
p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2020 91

artykuł recenzowany/revised paper IAPGOS, 3/2020, 91–94

http://doi.org/10.35784/iapgos.897

ELLIPTIC-CURVE CRYPTOGRAPHY (ECC) AND ARGON2 ALGORITHM

IN PHP USING OPENSSL AND SODIUM LIBRARIES

Mariusz Duka
Silesian University of Technology, Faculty of Automatic Control, Electronic and Computer Science, Gliwice, Poland

Abstract. This paper presents the elliptic-curve cryptography (ECC) and Argon2 algorithm in PHP using OpenSSL and Sodium cryptographic libraries.

The vital part of this thesis presents an analysis of the efficiency of elliptic-curve cryptography (ECC) and the Argon2 hashing algorithm in the Sodium
library, depending on the variation of initiation parameters.

Keywords: elliptic-curve cryptography, ECC, OpenSSL, Argon2, Sodium

KRYPTOGRAFIA KRZYWYCH ELIPTYCZNYCH (ECC) I ALGORYTM ARGON2

W JĘZYKU PHP Z WYKORZYSTANIEM BIBLIOTEKI OPENSSL I SODIUM

Streszczenie. Celem niniejszej pracy jest analiza wydajności kryptografii krzywych eliptycznych (ECC) i wskazanie optymalnej krzywej dla kryptosystemu
wykorzystującego język PHP wraz z biblioteką OpenSSL, a także analiza wydajności algorytmu haszującego Argon2, wchodzącego w skład biblioteki

Sodium, w zależności od zmienności parametrów inicjujących.

Słowa kluczowe: kryptografia krzywych eliptycznych, ECC, OpenSSL, Argon2, Sodium

Introduction

The information security, its storage and dissemination is a

crucial element of any IT system, regardless of what data the

system processes and on what technology it is based on. The

Internet users of these IT systems expect the information they

provide, especially sensitive information, to be adequately

protected.

Currently available programming languages, such as Java, C,

Python, Ruby, or PHP are used to build modern IT systems. The

choice for a particular programming language depends on many

factors, such as the requirements set for programmers, available

programming libraries, technical support or its popularity at a

time.

The scripting programming language, PHP, was designed to

create web applications and generate websites on the server side.

For the last 20 years PHP has been extensively developed and is

currently the leader (almost 80% [4]) amongst the programming

languages, on basis of which all websites are built. The popularity

of the PHP language among the programmers around the world is

enormous, as evidenced by the ninth position in the TIOBE index

[5] (October 2019) and the sixth position in the SPECTRUM [6]

ranking (2018). The PHP potential has also been recognised by

such Internet giants as Google, Facebook, Yahoo!, Wikipedia or

WordPress.

When designing a PHP based IT system to process

information, a web developer is equipped with a number of

modules and features to facilitate the information security, e.g. the

OpenSSL library, that also uses, cryptography of elliptic curves or

currently, the RSA algorithm. With PHP 7.2 version, the Sodium

cross – platform library and the new Argon2 hashing algorithm are

available to programmers. It makes PHP language a safe

environment that implements the latest cryptography solutions.

This paper presents the findings related to the efficiency of

generating cryptographic key using a cryptography of elliptic

curves and efficiency of the Argon2 algorithm, depending on the

variability of initiating parameters.

The conducted experiments related to the elliptic curve

cryptography in IT systems based on PHP 7.2 were aimed at

analysing which elliptic curves were the most efficient and could

be recommended for using in the production environment.

1. Elliptic – Curve Cryptography (ECC)

Since 1985, the theory of ecliptic curves over finite bodies has

been applied to several cryptographic issues, such as the

distribution of integers into prime factors, primality tests, and the

construction of cryptosystems. One of the main reasons for the

interest in the cryptology in elliptic curves is that they are the

source of a vast number of finite groups equipped with a rich

additional algebraic structure. The groups of elliptic curve points

are in many aspects similar to multiplicative finite body groups.

However, they have two advantages over them – there are more of

them and it seems that they provide the same degree of security

with a short key length [2, 3].

