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Abstract

Bayesian networks are probabilistic graphical models, which can compactly
represent complex probabilistic dependencies between a set of variables.
Once learned from data or constructed by some other means, they can
both give insight into the modeled domain and be used for probabilistic
reasoning tasks, such as prediction of future data points.

Learning a Bayesian network consists of two tasks: discovering a graphical
dependency structure on variables, and finding the numerical parameters
of a conditional distribution for each variable. Structure discovery has at-
tracted considerable interest in the recent decades. Attention has mostly
been paid to finding a structure that best fits the data under certain cri-
terion. The optimization approach can lead to noisy and partly arbitrary
results due to the uncertainty caused by a small amount of data. The so-
called full Bayesian approach addresses this shortcoming by learning the
posterior distribution of structures. In practice, the posterior distribution
is summarized by constructing a representative sample of structures, or
by computing marginal posterior probabilities of individual arcs or other
substructures.

This thesis presents algorithms for the full Bayesian approach to structure
learning in Bayesian networks. Because the existing exact algorithms only
scale to small networks of up to about 25 variables, we investigate sampling
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based, Monte Carlo methods. The state-of-the-art sampling algorithms
draw orderings of variables along a Markov chain. We propose several
improvements to this algorithm. First, we show that sampling partial orders
instead of linear orders can lead to radically improved mixing of the Markov
chain and consequently better estimates. Second, we suggest replacing
Markov chain Monte Carlo by annealed importance sampling. This can
further improve the accuracy of estimates and has also other advantages
such as independent samples and easy parallelization. Third, we propose
a way to correct the bias that is caused by sampling orderings of variables
instead of structures. Fourth, we present an algorithm that can significantly
speed up per-sample computations via approximation.

In addition, the thesis proposes a new algorithm for so-called local learning
of the Bayesian network structure. In local learning the task is to discover
the neighborhood of a given target variable. In contrast to previous algo-
rithms that are based on conditional independence tests between variables,
our algorithm gives scores to larger substructures. This approach often
leads to more accurate results.
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III. Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto. Structure
discovery in Bayesian networks by sampling partial orders. (Submit-
ted).
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Chapter 1

Introduction

Bayesian networks [59] are graphical models that describe probabilistic
dependencies between a set of variables. Although the term “Bayesian
network” seems predominant today, they have been also called by other
names, such as (Bayesian) belief networks, causal networks or just directed
graphical models. While directed models had seen some restricted use
in various applications before, it was the theoretical development in the
late 1980s [44, 59] that started their widespread acceptance. In the re-
cent decades they have attracted a lot of interest in a growing number of
application domains. Initially, Bayesian networks were mainly used in ex-
pert systems—typically related to medical diagnosis—to model uncertain
expert knowledge, but since then they have spread to numerous fields such
as bioinformatics, forensic science, reliability analysis and terrorism risk
management [61].

The core of a Bayesian network is a directed acyclic graph (DAG), called
also the structure. The DAG consists of nodes that correspond to a set of
random variables, and arcs that tell which variables might depend prob-
abilistically on each others. Figure 1.1 shows a classic example network,
that depicts how some diseases (tuberculosis, lung cancer, bronchitis), their
possible causes (visit to Asia, smoking) and possible symptoms (positive X-
ray result, dyspnea) are related. While the example tells, for instance, that
smoking has some effect on the probability of getting a lung cancer, it does
not reveal the exact nature of the dependencies. To describe how the re-
lated variables are dependent, a Bayesian network also contains a set of
parameters that define a set of conditional probability distributions, one
for each node in the network. The conditional distribution of each variable
tells how it is distributed when conditioned on the values of its parents, that
is, the variables from which there is an arc pointing to it. Figure 1.2 shows
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2 1 Introduction

A
visit to Asia?

S
smoking?

T
tuberculosis?

L
lung cancer?

B
bronchitis?

D
dyspnoea?

E
tub. or cancer?

X
positive X-ray?

Figure 1.1: An example (fictional) Bayesian network describing the re-
lations of some diseases, environmental factors and symptoms. dyspnea
(shortness of breath) may be caused by either tuberculosis, lung cancer or
bronchitis, or none of them. Both tuberculosis and lung cancer can be de-
tected in a single chest X-ray test but not distinguished from each others.
A recent visit to Asia increases the risk of getting tuberculosis and smoking
is a known risk factor for getting lung cancer or bronchitis. (This classic
example was first presented by Lauritzen and Spiegelhalter [44].)

these parameters for the example network in Figure 1.1. For example, the
probability that a (random) person smokes does not directly depend on
any other variable and has been estimated to be 0.50. The probability of a
person having lung cancer depends on whether he/she smokes or not and
has been estimated to be 0.05 for smokers and 0.01 for non-smokers.

Since Bayesian networks are directed graphs, it is natural to use them
to model causality—the directions of arcs correspond to the direction of
causation. Indeed, in the network of Figure 1.1 most arcs are causal, an
exception being the relations between nodes T , L and E. But it is not
always possible (or required) to determine the causal ordering of dependent
events. An often-mentioned example of such a situation is the relation
between ice cream sales and drownings: There is said to be a statistical
correlation between the sales figures of ice cream and the number of deaths
by drowning, while neither is a cause of the other. Generally, in some
domains the notion of causality does not even make sense, and even if it
does, determining causality often requires either additional knowledge or
some kind of intervention in the process that generates the observations.
However, even in such cases, a compatible but more general semantic can be
used, where the arcs only encode the probabilistic dependencies between the
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Pr(A = 1)
0.01

Pr(S = 1)
0.50

A Pr(T = 1 |A)
0 0.01
1 0.05

S Pr(L = 1 |S)
0 0.01
1 0.10

S Pr(B = 1 |S)
0 0.30
1 0.60

L T Pr(E = 1 |L, T )
0 0 0
0 1 1
1 0 1
1 1 1

E Pr(X = 1 |E)
0 0.05
1 0.98

E B Pr(D = 1 |E,B)
0 0 0.10
0 1 0.70
1 0 0.80
1 1 0.90

Figure 1.2: Conditional probability distributions for the Bayesian network
in Figure 1.1. Each variable is binary and takes values 0 and 1 representing
the false and true states of the corresponding condition respectively. For
each variable a table that contains the conditional probability of getting
value 1 for all possible combinations of its parent variable values is shown.
(As the structure in Figure 1.1, the probabilities are also due to Lauritzen
and Spiegelhalter [44].)

variables. This more general probabilistic interpretation is used throughout
the rest of this thesis.

Once a Bayesian network that models a specific problem domain has
been constructed, it can be used for tasks such as the inference of the values
of unobserved variables based on the observed variables, or the prediction
of future data points. In the context of the example network of Figure 1.1,
an inference task could be to compute the probability that a person has
tuberculosis if he has dyspnea, the X-ray gives a positive result, he is a
non-smoker and has visited to Asia recently. A prediction task, although
a bit unusual in this context, could be to compute the probability that a
random person has bronchitis but no dyspnea.

How can one construct a Bayesian network that accurately describes the
domain of interest? This is the question that we study in this thesis. Es-
pecially the Bayesian networks used in early expert systems were typically
hand crafted based on expert knowledge. But such expert knowledge is not
always available, or construction by hand might be exceedingly laborious.
However, often there is a set of jointly observed values of the variables,
that is, data, available from the domain. In this case, it is possible to
automatically learn (or infer) the network from data.

Learning a Bayesian network can be divided into two subtasks: learn-
ing the structure and learning the parameters. If the structure is known
or fixed, then learning the parameters is known to be computationally rel-
atively easy, at least if there are no missing values in the data [16, 31].
While in many applications the structure is either obvious or otherwise
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known, in other cases learning the structure is also required. This is espe-
cially the case in data analysis tasks, where not much is known about the
data beforehand and the main interest is in learning the structure while
the parameters are more of a nuance and may be ignored completely.

There are two main approaches to the structure learning problem. The
constraint-based approach [74, 67, 60, 68, 42] is based on the fact that a
structure corresponds to a certain set of conditional independences between
the variables. By conducting a set of statistical independence tests, the
DAG can be reconstructed piece by piece. The main problems of this
approach are the lack of robustness of independence tests and inability to
address the uncertainty about the structure. In the score-based approach
[16, 32] a real-valued score is assigned to each possible DAG based on how
well the DAG fits the data. The learning problem is therefore transformed
into an optimization task. Compared to the constraint-based approach, the
score-based approach typically yields better results, but as a downside it is
often computationally harder and can thus be impractical for datasets with
a large number of variables. Therefore, algorithms for restricted cases, such
as learning tree-like networks, as well as heuristic methods for the general
case, such as algorithms based on greedy search, have been introduced [16,
32, 69, 14]. Recently, however, there have also been several improvements
to the efficiency of exact score-based learning [55, 64, 65, 78, 34, 18].

In score-based approaches, the scoring criteria typically fall in two cat-
egories: information theoretic scores that combine the maximum likelihood
of the structure with a penalty for structure complexity, and Bayesian scores
that consist of the marginal likelihood of the structure and possible prior
knowledge. Bayesian scoring is particularly interesting since it naturally
allows a full Bayesian approach. By considering the full posterior distribu-
tion of structures it is possible to properly handle the uncertainty about the
structure. While explicitly describing the full posterior is not practical, it
can be summarized by computing statistics of interest: In addition to find-
ing a most probable (highest scoring) structure, one can compute posterior
probabilities of structural features such as the presence of an arc between
two given nodes. A full Bayesian approach is useful especially when there
are many structures with a high score and thus finding only one of them
would not be representative enough.

Computing the posterior probability of a structural feature is a hard
problem in general. The existing exponential algorithms can solve the
problem exactly for moderate-size networks: The state-of-the-art meth-
ods scale up to 20 variables [70] or up to around 25 variables if special
type of prior knowledge about the structure is assumed [39, 38]. Several
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sampling based estimation algorithms have also been proposed. There are
two main approaches, which are both based on the Markov chain Monte
Carlo method (MCMC) [48, 29] but which differ on how the samples are
formed: A straightforward approach, suggested by Madigan and York [46]
and later extended by others [20, 28, 17], is to sample a set of structures
along a Markov chain whose stationary distribution coincides with the pos-
terior distribution of structures. Feature probabilities can be estimated by
taking the average over samples. The other approach, by Friedman and
Koller [23], combines sampling and exact averaging over restricted subsets
of possible structures. The approach is based on two observations: First,
every structure is acyclic and thus has at least one linear extension, that
is, an ordering of the variables that agrees with the directions of all arcs.
And second, if a variable ordering is fixed, then the average over the cor-
responding structures can be relatively efficiently computed exactly. The
algorithm draws samples along a Markov chain defined over orderings and
for each sampled ordering it computes the corresponding average exactly.
As the orderings form a sampling space that is smaller and smoother than
the space of the structures, this leads to better mixing of the Markov chain
and consequently better estimates.

While being arguably an improvement over structure sampling, the
question remains whether ordering-based sampling could be further im-
proved in various ways. More specifically, this thesis addresses the following
four questions:

(I) Although Markov chains over orderings typically mix much better
than Markov chains over structures, sometimes bad mixing can still
be an issue. Can the mixing be significantly further improved, ei-
ther by further modifying the sampling space or by adopting some
standard techniques to enhance MCMC methods?

(II) What is common to most MCMC based algorithms is that the gen-
erated samples are not independent. Independence could potentially
allow some additional theoretical guarantees, such as high-confidence
bounds for the estimated quantities. Is it possible to draw indepen-
dent samples?

(III) Ordering-based sampling causes a bias by favoring structures that
have a large number of linear extensions. Although this bias can be
viewed as a result of a special prior knowledge that is part of the
model, such priors are often unwanted. Is it possible to get rid of the
bias?
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(IV) Compared to structure sampling, the per-sample computations in
ordering-based sampling are much more expensive and therefore fewer
samples can be drawn within the same time budget. Can the per-
sample computations be sped up significantly?

This thesis addresses the above questions by proposing several improve-
ments to ordering-based sampling. Paper I, Paper II and Paper III study
questions I, II and III. The goal of Paper I is to improve mixing by tak-
ing another step in to the direction of exact computations. Inspired by
the ordering-based MCMC and recent advances in exact algorithms for full
Bayesian structure learning [58], the paper proposes a MCMC algorithm
that samples partial orderings of variables. Paper II aims to improve mix-
ing and convergence further by applying widely known tempering methods,
Metropolis coupled Markov chain Monte Carlo (MC3) [25] and annealed im-
portance sampling (AIS) [49]. The latter method of the two provides also a
solution to question II and has some other nice properties. In order to tackle
question III, the paper proposes a simple importance sampling scheme that
involves nestedly sampling weighted structures from orderings. Paper III
refines and generalizes the results from Papers I and II and introduces some
technical improvements that reduce the time and space requirements of the
algorithms.

