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Abstract 
 

The central nucleus of amygdala (CeA) is known to be involved in pain and nociception, but 

the mechanisms or its role in descending control of pain-related behavior is poorly 

understood. The aim of this study was to investigate the involvement of the neuropeptide 

corticotropin-releasing factor (CRF) and the glutamatergic system of the CeA in pain and 

nociception in healthy control animals and in an animal model of chronic neuropathic pain 

induced by spared-nerve injury (SNI). Two aspects of pain were studied: emotional-like pain 

behavior was assessed by using the aversive place-avoidance paradigm and sensory-

discriminative was assessed by determining the mechanical limb-withdrawal threshold and 

the thermal (heat) limb-withdrawal latency. Moreover, the aims were to determine whether 

medullospinal serotoninergic pathways and the midbrain periaqueductal grey (PAG), 

respectively, were involved in relaying pain-modulation induced by the CeA in SNI and 

healthy control animals. Additionally, hemisphere of the CeA and submodality of pain 

stimulus were among studied parameters. Surgical procedures and electrophysiological 

recordings were performed under general anesthesia. 

The studies on the role of the CeA in the emotional-like aspect of pain in SNI rats 

revealed that activation and blocking of the group I metabotropic glutamate receptors 

(mGluRs) facilitates and inhibits, respectively, the aversive aspect of pain. Furthermore, 

increase of endogenous CRF as well as blocking glutamatergic N-methyl-D-aspartate (NMDA) 

receptors in the CeA reduced the aversive aspect of neuropathic pain. 

The studies on the sensory-discriminative aspect of pain revealed that an increase of 

endogenous CRF in the CeA is pronociceptive in both control and SNI rats. CeA injection of a 

high dose of glutamate had a mechanical antinociceptive effect that was mediated by NMDA 

receptors in healthy but not SNI rats. A low dose of glutamate had a pronociceptive effect 

mediated by NMDA receptors in SNI rats. Furthermore, tonic descending pronociception 

induced by NMDA receptors and the mGluR1 in the CeA contributes to the maintenance of 

neuropathic hypersensitivity. 

The investigation on the role of serotonergic neurons of the rostroventromedial 

medulla (RVM) in modulation of spinal nociception by amygdaloid glutamate in SNI rats 

indicated that the RVM is a relay for both descending pro- and antinociceptive effects from 

the CeA. 

The investigation on the role of the PAG in the descending control of nociception 

induced by glutamate in the CeA of healthy rats indicated that the PAG is a relay in the 

descending control of nociception induced by amygdaloid glutamate. 

Furthermore, the right-hemispheric lateralization of the pronociceptive effect by 

amygdaloid CRF in controls was lost in SNI rats. However, descending antinociception 

induced by the glutamatergic system of the CeA showed no hemispheric lateralization in 

healthy controls; a high dose of glutamate in both the left and right CeA induced equal 

attenuations of mechanical and thermal nociception, which effects were, respectively, 

NMDA-dependent and NDMA-independent.  



10 
 

1. List of original publications 
 

I. Bourbia N., Ansah OB., Pertovaara A., Corticotropin-releasing factor in the rat 

amygdala differentially influences sensory-discriminative and emotional-like pain response 

in peripheral neuropathy, J Pain. 2010;11:1461-71. 

II. Ansah OB., Bourbia N., Goncalves L., Almeida A., Pertovaara A., Influence of 

amygdaloid glutamatergic receptors on sensory and emotional pain-related behavior in the 

neuropathic rat, Behav Brain Res. 2010;209:174-8. 

III. Bourbia N., Sagalajev B., Pertovaara A., Descending effect on spinal nociception by 

amygdaloid glutamate varies with the submodality of noxious test stimulation, Neurosci 

Lett. 2014;570:26–31 

IV. Sagalajev B*, Bourbia N*, Beloushko E, Wei H, Pertovaara A, Bidirectional 

amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic 

pathways acting on spinal 5-HT3 and 5-HT1A receptors., Behav Brain Res. 2015;282:14-24. 

V. Bourbia N., Pertovaara A., Involvement of the periaqueductal gray in the descending 

antinociceptive effect induced by the central nucleus of amygdala. Unpublished manuscript. 

 

*Shared first authorship  



11 
 

2. Abbreviations 
 

AB: accessory basal nucleus 

AMY: Amygdala 

ANOVA: Analysis of variance 

BA: basal nucleus of amygdala 

BLA: Basolateral complex of amygdala 

CeA: Central nucleus of amygdala 

CeC: Capsular subdivision of the CeA 

CeL: Lateral subdivision of the CeA 

CeM: Medial subdivision of the CeA 

Co: Cortical nucleus of amygdala 

CRF: Corticotropin-releasing factor 

CRF-BP: Corticotropin-releasing factor binding protein 

DEG/ENaC-channel: Degenerin/Epithelial sodium channel 

ITC: Intercalated nuclei 

L: Lateral nucleus of amygdala 

LC: Locus coeruleus 

MeA: Medial nucleus of amygdala 

mGluR: Metabotropic glutamate receptor 

Mrgprd: Mas-related G-protein coupled receptor member D 

NMDA: N-methyl D-aspartate 

PAG: Periaqueductal gray 

RVM: Rostral ventromedial medulla 

SNI: Spared-nerve injury 

TRP-channel: Transient receptor potential channel 

TRPV1: Transient receptor potential vanilloid 1  
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3. Introduction 
 

Pain is “An unpleasant sensory and emotional experience associated with actual or potential 

tissue damage, or described in terms of such damage”, according to definition by the 

International Association for the Study of Pain (IASP). Pain is an important alarm to inform 

that the homeostasis of the body is in danger by the presence of a noxious stimulus or an 

injury. Pain becomes pathological when it persists without any tissue damage, or after the 

pathology has healed, or the pathology related to the pain becomes chronic (as often is the 

case with neuropathic or arthritis pain). Pain is considered as chronic after it has persisted 

for three months or longer, although according to some clinicians and researches the 

definition chronic pain should be used only when pain has persisted for six months. There 

are two main kinds of pain which can be further subdivided according to the localization and 

etiology of the pain: nociceptive pain and neuropathic pain. Nociceptive pain is 

characterized by pain resulting from the activation of the nociception system by a noxious 

(chemical, thermal or mechanical) stimulus. Neuropathic pain is pain resulting from a 

damage of the nervous system. It can be peripheral or central according the localization of 

the damage in the peripheral or central nervous system, respectively[1]. 

Pain is a complex experience which includes 6 components: sensory-discriminative 

component which tells about localization and intensity of pain; emotional component which 

refers for instance to unpleasantness and suffering[2,3]; motor component which includes 

the motor reflexes; autonomous component[4,5] which refers to autonomous responses like 

respiratory and blood pressure changes; cognitive component which involves memory of 

previous pain experience, distraction/catastrophizing, and various behavioral and 

psychological[3,6] responses that depend on social environment and personality. 

The prevalence of neuropathic pain is between 6.9% and 10%[7]. Neuropathic pain affects 

negatively the patient’s life, it represents an important economic burden[8], and its 

treatment is challenging. 

The amygdala is known to be involved in emotions[9–11], anxiety[12] and pain[13–15], and 

it is also among key targets when studying neuropathic pain and various aspects of it. While 

amygdala has been intensively studied, the contribution of amygdala to processing and 

regulation of neuropathic pain is poorly known. The central nucleus of amygdala (CeA) 

receives nociceptive information from spino-parabrachial projections[16]. CeA has been 

involved in different types of analgesia (conditional hypoalgesia, morphine 

antinociception)[17–20]; anxiety-like aspects of pain[14,21] and neuroplasticity[22]. 

The CeA has, at least, two types of GABAergic neurons co-releasing either enkephalin or 

corticotropin releasing factor (CRF)[23]. Animal studies have shown that CRF is involved in 

sensory-discriminative[24] and emotional aspects of pain[21,25,26] through metabotropic 

receptors CRF-1 and CRF-2[27]. Furthermore, the glutamatergic system of the CeA is also 

involved in pain processing[28–30] and its affective aspect[31].  
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4. Literature review 
 

4.1. History of pain theory 
 

History of medicine goes back at least to Greek antiquity and Hippocrates (460–380 BCE). In 

the Hippocratic treatise Breathes, the relationship between anesthesia and analgesia is 

discussed for the first time. Hippocrates wrote: “At this time the patients are unconscious 

[“anaesthetoi”] of everything, deaf to what is spoken, blind to what is happening and 

insensible to pain [“analgetoi”]”. The most frequent words used for pain in the Hippocratic 

Collection were Algos, Algema, Odyne and Ponos (modern Greek word for pain). Algos, 

algema and ponos are used to describe more general type of pain, possibly chronic, 

involving the whole body (for algos word) or a limb/organ (for algema and ponos word) 

while odyne refers to pain which is sharp, acute and localized in specific area of the 

body[32]. 

In Greek antiquity, while Aristotle (384-322 BCE) postulated that sensations including pain 

arise from heart, Anaxagoras (510-428 BCE) and Pythagoras (570–495 BCE) were among the 

first philosophers who proposed that the sensations and thought are located inside the 

brain. 

During the Roman Empire, the Greek physician Galen of Pergamon (129-200/216 CE) also 

known under the Latin name Claudius Galenus and considered as a father of the 

pharmacology, proposed that feelings arise from the brain. Galenus considered that only 

injuries cause pain. Additionally, Galenus postulated that three conditions are required for 

pain perception: “the organ to receive impression, a connecting passageway and an 

organisational centre”[33]. Meanwhile in China, the physicist Hua Tuo (145–208 CE) used a 

concoction based on cannabis in wine named “mafeisan” as an anesthetic/analgesic during 

surgery, probably making him the first physician to develop an analgesic and anesthetic 

compound in the history of medicine[34]. 

During Middle Ages, the Persian Muslim philosopher, writer and physician Ibn Sina, also 

known with the Latin name Avicenna (980–1037 CE), studied extensively pain and wrote The 

Canon of Medicine where he described that pain is an independent sensation dissociated 

from touch and temperature[35], it is caused by a temperament change (physical condition 

change) of an organ, it can be chronic and pain perception is processed by the brain. In this 

book, he also described 15 types of pain according to its cause using the Arabic words Waja' 

(hurt) and Alam (pain) : “These were: itching (exposure to irritating substance or salt); coarse 

(coarse substance); pricking (something stretches membranes); compressing; stretching 

(bloat or muscle or nerve stretch); disintegrating (a substance disintegrating inside the 

muscle and membranes); breaking (bone change); soft (muscle change); penetrating (a thick 

substance or bloat trapped in colon); stabbing, Massli (a substance trapped inside an organ); 

numbing (extreme cold or obstruction of vessels); pulsating (a tumour or swelling close to 

arteries); heavy (a tumour or a swelling in lungs, kidney or spleen); tiredness; and bitter 

(ulcers) (The Canon, pp. 54, 55)”[33]. 
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In the 17th century, the French philosopher René Descartes (1596-1650), father of the 

modern philosophy, wrote Discours de la méthode pour bien conduire sa raison, et chercher 

la vérité dans les sciences (the French original work from 1637 was translated into English as 

Discourse on the Method of Rightly Conducting One's Reason and of Seeking Truth in the 

Sciences). In this work, Descartes pointed out the skepticism, doubt, reasoning and his 

wishes to push forward sciences, technology and medicine research. He also wrote the 

treatise L’Homme, which contained a hypothetical anatomy drawing symbolizing the 

noxious information transmission from peripheral system to spinal cord and then to the 

pineal organ in the brain, considered at this time as the pain perception seat. 

Beginning from the 19th century, thanks to animal experimentation and improved scientific 

methods, pain researches were able to develop new concepts and theories leading to four 

theories for explaining mechanisms underlying pain sensations: specificity theory, intensity 

theory, pattern theory and gate control theory[34,35]: 

 The specificity theory was developed by Moritz Schiff (1823-1896). According to this 

theory, specialized organs (nociceptors) are activated by a noxious stimulus and 

encode intensity of noxious stimulation by an increase in activity of nociceptive 

nerve fibers. The theory proposed by Schiff was based on previous studies by Bell 

and Magendie showing the sensory fibers are specifically in the posterior spinal 

nerve root, known as the Bell-Magendie law. This law was confirmed by Johannes 

Peter Müller (1801-1858) who developed the “law of specific nerve energies”. 

Additionally, Moritz Schiff confirmed that temperature and nociceptive pathways 

are different from other sensory pathways like from that of touch. 

 The intensity theory was introduced by Wilhelm Erb (1840-1921) who rejected the 

idea of specialized peripheral nociceptive nerves and stipulated that the intensity of 

the stimulus tells about the nature of the information (i.e.; low-intensity stimulation 

evokes a non-nociceptive and high-intensity stimulation a nociceptive signal). 

The works of Alfred Goldscheider (1858–1935), Magnus Blix (1849–1904) and Max von Frey 

(1852–1932) lead to the discovery of nociceptive-specific primary sensory nerves. 

