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To my family



In spite of what you would suppose, the facts are not reversible.
Paul Auster, In the Country of Last Things



Abstract

Cancer is one of the leading causes of death in industrialized nations and its incidence
is steadily increasing due to population aging. Cancer constitutes a group of diseases
characterized by unwanted cellular growth which results from random genomic alterations
and environmental exposure. Diverse genomic and epigenomic alterations separately and
jointly regulate gene expression and stimulate and support neoplastic growth. More effective
treatment, earlier and more accurate diagnosis, and improved management of cancer are
important for public health and well-being.

Technological improvements in data measurement, storing and transport capability are
transforming cancer research to a data-intensive field. The large increases in the quality
and quantity of data for the analysis and interpretation of experiments has made employing
computational and statistical tools necessary. Data integration — the combination of different
types of measurement data — is a valuable computational tool for cancer research because
data integration improves the interpretability of data-driven analytics and can thereby provide
novel prognostic markers and drug targets.

I have developed two computational data integration tools for large-scale genomic data and
a simulator framework for testing a specific type of data integration algorithm. The first
computational method, CNAmet, enhances the interpretation of genomic analysis results by
integrating three data levels: gene expression, copy-number alteration, and DNA methylation.
The second computational method, GOPredict, uses a knowledge discovery approach to
prioritize drugs for patient cohorts thereby stratifying patients into potentitally drug-sensitive
subgroups. Using the simulator framework, we are able to compare the performance of
integration algorithms which integrate gene copy-number data with gene expression data to
find putative cancer genes.

Our experimental results indicate in simulated, cell line, and primary tumor data that well-
performing integration algorithms for gene copy-number and expression data use and process
genomic data appropriately. Applying these methods to diffuse large B-cell lymphoma,
integrative analysis of copy-number and expression data helps to uncover a gene with putative
prognostic utility. Furthermore, analysis of glioblastoma brain cancer data with CNAmet
suggests that a number of known cancer genes, including the epidermal growth factor receptor,
are highly expressed due to co-occuring alterations in their promoter DNA methylation and
copy-number. Finally, integration of publicly available molecular and literature data with
GOPredict suggests that treating patients with FGFR inhibitors in breast cancer and CDK
inhibitors in ovarian cancer could support standard drug therapies. Collectively, the methods
developed here and their application to varied molecular cancer data sets illustrates the
benefits of data integration in cancer genomics.



Tiivistelmä

Syöpä on yksi yleisimmistä kuolinsyistä teollisuusmaissa ja sen esiintyvyys kasvaa tasaisesti
väestön vanhetessa. Syöpä käsittää joukon sairauksia, joiden yhteispiirteenä on ei-toivottu
solujen uudiskasvu. Uudiskasvu on seurausta genomin sattumanvaraisista sekä ympäris-
tövaikutteisista muutoksista. Monitahoiset genomiset ja epigenomiset muutokset yhdessä
ja erikseen säätelevät ja ohjaavat geenien ilmentymistä sekä edesauttavat ja tukevat syö-
vän kasvamista. Hoidon tehostaminen, aikaisempi ja osuvampi taudin määritys, ja parempi
syövänhallinta ovat merkittäviä haasteita kansanterveydelle.

Teknologinen kehitys tiedon mittauksessa, säilömisessä ja siirrossa on muuttanut syöpätut-
kimuksen dataintensiiviseksi alaksi. Aineistojen määrän ja laadun suuri kasvu on tehnyt
laskennallisista ja tilastollisista menetelmistä välttämättömiä työkaluja. Data-integraatio
— erilaisten mitta-aineistojen yhdistäminen — on syöpätutkimukselle arvokas laskennalli-
nen työkalu, sillä sen käyttö parantaa aineistolähteisen tutkimuksen tulkintaa ja tällä tavoin
edesauttaa uusien ennustetekijöiden ja lääkekohteiden tunnistamista.

Olen kehittänyt kaksi laskennallista työkalua suurien genomiaineistojen yhdistämiseen sekä
aineistosimulaattorin erityyppisten genomisten aineistojen yhdistämisohjelmien koestami-
seen. Ensimmäinen laskennallinen työkalu, CNAmet, parantaa genomiaineistojen analyysin
tulkintaa yhdistämällä kolmea eri tyyppistä mittaustietoa: geeni-ilmentymän, kopiolukumuu-
tosten ja DNA-metylaation. Toinen laskennallinen työkalu, GOPredict, käyttäen automaattis-
ta tiedonmääritystä panee lääkkeet tärkeysjärjestykseen potilaskohortissa ja täten tunnistaa
mahdollisesti lääkeherkät potilasalijoukot. Aineistosimulaattorilla vertailemme eri yhdistä-
misalgoritmien suorityskykyä menetelmillä, jotka yhdistävät geenien kopiolukumittaustietoa
ja ilmentymämittaustietoa löytääkseen mahdollisia syöpägeenejä.

Kokeelliset tuloksemme simulaatio-, solulinja- ja kasvainaineistoissa osoittavat, että parhaat
kopioluvun ja geeninilmentymistä yhdistävät työkalut käsittelevät kopiolukumittauksia oi-
kealla tavalla. Kun näitä menetelmiä käytetään suurisoluiseen B-solulymfoomaan, geenien
kopioluku- ja ilmentymätiedon yhdistäminen auttaa löytämään mahdollisen ennusteteki-
jägeenin. Glioblastooma syöpäkasvaimien analysointi CNAmet-työkalulla antaa osviittaa,
että osa tunnetuista syöpägeeneistä ilmenee voimakkaasti johtuen samanaikaisesti sattuvista
muutoksista geenien promoottorien DNA-metylaatiossa ja geenien kopioluvussa. Lopuksi,
avoimen molekulääristen ja kirjallisuusaineistojen yhdistäminen GOPredictillä antaa ym-
märtää, että FGFR-estäjien käyttö rintasyövässä ja CDK-estäjien käyttö munasarjasyövässä
saattaisi tukea vakiohoitoja. Kaiken kaikkiaan tässä työssä kehitetyt työkalut ja niiden käyttö
monitahoisiin molekyläärisiin syöpäaineistoihin havainnollistavat data-integraation käytön
hyödyllisyyden syöpägenomisten aineistojen käsittelyssä.
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1 INTRODUCTION

1 Introduction

We live in an increasingly data rich society. The digitalization of most daily activities
creates massive amounts of structured and unstructured data. Our consumption
habits offline and online, commuting habits from our cell phones and travel cards,
and health records quantify who we are and what we do [1]. Increases in volume
and frequency of accurate measurement data in digital form enable its beneficial use
which requires data integration. Data integration — the combination of information
from multiple sources — and analytics are becoming key aids in improving
industrial and commercial processes as well as management decision making [2].
Data integration is a valuable tool because its usage improves the interpretability
of data-driven analytics thereby increasing the value of both analytics and data. In
science, the sharp increase in quantitative data drives the emergence of integrative
studies in such diverse fields as musicology [3], urban geography [4] and medicine
[5].

Integration of measurement data has been central for molecular biology from its
beginnings in 1950’s, emerging in the wake of Watson and Crick’s central hypoth-
esis of molecular biology [6]. The importance of data integration to molecular
biology shows a steady increase. Searching the life science and biomedical literature
database PubMed for mentions of "data integration" between 1980 and 2014 shows
how between 1980 and 1989 data integration is only mentioned once. This is in
sharp contrast to 209 mentions in 2014 alone. The growth has been driven by the
arrival of measurement technologies that efficiently produce large quantities of
molecular data and databases that store and manage the data. These and many other
technological advances together enable modern integrative molecular biology.

Cancer is one of the key diseases studied by molecular biology. Cancer is a group
of diseases characterized by unwanted cellular growth and many forms of cancer
are still incurable. As one of the leading causes of death globally, cancer is under
intensive research. The technological development in molecular biology over the
last two decades has greatly increased the amount of information that can be time-
and cost-efficiently quantified from tumor specimens. Although the understanding
of molecular and especially genomic changes in cancer has increased, improvements
have been slow to transition to patient care as better treatments or diagnostic tools.

As a specialty in cancer research, cancer genomics has taken center stage in
the molecular study of cancer [5]. Genetics and genomics have in particular
considerably benefited from the improvements in measurement technology. In
addition to quantity, the number of different types of molecular data, that can be
measured in large quantities, has grown substantially. As a result, data integration
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1 INTRODUCTION

has become an important tool for genomic analysis in improving interpretation of
experimental results [7]. As a result of the increase in data volume, the use and
development of computational data integration methods have become necessities.
Novel insights from cancer genomics include discoveries of new cancer promoting
and suppressive genes, characterization of novel drug target proteins, and discovery
and improvement of molecular stratification of cancer [8].

In addition to physical structural alterations in the genome, epigenetic changes
are also widespread in cancer. Evidence for the role of epigenetic modifications
in cancer came to light soon after the discovery of the first cancer gene [9].
Nonetheless, little is known of the relationship between transient epigenetic changes
and genomic alterations and their interplay in regulating gene expression. Data
integration is necessary for clarifying this multilevel relationship.

Efforts to utilize large-scale measurement data in industrial and scientific applica-
tions have become the current fad due to the increase in available information. In
genomics, large-scale data refer to the enormous quantity of molecular data that
can be extracted from single tumors. With the increases in size and volume of raw
data, the number and scope of entire experiments has also grown with the largest
cancer studies enrolling tens of thousands of patients. In addition to raw data,
storage, management and analysis of results from these experiments have needed
new databases which have lately burgeoned. These databases include databases
that provide interpretation-ready information — such as gene-phenotype informa-
tion or gene-gene regulatory pathway data — and databases storing unprocessed
measurement data from cancer specimens [10]. Harnessing the power of these
databases to their full extent remains an important topic in computational biology
and a challenge which data integration is fit to tackle.

Improving the diagnosis, treatment and management of cancer is important for
public health and well-being. Results and methods described in this thesis provide
solutions and improvements to (1) computational data integration methods via a
new integration algorithm and a comprehensive framework to improve algorithm
development; (2) to diagnosis via new putative prognostic markers from integrative
experiments; and (3) to treatment by providing suggestions for preferential drugs to
patient subgroups.

2



2 DATA INTEGRATION

2 Data integration

Why should data be integrated? Integration is the act or process of combining or
fusing varied features of an object of interest. When we measure different aspects
of an object, we combine as many different measurements — data levels — as
possible when we want to form a complete picture of the object. To characterize,
say, this book, we could measure its weight and dimensions (a few hundred grams
and 17×25×0.5 centimeters), its material composition (paper and ink), and count
the number of pages and words it contains. Our task at hand determines which of
these measurements we need. If we want to ship the book, we need its size and
shape. If we wish to quantify the length of the book, we need the number of pages
and words. For ascertaining that it is, in fact, a book, we need to combine all three
of these measurements.

The book example illustrates an important aspect of data integration: the inter-
dependence of what has been measured and what can be determined from the
measurements. We can with some certainty predict that our object is a book even if
we only measure two of the three properties. One property, however, would not be
enough. Seeing the entire system at the same time instead of looking at individual
parts separately contributes to better understanding of the whole. We are unlikely
to be able to exhaustively measure any object but data integration is a means to see
as much of the whole as possible. Working with the whole enables us to observe
and infer knowledge without having to break things apart first [11].