Paper IV concentrates on question IV. The per-sample computations
of ordering-based sampling mostly consist of computing large sums of real
values that describe how likely different sets of parents are for each variable.
In order to speed up these computations, the paper introduces a greedy
heuristic that, for any query set of variables, is able to approximate the
sum over the subsets of the query set within a guaranteed error bound.

While the main focus of this thesis is on Bayesian structure learning, the
thesis also proposes a new approach to a slightly different type of problem:
local structure learning [1]. In contrast to global structure learning that
was discussed above, in local learning the interest is restricted to the local
substructure around a fixed target variable. More specifically, for a given
target variable, the task is to find either the neighbors of the target, that
is, the other variables that are connected to the target via an arc, or the
Markov blanket of the target, that is, the minimum set of other variables
that explains all the dependencies between the target and the remaining
variables. Local learning can be useful if the interest lies only in a certain
small part of the structure and a large total number of variables makes
learning the full structure infeasible. Another possible motivation is vari-
able selection: For example, if the purpose is to classify the target variable
based on the values of the others, typically only a small portion of other
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variables is needed to obtain the optimal prediction power. Indeed, the
maximum predictivity with the minimum number of predictors is provided
by the Markov blanket of the target. The question is, how to learn the
neighbors and/or the Markov blanket of a target efficiently without a need
to construct the full structure. Several algorithms for local learning exist
[41, 47, 71, 1] that all use constraint-based approaches. This leads to the
fifth research question of this thesis:

(V) Are there other, either faster or more accurate, ways to solve the
local learning problem?

This thesis addresses question V by suggesting a score-based algorithm
for the local learning problem. Paper V presents an algorithm that is a
variant of the Generalized Local Learning framework introduced by Aliferis
and Tsamardinos [1]. The main difference is that, instead of using statistical
independence tests, the proposed algorithm constructs the neighborhood
and the Markov blanket of the target based on the results of repeated
score-based searches for optimal substructures.

The rest of this introductory part of the thesis is organized as follows:
Chapter 2 specifies in more detail the learning tasks that this thesis proposes
solutions for. The next two chapters concentrate on full Bayesian structure
learning. Chapter 3 shows how to apply different Markov chain Monte
Carlo based methods and use different sampling spaces to estimate posterior
probabilities of structural features. Chapter 4 provides efficient algorithms
for the per-sample computation problems that need to be solved in order
to be able to us the methods introduced in the previous chapter. Together,
Chapters 3 and 4 serve as an introduction to the algorithms and the results
that are presented in Papers I–IV. Finally, Chapter 5 concentrates on local
structure learning and outlines the approach and the results of Paper V.

1.1 Author contributions

Each paper was jointly written by all authors of the paper. The other
contributions were as follows:

Paper I: The idea of combining the MCMC approach and the advances in
exact computation was due to Pekka Parviainen and Mikko Koivisto.
The implementation and the experiments were conducted by the
present author.

Paper II: The algorithmic ideas (the ideas of applying AIS and obtaining
lower bounds, as well as the algorithm for counting linear extensions)
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were mainly due to Mikko Koivisto. The implementation and the
experiments were conducted by the present author.

Paper III: The mentioned improvements to the algorithms were mainly
due to the present author. The implementation and the experiments
were conducted by the present author.

Paper IV: The algorithms and results were joint work by Mikko Koivisto
and the present author. The implementation and the experiments
were conducted by the present author.

Paper V: The algorithms and results were joint work by Pekka Parviainen
and the present author. The implementation and the experiments
were conducted by the present author.



Chapter 2

Preliminaries

The purpose of this chapter is to define the concept of a Bayesian net-
work, explain some of its important properties and introduce the concept
of structure learning. After that, the rest of the chapter acts mainly as a
preparation for Chapters 3 and 4. The concepts that are only related to
local learning and are thus needed only in Chapter 5, will be introduced
there.

2.1 Bayesian networks

Let X1, X2, . . . , Xn be n random variables. For each random variable Xv,
denote by Xv its state space, that is, the set of values it can take. For any
subset S ⊆ {1, . . . , n}, denote by XS the vector that consists of the random
variables indexed by the elements of S (in order to make the ordering of
the random variables in XS unique, we assume that they are sorted by the
indices), and by XS = ×v∈SXv the corresponding joint state space.

The goal is to model the joint distribution of the random variables, de-
noted by p(X1, . . . , Xn). To be able to do probabilistic inference, or maybe
to just discover how the variables are statistically related, one usually has
to express the joint distribution in some form. The variables may be dis-
crete or continuous, but for now assume that they are discrete. To describe
the joint distribution, one possibility is to list the probabilities of all joint
value assignments the variables can take. (In fact, one of them can be left
out as its value follows from the fact that the probabilities need to sum up
to one.) However, there are

∏n
v=1 |Xv| such value configurations, a num-

ber that grows exponentially with respect to n, so explicit listing is not
practical unless n is very small. From this explicit representation, it is also
usually hard to make any interesting findings about the properties of the

9
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distribution. Fortunately, interesting real world distributions are typically
sparse in a sense that they contain lots of (conditional) independences.
There are several ways to exploit the independences and describe the joint
distribution more succinctly, and often also in a more human friendly man-
ner. Typically they are based on a graphical representation; the random
variables are represented as nodes and the dependencies between them as
either undirected edges or directed arcs between the nodes [59, 40]. In this
thesis we restrict our attention to directed graphical models, usually called
Bayesian networks [59].

Bayesian networks are based on the fact that by using the chain rule the
joint distribution decomposes into p(X1)p(X2 |X1) · · · p(Xn |X1, . . . Xn−1),
a product of n terms where each term is a conditional probability dis-
tribution. One could describe the joint distribution by encoding these n
conditional distributions, but this would not yet result in any savings in the
total number probabilities that need to be listed. Now consider for instance
the fifth term of the decomposition, p(X5 |X1, X2, X3, X4). If we know that
X4 is independent of X2 and X4 given X1 and X3, then the term can be re-
placed by an equal term p(X5 |X1, X3). In this case we call X1 and X3 the
parents of X5. The distribution conditioned by only two parents can be en-
coded more compactly than the original distribution with five conditioning
variables. In this case the number of free parameters required to encode the
term is reduced from (|X5| − 1)|X1||X2||X3||X4| to only (|X5| − 1)|X1||X3|.
By doing a similar replacement for every term in the decomposition, we
obtain an equal decomposition in which the vth term depends only on Xv

and its parents. Typically we want to minimize the number of parents for
each variable. If the distribution has a lot of conditional independences,
then the variables will have only few parents, which leads to much more
compact representation of the conditional distributions. While in many
cases there is a unique minimal set of parents for each variable, this is not
always true. Note also that the order in which the chain rule is applied, can
be arbitrary; with different orderings one may (or may not) obtain different
sets of parents. Indeed, it might be the case, that one ordering leads to a
very compact encoding but another ordering does not yield much savings.

Consider an arbitrary order in which the parents for variables are de-
termined. The parent relations can be encoded as a directed acyclic graph
(DAG for short), G = (N,A) with the node set N = {1, . . . , n} and the
arc set A ⊂ N ×N , as follows. Each node v ∈ N corresponds to a random
variable Xv. The arc set, or the structure as we will call it, determines the
parents: there is an arc from u to v, that is (u, v) ∈ A, if and only if Xu is
a parent of Xv. In this case we also say that u is a parent of v, that v is a
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1 3

2 4

6

5

87

(a) The structure of the Asia net-
work, repeated from Figure 1.1 but
with renamed nodes.

1 3

2 4

6

5

87

(b) Another structure on the same
node set, that belongs to the same
equivalence class.

Figure 2.1: Two examples of (DAG) structures with the same skeleton.

child of u, and that u and v are neighbors. We denote the set of all parents
(that is, parent set) of v by Av. Furthermore, if there is a directed path
from u to v, we say that u is a descendant of v and that v is an ancestor
of u. If u and v are not neighbors but have a common child w, then u and
w are said to be spouses and u, w and v are said to form a v-structure.
From this point on, we may refer to a node and the corresponding random
variable interchangeably when the meaning is obvious.

Example 2.1. Figure 2.1a shows an examples of a (DAG) structure. In
the structure the node 6 has two parents, nodes 2 and 4, two children,
nodes 7 and 8, and one spouse, node 5. There are two v-structures in the
structures, one formed by nodes 2, 6, and 4, and another formed by nodes
5, 8 and 6.

We are now ready to define a Bayesian network. By the definition of
the structure A above, the joint distribution of X1, . . . , Xn can be written
as a product

∏
v∈N p(Xv |XAv). The terms p(Xv |XAv) are called local

conditional probability distributions, or LCPDs for short. If the structure
A is given, then the joint distribution can be fully characterized by defining
the LCPDs for each node in the structure. Formally, a Bayesian network
is a pair (G, θ) that consists of a DAG G = (N,A) with n nodes and a
parameter vector of n nonnegative functions θ = (θ1, θ2, . . . , θn), each θv
satisfying

∑
xv∈Xv

θv(xv;xAv) = 1 for all xAv ∈ XAv . Together they define
a joint distribution

p(G,θ)(X1, . . . , Xn) =
∏
v∈N

θv(Xv;XAv). (2.1)
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From this definition, it then follows that the local conditional distribu-
tions are directly defined by the parameters, that is, p(G,θ)(Xv |XAv) =
θv(Xv;XAv), and conversely the parameters are directly determined by
conditional probabilities. In the case of continuous variables the defini-
tion a Bayesian network is otherwise similar, but the parameters θv define
continuous distributions, usually taken from some parametrized family.

Consider then an arbitrary structure A and an arbitrary joint distri-
bution p. We say that A contains p, if p can be encoded by a Bayesian
network with A as a structure, or equivalently, if p decomposes according
to A into a product of local distributions conditioned on the parent sets.
Thus, a complete structure (one which has an arc between every pair of
nodes) contains every distribution and absence of arcs encodes conditional
independences between the random variables. More specifically, the local
Markov property holds: each variable Xv is conditionally independent of its
non-descendants given its parent variables XAv . Moreover, if the structure
contains no arcs, then all the variables must be mutually independent. If A
contains p and, in addition, all independences in p are implied by A, then
it is said that p is faithful to A and that A is a perfect map of p [59, 68]. A
necessary but not sufficient requirement for this is that the parent sets in
A are minimal with respect to p. If A is faithful to some structure, then A
is said to be faithful. Not all distributions are faithful. On the other hand,
some faithful distributions have several perfect maps, all implying the same
set of independences.

If two structures contain exactly the same set of distributions, or equiv-
alently, imply the same set of conditional independences, then those struc-
tures are called Markov equivalent. This equivalence relation partitions
the set of all structures into equivalence classes. It can be shown that an
equivalence class consists of exactly those structures which have the same
skeleton, that is, structure from which the arc directions are removed, and
the same set of v-structures [74]. The arcs that are not part of any v-
structures can be directed arbitrarily as long as no additional v-structures
are formed.

Example 2.2. Figures 2.1a and 2.1b contain two equivalent structures
that differ in the directions of two arcs: the arc between nodes 1 and 2,
and the arc between nodes 3 and 5. Reversing these arcs does not affect
the skeleton nor does it remove or create any v-structures.
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2.2 Structure learning

Learning a Bayesian network from data may involve finding the parameter,
the structure, or both. If the structure is given, then it is rather straightfor-
ward to learn the parameters [59, 16, 31]. Structure learning, however, has
turned out to be much more challenging. This thesis concentrates solely on
structure learning.

In structure learning we are given m samples of data. We make the
standard assumption that the samples are i.i.d. draws from an (unknown)
n-dimensional distribution p, often called the data generating distribution.
Our goal is to learn a structure A ⊆ N × N that best fits the data in
the sense that it describes well the distribution p. We model the data as
an m× n matrix, denoted by D. Each row of the matrix contains a single
sample from p. From now on, we refer to rows/samples as data points. Each
column of the matrix corresponds to a single node v ∈ N and is denoted
by Dv = (D1

v , . . . , D
m
v ), where Di

v is the vth value of the ith data point.

Since we would like to find a structure that best fits the data (or some
aspect of such a structure), the next step is to define what does a good
fit mean. Unfortunately, there is no definite answer, but some properties
can be seen desirable. Clearly we would like the structure to contain the
data generating distribution. On the other hand, we would like to avoid
overfitting and thus only include necessary arcs to keep the total number
of free parameters low. Thus, if possible, a perfect map would seem to be
a best fit. But if the data generating distribution has many perfect maps,
which one should we choose? And what should we do if the distribution
does not have a perfect map? Another issue is that with a finite amount
of data it is not even possible to deduce the correct generating distribution
with full certainty. We would also like to address this uncertainty about
the distribution.