Furthermore, in 1906, Charles Scott Sherrington (1857-1952) introduced the concept of 

nociception. 

In the 20th century, the development of electrophysiological recordings of nerve activity 

helped Joseph Erlanger and Herbert Spencer Gasser to characterize the primary sensory 

neuron according to its conduction velocity and diameter in 1924. The studies of Georges H. 

Bishop, Peter Heinbecker, Yngve Zotterman and their collaborators during the 30’s allowed 

associating peripheral Aδ and C fibers with pain signaling. 

 The pattern theory introduced by John P. Nafe in 1929 postulated that the 

composition of the activity pattern in a population of fibers determines the quality 

of sensation. 

 The gate control theory developed by Ronald Melzack and Patrick D. Wall[36] in 

1965 postulated that there is a gate system in the spinal dorsal horn. The postulated 

gate system is composed of an inhibitory interneuron which inhibits or facilitates 
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nociception depending on the type of the primary afferent fiber activity. This spinal 

gate is modulated by descending pathways. If activity in non-nociceptive nerve 

fibers (Aß fibers) prevails, the inhibitory interneuron is activated, closing the gate by 

reducing the afferent input from nociceptive nerve fibers to spinal projection 

neurons (pain-relay neurons). This leads to analgesic effect. If activity of nociceptive 

nerve fibers (C fibers) prevails, the inhibitory interneuron is disinhibited, the gate is 

opened, and the spinal pain-relay neurons can be freely activated by nociceptive 

nerve fibers. 

Between 1967 and 1969, the studies of Paul R. Burgess, Edward R. Perl and their 

collaborators characterized nociceptors and provided evidence for myelinated Aδ, 

unmyelinated C nociceptive nerve fibers[37,38] and nociceptive-specific neurons in lamina I 

of the spinal dorsal horn[39]. 

During the 20th century, combinations of different experimental techniques 

(electrophysiology, immunohistochemistry, behavior, anatomy, etc.) allowed a better 

understanding of pain and nociception at molecular and cellular levels; i.e., from the 

receptor level to the integrative level [e.g., the descending periaqueductal gray (PAG) – 

rostroventromedial medulla (RVM) - spinal cord pathway, or involvement of the amygdala in 

different aspects of pain]. 

The current knowledge on nociception and pain will be briefly described during the next 

chapters. The emphasis is on neuropathic pain and experimental animal models used in the 

study of neuropathic pain. Of pain-related structures, the emphasis is on the amygdala and 

the role of the PAG – RVM system in mediating the amygdaloid corticotropin-releasing 

factor (CRF) and glutamate receptor-induced descending effects on nociception. 

 

4.2. Nociception 
 

The nociceptor is a sensory receptor specialized on transducing noxious (harmful) stimuli 

into electrical signals. Noxious stimuli activating nociceptors can be mechanical, thermal or 

chemical. Mechanical, chemical and thermal noxious stimulation are different submodalities 

of nociception. Noxious heat and some chemical stimulus (like capsaicin) are detected by 

TRPV1 or other TRP-channels family members that are a family of ion channel receptors 

expressed on terminals of nociceptive nerve fibers and that transduce noxious stimuli into 

electrical signals. Mechanical noxious stimuli are detected by DEG/ENaC-channel family or 

Mrgprd, a sensory neuron-specific G protein-coupled receptor[40,41]. 

Primary afferent nociceptive nerve fibers carrying the nociceptive signals to laminae I and II 

of the spinal dorsal horn consist of myelinated Aδ fibers (divided in two groups: Aδ 

mechanosensitive and Aδ mechanothermal nerve fibers) and unmyelinated polymodal C 

fibers. Aδ fibers are responsible for the sharp “first pain”. C fibers which have a slower 

conduction velocity are responsible for the diffuse and long-lasting “second pain”. Deep or 

burning pain sensations are typically induced by C fibers. 
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One class of primary nociceptive neurons is silent under normal circumstances but can be 

activated by inflammatory mediators like bradykinins, prostaglandins and histamine released 

during tissue damage. Thus, tissue damage and inflammation can sensitize the silent 

nociceptor and “wake it up” [42,43]. 

 

4.3. Ascending pain pathways 
 

After arrival to the spinal dorsal horn, the nociceptive signal is carried rostrally via ascending 

tracts (see below) to elicit pain sensation in the brain. However, the nociceptive signal 

arriving from the periphery is not relayed as such but in the spinal dorsal horn, the 

nociceptive signal is subject to modulation by a number of endogenous mechanisms, such as 

the gate control (see above) and descending pathways (see below). 

The nociceptive signal arriving the spinal dorsal horn is not only involved in eliciting pain 

sensation, but it is also involved in evoking the nociceptive withdrawal reflex, a motor reflex 

which allows avoiding further damage from noxious stimuli. The nociceptive withdrawal 

reflex circuitry involves a nociceptive spinal dorsal horn neuron, multiple excitatory 

interneurons, and α-motoneurons in the spinal ventral horn that innervate flexor muscles 

(withdrawal reflex). In parallel, the nociceptive signal activates an inhibitory circuitry that 

inhibits α-motoneurons innervating extensor muscles (reciprocal innervation) allowing to 

induce the withdrawal reflex. 

Peptidergic primary afferent nociceptive nerve fibers (among which TRPV1 expressing ones 

are a subset[44]) and non-peptidergic primary afferent nociceptive nerve fibers (among 

which Mrgprd expressing ones are a subset[45]) follow specific parallel pain pathways[46]. 

Peptidergic nociceptive nerve fibers may project to the lamina I of the spinal dorsal horn to 

activate neurons of the spinothalamic and spinomesencephalic tracts while non-peptidergic 

nociceptive nerve fibers may project to the lamina II neurons that are connected to lamina V 

neurons with ascending projections via the spinohypothalamic , spinoamygdalar and 

spinostriatal tracts. Finally, both peptidergic and non-peptidergic nerve fibers may converge 

to spinal dorsal horn neurons that have ascending projections to the hypothalamus and 

amygdala. 

There are several ascending tracts from the second-order afferent neurons of the spinal 

dorsal horn to higher brain centers. 

 

4.3.1. Ascending spinothalamic and trigeminothalamic tract 

 

The ascending projections of second-order afferent neurons receiving nociceptive 

information cross at the spinal cord level. In the case of the spinothalamic tract carrying 

information from the body, the projections of spinal pain-relay neurons ascend in the 

contralateral side to the ventral posterior lateral nucleus of the thalamus while the 
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nociceptive information from the face ascends in the trigeminothalamic tract to the ventral 

posterior medial nucleus of the thalamus. Both the spinothalamic and the trigeminothalamic 

tract have synaptic contacts with third-order thalamic neurons which project to higher brain 

centers, particularly to the somatosensory cortex (Fig.1). 

 

4.3.2. Ascending spinomesencephalic and spinoparabrachial tract 

 

In the spinomesencephalic tract, the second-order afferent neurons ascend to the 

mesencephalic reticular formation and the periaqueductal gray matter (PAG). In the 

spinoparabrachial tract, the second-order afferent neurons project from the spinal dorsal 

horn to the parabrachial nucleus (Fig. 1). 

 

4.3.3. Ascending spinoreticular tract 

 

The second-order afferent neurons of the spinoreticular tract ascend from the spinal cord 

level both to the reticular formation and the medial thalamus. 

 

4.3.4. Other ascending pathways 

 

Among other nociceptive pathways ascending directly from the spinal dorsal horn to 

supraspinal structures are the spinohypothalamic and spinoamygdalar tract through 

which the ascending second-order neurons project to the hypothalamus and the amygdala, 

respectively. The spino-parabrachial-amygdaloid pathway involved a third order of afferent 

neurons. The second order is similar to the spinoparabrachial tract followed by the 

projection of the third-order afferent neurons from the parabrachial nucleus to the 

amygdala (Fig. 1). 
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Fig. 1: Schematic representation of the spinothalamic and the spino-parabrachial-

amygdaloid ascending pathways. TH = thalamus, AMY = amygdala, PAG = periaqueductal 

grey, PB = parabrachial nucleus. 

 

4.4. Descending pain modulating pathways 
 

Descending pain modulating pathways allow modulation of nociceptive signals and 

autonomic responses to a noxious stimulus already at the spinal cord level (Fig. 2). 

Some of the descending pathways originating in supraspinal structures (e.g., brainstem 

structures, hypothalamus) have direct projections to the spinal dorsal horn where they can 

induce antinociceptive or pronociceptive effects[47]. 

There are also descending pathways that have indirect, polysynaptic projections to the 

spinal dorsal horn. The best-known indirect descending pain modulating pathway is the 

PAG–RVM-spinal dorsal horn system[48] (see chapter on the PAG-RVM system). Related to 

this is the amygdala-PAG pathway that has been shown to modulate pain behavior as shown 

e.g. by antinociception induced by stimulation of the central nucleus of the amygdala (CeA) 

and that may at least partly be mediated by the opioid system of the PAG[49–51] (Fig. 2). 

Descending pain modulating pathways can be classified based on their neurotransmitters. 
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4.4.1. Descending noradrenergic pathways  

 

In the central nervous system, noradrenergic cell groups are classified as A1–A7. The spinal 

dorsal horn receives noradrenergic innervation from the A5 (in ventrolateral pons), A6 (also 

known as the locus coeruleus in the pontomesencephalic junction) and A7 (in lateral part of 

the pons) cell groups[52]. Electric stimulation of A5, A6 or A7 elicits spinal release of 

noradrenaline and analgesia that can be reversed by intrathecal administration of α2-

adrenoceptor antagonists at the spinal cord level[47,53]. 

 

4.4.2. Descending dopaminergic pathways 

 

Various dopaminergic central nervous sites play a role in pain modulation[54]. The 

hypothalamic A11 nucleus is the main source of dopaminergic innervation of the spinal cord. 

Electric stimulation of the A11 or spinal administration of dopaminergic compounds have 

been shown to induce an analgesic effect that is mediated by dopamine D2-like receptors at 

the level of the spinal dorsal horn[55]. Moreover, dopamine has been shown to suppress 

pain in the striatum[56,57]. 

 

4.4.3. Descending serotonergic pathways 

 

Brainstem-spinal serotoninergic projections may facilitate or inhibit pain depending on the 

subtype of the spinal serotonin receptor and the pain state (acute versus chronic 

pain)[47,58]. In pathological pain states, like that induced by nerve injury, descending 

facilitatory effect of the serotoninergic system predominates[59]. Moreover, the release of 

serotonin in the injured or inflamed tissue contributes to the peripheral sensitization of the 

nerve[60]. 

 

4.4.4. Other descending pathways 

 

Other descending pathways include those with histamine, vasopressin or oxytocin as the 

main pain modulating neurotransmitter. Furthermore, several other transmitters participate 

in descending pain modulation. Among them are GABA, glutamate, opioids, acetylcholine 

and CCK. 
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Fig. 2: Schematic representation of the main descending pain pathways. HT = hypothalamus, 

AMY = amygdala, PAG = periaqueductal grey, LC = Locus Coeruleus, RVM = rostral ventral 

medulla. 

 

4.5. Pain matrix 
 

Among pain-related cortical areas are the somatosensory cortex, anterior cingulate cortex, 

prefrontal cortex and insula [61]. Together, these areas contributing to pain processing were 

first called “neuromatrix” by Ronald Melzack[62], then named “pain matrix” by Irene Tracey 

and Emily Johns[63]. 

 

4.6. Neuropathic pain 
 

Neuropathic pain is a chronic pain disorder induced by a lesion or a disease of the central or 

peripheral nervous system, named respectively central or peripheral neuropathic pain. 

While the definition of neuropathic pain by IASP was considered too vague (“Pain caused by 
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a lesion or disease of the somatosensory nervous system.”), Misha-Miroslav Backonja 

defined neuropathic pain as: “Neuropathic pain is in this case defined as pain occurring in 

the area or body part associated with neurological disease or injury. This type of pain 

manifests not only with positive sensory phenomena, such as pain, dysesthesia, and 

different types of hyperalgesia, but also with negative sensory phenomena and negative and 

positive motor symptoms and signs.”[64]. The prevalence of neuropathic pain is between 

6.9% and 10%, it affects negatively the patient’s life and represents an important economic 

burden[7,8]. 

Neuropathic pain disorder includes symptoms like mechanical and thermal allodynia and 

hyperalgesia, spontaneous (or ongoing) pain, and other ongoing unpleasant sensations[65]. 

While the mechanisms underlying neuropathic pain are unclear, there is evidence of the 

involvement of sensitization at supraspinal, spinal and peripheral levels.  

