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Abstract. This paper presents the elliptic-curve cryptography (ECC) and Argon2 algorithm in PHP using OpenSSL and Sodium cryptographic libraries. 

The vital part of this thesis presents an analysis of the efficiency of elliptic-curve cryptography (ECC) and the Argon2 hashing algorithm in the Sodium 
library, depending on the variation of initiation parameters. 
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KRYPTOGRAFIA KRZYWYCH ELIPTYCZNYCH (ECC) I ALGORYTM ARGON2 

W JĘZYKU PHP Z WYKORZYSTANIEM BIBLIOTEKI OPENSSL I SODIUM 

Streszczenie. Celem niniejszej pracy jest analiza wydajności kryptografii krzywych eliptycznych (ECC) i wskazanie optymalnej krzywej dla kryptosystemu 
wykorzystującego język PHP wraz z biblioteką OpenSSL, a także analiza wydajności algorytmu haszującego Argon2, wchodzącego w skład biblioteki 

Sodium, w zależności od zmienności parametrów inicjujących. 
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Introduction 

The information security, its storage and dissemination is a 

crucial element of any IT system, regardless of what data the 

system processes and on what technology it is based on. The 

Internet users of these IT systems expect the information they 

provide, especially sensitive information, to be adequately 

protected. 

Currently available programming languages, such as Java, C, 

Python, Ruby, or PHP are used to build modern IT systems. The 

choice for a particular programming language depends on many 

factors, such as the requirements set for programmers, available 

programming libraries, technical support or its popularity at a 

time. 

The scripting programming language, PHP, was designed to 

create web applications and generate websites on the server side. 

For the last 20 years PHP has been extensively developed and is 

currently the leader (almost 80% [4]) amongst the programming 

languages, on basis of which all websites are built. The popularity 

of the PHP language among the programmers around the world is 

enormous, as evidenced by the ninth position in the TIOBE index 

[5] (October 2019) and the sixth position in the SPECTRUM [6] 

ranking (2018). The PHP potential has also been recognised by 

such Internet giants as Google, Facebook, Yahoo!, Wikipedia or 

WordPress. 

When designing a PHP based IT system to process 

information, a web developer is equipped with a number of 

modules and features to facilitate the information security, e.g. the 

OpenSSL library, that also uses, cryptography of elliptic curves or 

currently, the RSA algorithm. With PHP 7.2 version, the Sodium 

cross – platform library and the new Argon2 hashing algorithm are 

available to programmers. It makes PHP language a safe 

environment that implements the latest cryptography solutions. 

This paper presents the findings related to the efficiency of 

generating cryptographic key using a cryptography of elliptic 

curves and efficiency of the Argon2 algorithm, depending on the 

variability of initiating parameters. 

The conducted experiments related to the elliptic curve 

cryptography in IT systems based on PHP 7.2 were aimed at 

analysing which elliptic curves were the most efficient and could 

be recommended for using in the production environment. 

1. Elliptic – Curve Cryptography (ECC) 

Since 1985, the theory of ecliptic curves over finite bodies has 

been applied to several cryptographic issues, such as the 

distribution of integers into prime factors, primality tests, and the 

construction of cryptosystems. One of the main reasons for the 

interest in the cryptology in elliptic curves is that they are the 

source of a vast number of finite groups equipped with a rich 

additional algebraic structure. The groups of elliptic curve points 

are in many aspects similar to multiplicative finite body groups. 

However, they have two advantages over them – there are more of 

them and it seems that they provide the same degree of security 

with a short key length [2, 3].  

The cryptosystems using elliptic curves were first suggested in 

1985 by Victor Miller and Neal Koblitz. Initially, they did not 

expect that their idea would be used in practical terms, in any case, 

not earlier than in the distant future. Today, a few years after they 

had submitted their project, many useful implementations have 

been in use [2]. 

