
 

 

 
 
 
 
 

Novel Regularization Methods 
for ill-posed Problems in 

Hilbert and Banach Spaces 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33735191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 



 

 

Publicações Matemáticas 
 
 
 
 

Novel Regularization Methods 
for ill-posed Problems in 

Hilbert and Banach Spaces 
 

Ismael Rodrigo Bleyer 
University of Helsinki 

 
Antonio Leitão 

UFSC 
 
 
 
 

 
30o Colóquio Brasileiro de Matemática 

 



 

 

Copyright  2015 by Ismael Rodrigo Bleyer e Antonio Leitão 

 
 

 
 

Impresso no Brasil / Printed in Brazil 
 

Capa: Noni Geiger / Sérgio R. Vaz 
 

 

 

 

30
o
 Colóquio Brasileiro de Matemática 
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Preface

The demands of natural science and technology have brought to
the fore many mathematical problems that are inverse to the classical
direct problems, i.e., problems which may be interpreted as finding
the cause of a given effect. Inverse problems are characterized by
the fact that they are usually much harder to solve than their direct
counterparts (the direct problems) since they are usually associated
to ill-posedness effects. As a result an exiting and important area of
research has been developed over the last decades. The combination
of classical analysis, linear algebra, applied functional and numeri-
cal analysis is one of the fascinating features of this relatively new
research area.

This monograph does not aim to give an extensive survey of books
and papers on inverse problems. Our goal is to present some success-
ful recent ideas in treating inverse problems and to make clear the
progress of the theory of ill-posed problems.

These notes arose from the PhD thesis [5], articles [6, 7, 56, 33, 31],
as well as from courses and lectures delivered by the authors. The pre-
sentation is intended to be accessible to students whose mathematical
background include basic courses in advanced calculus, linear algebra
and functional analysis.

The text is organized as follows: In Chapter 1 the research area of
inverse and ill-posed problems is introduced by means of examples.
Moreover, the basic concepts of regularization theory are presented.
In Chapter 2 we investigate Tikhonov type regularization methods.
Chapter 3 is devoted to Landweber type methods (which illustrate
the iterative regularization techniques). Chapter 4 deals with total
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least square regularization methods. In particular, a novel technique
called double regularization is considered.

The authors would like to thank the SBM to make possible these
notes. Moreover, we are grateful for the support during the prepa-
ration of the manuscript and acknowledge the financial assistance
received from the Brazilian research agencies CNPq and CAPES.

May 2015 Ismael Rodrigo Bleyer Antonio Leitão
Helsinki Rio de Janeiro
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Chapter 1

Introduction

In this chapter we introduce a wide range of technological appli-
cations modelled by inverse problems. We also give an introductory
insight into the techniques for modelling and classifying these partic-
ular problems. Moreover, we present the most difficult challenge in
the inverse problems theory, namely the ill-posedness.

1.1 Inverse problems

The problem which may be considered as one of the oldest inverse
problem is the computation of the diameter of the earth by Eratos-
thenes in 200 b. Chr.. For many centuries people are searching for
hiding places by tapping walls and analyzing echo; this is a partic-
ular case of an inverse problem. It was Heisenberg who conjectured
that quantum interaction was totally characterized by its scattering
matrix which collects information of the interaction at infinity. The
discovery of neutrinos by measuring consequences of its existence is
in the spirit of inverse problems too.

Over the past 50 years, the number of publications on inverse
problems has grown rapidly. The following list of inverse problems
gives a good impression of the wide variety of applications:

1. X-ray computed tomography (R-ray CT); the oldest tomogra-
phic medical imaging technique, that uses computer-processed

1



2 [CHAP. 1: INTRODUCTION

X-rays to produce images of specific parts (slices) of the human
body; (wikipedia.org/wiki/X-ray computed tomography)

2. Magnetic resonance imaging (MRI); medical imaging technique
that uses strong magnetic fields and radio waves to form images
of the body (Figure 1.2);
(wikipedia.org/wiki/Magnetic resonance imaging)

3. Electrical impedance tomography (EIT); medical imaging tech-
nique in which an image of the conductivity (Figure 1.2) of a
part of the body is inferred from surface electrode measure-
ments (also used for land mine detection and nondestructive
industrial tomography, e.g., crack detection);
(wikipedia.org/wiki/Electrical impedance tomography)

4. Positron emission tomography (PET); medical imaging tech-
nique that produces a three-dimensional image of functional
processes in the body;
(wikipedia.org/wiki/Positron emission tomography)

5. Positron emission tomography – Computed tomography (PET-
CT); medical imaging technique using a device which combines
both a PET scanner and CT scanner;
(wikipedia.org/wiki/PET-CT);

6. Single photon emission computed tomography (SPECT); a nu-
clear medicine tomographic imaging technique based on gamma
rays; it is able to provide true 3D information;
(wikipedia.org/wiki/Single-photon emission computed tomography)

7. Thermoacoustic imaging; technique for studying the absorption
properties of human tissue using virtually any kind of electro-
magnetic radiation;
(wikipedia.org/wiki/Thermoacoustic imaging)

8. Electrocardiography (ECG); a process of recording the elec-
trical activity of the heart over a period of time using elec-
trodes (placed on a patient’s body), which detect tiny electrical
changes on the skin that arise from the heart muscle depo-
larizing during each heartbeat. ECG is the graph of voltage

http://en.wikipedia.org/wiki/X-ray_computed_tomography
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
http://en.wikipedia.org/wiki/Electrical_impedance_tomography
http://en.wikipedia.org/wiki/Positron_emission_tomography
http://en.wikipedia.org/wiki/PET-CT
http://en.wikipedia.org/wiki/Single-photon_emission_computed_tomography
http://en.wikipedia.org/wiki/Thermoacoustic_imaging
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versus time produced by this noninvasive medical procedure;
(wikipedia.org/wiki/Electrocardiography)

9. Magneto-cardiography (MCG); a technique to measure the mag-
netic fields produced by electrical activity in the heart. Once
a map of the magnetic field is obtained over the chest, math-
ematical algorithms (which take into account the conductivity
structure of the torso) allow the location of the source of the
electrical activity, e.g., sources of abnormal rhythms or arrhyth-
mia); (wikipedia.org/wiki/Magnetocardiography)

10. Optical coherence tomography (OCT); a medical imaging tech-
nique that uses light to capture (micrometer-resolution) 3D-
images from within optical scattering media, e.g., biological
tissue; (wikipedia.org/wiki/Optical coherence tomography)

11. Electron tomography (ET); a tomography technique for obtain-
ing detailed 3D structures of sub-cellular macro-molecular ob-
jects. A beam of electrons is passed through the sample at
incremental degrees of rotation around the center of the target
sample (a transmission electron microscope is used to collect
the data). This information is used to produce a 3D-image of
the subject. (wikipedia.org/wiki/Electron tomography)

12. Ocean acoustic tomography (OAT); a technique used to mea-
sure temperatures and currents over large regions of the ocean
(Figure 1.3); (wikipedia.org/wiki/Ocean acoustic tomography)

13. Seismic tomography; a technique for imaging Earth’s sub-surface
characteristics aiming to understand the deep geologic struc-
tures; (wikipedia.org/wiki/Seismic tomography)

14. Muon tomography; a technique that uses cosmic ray muons to
generate 3D-images of volumes using information contained in
the Coulomb scattering of the muons (Figure 1.4);
(wikipedia.org/wiki/Muon tomography)

15. Deconvolution; the problem here is to reverse the effects of
convolution on recorded data, i.e., to solve the linear equation
g ∗x = y, where y is the recorded signal, x is the signal that we

http://en.wikipedia.org/wiki/Electrocardiography
http://en.wikipedia.org/wiki/Magnetocardiography
http://en.wikipedia.org/wiki/Optical_coherence_tomography
http://en.wikipedia.org/wiki/Electron_tomography
http://en.wikipedia.org/wiki/Ocean_acoustic_tomography
http://en.wikipedia.org/wiki/Seismic_tomography
http://en.wikipedia.org/wiki/Muon_tomography
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wish to recover (but has been convolved with some other signal
g before we recorded it), and g might represent the transfer
function. Deconvolution techniques are widely used in the ar-
eas of signal processing and image processing;
(wikipedia.org/wiki/Deconvolution)

16. Parameter identification in parabolic PDE’s, e.g., determining
the volatility1 in mathematical models for financial markets;
(wikipedia.org/wiki/Volatility (finance))

17. Parameter identification in elliptic PDE’s, e.g., determining the
diffusion coefficient from measurements of the Dirichlet to Neu-
mann map;
(wikipedia.org/wiki/Poincaré-Steklov operator)

18. Can you hear the shape of a drum? (see Figure (1.1))
To hear the shape of a drum is to determine the shape of the
drumhead from the sound it makes, i.e., from the list of over-
tones; (wikipedia.org/wiki/Hearing the shape of a drum)

Figure 1.1: These two drums, with membranes of different shapes,
would sound the same because the eigenfrequencies are all equal.
The frequencies at which a drumhead can vibrate depend on its shape.
The Helmholtz equation allows the calculation of the the frequencies
if the shape is known. These frequencies are the eigenvalues of the
Laplacian in the space. (source: Wikipedia)

1Volatility is a measure for variation of price of a financial instrument over
time.

http://en.wikipedia.org/wiki/Deconvolution
http://en.wikipedia.org/wiki/Volatility_%28finance%29
http://en.wikipedia.org/wiki/Poincar%C3%A9%E2%80%93Steklov_operator
http://en.wikipedia.org/wiki/Hearing_the_shape_of_a_drum
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Figure 1.2: Medical imaging techniques (source: Wikipedia).
EIT (left hand side), a cross section of a human thorax from an X-ray
CT showing current stream lines and equi-potentials from drive electrodes
(lines are bent by the change in conductivity between different organs).
MRI (right hand side), para-sagittal MRI of the head, with aliasing arti-
facts (nose and forehead appear at the back of the head).

Figure 1.3: Ocean acoustic tomography (source: Wikipedia).
The western North Atlantic showing the locations of two experiments that
employed ocean acoustic tomography. AMODE (Acoustic Mid-Ocean Dy-
namics Experiment, designed to study ocean dynamics in an area away
from the Gulf Stream, 1990) and SYNOP (Synoptically Measure Aspects
of the Gulf Stream, 1988). The colors show a snapshot of sound speed at
300 m depth derived from a high-resolution numerical ocean model.
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Figure 1.4: Muon scattering tomography (source: Wikipedia).
Imaging of a reactor mockup using the Muon Mini Tracker (MMT) at
Los Alamos. The MMT consists of two muon trackers made up of sealed
drift tubes. In the demonstration, cosmic-ray muons passing through a
physical arrangement of concrete and lead; materials similar to a reactor
were measured. The reactor mockup consisted of two layers of concrete
shielding blocks, and a lead assembly in between. Lead with a conical void
(similar in shape to the melted core of the Three Mile Island reactor) was
imaged through the concrete walls. It took 3 weeks to accumulate 8× 104

muon events. This test object was successfully imaged.