The cryptosystems using elliptic curves were first suggested in

1985 by Victor Miller and Neal Koblitz. Initially, they did not

expect that their idea would be used in practical terms, in any case,

not earlier than in the distant future. Today, a few years after they

had submitted their project, many useful implementations have

been in use [2].

Table 1. NIST recommendations for the public key length

Recommended minimum length

(in bytes) of the public key
Ratio

Security level in bytes DSA RSA ECC ECC to RSA/DSA

80 1024 1024 160–223 1:6

112 2048 2048 224–255 1:9

128 3072 3072 256–383 1:12

192 7680 7680 384–511 1:20

256 15360 15360 512+ 1:30

The Table 1 shows the recommendations of the National

Institute for Standards and Technology (NIST) regarding the

public key length. As we can see, the conventional keys of 1024-

byte and 2048-byte size (value often found in the case of RSA)

corresponds to cryptosystems based on elliptic curves with 160-

223-byte and 224-255-byte key sizes, respectively. In a fair

comparison, the complexity of implementing the cryptosystem

should also be taken into account. In practice, however, shorter

keys can translate into faster implementations, lower energy

consumption, smaller surfaces of silicon, etc. [1].

1.1. The optimal elliptic curve for the

cryptosystem

The use of elliptic curves increases the efficiency of

cryptographic systems compared to other public key systems, such

as RSA or Diffie – Hellman. It takes into account the difference in

the key length (Table 1), while maintaining the same level of

security. The selection of optimal elliptic curves requires

measuring the generation time, taking into account the key length

for the individual types of curves recommended by the

international organisations, i.e. Brainpool curves (according to

Brainpool), Prime, C2pnb, C2tnb (according to ANSI), Secp and

Sect curves (according to SECG). As a result, Prime elliptic

curves, which achieved a ratio of 2.03%, surpassed all other

curves in terms of efficiency.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lublin University of Technology Journals

https://core.ac.uk/display/337352376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.35784/iapgos.897

92 IAPGOŚ 3/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

Table 2. Elliptic curves available in PHP

Name of the organization Elliptic Curve Name The length of key in bytes

Brainpool Group

brainpoolP160r1 160

brainpoolP160t1 160

brainpoolP192r1 192

brainpoolP192t1 192

brainpoolP224r1 224

brainpoolP224t1 224

brainpoolP256r1 256

brainpoolP256t1 256

brainpoolP320r1 320

brainpoolP320t1 320

brainpoolP384r1 384

brainpoolP384t1 384

brainpoolP512r1 512

brainpoolP512t1 512

ANSI

prime192v1 192

prime192v2 192

prime192v3 192

prime239v1 239

prime239v2 239

prime239v3 239

prime256v1 256

ANSI

c2pnb163v1 163

c2pnb163v2 163

c2pnb163v3 163

c2pnb208w1 208

c2pnb272w1 272

c2pnb304w1 304

c2pnb368w1 368

ANSI

c2tnb191v1 191

c2tnb191v2 191

c2tnb191v3 191

c2tnb239v1 239

c2tnb239v2 239

c2tnb239v3 239

c2tnb359v1 359

c2tnb431r1 431

SECG

secp112r1 112

secp112r2 112

secp128r1 128

secp128r2 128

secp160k1 160

secp160r1 160

secp160r2 160

secp192k1 192

secp224k1 224

secp224r1 224

secp256k1 256

secp384r1 384

secp521r1 521

SECG

sect113r1 113

sect113r2 113

sect131r1 131

sect131r2 131

sect163k1 163

sect163r1 163

sect163r2 163

sect193r1 193

sect193r2 193

sect233k1 233

sect233r1 233

sect239k1 239

sect283k1 283

sect283r1 283

sect409k1 409

sect409r1 409

sect571k1 571

sect571r1 571

The experiment was carried out on a Dell PowerEdge 1950

server – with a typical workday load (Web server), with the

following parameters:

 processor – Intel Xeon E5430 @2.66 GHz, 8CPU; 8GB RAM;

 operating system – FreeBSD 11.1 – RELEASE-p10;

 Software:

o PHP 7.2; php72-openssl-7.2.5;

o OpenSSL 1.0.2k.

