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ABSTRACT 

 

Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) cover large areas 

in boreal regions with significant economic importance to Finnish forest 

industry. Approximately 15% of the spruce trees felled in Finland are rotten and 

thus commercially less valuable. The majority of this conifer wood decay is due 

to the root and butt rot pathogen Heterobasidion annosum sensu lato. Extensive 

logging of conifer forests has changed the environment into favouring this 

pathogen in stands where it originally has been rare. The proportion of diseased 

forest stands and associated production losses are expected to increase in the 

foreseeable future due to year-round logging. The disease is currently controlled 

by the use of chemicals, biocontrol agent and silvicultural measures. The 

saprotrophic fungus Phlebiopsis gigantea has for several years been used as a 

biocontrol agent against H. annosum s.l. in spruce and pine stumps. A major 

problem is that, although the effectiveness of P. gigantea as a biocontrol agent 

has empirically been shown, the long-term biological effect of this fungus on 

other decomposing wood microbiota has not been proven. The first objective of 

this thesis is to evaluate the impact of the only biocontrol agent used against 

root and butt rot fungus (H. annosum s.l.) on other resident microflora of 

Norway spruce stumps. An additional objective is to screen and identify other 

potentially novel bioagents that can be deployed for the biocontrol of the 

conifer pathogen. To find out whether the P. gigantea treatment impacts the 

overall diversity of other non-target stump microbes we used the 454- 

pyrosequencing approach. Samples were collected from forest sites previously 

pre-treated with P. gigantea either one, six or 13 years ago, DNA was isolated 

and the PCR products of fungal internal transcribed spacer (ITS) and bacterial 

16S of ribosomal DNA, regions were pyrosequenced. Similarly samples were 
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collected from untreated stumps within the same forest site over the same 

period of time. The results revealed that initial application of the biocontrol 

agent influenced the fungal species composition, but the overall fungal diversity 

was not affected and no statistical differences were observed between treated 

and non-treated stumps in the mycobiota. The biocontrol treatment significantly 

decreased the initial bacterial richness in the stumps, but the bacterial 

community gradually recovered and the negative effect of P. gigantea was 

attenuated.   

 

In parallel to the above studies, I further explored the potential of finding other 

novel biocontrol agents for use in managing the disease caused by the root rot 

pathogen Heterobasidion parviporum.  This necessitated isolation studies of 

fungal root endophytes from forestry sites such as pristine mires and drained 

peatlands where the spread of H. annosum s.l. species have not been commonly 

reported. The reasons why H. annosum s.l. are not commonly observed in 

peatland still remains unclear. A possible reason for the suppression of H. 

annosum s.l. in peatlands is the diverse microbial community and their 

antifungal substances. Draining of pristine mires is likely to change the water 

balance of the sites, possibly transforming the microbial communities in plant 

roots, which might facilitate the spreading of the pathogen (H. annosum s.l.). 

Consequently, I sampled non-mycorrhizal P. abies roots and isolated 

endophytes from a pristine mire, a drained peatland and mineral soil and 

investigated the potential inhibitory effect of a subset on the root rot pathogen 

H. parviporum. A total of 113 isolates of fungal root endophytes were obtained 

from non-mycorrhizal P. abies roots, which were assigned to 15 different 

operational taxonomic units (OTUs). Most of the isolates consisted of dark 

septate endophytes (77%); the Phialocephala fortinii s.l.-Acephala applanata 
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species complex was the most dominant group, comprising 52% of all isolates. 

Nineteen of the isolates (17%) inhibited the growth of the conifer root rot 

pathogen in vitro. From these, two isolates were further used to test the 

potential inhibitory effects during interaction, in vitro, with H. parviporum as 

well as three other phytopathogenic fungi (Phytophthora pini, Botrytis cinerea, 

Cryphonectria parasitica). Additionally, the metabolites secreted by the 

selected root endophytes were extracted and the inhibitory effects on these 

pathogenic fungi were assayed. The root endophytes identified as 

Cryptosporiopsis sp. and Phialocephala sp. were able to form inhibition zones 

in paired cultures with the phytopathogenic fungi. Secreted metabolites from 

the endophytes also had similar inhibitory effects. The secreted metabolites 

were further chemically analysed using ultra-performance liquid 

chromatography/quadrupole time-of-flight mass spectrometry (UPLC-

QTOF/MS). The higher numbers of unique metabolites were observed within 

Cryptosporiopsis sp., further suggesting that the stronger inhibitory effect 

observed could be due to acquisition of a more diverse metabolite pool. Overall, 

these projects represent an applied and basic scientific investigation with 

obvious strategic relevance to the forestry and environmental sector not only in 

Finland but worldwide. The results provide new information to facilitate better 

management and protection of these forest sites from H. annosum s.l. as well as 

support the continued used of P. gigantea for stump pre-treatment in Finnish 

forests. 
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1. INTRODUCTION 

 

1.1. Global forestry and tree health 

 

The estimated total forest area is four billion hectares, which covers ca. 30% of 

the total land area of the world (FRA 2010). Forests currently absorb billions of 

tonnes of CO2 (Canadell & Raupach 2008) every year. Forest ecosystems store 

these large reservoirs of absorbed carbon permanently in their biomass (289 

gigatonnes of carbon) (Canadell & Raupach 2008, FRA 2010). These major 

facts make forests important in climate change protection (Canadell & Raupach 

2008). Consequently, forestry is beneficial not only for mitigating the climate 

change effect, but also as a potential bioenergy source as well as for conserving 

biological diversity. According to estimates (FRA 2010), the demand for wood 

and forest products is expected to continue growing in the next decade. Pests 

and diseases are a major threat to the numerous benefits of forestry outlined 

above. Changes in climatic conditions are likely to favour certain pathogens in 

forests (La Porta et al. 2008) and nurseries (Lilja et al. 2010). Global plant trade 

combined with climate change is introducing new non-indigenous tree 

pathogens with resulting disease outbreaks into ecosystems (see review by Loo 

2009). The need to sustain timber quality gives new challenges in the area of 

forest biotechnology, particularly in tree health protection.  

 

Forest trees and fungi share overlapping habitats with dynamic balanced 

relationships. These relationships vary from commensalism to mutualism and 

fatal pathogenic infections. The balance depends on a diverse scope of factors 

ranging from host type to ecological and environmental disturbances. This 

brings us to the disease triangle concept, a conceptual model that examines the 
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impacts of pathogens, hosts and the environment in the outcome of plant 

disease (McNew 1960) (Fig. 1). A disease is able to develop when a pathogen 

meets a susceptible host under favourable environmental conditions (Fig. 1). 

Over the last century, a number of devastating pathogenic tree infections have 

been documented, such as chestnut blight (Anagnostakis 1987, Dutech et al. 

2012), dutch elm tree disease (Santini & Faccoli 2015), root and butt rot 

diseases (Asiegbu et al. 2005), sudden oak death (Garbelotto & Hayden 2012), 

ash dieback (Kowalski 2006) and many other tree diseases that cannot be 

outlined here. To intervene and manage these pathogenic tree infections, a 

fundamental understanding of at least one of the factors listed in the triangle 

(Fig. 1: host, pathogen and/or environment) is required. In the case of the most 

destructive fungal pathogen in Finland, Heterobasidion annosum sensu lato, the 

extensive logging of conifer forests has changed the environment into favouring 

this pathogen in stands where it has originally been rare. The economic loss to 

Finnish forest industry due to H. annosum s. l. wood decay is approximately 50 

million euros annually (KMO 2015). The spreading of this pathogen is rapid 

due to new inoculation sources (conifer stumps) provided by the loggings. 

Infections can be prevented by the application of chemical or biological control 

agents directly on the stumps after tree felling (Rishbeth 1963, Holdenrieder & 

Greig 1998, Pratt et al. 1998). A major concern is that we do not know the long-

term impact of biocontrol on other stump decomposing microbial species. An 

understanding of the consequences on wood microbe diversity would be 

important for knowledge concerning the effect of biocontrol application to the 

environment. Modern biotechnology offers the opportunity for a deeper 

understanding of the interspecific interactions between the non-target microbes, 

the biocontrol agent and the pathogen. This could form the basis for developing 

environmentally friendly and durable control strategies. In papers I and II, I 
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investigated the impact of biocontrol treatment on wood microbes by 

comparing results from treated and non-treated stumps, over a time period of 

one, six and 13 years after treatment using the 454 -sequencing approach. 

 

 

 

Figure 1. The Disease Triangle (represents the dynamics between the pathogen, susceptible host 

and favourable environment for a disease to occur). 

 

1.2. Tree-pathogen interactions  

 

Plants, including trees, protect themselves from environmental challenges, 

predators (insects, nematodes) and pathogens (bacteria, fungi and viruses) with 

mechanical barriers and both constitutive and induced defences. Constitutive 

defence is present in the plant whether the predator attacks or not, whereas 

activation of induced defences is usually preceded by the recognition of an 

invader (Dixon & Lamb 1990, Hückelhoven 2007). Dead cells only exhibit 

constitutive defences, whereas living cells have both constitutive and active 

defences. For trees, an important defensive challenge is to protect the bulk of 

dead cells from microbial invasion, and to maintain the integrity of the 
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relatively thin layer of living cells in the cambium and phloem. The plants’ 

innate immunity against pathogens has evolved through the recognition of 

molecular signatures present in certain classes of pathogens but absent in the 

host. These signatures are proposed to be called pathogen associated molecular 

patterns (PAMPs), microbe associated molecular patterns (MAMPs) or 

damage-associated molecular patterns (DAMPs) (Mackey & McFall 2006, He 

et al. 2007, Boller & Felix 2009, Jones & Dangl 2006). Recognition results in 

effector-triggered immunity (ETI) in plants (Göhre & Robatzek 2008), which 

often culminates in a hypersensitive response (HR) and programmed cell death 

(PCD) (Stakman 1915, Mur et al. 2007, Robert-Seilaniantz et al. 2011, Dou & 

Zhou 2012). A disease develops if the plant defence fails, ultimately leading to 

host death. Conifers consequently rely on biochemical (Asiegbu et al. 1994; 

1995; 1998, Kovalchuk et al. 2013) and structural defense (Woodward 1992). 

The most effective structural defence of conifers is the outer bark that protects 

the critically important living tissues of the inner bark, i.e., the cambium and 

phloem (Pearce 1996, Asiegbu et al. 1998, Woodward et al. 2007). Most 

conifers produce phenols and terpenes that are stored in resin ducts and 

polyphenolic parenchyma cells (PP -cells) (Franceschi et al. 2005). When the 

bark is wounded, resin flows out sealing the wound (Phillips & Croteau 1999). 

In induced defence conifers synthesise a wide range of secondary metabolites 

including toxic, antimicrobial low-molecular weight (LMW) compounds 

(phenols, stilbenes, terpenoids and alkaloids) (Woodward 1992, Pearce 1996, 

Eyles et al. 2010, Zulak & Bohlmann 2010). The pathogen H. annosum s.l. 

invades conifer seedling roots mainly through the cortex into the apical root 

meristem (Asiegbu et al. 1994, Fossdal et al. 2003). Conifer fine roots have 

been shown to be rarely infected by H. annosum s.l. in nature (Siepmann 1981, 

Schönhar 1992). However, a recent report has shown that H. annosum s.l. can 
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remain viable for at least seven years in roots of 15 mm in diameter and to 

vegetatively infect nearby Norway spruce seedlings (Piri & Hamberg 2015). 

Piri & Hamberg (2015) suggested that root fragment size is not the major factor 

restricting the infection. Other studies have demonstrated that conifer fine roots 

are equally susceptible under in vitro conditions (Asiegbu et al. 1993; 1994, 

Adomas et al. 2007) and in non-suberised lateral roots (Heneen et al. 1994). 