Let us assume that we have a mathematical model of a physical
process. Moreover, we also assume that this model gives a precise
description of the system behind the process, as well as its operating
conditions, and explains the principal quantities of the model (see
Figure 1.5), namely:

input, system parameters, output.

In most cases the description of the system is given in terms of
a set of equations (e.g., ordinary differential equations (ODE’s), par-
tial differential equations (PDE’s) integral equations, . . . ), containing
certain parameters. The analysis of a given physical process via the
corresponding mathematical model may be divided into three distinct
types of problems:

(A) Direct Problem: Given the input and the system parameter,
find out the output of the model.

(B) Reconstruction Problem: Given the system parameters and
the output, find out which input has led to this output.
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(C) Identification Problem. Given the input and the output,
determine the system parameters which are in agreement with
the relation between input and output.

Problems of type (A) are called direct (or forward) problems,
since they are oriented towards a cause-effect sequence. In this sense,
problems of type (B) and (C) are called inverse problems, because
they consist of finding out unknown causes of known (observed) con-
sequences.

It is worth noticing that the solution of a direct problem is part of
the formulation of the corresponding inverse problem, and vice-versa
(see Example 1.1.1 below).

Moreover, it follows immediately from definitions (A), (B) and
(C) above, that the solution of one of these problems involves some
treatment of the other problems as well.

A complete discussion of a model by solving the related inverse
problems is among the main goals of the inverse problem theory.

In what follows, we present a brief mathematical description of
the input, the output and the system parameters in a functional
analytical framework:

Figure 1.5: Principal quantities of a mathematical model describing
an inverse problem: input, system parameters, output.
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X : space of input quantities;
Y : space of output quantities;
P : space of system parameters;
A(p) : system operator from X into Y , associated to the

parameter p ∈ P .

In these simple terms we may state the above defined problems
in the following way:

(A) Given x ∈ X and p ∈ P , find y := A(p)x.

(B) Given y ∈ Y and p ∈ P , find x ∈ X s.t. A(p)x = y.

(C) Given y ∈ Y and x ∈ X, find p ∈ P s.t. A(p)x = y.

At first glance, direct problems (A) seem to be much easier to
solve than inverse problems (B) or (C). However, for the computation
of y := A(p)x, it may be necessary to solve differential or integral
equations, tasks which may be of the same order of complexity as the
solution of the equations related to the inverse problems.

Example 1.1.1 (Differentiation of data). Let’s consider the problem
of finding the integral of a given function. This task can be performed,
both analytically and numerically, in a very stable way.
When this problem is considered as a direct (forward) problem, then
to differentiate a given function is the corresponding inverse problem.
A mathematical description is given as follows:

Direct Problem: Given a continuous function x : [0, 1] → R,

compute y(t) :=
∫ t

0
x(s) ds, t ∈ [0, 1].

Inverse Problem: Given a differentiable function y : [0, 1] → R,
determine x(t) := y′(t), t ∈ [0, 1].

We are interested in the inverse problem. Additionally y should be
considered as the result of measurements (a very reasonable assump-
tion in real life problems). Therefore, the data y are noisy and we
may not expect that noisy data are continuously differentiable.

At this point we distinguish: ỹ is the noisy data (the actually avail-
able data), obtained by measurements and contaminated by noise; y
is the exact data, i.e., data that would be available if we were able to
perform perfect measurements.
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Therefore, the inverse problem has no obvious solution. More-
over, the problem should not be formulated in the space of continuous
functions, since perturbations due to noise lead to functions which
are not continuous.

The differentiation of (measured) data is involved in many rel-
evant inverse problems, e.g., in a mechanical system one may ask
for hidden forces. Since Newton’s law relates forces to velocities and
accelerations, one has to differentiate observed data. We shall see
that, in the problem of X-ray tomography, differentiation is implicitly
present as well. �

In certain simple examples, inverse problems can be converted
formally into direct problems. For example, if the system operator
A has a known inverse, then the reconstruction problem is solved by
x := A−1y. However, the explicit determination of the inverse does
not help if the output y is not in the domain of definition of A−1. This
situation is typical in applications, due to the fact that the output
may be only partially known and/or distorted by noise.

In the linear case, i.e., if A(p) is a linear map for every p ∈ P ,
problem (B) has been extensively studied and corresponding theory
is well-developed. The state of the art in the nonlinear case is some-
what less satisfactory. Linearization is a very successful tool to find
an acceptable solution to a nonlinear problem but, in general, this
strategy provides only partial answers.

The identification problem (C), when formulated in a general set-
ting, results in a rather difficult challenge, since it almost always
gives raise to a (highly) nonlinear problem with many local solutions.
Moreover, the input and/or output functions may be available only
incompletely.

1.2 Ill-posed problems

One of the main tasks in the current research in inverse problems
is the (stable) computation of approximate solutions of an operator
equation, from a given set of observed data. The theory related to
this task splits into two distinct parts: The first one deals with the
ideal case in which the data are assumed to be exactly and completely
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known (the so called “exact data case”). The other one treats practi-
cal situations that arise when only incomplete and/or imprecise data
are available (i.e., the “noisy data case”).

It might be thought that the knowledge of the (exact) solution to
an inverse problem in the exact data case, would prove itself useful
also in the (practical) noisy data case. This is unfortunately not
correct. It turns out in inverse problems that solutions obtained by
analytic inversion formulas (whenever available) are very sensitive to
the way in which the data set is completed, as well as to errors in it.

In order to achieve complete understanding of an inverse problem,
the questions of existence, uniqueness, stability and solution

methods are to be considered.
The questions of existence and uniqueness are of great importance
in testing the assumptions behind any mathematical model. If the
answer to the uniqueness question is negative, then one knows that
even perfect data do not provide enough information to recover the
physical quantity to be determined.
What concerns the stability question, one has to determine whether
or not the solution depends continuously on the data. Stability is
necessary if one wants to make sure that, a variation of the given
data in a sufficiently small range leads to an arbitrarily small change
in the solution. Obviously, one has to answer the stability question in
a satisfactory way, before trying to devise reliable solution methods
for solving an inverse problem.

The concept of stability is essential to discuss the main subject
of this section, namely the ill-posed problems. This concept was
introduced in 1902 by the french mathematician Jacques Hadamard2

in connection with the study of boundary value problems for partial
differential equations. He was the one who designated the unsta-
ble problems “ill-posed problems”. The nature of inverse problems
(which include irreversibility, causality, unmodelled structures, . . . )
leads to ill-posedness as an intrinsic characteristic of these problems.3

2See wikipedia.org/wiki/Jacques Hadamard.
3Hadamard believed – as a matter of fact, many scientists still do – that ill-

posed problems are actually incorrectly posed and, therefore, artificial in that
they would not describe physical systems. He was wrong in this regard!

http://en.wikipedia.org/wiki/Jacques_Hadamard
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Figure 1.6: Jacques Hadamard.

When solving ill-posed problems numerically, we must certainly
expect some difficulties, since any errors can act as a perturbation on
the original equation, and so may cause arbitrarily large variations
in the solution. Observational errors have the same effect. Since er-
rors cannot be completely avoided, there may be a range of plausible
solutions and we have to find out a reasonable solution. These am-
biguities in the solution of inverse problems (which are unstable by
nature) can be reduced by incorporating some a-priori information
(whenever available) that limits the class of possible solutions. By
“a-priori information” we mean some piece of information, which has
been obtained independently of the observed data (e.g., smoothness,
boundedness, sparsity, . . . ). This a-priori information may be given
in the form of deterministic or statistical information. Here we shall
restrict ourselves to deterministic considerations only.

We conclude this section presenting a tutorial example of an ill-
posed problem. Actually, we revisit the problem introduced in Ex-
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ample 1.1.1 and consider a numerical version of the same inverse
problem.

Example 1.2.1 (Numerical differentiation of data). Suppose that we
have for the continuous function y : [0, 1] → R a measured function
yδ : [0, 1] → R, which is contaminated by noise in the following sense:

|yδ(t)− y(t)| ≤ δ, for all t ∈ [0, 1] .

In order to to reconstruct the derivative x := y′ of y at τ ∈ (0, 1),
it seams reasonable to use the central difference approximation (CD)
scheme

xδ,h(τ) := CD(yδ; τ, h) :=
yδ(τ + h)− yδ(τ − h)

2h
.

Thus, we obtain the error estimate
∣∣x(τ)− xδ,h(τ)

∣∣ ≤
∣∣x(τ)− CD(y; τ, h)

∣∣

+
∣∣CD(y; τ, h)− xδ,h(τ)

∣∣ (1.1)

=

∣∣∣∣∣x(τ)−
y(τ + h)− y(τ − h)

2h

∣∣∣∣∣

+

∣∣∣∣∣
(y − yδ)(τ + h)− (y − yδ)(τ − h)

2h

∣∣∣∣∣.

The fist term on the right hand side of (1.1) is called approximation

error while the second term is the data error.
Next we introduce a typical a-priori information about the exact

solution: If we know a bound

|x′(t)| ≤ E , for all t ∈ [0, 1] , (1.2)

where E > 0, we are able to derive the estimate
∣∣x(τ)− xδ,h(τ)

∣∣ ≤ E h + δ h−1 . (1.3)

At this point, it becomes clear that the best to do is to choose h > 0,
s.t. it balances the two terms on the right hand side of (1.3). This
leads to the choice

h(δ) := E
1
2 δ

1
2
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(for simplicity, we assume that {τ − h, τ + h} ⊂ [0, 1]). The above
choice of h results in the estimate

∣∣x(τ)− xδ,h(δ)(τ)
∣∣ ≤ 2E

1
2 δ

1
2 . (1.4)

From this very simple example we learn some important lessons:

• The error estimate (1.1) consists of two main terms: the first
one due to the approximation of the inverse mapping (first term
on the rhs of (1.1)); the other one due to measurement errors.

• The first term can be estimated by E h, and converges to zero
as h→ 0.

• The second term can be estimated by δ h−1 and, no matter how
small the level of noise δ > 0, it becomes unbounded as h→ 0.

• The balance of these two terms gives the “best possible” recon-
struction result (under the a-priori assumption (1.2)).