Peripheral sensitization after nerve injury involves changes in the expression of membrane 

receptors like the voltage-gated sodium channel NaV1.8. It is mainly expressed on primary 

sensory afferent neurons where it contributes to persistent pain[66]. An increase in the 

expression of sensory neuron-specific cation channel Transient Receptor Potential Vanilloid 

1 (TRPV1)[67], and upregulation of calcitonin gene-related peptide mRNA in intact dorsal 

root ganglion neurons[68] are other mechanisms. Furthermore, electrophysiological studies 

have shown that nerve injury may induce ectopic afferent discharge particularly in rapidly 

conducting A fibers that was associated with tactile allodynia[69]. Spontaneous activity has 

been demonstrated also in nociceptive C-fibers of an intact nerve adjacent to injury[70,71]. 

Together, various peripheral sensitization mechanisms (changes in the expression and 

localization of receptors, hyperactivity from injured and uninjured fibers, release of 

cytokines by immune cells at the site of the nerve injury[72]) contribute to the maintenance 

of neuropathic pain.  

Central sensitization is an increase in the response of central pain-relay neurons following 

nerve injury. In the spinal dorsal horn, a phenomenon called “windup” contributes to 

amplification of nociceptive signals. In windup, repetitive stimulation of nociceptive C-fiber 

afferents induces an increase in the response of spinal dorsal horn neurons. Windup has 

been demonstrated also in human subjects[73], independent of hyperalgesia[74,75]. 

Amplification caused by the windup phenomenon contributes to increased excitability of 

nociceptive spinal dorsal horn neurons. However, windup is neither sufficient nor necessary 

for central sensitization and hyperalgesia[76,77]. Nerve injury induces various molecular 

changes within the spinal dorsal horn that reduce the control of nociception induced by 

synthetic as well as endogenous antinociceptive compounds[78,79]. For example, after 

spinal cord injury the response of spinal dorsal horn neurons is enhanced[80]. This is 

associated with a loss of GABAergic inhibition[81] that is likely to contribute to mechanical 

allodynia[80] and maintenance of chronic pain.  

At the supraspinal level, central sensitization involves modifications in ascending pathways 

(facilitation of nociceptive information, see example above) and in descending pathways 

(impairment of the balance between descending facilitation and inhibition of nociception in 

favor to facilitation). These injury-induced changes in ascending and descending pathways 
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are likely to contribute to the maintenance of neuropathic pain. Impairment in the 

antinociceptive efficacy of the opioids in the thalamus, PAG and anterior cingulate cortex is 

one of consequences of these injury-induced central changes[82,83]. Similarly, descending 

serotoninergic pathways sensitize the pronociceptive TRPV1 channels on central terminals of 

primary afferent nerve fibers within the spinal dorsal horn[84]. Furthermore, not only 

neurons but also glial cells participate in the enhancement of descending facilitation in 

neuropathic pain conditions[85].  

Together, peripheral and central sensitization mechanisms contribute to the maintenance of 

neuropathic pain. 

 

4.7. Animal models in pain research 
 

Animal models provide an important tool to understand the mechanisms of pain and to 

develop new treatments. The study of pain and analgesia mechanisms in humans is limited 

to brain imaging, sampling of blood and peripheral tissues (e.g., skin biopsies), genotyping, 

and various other noninvasive methods. Animal models allow studying neurochemistry, 

physiology and anatomy of pain and nociception in controlled groups using standardized 

methods. In animal models, it is possible to investigate even within the same animals chronic 

pain at different hierarchies levels (molecular, cellular, network and behavioral levels). On 

tip of human studies, experimental animal studies are important to understand the 

complexity of pain and to develop effective treatments. The value of the results from animal 

studies in the translation of findings to clinical applications in humans has been questioned. 

Several drugs proven potent in rodent models failed in clinical phase 2 or 3 for being non-

effective or for inducing important adverse effects which could not be predicted from pre-

clinical studies. Anyhow, many pain treatments developed in animal studies have been 

successfully translated to clinical therapy. Among the recent successes are ziconotide 

(approved by FDA) for severe chronic pain[86] and tanezumab, a monoclonal antibody 

selectively targeting nerve growth factor, for treatment of osteoarthritic pain[87]. 

Rodents are the most commonly used experimental animals in pain research even though 

Gigliuto and collaborators[88] suggest using pigs because of their similarities to humans. 

While pigs can be more accurate in predicting human pharmacokinetics than rodents, their 

use is limited due to economic reasons. By nature, pigs need more space and food than 

rodents which contributes to their higher costs in terms of care of the animals (food, cage, 

etc.) and rent for the space. 

Nociception tests and animal models of chronic pain are key elements in experimental pain 

research[89] Tests to assess emotional aspects of pain were developed only recently 

although emotional aspects of pain have a major impact on quality of life in patients 

suffering of chronic pain. 

Nociception tests provide an acute method for assessing the avoidance threshold/latency to 

a noxious stimulus. For instance, tail flick, hot plate and plantar tests allow the assessment 
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of withdrawal latency of the tail or paw to a hot stimulus. Application of calibrated von Frey 

monofilaments representing different stimulus forces allows assessing the withdrawal 

threshold to a mechanical stimulus. Formalin test allows assessing sustained pain behavior 

induced by an intradermal injection of the chemical stimulus formalin[89]. 

The place-avoidance paradigm of LaBuda and Fuchs[90] was developed to assess the 

aversive aspects of pain in animal models of arthritic and neuropathic pain. In this paradigm, 

animals are placed in a two-chamber box with one of the chambers being dark and the other 

one exposed to light. Rats are free to move from between the chambers. In the dark 

chamber, supposed to be preferred by rats, the injured paw (hypersensitive paw) is exposed 

to noxious mechanical stimulation while in the light chamber, supposed to be anxiogenic for 

rats, the non-injured paw is exposed to noxious mechanical stimulation. The rats are 

supposed to compare the unpleasantness evoked by light with that evoked by stimulation of 

the injured-paw in the dark chamber that as such is more pleasant for the rat than the light 

chamber; if unpleasantness evoked by stimulation of the injured paw predominates, the rat 

is expected to prefer the light-exposed area. Among other tests developed for assessing pain 

affect are those based on vocalization or facial recognition[89]. 

Neuropathic pain models aim to reproduce human clinical conditions in which an injury of 

the nervous system causes neuropathic pain. Several experimental models of peripheral 

nerve injury have been developed. The spared nerve injury (SNI) model is one of the most 

commonly used ones. It consists of a ligation and an axotomy of two of the three terminal 

branches of the sciatic nerve. This leads to a long-lasting mechanical allodynia that 

corresponds to the nerve cut-induced neuropathic pain in human patients[91]. In case the 

rats develop autotomy (self-mutilation) behavior in the injured limb, it is considered the 

end-point and the rats are immediately euthanized. In the SNI model, only the area 

innervated by the sural nerve (the spared branch of the sciatic nerve) remains sensitive 

giving a restricted foot area for application of mechanical test stimuli. Due to denervation of 

the plantar skin, thermal plantar test cannot be performed in the SNI model. 

A perfect behavioral test of nociception or an experimental animal model of pain should 

respond to these 5 points: specificity, sensitivity, validity, reliability and reproducibility[92]. 

Unfortunately, no test of nociception meets all of these criteria. For instance, the test of 

mechanical nociception, the mechanically-evoked flexor reflex, can be induced by a non-

nociceptive stimulus. Furthermore, noxious stimuli have a high intensity and, therefore, it is 

difficult to exclude co-activation of non-nociceptive nerve fiber when a noxious stimulus is 

applied. If the pharmacological agent studied in the behavioral test affects the motor 

system, it provides a confounding factor for interpretation of the results in terms of 

nociception then it can be considered that the validity of the model is challenged. For these 

reasons, the animal model and the nociceptive test should be chosen carefully according the 

specific question of interest. Furthermore, various additional tests can be required to 

differentiate whether the observed changes are due to a selective action on the nociceptive 

system. For example, the rotarod test can be used to exclude an impairment of the motor 

coordination by the tested drugs. 
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Finally, studying experimental chronic pain that would exactly mimic chronic pain in the 

clinic would require long-lasting chronic pain models which is ethically debatable. 

 

4.8. Amygdaloid complex 
 

4.8.1. Anatomy 

 

Amygdala (a Greek word meaning almond), also called amygdala complex, is a set of several 

nuclei: 1) the basolateral (BLA) group includes the lateral (L), basal (BA) and the accessory 

basal nucleus (AB) also known as the basomedial nucleus, 2) the central nucleus (CeA) is 

composed of the capsular (CeC), lateral (CeL) and medial (CeM) subdivisions, 3) the cortical 

nucleus, 4) the medial nucleus., 5) other amygdaloid nuclei includes the anterior amygdala 

area, the amygdalo-hippocampal area, and the intercalated nuclei (ITC) (Fig. 3)[93,94]. 

 

Fig. 3: Schematic representation of the main amygdala nuclei: BLA group (blue), central 

nucleus (grey), cortical nucleus (Co, yellow), medial nucleus (MeA, green) and the 

intercalated nuclei (ITC, pink). 

The subdivision of amygdala is still subject to debate but it is no more considered as a 

distinct structural and functional unit. On the contrary, amygdala is considered to be part of 

different systems depending on the architecture, neuroanatomy, embryonic development, 

chemistry and functional role of each nucleus. According to Swanson and Petrovich[95], the 

CeA is striatal, the basolateral and lateral nuclei are extensions of the temporal and frontal 

lobes, the cortical and medial nuclei belong to the olfactory system, and the rest form the 

association part of the olfactory system. Also Heimer has proposed the concept of the 

extended amygdala[96]. It is divided into two parts: i) Medial extendend amygdala which is a 

continuum from the medial nucleus of amygdala through the lateral sublenticular extended 

amygdala to the medial bed nucleus of the stria terminalis; ii) Central extended amygdala 

which is a continuum of the central amygdala to the lateral bed nucleus of the stria 

terminalis by the surrounding ventral pallidum. Heimer considers the basolateral amygdaloid 

complex (including basal and lateral nuclei) a cortical structure[97]. 
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4.8.2. Input 

 

Amygdala receives input from two main sources: Cortical and thalamic inputs provide 

sensory and memory-related information; Hypothalamic and brainstem inputs provide 

information related to behavior and the autonomic system. Sensory inputs to amygdala 

originate mainly from cortical structures but also from thalamic nuclei (such as the medial 

geniculate and posterior internuclear nuclei) and the parabrachial nucleus, which provides 

nociceptive inputs[98]. Polymodal inputs arise mainly from the prefrontal cortex, perirhinal 

cortex and hippocampus to provide information related to memory, behavior and reward. 

Furthermore, hypothalamus and brainstem (midbrain, pons, medulla) inputs target mostly 

the CeA[93]. 

 

4.8.3. Output 

 

Cortical and basolateral nucleus of amygdala send projections to cortical sensory areas. 

There are reciprocal projections between the frontal cortex/perirhinal area and the 

basolateral amygdala which arise from basolateral glutamatergic pyramidal-like neurons. 

There is also a reciprocal projection between the olfactory cortex and the cortical nucleus of 

amygdala. Projections from medial and central nuclei of amygdala form the extended 

amygdala (see above: anatomy of amygdala). Furthermore, CeA projects to hypothalamus, 

periaqueductal gray, parabrachial nucleus and nucleus of the solitary tract to control 

autonomic responses and nociception[50,99]. Moreover, central extended amygdala has 

several projections to monoaminergic and cholinergic neuron groups which innervate the 

forebrain and the memory system of the temporal lobe[93]. The CeA projections are 

inhibitory[100,101] by GABAergic neurons[102]. 

 

4.8.4. Central nucleus of amygdala (CeA) 

 

The CeA is subdivided into three parts: medial, lateral and capsular. The laterocapsular 

division is considered as the nociceptive part of the amygdala[103]. Contrary to cortical-like 

neurons of the basolateral amygdala, those of the CeA are striatal-like and pallidal-like 

neurons[104] which contain several types of neuropeptides including substance P, 

vasoactive intestinal peptide, neurotensin, galanin, somatostatin, corticotropin-releasing 

factor (CRF) and enkephalin. 

The CeA is known to be involved in emotions, autonomic responses, conditioned fear, social 

behavior, learning, memory, and reward[105]. The CeA is involved in different pathologies 

including anxiety[106], depression, schizophrenia, epilepsy, addiction and drug 

dependence[105,107,108]. 
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The CeA is a major nucleus involved in nociception and pain. It influences descending 

modulation of pain[18,109–111], it is involved in emotional and sensory aspects of pain[94] 

and in behavioral and emotional responses to noxious stimulation. The CeA is considered to 

play a key role in persistent pain[14,112], probably contributing to the maintenance of 

pathophysiological pain in neuropathic and arthritic conditions and to depression-anxiety 

comorbidity[113,114]. 

 

4.9. Periaqueductal gray (PAG) – Rostral ventromedial medulla 

(RVM) system 
 

The PAG is a midbrain structure surrounding the cerebral aqueduct. The RVM is a medullary 

structure which contains the nucleus raphe magnus and the adjacent reticular formation. 

