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Does excess boron affect hormone levels of potato cultivars?
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(Received 2 March 2015; accepted 18 May 2015)

Potato crop production in Turkey ranks on the thirteenth place in the world. Toxicity is a problematic issue for some parts
of the Turkish soils. Hence, it is very important to clarify the physiological responses of plants to toxic mineral stress. In
this study, two different potato cultivars � Solanum tuberosum cv. Resy and Solanum tuberosum cv. Agria � were used as
a study material. Excess boron was applied in two different concentrations (5 mmol/L and 12.5 mmol/L) 32 days after
planting the tubers. Plants were harvested at the end of 15 days of excess boron application. Chlorophyll fluorescence (Fv/
Fm) was measured. Shoot height and shoot�root fresh weight contents were determined. Analyses were carried out for the
contents of the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) by using gas chromatography-
mass spectrophotometry (GS-MS). According to the obtained data, plants’ shoot height did not change, whereas the
shoot’s fresh weight decreased significantly with increasing of the boron concentrations in cv Resy, by applying
12.5 mmol/L boron. With 12.5 mmol/L boron, the photosynthesis was negatively affected in both cultivars. Boron
application led to increased endogenous IAA and ABA content in both cultivars. As a result, cv. Resy showed more
resistance to excess boron. Findings on the hormone metabolism and chlorophyll fluorescence in different cultivars will
shed a light on understanding the physiological response to excess mineral stress.

Keywords: boron toxicity; Solanum tuberosum L.; chlorophyll fluorescence; IAA; ABA; GS-MS

Introduction

Boron is an essential micronutrient for plant growth and

development and has a wide range of roles in the physio-

logical processes in plants.[1] Excessive boron in the soil

or in the irrigation water occurs in Turkey.[2] Abiotic

mineral toxicity stress is one of the limiting factors for

plant development and crop productivity.[3] However,

biochemical and physiological adaptation mechanisms

allow plants to maintain their life cycle under adverse

stress conditions.[4] Phytohormones play a role in plants’

stress responses and adaptation.[5] Hormonal regulation

of growth and development under abiotic stress is a com-

plex process with interactions of various hormones at the

cellular level.[6] Many of the adaptation mechanisms are

related with the change of endogenous phytohormone lev-

els, including indole-3-acetic acid (IAA) and abscisic acid

(ABA).[7]

The essential major auxin IAA plays a role in the

growth and development of the plant and takes place in

the plant’s life cycle, including cell division, expansion,

differentiation, lateral root formation, flowering and tropic

responses.[8] The possible role of boron on auxin or IAA

metabolism was suggested as early as in 1940.[9] The

local cellular auxin levels and distribution may be

regulated by changes in auxin transport in plants under

different stresses.[10]

On the other hand, ABA plays a major role in signal-

ling and adaptation to abiotic stresses, such as water,

drought and salt stress.[11] Especially in glycophytes,

increased endogenous ABA content in plants’ cells and

tissues is an adaptive mechanism for sodium (Na) stress.

[12] De Costa et al. [13] proposed that the salt resistance

of newly developed maize hybrids was determined by

ABA. The ABA is also a hormone that regulates stomatal

closure in plants, which causes a reduced water loss via

transpiration.[14] On the other hand, ABA limits the shoot

growth [15] and leaf area expansion,[16] whereas it stimu-

lates the root growth.[17] However, the role of ABA and

IAA in boron stress remains unclear.

Chlorophyll fluorescence is a technique that measures

photosystem II (PSII) activity. It is an indicator of how

plants respond to environmental abiotic and biotic factors,

by measuring the PSII sensitivity. Information, regarding

the plant-based stress status, may be provided by screen-

ing the PSII activity. It has been used as one of the most

common techniques for measuring stress in leaves.[18]

Potato crop production in Turkey ranks on the thir-

teenth place in the world [19] and the toxicity is a
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problematic issue for some parts of the Turkish soils.

Hence, it is very important to clarify the physiological

responses of plants to toxic mineral stress and these pro-

cesses should be clarified in more detail. In this paper, we

examined whether excess boron leads to a possible signifi-

cant change in IAA and ABA contents of two different

potato cultivars. Our aim was to shed a light on the physi-

ological responses of potato cultivars under excess boron

stress.