The estimate (1.1) for the reconstruction error is depicted in Fig-
ure 1.7. This picture describes a typical scenario for approximations
in ill-posed problems.

0
0

Discretization parameter h

|| 
x(

τ)
 −

 x
δ,

h (τ
) 

|| 
  ≤

   
E

.h
 +

 δ
.h

−
1

Numerical Differentiation of Data

 

 

δ. h−1

E.h

E.h + δ.h−1

E h + h δ−1

E h    (approximation error)
δ h−1   (data error)

Figure 1.7: Error estimate for the inverse problem of numerical dif-
ferentiation of data: E h estimates the approximation error while
δ h−1 estimates the data error.
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In contrast to well-posed problems, it is not the best strategy to
discretize finer and finer. One may consider ill-posed problems under
the motto “When the imprecise is preciser” (see title of [50]). �

1.3 Regularization theory

Regularization theory is the area of mathematics dedicated to the
analysis of methods (either direct or iterative) for obtaining stable
solutions for ill-posed problems. The main results of this section
appear in a more general form in [28, Chapter 2].

The exact data case

In order to introduce some basic concepts of regularization theory, we
consider in this section a very simple functional analytical framework:

• Let F be a linear compact operator acting from the Hilbert
spaces X into the Hilbert space Y .

• Our goal is to find a solution to the operator equation

F x = y , (1.5)

where the data y ∈ Y is assumed to be exactly known (the
noisy data case is considered later in this section).

In order to solve this ill-posed problem, we wish to construct a
family of linear bounded operators {Rα}α>0, such that Rα : Y → X
approximate F † (the generalized inverse of F ) in the sense that

lim
α→0

Rα y = x† := F † y ,

for each y ∈ D(F †), where x† is the least square solution of (1.5).

In what follows we adopt the notation F̃ := F ∗F : X → X and
F̂ := F F ∗ : Y → Y . Consequently, x† ∈ X solves the normal
equation F̃ x† = F ∗y.

If F̃ were invertible, one could think of computing x† = F̃−1F ∗y.
This corresponds to

x† = R(F̃ )F ∗y , whith R(t) := t−1 .
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However, this is not a stable procedure since F̃ is also a compact
operator. A possible alternative is the following: even if F̃ is not
invertible, we can try to approximate x† by elements xα ∈ X of the
form

xα := Rα(F̃ )F
∗y , α > 0 ,

where Rα is a real continuous function defined on the spectrum of F̃ ,
σ(F̃ ) ⊂ [0, ‖F‖2], which approximates the function R(t) = 1/t. It is

worth noticing that Rα(F̃ )F
∗ = F ∗Rα(F̂ ). Moreover, the operators

Rα(F̃ ) : Y → X are continuous for each α > 0.

Remark 1.3.1. Notice that we use the same notation to represent
the operators Rα : Y → X, (approximating F †) as well as the real
functions Rα : [0, ‖F‖2] → R (approximating R(t) = 1/t). As a

matter of fact, the operators Rα are defined by Rα(F̃ )F
∗ : Y → X,

α > 0. �

Next we make some assumptions on the real functions Rα, which
are sufficient to ensure that

lim
α→0

xα = lim
α→0

Rα(F̃ )F
∗y = F †y = x† ,

for each y ∈ D(F †).

Assumption A1.

(A1.1) limα→0 Rα(t) = 1/t, for each t > 0;

(A1.2) |tRα(t)|, is uniformly bounded for t ∈ [0, ‖F‖2] and α > 0.

Theorem 1.3.2. Let {Rα}α>0 be a family of continuous real valued
functions on [0, ‖F‖2] satisfying Assumption (A1). The following
assertions hold true:

a) For each y ∈ D(F †), Rα(F̃ )F
∗y → F †y as α→ 0;

b) If y 6∈ D(F †) then, for any sequence αn → 0, {Rαn
(F̃ )F ∗y} is

not weakly convergent.

Some useful remarks:
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• Assertion (a) in the above theorem brings a very positive mes-
sage. Assertion (b), however, shows that we should be very
cautious when dealing with ill-posed problems. It tell us that if
y 6∈ D(F †), the sequence {Rα(F̃ )F

∗y}α>0 does not have weakly
convergent subsequences.

• Since, in Hilbert spaces, every bounded sequence has a weakly
convergent subsequence, it follows from assertion (b) that y 6∈
D(F †) implies lim

α→0
‖Rα(F̃ )F

∗y‖ = ∞.

• Let us denote by Π : Y → R(F ) the orthogonal projection
from Y onto the closure of R(F ). Theorem 1.3.2 shows that,
in order to obtain convergence of xα towards x† it is necessary
and sufficient that Π y ∈ R(F ).

We conclude the discussion of the exact data case by presenting
some convergence rates for the approximations xα, i.e., determining
how fast the approximation error eα := ‖xα − x†‖ converges to
zero as α→ 0.

From the above discussion, we know that condition Π y ∈ R(F )
(or, equivalently, y ∈ D(F †)) is not enough to obtain rates of conver-
gence. Notice, however, that for every x ∈ X we have

ΠN(F )⊥ x = ΠN(F̃ )⊥ x = lim
ν→0+

F̃ ν x (1.6)

(here ΠH denotes the orthogonal projection of X onto the closed
subspace H ⊂ X). This fact suggests that the stronger condition

Π y ∈ R(FF̃ ν), with ν > 0, is a good candidate to prove the desired
convergence rates.

Notice that if Π y = FF̃ ν w for some w ∈ X, then x† = F †y =
F̃ νw. Reciprocally, if x† = F̃ νw for w ∈ X, then Π y = FF̃ ν w.
Thus, the condition Π y ∈ R(FF̃ ν), with ν > 0 can be equivalently
written in the form of the

Source condition: x† = F̃ νw for some w ∈ X, and ν > 0.

Additionally to (A1), we make the assumption
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Assumption B1. Assume that tν |1 − tRα(t)| ≤ ω(α, ν), for t ∈
[0, ‖F‖2], where lim

α→0
ω(α, ν) = 0, for every ν > 0.

The function ω(·, ·) described above is called convergence rate
function. We are now ready to state our main convergence rate

result:

Theorem 1.3.3. Let {Rα}α>0 be a family of continuous functions
on [0, ‖F‖2] satisfying assumptions (A1) and (B1), and α > 0. More-
over, suppose that the least square solution x† satisfies a source con-
dition for some ν ≥ 1 and w ∈ X. Then

‖eα‖ ≤ ω(α, ν) ‖w‖ .

For the convergence analysis of iterative regularization methods
(see Example 1.3.9 below) another hypothesis proves to be more use-

ful, namely Π y ∈ R(F̂ ν) for some ν ≥ 1.

Remark 1.3.4. Notice that Π y ∈ R(F̂ ν) for some ν ≥ 1 is equiv-

alent to Π y ∈ R(F F̃ ν−1F ∗). Hence, we obtain directly from Theo-
rem 1.3.3 a rate of convergence of the order ω(α, ν − 1). �

Theorem 1.3.5. Let {Rα}α>0 be a family of continuous functions on
[0, ‖F‖2] satisfying assumptions (A1) and (B1), and α > 0. More-

over, suppose that Π y = F̂ ν w for some ν ≥ 1 and w ∈ X. The
following assertions hold true:

a) ‖eα‖ ≤ ω(α, ν) ‖F eα‖ ‖w‖;

b) ‖eα‖ ≤
(
ω(α, ν − 1)ω(α, ν)

)1/2 ‖w‖.

The noisy data case

For the remaining of this section we shall consider the case of inexact
data. If the data y in (1.5) is only imprecisely known, i.e., if only
some noisy version yδ is available satisfying

‖y − yδ‖ ≤ δ , (1.7)
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where δ > 0 is an a-priori known noise level, we still want to find a
stable way of computing solutions for the ill-posed operator equation

F x = yδ . (1.8)

A natural way is to use the available data to compute the approxi-
mations

xδα := Rα(F̃ )F
∗yδ , α > 0 ,

These approximations are said to regular (or stable) if they converge
(in some sense) to the minimal norm solution x† as δ → 0. In other
words, the approximations are regular, whenever there exists some
choice of the regularization parameter α in terms of the noise level δ
(i.e., a real function α : δ 7→ α(δ)) such that

lim
δ→0

xδα(δ) = lim
δ→0

Rα(δ)(F̃ )F
∗yδ = F †y = x† . (1.9)

This means that a regularization method consists not only of a
choice of regularization functions {Rα}, but also of a choice of the
parameter function α(δ) to determine the regularization parameter.
The pair ({Rα}, α(·)) determines a regularization method.

The choice of the regularization parameter function α(·) may be
either a-priori or a-posteriori (see, e.g., [21, 4]). Nevertheless, the
mating of α(·) with the noise present in the data is the most sensitive
task in the regularization theory.

Before stating the first regularity results, we introduce some useful
notation. From Assumption (A1) we conclude the existence of a
constant C > 0 and a function r(α) such that

|tRα(t)| ≤ C2, ∀ t ∈ [0, ‖F‖2], ∀ α > 0 .

r(α) := max{ |Rα(t)| , ∀ t ∈ [0, ‖F‖2] }
(notice that (A1.1) implies that lim

α→0
r(α) = ∞).

Theorem 1.3.6. Let {Rα}α>0 be a family of continuous functions
on [0, ‖F‖2] satisfying Assumption (A1), yδ ∈ Y some noisy data
satisfying (1.7), and α > 0. The following assertions hold true:

a) ‖F (xα − xδα)|| ≤ C2 δ;
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b) ‖xα − xδα‖ ≤ C δ r(α)1/2;

where the constant C > 0 and the function r(α) are defined as above.

We are now ready to establish a sufficient condition on α(δ) in
order to prove regularity of the approximations xδα in the noisy data
case, i.e., in order to obtain (1.9).

Theorem 1.3.7. Let {Rα}α>0 be a family of continuous functions
on [0, ‖F‖2] satisfying Assumption (A1). Suppose that y ∈ D(F †),
α(δ) → 0 and δ2r(α(δ)) → 0, as δ → 0. Then lim

δ→0
xδα(δ) = x†.

Proof. Notice that

‖x† − xδα(δ)‖ ≤ ‖x† − xα(δ)‖+ ‖xα(δ) − xδα(δ)‖ (1.10)

Since y ∈ D(F †), Theorem 1.3.2 (a) and assumption lim
δ→0

α(δ) = 0,

guarantee that ‖x† − xα(δ)‖ → 0, as δ → 0. On the other hand,
from Theorem 1.3.6 (b) and the assumption lim

δ→0
δ2r(α(δ)) = 0 we

conlcude that ‖xα(δ) − xδα(δ)‖ → 0 as δ → 0.

