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ABSTRACT

The Glial cell line-derived neurotrophic factor (GDNF) family ligands, which include
GDNF, neurturin (NRTN), persephin (PSPN) and artemin (ARTN), signal through a gly-
cosyl phosphatidyl inositol (GPI)-linked cognate-receptor (GFR«1-4) and the transmem-
brane receptor tyrosine kinase receptor RET. The members of the GDNF family play a
particularly important role in the development of the peripheral nervous system (PNS). In
the autonomic nervous system, GDNF and NRTN regulate important steps in the devel-
opment of the enteric and parasympathetic nervous systems from migration and prolifera-
tion to soma size and target innervation, whereas ARTN takes part in the early phases of
sympathetic nervous system development. In the sensory system, GFRa«2 —the co-receptor
of NRTN-has been shown to mediate trophic signaling for nonpeptidergic nociceptive
neurons, and is also required for their innervation of the glabrous epidermis. However,
several aspects of the role of GFR«2-signaling in normal PNS development and function
remain poorly understood. Therefore, the aims of this study were to elucidate (1) the role
of GFRa«2-signaling in the development of parasympathetic neurons; (2) the role of
GFR«2-signaling in two classes of somatosensory mechanoreceptor neurons and their tar-
get innervation; and (3) the role of GFR«2-signaling in the cholinergic innervation of the
gastric mucosa and the role of this innervation in gastric secretion.

We discovered that programmed cell death (PCD) is a normal part of parasympathetic
neuron development in mice. GFR«2-signaling was found to regulate parasympathetic neu-
ron survival in pancreatic and submandibular ganglia during late embryonic development;
lack of GFR«2-mediated signaling resulted in the loss of intrapancreatic neurons through
PCD. In argreement with previous studies, apoptosis in the ENS was found to be rare, and
was not increased in the absence of GFR«2, implying that the normal number of enteric
neurons is not determined by PCD. In the dorsal root ganglia (DRGs), we found that
GFR«2 regulates the cell size, but not the peripheral innervation of hair follicles in both the
large early-RET RA Ap-class low threshold mechanoreceptors (LTMRs) and in the small
C-LTMRs. In contrast, GFR«2 was found to regulate both the cell size and the epidermal
innervation in the small Mrgprd+ C-nociceptors. We also found evidence that the RA AB-
LTMRs downregulate GFR«2-expression at some point after birth, suggesting a possible
switch in neurotrophic signaling pathways. In the enteric nervous system, we demonstrated
that GFR«2-signaling via NRTN is required for cholinergic innervation of the gastric mu-
cosa. Interestingly, this innervation was found to be unnecessary for maintaining the gastric
mucosa and for gastrin secretion and basal acid secretion. Even though vagally-stimulated
secretion is lost in the GFR«x2-KO mice, their ability to secrete acid in response to direct
parietal cell stimulation remains in the absence of gastric mucosal innervation.
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INTRODUCTION

The Peripheral Nervous System and Neurotrophic Factors

The peripheral nervous system (PNS) consists of the neurons and glia that reside out-
side the central nervous system (CNS). Whereas the CNS organizes information and regu-
lates behavior, the role of the PNS is to relay afferent information from inside and outside
the body into the CNS, and to serve as an effector system that allows the regulation of vital
body functions. For these purposes, the PNS is divided into several motor (efferent) and
sensory (afferent) divisions. The sensory divisions communicate stimuli from the outside
world through the skin, oral cavities, nasal cavities, eyes and ears. The sensory systems also
relay proprioceptive body-awareness from within the musculo-skeletal system and visceral
signals from the internal organs (interoception). The motoric section of the PNS is called
the autonomic nervous system (ANS). Its subdivisions (sympathetic, parasympathetic, and
enteric) are responsible for maintaining body homeostasis together with the endocrine sys-
tem. The axons from the somatic motoneurons that control the skeletal muscles are often
included in the PNS. However, their cell bodies lie inside the CNS and therefore do not fit
the definition of PNS used in this thesis.

The origin of peripheral neurons is in the neural crest, which is a transient population of
migratory cells that is only found in the vertebrates. At the start of neurulation, the de-
veloping neural crest cells form a band-like neural plate border that runs bilaterally between
the neuroectoderm of the neural plate and the outer non-neuronal ectoderm. As the neural
tube folds and closes, the neural crest cells begin to proliferate and migrate extensively to
generate a multitude of different cell types, including autonomic and sensory neurons and
peripheral glial cells (Figure 1A) [1]. The generation of such a substantial diversity of pe-
ripheral neuronal cell types requires precise control over cellular migration, cell numbers,
and the innervation of target tissues. Neuronal numbers in the mature PNS are regulated to
fit the need of the innervated tissue, partly by controlling the rate of precursor cell prolifer-
ation. However, a hallmark of the PNS is the vast occurrence of programmed cell death
(PCD): a tightly regulated method of culling excessive numbers of neurons produced dur-
ing development. The controlled cell death observed in PNS neurons and other aspects of
their development and maintenance are largely under the control of specific proteins se-
creted mainly by their target tissues. These proteins are commonly known as neurotrophic
factors.

The early work of Viktor Hamburger in the 1930’s demonstrated that the removal of a
wing bud in a developing chicken resulted in the death of differentiated motor and sensory
neurons projecting to the missing area; similarly, increasing the size of the target zone lead
to the hypertrophy of the corresponding motor nuclei and sensory ganglia [2]. This allowed
Hamburger to postulate that peripheral tissues control the proliferation, differentiation, and
migration of corresponding neurons via secreted substances transported retrogradely to the
somas. Later, it was discovered that this retrograde signaling actually works mostly in con-
trolling the number of neurons that survive the programmed cell death process.

Work by Rita Levi-Montalcini and her colleagues beginning in the late 1940’s led to the
discovery of the first neurotrophic factor, Nerve growth factor (NGF), and the postulation
of the neurotrophic factor hypothesis [3]. According to this theory (Figure 1B), the num-
ber of neurons and their peripheral projections in the adult organism are determined by a
process where, to escape elimination by cell death, the neurons actively compete for a lim-
ited supply of a specific trophic factor released from the target organ [4].
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Since the discovery of NGF, three other factors belonging to the same protein family
have been discovered: Brain-derived neurotrophic factor (BDNF) and Neurotrophin-3 and
-4 (NT-3, NT-4). Together, these factors are known as the neurotrophins. The neurotrophins
signal mostly via their tyrosine kinase receptors TrkA, TrkB, and TrkC expressed on specif-
ic subsets of neurons; NGF signals via TrkA, BDNF and NT-4 via TrkB, and NT-3 via
TrkC.

In addition to the neurotrophins, several other groups of growth factors with strong
neurotrophic properties have been discovered, such as the glial cell line-derived neu-
rotrophic factor and its related ligands (GDNF-family, GFLSs) [5], the neuropoietic cyto-
kines (CNTF and LIF) [6], fibroblast growth factors (FGFs) [7] and the CDNF/MANF-
family [8]. These factors influence many aspects in nervous system function and develop-
ment, while many of them have important functions also outside the nervous system. In
the PNS, the neurotrophins and GDNF-family factors have the most important roles. Dif-
ferent factors from these families often control development or provide trophic support in
the same neuronal populations, sometimes functioning at distinct developmental stages or
influencing different aspects of development, such as proliferation, migration, survival, or
target innervation [9].

target organ
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Figure 1. The neural crest and the neurotrophic factor theory. (A) Neural crest cells (NCCs) proliferate
and migrate extensively around the developing embryo to create neurons and glial cells of the peripheral
nervous system as well as several other cell types. Cells of the different divisions of the PNS are indicated
with specific colors. (B) Peripheral neurons compete for a limited supply of a neurotrophic factor (NTF)
expressed and secreted by a target organ. The neurons which are able to secure the factor thrive and
proceed to innervate the target, whereas cells left without the factor die via programmed cell death.



REVIEW OF THE LITERATURE

The GDNF Family Ligands and Receptors

GDNF Family Ligands

The GDNF family of neurotrophic factors consists of four members: GDNF, neurturin
(NRTN), artemin (ARTN), and persephin (PSPN). They form a subgroup of the trans-
forming growth factor beta (TGF-B) superfamily [10] based on a conserved cysteine resi-
due arrangement found on all the ligands and other members of the superfamily [11-14].
All TGF-8 related proteins, including the GFLs, are first synthesized as premature prepro-
proteins with an N-terminal signal sequence and a variable prodomain that is cleaved upon
secretion [10]. The prodomain is cleaved by proprotein convertases at specific RXXR
cleavage sites to produce mature proteins, which are biologically functional as homodimers
[5,10]. The general structure of a GFL monomer includes a “cysteine knot” motif formed
by the conserved cysteine residues, two antiparallel 3-sheet “fingers”, and a connecting o-
helix section in the middle [15-17]. In the dimer, the subunits are connected by a disulfide
bond in a face-to-face orientation, where the B-sheet fingers of the two monomers cross in
the middle and extend to the opposing lateral sides [15-17].

The founding member of the group, GDNF, was purified from a rat glial cell line on the
basis of its ability to promote survival, differentiation, and dopamine uptake in cultured
embryonic rat midbrain neurons [11]. These findings were followed by a number of studies
showing the ability of GDNF to promote the survival and target reinnervation of dopa-
minergic neurons in vivo in several injury paradigms [18-24]. In addition to dopaminergic
neurons, GDNF was also effective in supporting the survival of locus coeruleus noradrenergic
neurons [25] and basal forebrain cholinergic neurons after injury [26].

Outside the brain, GDNF was shown to act as a trophic and survival factor for central
motoneurons [27-30] and peripheral sensory, autonomic, and enteric neurons [31-36].
Although GDNF is expressed in multiple areas of the rodent central nervous system [37—
39], it is found most abundantly in the developing peripheral tissues, with embryonic
whisker pads, gastrointestinal tract, and kidney showing some of the highest transcript lev-
els [34,39]. In the developing gut and kidney, GDNF is expressed, respectively, in the mus-
cular wall and the surrounding mesenchyme[39-41]. Consistent with this, GDNF is essen-
tial for the development of the enteric nervous system and kidney morphogenesis [42—-44].
In the testis, GDNF is secreted by the sertoli cells and regulates differentiation and self-
renewal in spermatogonia [45].

NRTN was discovered and isolated following the observation that the conditioned me-
dium of Chinese hamster ovary cells was able to support the survival of superior cervical
ganglion (SCG) sympathetic neurons in culture [13]. In addition to sympathetic neurons,
purified NRTN also promoted the survival of visceral sensory neurons from the nodose
ganglion and of a small subset of dorsal root ganglion (DRG) neurons. Like GDNF,
NRTN protects adult dopaminergic neurons in vivo [46,47] and also supports survival in
spinal motoneurons and basal forebrain cholinergic neurons in vitro [48,49]. Peripherally,
NRTN promotes proliferation and survival in enteric neuron progenitors [33] and supports
survival in embryonic chicken autonomic and sensory neurons to varying degrees [32,35].
In the CNS, NRTN transcripts are found in the postnatal striatum, brainstem, and pineal
gland [50]; however, similarly to GNDF, it is most strongly expressed in peripheral tissues.
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NRTN transcripts are found (among other locations) in the circular muscle layer and mu-
cosa of the intestine, salivary gland epithelium and sweat glands, tubular epithelium of the
developing kidney, and developing whisker follicles [39,50-53].

The last two members of the group, PSPN and ARTN, were discovered using polymer-
ase chain reaction (PCR) and bioinformatics [12,14]. PSPN is expressed in the ventral mid-
brain and striatum during late embryonic to early postnatal development [54]. It is able to
protect nigral dopamine neurons in vivo [12,54,55] and also supports motoneurons and em-
bryonic basal forebrain cholinergic neurons [12,49]. PSPN, however, does not support neu-
rons from peripheral ganglia [12]. ARTN [56,57], on the other hand, is a powerful survival
factor for sensory and sympathetic neurons and is highly expressed in the DRG nerve
roots and along the surface of the superior mesenteric artery in developing mouse embryos
[14]. Outside the nervous system, ARTN has been shown to be involved in secondary lym-
phoid formation in the gut [58].

GDNF Family Receptors

The receptor complex for GDNF was discovered in 1996, when several research groups
obseved that GDNF was able to phosphorylate the orphan receptor tyrosine kinase RET
(short for Rearranged during transfection) [59—-61] and that this activation was mediated
via an additional ligand-binding co-receptor [62,63]. This co-receptor was later named
GFRal. In a short period of time, three more of its kind were characterized (Figure 2):
GFR«2 is the preferred receptor for NRTN [48,64-70], GFR«3 for ARTN [14,66,71-76],
and GFRa4 for PSPN [77-80].

RET was first identified 30 years ago as a part of a fusion gene that formed in a lym-
phoma transfection study [81]. The C-terminal of the formed fusion protein was later
found to belong to the tyrosine kinase superfamily [82]. The full-length RET receptor is a
dimer composed of two RET monomers with a ligand-binding domain in the extracellular
space, a transmembrane helix-region, and a cytoplasmic tyrosine kinase domain [83]. The
extracellular N-terminal is composed of four cadherin-like domains (CLD1-4) with a calci-
um-binding site between CLD2 and CLD3, and a cysteine rich domain close to the cell
membrane [84—-86]. The intracellular part has a juxtamembrane section and a two-part tyro-
sine kinase domain, as well as a C-terminal tail [87].

The four GFRa co-receptors share a similar basic structure containing a hydrophobic
N-terminal secretion signal, several N-glycosylation sites, a C-terminal hydrophobic region
for the addition of a glycosylphoshadityl-inositol (GPI) plasma membrane anchor [88,89],
and three conserved cysteine rich domains (D1-D3) [17,78,90,91]. In contrast to GFR«1-3,
the mouse GFRu4 is smaller and lacks D1 [78]. Although each of the different GFR« co-
receptors shows preference for a specific ligand, a certain amount of cross-talk has been
documented. GDNF can phosphorylate RET through GFR«2 and NRTN through
GFRal. Also, both ARTN and PSPN can activate RET via GFR«1 [14,92].