As explained briefly in Chapter 1, the two main approaches to struc-
ture learning are the constraint-based and the score-based approach, both
having their strengths and weaknesses. Since understanding the constraint-
based approach will be useful later in Chapter 5, we are going to next give
a very short introduction to constraint-based learning. After that, we con-
centrate on the score-based approach, which is used in Chapters 3 and 4.

2.2.1 Constraint-based learning

In the constraint-based approach the idea is to use the fact that the struc-
ture implies a certain set of conditional independence statements between
the variables, and if we want the structure to be minimal, then conditional
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independence statements also also imply some properties of the structure.
By performing statistical independence tests (in the case of discrete data
usually χ2-test or G-test) one can examine whether those potential indepen-
dence statements hold in the data. From each test result, some properties
of the structure (for example, existence and/or direction of an arc) can be
inferred. There are several algorithms that define which potential inde-
pendences should be tested, in which order, and how the result should be
interpreted [68, 74, 60].

Most constraint-based algorithms assume that the data generating dis-
tribution is faithful [15]. Usually these algorithms have been designed to be
sound in the sense that, under the faithfulness assumption the algorithm
returns a correct result (that is, a perfect map of the distribution) in the
limit of large sample size, that is, when the number data points approaches
infinity. Although this property is useful to have, it does not tell much
about the performance of the algorithm on small data sizes.

While being exponential in the worst case, in practice, constraint-based
algorithms are usually relatively fast and can scale to networks of hundreds
or thousands of nodes [42]. If the number of variables is small, the depen-
dences are relatively strong and the data has a lot of observations, then
constraint-based approaches often work well. Unfortunately, they are quite
sensitive to incorrect results from independence tests [13, 42]. If the data
size is small or the dependencies are weak, then score-based algorithms
often yield better results [77].

2.2.2 Score-based learning

In the score-based approach one assigns each structure A a real valued
score, denoted by s(A), that measures the goodness of fit to the data; a
best fitting structure can be determined by finding one with the largest
score. The problem of constructing the structure thus becomes a discrete
optimization problem, which can be solved in numerous ways, either with
an exact algorithm or with some kind of heuristic search.

While in theory the score s could be an arbitrary function, in practice
some properties are required, either to make the search computationally
more efficient, or for it to match what we think is a good fit to the data.
A scoring function s is said to be modular, if it factorizes into a product
of local scores as s(A) =

∏
v sv(Av), a property that is crucial for many

algorithms including those that we are going to present. (In the literature
the property is often called decomposability, but for consistency with the
similar properties of prior and likelihood we call it modularity.) There are
several popular scoring functions that are all modular and typically belong
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to one of two classes: The scores in the first class are based on the maximum
log likelihood of the structure combined with some typically information
theoretic penalization term, such as AIC or BIC/MDL [9, 13, 42], and the
scores in the second class are based on the Bayesian posterior probability
of the structure, such as K2 and BDeu [16, 32].

In addition to modularity, it is often also wanted that the score has
some other nice properties. Since structures that are Markov equivalent
can represent the same set of distributions, they are sometimes considered
indistinguishable, and it is often desired that the scoring function gives
them a same score. Such scoring functions are called score equivalent.
Often it is also desirable to have some guarantees of soundness in the limit
of large sample size. A scoring function is said to be consistent [14], if in the
limit of large sample size: (1) a structure that contains the data generating
distribution always has a higher score that a structure that does not, and
(2) if two structures contain the data generating distribution, the structure
with fewer free parameters has a higher score. Faithfulness together with
a score equivalent consistent scoring function guarantees that, in the limit
of large sample size, a structure with the highest score is a perfect map of
the data generating distribution [14].

2.2.3 Bayesian learning

As mentioned, an important family of scoring functions is based on the
Bayesian approach [16, 32]. The scores belonging to this family are often
collectively called the Bayesian score. In the Bayesian approach the struc-
ture A and the parameter θ of the generating Bayesian network, as well as
the data D itself, are treated as random variables. The data are assumed to
consist of independent draws from the distribution defined by the structure
and the parameters as given in Equation 2.1. It then follows that, given A
and θ, the conditional probability of the data factorizes into a product

p(D |θ,A) =
∏
v∈N

p(Dv |DAv , Av, θv)

of local conditional probabilities p(Dv |DAv , Av, θv) =
∏m
i=1 θv(D

i
v;D

i
Av

).
In addition to the conditional distribution of the data, a probability dis-
tribution p(θ,A), called a prior, is defined so that it depicts the modelers
initial beliefs of the structure and the parameters before any data has been
seen. The prior is usually split into a product p(θ |A)p(A) where p(A) is
called the structure prior and p(θ |A) is called the parameter prior. The
product of the prior and the conditional probability of the data gives us
a full joint model p(D, θ,A). The Bayesian score is then defined to be
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proportional to the posterior probability of the structure given the data,
which, using Bayes’ rule can be expressed as

p(A |D) =
p(D |A) p(A)

p(D)
,

where p(D |A) is called the likelihood of structure A and p(D) is called
the normalizing constant (sometimes also called the marginal likelihood).
Note that the parameters are marginalized out in the likelihood term and
thus do not appear in the equation. Since p(D) does not help distinguish
different structures it can be often ignored. Motivated by this, we define
the Bayesian score as p(D |A)p(A).1

The Bayesian approach is interesting not only because it is theoretically
justifiable, but also because by considering the full structure posterior it
imposes a way to take into account the aforementioned uncertainty in the
structure. While in most cases it is not practical to describe the poste-
rior explicitly, it is possible to construct a representative sample of high-
probability structures or compute different summaries. Finding a structure
with the highest posterior probability is one way to summarize, but another
one is computing posterior expectations of so called structural features, an
approach sometimes called Bayesian averaging. For example, Bayesian av-
eraging can be used to find posterior probabilities for presence of arcs or
other substructures.

Formally, a structural feature is a function f that maps structures to
real values. In Bayesian averaging, the task is to compute its posterior
expectation

E[f(A) |D] =
∑
A

f(A) p(A |D) . (2.2)

For convenience we may write just f instead f(A) so that the above expec-
tation becomes simply E[f |D]. From now, the task of computing E[f |D]
with respect to p is called the feature expectation problem (the FE prob-
lem). As a special case, if f is a binary valued indicator function for the
presence of some structure property, this expectation equals the posterior
probability of that property. A common example is the so called arc fea-
ture, which for a give pair of nodes u and w indicates whether an arc from
u to w is present in the structure or not. Like a scoring function, a feature
is said to be modular, if it decomposes in to a product

∏
v∈N fv(Av). For

example, the arc feature for an arc (u,w) is modular and can be defined by
setting fv(Av) = 0 if w = v and u /∈ Av and fv(Av) = 1 otherwise.

1It is common to define the score in a logarithm form log p(D |A) + log p(A) instead.
This is often handy when searching for the best structure, but would turn out inconve-
nient later when we want to do Bayesian averaging.
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Sometimes we can also be interested in the normalizing constant p(D)
that tells how well the data fits to the model (and thus the prior assump-
tions we have made). In addition, as we will see in the next section, comput-
ing the normalizing constant is often part of solving the feature expectation
problem. Finding the normalizing constant reduces to the computation of
the following summation:

p(D) =
∑
A

p(D |A) p(A) .

Let us call this the normalizing constant problem (the NC problem). Both
the normalizing constant problem and the feature expectation problem in-
volve a summation over all possible structures. From now, these problems
are collectively referred as the summation problem(s), in contrast to the
problem of finding the highest scoring structure, which is referred as the
optimization problem.

This far, not much have been said about how the structure prior and
the parameter prior are or should be defined. Let us first consider the
parameter prior p(θ |A). When defining the parameter prior, the LCPDs
are typically assumed to be taken from a parametrized family of probability
distribution, for instance a discrete or a Gaussian distribution [16, 32, 24].
In what follows, we identify the LCPDs with their free parameters. For each
LCPD θv we denote by ΘA,v the family it is taken from and correspondingly
by ΘA = ΘA,1×ΘA,2×· · ·×ΘA,n the family of full parameter vector θ. While
the algorithms and results that we present do not rely on any specific family
of distributions, in the experiments and examples only discrete variables are
considered.

As we saw above, the Bayesian score consists of the structure prior
and the likelihood. Using the notation above, the likelihood is obtained by
integrating over the free parameters of the LCPDs as follows:

p(D |A) =

∫
ΘA

p(D |θ,A) p(θ |A) dθ .

While computing this integral in general form is usually computationally
infeasible, with certain assumptions about the parameter prior the compu-
tation can be made practical. In addition, since most structure learning
algorithms also require that the score is modular, the parameter prior needs
to satisfy some additional requirements, discussed next.

We require that the parameter prior satisfies the following two proper-
ties, as defined by Heckerman et al. [32]: global parameter independence,
which means that given the structure the parameters of different nodes are
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independent, that is p(θ |A) =
∏
v∈N p(θv |A), and parameter modularity,

which says that ifA andA′ are structures such thatAv = A′v for some v then
p(θv |A) = p(θv |A′). Together these imply that p(θ |A) =

∏
v∈N p(θv |Av)

and it is possible to show that as a consequence, the likelihood decomposes
into a product

p(D |A) =
∏
v∈N

p(Dv |DAv , Av) ,

where

p(Dv |DAv , Av) =

∫
ΘA,v

p(θv |Av) p(Dv |DAvθv, Av) dθv

and ΘA,v depends only on v and Av. In certain cases the above integral
can be computed in closed form. For discrete data this is the case if each
θv( · ;xAv) defines a discrete distribution, whose parameters (θv(xv;xAv) :
xv ∈ Xv) are Dirichlet distributed independently for each v ∈ N and
xAv ∈ XAv . With certain choices of the (hyper)parameters of the Dirichlet
distributions this leads to BDeu and K2 scores [32, 16].

Consider then the structure prior p(A). The above assumptions about
the parameter prior made the likelihood both decomposable (modular) and
easy to evaluate. To transfer these properties to the Bayesian score, the
final step is to require similar properties from the structure prior: We say
that the structure prior is modular if p(A) =

∏
v ρv(Av) for some nonneg-

ative functions ρ1, . . . , ρn. For example, by setting ρv(Av) to a constant
that is independent of v and Av, a uniform prior over structures is ob-
tained. It is easy to see that, if the structure prior, the parameter prior
and the likelihood are all modular, also the resulting Bayesian score and
the corresponding posterior probability are modular. As we will see in the
next section, this allows the optimization problem to take a nice recurrence
form, which in turn can be solved using dynamic programming.

It also turns out, that it is possible to use an analogous approach to
solve the summation problems but this requires a slightly different type of
prior. Remember, that every structure corresponds to one or more node
orderings. Formally, we can encode any (linear) order on the nodes in N as
a relation L ⊆ N ×N , where (u, v) ∈ L if u precedes v or u = v. The set
of all predecessors of v in L is denoted by Lv. We say, that a structure A
and a linear order L are compatible, if A ⊆ L (or equivalently Av ⊆ Lv for
all v ∈ N), that is, if L is a topological ordering of A. We can now define
a joint prior of A and L that decomposes as p(A,L) =

∏
v ρv(Av)πv(Lv) if

A ⊆ L and p(A,L) = 0 otherwise, for some nonnegative functions ρ1, . . . , ρn
and π1, . . . , πn. D and θ are assumed to be independent of L given A.
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A structure prior is said to be order-modular if it can be expressed as a
marginal p(A) =

∑
L p(A,L) of such a decomposable joint prior. Together

with a modular parameter prior and a modular likelihood, an order-modular
structure prior leads to an order-modular posterior.

While a modular (or order-modular) score s definitely makes many
structure learning problems more manageable, the local scores sv need still
each to be defined for 2n−1 potential parent sets. To make the number of
potential parent sets smaller, an upper bound k is often defined for the size
of the parent set. In the Bayesian setting, this upper bound can simply be
incorporated to be a part of the structure prior by setting ρv(Av) = 0 for
all v ∈ N and |Av| > k.

2.3 Exact algorithms for structure learning

This section shows how the score-based optimization problem and the sum-
mation problems can be solved exactly. This information will be relevant
in Chapters 3 and 4, which present randomized estimation algorithms for
the summation problems. Constraint-based algorithms are not relevant to
the next two chapters, and are thus not handled here. They will be briefly
returned to in Chapter 5.