These results suggest that this pathogen can infect roots of all ages (Li and 

Asiegbu 2004, Asiegbu et al. 2005). Consequently, protecting conifer roots at a 

very early stage during their development with possible new biocontrol agents 

against H. annosum s.l. and other non-indigenous root pathogens deserves 

exploring.  

 

There are several ways how fungal endophytes can protect host roots against 

pathogens: 1) defensive reactions of the host can be triggered by endophytes; 2) 

endophytes are able to produce antifungal substances or 3) their heavy 

colonisation of the roots can inhibit the invasion of harmful pathogens (Schulz 

et al. 1999, Mandyam & Jumpponen 2005). Endophytes have been noted to 

promote the root growth of conifer seedlings and cuttings (Hietala et al. 1994, 

Grönberg et al. 2006). If endophytes can promote host root growth and/or 

protect host roots against invaders, the screening of endophytes for their 

biocontrol abilities is of biotechnological relevance (see papers III and IV). The 

root endophytic community might differ between various forest sites. In that 

sense, the screenings should concentrate on sites in suppressive soils where the 

pathogen might be present but the disease is not heavily expressed (see papers 

III and IV). 
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1.3. Species complex Heterobasidion annosum sensu lato 

 

The conifer pathogen H. annosum s. l. is the main cause of root and butt rot in 

Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) 

(See reviews by Asiegbu et al. 2005, Gonthier & Garbelotto 2013). The H. 

annosum species complex has a wide geographical distribution, Finland 

presenting the most northern distribution line. This species complex consists of 

three species found in Europe, Heterobasidion annosum sensu stricto (Fr.) 

Bref., Heterobasidion parviporum Niemelä & Korhonen and Heterobasidion 

abietinum Niemelä & Korhonen, and two in North America: Heterobasidion 

irregulare Otrosina & Garbelotto and Heterobasidion occidentale Otrosina & 

Garbelotto (Korhonen 1978, Capretti et al. 1990, Otrosina & Garbelotto 2010). 

Two species of Heterobasidion are known in Finland: H. annosum s.s. and H. 

parviporum (Korhonen et al. 1998). All Heterobasidion spp. have different but 

partially overlapping host preferences mainly associated with spruce, fir and 

pine (Korhonen 1978, Capretti et al. 1990, Garbelotto & Gonthier 2013). The 

distribution of H. annosum s.s. is extended to central Finland (Korhonen et al. 

1998). The H. parviporum distribution area seems to follow its main host 

Norway spruce (P. abies) to the northern region of Finland (Korhonen et al. 

1998, Korhonen & Lipponen 2001). In Finland H. annosum s.s. mainly attacks 

Scots pine, but can also infect Norway spruce and deciduous trees like birch 

species (Korhonen 1978, Korhonen & Piri 1994).  

 

1.4. Infection cycle of H. annosum s. l. 

 

In boreal regions H. annosum s.l. infects freshly cut stump surfaces and wounds 

by airborne basidiospores (Rishbeth 1959a, Isomäki & Kallio 1974, Redfern & 
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Stenlid 1998). Spore deposition is followed by rapid germination and 

colonisation of the wood material. The homokaryotic mycelia developing from 

basidiospores are multinucleate, weakly virulent and unable to produce fruiting 

bodies. They may live on stumps for many years without causing disease in a 

living tree (Stenlid & Redfern 1998). However, in a recent paper, Keriö et al. 

(2015) demonstrated that homokaryons are capable of causing infection in field 

conditions. In nature, two compatible homokaryons in wood material usually 

merge to form heterokaryotic mycelium that contains nuclei from both parents 

(Korhonen & Stenlid 1998). The heterokaryotic mycelium of Heterobasidion 

has the capability of attacking living trees and producing fertile sexual fruiting 

bodies (Platt et al. 1965, Korhonen & Stenlid 1998, Oliva et al. 2011). Both 

mycelium types can produce conidiospores (Korhonen & Stenlid 1998). 

Basidiospores are produced through meiosis and released actively in the air in 

temperatures above + 5 ˚C (Rishbeth 1959a, Korhonen & Stenlid 1998). 

Conidiospores are additionally static and need a mechanical force such as wind, 

rain or animals to be released (Korhonen & Stenlid 1998). Following stump 

colonisation, the pathogen also spreads from infected to healthy trees by 

mycelia via root contacts (Rishbeth 1959b, Oliva et al. 2011) (Fig. 2).  

 

Figure 2. A schematic illustration of the infection biology of H. annosum s. l. in a natural 

conifer forest habitat. Spores fall on freshly cut stumps (arrows), germinate, form infective 

hyphae (red colour) and invade the stumps, spreading to neighbouring healthy trees by root to 

root contact. (Asiegbu et al. 2005). 
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1.5. H. annosum s.l. occurrence in peatlands 

 

The forestland area in Finland is 26.1 million hectares, with a total mire area of 

9 million hectares (Peltola & Ihalainen 2011). Of this total mire area 

approximately 5.5 million hectares are drained peatlands (Päivänen & Hånell 

2012), most of which will be available for forestry in the near future. Most of 

the spruce-dominated pristine mires in Southern Finland have been drained for 

forestry (a total of 1.5 million hectares) (Hökkä et al. 2002, Päivänen & Hånell 

2012). Approximately 15–20% of spruce trees cut in Southern Finland are 

rotten and commercially less valuable, largely caused by H. annosum s.l. 

(Mattila & Nuutinen 2007, Peltola & Ihalainen 2011). Observations show that 

H. annosum s.l. do not occur as frequently in peatland forests compared to those 

on mineral soils (Mattila & Nuutinen 2007). Redfern (1998) concluded that peat 

soil inhibits the transmission of the disease by root contacts. However, the 

reasons why H. annosum s.l. are not commonly observed in peatland remains 

unclear. Other explanations besides root contacts may include the different soil 

types and their chemical properties (pH, nutrients etc.) that could restrict the 

growth of this pathogen or the biodiversity of endophytic fungi and bacteria 

associated with conifer roots/soil that could be different in peatlands compared 

to those in mineral soils. Peatland draining changes the soil water balance 

accompanied with a change in understorey vegetation (Päivänen & Hånell 

2012), possibly transforming the microbial communities that might facilitate the 

spread of the pathogen. In paper III, I investigated the composition of root 

endophytes in different boreal forest sites including pristine mire, drained 

peatland and mineral soil, and explored the potential inhibitory effect of a 

subset of the endophytes on H. parviporum. 
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1.6. Control of H. annosum s.l. in Finland 

 

1.6.1. Chemical control 

 

The only chemical used in stump treatment against H. annosum s.l. in Finland is 

urea suspension (Finnish Forest Research Institute 2014). The effectiveness of 

the chemical treatment is based on the hydrolysis of the urea into ammonia, by 

bacterial and urease activity, raising the pH (pH=7) of the stump surface to 

toxic levels for the growth of H. annosum s.l. (Johansson et al. 2002). In the 

absence of hydrolysis, urea acts as a fertiliser and may even enhance the growth 

of the pathogen in diseased stumps (Pratt & Redfern 2001). The urea treatment 

of freshly cut stumps of Norway spruce under Scandinavian conditions is a 

reliable protection method against H. annosum s.l. (Brandtberg et al. 1996, Thor 

& Stenlid 2005, Oliva et al. 2008). Chemical treatment generally gives good 

results, but may have some collateral effects e.g. the negative shift in the fungal 

community inhabiting the spruce stumps (Vasiliauskas et al. 2004), or cause 

damage to ground vegetation, especially bryophytes (Westlund & Nohrstedt 

2000). One of the main objectives of agricultural and forestry policies is to 

strive, if possible, to replace the use of chemical fungicides with biocontrol 

agents. Biological stump treatment has presently almost entirely replaced urea 

as a stump protectant in Finland (Korhonen & Lipponen 2001). 

 

1.6.2. Biological control  

 

The saprotrophic fungus Phlebiopsis gigantea (Fr.) Jülich is currently used for 

the biocontrol of the root rot pathogen with very good success (Holdenrieder & 

Greig 1998, Tubby et al. 2008) as it has been shown to reduce H. annosum s.l. 
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stump infections by 50–100%, compared to untreated stumps (Korhonen et al. 

1994, Berglund & Rönnberg 2004, Berglund et al. 2005, Nicolotti & Gonthier 

2005, Thor & Stenlid 2005, Rönnberg et al. 2006). The fungus (P. gigantea) is 

a common saprotrophic wood decay basidiomycete, and its biocontrol ability is 

due to rapid colonisation of the stumps outcompeting the pathogen in wood 

infected by both fungi (Korhonen et al. 1994, Holdenrieder & Greig 1998, 

Bailey et al. 2003). 

 

Rishbeth (1952) in Great Britain was the first to discover that P. gigantea was 

able to replace H. annosum s.s. on pine stumps and proposed the use of the 

fungus for biological control (Rishbeth 1952; 1963). In Finland a heterokaryotic 

strain of P. gigantea was isolated from Norway spruce (P. abies) stump 

(Korhonen et al. 1994), and after formulation into a dry powder the oidia of this 

isolate were tested on Norway spruce stumps in the Nordic countries with great 

success (Korhonen et al. 1994, Rönnberg et al. 2006). This oidia preparation is 

now commercially produced and marketed in Finland as a pesticide (by Verdera 

AB as Rotstop®) for the control of H. annosum s.l. in both spruce and pine 

stumps. Presently, stumps in 25% (or 117 000 ha) of final felling forest areas in 

Finland are treated with the “Rotstop” isolate (Finnish Forest Research Institute 

2014). 

 

1.6.3. Impact of P. gigantea stump treatment on other microbiota 

 

Compared to chemical treatments, biological control is considered more 

environmentally friendly. However, a major concern in the continued use of a 

single strain of P. gigantea in biocontrol is the potential effect on fungal species 

richness and biodiversity of colonised stumps (Vasiliauskas et al. 2004; 2005). 
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Furthermore, although the success of P. gigantea as a stump protectant is well 

documented, knowledge about its long-term effect on other wood mycota or 

bacteria is still insufficient. Bacteria are initial colonisers of wood material, 

having an important role in the decay processes (see review by Clausen 1996). 

Vasiliauskas et al. (2004) reported that urea and biological control (Rotstop) 

treatments decreased species richness in P. abies stumps soon after application. 

In Finland, the effects of P. gigantea treatment on fungal communities of 

conifer stumps have also been studied one and six years after treatment with 

some evidence that the use of the biocontrol has an effect on the species 

composition of other fungi (Vainio et al. 2005). P. gigantea (Rotstop) was 

shown to dominate the fungal community of P. abies stumps (Vasiliauskas et 

al. 2005) in Sweden four years after application. However, no study has 

examined the influence of using P. gigantea on the bacterial community in 

conifer stumps or the influence to microbes during a period longer than six 

years. Additionally not much is known about how persistent these observed 

shifts on species diversity are. 

 

1.6.3.1. Microbiota identification  

 

The methods used in previous studies on fungi (Vainio et al. 2005, Vasiliauskas 

et al. 2005) and bacteria (Kowalchuk et al. 1997, Yrjälä et al. 2010), have used 

culture-based and/or molecular methods (deoxyribonucleic acid (DNA) 

extraction, polymerase chain reaction (PCR), denaturing gradient gel 

electrophoresis (DGGE), sequencing) for species identification. The problem 

with the direct culture method is that many fast-growing microbes will be easily 

isolated, masking slow-growing microbes (Hyde & Soytong 2007, 2008). Un-

culturable microbes also inevitably escape detection (Guo et al. 2001, Duong et 
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al. 2006, Hyde & Soytong 2007). Several authors suggest that next generation 

sequencing (NGS) could be used to overcome such limitations (Duong et al. 