Based on the response to noxious peripheral stimulation, PAG and RVM neurons can be 

subdivided into three types of cells: neutral-, ON- and OFF-Cells. The role of neutral cells is 

poorly known while PAG and RVM OFF-cells and ON-cells are considered to be involved in 

nociception since they, respectively, reduce or increase their activity during a noxious 

stimulus[115,116]. 

The PAG exerts a major role in the descending inhibition pathway relayed through the 

RVM[48] to the spinal dorsal horn. Both PAG and RVM receive direct projections from the 

spinal cord[117,118]. PAG has reciprocal connections with several brain structures including 

the cerebral cortex, hypothalamus and amygdala. 

The PAG-RVM pathway is the best known descending pathway controlling nociception: PAG 

has direct excitatory and inhibitory projections to ON-, OFF- and neutral-cells of the 

RVM[119], all of which project to spinal cord[118,120]. Electric stimulation of the PAG or 

RVM induces analgesia in rats and cats[121–125]. PAG stimulation has proved analgesic even 

in humans[106]. The PAG-RVM antinociception is at least partly mediated by opioids[124] 

and partly by non-opioids like the cannabinoid system[126,127]. Furthermore, the spinal 

antinociceptive effect induced by PAG activation is blocked by inhibition of the 

RVM[128,129]. Interestingly, opioidergic descending antinociceptive effect induced by 

amygdala is mediated by PAG and RVM[49–51,130]. 

It is noteworthy that RVM stimulation has a biphasic (facilitatory and inhibitory) effect on 

spinal nociception[131–133]. While the PAG-RVM pathway is important for pain inhibition, it 

is also involved in the maintenance of chronic pain. Indeed, RVM[134–138] and PAG[139–

142] participate together in the maintenance of persistent pain. 

 

4.10. Corticotropin-releasing factor (CRF) 
 

CRF, also known as corticotropin-releasing hormone, is a 41 amino-acids peptide which acts 

through two G-protein receptors CRF-R1 and CRF-R2, with higher affinity to the first one[27]. 
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The free level of endogenous CRF is modulated by the CRF-Binding Protein (CRF-BP) which 

also keeps a pool of CRF available[143,144].This pool of CRF can be displaced by the high 

affinity CRF-BP ligand inhibitor, CRF6-33[145]. 

CRF is widely spread over the central nervous system, with two distinct areas: the 

hypothalamic–pituitary–adrenal (HPA) axis, and the extrahypothalamic center which covers 

several nuclei including the amygdala. These two CRF areas are not separated but can 

influence each other. For instance, chronic overexpression of amygdaloid CRF induces 

hyperactivation of the HPA axis, causes anxiety and changes in gene expression[146]. 

In the CeA, CRF can be found, in order of quantity, in the lateral, medial and ventral 

subdivisions[105], where the presynaptic neurons contain CRF-R2 while the postsynaptic 

neurons contain both CRF-R1 and CRF-R2[147]. 

CRF of the CeA has several roles in behavior and physiology. It modulates GABAergic[148] 

and glutamatergic systems[149]. CRF is involved in addiction, withdrawal and drug-

seeking[107,150], emotional processing, stress and anxiety[106,151], fear[152] and mental 

disorders[153].  

CRF of the CeA is known to be involved in pain and nociception. Neuropathy induces an 

increase of amygdaloid CRF[154] and both CRF-R1 and CRF-R2 have differential effects on 

nociception processing, pain behavior and plasticity in arthritis[21,25]. 

 

4.11. Glutamatergic system 
 

Glutamate is the major excitatory amino acid neurotransmitter in the mammalian central 

nervous system. Glutamate is highly regulated to avoid its excitotoxicity. The glutamate 

binds to ionotropic (AMPA, kainate, NMDA) and metabotropic receptors (mGluRs) (Table 1). 

AMPA and kainate receptors are present in presynaptic and postsynaptic neurons. They are 

permeable to K+ and Na+ and Ca2+ depending on the subunit composition of the 

receptors[155], when glutamate or their specific agonist binds to them. AMPA and kainate 

receptors contribute to synaptic plasticity[156,157], and they can activate each other[158]. 

The calcium-permeable AMPA receptors are involved in pain and nociception by regulating 

depression-like behaviors in rat model of chronic neuropathic pain[159] and by regulating 

paired-pulse depression in nociceptive sensory synapses of rat’s dorsal root ganglion and 

dorsal horn neurons[160]. 

NMDA receptor has the highest affinity to glutamate. NMDA receptor subunits include NR1, 

NR2A-D and NR3A-B[161]. At a resting potential, NMDA receptor is blocked by extracellular 

Mg2+ and Zn2+. Removal of this block is voltage-dependent and activation of the NMDA 

receptor requires co-activation of glutamate and glycine to allow cationic (Na+and Ca2+) 

influx and (K+) outflux. Activation of NMDA receptors is known to be involved in synaptic 

plasticity, memory and learning, and their neuronal correlates, long-term potentiation (LTP) 

and long-term depression (LTD)[162–164]. 
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The metabotropic receptors are divided into three groups: Group I includes mGluR1 and 

mGluR5, Group II mGluR2 and mGluR3, and Group III mGluR4, mGluR6, mGluR7 and 

mGluR8. Metabotropic receptors are G-protein-coupled receptors which activate 

downstream mechanism such as phospholipase C and diacylgycerol (Group I receptors), or 

suppress downstream mechanisms such as intracellular cyclic adenosine monophosphate 

(cAMP; Group II and Group III receptors). In presynaptic neurons, mGluRs reduce GABAergic 

and glutamatergic transmission[165] while in postsynaptic neurons they modulate the 

activity of ionotropic channels[166]. Altogether, mGluRs participate in modulation of 

synaptic neurotransmission and neuronal excitability. 

The CeA contains metabotropic and ionotropic glutamate receptors[93]. Interestingly, the 

subunit composition of NMDA receptors in the CeA does not change during development 

from immature to adult synapses, in contrast to NMDA receptors in pyramidal neurons of 

BLA synapses[167]. 

Results on the NMDA-dependency of LTP inside the CeA have been controversial. Kiritoshi et 

al. (2010) have shown that NMDA is involved in LTP in the CeL[168]. In line with this, Cheng 

et al. (2011) described an NMDA-dependent LTP in the CeC[169]. However, López de 

Armentia et al. (2007) reported that in the CeL receiving nociceptive inputs from the 

parabrachial nucleus LTP is NMDA-independent, whereas LTD is NMDA-dependent[170]. 

Both ionotropic and metabotropic glutamate receptors of the CeA play a role in pain 

processing. Interestingly, LTP is not mediated by NMDA receptors in neuropathic as it is in 

arthritic conditions[171]. Furthermore, in arthritic animals blockade of non-NMDA and 

NMDA receptors reduces neuronal activity in the CeA[172].  Paradoxically, both activation 

and blockade of NMDA receptors in the CeA of healthy controls has reduced pain affect 

induced by acute noxious stimulation[31,173]. Based on these findings, it seems that the 

glutamatergic system of the CeA has pleiotropic actions on the pain-nociception system that 

vary depending on the receptor subtype and pain state. In line with this, the mGluRs of the 

CeA have been shown to have different actions on nociception and pain affect depending on 

the subtype of the mGluR and the pathophysiological condition (healthy control, 

neuropathy, or arthritis)[29,109,174,175]. 

 Ionotropic Metabotropic 

Receptors NMDA AMPA kainate Group I Group II Group III 

Protein 

subunit 

NR1 

NR2A 

NR2B 

NR2C 

NR2D 

NR3A 

NR3B 

GluR1 

GluR2 

GluR3 

GluR4 

GluR5 

GluR6 

GluR7 

KA1 

KA2 

mGluR1 

mGluR5 

mGluR2 

mGluR3 

 

mGluR4 

mGluR6 

mGluR7 

mGluR8 

 

Table 1: Classification of ionotropic and metabotropic glutamate receptors.   
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5. Aims of the study 
 

The general aim of the study was to investigate the involvement of the central nucleus of 

amygdala (CeA) on pain and nociception in healthy control animals and in an animal model 

of chronic neuropathic pain. Two aspects of pain were studied: sensory-discriminative and 

emotional-like pain behavior. Additional study parameters were the lateralization of pain 

processing and the dependence of the results on the submodality of noxious test 

stimulation. The specific aims were: 

 

 To analyze the effect of CRF and glutamatergic system of CeA on emotional-like 

aspect of pain in healthy controls and animals with peripheral neuropathy. 

 To investigate the effect of CRF and glutamatergic system of CeA on sensory-

discriminative aspect of pain in healthy controls and animals with peripheral 

neuropathy.  

 To determine whether the CeA control of spinal hypersensitivity in animals with 

peripheral neuropathy is mediated by the descending serotoninergic pathway. 

 To decipher whether the PAG is involved and necessary to the antinociception 

induced by CeA glutamate activation in healthy animals 

 To observe whether lateralization of pain processing takes place in healthy and SNI 

animals.  
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6. Materials & Methods 
 

6.1. Animals and Ethical permits 
 

All experiments were performed using adult male Hannover-Wistar rats (Harlan, Horst, 

Netherlands; weight: 250–350 g). The rats were house in a 12-h light-dark cycle with food 

and water access ad libitum. They were housed in groups of 3 to 4 rats per cage except after 

intracerebral insertion of cannula, they were in single cages. The animals were sacrificed 

immediately after the experiments or if a human end-point was reached by an overdose of 

sodium pentobarbital. 

The methods had been approved by the Animal Experimental Board of Finland and the 

experiments were performed according to the guidelines of the European Communities 

Council Directive of 24 November 1986 (86/609/EEC; Studies I & II) or the guidelines of 

European Communities Council Directive of 22nd September 2010 (2010/63/EU; Studies III, 

IV & V). All efforts were made to limit distress and to use only the number of animals 

necessary to produce reliable scientific data. 

 

6.2. Drugs 
 

CRF-BP ligand inhibitor human/rat CRF6-33, the nonselective CRF receptor antagonist a-helical 

CRF9-41, Glutamate (L-glutamic acid monosodium salt), NMDA receptor antagonist (+)-MK-

801 maleate, mGluR1/5 agonist DHPG (S)-3,5-dihydroxyphenylglycine, mGluR5 agonist CHPG 

(RS)-2-chloro-5-hydroxy-phenylglycine, mGluR5 antagonist MPEP 6-methyl-2-

(phenylethynyl)pyridine, 5-HT1A receptor antagonist WAY-100635, 5-HT3 receptor antagonist 

ondansetron, 5-HT1A receptor agonist 8-OH-DPAT, dopamine D2 receptor antagonist 

raclopride, the opioid receptor antagonist naloxone hydrochloride and dimethylsulfoxyde 

(DMSO) were purchased from Sigma–Aldrich (St. Louis, MO, USA). 

The mGluR1 antagonist CPCCOEt 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid 

ethyl ester was purchased from Tocris (Bristol, UK).  

The α2-adrenoceptor antagonist atipamezole was obtained from OrionPharma (Turku, 

Finland). 

Sodium pentobarbital and physiological saline were purchased from OrionPharma, (Espoo, 

Finland) 

Buprenorphine was purchased from Reckett & Colman (Hull, England) 

Drugs were dissolved in saline, except for CPCCOEt that was dissolved in DMSO. 
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6.3. Anesthesia 
 

Anesthesia was produced by intraperitoneal administration of 50 mg/kg of sodium 

pentobarbital and to prevent postoperative pain, animals were treated with intramuscular 

or subcutaneous administrations of 0.01 mg/kg of buprenorphine in the area of surgery after 

sni-sham and stereotaxic surgery. During the operations, the level of anesthesia was 

monitored by assessments of muscle tone, size of the pupils, limb withdrawal threshold to a 

noxious pinch of the paw, and ear reflex to an ear pinch. Supplemental doses of sodium 

pentobarbital were given if necessary. 

During electrophysiological recordings or prolonged operations, the anesthesia was 

continued by administering sodium pentobarbital at the dose of 15–20 mg/kg/h or more if 

needed. 

 

6.4. Stereotaxic surgery, cannula, microelectrode and catheter 

insertion and microinjection 
 

6.4.1. Cannula insertion and recording electrode placement 

 

Intracerebral fixation of cannula was done under anesthesia. The rat was lying on a warmed 

blanket to keep the rat’s body temperature within physiologic range and the rat’s head was 

fixed to a stereotaxic apparatus. Subcutaneous injection of 0.01 mg/kg of buprenorphine 

was done before scalp incision. Exposure of the skull allowed drilling holes above the desired 

stereotaxic coordinates according the atlas of Paxinos and Watson[176] to insert a 26-gauge 

guide cannula (C315G, PlasticsOne, Roanoke, VA, USA). Two extra holes were drilled to 

insert dental screws into the skull allowing the fixation of the cannula to the skull with 

dental cement. The tip of the guide cannula was positioned 2 mm above the desired 

injection site. 