Both the optimization and the summation problems can be trivially
solved by exhaustively enumerating all possible structures. Since there is a
superexponential number of structures, this brute force approach is feasible
only for a small number of nodes (fewer than 10). The next subsection
describes a dynamic programming algorithm that solves these problems in
O(kn2n + nk+1) time and O(n2n) space, where k is the maximum number
of parents allowed for a single node. This allows solving instances of up to
20–30 nodes.

2.3.1 Dynamic programming over node subsets

Consider first the feature expectation problem. Koivisto and Sood [39]
described a dynamic programming formulation that can be used to solve
the problem as follows. For simplicity, assume that the feature f is binary.
In this case, the expectation from Equation 2.2 can be written as a ratio
E[f |D] = p(f,D)/p(D), where p(f,D) is a shorthand for p(f(A) = 1, D),
and therefore

p(f,D) =
∑
A

f(A)p(D |A) p(A) . (2.3)

Thus, the problem is split into two subproblems, namely, solving the un-
normalized feature probability p(f,D) and solving the normalizing constant
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p(D). Moreover, these problems are very similar in nature: A method for
computing p(f,D) can also be used to compute the normalizing constant
since p(D) = p(1 , D), where 1 is the constant feature defined by 1 (A) = 1
for all structures A. Thus, it remains to find a way to compute p(f,D) for a
(reasonably) arbitrary f . It is easy to see, that what was stated above, also
applies naturally to non-binary features, if the notation p(f,D) is defined
in general according to Equation 2.3.

After the reduction above, the remaining problem is to compute unnor-
malized feature probabilities. The key to an efficient solution is to assume
an order-modular prior p(A,L) over the structure A and a linear order L
as described in Section 2.2.3. Then, by switching the order of summations
over A and L, and using the assumptions from the previous section, the
unnormalized feature probability can be molded into a sum–product

p(f,D) =
∑
L

∏
v∈N

αv(Lv) , (2.4)

where the summation is over all linear orders and the terms of the inner
product are given by

αv(Lv) = πv(Lv)
∑

Av⊆Lv

fv(Av) ρv(Av) p(Dv |DAv , Av) . (2.5)

Assume first that the terms αv(Lv) have already been computed. The
sum–product over linear orders in Equation 2.4 allows a dynamic program-
ming solution that is similar to the classic solution to the traveling salesman
problem by Bellman [7]. Namely, with some further manipulation the sum–
product can be reformulated as a recurrence

F (S) =
∑
v∈S

αv(S \ {v})F (S \ {v}) , for ∅ ⊂ S ⊆ N , (2.6)

and F (∅) = 1, so that p(f,D) = F (N). If the values αv(Lv) are given
(accessible in constant time) for all v ∈ N and Lv ⊆ N \{v}, then by using
dynamic programming over the subsets S the values F (S) for all S ⊆ N
can be computed in O(n2n) time and O(2n) space.

The remaining problem is to precompute the terms αv(Lv). Unfortu-
nately, the straightforward application of Equation 2.5 would lead to Ω(3n)
total time requirement. However, it turns out that for a fixed v ∈ N the
values αv(Lv) for all Lv ⊆ N \ {v} can be computed in O(n2n) total time
and O(2n) space, by using the so-called fast zeta transform (see for exam-
ple [37]). If the number of parents per node is limited to be at most k,
then it is possible to further reduce the total computation time per node to
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O(k2n + nk) [39]. Therefore, computing the terms αv(Lv) for all n nodes
and then computing the unnormalized feature probability by dynamic pro-
gramming results in total time requirement O(kn2n + nk+1).

Consider then the optimization problem. Unfortunately, with an order-
modular prior, the same approach does not work for optimization. But if a
modular prior is assumed instead of an order-modular, then the described
dynamic programming algorithm can be relatively straightforwardly turned
into an optimization algorithm that computes the score of the highest scor-
ing structure [39, 55, 64, 65]. Basically all the summations in the computa-
tions just need to be replaced by maximizations. The actual structure that
produces the highest score can be constructed by backtracking the results
of the dynamic programming and the fast zeta transform.

2.3.2 Other exact algorithms

After the introduction of the above described algorithms there have been
some advances in both the summation and optimization problems. Tian
and He [70] presented a dynamic programming algorithm that solves the
feature expectation problem with modular prior in O(3n) time and O(n2n)
space. The idea is to use the inclusion–exclusion principle to reduce the
problem recursively into smaller subproblems where only a subset of nodes
is allowed to have incoming arcs. Parviainen and Koivisto [58] presented
a way to compute feature expectations in smaller space with the trade-off
of larger time consumption by partitioning the set of all structures into
smaller sets represented as partial orders and solving the problem for each
partial order separately. Still, for the FE problem, the described O(kn2n)
(for order-modular prior) and O(3n) (for modular prior) dynamic program-
ming algorithms remain the fastest known exact methods. With current
hardware these algorithms scale up to about 25 and 20 nodes respectively.

The optimization problem, on the other hand, has seen a bit more de-
velopment. Yuan et al. [78, 77] showed that reformulating the optimization
problem as a shortest path finding problem and then applying the A* search
algorithm with a properly chosen heuristic can for many datasets reduce
both the time and space usage compared to dynamic programming. This
approach is still closely related to dynamic programming. Another more
different strategy that has turned out to be quite successful is to use inte-
ger linear programming (ILP) to solve the optimization problem [34, 18, 4].
An advantage offered by this approach is that the reformulation as an ILP
problem allow the usage of highly sophisticated ILP solvers. The drawback
of this approach is that it does not give any useful worst-case bounds for
the running time.
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Chapter 3

Monte Carlo estimation

Consider the problem of computing the posterior expectation of a structural
feature (the FE problem). If the number of nodes in the structure exceeds
about 20 in the case of a modular structure prior or 25 in the case of
an order-modular structure prior, the current methods cannot solve the
problem exactly (see Section 2.3). In this chapter we will see that in many
such cases the solution can be reasonably well estimated by using Monte
Carlo methods, which are based on random sampling. This chapter is based
on Papers I and II.

3.1 Estimation via sampling structures

Monte Carlo is a technique for numerical integration, and can be used for
estimating the expectations of random variables (see for example [62, 56]).
Consider the FE problem and let D be the dataset and f be a feature for
which we want to estimate the posterior expectation (Equation 2.2). A
straightforward Monte Carlo algorithm would draw T independent random
samples A(1), . . . , A(T ) from the posterior distribution over structures and
estimate the expectation as follows:

E[f |D] ≈ 1

T

T∑
t=1

f(A(t)) . (3.1)

From now, let us call this the simple Monte Carlo estimate.
In order to collect enough samples to get an accurate estimate, drawing

samples from p(A |D) should be relatively fast. Unfortunately, if f is as-
sumed to be modular, sampling structures from the posterior distribution
seems to be at least as hard as evaluating the expectation exactly. For non-
modular features, though, even slow sampling can be useful. Indeed, using

23
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a modification of the dynamic programming algorithm from Section 2.3.1 it
is possible to draw samples from an order-modular distribution using only
an additional polynomial time per sample [30]. Still, if n about 30 or larger,
something else is needed.

In general, if exact sampling from the target distribution is not feasible,
there are a couple common approaches (again, see for example [62, 56]).
One option is to use importance sampling. In importance sampling the
samples are drawn from another easier distribution and the terms of the
sum in Equation 3.1 are weighted accordingly to correct the caused bias.
For good estimates, the sampling distribution should be close to the target
distribution. Unfortunately, in our case it seems difficult to find an easy
exact sampling distribution that is close enough to the posterior to pro-
vide good estimates. Another option is to revert to approximate sampling,
which usually means using the Markov chain Monte Carlo method or some
variation of it. In the following sections we apply Markov chain Monte
Carlo and some of its variants to the FE problem.

3.1.1 Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) method [48, 29] is a standard so-
lution for the problem of estimating an expectation when sampling exactly
from the target distribution is hard. Let S be a random variable which
takes values from a sample space S and let g be a function from S to real
numbers. Consider the problem of estimating E[g(S)] with respect to a
probability distribution p. The MCMC method is based on simulating a
Markov chain that has S as its state space and p as its stationary distri-
bution. To draw a sequence of samples S(1), . . . , S(T ), an arbitrary starting
state is selected from S, the Markov chain is simulated a number of steps
and at predefined intervals the current state of the chain is picked as a
sample. The expectation is then estimated using the simple Monte Carlo
estimate as in Equation 3.1.

MCMC relies on the assumption that the collected samples follow a
distribution that is reasonably close to p(S). It can be shown, that if the
Markov chain is irreducible and aperiodic, and the number of simulation
steps between the samples is increased, then the distribution of each sample
approaches the stationary distribution. Usually a long burn-in simulation
is run before the first sample to give the chain some time to move from
a starting state with possibly very low probability to the region of states
with high probability. Unfortunately, it is often difficult to tell how long one
should simulate the chain to get a sample distribution that is a reasonably
good approximation of p(S). A related issue is that consecutive samples are
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not independent, which means that the effective sample size is in practice
smaller than T . As a consequence, usually it is not possible to obtain
any meaningful guarantees about the estimate of the expectation. Despite
these theoretical shortcomings, in practice the MCMC method has proven
to work well in many real word scenarios.

There are several ways to build a Markov chain that has a desired sta-
tionary distribution. A common one, and the one that is used throughout
this thesis, is the Metropolis–Hastings algorithm [48, 29] which works as
follows: On each step, first a transition from the current state S to a (pos-
sible) next state S′ is proposed according to a special proposal distribution
q(S′ |S). Typically, the proposal probability is defined so that it is high
only for states S′ that are close to S with respect to some natural distance
function. The proposal is accepted with probability

min

{
1,
p(S′) q(S |S′)
p(S) q(S′ |S)

}
,

in which case the next state is set to S′, and rejected otherwise, in which
case the next state remains as S. Often the proposal distribution is sym-
metric, that is, q(S′ |S) = q(S |S′), and the acceptance probability thus
reduces to min{1, p(S′)/p(S)}.

In many cases, even evaluating the probability p(S) of an arbitrary state
S is computationally expensive. In these cases is often useful to note, that
these probabilities only appear in the ratio p(S′)/p(S). Thus, it suffices to
be able to compute p(S) up to an unknown constant. Another potentially
useful remark is that there is often only a small difference between con-
secutive states in the chain. Sometimes this can be exploited by partially
reusing the results of the computations that were done for previous states.

3.1.2 Structure MCMC

Several MCMC algorithms that estimate the solution of the FE problem
by sampling DAG structures have been suggested [46, 27, 26, 28]. In these
algorithms, the state space of the Markov chain consists of all possible struc-
tures on the node set N and the transition probabilities have been chosen
so that the stationary distribution of the chain is the structure posterior
p(A |D). To achieve this, Madigan and York [46] used the Metropolis–
Hastings algorithm with a proposal distribution q(A′ |A) that is uniform
over such structures A′ that can be obtained from structure A by addition,
removal or reversal of a single arc. From now on, we call this algorithm
Structure MCMC.
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The main shortcoming of Structure MCMC is that it is often slow in
convergence and mixing. There have been several attempts to overcome
this shortcoming: Grzegorczyk and Husmeier [28] suggested an alternative
type of edge reversal in order to improve mixing of the Markov chain. Eaton
and Murphy [20] introduced a version that first computes biased posterior
probabilities of the arcs with the dynamic programming algorithm and
then uses these the biased arc probabilities to build an alternative proposal
distribution for the structures.

In spite of the mentioned improvements to Structure MCMC, a more
successful approach seems to have been also a more fundamental one: to
change the actual sampling space from structures to something else. This
will be investigated further in the next sections.

3.2 Alternative sampling spaces

A sampling space that consists of structures is only one of many possibil-
ities, and some other sampling spaces can sometimes lead to significantly
more accurate estimates. There are a couple of reasons for this. First,
the posterior of structures if often spiky, which leads to an estimate that
has a large variance. If an alternative sample space has a smoother pos-
terior distribution, then the variance of the estimate can be significantly
reduced. Second, perhaps more importantly, an alternative sample space
may allow an easy way to construct a Markov chain that mixes better, and
thus produces better samples while taking fewer simulation steps. These
two reasons are also partially linked, as a smoother posterior generally im-
proves mixing.

The general idea is to augment the model with a new random variable,
denoted here by S, resulting in a joint distribution p(S,A, θ,D). Using
S as a sample variable leads to a Monte Carlo algorithm that draws T
random samples S(1), . . . , S(T ) from the posterior distribution p(S |D) and
estimates

E[f |D] ≈ 1

T

T∑
t=1

E[f(A(t)) |S(t), D] . (3.2)

This technique is sometimes called Rao–Blackwellization, conditioning or
derandomization [56].