Cryptography based on elliptic curves, i.e. Brainpool, Prime

C2pnb, Secp and Sect, is available in PHP since its 7.1 version,

and the OpenSSL library. There are many types of elliptical

curves recommended by the international standardisation

organisations or communities. The American National Standard

Institute (ANSI) recommends Prime, C2pnb, C2tnb elliptic

curves, Standard for Efficient Cryptography Group (SECG)

recommends Secp and Sect elliptic curves or Brainpool Group,

which recommends Brainpool elliptic curves.

1.2. The course of the experiment

In order to measure the efficiency of the key generation by

using elliptic curves, a PHP 7.2 programming language, using the

OpenSSL cryptographic library, has been developed. The

experiment involved the measurement of time to generate 100

keys for each elliptic curve separately, during a typical operation

of the production server.

The efficiency, marked as a performance ratio and expressed

as a percentage for each elliptic curve, was calculated by dividing

the average generation time by the key length of the elliptic curve.

At the end of the experiment, the key performance for each group

of elliptic curves was determined by dividing the performance

ratio by the number of elliptic curves for that group.

1.3. The outcome of the experiment

We can conclude, from the data in Tables 3-8, that the larger

the key size, the more time it takes to generate it. Specifically for

curves with the key length of 384-511 bytes, the time needed to

generate it increases significantly, e.g. for the elliptic curve

sect571r1 the time needed was almost 56 milliseconds. PHP

Group, which manages the implementation and development of

the PHP programming language, based on the NIST

recommendation, suggests the use of elliptic curves prime256v1

(NIST P-256) and secp384r1 (NIST P-384).

Table 3. Average performance ratio for Brainpool elliptic curves

Elliptic Curve

Name

The length of

key in bytes(A)

Average time to

 generate keys

(in milliseconds) (B)

Ratio

in % (B/A)

brainpoolP160r1 160 4.03 2.52

brainpoolP160t1 160 3.95 2.47

brainpoolP192r1 192 4.38 2.28

brainpoolP192t1 192 4.30 2.24

brainpoolP224r1 224 5.26 2.35

brainpoolP224t1 224 5.10 2.28

brainpoolP256r1 256 5.68 2.22

brainpoolP256t1 256 5.50 2.15

brainpoolP320r1 320 7.36 2.30

brainpoolP320t1 320 7.01 2.19

brainpoolP384r1 384 9.70 2.53

brainpoolP384t1 384 9.17 2.39

brainpoolP512r1 512 14.40 2.81

brainpoolP512t1 512 13.46 2.63

Average ratio in % 2.38

Table 4. Average performance ratio for Prime elliptic curves

Elliptic Curve

Name

The length of

key in bytes(A)

Average time to

 generate keys

(in milliseconds) (B)

Ratio

in % (B/A)

prime192v1 192 4.20 2.19

prime192v2 192 4.21 2.19

prime192v3 192 4.21 2.19

prime239v1 239 5.18 2.17

prime239v2 239 5.18 2.17

prime239v3 239 5.19 2.17

prime256v1 256 2.85 1.11

Average ratio in % 2.03

Table 5. Average performance ratio for C2pnb elliptic curves performance

Elliptic Curve

Name

The length of

key in bytes (A)

Average time to

 generate keys

(in milliseconds) (B)

Ratio

in % (B/A)

c2pnb163v1 163 5.85 3.59

c2pnb163v2 163 5.84 3.58

c2pnb163v3 163 5.83 3.58

c2pnb176v1 176 5.79 3.29

c2pnb208w1 208 6.74 3.24

c2pnb272w1 272 12.15 4.47

c2pnb304w1 304 13.61 4.48

c2pnb368w1 368 16.93 4.60

Average ratio in % 3.85

p-ISSN 2083-0157, e-ISSN 2391-6761 IAPGOŚ 3/2020 93

Table 6. Average performance ratio for C2tnb elliptic curves

Elliptic Curve

Name

The length of

key in bytes(A)

Average time to

 generate keys

(in milliseconds) (B)