In an actual scientific experiment, we often only measure a limited number of data
levels due to costs. The parameters we measure narrow down the research questions
which we can answer. On the other hand, determining the research question first
enables us to choose the appropriate data levels to measure. Ideally, every type
of data would be incorporated into an integrative analysis. In reality, as much
as possible of the data, or the data which best answer a given research question,
are utilized. Furthermore, some measurement levels are more closely related than
others and provide more information when integrated. Some levels can even be
completely unrelated and do not provide additional information if integrated and
can even lead to false conclusions.

The current trend in science to make available bigger and more fine-grained data sets
opens up the possibility of data integration [7]. The increase in size has been fueled
by increases in measurement accuracy which together make integration technically
and statistically challenging. The sheer size of current data sets creates technical
issues and calls for computationally optimized tools. In addition, data sources
are often heterogeneous and variable in quality. Biological and technical noise

3



2 DATA INTEGRATION

can stem from impure tumor specimens, unoptimized measurement protocols, and
improper computational data preprocessing. Heterogeneous data sources produce
utilization challenges which need to be tackled in data processing and interpretation.
Together, these technical and sampling issues create a demand for computational
and statistical data integration tools which take advantage of existing subject-field
knowledge, and are computationally efficient and statistically rigorous.

Molecular biology has experienced a rapid transformation into a data intensive field
of science. Genome-wide measurements of DNA, mRNA and DNA methylation
have increased the use of statistical and computational tools. A large application
field for these measurements has been the study of tumors and tumor cell lines.
Computational data integration, too, has emerged as a necessary approach to tackle
the inherent noise and complexity of tumor samples [7, 8].

Two aspects of data integration are discussed in this chapter. I start with the
conceptualization of two broad questions to which integration can be applied
when studying cancer: to (1) combine dependent but different information sources
from the same subject and (2) combine independent information from the same
subjects or the same information from independent subjects. Second, I describe the
four different design principles by which computational integration methods are
developed. The first part focuses on data and data sets. The second part focuses on
how data analysis methods are applied to integrate data. Further examples of these
conceptualizations are discussed in Chapter 3.

2.1 Defining data integration

Data integration can be understood in three ways. First, data integration is a way of
analyzing data by combining data originating from multiple sources. Second, data
integration is a set of tools to combine data from multiple sources. Third, integration
refers to the combination of evidence, supporting a given hypothesis, which
accumulates through the repetition, replication and combination of observations
from experiments. Here we deal with how data integration as a means and as a set
of tools can be used in the molecular study of cancer.

Data can be combined and integrated in many different ways depending on the
type of available data, the number of available samples and the specific research
question at hand. I therefore start by introducing key concepts that define different
ways of applying data integration. On a conceptual level there are three different
ways to understand and use data integration (Figure 1).

In complementary or dependent integration, data from two or more measurements
on the same object – such as a gene or sample – are combined to understand
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2 DATA INTEGRATION

co-dependence, concomitant changes or correlative relationships (Figure 1a). For
example, we can measure both the mRNA and DNA from a tumor and find genes
where changes in DNA alter abundance of mRNA. Complementary integration
infers correlative and putatively causal relationships. In studies where thousands of
genes are measured and appear to be altered, complementary integration helps in
distinguishing truly altered genes from spurious or incidental alterations. Current
large-scale data have brought computational approaches to the forefront of comple-
mentary integration but single-gene in vitro and in vivo studies are also instances of
complementary integration when two or more data levels are measured.

In parallel or independent integration, information is combined from either mea-
suring independent aspects of the same samples or the same measurements of
independent samples (Figure 1b). The requirement, that data are independent,
distinguishes parallel integration from complementary integration. For example,
Yuan and colleagues combined microscopy imaging data on the cellular admixture
of tumors with transcriptional and gene-gene network data to find how cellular
structure can be used as a prognostic marker [12, 13]. Thus, structural data is
parallel to molecular data. Many studies use parallel integration when stressing the
importance of the study’s results by referencing previous, independent results or
replicating their results in an independent but similar sample set. In fact, parallel
integration is deep-rooted in the scientific process as the growth of supporting
information from independent sources over time is used to accept scientific theory
as scientific knowledge.

In essence, parallel integration is the combination of all types of data from indepen-
dent sources or samples whereas complementary integration is the combination of
different kinds of data from the same individual samples. Total integration refers
to applications where the two approaches are combined (Figure 1b).

The three concepts — complementary, parallel and total data integration — are
independent of the size of available data sets. However, the current trends and
technology in cancer studies favor the creation of data sets with hundreds of
samples and millions of data points. The volume and dimensionality of the data,
which large scale experiments produce, call for the development and application
of computational methods capable of efficiently and rigorously integrating and
analyzing complementary and parallel data.

2.2 Conceptualizing the design of data integration methods

Computational algorithms are step-by-step sets of operations starting from a
predefined input and ending in a predefined output. In this thesis, I use algo-
rithm and the more general word computational method interchangeably. Both
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Figure 1: Different types of data integration. Rectangles are abstractions of data
matrices and represent different molecular data levels. Blue, red and green colors
denote sample sets: all blue boxes depict the same samples which are distinct from
red samples. (a) In complementary integration, data levels overlap on both the y-axis
(samples) and x-axis (genes). (b) In parallel and total integration, data are independent
either on the x-axis (measurement data e.g., genes, drugs) (I) or sample-axis (II). Total
integration combines complementary (rectangles with dashed borders) and parallel
integration. Annotative data include, for example, gene regulatory networks, which are
independent on the sample-axis.

complementary and parallel integration with modern large-scale molecular data
require computational methods which I categorize into four groups. The four
categories of data integration algorithms provide a backbone for the characterization
of differences in methods. Furthermore, the categories conceptualize how statistical
and machine learning methods are applied to integrative analyses.

Black-box algorithms treat measurements blindly as numerical data and ignore
possible biological interdependence that may exist between data levels. For example,
linear regression can be applied in a black-box manner: in a linear regression model,
where co-variates are complementary DNA methylation and mRNA data, each gene
in the model has two measurements that are known to be co-dependent. Black-
box methods can be employed with cursory or no knowledge of what the data
biologically represents. Furthermore, black-box methods can require only light data
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2 DATA INTEGRATION

preprocessing — such as standardization of covariates — and therefore are efficient
to implement and use. As a downside, black-box methods do not fully or at all
employ the inherent knowledge of how different types of biological data interact
and are structured in reality. For example, the genome is sequential and therefore
DNA abundance (copy-number) in adjacent regions is highly correlated which
should be taken into account in analysis. In particular, the omission of biological
knowledge hinders applying black-box methods to complementary integration. For
example, DNA, mRNA and protein measurements are directly connected and with a
known directionality. Lastly, interpreting results can be difficult because black-box
algorithms have not been designed to answer a specific biological question.

In contrast to black-box algorithms, a controlled method utilizes biological knowl-
edge on the relationship between integrated data levels. For example, changes in
DNA abundance cause changes in cis in mRNA abundance [14]. Therefore an
increase in gene copy-number should implicate an increase in mRNA level and
not the other way around. Controlled methods take this causative relationship
and its directionality into account. As a downside, controlled methods can be
highly specific to a particular application and therefore have limited applicability
to additional research questions. Furthermore, controlled methods depend on
the current level of biological knowledge. Controlled methods can require more
cumbersome preprocessing steps than black-box methods. Controlled methods
improve interpretability of results over black-box methods but require using more
time for implementation and computation, and are poorly applicable to general use
if at all.

Abstraction methods are a special case of controlled methods. In abstraction meth-
ods, the data levels are categorized or labeled prior to integration and integration
is carried out on the categorized, abstracted, level via logical rules. For example,
gene centric data from different levels can be categorized on the gene expression
(on/off, high/medium/low) and copy-number levels (amplified/deleted) and then
fused. The integration model can include rules such as (gene copy-number high ->
gene expression high -> 1) or (gene copy-number low -> gene expression low ->
-1), that define different categories (codings) for different situations. Abstraction
methods are fast and efficient computationally but they require considerable effort
and expertise in preprocessing depending on the number of different data levels.
Interpretability of results depends on the clarity of the logical rules. Similarly
to controlled methods, abstraction methods are limited by existing biological
knowledge.

In reality, many if not most approaches are hybrids. For example, an analysis
workflow will use controlled methods for feature extraction followed by black-box
or controlled methods for building predictive models or stratifying samples. The
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2 DATA INTEGRATION

emergence of hybrid approaches illustrates (1) the underlying biological complexity
that is tackled with data integration methodology, and (2) the practical challenges
in applying standard statistical and machine learning methodology to biological
problems.

8



3 CANCER

3 Cancer

Cancer is a collection of complex diseases with one common characteristic: un-
wanted proliferation of cells also known as neoplastic growth [15]. In industrial
nations cancer is one of the leading causes of death driven by the overall aging of
the population. Improving the diagnosis, treatment and management of cancer is
therefore important for public health and well-being.

Cancer causing changes in cells can be inherited in the germline or occur somatically
during a person’s lifetime. Many cancers have both a hereditary and a non-
hereditary, sporadic form. Hereditary forms have an earlier age of onset than
somatic forms of the same cancer. The focus of this dissertation is on non-hereditary,
somatic cancers.

Non-hereditary cancers arise from random genomic alterations and environmental
exposure. Whether random alterations or environmental factors are more important
than the other is under debate [16]. Exposure to chemicals, substances or radiation
(carcinogens) and viral infections are causally linked to carcinogenesis. For
example, tobacco smoke is a carcinogen which causes lung and head-and-neck
cancers [17] and infection with the human papillomavirus (HPV) causes cervical
as well as head-and-neck cancer [18, 19]. Globally, lung cancer has the highest
incidence of all cancers and tobacco induced lung cancers constitute a clear majority
of lung cancers [20]. In contrast, cancers arising from viral infections constitute less
than 10 % of cancers in developed nations but as much as 20% in the developing
world [21]. Cancers have varied etiology but the incidence of cancer increases with
age as both random and environmental caused DNA alterations accumulate.

Most if not all tumors exhibit genomic and chromosomal instability [22, 23]. Here
I use the terms genomic and chromosomal instability interchangeably. Genomic
instability induces random genomic alterations which activate cancer promoting
genes (oncogenes) and inactivate tumor suppressor genes. In addition to genetic
alterations, epigenetic changes in DNA and histone methylation are also postulated
to drive carcinogenesis by similarly activating and inactivating cancer genes [24].
The genome in itself is little more than a blueprint and it is the proteins in the cell
— produced based on the genomic blueprint via an intermediate RNA molecule —
which are functional. It is clear that both genetic and epigenetic alterations lead to
measurable changes in transcription and protein abundance.

Genomic instability, defective DNA repair, and faulty cell cycle control over
recurrent cell divisions all cause DNA alterations that enable neoplastic growth.
Cells in the body are constantly being replaced through the process of cell division.
The frequency of cell division depends on the type of cell. Parts of DNA are
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damaged in each cell division. Although cells actively repair damaged DNA,
alterations accumulate over repeated cell divisions. Most alterations are silent
meaning that they do not confer a detectable phenotypic change. Alterations which
activate oncogenes or inactivate tumor suppressor genes lead to increased genomic
and chromosomal instability and neoplastic growth. In addition, alterations, which
disable genes responsible for maintaining genome integrity such as DNA repair and
cell cycle control genes, accelerate the alteration rate.