2006, Nilsson et al. 2009). Short pyrosequencing reads have proven to be a 

highly useful tool for microbial community analysis (Liu et al. 2007) and have 

been applied to study fungal and bacterial diversity in soils (Buée et al. 2009, 

Jones et al. 2009). Applying the high-throughput sequencing method could help 

reveal a higher diversity of stump microbes when compared to culture-based 

methods. In papers I and II, I investigated the impact of P. gigantea treatment 

on treated and non-treated stump microbes at different time points (one, six and 

13 years after biocontrol treatment) using the 454 -sequencing approach.  

 

1.6.4. Regeneration of diseased forest sites with silvicultural methods 

 

The silvicultural control of H. annosum s.l. is difficult because it spreads 

through root contacts to neighbouring trees (Rishbeth 1959b, Oliva et al. 2011). 

H. annosum s.l. can remain viable and infective in stumps for decades (Piri 

1996, Stenlid & Redfern 1998, Piri & Korhonen 2007), resulting in an 

inoculum source for new tree generations (Piri 2003). Preventing germination 

on freshly cut stumps without stump treatment could be achieved with winter 

cuttings instead of summer cuttings (Möykkynen & Miina 2002), but the 

constant need for timber is relevant all year round. It is recommended that the 

first thinning of forest sites should at least be performed during the winter time, 

decreasing damages to tree roots due to heavy machinery. If thinnings are 

reduced to one winter cutting and the rotation length is shortened, it is possible 

to prevent heavy disease in the next tree generation even in already diseased 

sites (Piri 2003). Removing stumps and larger roots decreases the H. annosum 

s.l. infections by 20–72% (Cleary et al. 2013). Although removing stumps is an 
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effective control method, the use of the biocontrol agent P. gigantea, is 

considered more cost-effective in reducing the frequency of H. annosum s.l. 

(Cleary et al. 2013). Disturbance to the environment due to stump removal 

(Laurén et al. 2008) should also be assessed and evaluated. 

 

A mixed forest of conifer stands could serve as a preventive measure against 

this disease (Piri et el. 1990, Lindén & Vollbrecht 2002, Möykkynen & Pukkala 

2010), as the use of more resistant or non-preferred host trees would slow down 

the infection of the pathogen through root contacts. Changing tree species is the 

best method to control decay losses in the subsequent tree generation in heavily 

diseased spruce sites (Lindén & Vollbrecht 2002, Piri 2003). Scots pine (P. 

sylvestris) and silver birch (Betula pendula Roth) are fairly resistant to H. 

parviporum and are recommended for the regeneration of infested sites 

(Korhonen 1978, Piri 1996; 2003, Möykkynen & Pukkala 2010). The problems 

with replacing a tree species with others are that spruce sites are too fertile for 

pine and equally, pine and birch plantations are often impractical because of the 

high risk of browsing damage by moose (Alces alces L.) (Heikkilä & Raulo 

1987, Heikkilä & Härkönen 2007, Wam & Hofstad 2007, van Beest et al. 2010, 

Edenius et al. 2011). Deciduous trees have been reported to be less susceptible 

to H. annosum s.l. infection compared to conifers (Korhonen 1978, Piri 1996, 

Korhonen & Stenlid 1998). Aspen (Populus tremula L.) is considered highly 

resistant (Swedjemark & Stenlid 1995) and favouring these trees when planting 

next to infected spruce stumps could provide some protection to Norway spruce 

rotation (Piri 2003). However, mixed forests with deciduous trees are not 

always a guarantee for the total prevention of H. annosum s.l. as this fungus has 

been reported to be transferable from conifer stumps to healthy silver birch 

trees (Piri 1996). Preventing the infection caused by H. annosum s.l. is the most 
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important control method against this pathogen. This is easier to achieve in 

forestry if the planted trees are perfectly adapted to the site and thinnings are 

performed during the wintertime (avoiding injuries to standing trees).  

 

1.7. Fungal endophytes 

 

The term “endophyte” is used to describe microbes that live asymptotically 

inside the plant tissues for the entire or at least a significant part of their life 

cycle without causing any clear negative harm to the host (Petrini 1991, 

Saikkonen et al. 1998). Fungal endophytes may turn parasitic (Saikkonen et al. 

1998, Sieber 2007, Rodriguez & Redman 2008) during host senescence or 

saprotrophic (Korkama-Rajala et al. 2008, Sun et al. 2011) in dead host tissues. 

It is an acknowledged fact that fungal endophytes can be found virtually on 

every terresrtial plant (Arnold & Lutzoni 2007, Rodriguez & Redman 2008, see 

Rodriguez et al. 2009 and Sieber & Grünig 2013). Endophytes have received 

notable attention due to their great potential as a major source of biologically 

active compounds with unique chemical structures (Tan & Zou 2001, Schulz et 

al. 2002, Strobel 2003, Yu et al. 2010, Mousa & Raizada 2013). Thus, less 

investigated endophytic microorganisms from diverse and unique ecosystems 

still harbour enormous amounts of novel natural products (Gunatilaka 2006). 

The considerable diversity of endophytes within individual hosts has increased 

the studies examining the ecological roles of fungal endophytes. Presently, the 

researches on endophytes have focused mostly on the better understanding of 

the interactions between endophytes and their host as well as their unique 

natural products. Future studies on detailed documentations of individual 

species and their infection cycles are needed to understand the functions of 

these ubiquitous symbionts.  
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1.7.1. Conifer tree endophytes  

 

A majority of the biodiversity studies on fungal endophytes in the needles of 

Pinus and Picea are concentrated in boreal and temperate regions where 

coniferous forests cover large areas and are of significant economic importance. 

These fungi have been studied since the 1970’s (Carroll et al. 1977, Carroll & 

Carroll 1978). The endophyte communities in the same plant family are 

dominated by closely related species while endophyte species diversity among 

conifer trees is high (Sieber 2007). Most of the dominant endophytic fungal 

species found in the aerial tissues of conifer trees (Pinaceae) belong to the class 

Leotiomycetes and the order Helotiales (Sieber 2007 and references within). 

The needles of Pinus species have been extensively studied (Carroll et al. 1977, 

Carrol & Carrol 1978, Kowalski 1982, Legault et al. 1989, Kowalski 1993, 

Helander et al. 1994, Helander 1995, Hata & Futai 1995; 1996, Jurc et al. 1996, 

Hata et al. 1998, Sieber et al. 1999, Deckert & Peterson 2000, Deckert et al. 

2002, Ganley et al. 2004, Martín et al. 2004, Ganley & Newcombe 2006, Guo 

et al. 2008, Zamora et al. 2008, Botella et al. 2010, Botella & Diez 2011, 

Terhonen et al. 2011, Larkin et al. 2012) with less attention given to the roots 

(Wang & Wilcox 1985, Wilcox & Wang 1987b, O’Dell et al. 1993, Ahlich & 

Sieber 1996, Hoff et al. 2004, Menkis et al. 2006, Reay et al. 2010, Stenström et 

al. 2014). A similar pattern can be observed for Picea trees where the species 

composition and diversity of needle endophytes have received considerable 

attention (Carroll et al. 1977, Carrol & Carrol 1978, Sieber 1988, Johnson & 

Whitney 1992, Magan & Smith 1996, Müller & Hallaksela 1998, Stefani & 

Bérubé 2006a;b, Müller & Hallaksela 2000, Müller et al. 2001, Lorenzi et al. 

2004, Müller et al. 2007, Sokolski et al. 2007, Korkama-Rajala et al. 2008, 

Koukol et al. 2012, Rajala et al. 2013; 2014) again with less attention given to 
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the roots (Wilcox & Wang 1987b, Holdenrieder & Sieber 1992, Ahlich & 

Sieber, 1996, Kernaghan et al. 2003, Grünig et al. 2006, Menkis et al. 2006, 

Kernaghan & Patriquin 2011, Stenström et al. 2014).  

 

1.7.1.1. Norway spruce endophytes 

 

Norway spruce (P. abies) is one of the dominant tree species in temperate and 

boreal regions of Europe, occupying 24% of forested areas in Finland alone 

(Peltola 2008). Norway spruce together with Scots pine (P. sylvestris) forms the 

basis for one of the largest industries in Finland contributing yearly net income 

of several billion EUR (Ministry of Agriculture and Forestry 2015). In Finland 

159 million forest tree seedlings are produced in nurseries annually; Norway 

spruce being the most important species with 105 million seedlings (Finnish 

Food Safety Authority 2014). Interest is thus high in the biology and ecology of 

fungal endophytes in forest ecosystems with special emphasis on sustainable 

management strategies for forestry.  

 

The most common needle endophytes of P. abies are Lophodermium piceae 

(Fuckel) Höhn. (Sieber 1988, Müller & Hallaksela 1998; 2000, Korkama-Rajala 

et al. 2008, Rajala et al. 2013), and Tiarasporella parca (Berk. & Broome) H. 

S. Whitney, J. Reid & Piroz (Sieber 1988, Müller & Hallaksela 1998). Lirula 

macrospora (R. Hartig) Darker, the cause of Lirula needle blight, may 

occasionally be observed as an endophyte (Müller & Hallaksela 1998, Rajala et 

al. 2014). Cadophora luteo-olivacea (J.F.H. Beyma) T.C. Harr. & McNew, 

Chalara longipes (Preuss) Cooke (Rajala et al. 2014) and Phoma herbarum 

(Cooke) Saccardo (Rajala et al. 2013) are the most common needle endophytes 

from P. abies clonal cuttings. Phacidiopycnis spp., Cistella acuum (Alb. & 
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Schwein.) Svrcek and C. longipes have been documented in wind-fallen mature 

Norway spruce trees (Koukos et al. 2012). Differences in species composition 

are most likely due to the different host sources (wind-felled trees, clonal 

cuttings, seedlings, mature trees) of Norway spruce and from different forest 

ecosystems that have affected the species distribution and frequency of 

endophytes.  

 

Dark septate endophytes (DSEs) are the most frequently isolated endophytic 

fungi from the roots of P. abies (Ahlich & Sieber 1996, Grünig et al. 2002, 

Queloz et al. 2005). DSE hyphae are both septate and melanised and can form 

specialised structures in the host roots, referred to as microsclerotia 

(Jumpponen & Trappe 1998a, Mandyam & Jumpponen 2005). The dominant 

DSE group in conifer (i.e. P. abies) roots is formed by members of the 

Phialocephala fortinii s.l.-Acephala applanata species complex (PAC) (Ahlich 

& Sieber 1996, Grünig et al. 2002; 2004, Queloz et al. 2005). Phialocephala 

fortinii sensu stricto C.J.K Wang & H.E Wilcox seems to not have any host 

preference (Ahlich & Sieber 1996, Grünig et al. 2006; 2008a, Tejesvi et al. 

2010; 2013). Acephala applanata Grünig & T.N. Sieber on the other hand is 

more associated with P. abies (Grünig & Sieber 2005, Grünig et al. 2006; 

2008a). Members of this species complex are cryptic as they cannot be 

differentiated based on morphology. Rather, PAC members have been 

identified to the species level based on multilocus molecular markers such as 

single-copy restriction fragment length polymorphism (RFLP), microsatellites, 

sequence loci, or a combination of them (Grünig et al. 2008b, Queloz et al. 

2008; 2010). PAC is composed of identified species including Phialocephala 

turicensis Grünig & T.N. Sieber, Phialocephala letzii Grünig & T.N. Sieber, 

Phialocephala europaea Grünig & T.N. Sieber Phialocephala helvetica Grünig 
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& T.N. Sieber, Phialocephala uotilensis Grünig & T.N. Sieber, Phialocephala 

subalpina Grünig & T.N. Sieber, P. fortinii and closely related A. applanata 

(Grünig & Sieber 2005, Grünig et al. 2008). The species complex has also been 

reported to consist of 21 reproductively isolated lineages (Queloz et al. 2011) 

including the eight previously described species (Grünig et al. 2008, Queloz et 

al. 2011). 