During acute electrophysiological recordings, the recording electrodes were inserted into 

the desired brain site through a hole in the skull with a micromanipulator. 

 

6.4.2. Intrathecal catheter (i.t.) insertion 

 

The anesthetized rat was lying on the table and the lumbar level of the spinal cord[177] was 

exposed to insert the catheter (Intramedic PE-10, Becton, Dickinson and Company, Sparks, 

MD, USA). I.t. catheter was installed in the same operation as nerve injury at least two 

weeks before actual drug testing. After recovery from anesthesia, only rats without motor 

impairment and responding with bilateral hind limb paralysis to i.t. administration of 
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lidocaine (4 %, 7–10 µl followed by 10 µl of saline for flushing) were studied further.  For i.t. 

injections, a 50-µl Hamilton syringe (Hamilton Company, Bonaduz, Switzerland) was used. 

 

6.4.3. Drug injection sites in the brain 

 

The targets for intracerebral drug injections were: 

 The left or right CeA, in the capsule lateral of central nucleus of the amygdala (CeC): 

2.1 mm posterior from the bregma, 4.3 mm lateral from the midline, and 7.8 mm 

ventral from the dura mater.  

 The rostral ventromedial medulla (RVM): 11 mm posterior from the bregma, in the 

midline, and 10.5 mm ventral from the dura mater. 

 The right PAG: 7 mm posterior from the bregma, 0.8 mm lateral from the midline, 

and 5 mm ventral from the dura mater. 

The control drug injection site was in the right internal capsule: 2.1 mm posterior from 

bregma, 3.6 mm lateral from the midline, and 5.0 mm ventral from the dura mater. 

The target for i.t. drug injections was the lumbar level of the spinal cord. 

 

6.4.4. Intracerebral microinjections 

 

Drugs or saline were microinjected into the brain through a 33-gauge stainless steel injection 

cannula (C315I, PlasticsOne) connected to a 10-µl Hamilton syringe (Hamilton Company) by 

polyethylene tubing (Intramedic PE-10, Becton, Dickinson and Company). The injection 

cannula protruded 2 mm below the tip of the 26-gauge guide cannula (C315G, PlasticsOne). 

The volume of intracerebral injections was 0.5 µl. To monitor the injection, a small air 

bubble was formed prior to drug or saline aspiration inside the catheter connecting the 

injection cannula with the syringe. Then, during the slow injection the movement of the 

bubble was watched to confirm the drug injection. Finally, injection needle was retained 

within the cannula for an additional 20 seconds after drug infusion to prevent backflow of 

the drug into the injection cannula. 

The average spread of an intracerebral injections of dyes at the volume of 0.5µl is 1.04 

mm[178]. Therefore in this thesis, we can expect a similar spread for the intracerebral 

injections, thereby covering also other subnuclei of the amygdala. Because of the proximity 

between the CeA and the BLA or the ITC, we could not exclude their contributions. However, 

since the CeA is the main output of the amygdala to the nociceptive descending 

controls[94], it may be argued that the CeA was involved in this thesis. 
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6.5. Peripheral neuropathy model induced by spared-nerve injury 

(SNI) 
 

The spared-nerve injury is a model for peripheral nerve injury induced by ligation and 

axotomy of two of the three terminal branches of the sciatic nerve as described by 

Decosterd and Woolf [91]. 

After the rat was anesthetized, it received intramuscular 0.01 mg/kg of buprenorphine to 

prevent pain and was shaved in the left limb area for surgery, and the limb skin was opened 

with a scalpel; an incision was made in the muscle to allow the access to the sciatic nerve. 

Common peroneal nerve and tibial nerve were separated from the sural nerve with a glass 

stick, then they were ligated together and an axotomy was performed with a pair of scissors, 

without touching the sural nerve. Finally, the muscle and the skin were sutured. The rat was 

under surveillance until it recovered from anesthesia. During the following days the animal 

was carefully monitored to ensure that the healing of the wound was complete. Only SNI 

rats showing hyperalgesia to a calibrated monofilament producing a force of < 2g were 

selected for the experiments. 

The operation for sham animals followed the same procedure as that in the SNI group, 

except for the ligation and axotomy of the two sciatic nerve branches.  

The SNI surgery in the rat reproduces the symptoms of a peripheral neuropathy in humans, 

with long-lasting allodynia and hyperalgesia. The spared sural nerve innervates the lateral 

part of the foot pad. This induces a limitation when using nociceptive tests. While assessing 

withdrawal reflex of the limb to a calibrated mechanical stimulation of the sural nerve area 

(see monofilament chapter) is still feasible, the assessment of withdrawal latency to a 

noxious heat stimulus that with conventionally used devices is applied to the plantar skin 

cannot be done. 

 

6.6. Habituation 
 

All rats were habituated to the animal room, handling and the experimental conditions 

during 3 consecutive days before experiments started. This included habituation to a 

transparent box of the plantar test device, the test device used for assessing responses to 

mechanical stimulation, the place-avoidance test device, and handling with a gentle restraint 

to be performed when injecting drugs into the brain. 

 

6.7. Behavioral assessment 
 

6.7.1. Mechanical nociception 
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Withdrawal reflex threshold to a mechanical noxious stimulus was done by applying a 

calibrated series of monofilaments (North Coast Medical, Inc., Morgan Hill, CA, USA) 

producing a force from 0.008 to 300g (I, III and V), or from 1 g to 15 g (II and IV). During 

testing, the monofilament was applied to the foot pad while the rat was standing on a grid, 

free to move inside a transparent box. In I to V, mechanical pain sensitivity was determined 

by assessing responses to 5 repeated application of each stimulus force; an increase in the 

response rate was considered to represent an increase in hypersensitivity. The studied 

stimulus forces varied between 1-15 g (II) and 1-300 g (III and V), while in IV only the 

response to a force of 1.4 g was determined. In I, the stimulus forces varied from 0.008 g to 

300 g and the index of sensitivity was the threshold that was defined as the minimum force 

required for evoking 5 consecutive limb-withdrawals. 

 

6.7.2. Thermal nociception 

 

Withdrawal reflex latency to a noxious heat stimulus was done by applying radiant heat from 

the testing device (Plantar test model 7370, Ugo Basile, Varese, Italy) to the plantar skin of a 

rat that was free to move inside a transparent box. The latency in seconds to the limb 

withdrawal was automatically assessed by the equipment. To avoid heat-induced injury, the 

cut-off point was set at 15s. 

 

6.7.3. Aversive place-avoidance paradigm 

 

To assess the aversive aspect of pain, the place-avoidance test was performed as described 

by LaBuda and Fuchs [90]. The rat was placed inside a box that was on top of a metal grid. 

Half of the box was transparent and exposed to a light source whereas the other half was 

painted in black and was dark inside. Rats were free to move on the grid from the light area 

to the dark area, or vice versa. In the dark area, the rats received mechanical stimulation of 

the injured paw with a monofilament at a force of 300 g, whereas in the light area the rats 

received mechanical stimulation of the uninjured paw. The duration of testing was 30 min. 

The aversive place-avoidance test assesses the aversive aspect of pain by measuring the 

time spent in the dark versus light area of the box. The light exposed area as such is 

considered anxiogenic and the dark area is normally preferred by rats. In the experimental 

setup, the rat needs to compare the unpleasantness induced by light per se with the 

unpleasantness induced by stimulation of the injured paw in the dark. The more the animal 

spends time in the light, the more aversive the pain induced by mechanical stimulation 

(occurring in the dark) is considered to be. 
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6.7.4. Course of the studies: behavioral pain assessment following drug 

injections into the CeA (I, II, III, IV, V), RVM (IV) or i.t. (IV) 

 

Table 2 contains a resume of experimental parameters (time course, cannula placement, 

types of behavioral test, drugs and its injection period) of each study. Day of surgery is 

considered as time 0 in the timeline. 

 

 Surgery Place of 

cannula 

insertion 

Time 

(week 

post-

surgery

) 

Behavioral 

test 

Time 

(week 

post-

surgery) 

Drugs Injection period 

Study 

I 

Sham 

SNI 

R or L 

CeA or R 

Internal 

capsule 

1 Mechanical 

nociception 

Aversive 

avoidance 

behavior 

2-4 Saline, CRF6-33 

(0.01, 0.03, 0.1, 0.3 

µg) 

CRF9-41 1 µg 1 min 

before CRF6-33 

0.03µg 

Drugs were 

administered 15 min 

before testing 

mechanical 

sensitivity and place-

avoidance. 

Study 

II 

SNI R and L 

CeA 

<1 or 7 Mechanical 

nociception 

Aversive 

avoidance 

behavior 

1 or 8 Saline, DMSO, 

DHPG 

(1.83µg/CeA), 

MPEP 

(11,50µg/CeA), 

MK-801 (1µg/CeA), 

CPCCOEt (5, 10, 20 

µg/CeA) 

Drugs were 

administered 5min 

before the place-

avoidance test and 

20min before testing 

mechanical 

sensitivity. 

Study 

III 

Unop R or L 

CeA or R 

Ic 

1  Thermal 

and 

mechanical 

nociception 

Rotarod 

test 

2-4  Saline, glutamate 

(32-100µg), MK-

801 2µg followed 

5min later by 

glutamate 100µg, 

MK-801 2µg alone 

Pain behavior was 

assessed 1, 10, 20, 

40 and 60 min after 

drug administration 

as well as before it. 
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Study 

IV 

SNI 

SNI + i.t. 

catheter 

R CeA or 

R CeA 

and RVM 

or R Ic 

1 Mechanical 

nociception 

1-2 CeA inj: Saline, 

glutamate (9 and 

100µg), MK-801 

(1µg) alone or 

prior to glutamate. 

CeA + i.t. inj: 

Saline, WAY-

100635 (3µg), 

ondansetron (5µg), 

atipamezole (5µg), 

raclopride (1µg) or 

naloxone (1µg) 

before CeA 

glutamate inj. 

MK-801 (1µg) 

CeA + RVM inj: 

Saline, 8-OH-DPAT 

(0.125µg) before 

glutamate (9 and 

100µg) 

Mechanical 

hypersensitivity was 

assessed in the 

injured hind limb 

before the 

treatment and 5, 15, 

30 and 60 min after 

the treatment. 

Study 

V 

Unop R or L 

CeA and 

PAG 

1 Mechanical 

nociception 

2-4 CeA injection 

alone: Saline, 

glutamate (100µg), 

MK-801 2µg 

followed 5min 

later by glutamate 

100µg, MK-801 

2µg alone. 

CeA + PAG 

injection: Saline, 

Lido 4% alone or 

5min before each 

CeA injection. 

Drugs were 

administered 1min 

before behavior 

tests. 

 
Table 2: Behavioral pain assessment: Time course of each study. Unop = unoperated ; R = 
right ; L = left ; inj = injection ; CeA = central nucleus of amygdala ; Ic = internal capsule.  
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6.8. Muscular coordination assessment 
 

Motor coordination and balance of the rats was assessed in the Rotarod test (Ugo Basile). 

The rats were placed on a drum the revolving speed of which was increasing 2 revolutions 

per minute. The maximum revolution speed at which the rats were able to stay on the drum 

was determined one minute after saline or drug administrations. 

 

6.9. Electrophysiological recordings 
 

Single unit recordings of PAG neurons were performed in anesthetized rats fixed in a 

stereotaxic frame. The recording electrode was placed into the PAG (Bregma = - 7 mm, 

Lateral = +/- 0.8 mm, Dorsoventral = 4.6-6.2 mm) and the cannula for drug injections was 

placed into the CeA. 

Single neuron activity was recorded extracellularly with lacquer-coated tungsten electrodes 

(impedance 5–7 MΩ at 1 kHz). The signal was amplified and filtered using standard 

techniques. Data sampling was performed with a computer connected to a CED Micro 1401 

interface and using Spike 2 software (Cambridge Electronic Design, Cambridge, UK). 

Only PAG neurons giving an excitatory response to a noxious pinch of the tail were studied. 

Based on their excitatory response, these neurons were called ON-like cells. The discharge 

frequency of the ON-like cell was determined by recording first its spontaneous activity, 

then the responses to brushing the skin (an innocuous stimulus) and noxious pinching of the 

tail for 5 s with a hemostatic clamp were determined. This testing procedure was repeated 

at various time points after administration of drugs/vehicle into the CeA.  

In the analysis of the stimulus-evoked responses, the baseline discharge frequency recorded 

before the test stimulation or drug application was subtracted from the discharge 

frequencies determined during and after stimulation; i.e. positive values represent 

excitatory responses evoked by peripheral stimulation, and negative values represent 

inhibitory responses. 