This chapter describes the general forms of genomic and epigenomic alterations in
cancer. Exceptions to these general characteristics exist but are beyond the scope of
this dissertation. I describe how genomic and epigenomic alterations separately and
together regulate gene expression and promote and maintain neoplastic growth. In
addition, I describe relevant computational methods to integratively analyze these
data. Finally, I briefly discuss these alterations in relation to four specific cancers
— glioblastoma, diffuse large B-cell lymphoma, and breast and head-and-neck
carcinomas — and shortly describe methods to measure gene copy number, DNA
methylation and gene expression.

3.1 Back to basics: DNA, mRNA and proteins

A gene is expressed when its genetic sequence is transcribed into mRNA. In turn,
the mRNA transcript of the gene is translated into a protein. Genes, by default,
are present in two copies in the human genome. The number of copies shows
genetic variability and genes can have additional copies. The number of copies of
a gene (also known as gene dosage) directly influences the abundance of mRNA
[25] which, in turn, correlates with the amount of protein in the cell. Since DNA,
mRNA and protein are tightly linked, finding alterations in the genome implies
alterations in mRNA and proteins. Thus, increases in gene dosage increases the
abundance of corresponding mRNA and protein. When gene dosage increase affects
the mRNA levels of the mRNA transcribed at the same locus, the effect is referred
to as happening in cis [26]. When the alteration affects a locus somewhere else, it
is in trans. This thesis focuses on alterations whose effects occur in cis.

This straightforward assumption of in cis effects has proved to be a powerful
tool in discovering and characterizing cancer related alterations [8] eventhough
the abundance of DNA and mRNA show only intermediate correlation [27] as
do the levels of mRNA and protein [28]. Furthermore, directly comparing DNA-
mRNA and mRNA-protein relationships simplifies how cells work since the direct
comparison ignores post-transcriptional control (such as small non-coding RNAs)
and post-translational modifications affecting protein expression [25]. Analysis of
these in trans effects is beyond the scope of this dissertation.
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3.2 Types of chromosomal alterations in cancer

Many cancers have an altered chromosomal structure where parts of or entire
chromosomes have been lost or gained. Genomic alterations in cancer range in
size from single nucleotide to entire chromosomes. Small, single nuclotide variants
(SNVs or point mutations), small 1-20 basepairs (bp) long insertion deletions, and
alterations (gains and deletions) which affect entire genes or chromosomes (somatic
copy-number alterations or sCNA) all play a part in carcinogenesis [22]. Genomic
alterations constitute the essential mechanism by which tumors activate oncogenes
and deactive tumor suppressor genes [23].

At baseline, most tumors are diploid but the distribution is bimodal with additional
peaks at 3.31 copies and more than five copies [29]. Large, chromosome arm
or whole chromosome sCNA gains rarely exceed three copies [30]. In contrast,
focal sCNA with a high number of copies encompass smaller regions and have a
median size of 1.8 megabasepairs (Mbp) [30]. Arm-level sCNA are enriched for
deletions whereas focal sCNA are slightly more often amplifications [29]. The
length distribution of sCNA is strongly bi-modal where focal and approximately
arm-level sCNA greatly outnumber intermediate length sCNA [30].

In loss of heterozygosity (LOH), one of two alleles present in the normal genome
has been deleted. This can lead to reduced gene expression from one allele
(allelic imbalance) and is a mechanism to partly deactivate tumor suppressor genes.
LOH can retain one copy of an allele in which case it is a hemizygous deletion.
Alternatively, the deleted copy can be replaced by the DNA repair machinery with
one or more copies of the remaining allele. Two copy LOH events comprise more
than 50% of all LOH loci in such disparate tumors as breast [31] and glioblastoma
[32] incidating that they are more frequent and span larger genomic areas than
copy-altered LOH loci.

A breakpoint is a locus where two regions of a chromosome, that would normally be
contiguous, have been separated in a way that we can observe. Entire chromosomes
can be shattered and then pieced back together without substantial loss of genomic
material (chromothripsis) [33]. Contiguous regions of a chromosome can become
detached and then reattach in an inverted orientation (inversions). The reattachment
of breakpoints between loci that were not juxtaposed before the breakage is called
a translocation. Sometimes inversions, translocations and deletions form chains of
alterations called chromoplexy [34].

Cancers can be roughly divided into two groups: mutation dominated and sCNA
dominated [35]. Mutation dominated cancers show preferential activation and
inactivation of cancer genes via somatic point mutations rather than sCNA. The
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reverse is true for sCNA dominated cancers. The difference, however, shows a
gradient over cancers and some mutation dominated cancers nonetheless activate
key oncogenes via sCNA.

3.3 DNA methylation at gene promoter regions regulates gene
expression epigenetically

DNA methylation is an epigenetic form of gene expression regulation. Approxi-
mately 60% the genes in the genome have promoter regions with stretches of DNA
in which cytosine to guanine alternations are enriched [36]. These regions are called
CpG islands. When DNA is methylated, a methyl group is added to the end of a
cytosine in the DNA sequence. DNA methylation functions in gene transcription
regulation in CpG islands located at some kilobases up- and downstream of
transcription start sites (TSSs) [36]. If a gene’s CpG islands are saturated with
methylation, transcription is silenced. If a gene’s CpG islands are completely
unmethylated, transcription is possible. Indeed, in normal somatic mammalian
cells most TSS CpG islands are unmethylated [36]. When a gene exhibits more
methylation than a reference, the gene is hypermethylated. Conversely, a gene
exhibiting less methylation than a reference is hypomethylated.

Cancer cells show large, hypomethylated regions containing approximately one-
third of TSSs and consistent hypermethylation of gene bodies as well as intergenic
regions [24]. Hypomethylation leads to uncontrolled expression and is a potent way
to activate oncogenes. In addition to oncogene activation, targeted hypermethylation
of tumor suppressor gene promoter regions occurs [37] although whether this
happens before or after these genes have been silenced is debated [38]. Nonetheless,
DNA methylation is an important mechanism for tumors to develop drug resistance
[39] and activate oncogenes [24].

3.4 Cancer genomics from an integrative perspective

A gene in part or completely responsible for the cancer phenotype is called a
driver or cancer gene [40]. Cancer genes are activated and inactivated via genetic
and epigenetic alterations. A gene that has genomic alterations in a cancer cell
but does not participate in carcinogenesis or maintenance of cancer is called a
passenger. These concepts are however fluid as a gene can be a driver at some stage
of carcinogenesis and a passenger at another stage or vice versa [40].

The genomic analysis of a single sample yields lists of genes and genomic regions
with gains, deletions, mutations, and other genomic alterations. A simple, non-
integrative analysis approach is to repeat the genomic analysis in multiple samples
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and count the frequency of each alteration. The logic here is that the more often
we see an alteration the more likely it is related to cancer due positive selection of
clones carrying the alteration [40]. For example, targeted sequencing of the BRAF
kinase gene uncovered a high frequency of oncogenic V600E (change of valine to
glutamic acid in codon 600) mutations [41]. Similarly, EGFR was discovered to be
amplified and concomitantly overexpressed with a high frequency in glioblastoma
brain tumors [42] and the amplification frequency exceeds 50% [43]. As was true
for both BRAF and EGFR [44, 45], such initial discoveries in genomic studies need
to be followed up by appropriate protein level and eventually in vivo studies to
validate an association between the genomic alteration and phenotype.

Although successful, concentrating on high frequency alterations on one measure-
ment level poses problems. First, a large proportion — on average one-third
of the genome [30] — can be genomically altered in a sample which makes
pinpointing of relevant cancer genes challenging because a region encompassing
several genes is frequently altered. Data integration can tackle this problem using
complementary data. Second, important alterations which affect a small subset of
samples can be overlooked due to their low frequency. Again, data integration helps
to overcome this challenge. For example, MET is amplified in 1% of head-and-neck
squamous cell carcinoma (HNSCC) tumors [46] but its copy-number amplification
and concomitant overexpression is nonetheless related to HNSCC growth in vitro
and angiogenesis in vivo [47]. Third, only a subset of genes are expressed in any
type of tissue, including different types of tumors, and this pattern varies from
tissue to tissue.

Complementary integration can aid in tackling these challenges. For instance, a
straightforward improvement on calculating the frequency of genomic alterations is
to combine genomic and transcriptomic measurements. The logic here is to identify
genes whose expression is altered in cis by the underlying sCNA. This approach
was successfully used to characterize the oncogenic roles of EGFR, MITF and
SOX2, to name a few [42, 48, 49].

Concomitant amplification and overexpression of genes is recognized as one of the
central ways to activate oncogenes [50]. A census of amplified and overexpressed
genes in cancer qualitatively identified 77 genes for which there was sufficient
evidence to consider those genes as cancer genes due to complementary integration.
For tumor suppressor genes, the TSGene database lists 716 human tumor suppres-
sors, which have been collected and curated from literature [51]. The genes in
TSGene have not, however, been originally characterized based on complementary
genomic and expression changes.

Less than half of genes in sCNA regions show any correlation between mRNA
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Figure 2: Two copies of a chromosomal region with promoter CpG islands (rods),
methylated residues (black circles) and genes (rectangles). Red background denotes
upregulated expression and blue background downregulated expression. Dashed border
indicates a deleted gene. The depicted chromosomal region contains genes with
varying copy-number normal, gain and deleted states. In addition, the promoter regions
of the genes are varyingly methylated. Gene 1 is overexpressed due to promoter
hypomethylation. For gene 2, one copy of the gene is deleted whereas the second,
genomically intact copy is hypermethylated: both result in gene downexpression. For
gene 3, both copies are hypomethylated and have gained additional copies resulting in
overexpression.

and sCNA levels but the correlation increases with the number of copies so that
highly amplified genes show better correlation [27]. A more functionally relevant
alternative to integration of genomic and transcriptomic data would be to combine
genomic copy-number or DNA methylation and proteomic information but this
approach is severely limited by the number of proteins whose expression can be
cost-efficiently quantified. For example, the reverse-phase protein array only probes
approximately 170 proteins. Although the availability of large-scale protein data is
limited, complementary integration can instead be enhanced by including more than
two data levels. Figure 2 depicts how DNA methylation and structural genomic
alterations jointly influence gene expression in cis.

Most solid tumors are a mixture of several cell types including cancer cells,
fibroblasts, immune cells, and normal cells. Both integrative and non-integrative
analyses of genomic data are affacted by this heterogeneity in patient tumor samples.
The admixture creates challenges for accurate and robust identification of molecular
alterations. In addition, the cellular microenvironment of the tumor is emerging
as an important component for carcinogenesis [23]. Together these different cells
form a complex ecosystem which both aids and fights the tumor. For example,
different types of immune cells can be recruited by cancer cells to fend of other
cells eliciting the host-immune response [52].

Since tumors are sampled as bulks of cells containing an admixture of cells, both
computational analysis and interpretation of results become challenging. The type
of cancer influences the amount of admixture and purity of sampling [53]. For
example, in pseudomyxoma peritonei cancer cells make up only 5-30% of a tumor
sample whereas many solid tumors can be sampled with near 100% cancer cell
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yield [29]. In many cases, the signal of genomic alterations from the cancer cells
is diluted and therefore harder to detect and, in addition, cells of the tumor micro-
environment are also susceptible to genomic alterations [54] creating a source of
false positives.

3.5 Existing data integration approaches in cancer genomics

The emergence of large-scale public data sets and databases has motivated and
facilitated the development of computational tools [7]. The Cancer Genome Atlas
(TCGA) is a large public database containing molecular and clinical data of 33
cancers and approximately 11,000 tumors [55]. The TCGA consortium was the first
large-scale effort to systematically collect multilevel molecular and clinical data
from large patient cohorts in several cancers. The systematized and harmonized
sample collection as well as measurement protocols and technologies from multiple
participating institutes provide high quality data which is important for integrative
studies.