Table 1. NIST recommendations for the public key length 

 
Recommended minimum length 

(in bytes) of the public key 
Ratio 

Security level in bytes DSA RSA ECC ECC to RSA/DSA 

80 1024 1024 160–223 1:6 

112 2048 2048 224–255 1:9 

128 3072 3072 256–383 1:12 

192 7680 7680 384–511 1:20 

256 15360 15360 512+ 1:30 

 

The Table 1 shows the recommendations of the National 

Institute for Standards and Technology (NIST) regarding the 

public key length. As we can see, the conventional keys of 1024-

byte and 2048-byte size (value often found in the case of RSA) 

corresponds to cryptosystems based on elliptic curves with 160-

223-byte and 224-255-byte key sizes, respectively. In a fair 

comparison, the complexity of implementing the cryptosystem 

should also be taken into account. In practice, however, shorter 

keys can translate into faster implementations, lower energy 

consumption, smaller surfaces of silicon, etc. [1]. 

1.1. The optimal elliptic curve for the 

cryptosystem 

The use of elliptic curves increases the efficiency of 

cryptographic systems compared to other public key systems, such 

as RSA or Diffie – Hellman. It takes into account the difference in 

the key length (Table 1), while maintaining the same level of 

security. The selection of optimal elliptic curves requires 

measuring the generation time, taking into account the key length 

for the individual types of curves recommended by the 

international organisations, i.e. Brainpool curves (according to 

Brainpool), Prime, C2pnb, C2tnb (according to ANSI), Secp and 

Sect curves (according to SECG). As a result, Prime elliptic 

curves, which achieved a ratio of 2.03%, surpassed all other 

curves in terms of efficiency. 
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Table 2. Elliptic curves available in PHP 

Name of the organization Elliptic Curve Name The length of key in bytes 

Brainpool Group 

brainpoolP160r1 160 

brainpoolP160t1 160 

brainpoolP192r1 192 

brainpoolP192t1 192 

brainpoolP224r1 224 

brainpoolP224t1 224 

brainpoolP256r1 256 

brainpoolP256t1 256 

brainpoolP320r1 320 

brainpoolP320t1 320 

brainpoolP384r1 384 

brainpoolP384t1 384 

brainpoolP512r1 512 

brainpoolP512t1 512 

ANSI 

prime192v1 192 

prime192v2 192 

prime192v3 192 

prime239v1 239 

prime239v2 239 

prime239v3 239 

prime256v1 256 

ANSI 

c2pnb163v1 163 

c2pnb163v2 163 

c2pnb163v3 163 

c2pnb208w1 208 

c2pnb272w1 272 

c2pnb304w1 304 

c2pnb368w1 368 

ANSI 

c2tnb191v1 191 

c2tnb191v2 191 

c2tnb191v3 191 

c2tnb239v1 239 

c2tnb239v2 239 

c2tnb239v3 239 

c2tnb359v1 359 

c2tnb431r1 431 

SECG 

secp112r1 112 

secp112r2 112 

secp128r1 128 

secp128r2 128 

secp160k1 160 

secp160r1 160 

secp160r2 160 

secp192k1 192 

secp224k1 224 

secp224r1 224 

secp256k1 256 

secp384r1 384 

secp521r1 521 

SECG 

sect113r1 113 

sect113r2 113 

sect131r1 131 

sect131r2 131 

sect163k1 163 

sect163r1 163 

sect163r2 163 

sect193r1 193 

sect193r2 193 

sect233k1 233 

sect233r1 233 

sect239k1 239 

sect283k1 283 

sect283r1 283 

sect409k1 409 

sect409r1 409 

sect571k1 571 

sect571r1 571 

 

The experiment was carried out on a Dell PowerEdge 1950 

server – with a typical workday load (Web server), with the 

following parameters: 

 processor – Intel Xeon E5430 @2.66 GHz, 8CPU; 8GB RAM; 

 operating system – FreeBSD 11.1 – RELEASE-p10; 

 Software: 

o PHP 7.2; php72-openssl-7.2.5; 

o OpenSSL 1.0.2k. 