Some useful remarks:

• Assertion (a) in Theorem 1.3.2 is called convergence result.
It means that, it we have exact data y ∈ D(F †), the family of
operators {Rα} generate approximate solutions xα satisfying
‖x† − xα‖ → 0 as α→ 0.

• Assertion (b) in Theorem 1.3.6 is called stability result. It
means that, if only noisy data yδ ∈ Y satisfying (1.7) is avail-
able, then the distance between the “ideal approximate so-
lution” xα and the “computable approximate solution” xδα is
bounded by C δ r(α)1/2 (this bound may explode as α → 0;
indeed, as already observed, (A1.1) implies lim

α→0
r(α) = ∞.

• It becomes clear from estimate (1.10) that “convergence” and
“stability” are the key ingredients to prove Theorem 1.3.7, which
is called semi-convergence result. According to this theo-
rem, if one can has better and better measured noisy data yδ

with δ → 0, then the “computable approximate solutions” xδα(δ)
converge to x† as δ → 0.
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• The assumptions on the parameter choice function α(δ) on The-
orem 1.3.7 mean that α(δ) must converge to zero as δ → 0, but
not very fast, since δ2r(α(δ)) must also converge to zero, as
δ → 0.

• Suppose that fixed noisy data yδ ∈ Y is available (with δ > 0).
The the regularization parameter α plays the same role as the
discretization level h > 0 in Example 1.3.8.
The approximation error ‖x† −xα‖ in (1.10) corresponds to
the term |x(τ) − CD(y; τ, h)| in (1.1), while the data error

‖xα − xδα‖ in (1.10) corresponds to |CD(y; τ, h) − xδ,h(τ)| in
(1.1).
If we freely choose α > 0 (disregarding the parameter choice
function α(δ)), the behaviour of “approximation error” and
“data error” is exactly as depicted in Figure 1.7 for the problem
of numerical differentiation of data.

Example 1.3.8. (Tikhonov regularizarion)
Consider the family of functions defined by

Rα(t) := (t+ α)−1 , α > 0 ,

that is
xα := (F̃ + αI)−1F ∗y .

This is called Tikhonov regularization. Notice that Assumption (A1)
is satisfied. Moreover, since

|tRα(t)| ≤ 1 and max
t≥0

|Rα(t)| = α−1 , (1.11)

we are allowed to choose C := 1 and r(α) := α−1 (see Exercise 1.10).
Therefore, the conclusion of Theorem 1.3.7 holds for the Tikhonov
regularization method.

Moreover, for this method we may choose the convergence rate
function ω(α, ν) := αν , for ν ∈ (0, 1] (prove!). �

Example 1.3.9. (Landweber method – iterative regularization)
The Landweber (or Landweber-Friedman) iterative method for the op-
erator equation (1.5) is defined by

x0 := λF ∗y , xk+1 := xk−λF ∗(F xk−y) = (I−λ F̃ )xk+λF ∗y ,
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where the positive constant λ satisfies 0 < λ < 2‖F‖−2 (see Exer-
cise 1.11). This method corresponds to the family of functions

Rk(t) := λ
k∑

j=0

(1− λt)j , k ≥ 0 .

Notice that the regularization parameter is now the iteration number
k = k(δ), where k(δ) is the parameter choice function.4

For this method we can choose

C := 1 and r(k) := λ (k + 1) (1.12)

and find that the conclusion of Theorem 1.3.7 also holds for this it-
erative regularization method (see Exercise 1.12). �

Example 1.3.10. (Spectral cut-off method)
The spectral cut-off method (or truncated singular function expan-
sion) is defined by the family of operators

Rk(t) :=

{
1/t , t ≥ µ−2

k

0 , t < µ−2
k+1

(1.13)

where {uj , vj ;µj} is a sungular system for F . With this choice, one
obtains the approximations

xk :=
k∑

j=1

µj〈y, uj〉 vj (1.14)

(see Exercise 1.13). Moreover, one can choose C := 1 and r(k) :=
1/k, such that Theorem 1.3.7 also holds for the spectral cut-off method.

�

1.4 Bibliographical comments

In the 1970’s, the monograph of Tikhonov and Arsenin [82] can be
condidered as the starting point of a systematic study of inverse prob-
lems. Nowadays, there exists a vast amount of literature on several
aspects of inverse problems and ill-posedness. Instead of giving a
complete list of relevant contributions we mention only some mono-
graphs [2, 21, 28, 51, 69, 4] and survey articles [35, 86].

4This situation can be easily fitted in the above framework by setting α(δ) :=
k(δ)−1, i.e. α(δ) is a piecewise constant function with lim

δ→0
α(δ) = 0.
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1.5 Exercises

1.1. Find a polynomial p with coefficients in C with given zeros
ξ1, . . . , ξn. If this problem is considered as an inverse problem, what
is the formulation of the corresponding direct problem?

1.2. The problem of computing the eigenvalues of a given matrix
is a classical problem in the linear algebra theory. If this problem
is considered as a direct problem, what is the formulation of the
corresponding inverse problem?

1.3. Show that under the stronger a-priori assumption

|x′′(t)| ≤ E , for all t ∈ [0, 1] ,

the inequality (1.3) can be improved and an estimate of the type

|xδ,h(δ)(τ)− x(τ)| ≤ cE1/3 δ2/3

is possible (here c > 0 is some constant independent of δ and E).

1.4. A model for population growth is given by the ODE

u′(t) = q(t)u(t) , t ≥ 0 ,

where the u represents the size of the population and q describes the
growth rate. Derive a method to reconstruct q from the observation
u : [0, 1] → R, when q is a time dependent function from [0, 1] to R.

1.5. Can you hear the length of a string?
Consider the boundary value problem

u′′ = f , u(0) = u(L) = 0 ,

where f : R → R is a given continuous function. Suppose that the
solution u and f are known. Find the length L > 0 of the interval.

1.6. Consider the boundary value problem

u′′ + qu = f , u(0) = u(L) = 0 ,

where f : R → R is a given continuous function. Find sufficient
conditions on f , such that q can be computed from the observation
u(τ) for some point τ ∈ (0, L).
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1.7. Prove equation (1.6).

1.8. Prove that the hypotesis Π y ∈ R(FF̃ ν), on the data, is equiva-

lent to the hypotesis x† ∈ R(F̃ ν), on the solution.

1.9. Prove the assertion in Remark 1.3.4.

1.10. Prove the estimates for |tRα(t)| and max
t≥0

|Rα(t)| in (1.11).

1.11. Prove that the choice of λ in Example 1.3.9 is sufficient to
guarantee that ‖I − λ F̃‖ ≤ 1.

1.12. Prove that the choices of C and r(k) in (1.12) are in agreement
with Assumption (A1) above.

1.13. Prove that xk in (1.14) satisfies xk = Rk(F̃ )F
∗y, where Rk is

defined as in (1.13).
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Chapter 2

Tikhonov regularization

In this chapter we present the Tikhonov type regularization method
and we summarise the main convergence results available in the lit-
erature. The adjective “type” refers to the extension of the classical
Tikhonov method mainly by setting the penalisation term to be a
general convex functional (instead of the usual quadratic norm) while
the discrepancy term base on least squares is preserved.

This variation allow us not only to reconstruct a solution with spe-
cial properties, but also to extend theoretical results for both linear
and nonlinear operators defined between general topological spaces,
e.g., Banach spaces. In the other hand we need to be acquainted
with more sophisticated concepts and tools brought from smooth op-
timisation and functional analysis. For a review we recommend the
reader to survey the books [15, 70, 20].

On the following we shall display a collection of results from [12,
74, 75, 42, 6], organised in a schematic way.

2.1 Tikhonov type methods

The general methods of mathematical analysis were best adapted to
the solution of well-posed problems and they are no longer meaning-
ful in most applications in the sense of ill-posed problems. One of
the earliest works in this field and the most outstanding was done

25
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Figure 2.1: Andrey Tikhonov.

by Andrey N. Tikhonov 1. He succeeded in giving a precise mathe-
matical definition of approximated solution for general classes of such
problems and in constructing “optimal” solutions.

Tikhonov was a Soviet and Russian mathematician. He made im-
portant contributions in a number of different fields in mathematics,
e.g., in topology, functional analysis, mathematical physics, and cer-
tain classes of ill-posed problems. Certainly, Tikhonov regularization,
the most widely used method to solve ill-posed inverse problems, is
named in his honour.

Nevertheless, we should make a note that Tikhonov regulariza-
tion has been invented independently in many different contexts. It
became widely known from its application to integral equations from
the work of Tikhonov [81] and David L. Phillips [71]. Some authors
use the term Tikhonov-Phillips regularization.

We focus on the quadratic regularization methods for solving ill-

1See www.keldysh.ru/ANTikhonov-100/ANTikhonov-essay.html.

http://www.keldysh.ru/ANTikhonov-100/ANTikhonov-essay.html
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posed operator equations of the form

F (u) = g , (2.1)

where F : D(F ) ⊂ U → H is an operator between infinite dimensional
Banach spaces. Both linear and nonlinear problems are considered.

The Tikhonov type regularization consists of minimizing

Jδ
α (u) =

1

2
‖F (u)− gδ‖2 + αR(u) , (2.2)

where α ∈ R+ is the regularization parameter and R is a proper
convex functional. Moreover, we assume the noisy data gδ is available
under the deterministic assumption

‖g − gδ‖ ≤ δ . (2.3)

If the underlying equation has (infinite) many solutions, we select
one among all admissible solutions which minimizes the functional
R; we call it the R-minimizing solution.

The functional Jδ
α presented above represents a generalisation of

the classical Tikhonov regularization [81, 29]. Consequently, the fol-
lowing questions should be considered on the new approach:

• For α > 0, does a solution of (2.2) exist? Does the solution
depends continuously on the data gδ?

• Is the method convergent? (i.e., if the data g is exact and
α → 0, do the minimizers of (2.2) converge to a solution of
(2.1)?)

• Is the method stable in the following sense: if α = α(δ) is chosen
appropriately, do the minimizers of (2.2) converge to a solution
of (2.1) as δ → 0?

• What is the rate of convergence? How should the parameter
α = α(δ) be chosen in order to get optimal convergence rates?

Existence and stability results can be found in the original articles
cited above. In this chapter we focus on the last question and we
repeat theorems (combined with a short proof) of error estimates
and convergence rates.

To accomplish our task we assume throughout this chapter the
following assumptions:
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Assumption A2.