Whereas TCGA gathers data from multiple cancers, METABRIC is a unique
compendium of molecular, microscopy cell imaging and clinical data of around
2,000 breast tumors specifically [26]. METABRIC data provide sufficient large
sample numbers to enable breast cancer subtype specific analyses. In addition to
TCGA and METABRIC, the NCBI Gene Expression Omnibus (GEO) contains a
collection of microarray based genomic and transcriptomic data from more than 1
million samples [56]. The utility of GEO is hampered by less complete or missing
clinical information and completely unharmonized sample collection practices in
comparison to TCGA and METABRIC.

Two frequent applications for data integration in cancer genomics are gene prior-
ization for cancer gene discovery and sample classification for cancer subtyping.
Numerous complementary, parallel and total integration methods have been devel-
oped to address these questions. The following paragraphs describe examples of
each type of integration tool and their applications.

One of the most successful applications of complementary integration has been
the characterization of new cancer subtypes. The METABRIC breast cancer is
a prime example of complementary data integration in which copy-number and
expression data were integrated to define ten novel breast cancer subtypes [26].
Similar integrated subtypes were also discovered in glioblastoma [57], colorectal
[58] and prostate cancer [59].

Multiple complementary integration approaches have been used to discover putative
cancer genes. In general, analyses of multilevel complementary data — even
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when working on more than two measurement types — tend to look at pair-wise
correlations between mRNA and other data levels. For example, integIRTy is a
controlled algorithm that in one pass simultaneously determines whether gene
expression is deregulated due to either DNA methylation or sCNA [60]. MIGHT is
a visual inspection tool which in contrast to integIRTy can also find genes whose
expression is synergistically deregulated by DNA methylation and sCNA [61]. Yang
and colleagues focused on a subtype of ovarian cancer and were able to extract a
core subtype-specific regulatory microRNA network by correlating mRNA, CNA,
miRNA, methylation with a measure of gene differential expression [62]. Jörnsten
and colleagues integrated sCNA to mRNA data to construct de novo signaling
pathways which they used to identify genes related to glioblastoma survival [63].
Instead of a single gene approach, Tyekucheva and colleagues constructed integrated
gene sets using multivariate logistic regression over two types of copy-number and
two types of expression data and discovered gene sets related to glioblastoma [64].
Both of these glioblastoma studies were carried out with TCGA data.

Some abstraction based methods exist for driver gene discovery in complementary
data [65] and an interesting approach from Ciriello and colleagues uses an abstrac-
tion based fusion integration to combine genomic alterations with networks [66].
In this approach, gene modules comprising several genes are prioritized so that
alterations in different genes are mutually exclusive.

To date, the largest TCGA analysis used parallel integration to uncover pan-cancer
cancer genes in approximate 5,000 tumors over 12 cancers [67]. Many of the
integrative analyses from TCGA have been from combining expression data with
networks (e.g., gene co-expression in four TCGA cancers [68], tools for handling
the multilevel data with networks [69]). Parallel integration of METABRIC data
from Yuan combined spatial data on the structure of tumor cells with changes in
mRNA abundance [13]. In addition, the METABRIC breast cancer subtypes were
later validated in a large parallel cohort [70].

HELIOS, a total integration approach, first combines complementary mutational,
sCNA and expression data with a controlled Bayesian approach and then prioritizes
genes based on parallel, RNA-interference screening data [71]. Osmanbeyogly
and colleagues combine mRNA and RPPA protein data from TCGA breast cancer
primary tumors to predict protein activity in breast cancer cell lines, which is used
to group drug sensitivity profiles in these cell lines [72]. Furthermore, their model
successfully predicted survival in parallel METABRIC primary tumor data.

Building survival models with single level genome-wide molecular data has not
yielded substantially improved prognostic models compared to models incorporat-
ing clinical variables only [73, 74]. In addition, randomly chosen gene sets have a
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90% chance of showing an association between survival and expression in breast
cancer [75]. Interestingly, depending on the integration model, integrative analysis
can yield better survival predictability power than single molecular data types alone
[76]. The importance of survival analysis for result interpretation is shown by
(1) several integrative analyses where prognostics models were built guided by
the integration results; and (2) analyses where integration was used for subtype
discovery [77, 26, 70].

3.6 Glioblastoma, diffuse large B-cell lymphoma, head-and-neck
and breast carcinomas

I will discuss the alterations of four cancers in more detail: glioblastoma (GBM),
head and neck squamous cell carcinoma (HNSCC), diffuse large B-cell lymphoma
(DLBCL), and breast cancer (BRCA).

Most aggressive or stage IV glioma brain cancers are called glioblastomas. GBM
is the most common brain cancer and its prognosis is abysmal due to the advanced
stage at which it is most often diagnosed , the difficulty of surgical removal due
to the anatomical location and the diffuse characteristic of the tumor cell spread
in brain tissue [78]. In terms of genomic alterations, glioblastomas are heavily
mutation dominated but exhibit highly frequent focal sCNA of key oncogenes
(EGFR, over 50% of samples) and tumor suppressors (CDKN2A, over 60%).
Molecular classification with genomic and gene expression data has suggested
that glioblastoma has 2-3 subtypes [79, 80]. Clinically, glioblastoma has two
subtypes: primary and de novo [78]. The primary subtype is characterized by
a slow progression from lower grade gliomas to glioblastoma, whereas de novo
glioblastomas present at stage IV [78].

Head and neck squamous cell carcinoma is the second most common cancer
caused by tobacco smoke after lung cancer [81]. HNSCC is an epithelial cancer that
shares both etiology and many genomic features of lung squamous cell carcinoma
[82]. Resectable, local tumors have a good prognosis whereas non-resectable
tumors show modest response to chemotherapy and targeted drugs [83]. In addition
to sporadic and carcinogen induced tumors, infection of the human papilloma
virus (HPV) can also induce HNSCC. The distinction between human papilloma
virus positive and negative HNSCC is notable, and the two forms of HNSCC are
considered separate entities [84]. Key sCNA in HNSCC with concomitant sCNA
and expression changes include gains of chromomsome 11q13 ( CCND1, CTTN
and FADD) and — similarly to glioblastoma — EGFR and deletion of CDKN2A
[85, 50]. HNSCC tumors show features of both mutation and sCNA dominance [35].
Expression profiling of HNSCC has yielded four molecular subtypes [86, 87, 46]
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but currently only HPV status is used clinically to molecularly subtype HNSCC
tumors [88].

Invasive breast carcinomas are sCNA dominated epithelial tumors [35]. Molec-
ularly breast tumors are divided into five subtypes according to the PAM50 clas-
sification [77]: normal, basal, luminal A, luminal B and HER2 enriched. In the
clinical setting in Finland, subtyping is carried out by IHC staining for the aestrogen
receptor, progesteron receptor, Ki67 (proliferation index), and the human epidermal
growth factor receptor 2 (HER2) coded by the ERBB2 gene [89]. Breast cancer
has 26 commonly amplified and overexpressed genes according to a recent review
[50]. The most well characterized of these are ERBB2 and CCND1 which are
commonly amplified in breast tumors [50]. Similarly to HNSCC, the CCND1/11q13
amplification region in breast tumors spans several putative cancer genes [90].

In contrast to glioblastoma, breast cancer and HNSCC, diffuse large B-cell lym-
phoma is a hematological malignancy originating from lymph nodes. It is the most
common type of lymphoma [91]. DLBCL has three classical molecular subtypes
defined by gene expression [92]: activated B-cell (ABC), germinal center B-cell
(GCB), and the unclassified subtype [93]. These three subtypes show preferential
patterns of somatic alterations but most alterations occur in all molecular subtypes
making genomically distinguishing one subtype from another challenging [94]. The
most frequently activated DLBCL oncogene, BCL2, is activated via a translocation
with an immunoglobulin locus or a sCNA [92]. REL is another frequently copy-
number amplified DLBCL oncogene which is amplified in up to 16% of tumors
[95, 96]. CDKN2A is frequently deleted in DLBCL and shows preference to occur
in the ABC subtype [92]. DLBCL tumors are characterized by a high number of
somatic point mutations [95]. In addition to genome-wide mutation patterns, a
DLBCL specific somatic hypermutation pattern occurs in immunoglobulin loci
e.g., in chromosome 14q [92]. These suggest that DLBCL is a mutation dominated
cancer but the occurance of site specific somatic hypermutation not seen in mutation
dominated solid tumors can bias the classification.

Interestingly, several alterations such as amplifications in the epidermal growth
factor receptor family members one (EGFR) and two (ERBB2) occur in multiple
cancer types here - EGFR in breast, HNSCC and GBM and ERBB2 in breast
and HNSCC. In addition, ERBB2 is amplified in ovarian carcinoma, which is
molecularly closely related to breast cancer [97]. Furthermore, CDKN2A is
frequently deleted in GBM, HNSCC and DLBCL but not in breast cancer [29, 92].
ERBB2, CCND1 and EGFR are classic examples of cancer genes that show
consistent and common concomitant expression and dosage alterations [50].

Although DLBCL shows consistent genome-wide chromosomal instability, it’s dis-
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tinctive mutation pattern due to somatic hypermutation distinguishes DLBCL from
the other cancers described here. Akin to somatic hypermutation, breast cancers
show localized hypermutation termed kateagis [98]. Though the hypermutation
pattern in hematological malignancies appears to be attributable to the deregulation
of the AID enzyme, these two mutation patterns seem related [99].

3.7 Measurement technologies

Microarrays as a measuring technology for DNA and RNA emerged in the 1980’s
and proliferated in the late 1990’s [100]. The main applications of microarrays
include gene expression profiling and genomic profiling. Microarrays have probes
with a known DNA sequence which bind specific target molecules. The probes are
specific to a genomic locus. Probes can be evenly spaced on the genome or only
reside in certain regions such as genes. The location of probes depends on the type
of array and its purpose. In this section, I introduce microarray types relevant for
this work.

Array comparative genomic hybridization Array comparative genomic hy-
bridization (aCGH or CGH microarray) is used to measure the genomic abundance
of a sample. In aCGH, DNA from a test sample (e.g., tumor) and a control sample
are labeled with fluorescent cyanine dyes Cy3 and Cy5, and co-hybridized onto an
array using oligonucleotide probes whose length varies from array type to array
type. The array is scanned to quantify signals from the two separate channels for
computational analysis. Details of the computational analysis of aCGH data are
discussed in Chapter 5.2.

CGH microarrays enable detecting sCNA amplifications and deletions. These
chromosomal alterations are detected by first finding approximate breakpoints in
the genome. Changes in the abundance of DNA on different sides of the breakpoint
are then used to estimate genomic copy-number at this locus, and extrapolating
this procedure over all chromosomes yields a copy-number profile for a sample.
The accuracy of breakpoint detection depends on the density of probes on the array.
Since probes are placed nearly uniformly along the genome (spacing is slightly
denser near protein coding regions), the number of probes on the array determines
the accuracy of breakpoint detection. For example, the Agilent 244A Oligo CGH
microarrays have 236,381 probes with a median spacing of 8,900 basepairs.