 

The endophytes of P. abies have been studied in Finland as colonisers of 

symptomless needles (Müller & Hallaksela 1998; 2000, Müller et al. 2001; 

2007) and as primary decomposers of forest litter (Müller et al. 2001, Korkama-

Rajala et al. 2008), but to my knowledge, the endophytic composition of P. 

abies roots have not been previously studied in Finland. In paper III, I 

investigated the composition of fungal root endophytes from non-mycorrhizal 

roots of Norway spruce from three different boreal forest sites including pristine 

mire, drained peatland and mineral soil. 

 

1.7.2. Functional roles of fungal endophytes 

 

Two major groups of endophytic fungi have been recognised as the 

clavicipitaceous endophytes (C-endophytes) and the non-clavicipitaceous 

endophytes (NC-endophytes) (see review by Rodriguez et al. 2009). C-

endophytes infect some grasses and their transmission to a new host is primarily 

vertical, with fungi passing on from plants to offsprings via seed infections 

(Saikkonen et al. 2002). These C-endophytes have been reported to increase 

plant biomass and drought tolerance, produce chemicals toxic to animals and 

decrease herbivory (Clay 1988; 1991, Patterson et al. 1991, Riedell et al. 1991, 

Saikkonen et al. 2010). However, these benefits are not automatically 
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mutualistic as they appear to depend on host species, host genotype and 

environmental conditions (Saikkonen et al. 1999, Faeth & Sullivan 2003, Faeth 

et al. 2006, Saikkonen et al. 2010). NC-endophytes mainly infect the host plants 

horizontally (Rodriguez et al. 2009), but some are known to be vertically 

transmitted (Sieber et al. 1988). An important role of aerial NC-endophytes in 

the ecosystem may be the switch to saprotrophic habits through the degradation 

of dead or dying host plants (Oses et al. 2008, Sun et al. 2011) and endophytic 

fungi have been reported as having a significant role in the process of needle 

decomposition in boreal forests (Korkama-Rajala et al. 2008). Root endophytes 

are a strictly horizontally transmitted group representing the assemblage of 

primarily ascomycetous fungi with poorly defined ecological roles. 

 

The meta-analyses of root-inhabiting DSE fungi have shown that while host 

growth responses to colonisation by DSE fungi were variable, they tended to be 

negative (Mayerhofer et al. 2013) or positive (Newsham 2011). Tree 

endophytes have been shown to play a role in the resistance of their hosts to 

pathogen damage (Herre et al. 2007, Mejía et al. 2008, Sumarah et al. 2008, 

Tellenbach & Sieber 2012), reflecting the production of secondary metabolites 

(Schulz et al. 2002, Sumarah et al. 2009; 2010; 2011, Tellenbach et al. 2013). In 

many of these cases, endophytes have been implicated in protecting the host 

plant against herbivory (Miller 2002, Sumarah et al. 2005; 2008; 2009) or 

phytopathogens (Tellenbach & Sieber 2012). However, it is sometimes difficult 

to link in vitro pathogen inhibition to disease resistance expressed in the field. 

These endophytic fungi might benefit the host plants or suppress competitor 

growth in part via the production of bioactive metabolites (Schulz et al. 1999; 

2002, Strobel 2003, Mandyam & Jumpponen 2005, Mousa & Raizada 2013). 

This could partly be an explanation for the existence of these ubiquitous fungi 
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in their host plants. The ecological roles and functions of these ubiquitous 

endophytes, especially their general effects on the colonised hosts are difficult 

to define, and despite their apparent great abundance, have not been fully 

resolved (Sieber & Grünig 2013). 

 

The host-endophyte relationship in the plant roots is thought to differ from 

mycorrhizal symbioses as the cellular interface where specialised structures 

(e.g. arbuscules) occur is lacking (Brundrett 2006). Additionally, there are no 

significant benefits for both partners (Brundrett 2006). Several hypotheses have 

tried to explain the observed positive responses of the host to root endophyte 

colonisation. The two most prominent explanations include the modulation of 

plant growth via nutrient mineralisation (as in mycorrhizae) (Jumpponen 2001, 

Mandyam & Jumpponen 2005, Newsham 2011, Reininger & Sieber 2013). The 

other is the production of plant growth-promoting phytohormones (Schulz et al. 

1998; 2002, Schulz & Boyle 2005). Mycorrhizal fungi have many significant 

functions in ecosystems (Smith & Read 2008) but the root-associated fungal 

endophytes have received very little attention (Rodriguez et al. 2009). 

Mycorrhizal fungi in the boreal forest have been intensively studied (Högberg 

& Högberg 2002, Högberg et al. 2003; 2007; 2008, Nilsson et al. 2005, 

Yarwood et al. 2009). Helotiales (Yarwood et al. 2009) and DSE (Jones et al. 

2012) are commonly observed in these studies. There is a gap in our knowledge 

on the research of fungal endophytes. It has been estimated that root 

colonisation by endophytic DSE fungi are possibly as abundant as mycorrhizaes 

(Mandyam & Jumpponen 2008, Dolinar & Gaberscik 2010, Uma et al. 2010, 

Zhang et al. 2010), if not more abundant (Mandyam & Jumpponen 2008, Sieber 

& Grünig 2013). 
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1.7.3. Biocontrol using root endophytes 

 

Endophyte interactions in conifer trees can range from antagonistic to 

mutualistic (Jumpponen & Trappe 1998b, Jumpponen et al. 1998, Mandyam & 

Jumpponen 2005, Sumarah et al. 2009, Tellenbach et al. 2011, Reininger et al. 

2012). Despite the demonstrated diversity of endophytic fungi in conifer trees 

(see reviews by Saikkonen 2007 and Sieber 2007) much is still not known of 

the functions of endophyte-conifer tree interactions. Some tree fungal 

endophytes have been noted to suppress the growth of phytopathogenic 

microbes, and their potential ability as biocontrol agents has been 

acknowledged (Miller et al. 2002, Arnold et al. 2003, Ganley et al. 2008, 

Hanada et al. 2010, Miles et al. 2012). Beneficial (Jumpponen et al. 1998), 

neutral (Wilcox & Wang 1987b, Jumpponen & Trappe 1998b) and sometimes 

even pathogenic outcomes (Wilcox & Wang 1987a, Tellenbach et al. 2011, 

Reininger et al. 2012) have been reported in conifer tree roots inoculated with 

DSE fungi. These results highlight the unknown ecological function of root 

endophytes in conifer hosts. Tellenbach & Sieber (2012) showed that some 

strains of P. subalpina reduced mortality and disease severity caused by the 

pathogens Phytophthora plurivora T. Jung & T.I. Burgess and 

Elongisporangium undulatum (H.E. Petersen) Uzuhasi, Tojo & Kakish in P. 

abies roots. Tellenbach et al. (2013) also isolated metabolites produced by a 

PAC member (P. europaea) and found two antifungal metabolites, sclerin and 

sclerotinin A, against the pathogenic oomycetes pathogen. Tellenbach et al. 

(2013) concluded that these two antifungal metabolites are either individually 

or synergistically responsible for the growth inhibition of the oomycetes 

pathogen under in vitro experiments. Endophytic fungi might benefit the host 

plants or suppress the growth of a competitor via the production of secondary 
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metabolites. Mandyam & Jumpponen (2005) suggested three mechanisms 

through which DSE may inhibit pathogens; 1) mycorrhizal fungi and 

rhizosphere-inhabiting pathogens may compete for the plant photosynthates or 

for colonization sites; 2) compounds inhibitory to pathogens may be produced 

or 3) DSE colonisation may have prophylactic value by inducing plant defense 

responses to subsequent pathogen infection. According to previous studies 

(Miller et al. 2002, Sumarah et al. 2010; 2011, Tellenbach et al. 2013) it can be 

hypothesised that endophytes can produce antifungal substances in addition to 

host metabolites (Schulz et al. 1999). A meta-analysis of DSEs on plant 

performance has revealed positive effects on total, shoot and root biomass, and 

on shoot nitrogen (N) and phosphorus (P) contents (Newsham 2011 and 

references within). DSEs have also been noted to suppress pathogens 

(Tellenbach et al. 2013), which increase their role as possible protectors against 

root pathogens. Screening root endophytes for biocontrol capabilities is, 

therefore, of biotechnological relevance. It is obvious that these endophytes and 

their metabolites possess new possibilities to be utilised in forestry and 

agriculture against plant pathogens. Especially their potential to control possible 

new invasive alien pathogenic species makes them a high priority. The 

screening of local strains or isolates is a primary priority when developing a 

possible biocontrol. To utilise these root endophytes as biocontrols, the 

mechanisms behind the possible inhibition of the root pathogen should be 

determined. We evaluated the potential inhibitory effect of a subset of the 

isolated root endophytes from different forest sites (pristine mire, drained 

peatland, mineral soil) on the pathogen H. parviporum, the main cause of root 

rot in Norway spruce in Finland (Paper III). This was followed by studies on 

the inhibitory effects of secreted metabolites from the root endophytes on the 

phytopathogenic fungi to understand the mechanism and ecological 
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consequences of the existence of these ubiquitous endophytes in various host 

roots (Paper IV). 

 

1.7.4. Root endophytes in boreal peatlands 

 

Compared to the endophytes of healthy roots, mycorrhizal associations and 

saprotrophic microorganisms have been more extensively studied in peatlands 

(Thormann et al. 1999) together with activities of other microbes involved in 

litter decomposition (Thormann 2006, Myers et al. 2012). Dark septate hyphae 

have commonly been observed from the roots of different plants in boreal 

peatland (Thormann et al. 1999). In Sweden, the composition of microfungi in a 

mire ecosystem (Nilsson et al. 1992) and root endophytes of co-existing 

ericaceous plant species in a subarctic mire community (Kjøller et al. 2010) 

have also been studied. Kjøller et al. (2010) observed that the roots of 

ericaceous plants were dominated by potential ericoid mycorrhizal fungi, but 

some DSEs such as P. fortinii were equally observed. Artz et al. (2007) found 

that the fungal community of peat changes during vegetational succession and 

varies significantly in different successional stages when cutover peatlands are 

regenerated. The compositions of fungal endophytes in the roots of conifers 

have so far not been studied in different boreal peatlands in Finland. We 

particularly do not know how these communities respond to disturbances such 

as the draining of pristine mires. Part of the additional objective for my thesis 

was to study (Paper III) the root endophytes of P. abies in different habitats 

(pristine mire, drained peatland, mineral soil) to investigate whether the 

draining of peatland, followed by vegetation succession, had an effect on 

species composition and frequency. 
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2. AIMS OF THE STUDY 

 

H. annosum s.l. is the main cause of wood rot in Norway spruce (P. abies) in 

Finland, decreasing the commercial value of these trees. The intensive use of a 

biocontrol, P. gigantea, might disturb the microbial community in wood 

stumps. Understanding the consequences on other wood microbes of the long-

term application of P. gigantea to living wood tissues would be important for 

gaining knowledge of the biocontrol effect on the environment. In addition to 

the above-mentioned stump treatment studies, I explored the potential of 

finding other novel biocontrol agents to be utilized in managing the disease 

caused by the root rot pathogen H. parviporum. This necessitated exploratory 

isolation studies of fungal root endohytes from forestry sites such as pristine 

mires and drained peatlands where the spread of H. annosum s.l. has not 

commonly been reported. Protecting young seedlings using endophytic fungi 

during the early stages of establishment under field conditions was a primary 

consideration. I concentrated on P. abies fine root endophytes known to be 

susceptible to infection in vitro (Asiegbu et al. 1993; 1994). I consequently 

sampled a large number of non-mycorrhizal P. abies roots and isolated 

endophytes from a pristine mire, a drained peatland and mineral soil, and 

investigated the potential inhibitory effect of a subset on the root rot pathogen 

H. parviporum and other phytpathogenic fungi.  

 

The specific aims of this thesis were the followings: 

 

1) To study whether the use of P. gigantea as a biocontrol has a negative effect 

on the fungal and/or bacterial community of wood-inhabiting microbes over 
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a time period of one, six and 13 years post-treatment using the 454 -

sequencing approach (I, II). 