Cryptography based on elliptic curves, i.e. Brainpool, Prime 

C2pnb, Secp and Sect, is available in PHP since its 7.1 version, 

and the OpenSSL library. There are many types of elliptical 

curves recommended by the international standardisation 

organisations or communities. The American National Standard 

Institute (ANSI) recommends Prime, C2pnb, C2tnb elliptic 

curves, Standard for Efficient Cryptography Group (SECG) 

recommends Secp and Sect elliptic curves or Brainpool Group, 

which recommends Brainpool elliptic curves. 

1.2. The course of the experiment 

In order to measure the efficiency of the key generation by 

using elliptic curves, a PHP 7.2 programming language, using the 

OpenSSL cryptographic library, has been developed. The 

experiment involved the measurement of time to generate 100 

keys for each elliptic curve separately, during a typical operation 

of the production server. 

The efficiency, marked as a performance ratio and expressed 

as a percentage for each elliptic curve, was calculated by dividing 

the average generation time by the key length of the elliptic curve. 

At the end of the experiment, the key performance for each group 

of elliptic curves was determined by dividing the performance 

ratio by the number of elliptic curves for that group. 

1.3. The outcome of the experiment 

We can conclude, from the data in Tables 3-8, that the larger 

the key size, the more time it takes to generate it. Specifically for 

curves with the key length of 384-511 bytes, the time needed to 

generate it increases significantly, e.g. for the elliptic curve 

sect571r1 the time needed was almost 56 milliseconds. PHP 

Group, which manages the implementation and development of 

the PHP programming language, based on the NIST 

recommendation, suggests the use of elliptic curves prime256v1 

(NIST P-256) and secp384r1 (NIST P-384). 

Table 3. Average performance ratio for Brainpool elliptic curves  

Elliptic Curve 

Name 

The length of  

key in bytes(A) 

Average time to 

 generate keys  

(in milliseconds) (B) 

Ratio 

in % (B/A) 

brainpoolP160r1 160 4.03 2.52 

brainpoolP160t1 160 3.95 2.47 

brainpoolP192r1 192 4.38 2.28 

brainpoolP192t1 192 4.30 2.24 

brainpoolP224r1 224 5.26 2.35 

brainpoolP224t1 224 5.10 2.28 

brainpoolP256r1 256 5.68 2.22 

brainpoolP256t1 256 5.50 2.15 

brainpoolP320r1 320 7.36 2.30 

brainpoolP320t1 320 7.01 2.19 

brainpoolP384r1 384 9.70 2.53 

brainpoolP384t1 384 9.17 2.39 

brainpoolP512r1 512 14.40 2.81 

brainpoolP512t1 512 13.46 2.63 

Average ratio in  % 2.38 

Table 4. Average performance ratio for Prime elliptic curves  

Elliptic Curve 

Name 

The length of  

key in bytes(A) 

Average time to 

 generate keys  

(in milliseconds) (B) 

Ratio 

in % (B/A) 

prime192v1 192 4.20 2.19 

prime192v2 192 4.21 2.19 

prime192v3 192 4.21 2.19 

prime239v1 239 5.18 2.17 

prime239v2 239 5.18 2.17 

prime239v3 239 5.19 2.17 

prime256v1 256 2.85 1.11 

Average ratio in  % 2.03 

Table 5. Average performance ratio for C2pnb elliptic curves performance 

Elliptic Curve 

Name 

The length of  

key in bytes (A) 

Average time to 

 generate keys  

(in milliseconds) (B) 

Ratio 

in % (B/A) 

c2pnb163v1 163 5.85 3.59 

c2pnb163v2 163 5.84 3.58 

c2pnb163v3 163 5.83 3.58 

c2pnb176v1 176 5.79 3.29 

c2pnb208w1 208 6.74 3.24 

c2pnb272w1 272 12.15 4.47 

c2pnb304w1 304 13.61 4.48 

c2pnb368w1 368 16.93 4.60 

Average ratio in  % 3.85 
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Table 6. Average performance ratio for C2tnb elliptic curves  