GFR« receptors are often expressed in a complementary pattern with GDNF family lig-
ands. For example, in the kidney and gastrointestinal tract GFR«1 is expressed, respective-
ly, by the wolffian bud epithelium and enteric plexus neurons. These patterns are matched
precisely by GDNF expression in the kidney mesenchyme and gut muscle layers [93].
GFR«1-3 are strongly expressed in the peripheral nervous system in subsets of developing
and adult autonomic, enteric, and sensory neurons and Schwann cells [39,51,52,71,75,94—
99]. GFR«1 and GFR«2 can also be found abundantly in neurons throughout the rodent
CNS [37-39,70,100-102]. In addition, all GFR«'s are also expressed in many non-neuronal
tissues. GFRa4 is produced in multiple splice forms in the mouse, of which functional
GPI-linked forms are found apparently only in some endocrine cells. [78,103].
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The GFRa receptors are expressed in many tissues that lack RET, but RET has never
been detected without the company of at least one of its co-receptors [37-39,93,98]. Dur-
ing embryogenesis, RET is expressed by migrating neural crest cells that form the peripher-
al nervous ganglia, the developing excretory system, and parts of the rodent CNS
[39,93,104-106]. Multiple splice isoforms of RET exist, the best characterized being RET9,
RET51, and RET43 [107,108]. The RET9 and RET51 isoforms are the prevailing isoforms
with distinct expression patterns [109] and separate signaling complexes [110]. RET9 iso-
form appears to be crucial for kidney and enteric nervous system development, whereas
RET51 is required by mature sympathetic neurons [111,112]. RET is also required for male
fetal germ cell survival [113]. Loss-of-function mutations of RET in humans result in
Hirschprung’s disease with chronically contracted and obstructed aganglionic segments of
the bowel, leading to the dilation of the proximal part of the gut [114]. In contrast, gain-of-
function mutations of RET can lead to multiple types of cancer [115]. Together with
ARTN and GFR«3, RET is required for the secondary lymphoid structure formation in the
gut [58].

GDNF  NRTN ARTN PSPN
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Figure 2. The GDNF family ligand-receptor complex and interactions. All of the four GFLs form ho-
modimers and activate the transmembrane receptor tyrosine kinase receptor RET via their preferred GFRa
co-receptors (indicated by solid arrows). GFRa4 lacks the first cysteine-rich domain D1 in mammals. Modi-
fied from [5].

GDNF Family Signaling

Receptor complex formation

According to the original model of GDNF mediated RET phosphorylation, a dimer of
GDNF first binds two GFR«1 co-receptors (Figure 3) and this complex then recruits two
molecules of RET, leading to the autophosphorylation of the catalytic tyrosine kinase do-
mains [62]. However, RET and GFR«1 have been shown to weakly associate even without
the ligand being present [67,74]. Also, some GDNF mutants unable to bind GFR«1 can
still induce GFRal-dependent RET activation [116]. These findings suggest that at least
some of the receptors could be present as preformed GFR«1-RET complexes before
GDNF binding; however, exact details of the complex formation remain unknown [5,116].
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Based on mutagenesis studies, the most critical sites for GFR«1 and GFR«2 binding have
been localized to two adjacent locations on finger 2 of the GDNF molecule [117]. Homol-
ogous sites on NRTN and ARTN molecules can also mediate binding to GFR«1 and RET
activation, but additional regions are required for binding with GFR«2 and GFR«3 [117].
In addition, GDNF binding to GFR«1 receptors in the absence of Ret has been shown to
require additional residues in finger 1 and in the N-terminus of GDNF [116].

The crystal structures of ARTN and GDNF, alone as well as complexed with GFR«3
and GFRal,respectively, have been characterized [16,17,118,119]. According to these con-
figurations, GFL homodimers bind to D2 of the GFRx monomers and D3 stabilizes this
connection [17,119]. D1 is not required for ARTN/GFR«3 binding [17]. Similarly, the N-
terminal region in GFRa«l has been shown to be dispensable for complex formation and
RET activation [120]; however, D1 appears to contribute by stabilizing the ineraction be-
tween GFRal and GDNF [121]. The most recent model of the GDNF/GFR«1/RET
complex suggests a flower-like shape in which the extra-cellular part of RET wraps around
th GFRa1-GDNF —complex [122] (Figure 3). In the model, RET contacts GFR«1 at five
positions along the CLD1, 2, 3 and CRD of RET. These interactions drive homotypic as-
sociation between the membrane-proximal regions of RET CRD. There appears to be very
little actual contact between GDNF and RET, which could explain the ability of RET to
accommodate any of the four GFLs [122].

GFHQ'E—DT

Figure 3. The most recent model of the GDNF/GFRal/RET- signaling complex. Adjacent to the plas-
ma membrane are the C-terminal parts of RET CRD-regions and the flanking C-terminal tails of the
GFRal co-receptors. Modified from [122].

Signaling in cis

As GPl-anchored proteins, the GFR« co-receptors are bound to the plasma membrane on
lipid rafts. These rafts are scattered sphingolipid and cholesterol enriched microdomains in
the membrane outer leaf. They are associated with specific signaling complexes inside the
cell, such as Src kinases [123,124]. RET, on the other hand, normally resides outside the
lipid rafts (or possibly in a weak interaction with GFR«'s) but is readily recruited to the
rafts when the GFL-GFR«-RET complex is formed [125]. This type of cis signaling (cis
meaning on this side; Figure 4A) is the best characterized way of RET activation and was
proposed in the original model of GDNF mediated signaling [62]. The translocation of
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RET to lipid rafts is not required for RET phosphorylation, but it may improve the activa-
tion of important downstream signaling pathways, such as Akt and MAP kinases [125];
nevertheless, RET has been shown to mediate both cell survival and neurite outgrowth via
PSPN/GFRa4 outside lipid rafts [126].

Signaling in trans

The expression of GFR« receptors is more widespread than that of RET, suggesting an-
other form of signaling [37,98]. In this trans mode of RET activation (trans meaning across;
Figure 4B), the tyrosine kinase is located alone on the target cell membrane, while the co-
receptors are on adjacent cells, in the extracellular matrix, or as a soluble form in the extra-
cellular fluid. In this signaling mode, a preformed complex of the ligand and a GFR« co-
receptor binds RET, resulting in the autophosphorylation of the kinase domains. During
trans signaling, the full receptor complex is also eventually recruited to a lipid raft but in a
manner that is dependent on phosphorylated RET kinase activity [127]. Inside the lipid
rafts, activated RET interacts with the lipid-anchored adaptor protein FRS2; outside the
rafts, RET associates with the soluble Shc, adding to the diversity of signaling possibilities
[5,127].

Trans type of signaling shows a more prolonged type of activation of RET and is able to
potentiate the effects of cis activation on neuron survival, differentiation, and growth cone
development in vitro [127,128]. Functional GFR«’s can be released from cultured Schwann
cells [127]. Moreover, it has been suggested that trans expressed GFR« molecules from
Schwann cells could function as aggregators of GFL molecules to form concentration gra-
dients along which nerves could grow, for example in situations of nerve injury [37]. Enter-
ic neuron precursors have also been shown to release soluble GFR«1 in culture, promoting
survival [129]; however, the effects on enteric neuron axonal growth appear to be minimal
[130]. Some support for a non-neuronal form of GFL signaling in trans was recently
demonstrated in the embryonic mouse gut, where GDNF, NRTN, and ARTN together
with soluble GFRal, «2, and «3 (respectively) could initiate the aggregation of hematopoi-
etic cells to lymphoid organs [130]. In cancer biology, soluble GFR«1 released by nerves
has recently been suggested to enhance cancer cell perineural invasion through GDNF-
RET signaling [131]. Concerning the PNS, a new study suggested that GFR«1 produced by
neighboring DRG neurons could activate RET in adjacent large DRG neurons in vitro and
that these neurons could also signal in trans via GFRa«l in vivo [132]. Still, mice lacking
GFR«l expressed in trans are normal in terms of organogenesis and nerve regeneration,
suggesting only a minor physiological role for this type of signaling [133].

Downstream signaling pathways

RET dimerization leads to the autophosphorylation of several tyrosine residues in the intra-
cellular tyrosine kinase domains. The active tyrosine residues can interact directly with sig-
naling molecules, such as phospholipase Cy (PLCy) and SRC, or with a multitude of adap-
tor proteins, which facilitate the activation of downstream signaling pathways [115].
GDNF, NRTN, and ARTN have been shown to activate four key tyrosine residues
(Tyr905, Tyrl015, Tyr1062, and Tyr1096) with similar kinetics, indicating that the down-
stream signaling pathways are mostly similar between GDNF family members [128,134].
From these four residues, Tyr1062 appears to be the most important signaling hub and can
bind an array of adaptor proteins [134,135]. The phosphorylation of Tyr1062 is required
for the full activation of RAS-MAPK and PI3K-AKT pathways [128,136-138]. It is critical
for the development of the enteric nervous system and kidneys, the maintenance of sper-
matogonial stem cells, and the survival of embryonic sensory neurons [128,139-142].
Moreover, the phosphorylation of Tyr1062 is also required for recruiting RET to the lipid
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rafts [127]. The PI3K-AKT pathway can be activated also through tyr981 via Src-family
[143] or through Tyr1096, a residue that is found only on the RET51 isoform [134]. The
phosphorylation of residue Tyr1015 activates PLCy/Ca2+; mutations here cause impair-
ments in the neuronal migration of the neocortex and renal abnormalities [144]. In addition
to tyrosines, CAMP dependent RET phosphorylation on serine 696 by PKA also has a role
in neural crest cell migration [145]. However, the function of the majority of activated
tyrosine residues in RET remains poorly known [1486].
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Figure 4. Putative pathways for GFL signaling inside (cis) and outside (trans) of lipid rafts. (A) The
GFRa receptors are mostly attached to the plasma membrane inside the lipid rafts, whereas RET localizes
outside the rafts. The binding of a GFL dimer to GFRa recruits RET to the rafts. This promotes interaction
with adaptors such as FRS2 and the activation of Src. (B) The binding of a soluble GFL-GFRa complex to
RET outside the rafts leads to the translocation of the full complex to a lipid raft, and initially activates sig-
naling pathways mediated by soluble adaptors such as Shc. Modified from [5].

Factors involved in GFL-signaling

The survival promoting effects of GDNF both in vitro and in vivo (albeit not for motoneu-
rons) require TGF-B -signaling [147]. This co-operation involves the recruitment of
GFRa1 to the plasma membrane and the protection of the GPI-anchors by TGF-8; conse-
quently, GDNF can signal without TGF-8 if soluble GFRa1 is present [148]. In contrast,
NRTN/GFRa2-signaling does not require TGF-8 [35]

Similarly to many other growth factors, GDNF, ARTN, and NRTN bind heparin and
heparan sulfate proteoglycans (HSPGs) [149,150]. In a previous study, it has been suggest-
ed that surface-bound heparan sulfate is required for GDNF mediated RET activation and
the downstream effects on neurons [151]. Certainly, mice with a dysfunctional gene for the
enzyme heparin sulfate 2-sulfotransferase exhibit renal agenesis, resembling RET- GFR«1-
and GDNF-KO mice in that sense [152]. Still, the heparin-binding sequence of GDNF has
been shown to be dispensable both for GFR«1 binding and in vitro neurite outgrowth [149].
Also, exogenously added heparin sulfate and heparin have been shown to inhibit GDNF
signaling [151,153] and the release of GDNF from heparin sulfate to facilitate GFR«/RET
signaling in vivo [154]. Therefore, the full role of HSPGs in GFL signaling remains undis-
closed.
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RET-independent GFL-signaling

GDNF has been shown to be a potent survival promoting factor for spiral ganglion neu-
rons both in vitro and in vivo, although these neurons only express GFR«1 and not RET
[155]. GDNF is, indeed, capable of signaling through GFR«1 in the absence of RET, by
inducing Src-kinase activity that leads to downstream phosphorylation of MAPK and
CREB in vitro [156,157]. The neural cell adhesion molecule NCAM has been shown to
function as an alternative receptor for GDNF/GFR«1, inducing rapid phosphorylation of
the Src-family kinase Fyn in neuronal and glial cells [158]. GDNF stimulation via NCAM
can induce Schwann cell migration and axonal growth in hippocampal and cortical neurons
in the absence of RET [158]. However, mice lacking NCAM mediated RET-signaling are
normal, which puts the physiological relevance of this alternate signaling mode to question
[133]. In addition, GDNF also stimulates axonal growth and functions as a chemoattractor
in a subpopulation of developing GABAergic neurons that lack both RET and NCAM but
express GFRa1, suggesting further modes of RET-independent GDNF signaling [159].
Recently, it was shown that syndecan-3, a transmembrane heparan sulfate proteoglycan,
binds GDNF, NRTN, and ARTN and mediates cell spreading and neurite outgrowth on
immobilized GFLs with the involvement of Src-kinase activation [150].

Programmed Cell Death in PNS development

PCD is an important part of the development of the nervous system; around 50% of newly
formed neurons have been estimated to perish before the final maturation of the PNS
[160]. In contrast to necrosis, where cells burst after irreversible injury or pathology, PCD
is a controlled, active phenomenon that requires energy and leads to a clean disposal of the
cell remnants through a condensation of the nucleus and cytoplasm, cell fragmentation,
and finally phagocytosis [161]. This type of PCD is known as apoptosis. In comparison to
the other non-apoptotic types, it is the most common PCD type in the nervous system
[162].

PCD in the nervous system can be divided to early-PCD, involving young neural pro-
genitors and postmitotic neuroblasts, and late-PCD, which depends on target derived neu-
rotrophic factors. The early bout of neuronal death is more poorly understood, but is likely
to be related to the removal of erroneous, unwanted, or extra cells. It is regulated by many
of the factors that are involved in progenitor proliferation, migration, and differentiation,
such as BMPs, Sonic hedgehog, Wnts, IGFs, FGFs, and NT-3 [163,164]. In the PNS, neu-
ronal apoptosis occurs already in the initial stages of DRG neuron development, before
target innervation has started, and is increased in the absence of NT-3 [165-167].

As the neurotrophic theory states, the target derived NTF-dependent PCD is responsi-
ble for adjusting the number of neurons suitable for the size of the innervated target. The
NTF-dependent PCD can occur only during an “apoptotic window”, which opens around
the time when the axons reach the target tissue [168,169]. After the apoptotic stage of the
neuron population comes to an end, the cells eventually become less dependent of neu-
rotrophic support for survival and resistant to apoptosis [168,170]. The timing of this
apoptotic window also appears to be genetically regulated [169]. Moreover, although neu-
rotrophic factor theory holds true for sympathetic and many DRG neurons, which require
target derived NGF support for survival via the TrkA receptor [171], it is important to note
that the occurrence of normal PCD varies between different peripheral neuron types, and
its role in the development of some subdivisions of the PNS remains unclear (as discussed
later).
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The mechanisms of neuronal apoptotic pathways are best known in sympathetic neu-
rons. They involve the Bcl-2 family of proteins, the adaptor protein Apaf-1, and members
of the cysteine protease caspase family [172] (Figure 5). When deprived of TrkA activation
by NGF, apoptosis in sympathetic neurons commences via the intrinsic mitochondrial
pathway [170]. The Phosphorylation of the c-jun transcription factor leads to the transcrip-
tion of the pro-apoptotic members of the Bcl-2 family, which in turn mediate the activation
of yet another member of Blc-2 family, Bax. The insertion of oligomerized Bax to the outer
mitochondrial membrane causes the release of cytocrome-c from mitochondria. Together
with the initiator-type caspase-9 and Apaf-1, cytochrome-c forms a complex, which leads
to the activation of caspase-9. Caspase-9 then activates the executioner-type caspase-3, and
death soon follows.