 

6.9.1. Course of the studies: electrophysiological study on PAG ON-Cell 

activity following glutamate injection into the CeA (V) 

 

To determine whether injection of glutamate into the CeA influences the neuronal activity of 

PAG ON-cells, extracellular single unit recordings were performed in anesthetized rats fixed 

to a stereotaxic frame according to the atlas of Paxinos and Watson[176]. The surgical 

procedures for installation of the injection cannula into the right or left CeA and a 

microelectrode into the PAG are described above in the section on Stereotaxic surgery. 

While the level of anesthesia may significantly influence the neuronal responses, anesthesia 
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was induced and maintained in the identical manner in all experimental conditions to 

minimize the confounding effect of anesthesia on potential differences in results between 

test conditions.  

Neurons were classified according their response to a noxious pinch of the tail with a 

hemostatic clamp. Only neurons with an excitatory response during the pinch (classified as 

On-like cells) and a response to glutamate injection were used for recording experiments. 

After characterization of the recorded cell, its spontaneous activity was first assessed for 2 

min. Then the effect of 5s of non-noxious mechanical stimulation was assessed by applying a 

brush to the back skin followed by 5s of noxious mechanical stimulation assessed by 

applying hemostatic clamp to the tail. Then the spontaneous activity was again assessed for 

3 min. After this, left or right CeA was treated with saline, glutamate, MK-801, or a 

combination of MK-801 followed 2 min later by glutamate. After drug injection, an 

innocuous brush and a noxious pinch stimulus was applied at time points 1 min and 5 min 

after drug injection. Spontaneous activity was recorded continuously and the spontaneous 

discharge recorded for one min before mechanical test stimulations was used to assess the 

effect of drug treatment on spontaneous discharge rate of the neurons. 

 

6.10. Summary of time course of each study 

 

Fig. 4: Summary of the time course of the studies. 

 

6.11. Histology 
 

At the end of each experiment, rats were sacrificed by an overdose of pentobarbital and the 

brain was removed and immersed in 4% paraformaldehyde. Coronal sections of the brain 

t=0 : Surgery 

SNI (I+II) 

Sham (I) 

SNI + i.t. catheter (IV) 

Unop (III+V) 

t=1-7weeks : Intracerebral cannula placement 

Guide cannula was placed 
at least one week before 
behavioral testing (I-V) 

t=2-8weeks : Behavioral assessment 

Mechanical nociception (I-
V) 

Place-avoidance (I-II) 

Thermal nociception (III) 

Rotarod (III) 

t=2weeks : Electrophysiol 

Single unit extracellular 
recording : PAG ON-cells (V) 
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were cut to verify the site of injection according to the atlas of Paxinos and Watson[170]. 

Nissl’s staining was used when determining the injection sites in the CeA. 

 

6.12. Statistical analysis 
 

Statistical analysis was done with Prism 5 for Windows software (GraphPad Software Inc., La 

Jolla, CA, USA). Data are presented as mean ± S.E.M. (I to V) and as median and interquartile 

range (I). Parametric data were analyzed using one- or two-way ANOVA, with repeated 

measures or mixed design when appropriate. Post hoc testing of parametric data was 

performed using t-test with a Bonferroni correction for multiple comparisons or Tukey’s test. 

When comparing only two groups of parametric data, paired or unpaired t-test was used. 

Non-parametric data were analyzed using Friedman’s test or Kruskal-Wallis test followed by 

Dunn’s test. When comparing two groups of non-parametric data, Wilcoxon’s signed rank 

test or Mann-Whitney U test was used. P < 0.05 was considered to represent a significant 

difference.  
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7. Results 
 

7.1. Modulation of emotional-like aspect of pain by CeA 
 

7.1.1. Reduction of emotional-like aspect of pain by endogenous CRF in the 

CeA of neuropathic animals (I) 

 

In the aversive place-avoidance test, the SNI group spent less time in the dark (where their 

injured paw was stimulated) than the sham group as indicated by comparison of saline-

treated sham and SNI animals (main effect of SNI: F1,22 = 134.96, P < 0.0001). Furthermore, 

administration of CRF6-33 (CRF-BP antagonist that liberates free CRF) at the dose of 0.01, 0.03 

and 0.1µg in the CeA of SNI rats reduced of time spent in the dark area (F3,34 = 13.32, P < 

0.0001) with a significant difference between the left versus right CeA injections (F1,34 = 5.63, 

P < 0.03). Right CeA injection of CRF6-33 induced a dose-related increase in the time spent in 

the dark at all of the three doses while left CeA injection of CRF6-33 increased in the time 

spent in the dark at the doses of 0.01 and 0.03µg. The CRF6-33 effect was reversed by 

pretreatment of the right CeA of the SNI group with the CRF receptor antagonist CRF9-41 

(1µg) that itself had no effect (Table 3). 

In the sham group, administration of CRF6-33 in the right or left CeA at doses ranging from 

0.01 to 0.1 mg failed to produce a change in time spent in the dark (main effect of drug 

dose: F3,34 = 1.62) (Table 3). Similarly, administration of CRF6-33 in the control site (right 

internal capsule) in the sham or SNI group did not affect aversive place-conditioning. 

The increase of the time spent in the dark induced by right CeA injection of CRF6-33 in SNI was 

significant 15 min after the injection to the end of the experiment (30 min after injection) 

(F1,54 = 23.5, P < 0.0001). 

 

7.1.2. Bidirectional modulation of emotional-like aspect of pain by CeA 

glutamatergic system in rat neuropathic pain model (II) 

 

In the aversive place-avoidance test, bilateral CeA administration of the mGluR1/5 agonist 

DHPG (3.66µg/animal) reduced the time spend in the dark whereas the mGluR1 antagonist 

CPCCOEt (10 and 20µg/animal) (F2,10 = 7.4, P < 0.02), the mGluR5 antagonist MPEP 

(23µg/animal) and the NMDA-R antagonist MK-801 (2µg/animal) significantly increased time 

spend in the dark in neuropathic rats. 

Unilateral administration of CPCCOEt also increased the time spend in the dark in a dose-

related fashion (5-10µg/side) (F2,37 = 8.5, P < 0.001). Increase of the time spent in the dark 

area was of the same magnitude following unilateral injection of CPCCOEt ipsi- as 

contralateral to nerve injury (F1,37 = 0.23) (Table 3). Saline and DMSO alone failed to produce 

any change in the aversive-place avoidance behavior of neuropathic animals. 
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CeA treatment SHAM SNI 

Right CeA Left CeA Right CeA Left CeA Bilateral CeA 

CRF6-33 (0.01µg) = = ↓ ↓  

CRF6-33 (0.03µg) = = ↓ ↓  

CRF6-33 (0.1µg) = = = ↓  

CFR9-41 (1µg) + 

CRF6-33 (0.03µg) 

  =   

CFR9-41 (1µg)   =   

CPCCOEt (5 and 

10µg) 

  ↓ ↓ ↓ 

MPEP (23µg)     ↓ 

MK-801 (2µg)     ↓ 

DHPG (3.66µg)     ↑ 

 
Table 3: Results summary of the CeA’s role in the modulation of emotional-like aspect of 
pain. ↑ = facilitation of emotional-like pain; ↓ = inhibition of the emotional-like pain; = = no 
significance compared to control injection (saline); empty case = no data available. 

 

7.2. Modulation of sensory-discriminative aspect of pain by CeA 
 

7.2.1. Pronociceptive effect of endogenous CRF in CeA of neuropathic or 

sham control rat (I) 

 

In the sham group, administration of CRF6-33 at doses 0.01 to 0.3µg in the right CeA 

decreased the limb-withdrawal threshold both in the sham-operated left limb (KW = 10.8, P 

< 0.03) and the unoperated right limb (KW = 20.59, P < 0.0005; Fig. 2B) with a strongest 

effect at the dose of 0.03µg. In contrast, administration of CRF6-33 in the left CeA as well as in 

the control injection site (internal capsule) failed to induce any significant effect on the 

withdrawal threshold in sham-operated (KW = 0.78; Mann-Whitney U = 6.0) or unoperated 

animals (KW = 2.1; Mann Whitney U = 6.0). 

In the SNI group, administration of CRF6-33 at dose 0.01 to 0.3µg in the right CeA decreased 

significantly the limb withdrawal threshold of the operated left limb (KW = 10.99, P < 0.03) 

while its effect was not quit significant on threshold of the unoperated right limb (KW = 8.69, 
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P = 0.07). Administration of CRF6-33 at doses 0.01 to 0.3µg in the left CeA failed to produce 

effect on the left operated limb whereas CRF6-33 at the dose of 0.03 mg significantly reduced 

the threshold in the unoperated right limb (KW = 12.0, P < 0.02). Injection of CRF6-33 (0.03µg) 

in the control site failed to produce effect on the left operated limb (Mann-Whitney U = 4.5) 

or the right unoperated limb (Mann-Whitney U = 5.5). 

Pretreatment of the right CeA of the sham and SNI animals with CRF9-41 (1 µg) prevented the 

effect of the CRF6-33 (0.03µg) on the right unoperated limb (SNI KW = 8.76, P < 0.04) whereas 

it failed to reverse the effect of the CRF6-33 (0.03µg) on the left operated limb. Administration 

of CRF9-41 alone in the right CeA of the sham and SNI animals failed to induce effect on the 

withdrawal threshold of the uninjured right or injured left limb (Table 4). 

The decrease of the unoperated right limb withdrawal threshold by left CeA injection of 

CRF6-33 in SNI animals was most prominent 10 to 15 min after the injection of the drug (KW = 

11.5, P < 0.05). 

 

7.2.2. Bidirectional modulation of sensory-discriminative aspect of pain by 

CeA glutamatergic system in healthy and neuropathic rats (II-III-IV) 

 

7.2.2.1. Antinociceptive effect of glutamate via its NMDA receptor in healthy 

animals (III) 

 

In healthy animals, unilateral injection of glutamate at the dose of 100µg, but not 32µg, into 

the right CeA increased the mechanically-evoked withdrawal threshold in the contralateral 

(Fr = 11.14, P = 0.0001) but not the ipsilateral limb (Fr = 0.14, P = 0.95). Similarly, when the 

glutamate injection was done in the left CeA, the withdrawal threshold was increased in the 

contralateral limb (KW = 19.9, P = 0.0002). Pretreatment of the right CeA with MK-801 (2µg), 

an NMDA-R antagonist, reversed the elevation of the withdrawal threshold of the 

contralateral limb induced by 100µg of glutamate in the right CeA while MK-801 alone did 

not. Moreover, glutamate injection into the left CeA induced a fast mechanical 

antinociceptive effect that lasted at least for 20 min (Fr = 16.3, P = 0.006). 

Unilateral injection of glutamate at the dose of 32µg and 100µg into the right CeA induced a 

dose-dependent increase of the heat-induced withdrawal latency of both the ipsilateral and 

contralateral limb (F2,10= 4.13, P = 0.05). The magnitude of heat antinociception was not 

different from that when the injections were done in the left as right CeA (main effect of the 

treated hemisphere: F1,11= 0.04), although the antinociceptive effect was greater in the 

contralateral limb (F1,11= 4.84, P = 0.05), independent of the treated hemisphere (inter-

action between the treated hemisphere and the test side: F1,11= 0.23). Furthermore, a 

pretreatment of the right CeA with MK-801 at the dose of 2µg failed to influence the 

amygdaloid glutamate-induced heat antinociception in the contralateral limb. Neither 2µg of 

MK-801 alone in the right CeA altered heat antinociception (Table 4). Glutamate in the left 

CeA induced a significant thermal antinociceptive effect one min after the injection. The 
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thermal pain sensitivity was back to normal by 10 min after the injection (main effect of time 

(F5,15= 4.9, P = 0.007). 

 

7.2.2.2. Nociceptive role of amygdaloid group I mGlu and NMDA receptors in 

animals with a peripheral nerve injury (II) 

 

In SNI animals, bilateral administration of MK-801, an NMDA-R antagonist (2µg/animal), 

attenuated significantly the limb withdrawal response induced by mechanical stimulation. 

Additionally, bilateral and unilateral administration of CPCCOEt, an mGluR1 antagonist, 

produced a dose-related (10–20µg/animal) decrease in the limb withdrawal response (F2,10 = 

31.2, P < 0.0001). The antinociceptive effect of unilateral administration of CPCCOEt was 

stronger when injected in the CeA contra- than ipsilateral to nerve injury (F1,37 = 7.55, P < 

0.01), independent of the dose (F2,37 = 2.65). 

Bilateral administration of the mGluR5 antagonist MPEP (23µg/animal), the mGluR1/5 agonist 

DHPG (3.66µg/animal), saline or DMSO (vehicle) alone into the CeA of neuropathic animals 

failed to influence the mechanically induced limb withdrawal response (Table 4). 

 

7.2.2.3. Bidirectional effect of glutamate via its NMDA receptors in the CeA 

of animals with a peripheral nerve injury (IV) 

 

Glutamate injection into the right CeA had a bidirectional effect on the mechanical 

hypersensitivity of the injured left limb (main effect of drug: F2,75 = 26.90, P < 0.0001; 

interaction between drug and time: F8,75 = 3.12, P = 0.0043). The dose of 9µg increased the 

hypersensitivity, with a peak effect at 5 min but dose of 100µg reduced the hypersensitivity, 

with a peak effect at 15 min (Fig. 5). 