CGH microarrays have a number of limitations when it comes to detecting genomic
alterations. LOH, inversions, translocations or point mutations cannot be detected
with aCGH. In addition to gains and deletions, SNP based arrays enable detecting
LOH. Furthermore, whole-genome sequencing enables detecting all types of
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structural alterations but their use is beyond the scope of this work.

Gene expression microarrays Expression microarrays quantify the amount
of mRNA transcripts in a sample. The process is highly similar to aCGH except
probes are designed to specifically capture mRNA as opposed to DNA. Furthermore,
probes only target protein coding regions of the genome. Also, most expression
arrays contain a single channel or only utilize one channel of a two-channel array.

Preprocessing of gene expression arrays is specific to the array type. Between
sample normalization is necessary and is carried out, for example, with robust multi-
array average (RMA) for AffyMetrix and LOWESS for Agilent arrays [101, 102].
Exon arrays require specialized normalization methods – such as MEAP [103] – to
accurately quantify transcript level expression. MEAP can also summarize data on
the gene, transcript or exon level.

Different manufacturers have differences in their probe design which necessitates
specific preprocessing to be used for each platform. Using standardized pipelines
to preprocessing of different array platforms, such as those found in workflow
systems like Anduril [43], enable rapid and reproducable preprocessing of large
numbers of varied arrays. Measurement data from different arrays have substantial
differences in how they quantify gene expression (e.g., scale and distribution of
measurement intensities) and mixing measurements produced with different array
types in a single analysis should be avoided.

DNA methylation microarrays Illumina Methylation BeadArray’s design has
two probes per each locus. One probe measures the methylated signal and a
second probe the unmethylated signal [104]. There are two sizes of the chip, the
smaller covering 27,000 CpG loci in promoters of approximately 14,500 genes
and the larger being "whole-genome" in the sense that there are over 485,000 CpG
sites covered. The larger chip can, in addition to DNA methylation, be used to
accurately analyze gene copy-number alterations similarly to SNP arrays [105].
The abundance of methylation at a CpG site is quantified as the ratio of methylated
probe signal divided by the sum of signals from both unmethylated and methylated
probes.
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4 Aims of the study

My research was concentrated on optimizing, developing and applying data integra-
tion algorithms for computational analysis of cancer data. In particular, my research
dealt with analyzing and integrating genomic, transcriptomic and DNA methylation
data in conjunction with clinical and drug-target data to aid in interpretation of
genomic data, find putative prognostic markers, and suggest priority drugs for
potentially drug-sensitive patients.

The specific goals of my research were to

1. Compare algorithms for integrating genomic copy-number and gene expres-
sion data (complementary integration, black-box, controlled and abstraction
methods).

2. Integrate copy-number and expression data with clinical data to identify
survival associated sCNA for development of a prognostic marker (comple-
mentary integration, controlled method).

3. Develop a tool which improves complementary integration by simultaneously
analyzing copy-number, DNA methylation and gene expression (complemen-
tary integration, controlled method).

4. Develop a tool to prioritize drugs for potentially drug-sensitive patients
through integration of existing local and open-access molecular, literature
and signaling pathway data. (parallel and total integration, controlled and
abstraction methods).
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5 Materials and methods

In this chapter, I will summarize the cancer data sets used in these studies and
the computational and statistical methods with which these data were analyzed.
Detailed descriptions of the cancer material and methods can be found in each
publication. The following chapter first introduces the sample material and data
sets. Then, I introduce the computational analysis of cancer copy-number data
followed by the computational framework and database infrastructure which were
used to build analyses. Finally, I will briefly summarize central statistical tools.

5.1 Biological sample material

Table 1 lists the cancer samples sets analyzed in each publication, the type of
samples, and their origin. For mutational data, we used fully processed mutational
calls as provided by TCGA. For other data types, we preprocessed the data ourselves
(in data type specific ways) during the course of the analyses.

Publication Material Cancer Data type

Publication I Primary tumors LUSC [82] aCGH, gene expression
Cell lines HNSCC aCGH, exon array

Related Publication I Primary tumors DLBCL aCGH, exon array

Publication II

Primary tumors GBM
[106],
OVCA
[107]

aCGH, exon array, DNA
methylation

Publication III

Primary tumors BRCA
[97],
COAD
[108]

SNP array, gene
expression, mutation*,
DNA methylation

Primary tumors GBM
[106],
OVCA
[107]

aCGH, gene expression,
mutation*, DNA
methylation

Table 1: Data sets and material used in each publication. An asterisk following a data
type indicates that preprocessed data were used. BRCA breast carcinoma; COAD
colon adenocarcinoma; DLBCL diffuse large B-cell lymphoma; GBM glioblastoma
multiforme; HNSCC head and neck squamous cell carcinoma; LUSC lung squamous
cell carcinoma; OVCA ovarian adenocarcinoma.
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5.2 Copy-number analysis of cancer genomes

Copy-number analysis is carried out in three steps: normalization, segmentation,
and copy-number calling.

First, signal from probes is extracted from the array. The probe intensities are
normalized to a mean of zero. Possible options for this normalization are platform
dependent. For Agilent CGH arrays, LOWESS normalization has been shown to
work well [102].

Normalized probe signals show substantial variance around genomic regional
means and therefore are segmented to reduce noise [109]. In segmentation, a
specific segmentation algorithm is employed to find loci where the regional mean
of the probe signals significantly shifts. These loci are called breakpoints. After
breakpoints are approximated by the segmentation algorithm, the normalized probe
signal is supplanted with an averaged (segmented) signal for each region. Several
segmentation algorithms have been developed and the most frequently used are
circular binary segmentation (CBS) and GLAD [110, 111]. Both CBS and GLAD
have been found to perform well in comparisons [112, 113].

Since segmentation reduces noise but does not tell whether a region’s copy-number
is altered, copy-number alterations need to be called. In sCNA calling, segmented
regions are classified into gained (copy-number > 2), deleted (copy-number < 2)
and normal (copy-number = 2). Sometimes high-level gains of five or more copies
(amplifications) are distinguished from low-level gains for emphasis. Furthermore
when measurement technology allows, two copy deletions and regions of copy-
neutral LOH are separated from hemizygous deletions. The simplest calling
procedure is to consider all regions with non-zero segment means as sCNA. More
sophisticated methodology can take tumor purity and subclonality into account
which need to be considered when studying clinical tumor samples. Impurity
arises from (1) stromal admixture of non-cancerous cell types and (2) subclonal
architecture of cancer cells [23]. Both cause the sCNA signal to be diluted and
therefore make detecting low level sCNA more challenging. Tumor impurity can
be handled in calling or preprocessing steps by focusing on high level sCNA. If
required by the data, algorithms facilitating the detection of low level sCNA exist
but are limited to certain types of measurement technologies [114, 115, 116].

Several sources of possible bias exist and need to be accounted for when analyzing
sCNA. First, tumor samples contain an admixture of different cell types which
lowers the amount of signal from cancer cells. Subclonality of the cancer cells
confers the same effect as impurity and both can occur together. These were
discussed in the preceding paragraph. Second, germline copy-number variation
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(CNV) should be removed when studying somatic CNA [109]. In an ideal case,
matched tumor and control samples are hybridized on different channels of the
same array and CNVs would be automatically removed in a matched comparison.
If matched controls are not available, gender-matched human reference DNA is
used instead. Access to matched control data is rare in practice: the acquisition
of normal reference samples can be costly, difficult, over-invasive to the patient
(e.g., in brain cancer), or simply impossible to obtain (especially in retrospective
studies). Therefore in studies lacking matched controls, known copy-number
variable regions have to be dealt with [109], for example by removing those regions
after normalization or segmentation.

5.3 Anduril

Anduril is an open-source component-based workflow development platform [43].
It includes the execution engine responsible for handling analysis execution and a
simple but powerful programming language (AndurilScript) for building workflows.
Anduril components are organized into bundles according to categories defined by
the component’s developer. Each component has a built-in support for automated
testing and testing is rigorously and constantly carried out. Components can be
used to execute several tasks ranging from basic filtering of tab-delimited numerical
data and running statistical tests to automated querying of annotation databases
such as Ensembl.

Anduril automatically parallelizes tasks within a single computing node (such as a
laptop) and supports cloud-based multi-core parallelization which makes Anduril
efficient for many bioinformatic tasks. Anduril is also designed to automatically
parallelize execution of independent proportions of single workflows so that tasks
which do not depend on each other are run simultaneously. Furthermore, Anduril
increases development and analysis efficiency by automatically identifying the point
of the workflow, where execution was halted, and only re-executing the portions of
the analysis which were changed from the preceding workflow run.

5.4 Automatic workflow for processing and analyzing primary tu-
mor data from TCGA

The TCGA pipeline developed with Anduril is an automatic retrieval, preprocessing,
and analysis workflow for molecular primary tumor data from TCGA. The pipeline
automatically analyzes gene expression, sCNA and DNA methylation data starting
from raw data. This allows using different preprocessing and analysis tools than
those chosen by TCGA. In addition, TCGA-processed ready-to-use mutation data
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are downloaded and combined with other data levels for interpretation. The pipeline
is modular and handles each data level separately. The pipeline compares tumors to
controls to calculate the extent of differential expression for each gene. For sCNA
and mutation data, the sCNA and mutation frequency for each gene is calculated.
In addition, the pipeline calculates the univariate impact of gene expression, copy-
number-alteration and DNA methylation on patient survival for each statistically
significantly altered gene from each individual analysis using the log-rank test. The
pipeline is scalable and allows users to implement additional data types and new
cancer types. Currently, the pipeline supports BRCA, OVCA, GBM, COAD, kidney
renal cell carcinoma and lung squamous cell carcinoma data. Here we focus on
BRCA, OVCA, GBM and COAD.

The Cancer Genome Atlas contains two array types of gene expression microarrays
(Agilent and AffyMetrix Exon array) for the four cancers. When both types of
data are available for a cancer, only exon array data is used because it allows
for more accurate quantification of gene expression than other available array
types. This is because exon arrays probe the entire length of the gene and allow
quantification of expression at the level of splice variants and individual exons
[103]. The pipeline preprocesses Agilent expression data (BRCA, COAD) so that
probes matching either multiple or no genes are removed and data are normalized
to a mean of 0. For exon arrays (OVCA, GBM), data are normalized and gene
expression values quantified with MEAP [103]. Post-normalization processing is
carried out identically for both platforms. For each gene, the gene is considered up-
or downregulated in a sample if the gene’s expression is further than three standard
deviations from the median of control samples and difference in the medians is
statistically significant (q ≤ 0.001, t-test, Benjamini-Yakutieli multiple hypothesis
correction [117]). Samples are then grouped to upregulated, downregulated and
unchanged groups, and univariate survival effect is assessed separately for each
significantly altered gene.

Similarly to gene expression, copy-number data are available from two platforms:
AffyMetrix 6.0 SNP arrays (BRCA, COAD) and Agilent CGH (GBM, OVCA).
When both platforms are available for a cancer type, the pipeline uses Agilent data.
AffyMetrix 6.0 SNP arrays are preprocessed with the R package crlmm [118].
Samples with signal-to-noise ratio of less than 5 and probes with confidence
limit less than 0.9 are removed. Copy-number data from Agilent CGH arrays
are preprocessed as described by Ovaska and colleagues [43]. Circular binary
segmentation is used to segment data originating from both arrays [110]. After
segmentation, copy-number calls are made in array type specific ways. For SNP
arrays (BRCA, COAD), sCNA are called when the copy-number is further than
0.3 from the normalized logarithmic diploid state. For Agilent CGH arrays (GBM,
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OVCA), sCNA are called as described in Publication II and Chapter 5.2. Gene
specific copy-number calls are used to split samples into groups for survival analysis
so that a sCNA group (deleted or amplified) is compared against a sample group
with unaltered copy-number.