Elliptic Curve 

Name 

The length of  

key in bytes(A) 

Average time to 

 generate keys  

(in milliseconds) (B) 

Ratio 

in % (B/A) 

c2tnb191v1 191 6.23 3.26 

c2tnb191v2 191 6.19 3.24 

c2tnb191v3 191 6.18 3.23 

c2tnb239v1 239 7.51 3.14 

c2tnb239v2 239 7.49 3.13 

c2tnb239v3 239 7.45 3.12 

c2tnb359v1 359 16.02 4.46 

c2tnb431r1 431 26.38 6.12 

Average ratio in  % 3.71 

Table 7. Average performance ratio for Secp elliptic curves 

Elliptic Curve 

Name 

The length of  

key in bytes(A) 

Average time to 

 generate keys  

(in milliseconds) (B) 

Ratio 

in % (B/A) 

secp112r1 112 3.29 2.94 

secp112r2 112 3.30 2.95 

secp128r1 128 3.36 2.62 

secp128r2 128 3.38 2.64 

secp160k1 160 4.02 2.51 

secp160r1 160 3.92 2.45 

secp160r2 160 3.92 2.45 

secp192k1 192 4.35 2.27 

secp224k1 224 5.22 2.33 

secp224r1 224 4.99 2.23 

secp256k1 256 5.66 2.21 

secp384r1 384 8.94 2.33 

secp521r1 521 16.92 3.25 

Average ratio in  % 2.55 

Table 8. Average performance ratio for Sect elliptic curves 

Elliptic Curve 

Name 

The length of  

key in bytes(A) 

Average time to 

 generate keys  

(in milliseconds) (B) 

Ratio 

in % (B/A) 

sect113r1 113 3.48 3.08 

sect113r2 113 3.47 3.07 

sect131r1 131 4.81 3.67 

sect131r2 131 4.88 3.72 

sect163k1 163 5.66 3.47 

sect163r1 163 5.81 3.57 

sect163r2 163 5.83 3.58 

sect193r1 193 6.56 3.40 

sect193r2 193 6.55 3.39 

sect233k1 233 7.14 3.07 

sect233r1 233 7.36 3.16 

sect239k1 239 7.09 2.97 

sect283k1 283 12.24 4.33 

sect283r1 283 12.99 4.59 

sect409k1 409 24.22 5.92 

sect409r1 409 26.57 6.50 

sect571k1 571 50.14 8.78 

sect571r1 571 55.96 9.80 

Average ratio in  % 4.45 

 

 

Fig. 1. Average performance ratio for all analysed groups of elliptic curves 

The interesting conclusion of the experiment was the 

demonstration that Brainpool curves do not differ in efficiency 

from those recommended by the PHP Group as the most efficient 

elliptic curves Prime and Secp, and are in the second position 

between Prime and Secp in the ranking of average performance. 

2. Argon2 algorithm 

The Argon2 algorithm became the winner in the contest 

organised by the Password Hashing Competition [7], lasting from 

2013 to 2015. The idea of the contest was to select a hashing 

algorithm that would be in line with the requirements of the 

National Institute for Standards and Technology (NIST) in the 

United States, for AES and SHA-3 algorithm, but more effective 

and sophisticated. Of the 24 projects submitted, it was the project 

by Alex Biryukov, Daniel Dinu and Dmitry Khovratovich from 

the University of Luxembourg in Luxembourg that won the most 

recognition. The algorithm has been made available on the 

Internet [7] in the form of the source code in C language. 

Argon2 protects against brute-force attacks by using a 

predefined memory size, GPU usage time and an appropriate 

degree of Instruction Level Paralleism. It uses three parameters to 

control: the memory required, execution time and the number of 

threads used. There are two variants of this algorithm: Argon2i 

and Argon2d. Argon2i is effective against side-channel attacks 

because it uses data independent access to memory, which is why 

it is well suited for password hashing. Argon2d provides better 

protection against GPU-based attacks. 