 

Fig. 5: Time course of the effect of glutamate 9µg and 100µg injections inside the right CeA 

on the nerve-injured limb withdrawal threshold induced by mechanical stimulus 

(monofilament of 4 g). Error bars represent S.E.M. ***p<0.005. 
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Pretreatment of the CeA with the NMDA receptor antagonist MK-801 (0.1µg) completely 

reversed the increase of mechanical hypersensitivity induced by CeA injection of a low dose 

of glutamate (9µg) but failed to attenuate the reduction of hypersensitivity induced by CeA 

injection of a high dose of glutamate (100µg). 

CeA injection of MK-801 alone induced a dose-related effect (doses: 0.1, 0.3 and 1µg) on the 

mechanical hypersensitivity (F3,26 = 8.80, P = 0.0003) (Table 4). 

 

CeA treatment HEALTHY + SHAM SNI 

Right CeA Left CeA Right 

CeA 

Left CeA Bilateral CeA 

CRF6-33 ↑R = ↑L ↑R  

CRF9-41 + CRF6-33 =R  =   

CRF9-41 =R  =   

Glutamate (9µg)   ↑L   

MK-801 (0.1µg) + Glutamate 

(9µg) 

  =L   

Glutamate (100µg) ↓L ↓R ↓L   

MK-801 (0.1µg) + Glutamate 

(100µg) 

  ↓L   

MK-801 (2µg) + Glutamate 

(100µg) 

=L =R    

MK-801 (0.3µg and 1µg)   ↓L   

MK-801 (2µg) = =   ↓L 

CPCCOEt (20µg)   ↓L ↓L ↓L 

MPEP (23µg)     =L 

DHPG (3.66µg)     =L 

 
Table 4: Results summary of the CeA’s role in the modulation of sensory-discriminative 
aspect of pain, as revealed by limb withdrawal response to mechanical stimulation. ↑ = 
facilitation of mechanical hypersensitivity; ↓ = inhibition of mechanical hypersensitivity; = = 
no significance compared to control injection (saline); empty case = no data available; L= Left 
paw; R=right paw.  
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7.3. Pathway mediating descending modulation of nociception 

induced by CeA in healthy and neuropathic animals (IV and V) 
 

7.3.1. Involvement of descending serotonergic pathways in the bidirectional 

effect on nociception induced by glutamate in the CeA of neuropathic 

animals (IV) 

 

I.t. injection of the 5-HT1A receptor antagonist WAY-100635 at 3μg completely reversed the 

antihypersensitivity effect induced by a high dose of glutamate (100µg) in the right CeA. In 

contrast, i.t. injections of an α2-adrenoceptor antagonist atipamezole (5µg), a dopamine D2 

antagonist raclopride (1µg), or an opioid receptor antagonist naloxone (1µg) were not 

effective. All four antagonists alone did nothing (Fig. 6A). 

I.t. injection of a 5-HT3 receptor antagonist ondansetron at a dose of 5µg completely 

reversed the increase of hypersensitivity induced by a low dose of glutamate (9µg) in the 

right CeA. Ondansetron alone (5µg) failed to induce effect on mechanical hypersensitivity 

(Fig. 6B). 

 

Fig. 6: A. Effect of blocking the spinal 5-HT1a receptors with WAY-100635 (WAY) at 3µg on 

the reduction of the mechanical hypersensitivity mediated by CeA injection of glutamate 

(GLU) at 100µg. B. Effect of blocking the spinal 5-HT3 receptors with ondansetron (Ond) at 

5µg on the facilitation of mechanical hypersensitive mediated by CeA injection of glutamate 

at 9µg. Error bars represent S.E.M. In both graphs, the horizontal lines represent the mean 

response and its 95% confidence limits in saline-treated animals. *p<0.05, **p<0.01, 

***p<0.005. 

RVM injection of a 5-HT1A receptor agonist 8-OH-DPAT (0.125µg) reversed both the increase 

of the hypersensitivity induced by a low dose of glutamate (9µg) in the CeA injection and the 

decrease of the hypersensitivity induced by a high dose of glutamate (100µg) in the CeA. 8-

OH-DPAT (0.125µg) alone failed to produce effect on hypersensitivity. 
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7.3.2. Involvement of periaqueductal gray in spinal antinociception induced 

by glutamate in the CeA of healthy animals (V) 

 

Injection of glutamate (100µg) into the right CeA, following pretreatment of PAG with saline, 

increased the mechanical withdrawal threshold in the contralateral limb (Wilcoxon’s test: n 

= 8, W = -36, P = 0.01) but failed to produce effect in the ipsilateral limb (Wilcoxon’s test: n = 

8, W = -2, P = 0.89) when compared to the effect of saline injection into the right CeA in 

animals pretreated with saline inside PAG. 

Pretreatment of the PAG with lidocaine (4%) prevented the increase of the mechanically 

evoked withdrawal threshold in the contralateral limb induced by glutamate (100µg) in the 

CeA (Fr = 14.86, P < 0.0001). Post hoc test showed no difference between pretreatment of 

the PAG with lidocaine (4%) followed by saline injection in the CeA and pretreatment of the 

PAG with lidocaine (4%) followed by glutamate (100µg) in the CeA. None of the three drugs 

administration conditions influenced the ipsilateral limb withdrawal threshold (Fr = 3.39, P = 

0.15) (Fig. 7). 

 

Fig. 7: Effect of pretreatment of the PAG with lidocaine (4%) on the mechanical 

antinociception mediated by glutamate (100µg) inside the CeA. Error bars represent S.E.M. 

Horizontal dash lines represent the interquartile range of the median threshold in the 

corresponding saline-treated animals. Sal = saline, Lido = lidocaine, Glu = glutamate. 

*p<0.05, **p<0.01. 

None of the following four drugs administration conditions influenced the ipsilateral limb 

withdrawal threshold (Fr = 2.59, P = 0.51) nor the contralateral limb withdrawal threshold (Fr 

= 6.33, P = 0.08): pretreatment of the PAG with saline followed by injection of MK-801 (2µg) 

alone, pretreatment of the PAG with saline followed by injection of MK-801 (2µg) prior 

glutamate (100µg), pretreatment of the PAG with lidocaine (4%) followed by injection of 

MK-801 (2µg) alone, or pretreatment of the PAG with lidocaine (4%) followed by injection of 

MK-801 (2µg) prior to glutamate (100µg). 
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7.3.3. Glutamate in the CeA increases spontaneous discharge of PAG On-cells 

in healthy animals (V) 

 

Glutamate (100µg) injection into the right CeA increased the spontaneous activity of ON-like 

cells in the right PAG (time as main factor: F2,26 = 16.85, P = 0.0001). Post-hoc tests showed 

that the peak increase of activity occurred during the first minute. The discharge rate of ON-

like PAG cells varied significantly with the drug treatment condition (drug treatment of CeA 

as main factor: F2,17 = 8.94, P = 0.006). Post hoc tests indicated that pretreatment of the right 

CeA with MK-801 (2µg) prevented the increase of spontaneous activity in PAG ON-like cells 

following glutamate (100µg) injection into the CeA. MK-801 alone failed to influence the 

discharge rate of the PAG ON-like cells compared to saline injection (t5 = 2.09, P = 0.09) or 

compared to spontaneous activity before the CeA injection (t5 = 0.52, P = 0.62) (Fig. 8). 

 

Fig. 8: Effect of CeA injection of glutamate (100µg) alone or pretreated with NMDA-

receptors antagonist MK-801 (2µg) on the discharge rate of the PAG ON-Cells. Sal = saline, 

Glu = glutamate, MK = MK-801. *p<0.05.  
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8. Discussion 
 

This thesis has pointed the involvement of the glutamate and CRF of CeA in pain processing 

in healthy and rats with peripheral neuropathy. The studies have emphasized the role of the 

CeA in emotional-like and sensory-discriminative aspect of pain and they have highlighted 

the serotoninergic descending pain mechanisms and the role of the PAG in pain inhibition 

mediated by glutamate of CeA. 

 

8.1. Role of the CeA in the emotional-like aspect of pain (I and II) 
 

The aversive place-avoidance test[90] is designed to highlight the emotional-like aspect of 

pain by forcing the rat to choose between the light (= anxiogenic) area associated with 

mechanical stimulation of the non-operated (= normosensitive) limb  and the dark (non-

anxiogenic) area associated with mechanical stimulation of the operated (hypersensitive) 

limb. 

Our results suggest that the CeA plays a role in the modulation of the emotional-like aspect 

of pain in a rat model of peripheral neuropathy. This is indicated by the finding that the 

release of endogenous CRF induced by blocking the CRF-BP as well as blocking amygdaloid 

group I mGluRs with a selective antagonist reduced the emotional-like aspect of pain. 

The free endogenous CRF differentially influenced sensory-discriminative and emotional-like 

pain responses. The group I mGluR antagonist attenuated emotional-like pain behavior at a 

lower dose than limb withdrawal response, an index of sensory-like pain. These results 

suggest that both CRF and group I mGluRs in the CeA modulate the emotional-like pain 

processing. Interestingly, a recent study showed that blockade of NMDA and non-NMDA 

receptors in the CeA suppressed the affective but not the sensory-discriminative aspect of 

pain[179]. 

Previously, the group I mGluR in the CeA has been shown to be involved in pain-like 

behavior[30,175]. Also CRF in the CeA is associated with control of pain behavior[21,180] 

and emotional responses to painful stimulation[181,182]. In earlier studies on the 

amygdaloid CRF, focus was on pharmacological manipulation of CRFR1 and CRFR2 with 

synthetic compounds. In this thesis, we demonstrated that blocking CRF-BP, that released 

free endogenous CRF in the CeA, modulates emotional-like pain behavior. The neuronal 

mechanisms of this action still remain to be studied. According to recent studies, the PAG 

plays a role in negative emotions related to pain[183], and in the suppression of emotional-

like aspect of pain induced by activation of amygdaloid NMDA receptors[173]. Furthermore, 

CRF-containing neurons of the CeA project to the serotoninergic neurons in the ventrolateral 

PAG where they may inhibit emotional responses, such as panic-like behavior[184]. It is 

hypothesized that the PAG is involved in modulation of emotional-like behavior by CRF and 

glutamate in the CeA. Furthermore, it has been reported that spinal ligation-induced 
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neuropathy decreases GABAergic inhibition in the CeA. This contributes to the development 

of anxiety-like behavior associated with neuropathic pain[185]. 

 

8.2. Roles of CRF and glutamate in the CeA in descending control of 

sensory-discriminative aspect of pain (I - IV) 
 

8.2.1. CRF (study I) 

 

Inhibiting the CRF-BP with CRF6-33 is supposed to induce a release of endogenous CRF that 

decreases the limb-withdrawal threshold to mechanical stimulation in sham and SNI 

animals. This interpretation is supported by the finding that the non-selective CRF receptor 

antagonist CRF9-41 attenuated the mechanical hypersensitivity effect induced by CRF6-33. Our 

study shows that the effective dose of CRF6-33 was 0.03µg while a higher dose was weaker. In 

line with this study, administration of a low dose of CRF into the CeA has been associated 

with facilitation of nociception via CRF-R1 and that of a high dose with inhibition of 

nociception via CRF-R2[25]. 

 

8.2.2. Glutamatergic system (II - IV) 

 

In rats with peripheral neuropathy, amygdaloid glutamate had a bidirectional effect on 

spinal nociception. A low dose of glutamate in the CeA facilitated mechanical 

hypersensitivity. This action was prevented by blocking the amygdaloid NMDA receptors. In 

contrast, a high dose of glutamate in the CeA reduced mechanical hypersensitivity. This 

descending antinociceptive action was not prevented by blocking of amygdaloid NMDA 

receptors. Also blockade of mGluR1 and NMDA receptors in the CeA of neuropathic animals 

had a pronociceptive effect as indicated by facilitation of the limb-withdrawal response to 

mechanical stimulation. In healthy animals, blocking NMDA receptors in the CeA failed to 

produce an effect on spinal nociception whereas a high dose of glutamate in the CeA of 

healthy controls had a mechanical antinociceptive effect. This latter effect was reversed by 

pretreatment of the CeA with an NMDA receptor antagonist. Altogether, these results 

suggest that in the CeA of neuropathic animals, a tonic NMDA receptor-mediated 

glutamatergic facilitation of descending pronociception contributes to hypersensitivity. In 

line with this, it has been previously shown that amygdaloid group I mGluRs enhance 

nociception in peripheral neuropathy[109] or arthritis [172]. Moreover, in accordance with 

our results, glutamate injections into the CeA as well as electric stimulation of the CeA have 

been shown to induce an antinociceptive effect in healthy animals[50,186]. Furthermore, 

results of study II suggest that the NMDA receptor in the CeA contributes predominantly to 

the mechanical antinociceptive effect since a NMDA receptor antagonist MK-801 reversed 

the mechanical but not thermal antinociceptive effect induced by glutamate in the CeA of 

healthy controls. 
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Interestingly, earlier electrophysiological results in peripheral neuropathy indicate that the 

synaptic plasticity of ascending nociceptive transmission from the parabrachial nucleus to 

the CeA is NMDA-independent[187] whereas in inflammatory pain it is NMDA-

dependent[188]. Furthermore, GABAergic inhibition plays a role in the control of neuronal 

excitability in the CeA; a decrease of the GABAergic inhibition has been shown in the spinal 

nerve ligation model of neuropathy, which contributes to the development of neuropathic 

pain [185]. It is hypothesized that in neuropathic conditions the tonic facilitation of 

hypersensitivity mediated by the amygdaloid NMDA-receptor could be associated with 

disinhibition of the amygdaloid GABAergic system. 