Ratio

in % (B/A)

c2tnb191v1 191 6.23 3.26

c2tnb191v2 191 6.19 3.24

c2tnb191v3 191 6.18 3.23

c2tnb239v1 239 7.51 3.14

c2tnb239v2 239 7.49 3.13

c2tnb239v3 239 7.45 3.12

c2tnb359v1 359 16.02 4.46

c2tnb431r1 431 26.38 6.12

Average ratio in % 3.71

Table 7. Average performance ratio for Secp elliptic curves

Elliptic Curve

Name

The length of

key in bytes(A)

Average time to

 generate keys

(in milliseconds) (B)

Ratio

in % (B/A)

secp112r1 112 3.29 2.94

secp112r2 112 3.30 2.95

secp128r1 128 3.36 2.62

secp128r2 128 3.38 2.64

secp160k1 160 4.02 2.51

secp160r1 160 3.92 2.45

secp160r2 160 3.92 2.45

secp192k1 192 4.35 2.27

secp224k1 224 5.22 2.33

secp224r1 224 4.99 2.23

secp256k1 256 5.66 2.21

secp384r1 384 8.94 2.33

secp521r1 521 16.92 3.25

Average ratio in % 2.55

Table 8. Average performance ratio for Sect elliptic curves

Elliptic Curve

Name

The length of

key in bytes(A)

Average time to

 generate keys

(in milliseconds) (B)

Ratio

in % (B/A)

sect113r1 113 3.48 3.08

sect113r2 113 3.47 3.07

sect131r1 131 4.81 3.67

sect131r2 131 4.88 3.72

sect163k1 163 5.66 3.47

sect163r1 163 5.81 3.57

sect163r2 163 5.83 3.58

sect193r1 193 6.56 3.40

sect193r2 193 6.55 3.39

sect233k1 233 7.14 3.07

sect233r1 233 7.36 3.16

sect239k1 239 7.09 2.97

sect283k1 283 12.24 4.33

sect283r1 283 12.99 4.59

sect409k1 409 24.22 5.92

sect409r1 409 26.57 6.50

sect571k1 571 50.14 8.78

sect571r1 571 55.96 9.80

Average ratio in % 4.45

Fig. 1. Average performance ratio for all analysed groups of elliptic curves

The interesting conclusion of the experiment was the

demonstration that Brainpool curves do not differ in efficiency

from those recommended by the PHP Group as the most efficient

elliptic curves Prime and Secp, and are in the second position

between Prime and Secp in the ranking of average performance.

2. Argon2 algorithm

The Argon2 algorithm became the winner in the contest

organised by the Password Hashing Competition [7], lasting from

2013 to 2015. The idea of the contest was to select a hashing

algorithm that would be in line with the requirements of the

National Institute for Standards and Technology (NIST) in the

United States, for AES and SHA-3 algorithm, but more effective

and sophisticated. Of the 24 projects submitted, it was the project

by Alex Biryukov, Daniel Dinu and Dmitry Khovratovich from

the University of Luxembourg in Luxembourg that won the most

recognition. The algorithm has been made available on the

Internet [7] in the form of the source code in C language.

Argon2 protects against brute-force attacks by using a

predefined memory size, GPU usage time and an appropriate

degree of Instruction Level Paralleism. It uses three parameters to

control: the memory required, execution time and the number of

threads used. There are two variants of this algorithm: Argon2i

and Argon2d. Argon2i is effective against side-channel attacks

because it uses data independent access to memory, which is why

it is well suited for password hashing. Argon2d provides better

protection against GPU-based attacks.

The Argon2i hashing algorithm has been implemented in PHP,

starting from the 7.2 version, as part of the Sodium library.

A range of Argon2 algorithms is used in tasks requiring massive

storage capacity. It is optimised for x86 architecture and works

efficiently on older processors. The key feature of Argon2 is the

simultaneous use of multiple processor cores, which,

consequently, is an additional protection that prevents a

time/memory/date/trade off attack type of intrusion.

Argon2 uses optimally all available memory, Argon2i uses the

memory at a speed of two processor cycles per byte, while

Argon2d is three times faster. These features, among others, are

included in the software used for cryptocurrencies. Argon2 is

exceptionally scalable, both in terms of memory and CPU usage,

because it can use up to 224 threads simultaneously.