For DNA methylation data, the pipeline downloads beta values and transforms them
into M-values [119]. This conversion transforms the measurement value distribution
into a normal distribution and is performed to enable using the t-test to assess the
statistical significance of changes in DNA methylation [119]. For each gene, if
the genewise methylation difference between the median methylation of control
samples and a tumor sample is more than 2 and statistically significant (q < 0.05,
t-test, Benjamini-Hochberg correction [120]) then the sample is grouped into hypo-
or hypermethylated sample groups. Similarly to survival analyses of copy-number
and gene expression, a demethylated patient group is compared against an unaltered
patient group in survival analysis for each significantly altered gene.

In addition to Publication II and Publication III, results from analyses with the
TCGA pipeline have been utilized in Liu et al [121].

5.5 Moksiskaan

Moksiskaan is an integrated database connecting genes to signaling pathways
and drugs [122]. Each gene is connected to other genes according to pathway
information. The database has been constructed in a gene-centric way. Moksiskaan
is a database of databases as it integrates signaling pathway information from five
pathway databases. Pathway data have been extracted from KEGG [123], WikiPath-
ways [124], PINA [125, 126], Gene Ontology (GO) [127] and PathwayCommons
[128]. Drug data are extracted from KEGGDrug [129] and DrugBank [130].

In addition to pathway information linking genes to genes, Moksiskaan enables
users to store gene-specific annotative data called studies. A study is a ranked list
of genes. For each gene, annotative data include phenotype specific information
such as mutation frequency in the COSMIC database and sCNA frequency in
the Tumorscape database. In addition to these curated data sets, Moksiskaan
contains similar annotative result data for selected TCGA cancers. For example, the
amplification frequency of genes in selected TCGA data sets is stored in Moksiskaan
[122]. Annotative data are specific to a Moksiskaan installation and more studies
can be locally added by users. To aid in interpretation, each study has study specific
cutoffs. For example, a gene is ranked in the COSMIC study only if its mutation
frequency exceeds 10% and the mutation was recorded in at least 20 samples.

To illustrate the type of information that Moksiskaan contains, we take the SLC25A32
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gene as an example. For SLC25A32, Moksiskaan contains annotations for 11
Gene Ontology terms, 10 studies, ten protein or gene regulatory connections to
other genes, and one connection to an SLC25A32 inhibiting drug. These numbers
are larger for well known genes such TP53 which has hundreds of regulatory
connections.

5.6 Permutation test

A permutation test is a non-parametric statistical significance test. Permutation tests
do not require assumptions on the background distribution of data and are therefore
useful when the real distribution is unknown. Publication II and Publication III both
utilize permutation testing for this reason.

In a permutation test, the significance of a statistic S is quantified by comparing
the incidence of a statistic better than S when the test is repeated to randomly
permuted sample of the original data. The maximum significance level of the test
is determined by the number of permuted tests. For example if a test is repeated
1,000 times, the maximum significance level that can be reached is 1

1000 = 0.001.

5.7 Survival analysis

Many cancer studies on patient data contain clinical patient information. Of
particular interest is often the time to an event such as death, relapse or metastasis.
Analysis of these event data is called survival analysis [131].

Survival analysis is utilized to identify if a variant of interest — such as amplification
of ERBB2 — is predictive of patient survival in a cohort. In its simplest form,
survival analysis is a comparison of two groups. The comparison assesses whether
patients with the variant show significantly shorter or longer survival than patients
without the variant.

Survival in a cohort is most frequently depicted using Kaplan-Meier curves. Kaplan-
Meier curves are step functions which fall over time and approximate the true
survival function of a cohort. The Kaplan-Meier survival estimate is the conditional
probability of surviving beyond time t multiplied by the probability of survival at
the previous time-point [132]. Importantly, Kaplan-Meier curves and estimates are
able to handle censored data. Censoring refers to patients that drop out of a study
during its course. For example, if the event in a study is defined as death to a certain
type of cancer, censorings occur when patients are cured or die from a competing
cause. Nonetheless, the patient has contributed to the cohort survival function and
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the Kaplan-Meier estimate allows censored patients’ contribution to be included in
the analysis.

In univariate survival analysis, differences in Kaplan-Meier estimates of two or
more groups are statistically tested. The de facto standard tests for this are the
log-rank and Cox proportional hazards test [133]. As an alternative, univariate
survival association can be tested with Cox survival regression [134].

In multivariate survival analysis, the de facto standard tool is the Cox regression
(98% of sampled articles) [135]. The Cox regression model assumes that hazard at
baseline is similar among all co-variates. This is called the proportional hazards
assumption. Co-variates, whose hazards deviate from other co-variates according
to the proportional hazards test, are either removed or, if categorical, stratified in
the survival model [136].
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6 Results

In this dissertation, I present four main results: a comparison of algorithms to
integrate complementary data; how complementary integration enables finding a
putative prognostic marker; an algorithm — CNAmet — integrating three levels
of complementary data to improve result interpretation over methods which only
use two data types; and how GOPredict — a total integration algorithm — enables
prioritizing drugs for potentially sensitive subgroups of patients.

6.1 Copy-number and expression integration algorithms succeed
or fail with their copy-number analysis

Identification of genes that contribute to the development, persistence and progres-
sion of cancers is one of the most important challenges for cancer research [137].
With the emergence of microarray and sequencing technologies, computational
methods for data integration have become central for finding putative cancer genes
[8]. One of the most successful approaches for discovering cancer genes has been
the integration of genome-scale copy-number and gene expression data to find
genes whose expression is driven in cis by an underlying sCNA [138, 139].

We wanted to characterize existing integration algorithms [140, 141, 142, 143,
144, 145, 146, 147, 148, 149]. We compared the performance of ten integration
algorithms in six simulated data sets, 15 head and neck squamous cell carcinoma
(HNSCC) cell lines and 129 lung squamous cell carcinoma (LUSC) primary tumors.
The ten algorithms comprised methods from three method categories — black-box,
controlled and hybrid methods (Table 2). Each algorithm was run using the default
parameter values.

We developed a simulator framework which generated both copy-number and
expression data where a varying number of genes were influenced in cis in varying
degrees by underlying sCNA. The simulator uses a modified Willenbrock-Fridlyand-
approach to model sCNA data [113]. The simulator generates baseline copy-number
data from a Gaussian distribution. The variance of the distribution is constructed
to simulate experimental and technological variance. The mean of the sampling
distribution is generated by a function which models tumor cell admixture often
found in cancer samples. Different types of sCNA are created to account for the
varying sizes (broad, narrow) and magnitudes (low, medium, high) of sCNA.

In gene expression data generation, background expression values are sampled
from a Gaussian distribution. To quantify sensitivity and specificity, we generated
five types of ground-truth genes: three true positive and two true negative. True

29



6 RESULTS

Category Algorithm Simulation
mean
rank

HNSCC
cell line
rank

LUSC
tumor
data rank

Black-box GSVD 9 5 5
PCC 3 7 9
pSimCCA 6 8 5
SIM 8 1 1
sPLS 4 8 8

Controlled DLMM 7 8 9
edira 5 2 4
intCNGEan 2 5 2
SODEGIR 10 3 5

Hybrid S2N 1 4 3

Table 2: List of algorithms in the comparison sorted alphabetically by category and
algorithm name. The simulation rank is according to the mean over six data sets. In
case of ties, tied algorithms receive the same rank.

positive genes were generated to be overexpressed in 100%, 75% or 50% of sCNA
samples. True negative genes were underexpressed or overexpressed in every
sample irrespective of the underlying sCNA status. We generated three types of
simulated data sets with different models of interdependence between sCNA and
expression. The models were linear, stepwise and sigmoidal.

We compared algorithms in simulated data using sensitivity and specificity. Here,
sensitivity is the ratio of correctly identified true positive genes and all positive
genes. Similarly, specificity is the ratio of correctly identified true negative genes
and all negative genes. To investigate the influence of sample size, we created
data sets of 15 and 100 samples. Most algorithms showed higher sensitivity and
lower specificity when sample size increased indicating a higher number of false
positive calls with the pre-selected significance threshold. All algorithms except two
performed better with a bigger sample. For the two algorithms whose performance
decreased, the decrease was due to decreased specificity.

None of the integration algorithms explicitly considered the model of interdepen-
dence between copy-number and expression. Nonetheless, our results indicated
that all algorithms except two handled linear, stepwise and sigmoidal dependence
models with similar sensitivity and specificity.

In cell line and tumor data, we compared algorithms’ performance to an expert-
curated ground truth list of 30 genes which we collected from literature. Genes were
chosen based on previous evidence of copy-number induced expression changes in
HNSCC. The results were similar to simulations. We chose two genes for validation
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with qPCR because the two genes were predicted by five algorithms and had not
previously been associated with copy-number changes. Using qPCR, we validated
these genes in vitro to show concordant changes in copy-number and expression
levels in the same cell lines.

Due to etiology and the squamous cell type, LUSC is closely related and genom-
ically similar to HNSCC and we therefore used the same 30 genes in our LUSC
comparison. Compared to the cell line data, sensitivity increased for four and
decreased for five algorithms in the substantially bigger but more noisy LUSC data
set. Of note, the SIM algorithm was the most sensitive in HNSCC and LUSC data
but predicted over 13,000 genes to have a significant association in HNSCC and
therefore contains a large number of likely false positives.

Controlled and hybrid methods which utilized segmentation performed the best.
Interestingly, the three top methods in simulated data all utilized a segmentation
algorithm indicating that accurate definition and calling of sCNA regions is the
essential step for integration of copy-number data. Black-box methods were
consistently outperformed by controlled and hybrid methods suggesting that the
choice of preprocessing tools and their optimization improve performance. Only
three algorithms (DLMM, GSVD and SIM) had originally been tested on both
primary tumor and simulated data. Interestingly, these three showed consistently
poor performance which suggests that the simulated data the algorithms were tested
on inaccurately modeled tumor data.

Our comparison did not include algorithms which only utilize SNP arrays for sCNA
analysis. Two algorithms did not produce results in cell line or primary tumor
data and could therefore not be included in that portion of the comparison. More
thorough testing by original developers might have removed this problem. Testing
is essential for software development and the lack of testing in scientific software is
an enduring problem as several algorithm comparisons have reported instances of
faulty software [150, 151].

To summarize, hybrid and controlled methods perform best. The most essential part
of the analysis is copy-number segmentation. Our in vitro validation suggests that
complementary data integration algorithms integrating copy-number and expression
data are able to infer putative cancer associated genes.

6.2 Complementary data integration enables finding a putative
prognostic factor in lymphoma

Simulation data provides a reproducible framework for testing integration al-
gorithms and are completely free of noise originating from large contiguous
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sCNA blocks and admixed samples. Analyses of primary tumor samples on
the other hand often have to deal with sCNA blocks and varying tumor cell
subpopulations with different sCNA frequencies when identifying putative cancer
genes. Complementary integration approaches provide an efficient way to enhance
cancer gene characterization when complementary data are available.