What mostly restricts the choice of the sampling space, is the compu-
tational cost per sample. First of all, drawing samples from the poste-
rior p(S |D) should be relatively fast. In addition, for each drawn sample
S(t), one needs to be able to efficiently compute the sample expectation
E[f(A(t)) |S(t), D]. These two tasks are actually quite similar. First, as we
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saw in the previous section, for the sampling phase of MCMC it is sufficient
that the unnormalized sample probability p(S,D) can be efficiently com-
puted for any S. Second, assuming that f is a binary feature, the sample
expectation can be written as a ratio p(f, S,D)/p(S,D), where p(f, S,D)
is a shorthand for p(f(A) = 1, S,D). This is analogous to the decomposi-
tion used in Section 2.3.1. Finally, since p(S,D) = p(1 , S,D), where 1 is a
constant feature such that 1 (A) = 1 for all structures A, both tasks can be
reduced to a more general task of computing unnormalized sample feature
probabilities p(f, S,D). Like in Section 2.3.1, we can also obtain a similar
decomposition and reduction for non-binary features. In the next two sec-
tions we consider two types of sampling spaces for which this computation
is fairly efficient and which also lead to more accurate estimates.

3.2.1 Linear orders

Friedman and Koller [23] introduced the Order MCMC algorithm that
samples linear orders instead of structures. They demonstrated that this
choice leads to significantly improved estimates when compared to Struc-
ture MCMC. A key observation behind the algorithm is that, if L is a
linear order on the node set N and a joint distribution p(L,A, θ,D) is
defined appropriately, then under some conditions, the joint probability
p(f, L,D) can be computed relatively efficiently. Another observation is
that an order-modular structure prior p(A) =

∑
L p(A,L) naturally leads

to such an appropriate joint distribution p(L,A, θ,D). This, in turn, leads
to a Monte Carlo algorithm that samples linear orders L(1), . . . , L(T ) from
the posterior p(L |D) and estimates the feature expectation as in Equa-
tion 3.2.

It remains to show how to compute the unnormalized sample feature
probability p(f, L,D) efficiently. Due to how the order-modular prior is
defined, the computation reduces to a summation

p(f, L,D) =
∑
A⊆L

f(A) p(A,L,D) , (3.3)

whereA goes over all structures that are compatible with L and p(A,L,D) =
p(D |A)p(A,L). The number of terms in the sum is much smaller than the
superexponential number of terms in the full summation over all structures
(Equation 2.3), but it is still fairly large. In Chapter 4 we will see how to
make the computation of this sum practical.

In order to construct a Markov chain sampler for linear orders, Friedman
and Koller considered a couple of alternative proposal distribution types
and settled to a proposal distribution q(L′ |L) that is uniform over the
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n(n−1)/2 orders L′ that can be obtained from L by swapping the positions
of two nodes in the ordering. For example, a node ordering (4, 2, 5, 1, 7, 3, 6)
can be obtained from (4, 7, 5, 1, 2, 3, 6) by swapping the positions of nodes
2 and 7. While this move seems to work well, more sophisticated move
types could potentially further improve mixing. Ellis and Wong [21], for
instance, have proposed an extension which swaps the positions of more
than two nodes in a “cylindrical shift”, and thus allows larger jumps in the
state space of the Markov chain.

3.2.2 Partial orders

Next we will see how Order MCMC can be further improved by grouping
several orders together. The idea is to partition the space of linear orders
into groups, each of which corresponds to a partial order. This idea was
first introduced in the context of exact computation by Parviainen and
Koivisto [57, 58]. Paper I applies the same principle and introduces Partial
Order MCMC, an extended version of Order MCMC, that samples partial
orders instead of structures.

In order to outline how Partial Order MCMC works, we need some
additional notation. A relation P ⊆ N × N is a partial order on N if
it is reflexive ((v, v) ∈ P for all v ∈ N), antisymmetric ((u, v) ∈ P and
(v, u) ∈ P only if u = v), and transitive (if (u, v) ∈ P and (v, w) ∈ P then
(u,w) ∈ P ) [63]. If P is a partial order on N and L is a linear order on
N such that P ⊆ L, then P contains L and L is a linear extensions of P .
In what follows, we consider families of partial orders that are exact covers
of linear orders, meaning that each linear order is contained in exactly one
partial order in the family. As a result, the partial orders in such a family
partition linear orders into disjoint groups.

Let P be an exact cover of linear orders on N . We extend the joint
distribution p(L,A, θ,D) from the previous subsection by adding another
random variable, a partial order P that takes values from P, always contains
L, and given L, is independent of D, θ and A. Since P always contains
L and P is an exact cover, P is uniquely determined by L. Partial Or-
der MCMC samples partial orders P (1), . . . , P (T ) ∈ P from the posterior
p(P |D) and estimates

E[f |D] ≈ 1

T

T∑
t=1

E[f(A(t)) |P (t), D] .

Again, it is sufficient that the unnormalized sample feature probabil-
ity p(f, P,D) can be computed efficiently. This computation reduces to a
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summation
p(f, P,D) =

∑
L⊇P

p(f, L,D) , (3.4)

where L goes over the linear extensions of P , and p(f, L,D) is as given in
Equation 3.3. In Chapter 4 we are going to see, that for certain types of
partial order families this sum can be computed almost in the same time
as the corresponding summation for linear orders (Equation 3.3).

Bucket orders (or weak orders) [22, 63] are partial orders, for which the
above summation is often fairly efficient to evaluate. In a bucket order onN ,
the nodes in N are distributed into mutually disjoint sets B1, . . . , Bh, called
buckets. The nodes that are in a same bucket are mutually incomparable.
The ordering of two nodes in different buckets is determined by the ordering
of the buckets so that for i < j, the nodes in Bi precede the nodes in Bj .
If we fix the sizes of the buckets |B1| = b1, . . . , |Bh| = bh and consider
all possible ways to place the nodes in to the buckets, we obtain a partial
order family that is an exact cover of linear orders, and thus suffices for our
purposes.

Example 3.1. For example, for eight nodes {1, 2, 3, 4, 5, 6, 7, 8}, we could
consider a bucket order family that has 3 buckets of sizes 3, 3 and 2, in
this order. A bucket order ({1, 5, 6}, {3, 4, 8}, {2, 7}) belongs to this family.
(See the leftmost diagram in Figure 3.1.)

Example 3.2. As a special case, if a bucket order family has only buckets
of size 1, then the bucket orders in the family correspond to linear orders.
In this case, the summation in Equation 3.4 contains only one term and
thus reduces to the summation in Equation 3.3.

Example 3.3. On the other extreme, if a bucket order family has only
one bucket that contains all the nodes in N , then there is only one bucket
order in the family and it contains all linear orders on N . Therefore, the
summation becomes equivalent to the full summation in Equation 2.4, for
which an exponential algorithm was given in Section 2.3.1.

Partial Order MCMC, as presented in Paper I, uses a proposal distribu-
tion that is similar to the proposal distribution that was described above for
linear orders: A pair of nodes from different buckets are chosen uniformly at
random and proposed for swapping. For example, ({1, 5, 6}, {3, 4, 8}, {2, 7})
could be obtained from ({1, 2, 6}, {3, 4, 8}, {5, 7}) by swapping nodes 2 and 5.
This, and another example swap, are illustrated in Figure 3.1.

The experiments in the Papers I and II demonstrate that sampling
bucket orders instead of linear orders often significantly improves mixing.
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Figure 3.1: Three different bucket orders illustrated as Hasse diagrams.
The buckets are denoted by gray squares. It is possible to move between
the adjacent bucket orders by swapping the positions of two nodes.

In Figure 3.2 we can see an example of such a behavior: Most of the runs
of Order MCMC seem to get stuck in the areas of low probability while the
runs of Partial Order MCMC all seem to convergence. Bucket orders often
also lead to more accurate estimates as shown in Figure 3.3a.

In addition to bucket orders, there are also some other types of partial
orders that may be worth considering. Some of them, such as parallel
pairwise orders, are more useful for exact structure learning [57, 58]. For
Partial Order MCMC and related algorithms, however, bucket orders seem
to be, if not the best, at least a good choice.

3.2.3 Nested sampling of structures

Order MCMC and Partial Order MCMC as described above require that the
structure prior is order-modular. In addition, efficient computation of the
unnormalized sample feature probabilities requires that the feature function
is modular (see Chapter 4). Structure MCMC, on the other hand, allows
arbitrary features and modular structure priors, but it is otherwise inferior
due to bad mixing of Markov chains. However, it is possible to augment
Order MCMC and Partial Order MCMC with a method that samples DAG
structures from linear orders or partial orders. This method, which we
call nested sampling2, allows both arbitrary features and application of
the so called bias correction. Bias correction makes it possible to cancel
the bias that the “wrong” sampling distribution causes to the estimates.
Friedman and Koller [23] originally suggested using nested sampling in
Order MCMC for estimating probabilities of arbitrary features but did
not consider correcting the bias. Papers II and III propose using nested

2Not to be confused with the nested sampling algorithm by Skilling [66] for Bayesian
model comparison.
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Figure 3.2: Convergence/mixing of seven independent runs of Order
MCMC and Partial Order MCMC on the Mushroom dataset from the UCI
repository [45], with an order-modular structure prior and BDeu scoring.
Partial Order MCMC uses bucket order with a constant bucket size of 7
nodes (except the last bucket, which is smaller). Samples were generated
at intervals of 1024 simulation steps of the Markov chain. The unnormal-
ized log probability (log p(L,D) or log p(P,D)) of the generated samples
(Y-axis) has been plotted as a function of of the running time (X-axis).
Since the chains have already been simulated 1023 steps before the first
sample, some of the runs may appear to have been converged right at the
beginning.

sampling for bias correction as described next.

Let us consider nested sampling in the case of partial orders. As linear
orders are a special case of partial orders, everything that follows, also holds
for linear orders. Let P (1), . . . , P (T ) be a sequence of partial orders obtained
from an order-modular posterior, for example, by the Partial Order MCMC
algorithm. In nested sampling, for each t = 1, . . . , T , a structure A(t) is
drawn from the posterior conditioned on P (t), that is, from p(A |P (t), D). In
practice, it is easiest to draw the structures in two phases: For each partial
order P (t), first a linear order L(t) is drawn from p(L |P (t), D) and then
a structure A(t) is drawn from p(A |L(t), D). In the special case of nested
sampling for linear orders the first phase can obviously be omitted. While
in the above description one structure is drawn per each partial order, in
practice it is typically useful to draw multiple structures from each partial
order, as a larger number of samples generally leads to better estimates.

Once the structure samples A(1), . . . , A(T ) have been generated, they are
used to estimate the feature expectation. If bias correction is not needed,
then we can use the simple Monte Carlo estimate from Equation 3.1. The
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Figure 3.3: The accuracy of the estimates by Order MCMC and Partial
Order MCMC on the Mushroom dataset. For each run shown in the Fig-
ure 3.2, the first half of the samples was discarded as a burn-in, and re-
maining half was used to estimate the posterior probabilities of all arcs.
Since Mushroom contains only 22 variables, the probabilities can also be
computed exactly. The estimates obtained by Order MCMC and Partial
Order MCMC (Y-axis) have been plotted against the exact probabilities
(X-axis). In the case of a modular structure prior, the exact order-modular
probabilities are also shown against the exact modular probabilities as gray
symbols ×.

non-modularity of the feature function is no longer a problem, as long as
the feature function remains reasonably easy to evaluate. If a modular prior
is desired, the bias caused by the order-modular sampling distribution can
be corrected in an importance sampling manner, as proposed in Paper II:
Let p be the order-modular sampling distribution and q be the modular
target distribution. The self-normalized importance sampling estimate (see
for example [56]) for the feature expectation with respect to q is

Eq[f |D] ≈
∑T

t=1w
(t)f(A(t))∑T

t=1w
(t)

, (3.5)

where w(t) ∝ q(A(t))/p(A(t)) are importance weights. The computation of
these weights is a hard problem, but it can be feasible if n is relatively
small. This will be discussed in more detail in Section 4.3.

Ellis and Wong [21] proposed an alternative approach for correcting the
bias of Order MCMC without requiring the potentially expensive compu-
tation of the importance weights. Basically, the idea is to collect a large
set of unique high probability structures by running the Order MCMC
algorithm with nested sampling, and weight the structures by their true
unbiased posterior probability. In order to cover enough of the posterior
sample space, for each unique linear order L, unique structures are sam-
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pled until their total posterior mass is at least (1− ε) when conditioned on
L. Unfortunately, this approach also has problems: First, in some, perhaps
not that pathological cases, the estimator can behave badly. (For examples,
see Paper II). Second, the number of structures that are sampled from a
single order can be prohibitively large, especially if the number of nodes
is large and/or the number of data points is small. Moreover, in order to
detect possible duplicates, all previously sampled unique structures need
to be stored in memory, and thus space consumption can easily become a
bottleneck. Third, Ellis and Wong describe the approach only for linear
orders, and it is not clear how it should be extended for general partial
orders.