2.1. The efficiency of Argon2 algorithm

The efficiency of Argon2 algorithm depends on the technical

conditions in which it functions. Primarily, on the speed of the

processor and the memory acquired. The performance evaluation

will be basically to measure the algorithm’s workload time

dependent on the initialised parameters. The experiment is carried

out on a Dell PowerEdge 1950 server – with a typical workday

load (Web server), with the following parameters:

 processor – Intel Xeon E5430 @2.66 GHz, 8CPU; 8GB RAM;

 operating system – FreeBSD 11.1 – RELEASE-p10;

 Software:

o PHP 7.2; php72-sodium-7.2.5;

o Sodium library – libsodium – 1.0.16.

2.2. The course of the experiment

In the tcsh shell, the Argon2 program was cyclically called

with parameters determining the memory acquired, the number of

threads and the number of iterations, with the output key length set

for all tests to 32 bytes.

The testing procedure had the following pattern:

echo -n "PSAEI_w_Gliwicach" | argon2 MySaltPSAEI -v 13

-m 14 -l 32 -i -t 1 -p 1

where MySaltPSAEI – the first parameter specifying grain (salt), v

– algorithm version number (default 13), m – memory usage in

kilobytes, calculated as 2^N, l – length of the shortcut at the

output, i or d – Argon2i algorithm used or Argon2d, t – number of

iteration, p – number of threads.

Figure 2 shows the results of a typical application of the

Argon2 algorithm. As we can see, the algorithm’s running time in

a single iteration was 0.055 seconds, using 16MB of memory,

with the number of threads being one.

94 IAPGOŚ 3/2020 p-ISSN 2083-0157, e-ISSN 2391-6761

Fig. 2. Application of the Argon2 algorithm in the tcsh shell

The next stage of the experiment was the cyclical calling of

the hash function from the PHP programming language, using the

Argon2i algorithm. The number of iterations for each type of

measurement was 10, with the results divided by the number of

threads and the amount of the memory used.

2.3. The outcome of the experiment

The results of the tests covering the Argon2d and Argon2i

algorithms, performed from the systems (console) level, are

presented in the Table 9.

The results of the tests covering the Argon2i algorithm,

performed from the PHP language level, for one, three and six

iterations are presented in the Table 10.

Table 9. Performance test for Argon2d and Argon2i algorithms, on the systems

(console) level.

Thread Memory in MB
Argon2d (1 iteration)

in seconds

Argon2i (3 iterations)

in seconds

1 16 0.031 0.094

1 32 0.078 0.172

1 64 0.172 0.383

1 128 0.359 0.773

1 256 0.719 1.594

1 512 1.445 3.227

1 1024 2.914 6.469

2 16 0.039 0.125

2 32 0.109 0.219

2 64 0.211 0.453

2 128 0.445 0.914

2 256 0.914 1.828

2 512 1.828 3.688

2 1024 3.594 7.492

4 16 0.086 0.172

4 32 0.180 0.328

4 64 0.375 0.664

4 128 0.773 1.328

4 256 1.664 2.773

4 512 3.344 5.516

4 1024 6.805 11.172

8 16 0.164 0.258

8 32 0.414 0.516

8 64 0.633 0.984

8 128 1.297 2.156

8 256 2.648 4.461

8 512 5.148 9.078

8 1024 10.758 18.383

Table 10. Performance test for Argon2i algorithm in PHP.