(A2.1) Given the Banach spaces U and H one associates the topolo-
gies τU and τH, respectively, which are weaker than the norm
topologies;

(A2.2) The topological duals of U and H are denoted by U∗ and H∗,
respectively;

(A2.3) The norm ‖·‖U is sequentially lower semi-continuous with re-
spect to τH, i.e., for uk → u with respect to the τU topology,
R(u) ≤ lim infk R(uk);

(A2.4) D(F ) has empty interior with respect to the norm topology
and is τU -closed. Moreover2, D(F ) ∩ dom R 6= ∅;

(A2.5) F : D(F ) ⊆ U → H is continuous from (U , τU ) to (H, τH);

(A2.6) The functional R : U → [0,+∞] is proper, convex, bounded
from below and τU lower semi-continuous;

(A2.7) For every M > 0 , α > 0, the sets

Mα (M) =
{
u ∈ U | Jδ

α (u) ≤M
}

are τU compact, i.e. every sequence (uk) in Mα (M) has a
subsequence, which is convergent in U with respect to the τU
topology.

Convergence rates and error estimates with respect to the gener-
alised Bregman distances were derived originally introduced in [11].
Even though this tool does not satisfy neither symmetry nor triangle
inequality, it is still the key ingredient whenever we consider convex
penalisation.

2.1.1 Well-posedness

In this section we display the main results on well-posedness, stability,
existence and convergence of the regularization methods consisting in
minimization of (2.2).

2on the following dom R denotes the effective domain, i.e., the set of elements
where the functional R is bounded.
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Theorem 2.1.1 ([42, Thm 3.1]). Assume that α > 0, gδ ∈ H. Let
the Assumption A2 be satisfied. Then there exists a minimizer of
(2.2).

Proof. See Exercise 2.1.

Theorem 2.1.2 ([42, Thm 3.2]). The minimizers of (2.2) are stable
with respect to the data gδ. That is, if (uj)j is a sequence converging
to gδ ∈ H with respect to the norm-topology, then every sequence
(uj)j satisfying

uj ∈ argmin
{
‖F (u)− gδ‖2 + αR(u) | u ∈ U

}
(2.4)

has a subsequence, which converges with respect to the τU topology,
and the limit of each τU -convergent subsequence is a minimizer u of
(2.2). Moreover, for each τU -convergent subsequence

(ujm)m and (R(ujm))m

converges to R(u).

Proof. See Exercise 2.2.

Theorem 2.1.3 ([42, Thm 3.4]). Let Assumption A2 be satisfied.
If there exists a solution of (2.2), then there exists a R-minimizing
solution.

Proof. See Exercise 2.3.

Theorem 2.1.4 ([42, Thm 3.5]). Let Assumption A2 be satisfied.
Moreover, we assume that there exists a solution of (2.2) (Then,
according to Theorem 2.1.3 there exists an R-minimizing solution).

Assume that the sequence δj converges monotonically to 0 and
gj := gδj satisfies

∥∥g − gj
∥∥ ≤ δj.

Moreover, assume that α(δ) satisfies

α(δ) → 0 and
δp

α(δ)
→ 0 as δ → 0

and α(·) is monotonically increasing.
A sequence (uj)j satisfying (2.4) has a convergent subsequence

with respect to the τU topology. A limit of each τU -convergent subse-
quence is an R-minimizing solution. If in addition the R-minimizing
solution u is unique, then uj → u with respect to τU .
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Proof. See Exercise 2.4.

2.2 Convergence rate results for linear

problems

In this section we consider the linear case. Therefore the Equation
(2.1) shall be denoted by Fu = g, where the operator F is defined
from a Banach space into a Hilbert space. The main results of this
section were proposed originally in [12, 74].

2.2.1 Rates of convergence for SC of type I

First of all we have to decide which “solution” we aim to recover for
the underlying problem. Therefore in this section we assume that the
noise free data g is attainable, i.e., g ∈ R(F ) and so we define u an
admissible solution if u satisfies

Fu = g. (2.5)

In particular, among all admissible solutions, we denote u the R-
minimizing solution of (2.5).

Secondly, error estimates between the regularised solution uαδ and
u can be obtained only under additional smoothness assumption.
This assumption, also called source condition, can be stated in the
following (slightly) different ways:

1. there exist at least one element ξ in ∂R (u) which belongs to
the range of the adjoint operator of F ;

2. there exists an element ω ∈ H such that

F ∗ω =: ξ ∈ ∂R (u) . (2.6)

In summary we say the Source Condition of type I (SC-I) is sat-
isfied if there is an element ξ ∈ ∂R (u) ⊆ U∗ in the range of the
operator F ∗, i.e.,

R(F ∗) ∩ ∂R (u) 6= ∅. (2.7)

This assumption enable us to derive the upcoming stability result.
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Theorem 2.2.1 ([12, Thm 2]). Let (2.3) hold and let u be a
R-minimizing solution of (2.1) such that the source condition (2.7)
and (2.5) are satisfied. Then, for each minimizer uαδ of (2.2) the
estimate

DF∗ω
R

(
uαδ , u

)
≤ 1

2α
(α ‖ω‖+ δ)

2
(2.8)

holds for α > 0. In particular, if α ∼ δ, then DF∗ω
R

(
uαδ , u

)
= O (δ).

Proof. We note that
∥∥Fu− gδ

∥∥ ≤ δ2, by (2.5) and (2.3). Since uαδ is
a minimizer of the regularised problem (2.2), we have

1

2

∥∥Fuαδ − gδ
∥∥+ αR(uαδ ) ≤ δ2

2
+ αR(u) .

Let DF∗ω
R

(
uαδ , u

)
the Bregman distance between uαδ and u, so the

above inequality becomes

1

2

∥∥Fuαδ − gδ
∥∥+ α

(
DF∗ω

R

(
uαδ , u

)
+ 〈F ∗ω, uαδ − u〉

)
≤ δ2

2
.

Hence, using (2.3) and Cauchy-Schwarz inequality we can derive the
estimate

1

2

∥∥Fuαδ − gδ
∥∥+ 〈αω , Fuαδ − gδ〉H +αDF∗ω

R

(
uαδ , u

)
≤ δ2

2
+α ‖ω‖ δ .

Using the the equality ‖a+ b‖ = ‖a‖+ 2〈a, b〉+ ‖b‖, it is easy to see
that

1

2

∥∥Fuαδ − gδ + αω
∥∥+ αDF∗ω

R

(
uαδ , u

)
≤ α2

2
‖ω‖+ αδ ‖ω‖+ δ2

2
,

which yields (2.8) for α > 0.

Theorem 2.2.2 ([12, Thm 1]). If u is a R-minimizing solution of
(2.1) such that the source condition (2.7) and (2.5) are satisfied, then
for each minimizer uα of (2.2) with exact data, the estimate

DF∗ω
R

(
uα, u

)
≤ α

2
‖ω‖2

holds true.

Proof. See Exercise 2.5.
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2.2.2 Rates of convergence for SC of type II

In this section we use another type of source condition, which is
stronger than the one assumed in previous subsection. We relax the
definition of admissible solution, where it is understood in the context
of least-squares3, i.e.,

F ∗Fu = F ∗g . (2.9)

Note that we do not require g ∈ R(F ). Moreover, we still denote u
the R-minimizing solution, but instead with respect to (2.9).

Likewise in the previous section, we introduce the Source Con-
dition of type II (SC-II)4 as follows: there exists one element ξ ∈
∂R (u) ⊂ U∗ in the range of the operator F ∗F ,

ξ ∈ R(F ∗F ) ∩ ∂R (u) 6= ∅ . (2.10)

This condition is equivalent to the existence of ω ∈ U\ {0} such
that ξ = F ∗Fω, where F ∗ is the adjoint operator of F and F ∗F :
U → U∗.

Theorem 2.2.3 ([74, Thm 2.2]). Let (2.3) hold and let u be a R-
minimizing solution of (2.1) such that the source condition (2.10) as
well as (2.9) are satisfied. Then the following inequalities hold for
any α > 0:

DF∗Fω
R

(
uαδ , u

)
≤ DF∗Fω

R

(
u− αω, u

)
+
δ2

α

+
δ

α

√
δ2 + 2αDF∗Fω

R

(
u− αω, u

)
, (2.11)

‖Fuαδ − Fu‖ ≤ α ‖Fω‖+ δ +
√
δ2 + 2αDF∗Fω

R

(
u− αω, u

)
. (2.12)

Proof. Since uαδ is a minimizer of (2.2), it follows from algebraic ma-

3in the literature this definition of generalised solution is also known as best-

approximate solution.
4also called source condition of second kind.
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nipulation and from the definition of Bregman distance that

0 ≥ 1

2

[∥∥Fuαδ − gδ
∥∥−

∥∥Fu− gδ
∥∥]+ αR(uαδ )− αR(u)

=
1

2

[∥∥Fuαδ
∥∥−

∥∥Fu
∥∥]− 〈F (uαδ − u) , gδ〉H − αDF∗Fω

R

(
u, u

)

+ α 〈Fω , F (uαδ − u)〉H + αDF∗Fω
R

(
uαδ , u

)
. (2.13)

Notice that

∥∥Fuαδ
∥∥−

∥∥Fu
∥∥ =

∥∥F (uαδ − u+ αω)
∥∥−

∥∥F (u− u+ αω)
∥∥

+ 2 〈Fuαδ − Fu , Fu− αFω〉H .

Moreover, by (2.9), we have

〈F (uαδ − u) , gδ − Fu〉H = 〈F (uαδ − u) , gδ − g〉H .

Therefore, it follows from (2.13) that

1

2

∥∥F (uαδ − u+ αω)
∥∥+ αDF∗Fω

R

(
uαδ , u

)

≤ 〈F (uαδ − u) , gδ − g〉H + αDF∗Fω
R

(
u, u

)
+

1

2

∥∥F (u− u+ αω)
∥∥

for every u ∈ U , α ≥ 0 and δ ≥ 0.
Replacing u by u−αω in the last inequality, using (2.3), relations

〈a, b〉 ≤ |〈a, b〉| ≤ ‖a‖ ‖b‖, and defining γ = ‖F (uαδ − u+ αω)‖ we
obtain

1

2
γ2 + αDF∗Fω

R

(
uαδ , u

)
≤ δγ + αDF∗Fω

R

(
u− αω, u

)
.

We estimate separately each term on the left-hand side by right-hand
side. One of the estimates is an inequality in the form of a polynomial
of the second degree for γ, which gives us the inequality

γ ≤ δ +
√
δ2 + 2αDF∗Fω

R

(
u− αω, u

)
.