Diffuse large B-cell lymphomas (DLBCL) are hematological malignancies that
carry several frequent sCNA but effects of sCNA on DLBCL transcriptome have
been reported scantly [96]. We analyzed copy-number profiles of 51 DLBCL
primary tumors. These samples comprised both ABC and GCB subtypes. The
samples originated from a prospective Nordic lymphoma trial and all patients had
undergone a standardized treatment protocol. Complementary copy-number and
expression data were available for 38 samples for which we analyzed the impact of
sCNA on gene expression.

We found frequent amplifications (occurring in five samples or more) in chromo-
somes 1q (two hot spots), 2p15-16, 14q, 18q and 20q as well as a deletion in
9p21.3. Gene dosage significantly altered the expression of 29 amplified and 2
deleted genes (Benjamini-Hochberg false discovery rate q < 0.05). The amplified
and overexpressed genes included known DLBCL oncogenes BCL2 and REL as
well as previously uncharacterized in cis altered genes. The two deleted and
underexpressed genes, CDKN2A and MTAP, both reside on 9p21.3 and due to their
physical proximity are frequently co-deleted in multiple different cancers [29].

To further characterize the most important sCNA loci, we analyzed the survival
association of loci that showed concomitant genomic and transcriptomic alterations.
For survival analysis, we used the complete set of 51 samples for which copy-
number data existed and compared survival between copy-number altered and
copy-number normal patients. We tested both progression free and lymphoma-
specific overall survival using the log-rank test. In lymphoma-specific overall
survival, the cause of death of the patient has been recorded to be lymphoma. As
patients can expire due to competing causes during the study period, focusing on
lymphoma-specific events enables a more accurate analysis of survival association.

Somatic CNA in chromosomes 2p15 and 18q12 were associated with progression
free survival and the sCNA in 18q12 was furthermore associated with decrease in
lymphoma-specific overall survival. The amplification region in chromosome 2p15
contained five genes. Of these five genes, we validated the association between
gene dosage and expression for XPO1 and COMMD1 with qPCR. Furthermore, the
qPCR expression of COMMD1 was also significantly associated with survival.

To further corroborate our expression level findings, we quantified protein levels
of COMMD1 from IHC images in two tissue microarray sample sets. The first set
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of 70 samples comprised additional samples from the same lymphoma trial and
the second set was an independent validation cohort of 146 samples. As expected,
COMMD1 protein levels were associated with progression free survival in both
data sets. Incorporating these parallel data strengthens our results.

To summarize, complementary integration of copy-number and gene expression
data enabled us to find genes whose expression was altered by sCNA. We showed a
survival association of one of these genes, COMMD1, in array based data, qPCR
expression data, and protein data from IHC tissue microarrays in two cohorts.
COMMD1 is protein which has been shown to have both cancer promoting and
opposing functions [152, 153]. This is a known phenomenon and several genes,
including TP53, have been shown to context dependently either promote or suppress
tumorigenesis [154]. Our results suggest that COMMD1 activity is higher in more
aggressive DLBCLs.

6.3 Integration of additional levels of complementary data en-
hances driver gene characterization

Integration of copy-number and gene expression data shows that approximately
half of the genes in sCNA regions respond to sCNA with a change in expression
levels [27]. This low number is not surprising, however, considering that several
processes regulate gene expression in addition to copy-numbers. For example, DNA
methylation of promoter regions functions in cis almost identically to copy-numbers.
We therefore wanted to investigate whether adding DNA methylation data to the
integration could enhance predicting expression levels of genes and thereby aid in
interpretation.

To integrate copy-number, DNA methylation and gene expression data, we devel-
oped the CNAmet algorithm. CNAmet extends a previous controlled approach
for integration [143]. CNAmet combines categorization of explanatory variables
(DNA methylation, copy-number) with gene expression using a signal-to-noise
ratio test (Equation 1). The test quantifies the magnitude of the association between
the explanatory and dependent variables while accounting for the variance in the
expression values:

W = µ1−µ0
σ1+σ0

, σ1 > 0, σ0 > 0 (1)

where µ1 is the mean and σ1 the standard deviation of expression values of
samples with an alteration. For samples without an alteration µ0 and σ0 are
calculated similarly. The intermediate test statistics W are called weights in

33



6 RESULTS

CNAmet. A separate weight is calculated for methylation-expression and copy-
number-expression complements.

In the second step, the CNAmet S-statistic is the sum of the two constituent weights
multiplied by the percentage ε of samples sharing both methylation and copy-
number alterations:

S = (WM +WC)ε, WM > 0, WC > 0 (2)

where WM is the weight for the methylation-expression and WC the weight for
the copy-number-expression complement. The ε term favors genes which are
simultaneously demethylated and copy-number altered and therefore are more likely
to exhibit synergistic effects of methylation and sCNA. The S-statistic is calculated
separately for deleted and hypermethylated and amplified and hypomethylated
cases.

We tested CNAmet with 181 samples of the TCGA glioblastoma brain cancer cohort
for which all three data levels were available. Top significant genes according to
CNAmet included the epidermal growth factor receptor (EGFR) as well as other
known oncogenes. EGFR is a well known glioblastoma oncogene and amplified in
40% to 50% of glioblastoma tumors [43, 155]. Our results indicate that amplified
and hypomethylated samples exhibit significantly higher EGFR expression than
samples which are only amplified (t-test P = 3.8×10−8). In addition, we analyzed
188 TCGA OVCA samples and similarly found synergistically altered genes in
these parallel data.

The utility of EGFR copy-number amplification as a prognostic marker in glioblas-
toma is debated [156]. We compared the survival between hypomethylated and
amplified EGFR (group 1) and hypomethylated EGFR (group 2) but not amplified
patients. The difference was small but significant (log-rank test P = 0.0584).
However, the small number of patients in the comparison (group one n = 15, group
two n = 18) decreased the reliability of the prediction.

Our main conclusion was that aberrant DNA methylation and sCNA work syner-
gistically to deregulate gene expression in glioblastoma and ovarian cancer. Our
computational findings in these two cancers have gained additional support in
breast cancer from Aure and colleagues who similarly integrated copy-number
and expression data for microRNA in two large, independent cohorts [157]. They
activated candidate microRNAs — microRNAs which showed expression changes
due to sCNA, DNA methylation alterations or both — from their integrated analysis
in vitro. The results showed that candidate microRNAs were connected to cell
proliferation, cell viability and apoptosis. In conclusion, complementary integration
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of these three measurements can be used to find putative prognostic markers and
characterize cancer related genes.

6.4 Total integration improves drug prioritization and patient strat-
ification for treatment

Complementary data integration can be employed to find and characterize pu-
tative cancer genes and it can therefore be used to prioritize genes for further
computational analysis. On the other hand, parallel data integration enables further
characterization of candidate genes in independent data and can strengthen results
when used to validate initial results as in Related Publication I. In Publication
III, we combined complementary and parallel integration and developed a total
integration approach for molecular data driven drug prioritization.

The molecular landscape of tumors determines the efficacy of drug treatments [158].
Patient stratification with molecular data allows identification of patients who are
likely to respond to targeted therapy [159]. Since molecular alterations occur in
multiple cancer types, molecular alterations can be used to guide drug repositioning
from one cancer to another [160]. Furthermore, prioritizing drugs and drug targets
enhances the efficacy of drugs and maximizes the number of responding patients
[159].

Improving stratification and drug repositioning with multiple types of molecular
data requires computational data integration methods [8]. We identified molecular
results data in public databases — such as COSMIC [161] and Tumorscape [30] —
and open-access cancer genomic studies — such as the Cancer Gene Census [162]
— as a large untapped parallel data resource which could be utilized by integrative
methods. To integrate several levels of molecular data with drug-target information,
signaling pathways and existing public result databases required employing total
integration.

Our total integration approach for drug prioritization has two main building blocks:
(1) a knowledge-base to store data from these varied sources and (2) an algorithm —
GOPredict — to mine the knowledge-base (Figure 3). GOPredict prioritizes drugs
and stratifies patients for the drugs and thereby facilitates drug repositioning.

We constructed the knowledge-base as an instance of Moksiskaan. The knowledge-
base contained analysis results from five curated public databases (Table 3), in-house
analysis results from four cancers (TCGA BRCA, COAD, OVCA and GBM) as well
as drug-target information from KEGGDrug and DrugBank databases [129, 130].
The in-house data had been processed with the TCGA pipeline and comprised gene
expression, sCNA, mutation and DNA methylation data. Both curated and in-house
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Knowledge-
base

● Studies
● In-house (n=23)
● Curated (n=27)

● GO 
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● Drugs
● Genes

Priority
drugs

DI module

Activity matrix

KD module

GOPredict

K-rank

Input data
● Expression
● sCNA
● Mutation
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Figure 3: Overview of the GOPredict total integration approach. GOPredict’s data
integration (DI) module is used to create an activity matrix from multilevel input data
(yellow box). The knowledge discovery (KD) module utilizes information stored in the
knowledge-base (gray box) to prioritize drugs and stratify patients. Complementary
data is denoted with a green border. Parallel data is denoted with a purple border.
Studies contain both complementary and parallel data.

data were stored as annotative data (studies). Each gene is ranked for each study
according to study specific rules (full details of rules are given in Publication III).
For example, EGFR is the most frequently amplified gene in TCGA glioblastomas
and therefore is ranked first in the TCGA, copy-number alteration-study. A full list
of studies and data sets used to construct these studies is in Table 3.

Gene Ontology biological process (GO processes) are connected to genes to define
the pathway context for each gene. The Gene Ontology is a flexible data source
for gene signaling pathways because (1) it utilizes a stable naming system and (2)
contains both general processes (e.g., ’cell proliferation’) and specific processes
(e.g., ’fibroblast growth factor receptor signaling pathway’) which are in contrast to
other pathway databases [163, 164].

The GOPredict algorithm has two modules: the knowledge discovery module and
the data integration module (Figure 3). The knowledge-discovery module comprises
the data mining algorithm which prioritizes drugs for input data sets. The data
integration module preprocesses complementary input data.

The full formal description of the knowledge discovery module is in Publication III.
Briefly, the knowledge discovery module works in four steps. In the first step, ranks
are fetched from the knowledge-base and normalized to calculate for each gene its
K-rank. In the second step, genes are connected to GO processes. GO processes
are ranked by summing up K-ranks of genes regulating a GO process. Statistical
significance is calculated by a permutation test so that K-ranks for the same number
of genes are randomly sampled from the knowledge-base and the GO process rank
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recalculated. K-ranks of genes are recalibrated in the third step based on the ranks
of GO process, that the gene regulates, from step two. In the fourth step, drugs are
prioritized based on the input activity matrix and the recalibrated K-ranks from step
three.

Input data for GOPredict need to be preprocessed. GOPredict contains an abstrac-
tion based data integration module which is used to fuse multiple levels of molecular
input data using biologically motivated rules. The minimum requirement is one
level of either gene expression or copy number data. For each gene, the gene’s
activity status in the activity matrix is defined by (1) the gene’s expression state
if the gene is genomically normal (no mutation or sCNA) or (2) otherwise by the
gene’s genomic alteration status. This integration step results in a gene-by-sample
gene activity matrix.

GOPredict and the knowledge-base constitute a total integration approach. GO-
Predict is computationally efficient and scales to input data sets with thousands of
samples. The knowledge-base comprises parallel data from multiple cancers and
cancer cohorts whereas the activity matrix is constructed from complementary data.

