie et al., 2014). The 

implication of this study, that the hottest and most primitive sublithospheric magmas known from 

Karoo seem to sample Indian Ocean upper mantle, is compatible with such propositions. 

Supercontinent insulation could be further associated with drainage of slowly accumulated 

sublithospheric magma reservoir (Silver et al., 2006) and lithospheric delamination (Elkins-Tanton 
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and Hager, 2000) that could also explain the large-scale metasomatism observed in the Indian 

Ocean upper mantle (Janney et al., 2005; Hanan et al., 2013).  

 The NAIP may be one of the best examples of a plume-instigated CFB province (e.g., Brown 

and Lesher, 2014), but the role of mantle plumes in the generation of Karoo CFBs remains an open 

question. The hypothesis that all CFB provinces that were formed close to the margins of large low 

shear velocity provinces (LLSVPs) in the lower mantle are plume-generated (Burke and Torsvik, 

2004) may thus be an overgeneralization. After all, all CFB provinces related to the early stages of 

Pangea and Gondwana breakup (i.e. Central Atlantic Magmatic Province, Ferrar, and Karoo) have 

been presented as the best Phanerozoic candidates for internal mantle heating models (Coltice et al., 

2009; Hastie et al., 2014; Hole, 2015), and at least one of them hosts high-temperature picrites 

generated from a low-3He/4He, long-term depleted mantle source. 

 

6. Conclusions 

 

The age of the Karoo CFB eruptions presents challenges to obtaining the mantle helium isotopic 

compositions, given the presence of radiogenic and cosmogenic helium. The analytical strategy 

utilized here, of abrasion and coupled crushing/melting in vacuum, shows that it is possible to 

estimate the effects of different helium components to the total 3He/4He in these samples. The best 

estimate for the magmatic 3He/4He isotopic composition (obtained from a fresh, abraded, and coarse 

olivine fraction) of the most magnesian Karoo CFB magma type (Vestfjella depleted ferropicrite 

suite) is 7.03 ±0.23 Ra. This value is similar to those obtained from SWIR MORBs (6.3‒7.3 Ra; 

source 3He/4He ~6.4–7.6 Ra at 180 Ma) and notably lower than those measured from most of the 

southern Atlantic or Indian Ocean hotspots, or CFB-related high-Mg rocks thought to derive from 

early-formed non-chondritic primitive mantle sources. Trace element, Sr, Nd, and Pb isotopic 

comparisons further consolidate these relationships.  The composition and high-T origin of the suite 

are best explained by supercontinent insulation of a precursory Indian Ocean upper mantle source, 

which is also preferred on the basis of the latest structural, geochronological, and petrological 

studies on the Karoo CFBs. 
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