This inequality together with the other estimate, gives us (2.11).
Now, (2.12) follows from the fact that ‖F (uαδ − u)‖ ≤ γ+α ‖Fω‖.
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Theorem 2.2.4 ([74, Thm 2.1]). Let α ≥ 0 be given. If u is a R-
minimizing solution of (2.1) satisfying the source condition (2.10) as
well as (2.9), then the following inequalities hold true:

DF∗Fω
R

(
uα, u

)
≤ DF∗Fω

R

(
u− αω, u

)
,

‖Fuα − Fu‖ ≤ α ‖Fω‖+
√

2αDF∗Fω
R

(
u− αω, u

)
.

Proof. See Exercise 2.6.

Corollary 2.2.5 ([74]). Let the assumptions of the Theorem 2.2.3
hold true. Further, assume that R is twice differentiable in a neigh-
bourhood U of u and there exists a number M > 0 such that for any
v ∈ U and u ∈ U the inequality

〈R′′(u)v, v〉 ≤M ‖v‖2 (2.14)

hold true. Then, for the parameter choice α ∼ δ
2
3 we have

Dξ
R

(
uαδ , u

)
= O

(
δ

4
3

)
.

Moreover, for exact data we have Dξ
R

(
uα, u

)
= O

(
α2

)
.

Proof. Using Taylor’s expansion at the element u we obtain

R(u) = R(u) + 〈R′(u), u− u〉+ 1

2
〈R′′(µ)(u− u), u− u〉

for some µ ∈ [u, u]. Let u = u− αω in the above equality. For suffi-
ciently small α, it follows from assumption (2.14) and the definition
of the Bregman distance, with ξ = R′(u), that

Dξ
R

(
u− αω, u

)
=

1

2
〈R′′(µ)(−αω),−αω〉

≤ α2M

2
‖ω‖2U .

Note that Dξ
R

(
u − αω, u

)
= O

(
α2

)
, so the desired rates of conver-

gence follow from Theorems 2.2.3 and 2.2.4.
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2.3 Convergence rate results for non-

linear problems

This section displays a collection the convergence analysis for the lin-
ear problems. In contrast with other classical conditions, the follow-
ing analysis covers the case when both U and H are Banach spaces.

Back to [22] we learn through two examples of linear problems the
interesting effect: ill-posedness of a linear problem need not imply
ill-posedness of its linearisation. Also that the converse implication
need not be true. A well-posed linear problem may have ill-posed
linearisation. Hence we need additional assumptions concerning both
operator and its linearisation.

This assumption is known as linearity condition and it is based
on first-order Taylor expansion of the operator F around u. The
linearity condition assumed in this section is given originally in [75]
and stated as follows.

Assumption B2. Assume that a R-minimizing solution u of (2.1)
exists and that the operator F : D(F ) ⊆ U → H is Gâteaux differ-
entiable. Moreover, we assume that there exists ρ > 0 such that, for
every u ∈ D(F ) ∩ Bρ (u)

‖F (u)− F (u)− F ′ (u) (u− u)‖ ≤ cDξ
R

(
u, u

)
, c > 0 (2.15)

and ξ ∈ ∂R (u).

2.3.1 Rates of convergence for SC of type I

In comparison with the source condition (2.7) introduced on previous
section, the extension of the Source Condition of type I to linear
problems are done with respect to the linearisation of the operator
and its adjoint. Namely, we assume that

ξ ∈ R(F ′ (u)
∗
) ∩ ∂R (u) 6= ∅ (2.16)

where u is a R-minimizing solution of (2.1).
Note that the derivative of operator F is defined between the

Banach space U and L (U ,H), the space of the linear transformations
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from U into H. When we apply the derivative at u ∈ U we have a
linear operator F ′ (u) : U → H and so we define its adjoint

F ′ (u)
∗
: H∗ → U∗.

The source condition (2.16) is stated equivalently as follows: there
exists an element ω ∈ H∗ such that

ξ = F ′ (u)
∗
ω ∈ ∂R (u) . (2.17)

Theorem 2.3.1 ([75, Thm 3.2]). Let the Assumptions A2, B2 and
relation (2.3) hold true. Moreover, assume that there exists ω ∈ H∗

such that (2.17) is satisfied and c ‖ω‖H∗ < 1. Then, the following
estimates hold:

‖F (uαδ )− F (u)‖ ≤ 2α ‖ω‖H∗ + 2
(
α2 ‖ω‖2H∗ + δ2

) 1
2

,

D
F ′(u)∗ω
R

(
uαδ , u

)
≤

(
2

1− c ‖ω‖H∗

)
·

[
δ2

2α
+ α ‖ω‖2H∗ + ‖ω‖H∗

(
α2 ‖ω‖2H∗ + δ2

) 1
2

]
.

In particular, if α ∼ δ, then

‖F (uαδ )− F (u)‖ = O (δ) and D
F ′(u)∗ω
R

(
uαδ , u

)
= O (δ) .

Proof. Since uαδ is the minimizer of (2.2), it follows from the definition
of the Bregman distance that

1

2

∥∥F (uαδ )−gδ
∥∥ ≤ 1

2
δ2−α

(
D

F ′(u)∗ω
R

(
uαδ , u

)
+ 〈F ′ (u)

∗
ω, uαδ − u〉

)
.

By using (2.3) and (2.1) we obtain

1

2

∥∥F (uαδ )− F (u)
∥∥ ≤

∥∥F (uαδ )− gδ
∥∥+ δ2 .

Now, using the last two inequalities above, the definition of Breg-
man distance, the linearity condition and the assumption
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(c ‖ω‖H∗ − 1) < 0, we obtain

1

4

∥∥F (uαδ )− F (u)
∥∥ ≤1

2

(∥∥F (uαδ )− gδ
∥∥+ δ2

)

≤δ2 − αD
F ′(u)∗ω
R

(
uαδ , u

)
+ α〈ω,−F ′ (u) (uαδ − u)〉

≤δ2 − αD
F ′(u)∗ω
R

(
uαδ , u

)

+ α ‖ω‖H∗ ‖F (uαδ )− F (u)‖
+ α ‖ω‖H∗ ‖F (uαδ )− F (u)− F ′ (u) (uαδ − u)‖

=δ2 + α (c ‖ω‖H∗ − 1)D
F ′(u)∗ω
R

(
uαδ , u

)

+ α ‖ω‖H∗ ‖F (uαδ )− F (u)‖ (2.18)

≤δ2 + α ‖ω‖H∗ ‖F (uαδ )− F (u)‖ (2.19)

From (2.19) we obtain an inequality in the form of a polynomial of
second degree for the variable γ = ‖F (uαδ )− F (u)‖. This gives us
the first estimate stated by the theorem. For the second estimate we
use (2.18) and the previous estimate for γ.

Theorem 2.3.2. Let the Assumptions A2 and B2 hold true. More-
over, assume the existence of ω ∈ H∗ such that (2.17) is satisfied and
c ‖ω‖H∗ < 1. Then, the following estimates hold:

‖F (uα)− F (u)‖ ≤ 4α ‖ω‖H∗ ,

D
F ′(u)∗ω
R

(
uα, u

)
≤ 4α ‖ω‖2H∗

1− c ‖ω‖H∗

.

Proof. See Exercise 2.7.

2.3.2 Rates of convergence for SC of type II

Similarly as in the previous subsection, the extension of the Source
Condition of type II (2.10) to linear problems is given as:

ξ ∈ R(F ′ (u)
∗
F ′ (u)) ∩ ∂R (u) 6= ∅

where u is a R-minimizing solution of (2.1).
The assumption above has the following equivalent formulation:

there exists an element ω ∈ U such that

ξ = F ′ (u)
∗
F ′ (u)ω ∈ ∂R (u) . (2.20)
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Theorem 2.3.3 ([75, Thm 3.4]). Let the Assumptions A2, B2 hold
as well as estimate (2.3). Moreover, let H be a Hilbert space and
assume the existence of a R-minimizing solution u of (2.1) in the
interior of D(F ). Assume also the existence of ω ∈ U such that
(2.20) is satisfied and c ‖F ′ (u)ω‖ < 1. Then, for α sufficiently small
the following estimates hold:

‖F (uαδ )− F (u) ‖ ≤ α ‖F ′ (u)ω‖+ h(α, δ) ,

Dξ
R

(
uαδ , u

)
≤ αs+ (cs)2/2 + δh(α, δ) + cs (δ + α ‖F ′ (u)ω‖)

α (1− c ‖F ′ (u)ω‖) ,

(2.21)

where h(α, δ) := δ +

√
(δ + cs)

2
+ 2αs (1 + c ‖F ′ (u)ω‖) and s =

Dξ
R

(
u− αω, u

)
.

Proof. Since uαδ is the minimizer of (2.2), it follows that

0 ≥ 1

2

∥∥F (uαδ )− gδ
∥∥− 1

2

∥∥F (u)− gδ
∥∥+ α (R(uαδ )−R(u))

=
1

2

∥∥F (uαδ )
∥∥− 1

2

∥∥F (u)
∥∥+ 〈F (u)− F (uαδ ) , gδ〉H

+ α (R(uαδ )−R(u))

= ̺ (uαδ )− ̺ (u) . (2.22)

where ̺ (u) =
1

2

∥∥F (u)−q
∥∥+αDξ

R

(
u, u

)
−〈F (u) , gδ − q〉H+α〈ξ, u〉,

q = F (u)− αF ′ (u)ω and ξ is given by source condition (2.20).
From (2.22) we have ̺ (uαδ ) ≤ ̺ (u). By the definition of ̺ (·),

taking u = u − αω and setting v = F (uαδ ) − F (u) + αF ′ (u)ω we
obtain

1

2
‖v‖+ αDξ

R

(
uαδ , u

)
≤ αs+ T1 + T2 + T3 , (2.23)

where s is given in the theorem, and

T1 =
1

2

∥∥F (u− αω)− F (u) + αF ′ (u)ω
∥∥ ,

T2 = |〈F (uαδ )− F (u− αω) , gδ − g〉H| ,



[SEC. 2.3: CONVERGENCE RATE RESULTS FOR NONLINEAR PROBLEMS 39

T3 = α 〈F ′ (u)ω , F (uαδ )− F (u− αω)− F ′ (u) (uαδ − (u− αω))〉H .