A different type of apoptosis pathway is activated, via an extrinsic route, when a ligand
binds a specific “death receptor”. This pathway also leads to the activation of executor-
caspases, but not by cytohcrome-c. The nonselective neurotrophin receptor p75 is one
such death receptor: when bound by neurotrophins, it can induce apoptosis [173].

The activation of the neurotrophic factor tyrosine kinase receptors by their ligands leads
to the induction of survival promoting pathways. Especially the P13-K/Akt pathway has
been related to the survival promoting effects of NTFs [172]. However, in the absence of
their ligands, the neurotrophin receptors TrkA and TrkC actively cause the death of their
host neurons, further explaining the dependence of certain peripheral neurons on neu-
rotrophic support [174]. RET has also been suggested to induce apoptosis in the absence
of GDNF via caspase-3 cleavage in certain cultured cell lines and primary cultures of pitui-
tary somatotrophes [175,176]. Interestingly, depriving sympathetic neurons of GDNF sup-
port has been reported to cause apoptosis via a novel non-mitochondrial pathway that does
not require caspase-3, but activates the executor caspases 2 and 7 [177].
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Figure 5. Apoptosis pathways. (A) In the intrinsic pathway, apoptotic signals (e.g. the loss of neu-
rotrophic signaling) activate the c-jun N-terminal kinase (red arrow to JNK). JNK then induces the phos-
phorylation of c-jun, which is subsequently translocated to the nucleus. This leads to the production of pro-
apoptotic BH-3 proteins followed by the attachment of oligomerized BAX proteins to the outer mitochondri-
al membrane. Cytochrome-c is then released from the mitochondrial intermembrane space and forms a
complex (apoptosome) with caspase-9 and Afap-1. Activated Caspase-9 cleaves caspase-3, which ulti-
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mately leads to cell death. (B) In the extrinsic pathway, the binding of a ligand to a death receptor (e.g.
NGF to p75) activates caspase-8 which then cleaves caspase-3 and commences apoptosis.

The Somatosensory system

The somatosensory system serves the body to perceive stimuli originating from both inside
and outside the body. Signals from the inside, or proprioceptive signals, originate from the
muscles and tendons and relay information concerning the position and movement of the
trunk and limbs. Outside signals are communicated via the skin and convey modalities of
mechanical, thermal, and chemical stimuli (Figure 6A). The peripheral neurons that com-
municate somatosensory information from the trunk and limbs are located in the DRGs
adjacent to the spinal cord. These primary sensory neurons are pseudounipolar in nature:
they send one axon branch to a peripheral target and another through the dorsal root into
the spinal cord to synapse with second order neurons (Figure 6B).

Cutaneous sensory neurons

Cutaneous DRG neurons can be classified in a number of ways (see Table 1). The neurons
that respond to innocuous low level mechanical and thermal stimulation are called low-
threshold mechanoreceptors (LTMRS), whereas neurons that respond to high intensity and
painful stimuli are called nociceptors [178]. LTRMs can be further divided into slowly
adapting (SA), which maintain activity during sustained stimuli, and rapidly adapting (RA),
which fire only at the beginning and end of a given stimulus [179]. In terms of size and
conduction velocity, the cutaneous fibers can be grouped into three major classes: Ag-, As-
, and C-fibers. A-fibers consist of large myelinated axons with the fastest conduction ve-
locities; they are low threshold mechanoreceptors that respond to innocuous sensations,
although some are able to encode nocious stimuli as well [178,179]. In comparison to AB-
fibers, As-fibers are smaller, lightly myelinated, and conduct at an intermediate velocity.
The C-fibers, for their part, are the smallest but the most common of the cutaneous fibers..
They have unmyelinated axons and, therefore, the lowest conduction velocities. The ma-
jority of both As- and C-fibers belong to nociceptors based on their responses to nocious
mechanical, heat, or cold stimuli [179].

Cutaneous end organs

The Mammalian skin is divided into non-hairy (glabrous) and hairy skin. Nocious signals
originating from the skin are mostly detected through free nerve endings that innervate
both glabrous and hairy epidermis. Innocuous somatic sensations, on the other hand, are
detected by specialized end organs. The glabrous skin hosts four types of sense organs:
Merkel cells, Ruffini endings, and Pacinian and Meissner corpuscles. In the hairy skin, spe-
cial palisades of longitudinal nerve endings and circumferential endings are associated with
individual hair follicles. Merkel cells are innervated by SA afferents and respond with very
low thresholds to skin intendation caused by edges and contours, allowing the sensing of
textures and shapes [179]. Merkel cells are also found in the hairy skin adjacent to the larg-
est hair follicles. Ruffini endings can be found in the glabrous dermis and possibly also in
the hairy skin [179]. Like Merkel cells, they are innervated by SA afferents, but specialize in
detecting low resolution changes in tissue shape, such as the compression of the hand and
fingers when holding an object. Meissner and Pacinian corpuscles are associated with RA
fibers and detect rapid changes in skin movements and vibration, for example when losing
a grip on an object [179].
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Figure 6. The organization of cutaneous innervation. (A) In the glabrous skin, innocuous touch is me-
diated by four types of mechanoreceptors: the Merkel cell-neurite complex, Meissner corpuscles, Pacinian
corpuscles, and Ruffini’s endings. In the hairy skin, tactile stimuli are communicated through three types of
hair follicles and their associated LTMR longitudinal lanceolate endings (LLES): guard follicles are associ-
ated with AB-LTMRs, awl/auchene hairs are innervated by all three (C, A5, and AB) LTMRs, and zigzag
hair follicles by both C- and A3-LTMRs. All hair follicle types are also innervated by circumferential end-
ings. Painful stimuli are detected through free nerve endings (FNES) in the epidermis, which are character-
ized by both Ad- and C-responses. (On the right) Molecular markers and neurotrophic factor receptors
associated with different types of cutaneous endings and end organs. (B) The cell bodies of primary soma-
tosensory neurons are located in the dorsal root ganglia (DRG) and form synapses centrally in cell type
specific laminae of the spinal cord. Modified from [179].

Hair follicle types and innervation

The mouse back skin is covered by three major types of hair follicles: zigzag, awl/auchene,
and guard. These categories can be distinguished on the basis of hair shaft length, the
number of medulla cells in the shaft, and the presence and number of kinks in the shaft
[180]. Zigzag hairs are the most abundant type, adding up to three fourths of all the hair
follicles [181]. They are the shortest and thinnest type with three to four alternating bends
in the shaft [182]. Awl/auchene hairs are almost identical with each other and are usually
grouped together [180]. They have three to four medullary cell rows, are longer and thicker
than zigzags, and represent about one fifth of mouse coat hair [181,182]. The last group,
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guard hair follicles, are by far the largest and also the rarest [180]. This type of hair follicle
amounts to only about one percent of all hair follicles and can be identified by its excep-
tional size and two associated sebaceous glands [180-182]. The hair follicle types on mouse
trunk skin are organized in a 1:23:76 iterative pattern, where one guard follicle is surround-
ed by 23 awl/auchene follicles in a regular arrangement. 76 zigzag hairs evenly populate
areas surrounding the two larger hair follicle types [181].

Three kinds of nerve endings are associated with pelage hair follicles: longitudinal
lanceolate endings (LLES), which are vertical finger-like projections surrounding the hair
follicle outer sheath partly ensheated from the outside by projections from terminal
schwann cells; circumferential endings forming loops around the hair follicle outer root
sheath above the longitudinal endings; and Merkel cell complexes, which are only found
together with guard follicles [179,183,184]. All the hair follicle types have been shown to
associate with a unique combination of longitudinal lanceolate endings deriving from
different types of sensory neurons [181,184]. According to these findings, the smallest
zigzag fibers are innervated by both C-LTMRs and A8-LTMRs, the awl/auchene follicles
are innervated by C-LTMRs, A3-LTMRs, and RA AB-LTRMs, and the guard follicles only
by the large RA AB-LTMRs. Circumferential endings, which remain poorly characterized in
existing research, are found around each follicle type [179,185]. In addition to lanceolate
endings, a cluster of Merkel cells and their associated nerve fibers forms a “touch dome”
structure associated with guard follicles [181].

Table I. Cutaneous sensory neuron subtypes (Modified from [179]).

NEURON CONDUCTION END ORGANOR  LOCATION OF ENDINGS STIMULUS RESPONSE

TYPE VELOCITY ENDING

SAT-LTMR AB(16-96m/s) Merkel cells/ Basal epidermis/ Intendation HHH—
touch dome around Guard HFs

SA2-LTMR AB (20-100ms)  Ruffini endings Dermis Stretch SHHHH

RA1-LTMR Ad (26-91m/s)  Meissner corp & Dermal popillae/ Skin & Hair L —
LLEs Guard & Awl-Auch HFs movement S\

RA2-LTMR AB (30-90m/s)  Pacinian Deep dermis Vibration +—t
corpuscles v \

Ad -LTMR Ad (5-30m/s) LLEs Awl-Auch & Zigzag HFs Hair movement +—t

C-LTMR C(0.2-2m/s) LLEs Awl-Auch & Zigzag HFs Hair movement e

Nociceptors AB, A5,C (0.5- Free nerve Epidermis & Dermis Nocious A

100m/s) endings mechanical /—\

The origin of DRG neurons

In mice, the trunk NCCs destined to become sensory neurons start delaminating from the
dorsal neural tube at around E8.5, migrate ventrally between the somite and the neural
tube, and begin to coalesce into dorsal root ganglia around E9.5 [186,187]. The develop-
ment of DRGs occurs mostly in two successive waves [188-190]. These waves correspond
with the sequential expression of the helix-loop-helix transcription factors Ngn2 and Ngnl
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[189]. In the first wave (Figure 7A), the developing neurons express Ngn2, proliferate in a
limited fashion, and form myelinated, medium to large sized proprioceptive neurons and
cutaneous mechanoreceptors [189-192]. Neurons in the second wave (Figure 7B) express
Ngn1l [189]. These cells develop mostly into numerous small and medium diameter noci-
ceptive neurons, but also, to a minor extent, into the early born population of large neu-
rons [189,191]. In addition, a small third wave of neurogenesis, from the NC derived
boundary gap cells at the nerve roots, contributes a minor population to the small unmye-
linated DRG neurons [193,194].

Following the initiation of neurogenesis, sensory neurons begin to express the homeo-
domain transcription factors Brn3a and Isletl [195,196]. These factors are crucial for end-
ing the neurogenic phase and initiating most aspects of the following sensory neuron diver-
sification, such as the expression of neurotrophic factor receptors and the transcription
factors Runx1 and Runx3 in different sensory neuron populations [197-199]. At least five
different types of developing sensory neurons — expressing TrkA, TrkB, TrkC, RET, and
several other markers — can be identified in mouse DRGs during early sensory neuron
specification [199]. The sensory neuron lineages go through a dynamic diversification pro-
cess during development and early postnatal life, with many transient and final subpopula-
tions in both myelinated and unmylinated lineages [192,199,200].

A ”First wave” B ”Second wave”

TrkC+ Proprioceptors
early-RET+ Mechanoreceptors
early-TrkA+ nociceptors

Figure 7. DRG neurons arise in two major waves of neurogenesis. (A) During the first wave, starting
around E9.5 in the mouse, the large, myelinated TrkC+ proprioceptors, early-RET+ mechanoreceptors,
and early-TrkA+ -8-nociceptors are born. (B) In the second wave, abundant numbers of small, unmyelinat-
ed TrkA+ C-class neurons emerge. A subgroup of these neurons gives rise to the nonpeptidergic RET+
neurons during late prenatal to early postnatal development.

Myelinated DRG neurons

During the initial wave of neurogenesis, large TrkC expression appears first, followed
shortly by TrkB and RET [201,202]. In these early stages, there is a strong colocalization of
TrkC and TrkB expression, which eventually disappears during the first two weeks of ges-
tation as the two populations segregate [166,201]. This segregation is driven partly by the
transcription factor Runx3 in the TrkC+ neurons, which downregulates TrkB expression
[201]. The proportion of TrkC+ neurons in the mouse DRG rapidly declines from about
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70% to less than 10% in the adult animal [166,203]. A great majority of the remaining
TrkC+ DRG neurons represent type la proprioceptor neurons, which project to the ven-
tral spinal cord and innervate muscle spindles in the periphery [204]. In addition, TrkC
emerges in a group of neurons that send projections to cutaneous targets [205,206]. Ac-
cordingly, a recent study showed that cutaneous Merkel cells are innervated by TrkC ex-
pressing myelinated fibers [207]; in support of these findings, significant deficits in Merkel
cell development and innervation have been found in mice lacking TrkC and its ligand NT-
3[208,209].

TrkB-positive neurons arise from the initial population of TrkB+/TrkC+ double-pos-
itive neurons at around E14.5 in mice [201]. In this double-positive population, the tran-
scription factor Shox2 promotes the expression of TrkB, which in turn downregulates
TrkC+ from the same neurons [210,211]. In the adult mouse thoracic DRGs, most TrkB+
neurons have been shown to represent a group of medium-sized, lightly myelinated AS-
LTRMs, which form longitudinal lanceolate endings associated with hair follicles [181,212].
The survival of these A8-LTRMs requires NT-3 during early postnatal life, and NT-4 later
in adult animals [213,214]. NT-3 signaling via TrkB in A3-LTRMs could explain why signif-
icantly more DRG neurons are lost in NT-3- than in TrkC-deficient mice (60% vs. 20-
30%) [215]. Further findings suggest that, in addition to the hair follicle innervating As-
fibers, TrkB is required for other neuron populations innervating cutaneous targets. In
mice in which the segregation of TrkB+ DRG neurons fails due to loss of Shox2, the in-
nervation of Merkel cells and Meissner corpuscles is significantly reduced [210]. Moreover,
in mice lacking TrkB altogether, Meissner corpuscles are lost and Merkel cell innervation is
disrupted, along with a loss of ~30% of DRG neurons [216]. A reduction in the number of
DRG neurons (about 30%) has also been reported in BDNF-KO mice [217,218]. This
requirement for BDNF appears postnatally and has been suggested to involve an autocrine
or paracrine way to promote the early postnatal survival of small NGF and GDNF respon-
sive neurons [219].