 

2) To study the composition of fungal root endophytes of P. abies and explore 

their potential inhibitory effect against the root and butt rot pathogen H. 

parviporum (III, IV).  
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3. HYPOTHESIS 

 

Our first hypothesis is that the long-term treatment of conifer stumps with P. 

gigantea has a negative effect on the diversity of the non-target microbial 

community of conifer stumps (I, II). Secondly, we also hypothesise that fungal 

root endophytes from forest sites (peatland), not commonly inhabited by H. 

annosum s. l., possess an inhibitory effect on the growth and survival of the 

pathogen H. parviporum (III, IV). 
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4. MATERIALS AND METHODS 

 

4.1. Study sites and sampling 

 

Wood core samples from Norway spruce stumps in forest sites previously pre-

treated with P. gigantea either one, six or 13 years previously were collected in 

May 2010 (I, II). Similarly, samples from untreated stumps within the same 

forest site over the same time period were also collected. The one-year-old 

treated stumps were located in Liesjärvi (southwestern Finland; 60° N, 24° E). 

The site was a mature thinned Norway spruce stand (age 60 years). These 

stumps were treated with biocontrol P. gigantea (Rotstop) by a single-grip 

harvester during cutting in May 2009. The harvester sprayed untreated stumps 

with water. The six-year-old stumps were on a clear-cut stand of Norway spruce 

located in Karjalohja (southwestern Finland; 60° N, 23° E). A diagonal stand 

had been subject to stump treatment by a single-grip harvester during final 

felling in early June 2004. The upper and lower sides of the clear-cut had been 

left as untreated control areas. The 13-year-old treated stumps were located in 

Taipalsaari (southeastern Finland; 62° N, 28° E). Norway spruce trees (ca. 50 

years old) were felled in August 1997 and the stumps were treated with 

suspension of biocontrol (Rotstop) immediately and untreated stumps were left 

as a control. Samples from each site were collected from three treated and three 

untreated stumps (20–50 m apart from each other), respectively. Five wood 

cores (1x1x2 cm depth) from each stump surface (one core sample from the 

center [heartwood] of the stump and four randomly from the sapwood) were 

sampled and pooled in a sterile falcon tube and stored at -20 ºC (I, II).  
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In  paper III, the roots of P. abies were collected from sites located in Lakkasuo 

(61°47’N, 24°18’E, ca. 150 m a.s.l.), which is a boreal raised bog complex. The 

sites were a maximum two kilometres apart. The sites had mature (>100-year-

old) and naturally regenerated Norway spruce (P. abies) -dominated stands. The 

site represented mineral soil, pristine mire or drained peatland with comparable 

fertility (rich). Site 1 was a mineral soil stand (Myrtillus type) with Vaccinium 

myrtillus L. in the field layer and feather mosses in the undergrowth. Site 2 was 

minerotrophic pristine mire (V. myrtillus spruce swamp) with V. myrtillus and 

other indicator species in the field layer (Trientalis europea L., Linnea borealis 

L.) and Sphagnum species and feather mosses in the bottom layer. Site 3 was a 

drained peatland originating from a minerotrophic pristine spruce-dominated 

mire (V. myrtillus type 1), where the ground vegetation consists mainly of mire 

vegetation. The area was drained in 1966 and the ditches were cleared in 1988. 

From each site three different spruce trees were chosen. From each sampled 

tree, three separate major roots were grubbed up until the fine roots were 

discovered and collected. The samples were collected in September 2010, they 

were stored at +4°C and processed within 48 hours after collection (III).  

 

4.2. Effects of using a biocontrol agent on microbial communities 

 

The wood core samples were homogenised in liquid N2 with mill grinding and 

genomic DNA was extracted. Amplicon libraries were performed for the fungal 

internal transcribed spacer (ITS) region by PCR using primer ITS4B together 

with different tagged ITS1 (xxx-ITS1 designed for each stump separately) 

(Gardes & Bruns 1993) and PCR amplification of the bacterial 16S region using 

primers 27F (xxx-27F designed for each stump separately) and 519R (Lane 

1991). The amplicons were sequenced at the Institute of Biotechnology 
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(Helsinki University, Finland) using the 454 GS-FLX Titanium protocol (454 

Life Sciences/Roche Diagnostics, CT, USA). Raw pyrosequencing reads of 

bacteria and fungi were quality trimmed using Mothur software (Schloss et al. 

2009). The bacterial sequences were clustered into operational taxonomic units 

(OTUs) defined by a 3% distance level. Species richness and evenness was 

estimated using the non-parametric diversity index (Shannon). To correct for 

differences in survey effort between samples, the number of sequences from the 

smallest size among all samples (4386 sequences per sample) or among all 

treatments (17 224 sequences per treatment) was randomly selected and used 

for normalisation on calculating species richness and diversity. Redundancy 

analysis (RDA) was used for calculating the dendrogram describing the 

similarity between the community structures based on relative bacterial 

abundance. Multiple sample analysis of molecular variance (AMOVA) in 

Mothur was used to test the significant difference in genetic diversity within the 

populations between treatments. The Mann-Whitney analysis was used to test 

the significance level at 5% in relative bacterial abundance between treatments 

(I, II). 

 

The ITS1 sequences were clustered at 97% similarity with the most abundant 

sequence types serving as cluster seeds. The most frequent sequence type in 

each cluster was used for the manual BLAST (Altschul et al. 1997) searches 

against GenBank / NCBI (Sayers et al. 2010) to provide taxonomic 

identification. All OTUs with fewer than five reads were excluded from further 

analysis (Unterseher et al. 2011). Diversity indices (Shannon-Wiener) were 

used to measure the general species diversity (species richness and evenness) of 

every individual stump at all sites. The similarity indices (Sørensen) and 

dissimilarity Bray-Curtis index were used to compare OTU composition 
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between the control and treated stumps at every time point. The Sørensen index 

was calculated as QS= 2C/(A+B), where A and B are the number of OTUs in 

treated or control stumps respectively, and C is the number of OTUs shared by 

treated and control stumps (Sørensen 1948). Bray-Curtis dissimilarity was 

calculated as BCij= 1- 2Cij/(Si+Sj) (Bray & Curtis 1957), where Cij is the sum of 

the lesser values for shared OTU in both stumps; Si and Sj are the total observed 

value of shared OTU in the stumps. To decrease the high abundance effect 

caused by a few species on the Bray-Curtis index, we repeated the calculations 

with logarithms (log10) of the data. Principal Component Analysis (PCA) was 

used to visualise the treatment impact on fungal communities at the different 

study sites (I). Mann-Whitney logarithm analysis of OTU abundance (data 

transformed to log10) was used to test the significance level at 5% between the 

treatment and control stumps. 

 

4.3. Endophytic fungi of Norway spruce roots 

 

The fine roots, where no visible mycorrhizae were detected, were rinsed under 

tap water. Following surface sterilisation, a total of 72 root pieces were placed 

on Petri plates containing modified Hagem media as well as 36 root pieces on 

2% malt extract agar (MEA) plates (see details in paper III).  The plates were 

incubated at room temperature in the absence of light for 4-weeks due to the 

slow growth of the endophytes. The plates were sub-cultured until a total of 113 

pure cultures were obtained (~1.05 endophytes/root). These fungal isolates were 

examined with bright-field microscopy and a stereomicroscope. Based on 

similar morphology some of the pure cultures originating from the same Petri 

plate were grouped together. From these morphologically similar groups, 84 

representative isolates were selected for molecular identification. DNA 
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extraction, followed by PCR with primer pair ITS1 and ITS4 (Gardes & Bruns 

1993), was used to obtain the entire ITS regions 1 and 2 of ribosomal DNA. 

The cleaned sequences of ITS regions 1 and 2 were identified using BLAST 

(Altschul et al. 1997) searches against GenBank/NCBI (Sayers et al. 2010). The 

sequences with ≥ 98% similarity and ≥ 97% query coverage were set to 

constrict the OTUs (Arnold & Lutzoni 2007). The novel sequences obtained in 

this study and the best matches from GenBank were aligned and a phylogenetic 

tree was generated using the Neighbour-Joining (NJ) analysis with 1000 

bootstrap replicates. Diversity indices and evenness were used to compare 

fungal frequencies for every individual sampled tree. Diversity between sites 

was estimated using the similarity and species richness indices. Diversity 

indices characterising fungal communities in the individual sampled trees were 

compared using one-way ANOVA. Differences in total fungal average 

frequencies between the three sampled sites were tested with the Kruskall-

Wallis test in SPSS 19 (Chicago, IL, USA) (III).  

 

I used the cultural method to isolate the endophytes of P. abies roots. The 

species accumulation curve (III; Fig. 2) showed that endophytic species 

accumulated more slowly in the mineral soil and pristine mire compared with 

isolates from drained peatland sites. Observed species richness did not fall 

within 95% confidence intervals for estimated species richness Chao 1 values 

(III; Table 2), which indicates that fungal assemblage was under sampled.  

 

4.4. Antagonism between the endophytes and phytopathogenic fungi 

 

The dual culture method was used to test the inhibitory effect of the isolated 

endophytes on H. parviporum. An endophyte was considered to possess 
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“inhibitory capability” if H. parviporum was not able to overgrow the hyphae 

of the endophytes or the growth of the pathogen ceased (III). Based on the 

initial screening described above, two isolates of root endophyte strains 513 and 

222 were selected. These endophytes were identified based on ITS regions 1 

and 2 as Cryptosporiopsis sp. (strain 513) and Phialocephala sp. (222) (IV). 

The dual culture method was also applied for the other phytopapathogens 

(Phytopthora pini L.H. Leonian, Botrytis cinerea Pers. and Cryphonectria 

parasitica (Murrill) Barr)) (IV).  

 

The endophytes were inoculated aseptically into 100 ml 2% malt extract and 

shaken at 50 rpm for 3 months at 21 ˚C. Liquid cultures of each fungal isolate 

were harvested with Miracloth to remove the fungal hyphae. The filtrate (20 ml) 

was extracted with 2x equal volumes of ethyl acetate. The extract was weighed 

and re-suspended to a concentration of 5 mg/ml. Ethyl acetate with 1 mg of 

extracts were placed on round filter paper discs (ᴓ 6 mm) and as a control, pure 

ethyl acetate (200µl) was used on the same plate. Ethyl acetate was allowed to 

evaporate before placing filter papers on the plate. An agar piece (ᴓ 5 mm) with 

a sample of the pathogen growing on it was placed at the center of the 2% malt 

agar plate. The filter papers with and without extracted metabolites were placed 

two centimetres from the pathogen. The growth towards the filter paper discs 

was measured until the hyphae of the pathogen had reached the control filter 

paper disc. Pathogen growth under each condition was statistically compared 

with the Paired T-test (IBM SPSS Statistic version 21). To confirm the 

persistence of the inhibition effect due to the metabolites the experiment was 

repeated by placing the filter papers with and without extracted metabolites at a 

distance of four centimetres from pathogens H. parviporum and Ph. pini and 

hyphae growth was followed for 14 days (IV). 
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4. 5. Characterisation of the secreted metabolites 

 

A non-inhibitory endophyte strain 5992 (identified as Phialocephala sp. based 

on ITS 1 and 2) was used as a control to characterise the secondary metabolites. 

The two inhibitory endophytes (strains 513 and 222) as well as the non-

inhibitory endophyte (strain 5992) and H. parviporum were inoculated 

separately in 50 ml of 2% malt extract. They were shaken at 50 rpm for 3 

months at 21 ˚C. The filtrate was extracted with 2x equal volumes of ethyl 

acetate and then dried. The extracts were re-suspended in acetonitrile and dried 

under nitrogen. The extracts were filtered and re-dissolved in acetonitrile and 

screened by UPLC-QTOF/MS using electrospray ionisation in both positive 

and negative ion mode. Sclerin was used as a reference standard to test whether 

it was present in any of the samples (Tellenbach et al. 2013) (IV). 