The next step is to estimate each one of the constants Tj above,
j = 1, 2 and 3. We use the linear condition (2.15), Cauchy-Schwarz,

and some algebraic manipulation to obtain T1 ≤ c2s2

2 ,

T2 ≤ |〈v , gδ − g〉H|
+ |〈F (u− αω)− F (u) + αF ′ (u)ω − , gδ − g〉H|

≤ ‖v‖ ‖gδ − g‖+ cDξ
R

(
u− αω, u

)
‖gδ − g‖

≤δ ‖v‖+ δcs ,

and

T3 = α 〈F ′ (u)ω , F (uαδ )− F (u)− F ′ (u) (uαδ − u)〉H
+α 〈F ′ (u)ω , − (F (u− αω)− F (u) + αF ′ (u)ω)〉H

≤ α ‖F ′ (u)ω‖ ‖F (uαδ )− F (u)− F ′ (u) (uαδ − u)‖
+α ‖F ′ (u)ω‖ ‖F (u− αω)− F (u) + αF ′ (u)ω‖

≤ α ‖F ′ (u)ω‖ cDξ
R

(
uαδ , u

)
+ α ‖F ′ (u)ω‖ cDξ

R

(
u− αω, u

)

= αc ‖F ′ (u)ω‖Dξ
R

(
uαδ , u

)
+ αcs ‖F ′ (u)ω‖ .

Using these estimates in (2.23), we obtain

‖v‖+ 2αDξ
R

(
uαδ , u

)
[1− c ‖F ′ (u)ω‖] ≤ 2δ ‖v‖+ 2αs+ (cs)2

+2δcs+ 2αcs ‖F ′ (u)ω‖ .

Analogously as in the proof of Theorem 2.2.3, each term on the left-
hand side of the last inequality is estimated separately by the right-
hand side. This allows the derivation of an inequality described by
a polynomial of second degree. From this inequality, the theorem
follows.

Theorem 2.3.4. Let Assumptions A2, B2 hold and assume H to be
a Hilbert space. Moreover, assume the existence of a R-minimizing
solution u of (2.1) in the interior of D(F ), also the existence of
ω ∈ U such that (2.20) is satisfied and c ‖F ′ (u)ω‖ < 1. Then, for α
sufficiently small the following estimates hold:

‖F (uα)− F (u)‖ ≤ α ‖F ′ (u)ω‖+
√
(cs)

2
+ 2αs (1 + c ‖F ′ (u)ω‖) ,
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Dξ
R

(
uα, u

)
≤ αs+ (cs)2/2 + αcs ‖F ′ (u)ω‖H

α (1− c ‖F ′ (u)ω‖H)
, (2.24)

where s = Dξ
R

(
u− αω, u

)
.

Proof. See Exercise 2.8.

Corollary 2.3.5 ([75, Prop 3.5]). Let assumptions of the Theorem
2.3.3 hold true. Moreover, assume that R is twice differentiable in a
neighbourhood U of u, and that there exists a number M > 0 such
that for all u ∈ U and for all v ∈ U , the inequality 〈R′′(u)v, v〉 ≤
M ‖v‖ holds. Then, for the choice of parameter α ∼ δ

2
3 we have

Dξ
R

(
uαδ , u

)
= O

(
δ

4
3

)
, while for exact data we obtain Dξ

R

(
uαδ , u

)
=

O
(
α2

)
.

Proof. See Exercise 2.9.

2.4 Bibliographical comments

We briefly comment on two new trends for deriving convergences
rates, namely, variational inequalities and approximated source con-
dition.

Since the first convergence rates results for linear problems given
in [22] until the results [12, 74, 75] presented previously, the results
of Engl and co-workers seems to be fully generalised. Nevertheless
another paper concerning convergence rates came out [42] bringing
new insights. The authors observed the following:

In all these papers relatively strong regularity assump-
tions are made. However, it has been observed numer-
ically that violations of the smoothness assumptions of
the operator do not necessarily affect the convergence
rate negatively. We take this observation and weaken
the smoothness assumptions on the operator and prove
a novel convergence rate result. The most significant dif-
ference in this result from the previous ones is that the
source condition is formulated as a variational inequality
and not as an equation as previously.
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We display the variational inequality (VI) proposed in [42,
Assumption 4.1], regardless auxiliary assumptions found in the paper.

Assumption C2. There exist numbers c1, c2 ∈ [0,∞), where c1 < 1,
and ξ ∈ ∂R

(
u
)
such that

〈ξ, u− u〉 ≤ c1D
ξ
R

(
u, u

)
+ c2 ‖F (u)− F (u)‖

for all u ∈ Mαmax
(ρ) where ρ > αmax

(
R(u) + δ2

α

)
.

Additionally, it was proved that standard linearity conditions im-
ply the new VI. Under this assumption one can derive the same rate of
convergence obtained in Section 2.3. For more details see [42, 23, 44].

In [41] an alternative concept for proving convergence rates for
linear problems in Hilbert spaces is presented, when the source con-
dition

u = F ∗ω, ω ∈ H∗ (2.25)

is injured.
Instead we have an approximated source condition like

u = F ∗ω + r,

where r ∈ U . The theory is based on the decay rate of so-called dis-
tance functions which measures the degree of violation of the solution
with respect to a prescribed benchmark source condition, e.g. (2.25).
For the linear case the distance function is defined intuitively as

d(ρ) = inf {‖u− F ∗ω‖ | ω ∈ H∗, ‖ω‖ ≤ ρ} .

The article [37] points out that this approach can be generalised to
Banach spaces, as well as to linear operators. Afterwards, with the aid
of this distance functions, the authors of [38] presented error bounds
and convergence rates for regularised solutions of linear problems for
Tikhonov type functionals when the reference source condition is not
satisfied.

2.5 Exercises

2.1. Prove Theorem 2.1.1.
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2.2. Prove Theorem 2.1.2.

2.3. Prove Theorem 2.1.3.

2.4. Prove Theorem 2.1.4.

2.5. Prove Theorem 2.2.2.

2.6. Prove Theorem 2.2.4.

2.7. Prove Theorem 2.3.2.

2.8. Prove Theorem 2.3.4.

2.9. Prove Corollary 2.3.5.



Chapter 3

Iterative regularization:

Landweber type

methods

The Landweber1 method [55] is a classical iterative regularization
method for solving ill-posed problems [55, 21, 48]. In this chapter
we focus on a novel variant of this method, namely the Landweber-
Kaczmarz iteration [52], which is designed to efficiently solve large
systems of ill-posed equations in a stable way, and has been object of
extensive study over the last decade [33, 31, 30, 56, 45].

3.1 Landweber-Kaczmarz method: Hil-

bert space approach

In this section we analyze novel iterative regularization techniques
for the solution of systems of nonlinear ill–posed operator equations
in Hilbert spaces. The basic idea consists in considering separately
each equation of this system and incorporating a loping strategy.
The first technique is a Kaczmarz type iteration, equipped with a

1See www.iihr.uiowa.edu/about/iihr-archives/landweber-archives.
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novel stopping criteria. The second method is obtained using an
embedding strategy, and again a Kaczmarz type iteration. We prove
well-posedness, stability and convergence of both methods.

Figure 3.1: Louis Landweber.

3.1.1 Mathematical problem and iterative meth-

ods

We consider the problem of determining some physical quantity x
from data (yi)N−1

i=0 , which is functionally related by

Fi(x) = yi , i = 0, . . . , N − 1 . (3.1)

Here Fi : Di ⊆ X → Y are operators between separable Hilbert
spaces X and Y . We are specially interested in the situation where
the data is not exactly known, i.e., we have only an approximation
yδ,i of the exact data, satisfying

‖yδ,i − yi‖ < δi . (3.2)
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Standard methods for the solution of such systems are based on
rewriting (3.1) as a single equation

F(x) = y , i = 0, . . . , N − 1 , (3.3)

where F := 1/
√
N · (F0, . . . , FN−1) and y = 1/

√
N · (y0, . . . , yN−1).

There are at least two basic concepts for solving ill posed equations of
the form (3.3): Iterative regularization methods (cf., e.g., [55, 34, 21,
1, 48]) and Tikhonov type regularization methods [65, 82, 78, 66, 21].
However these methods become inefficient if N is large or the evalua-
tions of Fi(x) and F′

i(x)
∗ are expensive. In such a situation Kaczmarz

type methods [47, 69] which cyclically consider each equation in (3.1)
separately, are much faster [68] and are often the method of choice
in practice. On the other hand, only few theoretical results about
regularizing properties of Kaczmarz methods are available, so far.

The Landweber–Kaczmarz approach for the solution of (3.1), (3.2)
analyzed here consists in incorporating a bang-bang relaxation pa-
rameter in the classical Landweber–Kaczmarz method [52], combined
with a new stopping rule. Namely,

xn+1 = xn − ωnF
′
[n](xn)

∗(F[n](xn)− yδ,[n]) , (3.4)

with

ωn := ωn(δ, y
δ) =

{
1 ‖F[n](xn)− yδ,[n]‖ > τδ[n]

0 otherwise
, (3.5)

where τ > 2 is an appropriate chosen positive constant and [n] := n
mod N ∈ {0, . . . , N − 1}. The iteration terminates if all ωn be-
come zero within a cycle, that is if ‖Fi(xn) − yδ,i‖ ≤ τδi for all
i ∈ {0, . . . , N−1}. We shall refer to this method as loping Landweber–
Kaczmarz method (lLK). Its worth mentioning that, for noise free
data, ωn = 1 for all n and therefore, in this special situation, our
iteration is identical to the classical Landweber–Kaczmarz method

xn+1 = xn − F′
[n](xn)

∗(F[n](xn)− yδ,[n]) , (3.6)

which is a special case of [68, Eq. (5.1)].
However, for noisy data, the lLK method is fundamentally dif-

ferent to (3.6): The parameter ωn effects that the iterates defined
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in (3.4) become stationary and all components of the residual vector
‖Fi(xn)− yδ,i‖ fall below some threshold, making (3.4) a convergent
regularization method. The convergence of the residuals in the max-
imum norm better exploits the error estimates (3.2) than standard

methods, where only squared average 1/N ·∑N−1
i=0 ‖Fi(xn)− yδ,i‖2 of

the residuals falls below a certain threshold. Moreover, especially af-
ter a large number of iterations, ωn will vanish for some n. Therefore,
the computational expensive evaluation of F[n][xn]

∗ might be loped,
making the Landweber–Kaczmarz method in (3.4) a fast alternative
to conventional regularization techniques for system of equations.