In addition to the TrkB-expressing LTRMSs, the As-class of DRG neurons includes no-
ciceptors. A significant number of As-fibers express the NGF receptor TrkA and the pep-
tidergic marker CGRP; in the adult rat lumbar DRGs, about 30% of myelinated neurons
fall into this class [220,221]. These neurons are dependent on TrkA-mediated signaling for
survival and are mostly lost in TrkA-KO mice [213,222]. A recent study showed that
TrkA+ As-nociceptors are present in mouse DRGs already at E10.5, suggesting that they
are born in the first wave of neurogenesis [223].

GFL-signaling in myelinated sensory neurons

RET is present in DRG neurons already at E10.5 in the mouse [104]. These early-RET
neurons are a distinct population from the small RET+ neurons that appear later during
development [187,224]. The early-RET neurons represent around one fourth of NFH+
DRG neurons, express MafA and GFR«2 during development, and some sub-populations
have also been reported to express TrkB or TrkC at PO [201,225]. Early-RET neurons are
Ap-class low-threshold mechanoreceptors. They innervate Meissner and Pacinian corpus-
cles and form longitudinal lanceolate endings around large hair follicles in the skin; centrally
they project to laminas 111-V and the dorsal column of the spinal cord [225,226].

The role of RET-signaling in the early-RET neurons remains incompletely understood.
From two studies using two different RET-cKO models, one showed no decrease in DRG
neuron numbers and no loss of size in the large NFH+ neurons, whereas the authors of
the other study observed a 15% loss of DRG neurons at P15.5 [187,225]. In a third study
that used a RET™¢F - KO mouse line, a greater than 30% loss of GFP+ sensory neurons
was observed after two weeks of gestation [227]. The most recent findings showed that
50% of early-RETneurons are lost in RET-cKO mice at E18.5 [132] In NRTN and
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GFR«2-deficient mice, however, normal early-RET neuron numbers have been reported at
birth [226]. This discrepancy in early-RET neuron survival between RET- and GFRa«2-
/NRTN-KO mice was recently suggested to be the result of in trans GDNF/GFR«1-
signaling compensating for GFR«2/NRTN [132]. In the periphery, the development of
Pacinian corpuscles appears to be critically dependent on RET- and NRTN/GFR«2-
signaling, as only rudimentary corpuscles and associated nerve branches are found in the
KO animals [226]. NFH+ LLEs, on the other hand, have been reported to be either com-
pletely missing or only slightly affected in the absence of RET-signaling [225,226]. All in all,
additional research is needed to clarify the role of RET- and GFL-signaling in RA Ap-
LTMR development.

Unmyelinated neurons

Most, if not all, unmyelinated DRG neurons are generated in the second wave of neuro-
genesis and start expressing the neurotrophin receptor TrkA [189]. These neurons, like the
A8-neurons which express TrkA, depend on NGF for survival during development [228].
During embryogenesis, the unmyelinated neurons begin segregating into two distinct line-
ages as TrkA expression is downregulated in a subgroup of small DRG neurons [229,230].
The neurons that lose TrkA expression switch to expressing RET and one of its GFR«1 or
GFR«2 co-receptors in a process that begins in mice at around E15 and is complete two
weeks after birth [187,224]. The transcription factor Runx1 and the receptor tyrosine kinase
Met, which binds the hepatocyte growth factor (HGF), play key roles in the segregation of
the two lineages. Runx1 expression - induced by FGF molecules secreted from the large
myelinated DRG neurons [231] - emerges in the small neurons at around E12.5 and even-
tually extinguishes TrkA expression while enabling RET expression in the developing non-
peptidergic neurons [187,232]. Met, on the other hand, is expressed in the TrkA+ lineage
and promotes the extinction of Runxl and the expression of CGRP [233]. The neurons
that continue expressing TrkA develop into the peptidergic C-nociceptors, marked by their
expression of classic neuropeptides such as CGRP, Substance P, and TRPV1 [192]. They
synapse centrally in the lamina I and the outer region of lamina Il of the spinal cord and
project to the stratum spinosum of the epidermis [234,235]. A small subgroup of TrkA+ neu-
rons remains RET+ and expresses the ARTN co-receptor GFR«3 [203,236]. Furthermore,
TrkA/GFR«3 neurons express the capsaicin/heat activated channel TRPV1, while many of
them can also express the nocious cold/pain channel TRPAL. These findings together im-
plicate a role in cold and pain sensation for these neurons [237,238].

GFL-signaling in unmyelinated sensory neurons

Most of the small RET+ neurons, however, are nonpeptidergic, bind the Griffonia simplicifo-
lia isolectin B4 (1B4), and express GFR«2 or GFR«1 [224,239,240]. The discovery of new
molecular markers has made it possible to divide the nonpeptidergic neurons to more pre-
cise subclasses [192,200]. The great majority of RET+/1B4+ neurons express GFR«2, the
Mas-related G-protein-coupled receptor d (Mrgprd), and the purinoceptor P2X3. These
neurons belong to a group of polymodal nociceptors that form free nerve endings in the
substantia gelatinosa of the epidermis and project centrally to the inner lamina Il of the spinal
cord [234,235,240]. RET/Mrgprb4+/1B4+ neurons, on the other hand, form large arboriz-
ing endings around hair follicle roots and have been implicated in sensing gentle, pleasura-
ble touch [241,242]. A group of RET+/GFRa«2+/1B4- nonpeptidergic neurons defines the
C-LTRMs that form longitudinal lanceolate endings around hair follicles on murine skin
[181]. These neurons express tyrosine hydroxylase (TH), while many of them also express
Vglut3 and TAFA4 [181,243,244]. In addition to innocuous mechanical sensations, the C-
LTMR neurons are also sensitive to cooling and can contribute to mechanical pain hyper-
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sensitivity [181,245]. In contrast to GFR«2+ populations, little is known about the nonpep-
tidergic populations that express GFR«1.

RET-signaling is generally considered dispensable for the survival of nonpeptidergic
DRG neurons [187,227,246], although conflicting observations have been reported [247].
RET-signaling is required for normal soma size in nonpeptidergic neurons, as indicated by
the atrophy of small unmyelinated DRG neurons in RET-cKO mice [187]. A similar phe-
notype is seen in GFRx2-KO mice, in which IB4+ neurons remain, but are markedly
smaller than in WT littermates [240]. Also in NRTN-KO mice the loss of trophic support
leads to the downregulation of GFR«2-expression in DRG neurons and the reduction of
soma size [248].

NRTN is expressed in the developing and adult mouse skin epidermis [39], and GFR«2-
KO mice show a severe reduction in the density of nonpeptidergic free nerve endings of
the glabrous skin epidermis, indicating that NRTN/GFR«2-signaling is a major factor in-
fluencing target innervation in nonpeptidergic neurons. In line with this, NRTN or GDNF
overexpression in the skin leads to nonpeptidergic hyperinnervation of the glabrous epi-
dermis and hypertrophy of the relevant neuronal somas [249,250]. In the developing mouse
skin, NRTN is expressed at high levels also in hair follicles [39]; however, it is not known
whether NRTN/GFR«2-signaling is required for hair follicle innervation by C-LTMRs (or
RA AB-LTMRy).

The Autonomic Nervous System

According to John Langley’s original definition, the autonomic nervous system “consists of
the nerve cells and nerve fibers, by means of which efferent impulses pass to tissues other
than multi-nuclear striated muscle” [251]. Langley further divided the ANS into the sympa-
thetic, parasympathetic, and enteric divisions, and this organization still holds today
[251,252]. The sympathetic and parasympathetic divisions consist of two sets of neurons
each, one central (preganglionic) and one peripheral (postganglionic). The sympathetic pre-
ganglionic neurons are located between the first thoracic and early lumbar levels of the
spinal cord, whereas the parasympathetic preganglionic fibers originate from specific brain-
stem nuclei and from the S2-S4 sacral levels of the spinal cord. Acetylcholine functions as
the preganglionic neurotransmitter via nicotinic receptors in both the sympathetic and par-
asympathetic systems. In the target tissues, most sympathetic signaling is mediated via nor-
adrenalin, whereas acetylcholine (via muscarinic receptors) is found in the parasympathetic
endings. Traditionally, the sympathetic and parasympathetic divisions have been regarded
as mostly antagonistic in action: where sympathetic activity relates to intense activity, cata-
bolic functions, and energy expenditure (“fight or flight”), parasympathetic activity func-
tions to reduce energy expenditure and increase anabolic processes and energy stores (“rest
and digest™) [253]. The third division, the enteric nervous system (ENS), encompasses the
largest, most autonomous and complex part of the ANS and regulates the functions of the
gastrointestinal tract. In contrast to the sympathetic and parasympathetic divisions, the
enteric nervous system lacks preganglionic neurons. However, it exchanges afferent and
efferent signals with the sympathetic and parasympathetic divisions.

Sympathetic nervous system

Peripheral sympathetic neurons reside in two types of ganglia. The paravertebral ganglia
form bilateral interconnected chains (sympathetic trunks) adjacent to the vertebral column
and project axons to somatic tissues in all parts of the body [252]. Major paravertebral gan-
glia are the superior cervical ganglion (SCG), which projects along the internal carotid ar-
tery to targets in the head and upper cervical regions, and the stellate ganglion, which in-
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nervates the upper extremity and thoracic targets. The prevertebral ganglia, a class of sym-
pathetic ganglia, are unpaired ganglia further away from the vertebral columns and are
mostly located close to the main branches of the abdominal aorta [254]. The prevertebral
ganglia innervate organs in the abdominal and pelvic cavities. The adrenal medulla cells,
which release adrenalin and noradrenalin to the blood stream, are homologous to postgan-
glionic sympathetic neurons. They are innervated by sympathetic preganglionic fibers.

Sympathetic neurons

The future sympathetic neurons from the trunk neural crest cells migrate through the same
ventromedial pathway as the developing sensory neurons [186]. After passing through the
somites, the NCCs continue migrating ventrally and begin coalescing into the developing
sympathetic trunks near the dorsal aorta. Some of the NCCs continue their migration to
the foregut and some develop into the prevertebral ganglia and the chromaffin cells of the
adrenal medulla [255-257]. The migration of sympathoadrenal NCCs and the development
of sympathetic trunks is dependent on many both attracting and repulsing factors, such as
Neuregulin-1, Semaphorins 3 and 3F, and SFD-1 [258-262]. The primordial ganglia first
appear in the thoracic region, followed by the development of the cervical region where the
SCG is formed after additional migratory steps [263,264]. In the SCG, many of the con-
tributing NCCs appear to derive from the vagal neural crest [265]. Bone morphogenetic
proteins (BMPs) expressed by the dorsal aorta induce the differentiation of sympathetic
neurons from the coalescing NCCs [262,266-268]. In addition, BMPs initiate the expres-
sion of a network of transcription factors (Mashl, Phox2a, Phox2b, Gata3, and Hand2),
which regulates the expression of pan-neuronal genes and genes regulating the differentia-
tion of NCCs into cholinergic, noradrenergic, and other lineages [269].

The early sympathetic neuroblasts appear to be independent of neurotrophic factor
support for survival [270], although HGF/Met signaling has been shown to promote the
survival of sympathetic neuroblasts [271]. Sympathetic neurons soon become dependent
on NGF signaling via TrkA for survival [228,272]. Early sympathetic neurons also express
TrkC [215], and about 50% of sympathetic neurons are lost in NT-3-KO mice [273,274].
NT-3 promotes early sympathetic axon growth [274,275], whereas distal target innervation
is dependent mostly on NGF [276]. Only NGF promotes survival through retrograde sig-
naling, suggesting that the reduced sympathetic neuron numbers in NT-3-KO mice could
result from an innervation failure and the subsequent loss of target-derived NGF for sur-
vival [274]. Moreover, a recent study has shown that both TrkC and TrkA initiate cell death
in the absence of a ligand; this could also explain the loss of sympathetic neurons in mice
lacking these receptors [174].

GFL-signaling in sympathetic neurons

RET is expressed in the developing mouse sympathetic chain neurons starting from E9.5
[104]. In the mouse SCG, RET mRNA is abundant at E12.5, transiently downregulated
around E14.5 and then upregulated after E16.5 until post natal stages [39,264]. A thorough
analysis of RET-KO embryos has indicated abnormalities in sympathetic neuron migration
and axonal outgrowths leading to the displacement and hypotrophy of sympathetic ganglia,
including the SCG [277]. Most SCG cells express GFR«3 during development [264]; con-
sequently, ARTN expressed adjacent to developing sympathetic ganglia and on the surface
of blood vessels is required for the migration and initial outgrowth of sympathetic neurons
[277-279]. GDNF-KO mice have a 35% reduction in SCG neurons at PO [42], and GDNF
has recently been shown to support a similar sized population of embryonic sympathetic
neurons in vitro [36]. Together, these findings suggest that GDNF could have a role in
sympathetic neuron development. GFRa«1, however, is expressed only transiently in the
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developing SCG [39,264], and GFR«1-KO mice have no abnormalities in the sympathetic
neurons [280,281]. RET also controls the maturation of the cholinergic phenotype in this
population of sympathetic neurons [282]. Accordingly, GFR«2 is expressed in the cholin-
ergic sympathetic neurons of the mouse stellate ganglion and is required for normal soma
size and target innervation in these neurons [51].

Parasympathetic nervous system

The cranial preganglionic parasympathetic neurons are located in several nuclei of the
brainstem. These include the dorsal motor nucleus of vagus (DMV), ambiguous nucleus,
Edinger-Westphal nucleus (E-W), and salivatory nuclei. Axons from the E-W and saliva-
tory nuclei project through cranial nerves to four parasympathetic ganglia found in the
head. From the ambiguous nucleus and DMV, preganglionic fibers project through Vagus
nerve to ganglia associated with the airways, heart, pharynx, and the gastrointestinal organs
up to the last third of the transverse colon. The remainder of the gastrointestinal tract and
the pelvic organs receive preganglionic parasympathetic fibers from neuronal clusters in the
sacral spinal cord through pelvic splanchnic nerves [254].