The Argon2i hashing algorithm has been implemented in PHP, 

starting from the 7.2 version, as part of the Sodium library. 

A range of Argon2 algorithms is used in tasks requiring massive 

storage capacity. It is optimised for x86 architecture and works 

efficiently on older processors. The key feature of Argon2 is the 

simultaneous use of multiple processor cores, which, 

consequently, is an additional protection that prevents a 

time/memory/date/trade off attack type of intrusion. 

Argon2 uses optimally all available memory, Argon2i uses the 

memory at a speed of two processor cycles per byte, while 

Argon2d is three times faster. These features, among others, are 

included in the software used for cryptocurrencies. Argon2 is 

exceptionally scalable, both in terms of memory and CPU usage, 

because it can use up to 224 threads simultaneously. 

2.1. The efficiency of Argon2 algorithm 

The efficiency of Argon2 algorithm depends on the technical 

conditions in which it functions. Primarily, on the speed of the 

processor and the memory acquired. The performance evaluation 

will be basically to measure the algorithm’s workload time 

dependent on the initialised parameters. The experiment is carried 

out on a Dell PowerEdge 1950 server – with a typical workday 

load (Web server), with the following parameters: 

 processor – Intel Xeon E5430 @2.66 GHz, 8CPU; 8GB RAM; 

 operating system – FreeBSD 11.1 – RELEASE-p10; 

 Software: 

o PHP 7.2; php72-sodium-7.2.5; 

o Sodium library – libsodium – 1.0.16. 

2.2. The course of the experiment 

In the tcsh shell, the Argon2 program was cyclically called 

with parameters determining the memory acquired, the number of 

threads and the number of iterations, with the output key length set 

for all tests to 32 bytes. 

The testing procedure had the following pattern: 

echo -n "PSAEI_w_Gliwicach" | argon2 MySaltPSAEI -v 13  

-m 14 -l 32 -i -t 1 -p 1 

where MySaltPSAEI – the first parameter specifying grain (salt), v 

– algorithm version number (default 13), m – memory usage in 

kilobytes, calculated as 2^N, l – length of the shortcut at the 

output, i or d – Argon2i algorithm used or Argon2d, t – number of 

iteration, p – number of threads. 

Figure 2 shows the results of a typical application of the 

Argon2 algorithm. As we can see, the algorithm’s running time in 

a single iteration was 0.055 seconds, using 16MB of memory, 

with the number of threads being one. 
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Fig. 2. Application of the Argon2 algorithm in the tcsh shell 

The next stage of the experiment was the cyclical calling of 

the hash function from the PHP programming language, using the 

Argon2i algorithm. The number of iterations for each type of 

measurement was 10, with the results divided by the number of 

threads and the amount of the memory used. 

2.3. The outcome of the experiment 

The results of the tests covering the Argon2d and Argon2i 

algorithms, performed from the systems (console) level, are 

presented in the Table 9. 

The results of the tests covering the Argon2i algorithm, 

performed from the PHP language level, for one, three and six 

iterations are presented in the Table 10. 

 

Table 9. Performance test for Argon2d and Argon2i algorithms, on the systems 

(console) level. 

Thread Memory in MB 
Argon2d (1 iteration) 

in seconds 

Argon2i (3 iterations) 

in seconds 

1 16 0.031 0.094 

1 32 0.078 0.172 

1 64 0.172 0.383 

1 128 0.359 0.773 

1 256 0.719 1.594 

1 512 1.445 3.227 

1 1024 2.914 6.469 

2 16 0.039 0.125 

2 32 0.109 0.219 

2 64 0.211 0.453 

2 128 0.445 0.914 

2 256 0.914 1.828 

2 512 1.828 3.688 

2 1024 3.594 7.492 

4 16 0.086 0.172 

4 32 0.180 0.328 

4 64 0.375 0.664 

4 128 0.773 1.328 

4 256 1.664 2.773 

4 512 3.344 5.516 

4 1024 6.805 11.172 

8 16 0.164 0.258 

8 32 0.414 0.516 

8 64 0.633 0.984 

8 128 1.297 2.156 

8 256 2.648 4.461 

8 512 5.148 9.078 

8 1024 10.758 18.383 

 

Table 10. Performance test for Argon2i algorithm in PHP. 