Materials and methods

Plant materials and growth conditions

The two potato cultivars (Solanum tuberosum cv. Resy

and Solanum tuberosum cv. Agria) were provided by

Aegean Agricultural Research Institute (AARI). Potato

tubers were grown in a green house in quartz sand (0.1

mm�0.6 mm, SP-Minerals Oy, Nilsi€an kvartsi, Finland).

The chemical composition of the quartz sand was SiO2

(99.4%), Al2O3 (0.2%), Fe2O3 (0.02%) and K2O (0.04%).

The plants were grown in plastic pots (Soparco, code

6820) with 16.7 cm diameter, 13.1 cm heigh and 2 L vol-

ume and were fertilized by using Hoagland and Arnon

[20] nutrient solution altogether for seven weeks.

Illumination was provided by 400 W high-pressure

sodium lamps (Lucalox, LU 400/HO/T/40NG) for 16 h

d¡1 to provide a flux density of 220 mmol m¡2 s¡1 at the

upper leaf canopy. Daytime humidity was 50% and the

temperature was 20 �C (day) and 16 �C (night).

Boron treatment

Boron was applied 32 d after planting the tubers in two

different concentrations (5 and 12.5 mmol/L) within the

Hoagland and Arnon [20] nutrient solution. A concentra-

tion of 0.05 mmol/L boron was applied as a control. The

plants were harvested at the end of 15 d of excess boron

application.

Hormone analysis

Phytohormones were analysed by using the vapour-phase

extraction method, described by Schmelz et al. [21] with

the following modifications: 2 ng 13C6-IAA and 20 ng d6-

ABA were used as internal standards in each sample. For

the IAA analysis, the samples were dried, silylated with

8 mL N-methyl-N-(trimethylsilyl) trifluoroacetamide

(MSTFA) and diluted with 16 mL water free pyridine.

After this, a gas chromatography-mass spectrometry (GC-

MS) analysis was performed on a Trace-DSQ (Thermo) in

the single ion monitoring mode on a ZB-35 capillary GC

column (35% phenyl and 65% methylpolysiloxane, 30 m

£ 0.25 mm £ 0.25 mm) with splitless injection and

230 �C injector temperature. The column was held at

40 �C for 1 min after injection, then heated by 15 �C min¡1

to 250 �C, held for 4 min, heated by 20 �C min¡1 to 300 �C
final temperature (kept for 3 min) with helium, as a carrier

gas (1 mL min¡1 flow). The pytohormones’ results were

calculated as ng g¡1 fresh weight (FW).

Chlorophyll fluorescence and growth parameter

determinations

The chlorophyll fluorescence was measured with a FMS-2

pulse modulated fluorometer (Hansatech, UK) in the

morning. The minimal fluorescence (Fo) was determined

by a weak modulated light and a 0.7 s saturating light of

20,000 mmol m¡2 s¡1 was used on the dark-adapted

leaves (30 min) to determine the maximal fluorescence

(Fm) and variable fluorescence (Fv), calculated as

Fm�Fo. The maximal quantum efficiency of PSII (Fv/

Fm) was determined. Plants were sampled randomly from

each treatment group (control, 5 and 12.5 mmol/L boron

applied groups) at the harvest day with at least three repli-

cates. The height of the shoots (cm) was measured and

shoot and root fresh weights (g) were recorded.

Statistical analysis

The experimental results were expressed as mean § stan-

dard error (SE). Statistical analysis was carried out using

one-way analysis of variance (ANOVA), followed by

Dunnett’s test with SPSS version 12.0. The value of p <

0.05 was considered to be statistically significant.