 

The UPLC-QTOF/MS data of the metabolites was analysed using two pattern 

recognition methods, PCA and OPLS-DA to distinguish differences between 

groups, identify possible outliers and identify metabolites responsible for 

differences between control non-inhibitory endophyte versus inhibitory 

endophyte 513 or 222, and pathogen vs. inhibitory endophyte 513 or 222. The 

UPLC-QTOF/MS analysis showed that results from the positive and negative 

ion mode did not differ significantly, therefore only results from the positive 

ion data were analysed. Each mass-retention time combination from the UPLC-

QTOF/MS data corresponded to one entry of a metabolite in a score plot. Such 

data consists of fragments and adducts of the original metabolite (IV). This was 

taken into account and checked when the most significantly differentiated 

metabolites were chosen (IV; Table 1, 2). Based on the statistical differences, 

ten metabolites were chosen from a sigma plot and manually checked to find 
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the metabolites only present in the inhibitory Cryptosporiopsis sp. (endophyte 

513) or Phialocephala sp. (endophyte 222). Their tentative molecular formula 

was elucidated primarily by the analyses of HRMS data. All chemometrics 

analysis (PCA, OPLS-DA) were performed with MarkerLynx XS V4.1 

software (Waters Inc.) (IV) (Table 1). The materials, methods and 

phytopathogenic fungal strains used in this thesis are summarised in Tables 1 

and 2. Detailed descriptions can be found in publications I–IV. 
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Materials and methods Publications

Surface sterilisation III

Cultivation of endophytic fungi III, IV

DNA isolation I, II, III, IV

PCR amplification of the internal transcribed spacer (ITS) region of ribosomal DNA III, IV

Bar-coded PCR amplification of the ITS region of ribosomal DNA I

Bar-coded PCR amplification of 16S rDNA region II

454 -pyrosequencing I*, II*

Sequence analysis and bioinformatics I, II*, III, IV

Principal Component Analysis (PCA) I,  IV*

Analysis of variance (ANOVA) I, III

Kruskal-Wallis test III

The rarefaction analysis I, II*, III 

Diversity indices (Shannon-Wiener and Simpson’s Reciprocal Index 1/D) I, III

Similarity indices: Sørensen and Bray-Curtis I, III

Redundancy analysis (RDA) II*

Screening of inhibitory root endophytes III

Inhibitory assays against Ascomycete and Oomycete plant pathogens IV

Extraction of secreted metabolites from growth broth IV

Metabolite inhibition assays IV

Microscopy (bright-field microscopy and stereomicroscope) III, IV

UPLC-QTOF/MS IV*

Chemometrics analysis (OPLS-DA) IV*

*Publications with asterisk indicate the methods were conducted by the co-authors.

Table 1. Materials and methods used in this study

Table 2. Phytopathogenic fungi used in this study

Fungi Strain Publications

Heterobasidion parviporum Isolate 03014, heterokaryotic III, IV

Phytophtora pini Isolate Ph443 IV

Botrytis cinerea Isolate B05.10 IV

Cryphonectria parasitica Isolate C2658/LE1093 IV
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5. RESULTS AND DISCUSSION 

 

5.1. The impact to wood microbial communities after biocontrol agent 

application  

 

454 -pyrosequencing of 18 stump samples (90 wood cores) generated a total of 

53 117 fungal and 154 453 bacterial raw sequences. After data cleaning, we had 

26 127 fungal sequences representing 49% of the original sequences and 123 

562 bacterial sequences representing 80% of the original sequences. The 

biocontrol fungus P. gigantea represented 0.43% of all fungal sequences and 

was only found on stumps one year after post-treatment (I; Table 2). The root 

pathogen H. annosum s.l. was not observed in this study.  

 

5.1.1. Impact on wood microbes one year after application 

 

One year post-treatment, a total of 8379 (treated = 4060, control = 4319) fungal 

sequence reads were observed from six different stumps generating 124 

different OTUs: 106 and 119 OTUs from treated and control stumps, 

respectively (I, Table 1). Substantially higher number of sequences were 

observed for bacterial sequences (treated = 17801, control = 17224), generating 

3925 OTUs: 2285 and 2692 OTUs from treated and control stumps, 

respectively (II, Table 1). Based on the PCA analysis of the fungal OTU 

composition, a specific aggregation pattern between control and treated stumps 

could be observed one year post-treatment indicating that P. gigantea impacted 

fungal community structure (I; Fig. 2), even the difference between control and 

treated stumps was not found to be significantly different (p= 0.47). For the 

bacterial community, the biocontrol application significantly decreased (p= 
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0.004) the number of individual OTUs in treated stumps compared to control 

stumps within the first year. Similarity indices (Sørensen) showed high 

similarity between the control and treated stumps (I; Table 3) and further 

confirmed that the main fungal OTUs observed were equally present in the 

stumps despite the treatment. The Bray-Curtis index (BC, I; Table 3) was 

found to be intermediate. This index was recalculated with logarithms of 

sequence data observed in each OTU (number of sequences in each OTU) (BC= 

0.18), indicating that treated and control stumps share similar OTU rate. Vainio 

et al. (2005) could not find statistical differences between the fungal OTU 

profiles of the three treated and three untreated Norway spruce stumps one year 

after “Rotstop” application. Vasiliauskas et al. (2004) discovered that 7 weeks 

after “Rotstop” application the fungal species richness decreased by 15%. 

Nevertheless, Vasiliauskas et al. (2004) observed that the Sørensen similarity 

indices showed treated stumps to be mainly colonised by the same fungi 

occurring naturally in untreated stumps (Vasiliauskas et al. 2004). The present 

study is in line with results observed in previous studies (Vasiliauskas et al. 

2004, Vainio et al. 2015), indicating that the application of P. gigantea on 

stump surfaces impacts fungal community structure, but this does not appear to 

be significantly decreased (Vainio et al. 2005, I) as the major fungal OTUs are 

present in the same magnitude (I). “Rotstop” application had a clear negative 

impact on the bacterial community after one year. Obviously the initial 

application of P. gigantea to fresh stumps has an effect on bacterial flora in 

wood material. Saprotrophic P. gigantea (especially the genotype of “Rotstop”) 

acts as a strong competitor, and based on our results this fungus disturbed 

bacterial OTU composition during the primary decomposition succession of the 

stumps in our study site in southwestern Finland (Liesjärvi) (II).  
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5.1.2. Impact on wood microbes six years after application  

 

We observed 8388 (4273 = treated, 4115 = control) fungal sequences from six 

different stumps six years after the stump treatment. Altogether, we 

documented 153 different OTUs: 134 from control stumps and 119 from treated 

stumps (I, Table 1). Substantially higher number of sequences were observed 

for bacterial sequences (treated = 22342, control = 20620) generating 4628 

OTUs: 3467 and 2298 OTUs from treated and control stumps, respectively (II, 

Table 2). Vainio et al. (2001) observed that six years after treatment with the 

“Rotstop” strain of P. gigantea, it was still present in P. abies stumps. In this 

study P. gigantea (“Rotstop”) was not observed six years after stump 

application. However, a taxon with only 84% sequence similarity to Phlebiopsis 

gigantea was first considered a species of Phlebiopsis in paper I (Terhonen et 

al. 2013). Further reblasting and analysis has revealed that Phlebiopsis is not a 

plausible genus name for this isolate (I). Vasiliauskas et al. (2005) also 

observed that the “Rotstop” strain of P. gigantea was less frequently isolated 

from six-years-old Norway spruce stumps compared to four-year-old stumps. A 

similar decline in the isolation rate for P. gigantea could be observed in control 

stumps that were subjected to natural infections by wild strains of P. gigantea 

(Vasiliauskas et al. 2005). Our results further confirmed previous reports on the 

natural behaviour of P. gigantea that have shown a decrease in older stumps 

(Hintikka 1993, Vainio et al. 2001, Vasiliauskas et al. 2002, Vainio et al. 2005, 

Vasiliauskas et al. 2005).  

 

PCA and RDA showed more intermingling between the control and treated 

samples in fungal and bacterial OTU composition in this study, and no 

statistical differences were observed (I; Fig. 2, II; Fig. S3). Vainio et al. (2015) 
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observed that the “Rotstop” treatment appeared to mainly influence species 

composition in the six-year-old Norway spruce stumps, but did not reduce their 

overall fungal diversity. Vasiliauskas et al. (2005) found that “Rotstop” 

application led to a significant decrease in overall fungal community structure 

in Norway spruce stumps six years after treatment. Despite the decrease in 

species diversity, the majority of species that colonised stumps following 

“Rotstop” treatment were found to also occur naturally in untreated controls 

(Vasiliauskas et al. 2005). In the previous study the quantitative Sørensen 

similarity index showed that species, common in both treated and control 

stumps occurred at approximately similar rates (Vasiliauskas et al. 2005). The 

Sørensen similarity index in this study also indicates that the major fungal 

OTUs were present six years after in the treated and control stumps (I; Table 

3). The Bray-Curtis index (BC, I; Table 3) was found to be intermediate. This 

index was recalculated with logarithms of sequence data observed in each OTU 

(BC= 0.20), indicating that treated and control stumps share similar OTU rates. 

The observed frequency (number of sequences) and diversity (number of 

OTUs) of bacterial communities were higher in treated stumps compared to 

control stumps in this study (II; Table 1). Based on our results we can conclude 

that six years after “Rotstop” treatment, the presence of P. gigantea has 

decreased and that major fungal and bacterial OTU composition and frequency 

(number of sequences) are similar in treated and non-treated stumps.  

 

5.1.3. Impact on wood microbes 13 years after application 

 

Thirteen years post-treatment, we observed 9630 (4338 = treated, 5292 = 

control) fungal sequences from six different stumps. In total, we recorded 161 

different fungal OTUs: 139 from the control stumps and 131 from the treated 
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stumps (I; Table 1). Substantially higher number of sequences were observed 

for bacterial sequences (treated = 23397, control = 22178), generating 6893 

OTUs: 3997 and 4431 OTU from treated and control stumps, respectively (II; 

Table 1). The bacterial frequency (number of observed sequences) was higher 

at the treated compared to the control stumps (II; Table 1). An RDA of bacterial 

OTUs showed some aggregation between control and treated stumps 13 years 

post-treatment and no statistical differences were observed (II; Fig. S3). PCA 

results on fungal species composition similarly showed some aggregation 

between control and treated stumps 13 years post-treatment and no statistical 

differences were observed (I; Fig. 2). The diversity index (Shannon-Wiener) 

indicates that species richness in the fungal community reached the same level 

between the control and treated stumps (I; Table 1). The Sørensen index was 

high (0.8), illustrating that the major OTUs were shared between the control 

and treated stumps (I; Table 1). The Bray-Curtis index (I; Table 3) was found 

to be intermediate for fungal OTUs. This index was recalculated with 

logarithms of data sequences observed in each OTU (BC= 0.19), indicating that 

treated and control stumps share similar OTU rates. Based on our results we can 

conclude that after a long time period the persistence of P. gigantea is zero and 

bacterial and fungal communities have reached the same level in frequency 

(number of sequencies), species level (number of OTUs) as well as sharing the 

major OTUs in treated and control stumps (I, II). 

 

Menkis et al. (2012) concluded that the biocontrol agent P. gigantea has little or 

no impact on the belowground occurrence and persistence of this species in 

forest ecosystems and consequently has no significant impact on soil fungi. 

Together with previous findings (Menkis et al. 2012), our results gathered 13 

years after “Rotstop” application on the stumps supports the continued use of P. 
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gigantea for stump pre-treatment in Finnish forests against H. annosum s. l. 

when the risk of infection is high. 