In the head, neurons from the ciliary ganglion innervate the pupillary sphincter and
ciliary muscles in the eye; pterygopalatine ganglion innervates lacrimal, nasal, and palatal
glands; and submandibular and otic ganglia innervate the salivary glands. Parasympathetic
ganglia in the trunk and abdomen are generally smaller than the cranial ganglia. They are
located close to or inside their target organs, forming network like plexuses [253]. In the
gastrointestinal tract, preganglionic parasympathetic fibers from the vagus nerve and sacral
spinal cord synapse with enteric neurons in the gut wall. Postganglionic neurons innervat-
ing the pelvic organs, including the genitals, are located in the pelvic splanchic ganglia
[254].

Parasympathetic neurons

Relatively little is known about the development of parasympathetic neurons, and the bulk
of information on the subject comes from studies using the chick ciliary ganglion as a
model [283]. Similarly to sympathetic neurons, the pan-autonomic network of transcription
factors Mashl, Phox2a, and Phox2b is required for parasympathetic neuron development.
All parasympathetic neurons fail to develop in mice lacking Mash1 or Phox2b [284—286).
Phox2a, on the other hand, is required by parasympathetic neurons to varying degrees: in
Phox2a-KO mice the otic and sphenopalatine ganglia fail to develop, submandibular gan-
glion is only partially affected, and cardiac ganglia are normal, suggesting a rostral to caudal
dependency gradient on Phox2a in parasympathetic neurons [287]. According to studies on
the chick ciliary ganglion, BMPs induce the expression of pan-autonomic transcription
factors in parasympathetic neurons, as in the sympathetic neurons [288].

Recently, the origin and migration of parasympathetic neurons in mammals have been
further elucidated by two studies [289,290]. The studies showed that streams of NCCs ex-
pressing Schwann cell markers migrate along cranial, truncal, and splanchic nerves and de-
velop into parasympathetic neurons and glial cells. During the migration, many of the
Schwann cell precursors (SCP) begin expressing the autonomic neuron markers Mash1 and
Phox2b and downregulate the expression of glial markers [289]. Mashl expressing cells
were found at sites closest to the developing ganglia; deleting this factor from the SCPs
resulted in the loss of parasympathetic neurons [289]. In these studies, Phox2b was first
expressed by all nerve associated SCPs, but later exclusively by cells in the developing para-
sympathetic ganglia [290]. As BMPs have been implicated in the development of ciliary
ganglia in chicks [288], it was hypothesized that rising levels of BMPs near the developing
parasympathetic ganglia could serve to induce the expression of Mashl and begin the deri-
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vation of parasympathetic neurons from the progenitor cells [289]. Another important dis-
covery in these studies was that, in the most economical way, the SPCs use the pregangli-
onic nerve outgrowths as guidelines to migrate to the sometimes distant locations of the fu-
ture parasympathetic ganglia [289,290].

Another recent study shed light on the mechanisms of parasympathetic gangliogenesis
by showing that it is regulated by Wnt- and FGF-signaling [291]. This work showed that
Wnt molecules secreted by epithelial precursor cells in the developing submandibular gland
promote parasympathetic neuron proliferation, survival, and the subsequent innervation
from the submandibular ganglion. FGF-signaling on the other hand acts to inhibit Wnt
expression, and is itself inhibited by Sproutyl and Sprouty2 to allow Wnt expression [291].

Organs that form as outgrowths of the embryonic gut (like the lungs and pancreas) re-
ceive their parasympathetic neurons from the pool of vagal NCCs that migrate along the
developing alimentary tract [292,293]. In the rat, the NCCs colonize the foregut by E11
and from E12 onwards a subset of the enteric NC progenitors starts a secondary migration
into the developing pancreas [293]. In the mouse, vagal NCCs enter into the foregut at
around E9.5 [294] and begin colonizing the developing pancreatic buds by E10 [295]. The
enteric NCCs express DCC (deleted in colorectal cancer) and use the DCC ligand netrin-1
as a guidance cue for their migration to the pancreas [296].

The regulation of parasympathetic neuron numbers during development appears to dif-
fer depending on the studied animal species. On the one hand, about 50% of ciliary gan-
glion neurons in the chicken die via apoptosis during the time of target innervation [297].
On the other hand, neuron numbers in the parasympathetic cardiac ganglia of the develop-
ing frog are regulated through proliferation of progenitor cells, apoptosis being either non-
existent or playing only a minor role [298,299]. Very little is known about the mechanisms
of cell number regulation in mammalian parasympathetic ganglia [283].

GFL-signaling in parasympathetic neurons

RET, GFR«l, and GFR«2 are expressed in developing mouse cranial parasympathetic gan-
glia [39,300,301]. Here GFRal expression is downregulated at E12, whereas GFR«2 ex-
pression remains high throughout development into adulthood [301]. In embryonic and
early postnatal rats, RET and GFR«2 are expressed by the cardiac ganglion neurons and
GFR«l by the cardiac glial cells [302]. In the pelvic ganglia of rats, GFR«1, GFR«2, and
RET transcripts have been observed in the majority of neuronal bodies [303], whereas in
mice, GFR«2 protein mostly localizes to the abundant cholinergic pelvic ganglia neurons
and rarely to the noradrenergic neurons [97]. Low levels of GFRa1 and GFR«3 expression
have also been reported in subpopulations of developing pelvic ganglia neurons of mice
[304,305]. In the pancreas, most parasympathetic neurons of newborn and adult mice also
express GFR«2 along with glial cells that occupy the periphery of the islets of Langerhans
[52]. Both GDNF and NRTN are expressed in tissues associated with the parasympathetic
nervous system; however, whereas NRTN expression is located to the target tissues and
persists to adulthood, GDNF expression is found along the migratory routes of the neu-
rons and is downregulated during prenatal development [39,300,306].

RET-signaling via GDNF/GFR«1 is absolutely required for the proper migration
and proliferation of otic and sphenopalatine neurons, as well as for many submandibular
neurons [300,301]. In GFR«2-deficient mice, the otic, submandibular, and sphenopalatine
ganglia are present, but the former two are smaller in size [301,307]. This atrophy is the
result of both reduced neuron numbers and the loss of cell size, and is amplified postnatal-
ly [301]. A similar loss of submandibular neurons has been observed in NRTN-KO mice
[248]. NRTN is expressed in the lacrimal and salivary glands, and the parasympathetic in-
nervation of these tissues is greatly reduced in both NRTN- and GFR«2-KO mice
[248,301,307].

27



The requirement for NRTN/GFR«2 signaling in parasympathetic innervation is evident
outside the cranial ganglia as well. Cholinergic innervation of the cardiac ventricles is re-
duced in GFRx2-KO mice [302]. Also, the soma size of sacral parasympathetic neurons is
reduced and their target innervation to the reproductive organs is deficient [97,303].

In the pancreas, GDNF mediated signaling is required for the parasympathetic neural
colonization of the tissue, reminiscent of the enteric colonization of the bowel (as dis-
cussed later) [308]. Interestingly, GFRx2-KO mice also show a roughly 85% reduction in
the number of intrapancreatic neurons and a loss of innervation of both the endocrine and
exocrine pancreatic tissue [96]. Thus, it appears that parasympathetic neurons generally use
GDNF/GFR«1 signaling for early development and switch to NRTN/GFR«2 signaling
during later stages [5]. However, whether the parasympathetic neuron loss in GFRx2-KO
pancreas and cranial ganglia results from reduced progenitor proliferation, poor cell migra-
tion, increased cell death (possibly due to loss of target innervation), defunct differentia-
tion, or from the compounding effects of several factors, remains unknown.

Enteric nervous system

The third division of the ANS, the enteric nervous system (ENS), is housed in the wall of
the alimentary tract. It is by far the most abundant and complex part of the ANS. In hu-
mans, it contains around 500 million neurons — roughly equaling the number of neurons
found in the spinal cord [309]. Although the ENS has a remarkable ability to function near-
ly independently of the CNS through reflex circuits, it is nevertheless abundantly innervat-
ed by extrinsic autonomic and sensory nerve fibers and modulated by the brain [310].

The ENS is structurally divided into two major networks of interconnected ganglia
and fibers: the myenteric plexus and the submucosal plexus. The myenteric (or Auerbach’s)
plexus forms a continuous meshwork of neural tissue between the longitudinal and circular
muscle layers of the gut wall and extends from the early esophagus all the way trough the
Gl tract. The myenteric plexus can be divided to three levels of organization [310]. The
primary plexus is formed from numerous ganglia and the interganglial fiber bundles con-
necting them. The secondary level of fibers is constituted from thinner strands of the gan-
glia and interganglial fibers. It runs parallel to the circular muscle fibers between the prima-
ry plexus and the circular muscle layer; many secondary fibers innervate the circular and
longitudinal muscle layers and form the deep and longitudinal muscular plexuses. Finally,
the tertiary plexus is formed by the thinnest fibers that originate from the ganglia, intergan-
glial fibers, and secondary fibers.

A fully developed submucosal (or Meissner’s) plexus is located in the wall of the small
and large intestines but not in the esophagus or the stomach. This continuous plexus has
generally smaller ganglia and a finer network of interconnecting nerve bundles compared to
the myenteric plexus. Larger animals, including humans, have two distinct submucosal
plexuses, while smaller mammals such as mice and guinea-pigs have only one [310].

Seventeen types of neurons have been characterized in the ENS [311]. These include
excitatory and inhibitory motoneurons, secretomotor neurons, interneurons, intrinsic pri-
mary afferent neurons, and intestinofugal (innervating prevertebral ganglia) neurons. The
most common transmitters in excitatory motoneurons and interneurons are acetylcholine
and tachykinins. Inhibitory motoneurons, on the other hand, are nitrinergic, but often use
GABA and several neuropeptides such as VIP, PACAP, NPY, and Enkephalins [311].

Development of the ENS and the role of GDNF/GFRal/RET

The dual neural crest origin of the ENS was first demonstrated using chick-quail em-
bryonic chimeras [312]. By grafting fragments of the quail neural primordium at various
levels of the chick neural axis, it was shown that enteric neurons throughout the alimentary
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tract originate from the vagal neural crest (somite levels 1-7), with caudal sacral levels (be-
yond level 28) contributing to the post umbilical gut. Since then, a similar dual origin of the
ENS has also been demonstrated in the mouse [265,313-315].

The vagal NCCs destined to become enteric neurons begin migrating at around E8.5 in
the mouse, and reach the foregut about 24 hours later [265,313]. The enteric progenitors
migrate in streams along the gut mesenchyme in a process that takes five days in the mouse
(E9.5-14.5) and three weeks in the human (weeks 4-7) [294,316]. The sacral level NCCs
emigrate between E9-9.5 in the mouse [315], but enter the hindgut only after it has first
been colonized by the vagal NCCs [314].

Acting via GFR«1/RET, GNDF controls the proliferation and survival of the ENCCs,
also functioning as an activator of cell migration [317-319]. In the gut, GNDF expression
advances in front of the migrating NCC front as a spatio-temporal wave, starting from the
splanchnic mesenchyme of the stomach and proceeding to the posterior caecum [320]. In a
GDNF dependent manner, a major subpopulation of ENCCs exits the gut mesenchyme
and shortcuts the caecum to colonize the hindgut via the mesentery [321]. Beyond the cae-
cum, the colonic mesenchyme expresses endothelin-3 (ET-3); its receptor Endothelin re-
ceptor B (EDNRB) is found in the enteric neuroblasts [322]. ET-3/EDNRB-signaling is
crucial for enteric gangliogenesis in the distal colon [323,324]. In the process, it directly
interacts with GDNF/RET signaling by enhancing the proliferative and inhibiting the
chemo-attractive effects of GDNF, possibly thus enabling the ENCCs migration to pro-
ceed beyond the high concentration peak of GDNF in the caecum [325,326]. The expres-
sion of GFRal diminishes in the enteric ganglia postnatally and is lost altogether from the
gut mesenchyme already before birth [317]. Similarly, GDNF expression is downregulated
in the gut, and is practically undetectable in the adult [39,327]. Several other factors also
influence the neuronal colonization of the alimentary tract. For example, Netrin/DCC-
signaling contributes and is indispensable to the perpendicular migration of enteric NCs to
form the submucosal plexus, although this process still requires GNDF [296,326,328].
Moreover, a multitude of transcription factors have also been implicated in the neural col-
onization of the gut. These include the familiar autonomic transcription factors Phox2b,
Mash1, and Hand2, but also many other factors such as SOX10, PAX3, and Foxd3 [329].

RET-, GFR«1-, and GDNF-KO mice all share a phenotype of complete intestinal
aganglionosis [42-44,265,280,281,330]. In RET-KO mice, a large subpopulation of enteric
NCCs undergoes apoptotic cell death shortly after entering the foregut [265,318,331]. In
contrast to full KOs, heterozygous RET- and GFRa«1-mice have normal numbers of enter-
ic neurons, whereas GNDF+/- mice are hypoganglionic, likely due to reduced ENCC pro-
liferation [317]. In mice where RET or GFR«1 has been conditionally knocked out, but
only after gut colonization has finished, non-apoptotic neuronal cell death follows in the
distal gut. This suggests that especially colonic ENCCs require GFR«1/RET signaling for
survival [331,332]. The expression level of RET can be reduced to less than half, after
which ENS development in the colon becomes severely impaired, due to both affected
trans-mesenteric migration and non-apoptotic death of the enteric NCCs in the colon
[321,331].

In contrast to other populations of the peripheral nervous system, programmed cell
death has been regarded as a rare (and relatively insignificant) phenomenon in the normal
development of the enteric nervous system; caspase-3 activity has not been observed in the
developing ENS, and deleting Bax or Bid has no visible effects on enteric neuron numbers
[317]. However, in the embryonic chicken, many vagal NCCs on the way to the developing
alimentary tract die via apparently conventional apoptotic death, and inhibition of this cell
death leads to hyperganglionosis in the foregut [333]. Whether this phenomenon is also
found in mammals remains to be investigated [334].
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GFRa2/NRTN in enteric neurons

NRTN expression begins in the gastrointestinal tract at around E12 in the mouse, and high
levels of NRTN can be found especially in the embryonic and adult stomach mucosa [39].
The mucosa and muscular layers of the intestine also express NRTN, with high levels in
the circular muscle layer, although the expression decreases later on [52,70]. GFR«2 ex-
pression, on the other hand, can be observed in the newborn myenteric and submucosal
ganglia and remains high also in adulthood [52,317].

NRTN-KO mice have normal numbers of myenteric neurons, but the cell bodies are
atrophic [248,317]. Moderate reductions in neuron numbers have been reported in the
myenteric plexus of GFR«x2-KO mice and in the submucosal plexus of NRTN-KO mice,
suggesting that NRTN/GFR«2 plays only a minor role in the survival of enteric neurons
[52,307,317]. However, the density of the myenteric plexus cholinergic nerve fiber network
is severely reduced in both NRTN-KO and GFR«2-KO mice (especially in the small intes-
tine), accompanied by impairments in the motility of the gut [52,248,307,317]. These find-
ings suggest that, whereas GDNF/GFR«1-signaling is required for the neuronal coloniza-
tion of the gut, NRTN/GFR«2-signaling functions mostly in the innervation and soma
maintenance of enteric neurons.