GOPredict prioritizes FGFR inhibitors for breast carcinoma and CDK in-
hibitors for ovarian carcinoma

We prioritized drugs with GOPredict in 497 breast (BRCA) and 390 ovarian carci-
noma (OVCA) samples from the Cancer Genome Atlas. We utilized GOPredict’s
abstraction based data integration module to fuse gene expression, point mutation
and sCNA data from these input data sets into two activity matrices — one for each
cohort.

We first tested GOPredict’s ability to prioritize subtype specific drugs. Accordingly,
we analyzed all BRCA samples with a immunohistochemically verified ERBB2
amplification according to TCGA provided clinical information. This represents
the HER2 activated breast cancer subtype according to the PAM50 breast cancer
intrinsic molecular subtyping [77]. As expected, HER2 inhibitors were among the
top priority drugs with 4 inhibitors in the top 10 drugs.

We next analyzed the entire TCGA BRCA data set. In the entire data set, five of
ten top prioritized drugs were multi-kinase inhibitors. Notably, the five inhibitors
target members of the fibroblast growth factor receptor (FGFR) family. The top
four inhibitors were prioritized nearly exclusively based on the activity of FGFR3
(97% of sensitive samples for dovitinib, lenvatinib and ponatinib). Over one-third
of TCGA BRCA samples (35−42%) were potentially amenable to treatment with
these FGFR inhibitors.
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Type Cancer Studies Number
of
studies

In-house

BRCA
somatic CNA (amp, del, survival)

6methylation (survival)
expression (survival, fold-change)

COAD
somatic CNA (amp, del)

5methylation (survival)
expression (survival, fold-change)

GBM
somatic CNA (amp, del, survival)

6methylation (survival)
expression (survival, fold-change)

OVCA
somatic CNA (amp, del, survival)

6methylation (survival)
expression (survival, fold-change)

Curated

Multiple Amplified and overexpressed cancer genes 1
Breast Brain metastasis genes 1
Multiple Cancer Gene Census (act, inact) 2
Multiple COSMIC (primary, recurrent, metastasis) 3
Multiple Tumorscape (amp, del) 20

Table 3: List of studies stored in the database ordered by source type. Study
descriptions in parenthesis indicate the type of data stored: amp=amplification
frequency, del=deletion frequency, survival=log-rank P-value, fold-change=continuous
expression difference between medians of tumor and control samples, act=activating
mutations, inact=inactivating mutations. For COSMIC, the type denotes the mutation
frequencies in primary samples, recurrent samples or metastatic samples.

In addition to breast cancer, we analyzed a parallel ovarian cancer cohort from
TCGA. In OVCA, seven of ten top drugs were CDK inhibitors. Interestingly, 91%
of patients were potentially sensitive to the highest ranked CDK inhibitor, dinaciclib,
which sensitizes ovarian cancer cells to chemotherapy. This suggests that a high
number of OVCA patients could benefit from treatments combining chemotherapy
with CDK inhibitors [165].

Sample stratification showed breast cancer subtype specific patterns of FGFR3
inhibitor sensitivity. We analyzed the impact of possible confounding alterations in
selected BRCA cancer genes and found them unrelated to FGFR3 status. FGFR3
inhibitor sensitive samples were enriched for luminal A and B samples. In addition,
luminal B samples were substantially more prominent than luminal A among the
sensitive samples.

To test GOPredict’s predictions in vitro, we tested the efficacy of four drugs (three
FGFR3 inhibitors and one proteosome inhibitor) in a panel of breast cancer cell
lines with varying levels of FGFR3 protein. The in vitro results were concordant
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with our prediction: three out of four FGFR3 expressing cell lines were sensitive to
at least one targeted FGFR3 inhibitor whereas non-expressing cell lines showed no
sensitivity. In line with our stratification, sensitive cell lines were all of the luminal
and insensitive of the basal subtype. The single FGFR3 expressing cell line, which
did not show any FGFR inhibitor sensitivity, harbors a KRAS mutations which is
known to confer resistance to multiple targeted drugs in cell lines, xenografts and
patient samples. Since sensitive cell lines carried a wild type KRAS, the KRAS
mutation can explain the lack of sensitivity for FGFR inhibitors in one cell line.

Finally, to test if the K-rank can be used to find putative prognostic markers, we
selected genes which received high K-ranks in both ovarian and breast cancer
studies. Out of three genes which fulfilled this criterion, the expression status of
SLC25A32 was one of two significant independent prognostic markers in TCGA
ovarian cancer in multivariate Cox regression (P = 0.003). Other co-variates in the
model were FIGO stage, tumor grade and post-operative residual tumor size, of
which tumor size was the second significant predictor (P = 0.02). This survival
result suggests that parallel data integration with K-ranks can be utilized to find
putative cancer genes. Interestingly, SLC25A32 is a folate transporter and it is
expressed in ovarian cancer tissue. This in combination with our multivariate model
suggests that antifolate drugs could be useful in treatment of ovarian cancers.

To summarize, total integration enables combining information from local genomic
data with signaling pathways and public genomic analysis results, facilitates drug
repositioning, and aids in finding putative prognostic markers.
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7 Discussion

Cancer is a complex group of diseases characterized by neoplastic growth of cells in
the body. Deciphering the molecular changes that drive tumorigenic growth requires
analyzing multiple different types of measurement data. These data are increasingly
produced with technologies that efficiently and reliably generate gigabytes of
raw data from thousands of samples. The management, processing, analysis and
interpretation of these data are facilitated by computational data integration.

Utilizing data integration offers a means to accurately interpret and draw inference
from measurement data. I have in this book outlined my theses for the three different
forms of data integration: complementary, parallel and total. In complementary
integration, dependent measurements of different aspects of the same cohort and
genes are integrated. In parallel integration, the same aspects of independent
samples or independent aspects of the same samples are integrated. In addition,
total integration refers to combining complementary and parallel approaches. In
this dissertation, I have shown examples of how complementary, parallel and total
approaches can be utilized to infer putative prognostic cancer markers, improve
interpretation of multilevel genome-wide data, and stratify patients for efficient
drug therapies.

In the first part, we built a simulator to compare complementary integration
algorithms that integrate sCNA and gene expression data. Our results indicate
that good performance was a result of appropriate processing of copy-number data.
Of note, in a later comparison from Lahti and colleagues (comparing almost the
same set of algorithms), the relative performance of the algorithms was different
but the authors agree on the importance of sCNA analysis [166]. Interestingly,
the comparison used a different set of test data and showed that each algorithm
worked best on the data the algorithms were tested with in original publications.
Results from these two parallel comparisons illustrate the tendency of algorithms
to be optimized to suit certain data and brings to light the need for independent,
community-based ground-truth data sets including both molecular and simulated
data, which notably is one of the strengths of the second comparison from Lahti and
colleagues. Indeed, DREAM challenges have used such a crowdsourcing approach
[167]. In the challenges, participating algorithms compete for accuracy in iterative
rounds where each participant can improve their performance. The DREAM
challenges so far have sought to improve and build prediction and classification
algorithms tackling diverse biomedical problems such as disease progression [168],
drug sensitivity [169] and gene network inference [170]. Increased community-
based development offers exciting opportunities for improving the development
process for scientific algorithms.
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The two methodological contributions in this dissertation provide tools for inter-
pretation of multilevel molecular data. The first, CNAmet, is an algorithm for
integrating complementary sCNA, DNA methylation and gene expression data to
find genes whose expression is synergistically altered by genomic and epigenomic
changes. Of note, similar algorithmic methods integrating more than two data types
focus either on patient subtyping [57] or on automatically detecting concomitant but
non-synergistically altered genes [60, 157]. Interestingly, a chemokine coding gene
cluster in chromosome 4q21 was shown to be synergistically upregulated by DNA
methylation and sCNA in two small esophageal carcinoma primary tumor cohorts
using microarrays, fluorescence in situ hybridization, and qPCR [61]. Reports of
these synergistic effects are still limited and more work is needed to characterize
whether simultaneous hypomethylation and copy-number alteration is a driver event
for oncogene activation.

The second contribution, GOPredict, is a total integration method which combines
a knowledge-base and a machine learning algorithm to suggest drug sensitive
subgroups of patients. GOPredict could be improved in the future in three ways: (1)
including binding affinity of drug-target pairs to weight each drug target gene and;
(2) including data on drug combinations and synthetic lethal interactions. Data on
both of these are currently scattered and beyond automated retrieval. Interestingly, a
second GOPredict-like "in silico prescription" approach, CDAD, also suggested that
a high proportion of patients are potentially amenable to treatment with compounds
already approved for a cancer [171]. The emergence of approaches such as
GOPredict and CDAD suggests that efforts to retarget drugs from one cancer
to another will increase in the near future. Although promising, results of in silico
prescription algorithms will not transition to the clinic directly but serve to guide
future drug experiments and experimental design.

We are already in the era of total integration in biomedicine as platforms and systems
enabling and embracing automated total integration are emerging. Workflow sys-
tems such as Anduril enable computational biologists to implement programmatic
interfaces and rapidly access a constantly growing ecosystem of open data- and
knowledge-bases. Unlike GOPredict, databases such as intOGen and cBioPortal
currently provide user-friendly graphical interfaces which are used from the web
browser [172, 65]. These interfaces enable lightweight statistical analysis and data
integration online for researchers lacking in programming skills. As computing
moves back to large server farms (called the cloud), the number of databases and
their computing capability will sharply increase soon and further drive the usage
of statistical and computational tools as well as data integration by opening these
possibilities to more scientists.

All methods presented here were limited to finding, characterizing and quantifying
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in cis effects. For example, Curtis and colleagues looked at in trans effects of
sCNA on gene expression and found on multiple chromosomes several trans-acting
sCNA hotspots each of which was associated with expression changes of more
than thirty genes [26]. Furthermore. results presented in this thesis are based on
analysis of microarray measurement data which are currently being replaced by
sequencing based technologies. With the advent whole-genome and whole exome
(referring to the entire coding portion of the genome) sequencing, copy-number
analysis pipelines and data integration methods have to be redesigned to handle
these novel kinds of data [150].

In Related Publication I, Publication II and Publication III, highly ranked genes
from integrative analysis showed significant prognostic impact. In all instances,
survival analysis was carried out by testing a single molecular marker at a time, both
in univariate and multivariate analysis. Evidence is mounting, however, that specific
patterns of molecular alterations (and not single alterations alone even when they
are in strongly cancer associated genes) are driving carcinogenesis — which is as
expected. For example, in DLBCL double-mutant patients with a chromosomal
alteration in both BCL2 and MYC show the worst prognosis whereas patients with
mutant MYC but normal BCL2 fare best [173]. Some approaches have already
tackled multi-gene combinatorial survival analysis for germline variants [174, 175],
and in the near future similar algorithmic approaches will likely be utilized to
analyze somatic tumor data.

Cancer genomic approaches have their limits. The last decade has witnessed the
emergence of a new understanding regarding the role of tumor microenvironment in
cancer [23]. Tumors are increasingly recognized as functional entities comprising
a multitude of different cells in addition to cancer cells. In Related Publication
I, we validated our complementary integration finding via cell imaging. Image
analysis computationally from large cohorts opens up possibilities to integrate
microscopy imaging data with molecular data to characterize cellular admixture in
tumors. Since microscopy images allow for automated identification of different
cell types [12], these data could be utilized to decipher the interplay between
cancer cells and the stromal structure of a tumor. Efforts to characterize the
cellular structure and interactions occurring in the tumor microenvironment and
their connection to molecular alterations in cancer cells is an important and central
research question in cancer for the next decade. Describing and explaining the role
of the microenvironment will require data integration.
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