 

It was obvious that the microbial community was disturbed at the initial stage 

of decay (one year) after “Rotstop” application. As the stump-age effect cannot 

be separated from the site effect we cannot properly say that the negative effects 

observed one year after would be attenuated over time in the same site (I, II). 

This experiment should be repeated at the same site (Liesjärvi) at different time 

periods to further prove that the “Rotstop” strain of P. gigantea is not persistent 

over the long-term and the negative effect especially towards bacterial flora will 

be attenuated over time. 

 

5.2. Composition of P. abies fungal root endophytes at different boreal 

forest sites 

 

The diversity and frequency of culturable endophytes of healthy non-

mycorrhizal Norway spruce (P. abies) roots in different boreal forest sites was 

investigated. The species diversity of endophytic fungi was low; only 15 

different OTUs could be detected and the frequency of singletons was high 

(20% off all OTUs). A similar pattern was observed by Stenström et al. (2014), 

as the fungi isolated either once or twice from P. abies and P. sylvestris roots 

consisted of ~ 36% of all isolates. Among the mycota, the class Leotiomycetes 

and the order Helotiales were found to be most dominant (III; Table 1). DSEs 

were the most abundant isolates (77 %), consisting mostly of the PAC species 

complex (52% of all isolates). Other authors have similarly reported that the 

isolation rate of DSEs and PAC constituted the major isolates (Holdenrieder & 

Sieber 1992, Ahlich & Sieber 1996, Grünig et al. 2002, Stenström et al. 2014). 
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In our study, A. applanata (27%) and P. fortinii (25%) were the most abundant 

species. A. applanata is associated more with P. abies (Grünig & Sieber 2005, 

Grünig et al. 2006; 2008a), but P. fortinii s.l. seems not to have a host 

preference (Ahlich & Sieber 1996, Grünig et al. 2006; 2008a; 2011, Tejesvi et 

al. 2010; 2013). 

 

Endophyte species composition in different forests stands can be distinct and 

the same fungal species may occupy different micro-habitats or hosts during the 

lifecycle of the fungus (Saikkonen et al. 2004a;b, Osono 2006, Saikkonen 

2007). For example Helander et al. (2006) observed that the abundance and 

species composition of endophytic fungi in the leaves of silver birch (B. 

pendula) significantly differed between seedling stands, managed mature 

forests and natural old forests. Grünig et al. (2006) observed that the number 

and species composition of the PAC species complex clearly differed between 

managed and undisturbed forests. Queloz et al. (2011) on the other hand found 

no evidence of a cryptic biogeographic structure in PAC species comprising 

more than 5000 isolates of 21 PAC species sampled from across the Northern 

Hemisphere. In this study drained peatland had the highest number of different 

OTUs and isolates (III; Table 1). All the diversity indices (III; Table 3) and 

species accumulation curves (III; Fig. 2) indicated higher diversity in drained 

peatland compared to mineral soil and pristine mire, although this difference 

was not significant. Based on the Bray-Curtis value, mineral soil and pristine 

mire endophyte communities are composed of similar OTU rates while drained 

peatland differed equally from the other two study sites (III; Table 3). Artz et 

al. (2007) showed that when vegetation in different peatlands varied 

significantly, the composition of fungi also varied. Bougoure et al. (2007) 

observed a similar trend when the fungi community associated with Calluna 
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vulgaris (L.) Hull root hairs varied along a vegetation gradient: samples were 

collected from the forest, open heathland and a transition zone between the two. 

Our study sites were comparable in terms of fertility (rich Vaccinium sites) 

(Päivänen & Hånell 2012). Soil material composition is nevertheless 

considerably different on these sites as the mineral soil consists of podsol 

(humus layer, eluviated soil, subsoil and parent material) and pristine mire and 

drained peatland consist mostly of organic material that is highly decomposed 

and dark peat. Drainage changes peatland vegetation towards that of mineral 

soils as the Sphagnum species are replaced with feather mosses with time 

(Päivänen & Hånell 2012). Based on our results the endophytic communities in 

Norway spruce roots were not statistically different in pristine mire, mineral 

soil and drained peatland at the fertility level of a rich forest type (III). OTUs A. 

applanata and P. fortinii s.l. were found from all sites (III; Table 1). Besides 

the PAC species complex, only Phialocephala sphaeroides B.J. Wilson (16 

isolates) and Meliniomyces variabilis Hambleton & Sigler (9 isolates) were 

isolated from all sites (III; Table 1). It was clear that the same major fungal 

species could be found from all sites. Although no statistical difference between 

the study sites was observed, disturbance of the habitat (drainage) leads to plant 

succession and/or to the alteration of the host plant’s reactions, which in turn 

may affect the occurrence frequency and species communities of endophytes.  

 

5.3. Endophytes screened for antagonism against H.  parviporum 

 

A total of 19 isolates (17% of all isolates) from four OTUs showed an 

inhibitory effect against H. parviporum in vitro (III; Table 4). The isolates 

were considered inhibitory when H. parviporum was unable to overgrow the 

endophyte and its growth had ceased. Most of these “inhibitory” isolates (58%) 
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were obtained from drained peatland (III; Table 4), and 21% from both the 

pristine mire and the mineral soil (III; Table 4). Most likely the inhibition 

observed in paper III is due to secondary metabolites secreted by these 

endophytes. Of the endophytes isolated from drained peatland, 25% are 

expressed as inhibitory against H. parviporum. 10% of endophytes from the 

pristine mire and 13% of isolated endophytes from the mineral soil were 

considered inhibitory. We can conclude that fungal root endophytes from forest 

sites (drained peatland) not commonly inhabited by H. annosum s. l. possess a 

strong inhibitory effect on the growth of pathogen H. parviporum. It is difficult 

to draw conclusions for the reasons behind this strong inhibition of endophytes 

from drained peatland. Disturbance of the habitat (drainage) may lead to 

alterations of the host plant’s reactions, which in turn could affect the 

endophytes. Removing the inoculum source of H. annosum s. l. entirely from 

diseased forest sites seems impossible as this pathogen can remain viable for at 

least seven years in 15-mm diameter roots and vegetatively infect nearby 

seedlings (Piri & Hamberg 2015). This highlights the importance of having new 

biocontrol agents against H. annosum s.l. that could be utilised to protect 

seedling roots especially at heavily diseased sites. Based on our results some 

root endophytes can inhibit the root rot pathogen H. parviporum in vitro. The 

next step is to test whether strongly DSE-colonised host plants can escape 

infection by root rot pathogens in vitro. This will be followed by a pilot field 

trial to evaluate the persistence and performance under natural conditions. 

 

The two inhibitory strains, 222 isolated from the roots of Norway spruce from a 

minerotrophic pristine mire (Vaccinium myrtillus spruce swamp) and 513 

isolated from roots from a minerotrophic drained peatland (Vaccinium myrtillus 

type 1), and the non-inhibitory strain 5992 also isolated from drained peatland, 
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were used for further assays (IV). Based on the sequence analyses of ITS 1 and 

2, the two inhibitory endophytes grouped with Cryptosporiopsis ericae Sigler 

(strain 513) and P. sphareoides (strain 222) and the non-inhibitory strain 5992 

within the PAC species complex (III; Fig. 1, IV; Fig. 2). C. ericae was 

originally found from plant roots belonging to Ericaceae (Sigler et al. 2005), but 

in the boreal region it has been isolated from Abies balsamea (L.) P. Mill 

(Kernaghan & Patriquin 2011) and Populus tremuloides Michx. (Wang et al. 

2007) roots. Wilson et al. (2004) described P. sphareoides for the first time, as 

originating from the roots of diverse hosts (Betula papyrifera Marsh., Rubus 

idaeus L., Smilacina trifolia L. Sloboda). They obtained P. sphaeroides only 

from plants in the highly acidic (pH= 3.9), Sphagnum-dominated wetland 

habitat and not from the same plant species in the less acidic (pH= 6.5), aspen-

dominated upland site (Wilson et al. 2004). We observed P. sphaeroides evenly 

at each site (III; Table 1). The mineral soil or peat at our study sites is highly 

acidic (the pH values of that study area vary from 3.8 to 4.5). P. sphareoides 

has been previously isolated from the roots of Deschampsia flexuosa (L.) Trin 

and Trientalis europaea L. from mixed forests (acid soil, pH= 4.4) (Tejesvi et 

al. 2013) and from trees B. papyrifera, A. balsamea and Picea glauca (Moench) 

Voss in mature boreal sites (Kernaghan & Patriquin 2011). This endophyte does 

not appear to have a host preference and seems to prefer acidic habitats. 

Hereafter the endophytes chosen for further inhibitory assays are referred to as 

Phialocephala sp. 222, Cryptosporiopsis sp. 513 or Phialocephala sp. 5992. 
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5.4. Antagonism between the chosen endophytes and pathogens in paired 

cultures 

 

The pathogens (H. parviporum, P. pini, B. cinerea or C. parasitica) and 

endophytes (Cryptosporiopsis sp. 513 or Phialocephala sp. 222) were paired in 

a Petri plate at a distance of 60 mm from each other and incubated at 21 ˚C (IV; 

Fig. 1; 3). Pathogen growth was significantly reduced by the presence of the 

endophytes (IV, Fig. 3; 4A). Cryptosporiopsis sp. 513 and Phialocephala sp. 

222 evidently inhibited and even stopped the growth of pathogenic fungi (IV, 

Fig. 3; 4A).  The use of fungal endophytes as biocontrols in conifer trees has 

been demonstrated on P. glauca seedlings following inoculation with the 

rugulosin producing fungal endophyte, as this fungus was able to reduce the 

growth and development of the spruce bud worm (Choristoneura fumiferana 

(Clemens)) (Miller et al. 2002). Fungal needle endophytes of Pinus strobus L. 

have been noted to be antifungal against Saccharomycetes cerevisae Meyen ex 

E.C. Hansen (Sumarah et al. 2011) and the potential of these pine endophytes to 

provide protection to P. strobus trees against Cronartium ribicola J.C. Fisch in 

eastern North America is under evaluation (Sumarah et al. 2011). Tellenbach & 

Sieber (2012) showed that some P. subalpina isolates effectively reduced 

mortality and disease intensity caused by the two pathogenic oomycetes in 

conifer tree (P. abies) roots. Fungal endophytes could play a vital role on host 

fitness by protecting the tree host against pathogens and pests (Miller 2002, 

Arnold et al. 2003, Ganley et al. 2008, Li et al. 2012). Results from our 

inhibitory study have definitely increased the interest towards these root 

endophytes, their metabolites and the new possibilities for utilising these 

endophytes as biocontrol agents in forestry (especially in nurseries) against 

plant pathogens. 



- 58 - 
 

5.5. Effect of crude extracts from the fungal endophytes on pathogen 

growth 

 

We were able to show that the inhibition observed in this study originates from 

the metabolites secreted in the liquid cultures (IV; Fig. 4 B-C; 6), further 

highlighting the strong prospects of using these endophytes as biocontrol 

agents. Previous studies have shown that the metabolites extracted from various 

fungal endophytes have expressed antifungal activity against human and plant 

pathogens in vitro (Strobel et al. 1999, Tellenbach et al. 2013). Our results 

showed that some fungal endophytes isolated from P. abies roots secrete 

antifungal substances. Metabolites secreted by Cryptosporiopsis sp. 513 

induced apical swelling in the hyphae tips and along the mycelia of B. cinerea 

hyphae (IV; Fig. 7). The C. parasitica hyphae in the vicinity of metabolites 

from Cryptosporiopsis sp. 513 were observed to grow abnormally. H. 

parviporum hyphae in contact with the metabolite showed abnormal growth due 

to more branching and were thicker compared to the control hyphae (IV; Fig. 