Due to the severe loss of parasympathetic innervation of target tissues, GFRx2-KO
mice show impaired secretory capability to vagal stimulation in both the exocrine and en-
docrine pancreas [52,96]. The stomach mucosa shows high levels of NRTN expression and
is heavily innervated by cholinergic enteric neurons (as discussed later), suggesting a major
involvement of NRTN/GFR«2-signaling. Nevertheless, possible deficits in the innervation
of gastric mucosa and the implications on the gastric physiology of GFRx2-KO mice have
not been studied previously.

PNS regulation of gastric physiology

Gastric mucosal anatomy

The stomach can be divided into four anatomical regions: the cardia, which is a small area
around the esophageal opening; the fundus, expanding laterally to the left of the cardia; the
corpus, comprising the main region of the stomach; and the pyloric antrum, the most cau-
dal part of the stomach. Two glandular regions line the stomach lumen and define the
functional areas: the oxyntic and pyloric mucosa. The oxyntic mucosa covers the fun-
dus/corpus and is responsible for gastric acid secretion, whereas the pyloric mucosa covers
the antrum. The mucosa houses gastric pits into which tubular gastric glands open. These
oxyntic glands have three regions: the pit, the most apical part that contains mucus secret-
ing cells; the neck, housing stem cells, mucous neck cells, and acid secreting parietal cells;
and the body/base, covering most of the gland. Parietal cells are abundant in the upper
body and neck of the gland. They secrete hydrochlorid acid, intrinsic factor, and several
other factors. Pepsinogen, a propeptide of pepsin, is secreted by chief cells near the base of
the gland. In addition, several endocrine/paracrine cells are also found in the oxyntic
glands [335]. From these, ECL-cells are the most abundant and secrete histamine, an im-
portant stimulator of acid secretion. The other endocrine cell types in the oxyntic glands
are: D-cells, which secrete somatostatin; EC-cells, which secrete atrial natriuretic peptide;
and A-like cells, which secrete ghrelin. Unlike in the oxyntic mucosa, pyloric glands house
only rare parietal cells. Instead, they contain abundant mucus cells and endocrine cells, of
which the gastrin producing G-cells are the most important.
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In the mammalian stomach wall, most myenteric neurons are cholinergic [336—338]. In
addition, most of the myenteric neurons express a combination of neuropeptides including
vasoactive intestinal peptide (VIP), gastrin-releasing peptide (GRP), and pituitary adenylate
cyclase-activating peptide (PACAP) [339]. In both rodents and humans, gastric myenteric
ganglia also contain non-cholinergic neurons, including nitrergic inhibitory interneurons
[336-338,340]. Extrinsic CGRP+ afferent fibers also innervate the gastric mucosa and pro-
vide sensory feedback on factors such as gastric wall distension and luminal pH.

Regulation of gastric mucosal secretion and homeostasis

The process of gastric acid secretion is regulated by a complex system of hormonal, para-
crine and neural factors [341] (Figure 8). Gastrin, released by the antral G-cells in response
to feeding, circulates through the bloodstream and increases acid secretion mainly by in-
creasing histamine release from ECL-cells via the CCK2-receptor. It also functions as an
important trophic factor for the gastric mucosa. Histamine is a paracrine factor in the
stomach mucosa and a powerful stimulator of acid secretion from the parietal cells through
H2-receptors. Another paracrine factor is somatostatin, an inhibitory secretagogue pro-
duced by D-cells. Somatostatin binds SST2-receptors and inhibits acid secretion directly
from parietal cells as well as via lowering gastrin and histamine secretion. The low basal
level of acid secretion is maintained through a tonic secretion of somatostatin.

The neural effector component of gastric acid secretion is communicated via cholinergic
neurons of the myenteric plexus. These neurons are the primary regulators of acid secre-
tion [341]. When a meal is anticipated and initiated, the myenteric neurons receive central
activating signals via preganglionic parasympathetic innervation through the vagus nerve.
Acetylcholine released from the myenteric neurons induces acid secretion both by activat-
ing muscarinic M3-receptors on parietal cells and G-cells and by inhibiting somatostatin
release from D-cells. The overall effect of cholinergic activation is the release of somatosta-
tin mediated inhibition and the enhancement of stimulatory influences on acid secretion
[341]. The myenteric cholinergic neurons also express neuropeptides, of which GRP and
PACAP are able to stimulate acid secretion. VIP, on the other hand, can stimulate somato-
statin release, although the physiological importance of this pathway is not clear [342,343].
An intact vagus nerve and muscarinic M3 receptors are indispensable for basal and stimu-
lated acid secretion [342,344-346]. After vagotomy, the loss of secretory capacity is almost
immediate in the rat [347]. The vagus also appears to provide trophic support for the gas-
tric mucosa independently of the effects of gastrin [348]. Importantly, the mechanisms
through which the vagus regulates mucosal proliferation and acid secretory responses to
gastrin and histamine remain poorly understood [349].

31



Figure 8. A current view of how gastric acid secretion is regulated by neural, paracrine, and hor-
monal factors. Efferent fibers from the vagus nerve synapse with cholinergic (ACh) and choliner-
gic/peptidergic (ACh/GRP; ACh/VIP) neurons in the myenteric plexus. In the fundic and antral (oxyntic)
mucosa, ACh neurons stimulate acid secretion from parietal cells, while simulatenously inhibiting somato-
statin (SST) secretion from D-cells, thus eliminating the SST brake on parietal cells and histamine releas-
ing ECL-cells. ACh neurons in the antrum stimulate gastrin secretion and inhibit SST secretion, removing
the SST brake effect also on G-cells. VIP neurons stimulate D-cells and can inhibit gastrin secretion. His-
tamine from ECL cells stimulates acid secretion from parietal cells and may also augment acid secretion
by inhibiting SST secretion. On the antral side, paracrine pathways link D- and G-cells. Acid release into
the stomach lumen increases SST secretion; this effect is mediated via CGRP+ extrinsic sensory neurons
in the antrum. Modified from [335].
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AIMS

The specific aims of the studies presented in this thesis were to investigate:

(i)  The occurence of developmental programmed cell death in parasympathetic versus
enteric and sympathetic neurons;

(i)  The role of GFR«2-signaling in parasympathetic neuron development and the mech-
anisms behind the postnatal loss of parasympathetic neurons in GFR«2-KO mice;

(iii) The role of GFRa«2-signaling in cutaneous low-threshold mechanosensory neurons;
(iv) The role of GFRa2-signaling in the innervation of gastric mucosa; and

(v) The role of the intrinsic cholinergic innervation of the gastric mucosa in the regu-
lation of gastric secretion and mucosal homeostasis.
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MATERIALS AND METHODS

The experimental methods used in this work are listed in Table Il with a reference to the
appropriate original publication where detailed descriptions can be found. Tables I11-V list
some of the most salient materials used in the experiments.

Table Il. Methods used and described in the original articles

Method Used in
Animals and tissue processing LILHI
Immunohistochemistry, microscopy, imaging LILII
Cell profile nuclear area estimation, marker colocalization L1
Cell counting LILII
In situ hybridization I
Gastric juice pH analysis I
Gastric acid secretion analysis I
Plasma gastrin analysis |
Real-Time quantitative PCR I
Statistics LILIT
Quantifying cell size distributions i
Quantifying epidermal and hair follicle innervation 1l

Table Ill. Probes for in situ hybridization

Probe Host Vector Size Nucleotides Acc. No Used in
Nrtn* Ms pcDNA 587 349-936 u78109 I
Gdnf** Ms PGEM-T 616 52-668 L15305 |
*Kotzbauer et al., 1996; **Suvanto et al., 1996
Ms (mouse)

Table IV. Mouse strains

Strain Reference Used in
GFR«2-KO Rossi et al., 1999 LILIT
Mrgprd AESFPf Zylka et al., 2005 "
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Table V. Primary antibodies for immunohistochemistry

BrdU Ms Amersham |

Galanin Rb Millipore

GFRa2 G R&D Systems LILHI

GRP Dr Panula Panula et al., 1982 1

Histamine Dr Panula Panula et al., 1988 11

NFH Millipore 11

PGP9.5 Serotec

Somatostatin Santa-Cruz

TH Millipore

TrkB G R&D Systems

VIP Rb Progen

Ms (mouse), Rb (rabbit), G (goat), Sh (sheep), Gp (Guinea pig)
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RESULTS AND DISCUSSION

GFRa2 in trophic support

GFRa2 promotes parasympathetic but not enteric neuron survival (1)

To elucidate the mechanisms behind the lack of parasympathetic neurons in the GFRa«2-
KO pancreas, we first investigated the time-line of the development of this phenotype. No
significant differences in the numbers of intrapancreatic neurons were found at E16.5 or
earlier. However, at E17.5 and later, the number of neurons in GFR«2-KO pancreata de-
clined rapidly, and a reduction of over 70% compared to WT was observed at birth. Since
the loss of intrapancreatic neurons is complete soon after birth [52], our results indicate
that the neuron loss happens mostly during the later stages of embryonic development.
The late emergence of the neuronal loss also suggests that neuronal precursor migration to
the pancreas is normal in the GFR«2-KO mice, as this process occurs for the most part
between E13 and E15 in the mouse [296,308]. As has previously been predicted [52], and
as recent work has also confirmed [308], the migration of neural precursors to the pancreas
depends on GDNF and GFR«l. This is consistent with the fact that these neurons repre-
sent a subpopulation of enteric neural crest cells known to rely on GDNF/GFR«1/RET
signaling during migration.

We used antibodies against the pan-neuronal marker PGP9.5 to demonstrate intrapan-
creatic neurons. It is noteworthy that, although PGP9.5 expression has been reported in
the endocrine cells of the embryonic rodent pancreas [350], in our study this signal was
found to be weak and clearly distinguishable from the intensely stained neurons. In addi-
tion to mature neurons, PGP9.5 is also expressed in neuron precursors in the PNS
[351,352]; therefore, the possibility remains that some of the observed PGP9.5+ cells were
in fact premature neurons. Some myenteric neurons do not show immunoreactivity against
PGP9.5 antibodies [353], which is why, using this marker could have led to a slight under-
estimation of total enteric neuron numbers. However, as the main objective in our study
was to quantify relative differences between the genotypes, a small bias in absolute num-
bers should play only a minor role.

To investigate the possibility that reduced proliferation of neural precursors underlies
the loss of pancreatic neurons in GFRa2-KO-mice, we assessed the relative proportion of
BrdU+/Phox2b+ positive cells out of all Phox2b+ cells in pancreatic ganglia. The number
of proliferating Phox2b+ cells decreased by 50-60% between E15.5 and E17.5, but to a
similar degree in both WT and GFR«2-KO mice, implying that intrapancreatic neural pre-
cursors proliferate normally in the mutant mice. Because Phox2b is expressed by NCCs,
which develop into both autonomic neurons and the surrounding glial cells [308], our
quantifications are likely to include a subset of glial precursors. However, the intrapancreat-
ic S100B+ glial cells appear to be normal in adult GFR«2-KO mice. Therefore, it is doubt-
ful that they have skewed the analysis of neuron progenitor numbers (Rossi et al, un-
published results).

Next, we asked whether increased apoptosis was responsible for the reduced parasym-
pathetic neuron numbers. To our knowledge, and according to a recent review [283], very
little is known about normal developmental cell death in the mammalian parasympathetic
nervous system. We found Caspase-3+ apoptotic neurons in the developing intrapancreatic
ganglia; in WT mice the occurrence of caspase-3+ neurons was 1% of all neurons at E15.5
and slightly less at the time of birth. In GFR«x2-KO mice, however, the number of caspase-
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3+ neurons increased rapidly after E15.5 to a peak level of 4% at E17.5. By the time of
birth, the occurrence of apoptosis had decreased to levels comparable to WT mice. Conse-
quently, apoptosis appears to be a major factor contributing to the intrapancreatic neuron
loss in GFR«2-KO mice. Moreover, this observation also supports the hypothesis that in-
creased apoptosis is responsible for the reduced numbers of submandibular ganglion
(SMG) neurons in GFRx2-KO mice [301]. Apoptosis was observed in the WT SMG neu-
rons and, as predicted, we found the numbers of caspase-3+ neurons increased in the late
embryonic and newborn GFR«2-KO SMG, albeit to a smaller extent than in the pancreatic
ganglia. The low numbers of caspase-3+ neurons in the SMG during development suggest
that PCD is not a major determinant of SMG neuron numbers before birth, although it can
contribute more postnatally.

As an alternative method to activated caspase-3, we used TUNEL to demonstrate apop-
tosis in peripheral ganglia [354]. For the final analysis, Caspase-3 was chosen over TUNEL,
as TUNEL-positive cells in the peripheral ganglia were often negative for PGP9.5 (I; Supp.
Fig.). TUNEL+ cells were encountered in the sympathetic ganglia (39/1058 cells), but were
absent in the vicinity of enteric ganglia (0/426).This is in line with the consensus that de-
velopmental cell death is a rare event in the normally developing ENS. However, since
caspase-3 may hot detect all types of programmed cell death in neurons [355], it is possible
that the full scale of cell death was not observed. Also, as caspase-3 is involved in most
cases of apoptosis, the specific pathway leading to cell death cannot be deduced from only
this one marker. Of note is the finding that, in the absence of GDNF, sympathetic neurons
in culture appear to die via a pathway involving activated caspases 2 and 7 [177]. Further
investigations are needed to study the possibility that similar pathways are also activated in
GFR«2-KO parasympathetic ganglia.

In addition to parasympathetic ganglia, we studied the occurrence of caspase-3+ apop-
tosis in the enteric ganglia of the duodenum and colon, as well as in sympathetic para-
vertebral ganglia and DRGs at the pancreatic level. Ontogenetic cell death appears in
mouse sympathetic ganglia at E15.5 and continues until early postnatal age [274]. In agree-
ment with this, we observed caspase-3+ neurons in the sympathetic ganglia of both WT
and GFR«2-KO mice, the occurrence peaking at little over 3% during E17.5. No signifi-
cant differences were witnessed between the genotypes. In the DRG, where apoptosis is a
relatively early event [165,167], caspase-3+ neurons were most numerous in both geno-
types at E15.5 (the earliest time point studied), and were almost nonexistent at P0. These
findings comply with earlier observations that GFR«2 is not required for the survival of
developing sympathetic or sensory neurons [103,307].