3.3 Advanced sampling methods

Using the alternative sampling spaces considered in previous section is not
the only way to improve mixing of MCMC algorithms. In this section,
we study two general modifications of MCMC that can further improve
mixing. In addition, they provide solutions to the problem of estimating
the normalizing constant p(D). Both modifications are based on simulating
multiple Markov chains with stationary distributions that are smoother
than the target distribution.

3.3.1 Metropolis-coupled Markov chain Monte Carlo

Let p(S) be a general target distribution that we want to generate samples
from. In the Metropolis-coupled Markov chain Monte Carlo algorithm (or
MC3) [25] a sequence of gradually harder distributions p0, . . . , pr is con-
structed so that p0 is some easy distribution that mixes quickly and pr = p
is the actual target distribution. The distributions typically follow a tem-
pering scheme pi(S) ∝ p(S)ai , where 0 = a0 < a1 < · · · < ar = 1. It
is sufficient that pi(S) can be computed only up to an unknown constant
(which may be different for different i). Denote by p̃i the unnormalized
version of pi and let Zi = p̃i/pi be the corresponding normalizing constant.

For each i = 0, . . . , r, a Markov chain that has pi as a stationary dis-
tribution is constructed. In MC3, these r + 1 chains are simulated inde-
pendently in parallel. Let S0, . . . , Sr be the current states of the chains.
In addition to independent simulation, occasionally a swap of the states Si
and Sj of two randomly chosen adjacent chains i and j = i+ 1 is proposed.
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Figure 3.4: An illustration of the behavior of MC3 and AIS when sampling
from a distribution with two modes. Empty circles are random starting
states, the curves depict the movement of the Markov chains in the sample
space and blue circles are points where a sample is generated from a chain.
In this example, MC3 simulates two chains, one with the target distribution
as a stationary distribution (blue) and one with a tempered stationary
distribution (red). Wavy arrows are time points when a swap is proposed
between the two chains. AIS simulates multiple independent chains that
all start with a tempered stationary distribution and gradually cool down
to the target distribution.

The swap is accepted with probability

min

{
1,
p̃i(Sj) p̃j(Si)

p̃i(Si) p̃j(Sj)

}
.

The idea is that the chains in higher temperatures mix better and the swaps
between two chains allow also lower temperature chains to take advantage
of this and make larger jumps to other areas of the probability space. For
an illustration, see Figure 3.4a. It can be shown that the swaps between
chains do not change the stationary distribution of the chains. Therefore,
samples from chain Sr can be used in estimation, just like in the basic
MCMC algorithm.

MC3 can be also used to estimate the normalizing constant Zr of the

target distribution. In order to estimate Zr, T samples S
(1)
i , . . . , S

(T )
i are

collected from each chain i = 0, . . . , r−1. The ratio Zr/Z0, is then estimated
by a telescoping product of

Zi
Zi−1

≈ 1

T

T∑
t=1

p̃i
(
S

(t)
i−1

)
p̃i−1

(
S

(t)
i−1

) , i = 1, . . . , r .
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Figure 3.5: Convergence/mixing of seven independent runs of Partial Order
MCMC and Partial Order MC3 with r = 15 on the Spambase dataset from
the UCI repository [45], with an order-modular structure prior and BDeu
scoring. A constant bucket size of 9 nodes (except the last bucket) was
used. Samples were generated at intervals of 1024 simulation steps of the
Markov chain.

If p0 is easy enough that Z0 can be computed, then an estimate of Zr is
obtained by multiplying by Z0.

In Papers II and III, MC3 is used to sample linear and partial orders
in the context of Bayesian network structure learning. In Figure 3.5 we
see, that if the problem instance is difficult, then MC3 can further improve
mixing, even if bucket orders are used as a sampling space.

There are other methods that are similar to or inspired by MC3, and
that can also used for structure learning in Bayesian networks. Most no-
tably, Ellis and Wong [21] proposed a modified version of Order MCMC,
that uses a related equi-energy sampler [43]. Corander et al. [17], on the
other hand, suggested another type of parallel structure based MCMC al-
gorithm.

3.3.2 Annealed importance sampling

Annealed importance sampling (or AIS) [49] is another general method
that improves the convergence compared to the basic MCMC method. Let
E[g(S)] the expectation of a function g that we want to estimate with
respect to distribution p(S). Like in MC3, a sequence of gradually changing
distributions p0, . . . , pr, such that pr = p, is constructed. In the case of AIS,
however, it is required that exact sampling is possible from p0. A common
choice is to set p0 to be a uniform distribution. Compared to MC3, in AIS
r is usually much larger. Again, it suffices that pi(S) can be computed
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only up to an unknown constant. As in the previous subsection, let p̃i(S)
and Zi be the corresponding unnormalized probability and the unknown
normalizing constant respectively.

In AIS, the idea is to simulate Markov chains whose target distribution
gradually changes during the simulation. For each i = 1, . . . , r−1, let τi be
a transition kernel of a Markov chain, whose stationary distribution is pi.
First a sequence of samples S(1), . . . , S(T ) and weights w(1), . . . , w(T ) is pro-
duced. Each sample S(t) and the corresponding weight w(t) are generated
independently from other samples and weights as follows:

Generate S0 from p0.
Generate S1 from S0 using τ1.

...
Generate Sr−1 from Sr−1 using τr−1.

After that, we set S(t) = Sr−1 and

w(t) =
p̃1(S0)

p̃0(S0)

p̃2(S1)

p̃1(S1)
· · · p̃r(Sr−1)

p̃r−1(Sr−1)
.

Once all the samples and weight have been generated, the expectation is
then estimated by the self-normalizing importance sampling estimate

E[g(S)] ≈
∑T

t=1w
(t)g(S(t))∑T

t=1w
(t)

.

If Z0 can be computed, then it is also possible to get an estimate for the
normalizing constant Zr by estimating

Zr
Z0
≈ 1

T

T∑
t=1

w(t) .

In addition to improving convergence, AIS also has some other useful
properties that MCMC and MC3 do not have: First, since the samples
are generated independently, the sampling process is trivially paralleliz-
able. Second, since each weight is an unbiased estimator for the ratio of
normalizing constants, it is possible to obtain various high confidence lower
bounds for the normalizing constant .

Papers II and III compare AIS to MC3 in the context of structure
learning in Bayesian network. It was found, that AIS is competitive with
MC3 in solving the FE problem, although when given the same amount
of computational resources, MC3 usually gives better results. However, as
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Figure 3.6: The log normalizing constants as estimated by the seven inde-
pendent runs of MC3 (r = 15) and AIS (r = nm), as a function of running
time. The experiment was conducted on the Mushroom dataset, with an
order-modular structure prior and BDeu scoring. For AIS, two different
0.95-confidence lower bounds have also been plotted. The exact value is
also shown for comparison.

mentioned, AIS can be parallelized trivially. In solving the NC problem,
AIS seems to be often significantly better than MC3. This property is
illustrated in Figure 3.6. Previously also Battle et al. [5] have applied AIS
to structure learning. However, unlike Papers II and III, which sample
linear orders and partial orders, they sample network structures.
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Chapter 4

Per-sample computations

Chapter 3 described several Monte Carlo methods for the FE and NC
problems, all of which rely on efficient per-sample computations. More
specifically, given a sample S (a linear order or a partial order) and a
modular feature f , we need to be able to efficiently compute the following
two quantities:

• For sampling, we need to be able to compute p(S |D) up to some
normalizing constant.

• For computing the actual estimate for the expectation of f , we also
need a way to evaluate the sample expectation E[f |S,D].

As we saw in Chapter 3, if the feature is binary, these both tasks can be
reduced to a more general problem of computing the unnormalized sample
feature probability p(f, S,D). In this chapter, we see how to compute
this quantity efficiently for linear orders and partial orders in the case of
an order-modular structure prior. Everything that will be presented, also
generalizes directly to modular non-binary features.

Nested sampling, described in Section 3.2.3, allows modular structure
priors and non-modular features, but has also some additional require-
ments: In all cases , we need an efficient way to sample structures from
the posterior conditioned on a linear order. For algorithms that are based
on sampling partial orders, we also need an efficient way to sample linear
orders from the posterior conditioned on a partial order. And finally, in
the case of a modular structure prior, we need to compute the importance
weights that are required in the bias-corrected estimate. Solutions to these
problems are also described in this chapter.

This chapter is based on Papers I, II and IV.

39
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4.1 Per linear order

In this section, we consider the problem of computing the unnormalized
sample feature probability p(f, L,D) and the problem of sampling struc-
tures from p(A |L,D), for an arbitrary linear order L.

Consider first the problem of computing p(f, L,D), as given in Equa-
tion 3.3. Assume, that the structure prior is order-modular, and that the
feature f is modular. Then, by the modularity of the likelihood, the un-
normalized sample feature probability decomposes into a product

p(f, L,D) =
∏
v∈N

αv(Lv) , (4.1)

where αv(Lv) is defined as in Equation 2.5, repeated here for convenience:

αv(Lv) = πv(Lv)
∑

Av⊆Lv

fv(Av) ρv(Av) p(Dv |DAv , Av) . (4.2)

This decomposition was mentioned by Buntine [12] as well as Cooper and
Herskovits [16], and later exploited by Friedman and Koller [23] in Order
MCMC.

The inner sum in the decomposition has 2|Lv | terms, which would still
lead to an exponential computation time. However, it is sufficient to sum
only over parent sets Av that have a nonzero prior probability. Hence,
the computation can be made manageable by, for example, bounding the
number of the parents of v by a small constant k. As a result, the inner sum
can be computed inO(|Lv|k) time, which leads toO(nk+1) time requirement
for the full product–sum.

4.1.1 Approximate summing

Despite limiting the sizes of parent sets, computing the inner sums in Equa-
tion 4.1 is by far the most time consuming part in Order MCMC. Often
we would also like to set a parent set size bound that is not too restrictive,
but a large bound leads to slow computations. As we will see next, it is
possible to speed up the computations significantly by using approxima-
tions. Before describing those approximations in more detail, we express
the summing problem in a more general form.

Let N be a ground set of n elements and C a collection of subsets of N .
Let each subset Y ⊆ N be associated with a weight w(Y ) > 0 if Y ∈ C and
w(Y ) = 0 otherwise. In a subset counting query on a query set Q, we are
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asked to compute a sum

W (Q) =
∑
Y⊆Q

w(Y ) . (4.3)

The inner sums in Equation 4.1 correspond to queries where Q = Lv and
w(Av) = fv(Av)ρv(Av)p(Dv |DAv , Av). In general, if the parent sets are
not restricted, then C consist of all subsets of N \{v}. If the sizes of parent
sets are bounded by a constant k, then C = {Av ⊆ N \ {v} : |Av| ≤ k}.

To answer a counting query exactly, it is sufficient to traverse those sets
Y ⊆ Q that are also in the collection C and to sum up their weights. For
now, we call such sets relevant. Next we consider approximation algorithms
that, for a given positive tolerance d, can answer such queries to within
guaranteed relative error d, that is, so that the returned answer is between
(1 − d)W (Q) and (1 + d)W (Q). For example, setting d = 0.01 should
guarantee that the answer is within one percent from the correct value. The
general idea is that, if some relevant sets are light compared to others, those
can be omitted from the summation and the result will still be relatively
accurate. More formally, we consider so-called collector algorithms, that
visits some subsets of the ground set (possibly also irrelevant subsets), and
sum up the weights of visited relevant sets. An ideal collector algorithm
would visit the minimum number of the heaviest relevant sets whose total
weight is at least (1 − d)W (Q). Unfortunately, we do not know how to
implement such an ideal algorithm efficiently. Paper II considers two less
ideal approaches, which we will outline next.

For a high-performance implementation of Order MCMC, Friedman and
Koller [23] proposed the following heuristic: As a preprocessing step, the
sets in C are sorted in decreasing order by weight. In order to answer a
counting query, the heuristic visits a fixed number of heaviest sets and re-
turns the total weight of the visited relevant sets. This heuristic does not
guarantee any approximation ratio. However, we can obtain such guaran-
tees by a small change: We do not stop visiting the sets until the total
weight of the remaining sets in C is small enough compared to the total
weight of the visited relevant sets. To make the stopping decision efficient,
the total weights of possible remaining sets can be precomputed. In addi-
tion, if too many sets are visited without termination, we can resorts back
to exact computation. We call this modified algorithm Sorted.