7). No morphological change was observed in the case of Ph. pini hyphal 

growth. Some statistically significant differences were detected in the 

metabolites from Phialocephala sp. 222 (IV; Fig. 4C, 7). Morphological 

changes such as swollen, thick hyphae were noted in the case of H. parviporum 

(IV; Fig. 7) and C. parasitica. Branching of B. cinerea hyphae growing 

towards metabolites extracted from Phialocephala sp. 222 could be observed 

(IV; Fig. 7). Fungiside treatments against grey mold (B. cinerea) are sometimes 

needed in nurseries (Lilja et al. 2010). In this study some of the observed 

metabolites could be derived to antifungal chemicals that could possibly be 

utilised against B. cinerea and other pathogenic fungi in nurseries. However, 
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the use of any endophyte-derived fungicidal will involve the same 

environmental concerns as other chemicals (Witzell et al. 2014). 

 

5.6. Chemical analysis of the metabolites 

 

The two inhibitory endophytes (Cryptosporiopsis sp. 513 and Phialocephala sp. 

222), the non-inhibitory control endophyte (Phialocephala sp. 5992) and H. 

parviporum shared 432 metabolites and associated fragments and adducts 

(hereafter mentioned only as metabolites), which is close to half of the 

individually observed metabolites in each fungus (IV; Fig. 8B). A total of 214 

unique metabolites were detected from Phialocephala sp. 222 and 342 unique 

metabolites from Cryptosporiopsis sp. 513. The observed amounts of these 

metabolites in the crude extracts were found to be minimal in addition to 

difficulties in isolating them. Fungal endophytes have been noted to secrete 

various groups of metabolites: amides, amines, peptides, flavonoids, steroids, 

phenylpropanoids, lignans and terpenoids (Schulz et al. 1999, Tan & Zou 2001, 

Schulz et al. 2002, Strobel 2003, Yu et al. 2010, Mousa & Raizada 2013). 

Based on molecular weight and putative chemical formulae it is impossible to 

assign these metabolites to a specific group. More supporting information from 

nuclear magnetic resonance (NMR) spectroscopic assays of pure isolated 

metabolites are needed. Cryptosporiopsis sp. 513 possessed the highest number 

of unique metabolites. This is probably the reason for its stronger inhibitory 

effect against the pathogens (IV; Fig. 4A-C). Sumarah et al. (2011) extracted 

seven major metabolites produced by the foliar fungal endophytes of P. strobus, 

which resulted in the discovery of three antifungal compounds against both the 

rust Microbotryum violaceum (Pers.) G. Deml & Oberw. and S. cerevisae. 

Sumarah et al. (2010) similarly extracted nine major metabolites from the foliar 
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endophytes of Picea rubens Sarg. three of which showed toxicity to S. 

cerevisae. Tellenbach et al. (2013) isolated four major compounds from the root 

endophyte P. europaea. Sclerin and sclerotinin A significantly reduced the 

growth of Phytophthora citricola s. lato. Tellenbach et al. (2013) concluded 

that the two metabolites are either individually or synergistically responsible for 

the growth inhibition of the oomycetes pathogen under in vitro experiments. 

Sclerin was detected only in the metabolite profiles of Phialocephala sp. 222. It 

is most likely that the inhibition zones observed in my study are also due to the 

synergistic effect of unique metabolites (IV; Table 1, 2, Fig. 8B) 

 

According to elemental composition analysis of exact mass fragmentation of 

the mother ion, the loss of water i.e. hydroxyl groups found in the structure as 

well as known isotope patterns, the structures of metabolites with chlorine 

isolated from Phialocephala sp. 222 could be similar to dichlorodiaportin 

(Larsen & Breinholt 1999) or cryptosporiopsin (Strunz et al. 1969) that was 

earlier found to be a novel chlorine-containing antifungal agent. Our results 

revealed that the extracted metabolites had a profound effect on pathogen 

growth such as malformation, swelling, coiling and general retardation in 

hyphal tip extension. The observed metabolites from Cryptosporiopsis sp. 513 

can be excluded from the alkaloids group because of the absence of nitrogen. 

Other reports have described a lipopeptide (cryptocandin) isolated from 

Cryptosporiopsis cf. quercina, an endophyte of Tripterigium wiflordii Hook.f., 

with demonstrated antifungal activity against some important human 

pathogenic fungi including Candida albicans (C.P.Robin) Berkhout and 

Trichophyton sp. (Strobel et al. 1999). This lipopeptide was also active against 

a number of plant-pathogenic fungi including Sclerotinia sclerotiorum (Lib.) de 

Bary and B. cinerea (Strobel et al. 1999). Similarly echinocandin, a peptide, 
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isolated from a broth culture of endophytic Cryptosporiopsis sp., from P. 

sylvestris, expresses antimicrobial activity against certain yeasts (Noble et al. 

1991). Li et al. (2000) were also able to isolate the peptide cryptocin from 

Cryptosporiopsis cf. quercina with an inhibitory effect against plant pathogenic 

fungi. The metabolites cryptocandin, echinocandin or cryptocin described by 

previous authors are peptides indicating that they are chemically different from 

the metabolites extracted in the present study. The metabolites observed in this 

study could belong to sequiterpenes, maleic anhydride moieties or polyketides 

as described in Sumarah et al. (2010). These results suggest that endophytic 

Cryptosporiopsis sp. appear to be producers of a wide range of secondary 

metabolites with fungicidal activity as their teleomorph genus Pezicula has also 

been demonstrated to secret secondary metabolites with antibacterial and 

fungicidal activity (Noble et al. 1991, Schulz et al. 1995). 

 

5.7. Revealing true microbial diversity 

 

The rarefaction curves of fungi and bacteria in papers I and II did not converge 

at an asymptote (I, Fig.1; II, Fig. 1) indicating that increasing the sampling 

effort would have revealed more species. Unterseher et al. (2011) highlighted 

that NGS provides large amounts of data, but undersampling remains a problem 

in biodiversity research. The sequencing strategy can be modeled in terms of 

the number of sequenced samples and the per-sample sequencing depth (see 

Fumagalli 2013). This would decrease the variation within sampling groups and 

is highly recommended for further studies carried out with NGS. In this study 

(I, II), new sequencing methods revealed a dramatic increase of OTUs 

compared to previous studies and methods, for example six years post-

treatment we observed 153 fungal OTUs in the control stumps versus 43 OTUs 
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through the direct isolation method (Vasiliauskas et al. 2005) and 38–48 OTUs 

through DGGE, depending on the primer pairs used (Vainio et al. 2005). This 

new method obviously gives more informative results from the wood fungal 

community as already reported by Ovaskainen et al. (2010) and Rajala et al. 

(2012). Nevertheless, we could not identify most of the fungi to the species 

level. The large proportion of unclassified genus-level sequences (39–60%) 

suggests that a large diversity of bacteria in the stumps also remains unknown. 

Similarly, Rajala et al. (2010) could not identify many of the wood-decaying 

fungi determined by DGGE and sequencing because their DNA sequences did 

not match any of the identified fungal species deposited in the public gene bank 

database. Ovaskainen et al. (2010) compared the 454 -sequence data with a 

reference library containing well-annotated sequences of 1145 species of wood-

decaying and mycorrhizal fungi and were unable to identify more than half of 

the fungi inhabiting dead wood. Ottosson et al. (2015) were able to identify one 

third of the OTUs obtained from spruce logs by 454- sequencing  either to the 

fungal species or the genus level, using three different databases: UNITE 

(Abarenkov et al. 2010), SAF (spruce-associated fungi) (Ovaskainen et al. 

2010) and BLAST search against GenBank (NCBI) (Altschul et al. 1997). 

Ottosson et al. (2015) could assign ecological roles to more than half of the 

amplified DNA sequences. The authors concluded that in addition to wood-

decay fungi the fungal communities in decaying wood largely comprise fungal 

species with a range of other ecological roles. These results show that most of 

the microbes in dead wood and their mode of action still remain unknown. 

Hibbet & Taylor (2013) also raise the question of errors and incomplete 

taxonomic sampling in sequence databases; if an environmental sequence has 

no match in GenBank, it could still represent a described but un-sequenced 

species. To overcome these limitations Ovaskainen et al. (2010) suggested 
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improving the reliability of identifications with sequence information from 

other regions of the genome and extending the coverage of the reference 

database (Ryberg et al. 2009).  
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6. SUMMARY AND CONCLUSIONS 

 

In this thesis, I studied the impact of P. gigantea treatment on stump microbes 

using the 454-pyrosequencing approach. I further explored the potential of 

finding other novel biocontrol agents against the root rot pathogen (H. annosum 

s.l.) with isolation studies of fungal root endophytes from forestry sites such as 

pristine mires and drained peatlands where H. annosum s.l. spread has not been 

commonly reported. Additionally, the metabolites secreted by the root 

endophytes and pathogen H. parviporum were extracted and the inhibitory 

effects of the endophytes metabolites on phytopathogenic fungi were assayed. 

 

Our results 13 years after “Rotstop” application to the stumps supports the 

continued use of P. gigantea for stump pre-treatment in Finnish forests against 

H. annosum s. l. (I, II). Compared to other control methods (chemical, stump 

removal, no control), the use of the “Rotstop” strain in the clear-cutting areas to 

decrease the occurrence of H. annosum s.l. is recommended when loggings are 

performed during summertime to reduce the basidiospore dispersal of this 

pathogen. Biocontrol application seems to currently have the smallest negative 

impact on the environment. However, comprehensive studies regarding longer-

term monitoring from the same site are still needed to prove that the adverse 

initial impacts of P. gigantea are attenuated over time. 

 

The findings in paper III revealed no significant difference between the fungal 

isolate frequencies or diversity at the various site habitats. However, these 

results were based only on cultivated endophytes, which may have led to an 

undersampling of the fungal community and a combination of various methods 

(direct sequencing of DNA and cultural methods) should be applied in future 
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research. Diversity studies of root endophytes in different environments provide 

additional knowledge about their community and host interactions, but we still 

know little about their precise functional role in the roots of their hosts. Overall, 

this study provides an initial insight into the major fungal root endophytes of 

pristine mires, mineral soil and drained peatlands (III).  

 

In paper IV, a subset of the endophytes with potential inhibitory effects on the 

growth of H. parviporum and other phytopathogenic fungi were identified. The 

secreted metabolites from these endophytes were also found to possess 

inhibitory properties. The best way to achieve the set objectives of integrated 

pest management (IPM) policy would be the exploration of biotechnology 

application of these beneficial endophytes as inoculants to facilitate plant 

protection. 
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7. FUTURE PERSPECTIVES 

 

The new possibilities to protect the valuable seedling roots from root rot 

pathogens are vital in the foreseeable future in forestry. The biocontrol 

capability of inhibitory root endophytes documented in this study could serve as 

an alternative method to restrict and manage the disease caused by the root rot 

pathogen H. annosum s. lato. Root endophytes might serve as the first root 

protectors of young seedlings after planting, especially on most contaminated 

clear-cut sites. This may potentially enhance seedling survival during the most 

critical years against root rot pathogens. Further studies on this are on-going. 

 

Molecular biology is becoming an increasingly important tool in forestry for 

tackling forest ecology and pathology problems. These new methods and 

accumulated information provides a better understanding of complex 

interactions in forest ecology and provide possibilities to go deeper into 

molecular forest pathology applications in practical forestry. Presently, we still 

do not fully understand the environmental consequences in the application of a 

single strain of biocontrol agent P. gigantea to freshly cut stump surfaces. The 

biological and antagonistic activity against non-target microbes in principle 

implies a potential environmental risk. A deeper understanding on the 

mechanism of action of P. gigantea would be of importance for the further 

improvement and management of the biocontrol effect. To accomplish this, 

long-term follow up trials and basic research are still needed. This would form 

the basis for the development of environmentally friendly and sustainable 

management strategies for forestry.  
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