Apoptosis has been considered almost absent from developing enteric neurons [317]
and, in agreement with this, we found virtually no enteric neurons expressing active caspa-
se-3 in either WT or GFRa«2-deficient mice. The lack of caspase-3+ apoptosis, however,
does not rule out the possibility that PCD does not occur in enteric neurons. For example,
late stage colonic neuron precursors have been shown to die through a non-apoptotic
(caspase-3 and TUNEL negative) mechanism in the absence of GDNF/GFR«1 -signaling
[332]. It is possible that a similar mechanism could function in a subpopulation of
GFRa«2+ enteric neurons and underlie the small loss of myenteric neurons reported in
GFR«2-KO mice [307]. Moreover, one cannot rule out the possibility that an increased yet
still rare occurrence of caspase-3+ apoptosis in GFR«2-KO mice was missed, due to too
low sampling frequency orapoptotic pathways involving executor caspases other than
caspase-3. Nevertheless, our results here are in support of the view that apoptosis in the
ENS is rare in both WT and GFR«2-KO mice. Although it is known that enteric neurons
are capable of dying via apoptosis, for example after a damaging insult [356], it is still un-
clear why pancreatic and enteric neurons differ in the occurrence of natural ontogenetic
apoptosis.
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NRTN expression is upregulated and GDNF downregulated in the pancreas and the
submandibular gland during late embryonic development, coinciding with the emerging
expression of GFR«2 in the cranial and intrapancreatic parasympathetic neurons (Figure 9)
[39,248,308]. At the same time, elevated apoptosis (this study) and neuron loss [301] is ob-
served in the corresponding ganglia of GFR«x2-KO mice. Thus, intrapancreatic and sub-
mandibular neurons appear to first (during migration) depend on GFR«1 and GDNF
[300,301,308] and later on GFR«2 for survival. The survival promoting effect of GNDF on
enteric neurons requires the PI3K/Akt-signaling, which makes this pathway a likely candi-
date for the similar properties of NRTN/GFR«2 [357]. A reduction in the number of
SMG neurons was also observed in the NRTN-KO mice at birth, supporting the view that
NRTN is the survival promoting ligand for these neurons [248,300]. While it has not been
reported whether NRTN-KO mice also lack intrapancreatic neurons, it is most probable
that they do. Still, the unlikely possibility remains that GDNF promotes neuron survival via
GFR«2 in the pancreas. Finally, it is worth mentioning that the death inducing dependence
receptor-activity of RET has been suggested to be insignificant in developing enteric neu-
rons [331]. Whether RET induced PCD is involved in the developmental apoptosis of par-
asympathetic neurons, remains unknown.

survival, size & innervation
GFR0O2, NRTN?

> PCD g

migration & proliferation
GFRaO1, GDNF

GDNF NRTN
E10 E15 PO adult

Figure 9. Parasympathetic neurons switch from GDNF/GFRal- to NRTN/GFRa2- signaling for sur-
vival, maintenance, and target innervation. A subpopulation of enteric neural crest cells/progenitors
migrates into the pancreas to become parasympathetic neurons. During this secondary neural migration
the parasympathetic progenitors express GFRal, while GDNF is expressed in the pancreatic tissue. The
secondary neural migration to the pancreas also requires DCC/Netrin (not shown). After the migration, the
neural progenitors switch to expressing GFRa2; this coincides with the occurrence of PCD among the
parasympathetic progenitors. At the same time, GDNF expression is downregulated and NRTN upregulat-
ed in the pancreatic tissue. Modified from [5].
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GFRa2 is needed for size in cutaneous C- and RA AB-LTMRs, and in
Mrgprd+ nociceptors (ll)

A previous study disclosed that GFR«2 is required for the soma size maintenance of cu-
taneous 1B4+ nonpeptidergic nociceptors [240]. We aimed to expand on this study, and
asked whether GFR«2 also regulates cell size, and possibly survival, in two other DRG
neuron populations known to express RET and GFR«2: the small, unmyelinated C-
LTMRs and the large, heavily myelinated RA A-LTMRs [181,225,226].

We first set out to confirm that GFR«2 actually regulates cell size in the nonpeptidergic
nociceptors. Here we used Mrgprd as a marker, as this gene has been shown to encode a G-
protein coupled receptor that is specifically expressed in polymodal nonpeptidergic noci-
ceptors [235]. Using immunohistochemistry, we found that most, if not all EGFP+ neu-
rons expressed GFR«2 in Mrgprd-EGFP mouse DRGSs. In GFR«2-KO;Mrgprd-EGFP mice,
however, the EGFP+ neurons were substantially reduced in size, validating the previous
findings that GFR«2 regulates nonpeptidergic nociceptor neuron size. The number of
EGFP+ neurons is not reduced in GFRx2-KO DRGs, since these mice have previously
been shown to retain normal numbers of 1B4+/P2X3+ DRG neurons, which correspond
almost fully with Mrgprd+ neurons [235,240].

Next, we proceeded to investigate the role of GFR«2-signaling in the C-LTMRs, using
tyrosine hydroxylase (TH) as a specific marker for these neurons [181]. Co-staining with
GFRa«2 showed that nearly all of the TH+ neurons in thoracic level DRGs expressed
GFRa«2, representing about 1/3 of all GFR«2+ neurons. When observed in GFRx2-KO
mouse DRGs, TH+ immunoreactivity appeared similar in comparison to WT, indicating
that GFR«2 is not required for the expression of TH in the neurons. Also, no differences
were seen in the numbers of TH+ neurons in WT and KO DRGs, which implyes that
GFRa2 signaling is not required for the survival of C-LTMRs. Finally, to see if the C-
LTMRs require GFR«2 for soma size, we performed a cell size distribution analysis and
discovered a significant level of atrophy in the size of GFRx2-KO TH+ neurons (Figure
10).

Figure 10. C-LTMRs in mouse DRGs. Representative images of WT and GFRa2-KO thoracic DRGs
stained with a TH-antibody. Note the atrophied neuron somas in the KO DRG. the dashed line delineates
the ganglion.

Our findings on Mrgprd+ and TH+ DRG neurons reinforce the view that GFR«2 regu-
lates nonpeptidergic neuron size. In addition to GFRx2-KO mice, this neuronal atrophy
has been observed in several RET-cKO mouse models, implying that RET-signaling un-
derlies this phenomenon [187,246,247]. The in vivo ligand responsible for the trophic sup-
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port on GFRx2+ DRG neurons appears to be NRTN, as these neurons atrophy and loose
GFR«2 expression in NRTN-KO mice [248]. Accordingly, in mice overexpressing NRTN
in skin keratinocytes, the size and number of neurons expressing GFR«2 is substantially
increased [250]. Concerning neuron numbers, the general consensus is that GFR«2- and
RET-signaling are not required for nonpeptidergic neuron survival [187,227,240,246]. In
agreement with this, we found no sign of Mrgprd+ or TH+ DRG neuron loss in GFR«2-
KO mice.

In contrast to nonpeptidergic neurons, which initiate the expression of RET and
GFR«2 during late prenatal and early postnatal development, the large RET+ RA AB-
LTMRs begin expressing these receptors already in earlier fetal stages [187,225,226]. In
agreement with this, we found GFRa«2-immunoreactivity in a minor population of large
Mrgprd-negative DRG neurons in newborn mice. Interestingly, no immunoreactivity
against GFR«2 was evident in adult myelinated DRG neurons. GFR«2 expression has been
observed in the large RET+ neurons at P14 in mice [226], but other studies have indicated
that in adult rodents these neurons express GFR«1 [358,359] and possibly GFR«3 [99].
Further corroborating our findings, a recent study using single cell RNA sequencing found
no evidence of GFRx«2 gene expression in adult early-RET DRG neurons [200]. Drawn
together, these results suggest that the large RET+ neurons downregulate GFR«2 expres-
sion and begin signaling through different GFR« receptors in adulthood.

Figure 11. Large RET+ neurons in mouse DRGs. Representative images of WT and GFRa2-KO thorac-
ic DRGs stained with antibodies against RET and NFH. The large NFH+/RET+ neurons survive in the
GFRa2-KO mice, but are smaller than in WT animals.

Because the large RET+ neurons are heavily myelinated, we were able to use the ex-
pression of NFH together with RET to demonstrate these neurons in adult WT and
GFR«2-KO animals. In adult DRGs, most RET+ neurons were small and NFH-negative;
however, a minority of RET+ neurons were clearly NFH+ and large. Double positive neu-
rons were also present in the KO animals, and no significant differences in their numbers
were observed between the genotypes. Similarly to the nonpeptidergic DRG neurons, the
average soma sizes of the RET+/NFH+ neurons were significantly smaller in GFR«2-KO
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mice (Figure 11). Thus, these results indicate that, while GFR«2-signaling is not essential
for the survival of early-RETneurons, it is required for them to obtain their proper size
during development. Consistent with these findings, myelinated axons in the saphenous
nerves of GFR«2-KO mice have previously been shown to be thinner, yet equally numer-
ous when compared to WT animals [360]. Furthermore, specific hypertrophy of the largest
myelinated fibers in the saphenous nerves have been reported in mice overexpressing
NRTN in the skin [250]. Finally, large RET+ neurons have been shown to be normally
present or only marginally reduced in numbers in both NRTN-KO mice and in another
GFR«2-KO mouse model [132,226].

The specific signaling pathways that control cell size via GFRx2/RET have not been
reported. A probable mechanism is the activation of the protein kinase Akt via PI3K,
which is known to regulate cell size in mammals [361]. In support of this, the specific over-
expression of PI3K and Akt in cultured E13 DRG neurons leads to the hypertrophy of
neuron somas and the thickening of axons [362]. Also, PI3K activation appears to mediate
the trophic effects of NGF on the soma size of sympathetic neurons [363].

GFRa2 in target innervation

GFRa2 regulates hairy skin innervation by Mrgprd+ neurons but not by C-
and RA AB-LTMRs (II)

Accompanying the reduced soma size in IB4+ DRG neurons, GFRx2-KO mice have lost
over 70% of the nonpeptidergic free nerve endings in the glabrous footpad epidermis
[240]. A comparable phenotype has also been reported in RET-cKO mice [187,246]. We
wanted to see if GFR«2-signaling regulates nonpeptidergic innervation of the hairy skin as
well. Compatible with the phenotype seen in the glabrous skin, we observed a loss of 50-
70% of EGFP+ free nerve endings in the GFR«2-KO;Mrgprd-EGFP back and dorsal paw
epidermis. In addition, we studied the back skin of additional pairs of WT and GFR«2-KO
mice using PGP9.5 immunohistochemistry, and observed a qualitatively similar difference
in nerve fiber density. Given that GFR«2 is needed for their soma size, we asked whether
GFR«2-signaling could be important also for the target innervation of C- and RA Ag-
LTMRs, which both project to hair follicles in the back skin.

In the WT back skin we found TH+ LLE-complexes around ~88% of small caliber hair
follicles. Surprisingly, both the percentage of TH+ innervated small caliber hair follicles
and the morphology of TH+ LLE were unchanged in GFR«2-KO littermates. To rule out
the possibility that our TH-antibody binds the AS-LTMRs found on small caliber hair fol-
licles, we performed a double staining against TH and TrkB (a marker for AS-LTMRS).
Antibodies against the two markers bound two distinct populations of LLEs in the back
skin, demonstrating the specificity of our TH-staining. Consequently, our results suggest
that GFR«2 is not required for target innervation by C-LTMRs.

Whether the formation of C-LTMR LLEs is compromised in RET- or NRTN-KO mice
has not been reported. GFR«2 is the only RET co-receptor expressed in adult mouse C-
LTMRs [181], but it remains possible that a transient expression of another GFR« receptor
could precede GFRa2 during development. Since GDNF is also expressed in the de-
veloping mouse skin and hair follicles [39,364], the possibility that C-LTMRs could use
GDNF/GFR«1 mediated signaling (in cis or trans) for target innervation cannot be ex-
cluded.

In the back skin, the RA AB-LTMRs form LLEs around the two largest types of hair
follicles (awl/auchene and guard). We focused on the largest type (guard), as these are easi-
ly distinguished from the two smaller types of follicles. NFH+ LLEs were found associated
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with most (~88%) guard follicles in the WT, along with circumferential endings. Similarly
to the C-LTMRs, no significant reduction in the percentage of innervated guard follicles or
abnormal morphology of the endings was found in the GFR«2-KO mice. This indicates
that GFRo2 is dispensable for target innervation in cutaneous RA AR-LTMRs.

NFH+ LLEs have been reported to be completely missing in a RET-cKO mouse at
P15, suggesting that RET-signaling is crucial for the formation of RA AB-LTMR endings in
the hairy skin [225]. In addition, another study has shown that RET- and NRTN/GFR«2-
signaling is absolutely needed for the formation of Pacinian corpuscles, the end organs of
another subset of RA AB-LTMRs [226]. Also, cutaneous NFH+ afferents have been
shown to be impaired in prenatal RET-KO mice [227]. Together, these results indicate
that, although they are fundamentally dependent on RET-signaling, RA AB-LTMRs differ
in their requirement for GFR«2 for target innervation. The finding that GFR«1, but not
GFRu2, is expressed in the large RET+ neurons in adult mice suggests the possibility that
target innervation in the cutaneous RA AB-LTMRs could depend on GFRol mediated
signaling. A recent study showed that although GFRa«2-null mice show an early deficiency
in the central innervation of RA AB-LTMRs, the phenotype is normalized during develop-
ment through in trans signaling by GDNF/GFR«1; however, a knock-out of both GFR«2
and GFRal lead to a definitive loss of central innervation [132]. Therefore it is possible
that a similar mechanism is able to fix the loss of cutaneous innervation of RA AR-LTMRs
in GFR«2-deficient mice.

In addition to neurotrophic factors, a number of other attractive and repulsive cues in-
fluence the peripheral projection of the cutaneous nerve fibers [365,366]. For example,
versican, a repulsive proteoglycan found in the epidermis, regulates the density of epi-
dermal free nerve endings of nonpeptidergic IB4+ neurons [367]. Also semaphorin 3, an-
other repulsive proteoglycan found in the epidermis, can repulse and inhibit adult sensory
afferents in vivo [368]. NRTN is able to prevent axon growth cone collapse caused by sem-
aphorin 3A in vitro [369], suggesting a possible mechanism for the loss of epidermal
Mrgprd+/1B4+ nonpeptidergic free nerve endings in GFR«x2-KO mice. Since the LLE
palisades of C- and RA AB-LTMRs terminate around the hair follicles and, thus, below the
epidermis, the requirement for contra-repulsive signaling via NRTN may not be critical for
these neurons. Finally, if NRTN acts as an important guidance molecule for the
Mrgprd+/1B4+ neurons, then it seems logical that other cues could be involved in the tar-
geting of the RET-expressing LTMRSs.