 

8.3. A dual involvement of descending serotoninergic pathways in 

the control of spinal hypersensitivity by the CeA in animals 

with peripheral neuropathy (IV) 
 

Activation of 5-HT1A receptors in the RVM reversed both the pronociceptive and 

antinociceptive effects induced by glutamatergic system of CeA. Since 5-HT1A receptors in 

the RVM are presumably autoreceptors, the activation of which inhibits 5-HT neurons, these 

findings suggest that serotonergic neurons of the RVM relay both facilitatory and inhibitory 

effects on spinal nociception (Fig. 2). 

The mechanisms underlying the bidirectional effects induced by a low and high dose of 

glutamate in the CeA and the exact roles of RVM serotonergic neurons and spinal serotonin 

receptors in relaying the bidirectional effect remain open. It is possible that the low and high 

dose of glutamate activated different glutamate receptors and neuronal populations in the 

CeA and subsequently activating of different neuronal populations in the RVM. Indeed, 3 

types of serotonergic neurons projecting to the spinal cord have been characterized in the 

RVM[189]. Alternatively, a gradual increase of the activity in serotonergic raphe-spinal 

neurons may have shifted the net spinal effect from the 5-HT3-mediated pronociception to 

the 5-HT1A-mediated antinociception. Interestingly, an earlier study[131] showed that either 

electrical or chemical activation of the RVM induces biphasic modulation of spinal 

nociception in the same dose-related fashion as glutamate in the CeA (study I) namely a low 

dose of glutamate facilitated spinal nociception whereas a high dose suppressed spinal 

nociception but in the CeA and RVM. 

Blocking the spinal 5-HT3 reversed the increase of hypersensitivity and blocking the spinal 5-

HT1A receptors reversed the decrease of hypersensitivity induced by amygdaloid 

administration of a low or a high dose of glutamate, respectively. These results are in line 

with previous findings indicating that the spinal 5-HT3 receptors have a pronociceptive effect 

in chronic pain conditions[190], including neuropathy[191,192], while the spinal 5-HT1A 

receptors have an antinociceptive effect in pathological pain conditions[193,194]. 
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Fig. 2: Involvement of the serotoninergic descending pathways in the bidirectional 

modulation of the hypersensitivity induced by glutamate injection in the CeA in rats with 

peripheral neuropathy. + = facilitation, - = inhibition, ↑ = increase, ↓ = decrease. 

 

8.4. Involvement of the PAG in the descending antinociceptive 

effect induced by glutamate in the CeA of healthy animals (V) 
 

Local lidocaine anesthesia of the PAG blocked the descending antinociceptive effect induced 

by glutamate in the CeA. This indicates that the antinociceptive effect was relayed through 

the PAG (Fig. 3). The CeA sends projections to PAG[195,196] which is known to be involved 

in descending control of pain[197,198]. This is at least partly mediated by the opioidergic 

system[49,50]. Interestingly, a recent study showed involvement of the PAG in suppression 

of pain affect mediated by NMDA receptors in the CeA while spinal nociception was not 

affected by NMDA receptors[173]. However, studies II, III, IV and V showed modulation of 

spinal nociception induced by NMDA receptors in the CeA. Study V showed that the PAG is 

involved in descending modulation of nociception induced by the CeA. Differences in 

experimental conditions, such as doses of the studied compounds, might explain the 

difference in effects of NMDA receptors on pain and nociception between these studies. 

Study V adds electrophysiological information related to the role of the PAG ON-cells that 

were previously characterized by Heinricher and collaborators[115]. A high dose of 

glutamate in the right CeA increased in the spontaneous firing rate of PAG ON-Cells. This 

effect was prevented by pretreatment of the CeA with an NMDA receptor antagonist. 

Moreover, blocking of the PAG with lidocaine 4% prevented the development of spinal 
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antinociception induced by glutamate in the CeA. These findings are in line with the 

hypothesis that PAG ON-Cells have a role in relaying antinociceptive action from the CeA to 

the spinal dorsal horn. When comparing electrophysiological and behavioral study, it should 

be taken into account that in the former the rats were anesthetized whereas in the latter 

they were conscious. Anesthesia may have influenced synaptic transmission from the CeA to 

the PAG and thereby can modify neuronal responses of PAG cells to glutamate treatment of 

the CeA as has been shown e.g. in the substantia nigra pars reticulata[199]. 

 

 

Fig. 3: Involvement of the PAG in descending mechanical antinociception induced by 

glutamate (100µg) in the CeA of healthy animals. + = facilitation, ↑ = increase, ↓ = 

decrease. 

 

8.5. Hemispheric lateralization (I, III, V) 
 

Hemispheric lateralization of nociception processing has been reported in 

electrophysiological[200,201] and molecular[30,202] studies in experimental animals 

whereas a functional imaging study failed to find this[203]. In neuroimaging of healthy 

human subjects, a context-dependent deactivation, rather than activation of the amygdala 

that varies with the hemisphere, has been associated with painful stimulation[204]. This 

thesis showed a loss of hemispheric lateralization in the effect of amygdaloid CRF on 

nociception following peripheral nerve injury (I) whereas no hemispheric lateralization was 

observed in the descending control of nociception by the glutamatergic system of the CeA in 

healthy animals (III and V). This finding is in line with recent results showing equivalent 

effects by the glutamatergic system of both left as are right CeA on the affective aspect of 

pain in healthy animals[31]. It remains to be studied which conditions and underlying 

mechanisms determine whether the CeA processing of nociception is lateralized or not. 
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8.6. Perspectives 
 

My thesis has shown some of the neurotransmitter mechanisms that are involved 

particularly in descending control of pain by the CeA of rats with an experimental model of 

peripheral neuropathy as well as in healthy controls. However several questions remain 

unsolved. While the thesis focused on the roles of amygdaloid glutamate and CRF in the 

maintenance of pain sensitivity in neuropathic and control conditions, the potential role of 

these amygdaloid neurotransmitters in the development of chronic pain still needs to be 

understood. 

The mechanism underlying the dissociation of the CeA-induced control of the sensory-

discriminative and emotional-like aspects of pain is an interesting topic for future studies. 

Understanding the mechanism underlying this dissociation may provide a possibility for the 

development of selective therapy acting only on the emotional-aspect of pain that can be 

the most disturbing symptom from the patient’s point of view. Interestingly, a recent study 

has shown that nasal application of neuropeptide S has a dissociative effect on affective-

emotional and sensory aspects of pain through amygdala in animals with experimental 

arthritis. Neuropeptide S inhibited vocalizations induced by manipulations of the arthritic 

joint while it failed to influence hind limb withdrawal thresholds[205]. However, to develop 

this field of research further, there is a need for relevant behavioral tests assessing affective-

emotional aspects of pain in experimental animal models of chronic pain. 

This thesis has described a descending pain control pathway from the CeA to the spinal cord 

involving the medullospinal serotonergic pathways acting on the pronociceptive 5-HT3 and 

antinociceptive 5-HT1A receptors in the spinal dorsal horn. Antidepressant drugs (tricyclic 

antidepressants, selective serotonin reuptake inhibitors, and serotonin-norepinephrine 

reuptake inhibitors) are recommended as the first line treatment for neuropathic pain. 

However, antidepressants’ efficacy varies with the type of the drug and they are not 

exempted from side-effects[206]. Furthermore, a recent study in a rat model of arthritic pain 

has shown that the 5-HT2C receptor in the basolateral nucleus of the amygdala reduces the 

efficacy of the SSRIs to inhibit emotional-like aspect of pain[11]. Thus, understanding of the 

involvement of the serotoninergic descending pain pathway originating in the amygdala as 

well as the serotonergic medullospinal pathway driven by the CeA is of importance when 

attempting to develop more specific and effective pharmaceutical therapies against 

affective-emotional pain in various pathophysiological conditions. 

Furthermore, this thesis has shown that depending on the dose, the effect of glutamate 

injected into the CeA may vary from pro- to antinociception. Amygdaloid mechanisms 

explaining these opposite effects are not yet known. Further studies are required to assess 

which glutamatergic receptors in the CeA induce pronociceptive and which ones 

antinociceptive effects, and which efferent pathways mediate these opposite effects within 

and outside the amygdala. 

Synthetic CRF-R1 antagonists have been tested in clinical trials for treatment of depression, 

but so far tests have always failed due to inefficacy or adverse effects [207]. If safety issues 
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allow, it would be tempting to test whether synthetic CRF-R1 antagonists attenuate chronic 

pain in human patients. The involvement of the CRF-R1 has been demonstrated in 

experimental animal models of chronic pain[25,180]. Concerning amygdaloid CRF, this thesis 

has shown a differential action of the endogenous CRF on sensory-discriminative versus 

emotional-like pain as revealed by assessments of the withdrawal threshold and aversive 

place-conditioning in the CeA of animals with peripheral neuropathy, respectively, following 

block of the amygdaloid CRF-BP. More studies are still needed to understand the complex 

actions and interactions of the amygdaloid CRF system in pain.  
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9. Conclusions 
 

The thesis has investigated the role of the CeA in nociception and pain. The results can be 

summarized as follows: 

 CeA plays a role in the modulation of the emotional-like aspect of pain in rats with 

peripheral neuropathy. Activation and blocking of the group I mGluRs facilitates and 

inhibits, respectively, the aversive aspect of neuropathic pain. Furthermore, increase 

of endogenous CRF as well as blocking NMDA receptors in the CeA reduced the 

aversive aspect of neuropathic pain. 

 CeA plays a role in the descending modulation of the sensory-discriminative aspect 

of pain both in healthy and SNI rats. The CeA can facilitate or reduce sensory 

component of pain depending on the type and the dose of the amygdaloid 

neurotransmitter. Blocking the amygdaloid CRF-BP in the CeA has a pronociceptive 

effect in both control and SNI rats. Chemical activation of the CeA with a high dose 

of glutamate has a mechanical antinociceptive effect in both healthy and SNI rats. 

Mechanical antinociception induced by a high dose of glutamate in the CeA is 

mediated by amygdaloid NMDA receptors in healthy but not in SNI rats. A low dose 

of glutamate has a pronociceptive effect in SNI rats. The descending pronociception 

induced by a low dose of glutamate in SNI animals is mediated by amygdaloid NMDA 

receptors. Furthermore, tonic descending pronociception induced by NMDA 

receptors and mGluR1Rs in the CeA is present in SNI but not healthy controls and 

contributes to the maintenance of neuropathic hypersensitivity. 

 Serotonergic neurons of the RVM relay both descending pronociceptive and 

antinociceptive effects from the CeA to the spinal dorsal horn. Pronociception 

induced by a low dose of glutamate in the CeA is mediated by medullospinal 

serotonergic pathways acting on the spinal 5-HT3 receptor whereas antinociception 

induced by a high dose of glutamate in the CeA is mediated by medullospinal 

serotonergic pathways acting on the spinal 5-HT1A receptor. 

 The PAG is a relay in the descending control of nociception induced by glutamate in 

the CeA of healthy animals: The descending antinociceptive effect induced by a high 

dose of glutamate acting on NMDA receptors in the CeA is associated with increased 

discharge rate of PAG neurons that have ON-like response properties (i.e., they are 

activated by noxious peripheral stimulation). Blocking the PAG with lidocaine 

prevents the descending antinociceptive effect induced by glutamate acting on 

NMDA receptors in the CeA. 

 The loss of hemispheric lateralization in the pronociceptive effect of the amygdaloid 

CRF takes place in peripheral neuropathy while sham-operated control groups 

conserve a right-hemisphere lateralization in the pronociceptive effect of 

amygdaloid CRF. However, descending antinociception induced by the glutamatergic 

system of the CeA shows no hemispheric lateralization in healthy control rats; a high 

dose of glutamate in both the left and right CeA induces attenuation of mechanical 

and thermal nociception which effects are, respectively, NMDA-dependent and 

NDMA-independent.  
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