Results and discussion

It is widely known that hormonal metabolism may change

in plants, subjected to biotic and abiotic stresses.[22] In

our study, increased boron concentrations led to increased

endogenous IAA content in both cv. Resy and cv. Agria,

as compared to the control (Table 1). The increased IAA

content was statistically significant in both cultivars at

5 mmol/L and 12.5 mmol/L, as compared with their con-

trols. IAA content has also been shown to increase in two

different barley cultivars, subjected to excess boron.[22]

Lambert et al. [23] have suggested that boron fertilization

leads to decreased IAA oxidase activity in plant roots and,

therefore, to increased IAA content.[22] The rise of the

IAA content leads to movement of carbohydrates into the

roots and, by this, to enhancement of mycorrhizal fungal

infections. On the other hand, Triticum durum Desf.,

grown under boron deficiency, had an increased IAA con-

tent and it tended to decrease with the increasing of the

boron concentrations.[24] In sunflower (Helianthus

annuus L.), the IAA content decreased under boron stress,

as compared to the control plants.[22,25] The data in the

literature about the endogenous IAA contents in plants,

subjected to excess boron, are varying. Our results showed
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that excess boron application led to increased endogenous

IAA contents in both cultivars, which was in line with a

research done on two different barley cultivars.[22]

In our study, increased boron concentrations led to a

significant ABA content increase in both cv. Resy and cv.

Agria (Table 1). Some earlier studies have also shown

that increased boron concentrations led to increased ABA

contents.[22] Similarly, in a study with carrot (Daucus

carota L.) root callus under boron stress, the ABA content

also increased.[26] It is presumed that ABA might bind to

an apoplastic locus of ABA perception site, inducing an

internal calcium-based signal transduction cascade, caus-

ing stomatal closure.[27,28] This is a well-known cellular

response to abiotic stress conditions.[7] A limited transpi-

ration rate under toxicity might be beneficial for the

reduced uptake of boron ions into the tissues.

For unstressed leaves, Fv/Fm values were highly con-

sistent with »0.83 and correlate to the maximal yield of

photosynthesis.[29] Any type of stress that results in inac-

tivation of PSII lowers the Fv/Fm value.[30] In cv. Agria,

Fv/Fm decreased drastically after treatment with

12.5 mmol/L boron, indicating that photosynthesis was

negatively affected (Table 1). In cv. Resy, treatment with

5 mmol/L boron did not cause a change in the Fv/Fm

value, whereas application of 12.5 mmol/L boron led to a

decrease in the Fv/Fm values, as compared to the control.

The cv. Resy was more tolerant and the Fv/Fm value

started to decline after application of 12.5 mmol/L boron.

Excess boron did not affect shoots’ height, whereas shoot

and root fresh weight decreased with increasing of the

boron concentration (Table 2). Shoot fresh weight was the

most affected parameter in cv. Resy, which showed a sig-

nificant decrease at 12.5 mmol/L excess boron applica-

tion. A decrease was also observed in the cv. Agria fresh

weight at 5 and 12.5 mmol/L excess boron application, as

compared to the control. Boron toxicity affected roots’

fresh weight negatively in both of the cultivars at

5 mmol/L and 12.5 mmol/L excess boron concentrations.

No significant shoot height differences were observed in

both cultivars throughout all the excess boron treatments.

Plant species, such as Lycopersicon esculentum,[31]

Cucumis melo,[32] Malus domestica Borkh. [33] and

Artemisia annua,[34] subjected to excessive boron con-

centrations, have shown that their growth and fresh bio-

mass decreased. The biomass decrease followed the

pattern of chlorophyll fluorescence and our results showed

that in high boron concentrations, shoot fresh weight was

negatively affected. Similar results have been found ear-

lier in tomato plants by Ferro et al. [35] and in sweet

basil.[36] A combination of excess boron and salinity,

applied to raspberries,[37] led to a decreased chlorophyll

content and fluorescence, while in grapefruit [38] only the

chlorophyll fluorescence decreased.

Overall, our results that the two different potato culti-

vars varied in their hormone levels in response to theT
ab
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application of different concentrations of excess boron,

contribute to the better understanding of the possible roles

of boron on hormone metabolism. Future work on excess

boron application will be mainly on determination of the

diverse physiological parameters in different plant

species.

Conclusions

We assessed the physiological responses of two potato

cultivars to excess boron by hormone, chlorophyll fluores-

cence and growth parameters determination. In our study,

we showed that boron application in two different potato

cultivars led to increased endogenous IAA and ABA con-

tents. In the light of these findings, we believe that our

results may contribute to understanding the physiological

responses of plants to excess boron and the roles of excess

boron in excess boron physiology.
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