While in many situations Sorted runs quickly, in some cases, especially
if the query set is quite small, it visits a large number of irrelevant sets
before terminating. Paper II proposes another algorithm, Treedy, that often
works better in those situations. It is based on arranging the sets in C into
a lexicographical tree structure, such that ∅ is the root and each nonempty
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Y ∈ C is a son of Y \{v} where v is lexicographically the last element of Y .
For each query, starting from the root, the tree is traversed greedily with
respect to the total weights of the branches: On each step, the traversal
visits a set that is the root of the heaviest unvisited branch of the tree. If
the set is relevant, its weight is added to the accumulated total weight. If
the set is irrelevant, then also all its descendants are irrelevant, meaning
that the remaining branch can be skipped and ignored for the rest of the
traversal. Due to “branch skipping”, the algorithm can avoid traversing
large portions of the tree, which makes it often more efficient than Sorted
in cases where Sorted performs badly.

An efficient implementation of Treedy requires that the next node to
visit can be found quickly. For this purpose, the algorithm maintains a
priority queue that contains the unvisited child branches of every visited
node. Unfortunately this adds some overhead to the algorithm. To keep the
priority queue as small as possible, some additional preprocessing is con-
ducted to turn the lexicographical tree actually into a binary tree. Further
details are described in Paper II.

Figure 4.1 shows results from an experiment in which four different ver-
sions of Order MCMC were run on both artificial and real-world datasets.
The purpose of the experiment was to compare Treedy and Sorted to exact
summation and to a simulated performance of an ideal collector algorithm.
The results show that often the runtime can be improved by one to two
orders of magnitude by using Sorted or Treedy to approximate the inner
summations in Equation 4.1. Treedy outperforms Sorted especially if the
posterior is particularly spiky. This typically happens if the data size is
large, as seen in Figure 4.1a where the number of data points (samples) is
varied.

4.1.2 Sampling structures

In nested sampling, structures are drawn from the order-modular poste-
rior conditioned on a linear order, that is, from p(A |D,L). Drawing a
structure amounts to drawing the parent sets for all nodes. Due to mod-
ularity assumptions and conditioning on an order, this can be done inde-
pendently for each node: For v ∈ N , a parent set Av ⊆ Lv is drawn from
p(Av |D,Lv) ∝ ρv(Av)p(Dv |DAv , Av). As there are O(|Lv|k) potential par-
ent sets for v, this requires O(nk+1) time per linear order, the same that was
required already for computing the unnormalized probability of L. Multiple
structures can be drawn efficiently from a single linear order by applying
the Alias method [76, 75]. This results in O(nk+1) preprocessing time per
order and an additional constant time per sampled parent set, thus O(n)
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Figure 4.1: Runtime of Order MCMC. The number of seconds per MCMC
step for an exact algorithm (Exact), a simulated ideal collector algorithm
(Ideal), Sorted, and Treedy are shown as a function of approximation toler-
ance d for (a) datasets of different sizes sampled from the Alarm network
[6], and (b) selected datasets from the UCI repository [45].

time per sampled structure.
If approximate summing is used to speed up the computation in the

order sampling phase, then the structure sampling phase can turn out to
be the bottleneck due to its per-order time requirement. In this case, it
is possible to instead draw the structures from an approximate posterior
distribution. By running a collector algorithm, such as Treedy or Sorted,
with tolerance d for each Lv and drawing the parent sets from the visited
relevant sets (potential parent sets), the resulting parent set distribution is
within total variation distance d from the exact posterior.

4.2 Per partial order

In this section we tackle the problem of computing the unnormalized sam-
ple feature probability p(f, P,D) and the problem of sampling structures
from p(A |P,D), for a partial order P . The following presentation will be
superficial, leaving out some details. A more detailed description of the
matter is given in Paper III.

Again, consider first the problem of computing p(f, P,D), as given in
Equation 3.4. If we combine it with Equation 4.1 from the previous section,
we get a sum–product expression

p(f, P,D) =
∑
L⊇P

∏
v∈N

αv(Lv) , (4.4)

where αv(Lv) is as defined in Equation 4.2 (and Equation 2.5). This ex-
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pression closely resembles Equation 2.4, the only difference being that the
summation is restricted to the linear extensions of P . Indeed, the unre-
stricted sum–product is just a special case of Equation 4.4, where P does
not specify the order of any two nodes (see Example 3.3).

Parviainen and Koivisto [58] showed that a dynamic programming ap-
proach similar to the unrestricted case can be applied to partial orders. In
fact, both the exact algorithm from Section 2.3.1 and the algorithm for lin-
ear orders from Section 4.1 can be seen as special cases of that algorithm.
This generalized algorithm is outlined next.

4.2.1 Sum–product over orders

The key observation for efficient evaluation of the restricted sum–product
(Equation 4.4) is that the dynamic programming only needs to be carried
out over the downsets of P , that is, the subsets that can “start” a linear
extension of P . More formally, a subset S ⊆ N is a downset of a partial
order P , if v ∈ S and (u, v) ∈ P together imply that u ∈ S. We denote the
set of all downsets of P by D(P ).

Given a partial order P , the recurrence 2.6 can be generalized into a
recurrence

F (S) =
∑
v∈S

S\{v}∈D(P )

αv(S \ {v})F (S \ {v}) , for S ∈ D(P ) \ {∅} , (4.5)

where F (∅) = 1 and p(f, P,D) = F (N). If the terms αv(Lv) are given, then
by dynamic programming over the donwsets of P , the values of the recur-
rence for all downsets can be computed in O(n|D(P )|) time and O(|D(P )|)
space. (In fact, for bucket orders with maximum bucket size b, the time re-
quirement reduces to O(b|D(P )|).) However, the total time requirement of
computing p(f, P,D) is dominated by the computation of the terms αv(Lv),
as seen next.

4.2.2 Sums over parent sets

The exact dynamic programming algorithm of Section 2.3.1 uses the fast
zeta transform to compute αv(Lv) for all v ∈ N and Lv ⊆ N \ {v}. This
requires O(n22n) time and O(n2n) space. Such requirements are obviously
unacceptable in the cases where n is relatively large and thus a Monte Carlo
approach is needed. However, from Equation 4.5 it is easy to see, that for
a given P , only values αv(S) such that S and S ∪ {v} are downsets of P ,
are needed.
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Fortunately, it is possible to solve such a restricted zeta transform prob-
lem in less time and space. To this end, the problem is split in two sub-
problems by rearranging the right hand side of the definition of αv (see
Equation 4.2) into a nested summation

αv(Lv) = πv(Lv)
∑
S⊆Lv
S∈D(P )

∑
Av∈TS(P )

fv(Av) ρv(Av) p(Dv |DAv , Av) , (4.6)

where TS(P ) consists of those subsets of downset S that are not subsets of
any smaller downset of P .

The first step is to compute and store the results of the inner summa-
tions for all downsets S ∈ D(P ). As (by the definition of TS(P )) every
Av participates to only one such summation, this step can be completed in
O(|D(P )|+nk) time for a fixed v, if the iteration over potential parent sets
Av and the mapping from Av to the corresponding downset S can be done
in a constant time per parent set. This is the case for example for bucket
orders.

The second step is to compute the outer summation for all needed sets
Lv. In order to do this efficiently, Parviainen and Koivisto [58] introduced
the fast sparse zeta transform algorithm (see also [8]). Fast sparse zeta
transform generalizes the fast zeta transform algorithm to work over the
downsets of P . It can be used to compute values αv(S) for all downsets
S of P for a fixed v in O(n|D(P )|) time and O(|D(P )|) space. The whole
algorithm thus requires O(n2|D(P )| + nk+1) time. (Again, the time re-
quirement can be improved to O(bn|D(P )|+ nk+1) for bucket orders with
maximum bucket size b.)

4.2.3 Probabilities of all arcs

Koivisto [38] showed that it is possible to extend the exact dynamic pro-
gramming algorithm of Section 2.3.1 to compute simultaneously the pos-
terior probabilities of all n(n − 1)/2 potential arcs without increasing the
asymptotic time requirement. This result also generalizes to partial orders
[58]. The idea is to partially reorganize some of the sums and products in
Equations 4.4 and 2.5, and to avoid repeating those parts of computations
that need to be conducted for more than one arc. This leads to an algo-
rithm that computes the unnormalized sample feature probabilities of all
arcs in O(n2|D(P )|+nk+1) time (or in O(bn|D(P )|+nk+1) time for bucket
orders). The resulting speed-up of factor n(n− 1)/2 is directly transferred
to the algorithms of Chapter 3, if they are used to estimate the probabilities
of all arcs in an order-modular posterior distribution.
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4.2.4 Sampling structures

As mentioned in Section 3.2.3 about nested sampling, structures can be
sampled from partial orders in two phases: first draw a linear order from
p(L|P,D) and then draw a structure from p(A|L,D).

Consider first the problem of drawing a linear order from p(L|P,D).
Such a sample can be obtained by backtracking the dynamic programming
algorithm used to compute F according to Equation 4.5: Positions in L are
assigned to nodes in order starting from the last position. Starting from
S = N , on each step, first a random node v is removed from S according
to probability αv(S \ {v})F (S \ {v})/F (S) and then S is assigned to Lv. If
F and α are given, one step consumes O(n) time and thus drawing a linear
order takes O(n2) time (O(bn) time for bucket orders).

Sampling structures from linear orders was handled in Section 4.1.2.
The solutions presented there are sufficient if only one (or few) structure
is drawn from each partial order. On the other hand, drawing multiple
independent structures from p(A|P,D) requires that each is generated from
an independently sampled linear order. As a consequence, the Alias method
cannot directly speed up sampling. A straightforward implementation thus
requires O(n2+nk+1) time per a pair of a linear order and a structure, which
severely limits number of structures that can be drawn in a reasonable time.

We obtain a more efficient structure sampling algorithm by drawing
each random parent set Av ⊆ Lv in two phases: 1. A set S ⊆ Lv that ap-
pears in Equation 4.6 is drawn by backtracking the fast sparse zeta trans-
form. 2. The parent set Av ∈ TS(P ) is drawn from

p (Av |D,Lv, Av ∈ TS(P )) =
ρv(Av) p(Dv |DAv , Av)∑

A′
v∈TS(P ) ρv(A

′
v) p(Dv |DA′

v
, A′v)

.

The first phase can be done in O(n2) time (in O(b2) time for bucket orders)
and the second phase trivially inO(TS(P )) time. However, now it is possible
to apply the Alias method to the second phase separately for each possible
S. In the resulting algorithm the second phase requires a constant time per
sample, thus yielding O(n3) total time per sampled structure (or O(nb2),
if P is a bucket order with bucket size of at most b).

4.3 Per structure: counting linear extensions

In Section 3.2.3 we saw that it is possible to obtain estimates from a mod-
ular posterior distribution by sampling linear orders or partial orders from
a biased order-modular distribution and nestedly sampling structures from
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the orders. However, as shown in Equation 3.5, the method requires that
each structure A(t) is weighted according to w(t) ∝ q(A(t))/p(A(t)), where
q is the modular target distribution and p is the order-modular sampling
distribution. If p is defined so that the factors ρv(Av) of the structure
prior are the same as in q and πv(Lv) is a constant for all v and Lv, then
p(A(t))/q(A(t)) is proportional to the number of linear extensions of A(t).
Thus, a reasonably efficient way of counting linear extensions is required to
implement the bias correction.

Unfortunately, counting the linear extensions of an arbitrary DAG is a
#P-complete problem, so it is not likely that there is a polynomial time
algorithm that solves it [10]. The trivial brute force approach that enumer-
ates through all n! possible linear extensions is clearly too slow for other
than very small DAGs. With a straightforward dynamic programming over
subsets of nodes, one can obtain a O(n2n) time requirement. Paper II pro-
poses a slightly improved version, which works over the downsets of the
transitive closure of the DAG, leading to a O(n|D(A)|) time requirement
and also roughly to a O(n|D(A)|) space requirement, where D(A) denotes
the set of the downsets of the transitive closure of structure A. In the worst
case the structure is empty and |D(A)| = 2n. In practice, though, the al-
gorithm can scale to over 40 nodes even for relatively sparse DAGs. Still,
the algorithm is quite basic, and could probably be further developed.