 

Thread 
Memory  

in MB 

Argon2i (in seconds) 

1 iteration 3 iterations 6 iterations 

1 16 0.0404 0.0808 0.1613 

1 32 0.0826 0.1840 0.3359 

1 64 0.1690 0.3781 0.6922 

1 128 0.3471 0.7737 1.4176 

1 256 0.7076 1.5748 2.8905 

1 512 1.4336 3.1983 5.8553 

1 1024 2.9056 6.4867 11.8148 

2 16 0.0318 0.0692 0.1349 

2 32 0.0636 0.1267 0.2332 

2 64 0.1279 0.2465 0.4410 

2 128 0.2620 0.4949 0.8553 

2 256 0.5318 0.9959 1.6977 

2 512 1.0665 1.9977 3.3970 

2 1024 2.1589 4.0598 6.8337 

4 16 0.0324 0.0544 0.0918 

4 32 0.0632 0.1043 0.1636 

4 64 0.1270 0.2048 0.3116 

4 128 0.2585 0.4082 0.6034 

4 256 0.5235 0.8305 1.2202 

4 512 1.0610 1.6618 2.4375 

4 1024 2.1318 3.2923 4.9209 

8 16 0.0311 0.0556 0.0807 

8 32 0.0611 0.1020 0.1454 

8 64 0.1223 0.2005 0.2804 

8 128 0.2472 0.4016 0.5534 

8 256 0.5051 0.7974 1.1246 

8 512 1.0222 1.5885 2.2446 

8 1024 2.0625 3.0723 4.5112 

 

3. Conclusion 

The first aim was to analyse the performance of the elliptic 

curve cryptography in a programming environment, using the PHP 

7.2 version and the OpenSSL library. The findings indicate that 

the optimal elliptic curve to use in the research environment 

constructed in this way is the prime256v1 curve with a 1.11% 

efficiency factor, which corresponds to a security level of RSA 

3072 bytes. 

Table 11. The most efficient elliptic curves in respective groups (bytes) 

Key  length in bytes Name of elliptic curve System 

160–223 prime192v1 (v2, v3) ANSI 

224–255 prime239v1 (v2, v2) ANSI 

256–383 prime256v1 ANSI 

384–511 secp384r1 SECG 

512+ brainpoolP512t1 Brainpool 

In the 160 – 223 bytes group, the most efficient (with the same 

ratio) elliptic curves are prime192v1, prime192v2 and 

prime192v3, in the group of 224 – 255 bytes – prime239v1, 

prime239v2 and prime239v3, in the group of 256 – 383 bytes – 

prime256v1, in group 384 – 511 bytes - secp384r1, and in the 

512+ bytes group – brainpoolIP512t1. 

The second aim was to analyse the performance of the Argon2 

hashing algorithm, which is part of the Sodium cryptographic 

library and utilised both from the system console and the PHP 7.2. 

version. The time required to perform the hashing operations in 

the console version are similar to those in the PHP version, with 

the increase in time and depending on the memory acquired for 

use by the Argon2 algorithm.  

It is also important to note that the algorithm efficiency is 

largely influenced by the number of threads used. With 1 GB of 

memory used, six iterations and one thread, the time taken to 

perform this operation was almost 12 seconds. With four threads, 

it dropped by almost half and with eight threads it reached just 

over 4.5 seconds. Of course, the above mentioned example is only 

a limiting example of the Argon2 algorithm in the production 

environment, as it is charged with a heavy use of processor power 

and the memory. The use of 16MB or 32MB memory at three 

iterations and two threads is the optimal solution in terms of time 

and the use of hardware resources. 
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