Lack of gastric mucosal cholinergic innervation and glial cells in GFRa2-
KO mice (lll)

To investigate the role of GFR«2 in the innervation of gastric mucosa, we first studied the
expression or the GFR«2 ligand NRTN in the stomach through in situ hybridization. Simi-
larly to a previous study [39], we found intense expression of NRTN in the stomach muco-
sa. Specifically, NRTN transcripts were found in the basal layers of the oxyntic and pyloric
mucosa in both juvenile and adult mice, and no signal was seen in the smooth muscle layers
of the stomach wall. Also, no above background expression of GDNF was witnessed in
the gastric mucosa.

Most of the efferent innervation in the gastric mucosa consists of intrinsic cholinergic
nerve fibers [339]. Accordingly, we observed dense trees of VAChT-positive nerve fibers in
WT oxyntic and pyloric mucosa. Nearly all of the cholinergic fibers co-expressed GRP and
many were also immunoreactive for VIP. VAChT+ fibers in the mucosa expressed
GFR«2, as did the S100p-positive glial cells, agreeing with findings in the myenteric cho-
linergic neurons and related glial cells in the small intestine [52]. Only rare TH+ sympa-
thetic fibers were seen in the stomach mucosa, and these did not express GFR«2, con-
sistent with previous findings in the pancreas, for example [96]. A profound defect was
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found in the VAChT/GRP/VIP-positive innervation of the gastric mucosa of GFRx2-KO
mice; the density of VAChT/GRP-expressing fibers in the oxyntic mucosa was reduced by
>90% in the mutant animals, while VIPergic innervation was reduced by ~80%. A similar
pattern, moreover, was witnessed in the pyloric mucosa. Also, the number of S100b+ glial
cells and their processes in the gastric mucosa had reduced by roughly 80% in the GFR«2-
KO mice. In contrast to the deficits found in the gastric mucosa, VAChT- and VIP-
positive innervation and glial cell numbers were normal in the stomach muscle layers of
GFR«2-KO mice.

Our results demonstrate that NRTN/GFRa2-signaling is required for the cholinergic
innervation of gastric mucosa. The deficit in innervation was observed already in two-week
old animals, coinciding with a strong expression of NRTN in the gastric mucosa. As the
gastric mucosa functionally and morphologically matures during the first weeks after birth
[370], our findings suggest that NRTN/GFR«2 is required for the development of mucosal
innervation. NRTN expression remained at high levels in adults, suggesting that it is also
required for the maintenance of the cholinergic innervation in the gastric mucosa. In con-
trast to the mucosa, normal nerve fiber (cholinergic and noncholinergic) and glial density
was observed in the gastric muscle layers of the GFR«2-deficient mice, indicating that
GFR«2 is not required for the innervation of gastric muscle and myenteric plexus. In sup-
port of this, no expression of NRTN was observed in the stomach muscle layers. An open
question is, whether the innervation defect in GFR«2-KO mice is exacerbated by a possi-
ble reduction in the number of neurons in the stomach myenteric plexus. GFR«2-KO mice
show a small but significant reduction in the number of myenteric neurons in the small
intestine. Furthermore, this area also shows the highest innervation defect in the bowel
[307], suggesting the possibility of a rostrocaudal gradient in GFR«2/NRTN dependency
in the GI tract. NRTN expression in the Gl tract is at the highest in the stomach mucosa
and it remains possible that a significant number of stomach myenteric neurons are lost in
the GFR«2-KO mice. Therefore, future studies assessing the number of gastric myenteric
neurons and the occurrence of apoptosis in GFR«2-KO stomach wall are warranted.

The number of S1008+ glial cells and their extensions was also heavily reduced in the
mutant gastric mucosa. Interestingly, the S100@+ glial cells are still present in the sublingual
salivary gland, the lacrimal gland (111; Suppl Fig 6) and the endocrine pancreas of GFR«2-
KO mice (Rossi et al., unpublished), although cholinergic innervation to these targets is
mostly gone [52,96]. The reasons for the differences in GFR«2-dependency among the glial
cells are not known. One possibility is that the abundant remaining sympathetic and sen-
sory innervation in the unaffected tissues may provide enough trophic signaling to support
the glial cells.

Consequences of the gastric innervation deficiency

Cholinergic innervation is not required for maintenance of the gastric
mucosa in mice (ll1)

In the rat, unilateral truncal vagotomy leads to atrophy of the oxyntic mucosa on the de-
nervated side without affecting gastrin levels [348]. This suggests a direct trophic effect on
the gastric mucosa mediated by the efferent vagus and, specifically, by the intramural neu-
rons [371]. It has been suggested that neuropeptides, especially PACAP, are responsible for
the proliferative effects of vagal activity on the gastric mucosa [371-373]. PACAP is co-
expressed in the VAChT/GRP-positive nerve fiber in the gastric mucosa and, therefore,
PACAP+ fibers should be missing from the GFR«2-KO gastric mucosa [374]. We found
no evidence of mucosal atrophy in the GFR«z2-KO mice; the mucosal thickness was com-
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parable to WT littermates in the oxyntic and antral areas. Similarly, the numbers of parietal
cells, ECL-cells, D-cells, and A-like cells were indistinguishable between the genotypes.
Consequently, efferent cholinergic and GRP+/VIP+/PACAP+ innervation appears to be
dispensable for trophic support of the stomach mucosa, at least in mice. In agreement with
our findings, vagal control of proliferation has been suggested to apply only in certain spe-
cies, and to play only a minor role in humans [375,376]. In contrast, a recent study reported
that cholinergic innervation via muscarinic M3 receptors may promote tumorigenesis in the
gastric mucosa of mice, and that vagotomy may reduce the risk of gastric cancer in human
patients [377].

Cholinergic innervation of the gastric mucosa is dispensable for gastrin
secretion (111)

The release of gastrin is thought to be induced mainly by dietary amino acids, amines, and
calcium of ingested food and by the mechanical distension related to feeding [335,378].
Earlier studies done mostly on isolated rat stomachs have suggested that acetylcholine and
GRP released from cholinergic intramural neurons are important regulators of feeding in-
duced gastrin release [379]. Although carbachol and GRP are potent pharmacological stim-
ulants of gastrin release in intact animals [380], the physiological role of muscarinic and
GRP stimulation on gastrin release has been questioned [381,382]. To clarify the im-
portance of mucosal cholinergic/GRPergic innervation on the physiological regulation of
gastrin secretion, we measured fed and fasted plasma gastrin levels from GFR«2-KO mice
and WT littermates. In both genotypes, the gastrin levels were elevated in the fed state
when compared to fasted values; no differences were observed between WT and mutant
mice in either feeding state.

A recent microdialysis study showed that food-induced gastrin release is ablated by va-
gotomy or by local infusion of the neurotoxin TTX, but increased by unilateral vagotomy
[381]. The somewhat paradoxical effects of the partial vagotomy could possibly be ex-
plained by a loss of the inhibitory effects of VVIPergic nerves on gastrin secretion [379]. In
any case, these results imply that the effects of vagal activity on gastrin release are complex.
It must be noted that TTX and vagotomy also ablate the CGRP+ afferent neural signals
from the gastric mucosa, which are known to regulate gastrin release in response to luminal
pH levels [383]. In contrast, the GFRx2-KO mice have an apparently normal afferent in-
nervation of the gastric mucosa. Since the circulating gastrin levels in the GFR«x2-KO mice
were normal regardless of feeding state, it can be concluded that the efferent cholinergic
nerve fibers in the gastric mucosa and their neurotransmitters (including GRP) may not
play a physiologically important role in the regulation of normal gastrin secretion.

Normal basal acid secretion and maximal secretion capability in GFRa2-
KO mice (lll)

Vagotomy is known to lead to a rapid and lasting decline of basal acid secretion in both
experimental animals and humans [342,345]. The effects of vagal efferent activity are
communicated via acetylcholine from the intrinsic mucosal nerves. It stimulates M3 recep-
tors on parietal cells to release acid while also inhibiting somatostatin release from D-cells,
likely through M2 or M4 receptors [341]. Accordingly, M3R-KO mice show a high gastric
juice pH and a reduced level of basal acid secretion [344].

We hypothesized that basal acid secretion should be compromised in GFRx2-KO mice,
since they lack almost all of the cholinergic innervation of the gastric mucosa. Surprisingly,
the intragastric pH levels in GFR«2-KO mice after an overnight fast were low, similar to
levels seen in WT littermates. As expected on the basis of these findings, we observed
normal levels of acid content and basal acid secretion under urethane anesthesia in GFR«2-
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KO mice. To rule out the possibility that the urethane anesthetic influences basal secretion
levels, we also measured basal acid content in conscious mice. Consistent with the other
findings, the measurements revealed no differences between the genotypes.
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Figure 12. Cholinergic innervation of the gastric mucosa is not necessary for basal acid secretion
in GFRa2-KO mice. (A) Gastrin from antral G-cells (not shown) stimulates basal acid secretion by releas-
ing histamine from ECL cells. Somatostatin from D-cells tonically inhibits acid secretion directly from parie-
tal cells and by inhibiting histamine from ECL cells and gastrin from G-cells (not shown). Acetylcholine
released from myenteric neurons in response to tonic vagus activity promotes acid secretion via M3 recep-
tors (M3R) on parietal cells, but also by inhibiting tonic somatostatin release from D-cells. (B) Basal acid
secretion in GFRa2-KO mice is not impaired presumably partly because of compensatory upregulation of
muscarinic receptor constitutive activity (circular arrows). CCK2R, gastrin receptor; H2R, histamine H2
receptor, M2-4R, muscarinic receptors; SSTR2, somatostatin receptor. Modified from publication III.
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To see if the remaining (<10%) cholinergic innervation in the oxyntic mucosa was able to
influence acid secretion, we used 2-deoxyglucose (2-DG) to bring about a central hypogly-
cemia induced vagus activation in WT and GFR«2-KO mice [384]. As expected, this
treatment induced a robust (~8x) acid secretion response in WT but not in the KO mice.
A possible explanation for the normal basal acid secretion in GFR«x2-KO mice is that re-
sidual acetylcholine from the muscle layers reaching the parietal cells in combination with a
possible sensitization of the muscarinic receptors, could lead to normal levels of basal acid
secretion. In fact, when stimulated with the muscarinic agonist carbachol, the GFRx2-KO
mice showed a 2-fold higher response in acid secretion compared to WT mice. This effect
was likely due to receptor sensitization and not increased expression, since the gastric M1-
M5 receptor mRNA levels were not altered in the KO mice. Interestingly, a similar in-
creased responsiveness to muscarinic agonists has been reported in the cavernosal smooth
muscle of GFR«2-KO mice [385]. However, when treated with the ganglionic blocker hex-
amethonium — an agent known to mimic the effects of surgical vagotomy [386,387] — no
effects were seen on basal acid secretion in GFRx2-KO mice. In contrast, basal acid secre-
tion was significantly reduced in WT mice exposed to hexamethonium. The results from
these experiments show that the GFR«2-KO mice have a complete loss of functional ef-
ferent innervation of the gastric mucosa, but nevertheless maintain a normal basal acid
secretion (Figure 12).

When we treated WT mice with the muscarinic antagonist atropine, a significant re-
duction in basal acid secretion was induced. Interestingly, atropine also reduced basal acid
secretion in GFRx2-KO mice to a similar degree. Muscarinic receptors are able to signal in
a constitutive manner (i.e. they remain active even without a bound ligand) [388], and atro-
pine as an inverse agonist is able to inhibit both stimulated and constitutive activity of these
receptors [389]. That atropine reduces basal acid secretion also in GFR«2-KO mice implies
that constitutively active muscarinic receptors on parietal cells and/or D-cells may facilitate
basal acid secretion in vivo.

In addition to maintaining normal basal acid secretion, an intact vagus is also required
for histamine stimulated acid secretion, but the mechanism is unclear [347,349]. We found
that acid secretion in GFR«2-KO mice after histamine treatment was comparable to WT
littermates, suggesting that the acid secretion capacity in the KO mice is not reduced. This
is in contrast to findings in M3R-KO mice, where the acid secretory response to histamine
has decreased by 50%. The possibility of constitutive activity of muscarinic receptors in the
parietal cells of GFRx2-KO mice could explain why they are able to respond to histamine
stimulation. Previous studies done on isolated mouse stomachs have also shown that pari-
etal cells are able to respond to histamine even when nerve activity in the gastric wall is
blocked with TTX [390]. A drawback in our experimental setup was the lack of a dose re-
sponse study using histamine. Therefore, the possibility that acid secretion response to a
low dose of histamine in the GFR«x2-KO mice is affected cannot be ruled out. Although
ECL cells are known to lack muscarinic receptors, the vagus nerve appears to have an in-
fluence over ECL cell sensitivity to physiological levels of gastrin [391], possibly via neuro-
peptides such as PACAP and VIP, which are known to elicit histamine release from ECL
cells [392]. In our preliminary experiments, pentagastrin induced a lower acid output in
GFR«2-KO mice than in WT mice, supporting the view that ECL sensitivity is under neu-
ral control.
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CONCLUSIONS

The main findings in the work presented here were:

(i)

(ii)

(i)

PCD is a normal part of parasympathetic neuron development in mice. GFRa2-
signaling regulates parasympathetic neuron survival in pancreatic and submandibular
ganglia during late embryonic development, and lack of GFR«2-mediated signaling
results in the profound loss of intrapancreatic neurons through apoptosis. In con-
trast, apoptosis in the ENS appears to be rare and is not increased in the absence of
GFR«2, suggesting that the number of enteric neurons is not determined by PCD.

In spinal sensory ganglia, GFR«2 regulates the neuronal size, but not the innervation
of hair follicles by both large RA AB-LTMR and small C-LTMR neurons. In con-
trast, GFR«2 regulates both the cell size and epidermal innervation of small C-
nociceptors. RA AB-LTMRs express GFRa2 during early life, but lose GFR«2-
expression at some point after maturation.

GFR«2-signaling via NRTN is required for the cholinergic innervation of the gastric
mucosa; however, this innervation is not necessary for trophic support of the gastric
mucosa or for gastrin or basal acid secretion. In addition, although vagally stimulated
gastric acid secretion is lost, secretion in response to direct parietal cell stimulation
remains in the absence of gastric mucosal innervation in GFRx2-KO mice.
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