Thread
Memory

in MB

Argon2i (in seconds)

1 iteration 3 iterations 6 iterations

1 16 0.0404 0.0808 0.1613

1 32 0.0826 0.1840 0.3359

1 64 0.1690 0.3781 0.6922

1 128 0.3471 0.7737 1.4176

1 256 0.7076 1.5748 2.8905

1 512 1.4336 3.1983 5.8553

1 1024 2.9056 6.4867 11.8148

2 16 0.0318 0.0692 0.1349

2 32 0.0636 0.1267 0.2332

2 64 0.1279 0.2465 0.4410

2 128 0.2620 0.4949 0.8553

2 256 0.5318 0.9959 1.6977

2 512 1.0665 1.9977 3.3970

2 1024 2.1589 4.0598 6.8337

4 16 0.0324 0.0544 0.0918

4 32 0.0632 0.1043 0.1636

4 64 0.1270 0.2048 0.3116

4 128 0.2585 0.4082 0.6034

4 256 0.5235 0.8305 1.2202

4 512 1.0610 1.6618 2.4375

4 1024 2.1318 3.2923 4.9209

8 16 0.0311 0.0556 0.0807

8 32 0.0611 0.1020 0.1454

8 64 0.1223 0.2005 0.2804

8 128 0.2472 0.4016 0.5534

8 256 0.5051 0.7974 1.1246

8 512 1.0222 1.5885 2.2446

8 1024 2.0625 3.0723 4.5112

3. Conclusion

The first aim was to analyse the performance of the elliptic

curve cryptography in a programming environment, using the PHP

7.2 version and the OpenSSL library. The findings indicate that

the optimal elliptic curve to use in the research environment

constructed in this way is the prime256v1 curve with a 1.11%

efficiency factor, which corresponds to a security level of RSA

3072 bytes.

Table 11. The most efficient elliptic curves in respective groups (bytes)

Key length in bytes Name of elliptic curve System

160–223 prime192v1 (v2, v3) ANSI

224–255 prime239v1 (v2, v2) ANSI

256–383 prime256v1 ANSI

384–511 secp384r1 SECG

512+ brainpoolP512t1 Brainpool

In the 160 – 223 bytes group, the most efficient (with the same

ratio) elliptic curves are prime192v1, prime192v2 and

prime192v3, in the group of 224 – 255 bytes – prime239v1,

prime239v2 and prime239v3, in the group of 256 – 383 bytes –

prime256v1, in group 384 – 511 bytes - secp384r1, and in the

512+ bytes group – brainpoolIP512t1.

The second aim was to analyse the performance of the Argon2

hashing algorithm, which is part of the Sodium cryptographic

library and utilised both from the system console and the PHP 7.2.

version. The time required to perform the hashing operations in

the console version are similar to those in the PHP version, with

the increase in time and depending on the memory acquired for

use by the Argon2 algorithm.

It is also important to note that the algorithm efficiency is

largely influenced by the number of threads used. With 1 GB of

memory used, six iterations and one thread, the time taken to

perform this operation was almost 12 seconds. With four threads,

it dropped by almost half and with eight threads it reached just

over 4.5 seconds. Of course, the above mentioned example is only

a limiting example of the Argon2 algorithm in the production

environment, as it is charged with a heavy use of processor power

and the memory. The use of 16MB or 32MB memory at three

iterations and two threads is the optimal solution in terms of time

and the use of hardware resources.

References

[1] Blake I., Seroussi G., Smart N.: Krzywe eliptyczne w kryptografii. WNT,

Warszawa 2004.

[2] Koblitz N.: Algebraiczne aspekty kryptografii. WNT, Warszawa 2000.

[3] Koblitz N.: Wykład z teorii liczb i kryptografii. WNT, Warszawa 2006.

[4] https://w3techs.com/technologies/details/pl-php/all/all (available: 14.11.2019).

[5] https://www.tiobe.com/tiobe-index/ (available: 14.11.2019).

[6] https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

(available: 14.11.2019).

[7] https://password-hashing.net (available: 25.04.2019).

M.Sc. Eng. Mariusz Duka

e-mail: mariduk781@student.polsl.pl

PhD student at the Faculty of Automatic Control,

Electronic and Computer Science of the Silesian

University of Technology. Professionally associated

with the IT industry since 1993, in particular in

software design and its implementation. Author of

many Web projects, including the ISOWQ

(International Studies of Website Quality) ranking

system. His scientific interests related to the issues of

data exploring, concurrent programming and IoT.

http://orcid.org/0000-0001-5773-0459

otrzymano/received: 16.12.2019 przyjęto do druku/accepted: 15.09.2020

http://orcid.org/0000-0001-5773-0459