Instead of being counted exactly, the number of linear extensions could
also be approximated. Since the counting problem is self-reducible, an algo-
rithm for generating linear extensions almost uniformly implies an existence
of fully polynomial-time randomized approximation scheme for counting the
linear extensions [35]. Several such randomized approximation algorithms
have been introduced [19, 36, 10, 11, 33]. Unfortunately, the time require-
ments of such methods have been too high to be practical for our purposes.
Further improvements, however, could make them a viable alternative for
exact counting.
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Chapter 5

Local learning

While the two previous chapters discussed full Bayesian structure learning,
this chapter concentrates on the local structure learning problem. In the
end of the chapter, we will also briefly discuss the use of local learning
algorithms for the construction of a complete Bayesian network structure.

This chapter is based on Paper V.

5.1 The local learning problems

In local structure learning, one is given data and a target node/variable
from the unknown data generating Bayesian network, and the task is to
solve one or both of the following two problems: One problem is to find the
neighbors of the given target node. The neighbors are interesting since they
are the only nodes that are directly dependent on the target. The other
problem is to find the Markov blanket of the target, defined as a minimal
set (inclusion-wise) of other nodes that makes the remaining nodes (condi-
tionally) independent of the target [59].3 While this property is interesting
by itself, it can also be a useful criterion to apply to feature selection,
that is, the problem of selecting a manageable (typically a smallest) sub-
set of a large number of variables for classifying the target variable [1].
The classification task itself can be performed by any method, for exam-
ple a naive Bayes classifier or a support vector machine (SVM). Since the
Markov blanket is a minimal set of other nodes that provides maximum
information about the value of the target, it provides an ideal solution for
the feature selection problem.

3Pearl did not originally require minimality of a Markov blanket. What is usually
today called a Markov blanket, was called a Markov boundary by Pearl [59].
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Before attempting to learn parts of the structure of the Bayesian net-
work from data, it is necessary to define what is a correct structure. We
assume that a correct structure of the network contains the data generat-
ing distribution and is minimal, as clearly trying to learn arcs that have
no support in the data is not interesting. However, this might still leave
the neighbor relations ambiguous. Thus, we also assume that the data
generating distribution is faithful, in which case the skeleton (and thus the
neighbors) of a correct structure is uniquely defined. In addition, it then
follows that the Markov blanket of a target node consists of the neighbors
and the spouses of the target and is also uniquely defined [59, 74]. (Indeed,
often the Markov blanket of a node is actually defined this way: not ac-
cording to the distribution of interest, but to be the node set that consists
of the neighbors and the spouses in the structure of the Bayesian network.)

5.1.1 Approaches to local learning

When do we need specialized methods for local structure learning? If the
number of variables is small, then one can just learn the full structure (that
is, do global learning) and extract the parts of interests from it. But for
domains with a large number of variables, learning the full structure can be
infeasible. In such cases, concentrating only on the region of interest can
make the problem feasibly solvable. Several local learning algorithms have
been proposed either directly for the local learning task itself [41, 71], or as
an intermediate step in a heuristic construction of the full structure [47].
More recently, Aliferis et al. [1] presented the Generalized Local Learning
(GLL) framework that can be instantiated several ways to represent many
previously proposed algorithms as well as possible novel approaches. They
also showed that under certain assumptions, all algorithms conforming to
the GLL framework are sound, that is, converge to the correct solution in
the limit of large data.

All previous local learning algorithms have been constraint based. This
is a natural choice, since as opposed to the score-based approach that is very
global in nature, the constraint-based approach is based on local decisions.
In global structure learning, however, score-based methods are known to
be more robust than constraint-based methods. This raises a question,
whether one can get similar benefits by applying the score-based approach
to local learning. Indeed, one can obviously execute a score-based algorithm
on subsets of the variables. If the subsets are small, then the calls of the
score-based optimization algorithm will typically be significantly faster than
a call for all variables would be. The real question is, how to select such
subsets and how to use the results of the calls to form solutions to the local
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learning problems. One possible answer to this question is given in Paper V,
that proposes score-based variants of the GLL framework algorithms. The
approach taken by GLL and the proposed score-based algorithms is outlined
in the next section.

5.2 Algorithms for learning neighbors and spouses

Most local learning algorithms, including those that are instances of the
GLL framework, use the following scheme for finding the neighbors of the
target node.

Algorithm: FindPotentialNeighbors
Input: Data D on node set N , target node t ∈ N .
Steps: Start with H = ∅. Add the nodes in N \ {t} to H one by one (or
in larger chunks). After each addition, remove from H the nodes that
are found to be non-neighbors of t. In the end, return H.

If the assumptions that the data generating distribution is faithful and
some assumptions about the non-neighbor identification step hold, it can be
shown that the subset of nodes returned by the above algorithm contains
all true neighbors of the target. But typically the returned set can also
contain false positives, that is, nodes that are not neighbors of the target
in the true structure. Turns out, that such nodes may be removed based
on the simple fact that the neighboring relation is symmetric: to detect
if v ∈ H is a true neighbor of the target t, it is enough to check if t also
belongs to the potential neighbors of v. The complete neighbor finding
scheme with symmetry correction is therefore as follows:

Algorithm: FindNeighbors
Input: Data D on node set N , target node t ∈ N .
Steps: Call FindPotentialNeighbors on t to find its potential neigh-
bors H. For each v ∈ H, call FindPotentialNeighbors on v and
remove v from H if t is not a potential neighbor of v. In the end,
return H.

The version of the above scheme that is part of the GLL framework
is called GLL-PC. Aliferis et al. [1] showed, that under the faithfulness
assumption and some assumptions about non-neighbor detection, in the
limit of large data size GLL-PC returns the true neighbors of the target.

The GLL framework uses statistical independence tests for detecting
the non-neighbors in the FindPotentialNeighbors algorithm. Paper V
proposes a version of this scheme, that calls a score-based structure learning
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algorithm on subsets of nodes and uses the results to determine the non-
neighbors. The scoring function and the optimization algorithm used as a
subroutine can be chosen freely.

Consider then the problem of learning the Markov blanket of a target
node. The task can be divided into two separate subtasks: learning the
neighbors of the target and learning the spouses of the target. Finding the
neighbors was handled above. Once the neighbors have been identified, the
following approach can be used to find the spouses.

Algorithm: FindSpouses
Input: Data D on node set N , target node t ∈ N , and its neighbors H.
Steps: Apply FindNeighbors to each neighbor of t to find all neighbors
of the neighbors of t, and call them the potential spouses. For each
potential spouse, determine whether it is a true spouse of t. Return the
detected true spouses.

In the GLL framework the corresponding algorithm is called GLL-MB.
Aliferis et al. [1] showed that, like GLL-PC, under certain assumptions,
GLL-MB returns the correct result (that is, the true Markov blanket of the
target) in the limit of large data size.

In the above sketch, the way, how the true spouses are determined, is not
given. In GLL-MB the true spouses are detected by statistical independence
tests. Again, Paper V proposes a version that uses score-based learning for
detecting the spouses.

Do the score-based local learning algorithms (SLL) provide similar guar-
antees in the limit of large data as GLL? Paper V provides a partial proof
of the correctness in the limit. Whether a complete proof can be found,
still remains an open question. In spite of the lack of full theoretical guar-
antees, the experiments in the paper show that in many cases score-based
local learning outperforms the previous state-of-the-art constraint-based
GLL-algorithm, HITON [3, 1]. Figure 5.1 shows some of these results for
learning Markov blankets.

The experiments of Paper V indicate that also the speed of SLL is com-
petitive with GLL. Still, there are some potential ways to make SLL faster.
First, how large H can grow during the execution of FindPotential-
Neighbors may depend on the order in which the nodes are added to H.
If H can be kept smaller, then the optimization steps become faster. Sec-
ond, the choice of the optimization algorithm also affects the speed. While
the implementation of SLL that was compared in the experiments uses the
dynamic programming algorithm (from Section 2.3.1), more recent global
structure learning algorithms (mentioned in Section 2.3.2) could potentially
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Figure 5.1: Markov blanket learning performance of HITON (constraint
based) and SLL (score based) on data generated from four different
Bayesian networks (185, 200, 135 and 56 nodes). Three of the networks
(Alarm5, Child10, Insurance5) were generated by tiling together 5 or 10
copies of the original network using a method by Tsamardinos et al. [73].
From each network, 10 independent datasets of sizes 500, 1000 and 5000
data points (X-axis) were generated. For each dataset, the algorithms were
run with each node as a target, and the total number of differences between
the returned results and the correct sets of nodes (SLHD) was measured.
Y-axis shows the average SLHD and its empirical standard deviation over
the 10 independent runs.

lead to large speedups in some cases.

5.3 From local to global

Since it seems that a local score-based approach can lead to an improved
local learning performance, a question arises, whether these local learn-
ing techniques can be used to improve global learning. In local-to-global
learning, one first applies a local learning algorithm to multiple nodes and
then combines the results into a full structure [2]. In an broad sense, all
constraint-based global learning algorithms are local-to-global algorithms.
Tsamardinos et al. [72] presented a dedicated local-to-global algorithm
MMHC, that applies their previous MMPC neighbor learning algoritm to
each node in order to construct the skeleton and then orients the edges by a
greedy search algorithm. Aliferis et al. [2] proposed a more general local-to-
global learning framework, and another MMHC based algorithm that uses
HITON-PC (that is, the neighbor learning part of the HITON algorithm)
instead of MMPC. Learning Markov blankets has also been proposed as an
intermediate step for global learning [47].

Paper V proposes two local-to-global methods, SLL+G and SLL+C,
that are based on SLL. SLL+G takes an approach similar to MMHC: It
first finds a potential skeleton by learning the potential neighbors of each
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node, and then uses a greedy search algorithm to select and orient the
edges. SLL+C, on the other hand, uses a similar method to construct the
skeleton, but learns also the spouses of each node after that, and uses the
information gathered in the spouse learning phase to orient the edges.



Chapter 6

Conclusions

This thesis studied solutions to problems that are faced in Bayesian network
structure learning when the large number of variables makes finding the
exact global solution infeasible.

Papers I–III concentrated on improving the Order MCMC algorithm
for Bayesian structure learning. First, Paper I introduced the idea of sam-
pling partial orders instead of linear orders and proposed a sampler that
uses bucket orders, a simple partial order scheme that includes linear or-
ders as a special case. Papers I and III demonstrated that (1) moderately
increasing the bucket size—and thus moving away from linear orders—can
dramatically improve the mixing of the Markov chains and the estimates of
arc probabilities, with only negligible increase in per-sample computation
times. However, it remains an open question, whether bucket orders are
the best partial order scheme for the task.

Papers II and III applied two tempering based methods, MC3 and AIS
to the problem and showed that both methods (2) improve the mixing and
arc probability estimates and (3) allow the estimation of the model marginal
likelihood. In addition, as the samples provided by AIS are independent
and unbiased, it (4) allows computing lower bounds for the marginal like-
lihood with a guaranteed high probability. An open question is, whether
it is possible to compute similar upper bounds for the marginal likelihood,
and further, lower and upper bounds for feature probabilities. These two
papers also showed that (5) the bias introduced by order based sampling
can be corrected by sampling weighted structures from the (partial or lin-
ear) orders and this approach is often superior to the previously proposed
method, although there can be cases where the convergence to the cor-
rected probabilities is impractically slow. An obvious improvement would
be a faster algorithm for counting linear extensions, either exact or ap-
proximate, that would allow both a larger number of nested samples and
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scaling to larger and/or sparser networks. Another possible direction could
be to apply a tempering approach, such as AIS, also to the nested sam-
pling phase. This could potentially produce smoother structure weights,
thus resulting in lower estimate variances.

In Paper IV the goal was to speed up the per-sample computations of
the order based sampling. To this end, the paper introduced Treedy, a
data structure and an algorithm for approximating sums over the subsets
of arbitrary query sets (”subset counting queries“) as well as a algorithm
for related sampling tasks (”subset sampling queries“). The experiments
showed that Treedy can give a substantial speedup compared both to exact
computation and to the previously proposed approximating heuristic. In
its current form Treedy is designed for linear order sampling, and thus
an obvious future challenge would be to generalize it for partial orders.
However, there are a couple concerns: First, there are unresolved questions
regarding the optimal way to do the generalization. And second, since
Treedy makes the per-sample computations faster, the extra computations
required by partial orders start to dominate more easily. Thus, to keep
the acquired speed benefit partial orders must be kept thin, which reduces
the advantage over linear orders. Another question regarding Treedy is,
whether some heuristic changes in the algorithm could possibly result in
further improvements.

Finally, Paper V presented a new score-based algorithm for local struc-
ture learning and showed that it often provides better results than the
previous state-of-the-art constraint-based algorithm, although usually be-
ing also considerably slower. In addition to possible heuristic improvements
to the algorithm, a task that remains incomplete is to show whether the
algorithm is asymptotically correct, that is, always converges to the correct
solution when data size is increased.
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