The second regularization strategy considered in this section is an
embedding approach, which consists in rewriting (3.1) into an system
of equations on the space XN

Fi(x
i) = yi , i = 0, . . . , N − 1 , (3.7)

with the additional constraint

N−1∑
i=0

‖xi+1 − xi‖2 = 0 , (3.8)

where we set xN := x0. Notice that if x is a solution of (3.1), then the
constant vector (xi = x)N−1

i=0 is a solution of system (3.7), (3.8), and
vice versa. This system of equations is solved using a block Kaczmarz
strategy of the form

xn+1/2 = xn − ωnF
′(xn)

∗(F(xn)− yδ) (3.9)

xn+1 = xn+1/2 − ωn+1/2G(xn+1/2) , (3.10)

where x := (xi)i ∈ XN , yδ := (yδ,i)i ∈ Y N , F(x) := (Fi(x
i))i ∈ Y N ,

ωn =

{
1 ‖F(xn)− yδ‖ > τδ

0 otherwise
,

ωn+1/2 =

{
1 ‖G(xn+1/2)‖ > τǫ(δ)

0 otherwise
,

(3.11)

with δ := max{δi}. The strictly increasing function ǫ : [0,∞) →
[0,∞) satisfies ǫ(δ) → 0, as δ → 0, and guaranties the existence of
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a finite stopping index. A natural choice is ǫ(δ) = δ. Moreover, up
to a positive multiplicative constant, G corresponds to the steepest
descent direction of the functional

G(x) :=
N−1∑
i=0

‖xi+1 − xi‖2 (3.12)

on XN . Notice that (3.10) can also be interpreted as a Landweber–
Kaczmarz step with respect to the equation

λD(x) = 0 , (3.13)

where D(x) = (xi+1 − xi)i ∈ XN and λ is a small positive pa-
rameter such that ‖λD‖ ≤ 1. Since equation (3.1) is embedded
into a system of equations on a higher dimensional function space
we call the resulting regularization technique embedded Landweber–
Kaczmarz (eLK) method. As shown in Section 3.1.3, (3.9), (3.10)
generalizes the Landweber method for solving (3.3).

3.1.2 Analysis of the lLK method

In this section we present the convergence analysis of the loping
Landweber–Kaczmarz (lLK) method. The novelty of this approach
consists in omitting an update in the Landweber Kaczmarz iteration,
within one cycle, if the corresponding i–th residual is below some
threshold, see (3.5). Consequently, the lLK method is not stopped
until all residuals are below the specified threshold. Therefore, it is
the natural counterpart of the Landweber–Kaczmarz iteration [47, 69]
for ill–posed problems.

The following assumptions are standard in the convergence anal-
ysis of iterative regularization methods [21, 34, 48]. We assume that
Fi is Fréchet differentiable and that there exists ρ > 0 with

‖F′
i(x)‖Y ≤ 1 , x ∈ Bρ(x0) ⊂

N−1⋂
i=0

Di . (3.14)

Here Bρ(x0) denotes the closed ball of radius ρ around the starting
value x0, Di is the domain of Fi, and F′

i(x) is the Fréchet derivative
of Fi at x.
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Moreover, we assume that the local tangential cone condition

‖Fi(x)− Fi(x̄)− F′
i(x)(x− x̄)‖Y ≤ η‖Fi(x)− Fi(x̄)‖Y ,

x, x̄ ∈ Bρ(x0) ⊂ Di

(3.15)

holds for some η < 1/2. This is a central assumption in the analysis
of iterative methods for the solution of nonlinear ill–posed problems
[21, 48].

In the analysis of the lLK method we assume that τ (used in the
definition (3.5) of ωn) satisfies

τ > 2
1 + η

1− 2η
> 2 . (3.16)

Note that, for noise free data, the lLK method is equivalent to the
classical Landweber–Kaczmarz method, since ωn = 1 for all n ∈ N.

In the case of noisy data, iterative regularization methods require
early termination, which is enforced by an appropriate stopping cri-
teria. In order to motivate the stopping criteria, we derive in the
following lemma an estimate related to the monotonicity of the se-
quence xn defined in (3.4).

Lemma 3.1.1. Let x be a solution of (3.1) where Fi are Fréchet
differentiable in Bρ(x0), satisfying (3.14), (3.15). Moreover, let xn
be the sequence defined in (3.4), (3.5). Then

‖xn+1 − x‖2 − ‖xn − x‖2 ≤ ωn‖F[n](xn)− yδ,[n]‖·
·
(
2(1 + η)δ[n] − (1− 2η)‖F[n](xn)− yδ,[n]‖

)
, (3.17)

where [n] = mod (n,N).

Proof. The proof follows the lines of [34, Proposition 2.2]. Notice
that if ωn is different from zero, inequality (3.17) follows analogously
as in [34]. In the case ωn = 0, (3.17) follows from xn = xn+1.

Motivated, by Lemma 3.1.1 we define the termination index nδ∗ =
nδ∗(y

δ) as the smallest integer multiple of N such that

xnδ
∗
= xnδ

∗+1 = · · · = xnδ
∗+N . (3.18)

Now we have the following monotonicity result:
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Lemma 3.1.2. Let x, Fi and xn be defined as in Lemma 3.1.1 and
nδ∗ be defined by (3.18). Then we have

‖xn+1 − x‖ ≤ ‖xn − x‖ , n = 0, . . . , nδ∗ . (3.19)

Moreover, the stoping rule (3.18) implies ωnδ
∗+i = 0 for all i ∈

{0, . . . , N − 1}, i.e.,

‖Fi(xnδ
∗
)− yδ,i‖ ≤ τδi , i = 0, . . . , N − 1 . (3.20)

Proof. If ωn = 0, then (3.19) holds since the iteration stagnates.
Otherwise, from the definitions of ωn in (3.5) and τ in (3.16), it
follows that

2(1 + η)δi − (1− 2η)‖F[n](xn)− yδ,[n]‖ < 0 , (3.21)

and the right hand side in (3.17) becomes nonpositive.
To prove the second assertion we use (3.17) for n = nδ∗ + i, for

i ∈ {0, . . . , N − 1}. By noting that xnδ
∗+i = xnδ

∗
and [nδ∗ + i] = i, we

obtain

0 ≤ ωnδ
∗+i · ‖Fi(xnδ

∗
)− yδ,i‖

(
2(1 + η)δi − (1− 2η)‖yδ,i − Fi(xnδ

∗
)‖
)
,

for i ∈ {0, . . . , N − 1}. Suppose ωnδ
∗+i 6= 0, then

2(1 + η)δi − (1− 2η)‖yδ,i − Fi(xnδ
∗
)‖ ≥ 0,

which contradicts the definition of ωnδ
∗+i.

Note that for n > nδ∗, ωn ≡ 0 and therefore xn = xnδ
∗
. This shows

that the Landweber–Kaczmarz method becomes stationary after nδ∗.

Remark 3.1.3. Similar to the nonlinear Landweber iteration one
obtains the estimate

nδ∗ ·
(
τ mini(δ

i)
)2

N
≤

nδ
∗−1∑

n=0

ωn‖yδ,[n] − F[n](xn)‖2

≤
τ‖x− xnδ

∗
‖2

(1− 2η)τ − 2(1 + η)
.

(3.22)

Here we use the notation of Lemma 3.1.1.
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From Remark 3.1.3 it follows that, in the case of noisy data, nδ∗ <
∞ and the iteration terminates after a finite number of steps. Next,
we state the main result of this section, namely that the Landweber–
Kaczmarz method is a convergent regularization method.

Theorem 3.1.4. Assume that Fi are Fréchet-differentiable in Bρ(x0),
satisfy (3.14), (3.15) and the system (3.1) has a solution in Bρ/2(x0).
Then

1. For exact data yδ,i = yi, the sequence xn in (3.4) converges to
a solution of (3.1). Moreover, if x† denotes the unique solution
of (3.1) with minimal distance to x0 and

N (F′
i(x

†)) ⊆ N (F′
i(x)) , x ∈ Bρ(x0) , (3.23)

for i ∈ {0, . . . , N − 1}, then xn → x†.

2. For noisy data the loping Landweber–Kaczmarz iterates xnδ
∗

converge to a solution of (3.1) as δ → 0. If in addition (3.23)
holds, then xnδ

∗
converges to x† as δ → 0.

Proof. The proof of the first item is analogous to the proof in [52,
Proposition 4.3] (see also [48]). We emphasize that, for exact data,
the iteration (3.4) reduces to the classical Landweber–Kaczmarz me-
thod, which allows to apply the corresponding result of [52].

The proof of the second item is analogous to the proof of the
corresponding result for the Landweber iteration as in [34, Theorem
2.9]. For the first case within this proof, (3.20) is required. For the
second case we need the monotony result from Lemma 3.1.2.

In the case of noisy data (i.e. the second item of Theorem 3.1.4),
it has been shown in [52] that the Landweber–Kaczmarz iteration

xn+1 = xn − F′
[n](xn)

∗(F[n](xn)− yδ,[n]) , (3.24)

is convergent if it is terminated after the ñδ–th step, where ñδ is the
smallest iteration index that satisfies

‖F[ñδ](xñδ )− yδ,[ñ
δ]‖ ≤ τδ[ñ

δ] . (3.25)
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Therefore, in general, only one of the components of the residual
vector

(
‖Fi(xñδ )−yδ,i‖

)
i
is smaller than τδi, namely the active com-

ponent ‖F[ñδ](xñδ ) − yδ,[ñ
δ]‖. However, the argumentation in [52] is

incomplete, in the sense that the case when ñδ stagnates as δ → 0,
has not been considered. Hence, [52, Theorem 4.4] requires the addi-
tional assumption that ñδ → ∞, as δ → 0, which is usually the case
in practice.

3.1.3 Analysis of the eLK method

In the embedded Landweber–Kaczmarz (eLK) method for the solu-
tion of (3.1), x ∈ X is substituted by a vector x = (xi)N−1

i=0 . In (3.9)
each component of x is updated independently according to one of
the system equations. In the balancing step (3.10), the difference
between the components of x is minimized.

In order to determine xn+1/2, each of its components xin+1/2 can
be evaluated independently:

xin+1/2 = xin − ωnF
′
i(x

i
n)

∗
(
Fi(x

i
n)− yδ,i

)
, i = 0, . . . , N − 1 .

In the balancing step (3.10), xn+1 is determined from xn+1/2 by a
matrix multiplication with the sparse matrix IXN − ωn+1/2G, where

G = λ2




2I −I 0 −I
−I 2I

. . .
. . .

0
. . .

. . .
. . . 0

. . .
. . . 2I −I

−I 0 −I 2I




∈ L(XN , XN ) .

Here λ is a small positive parameter such that ‖λD‖ ≤ 1, and the
operator G is a discrete variant of −λ2 times the second derivative
operator and therefore penalizes for varying components. As already
mentioned in the introduction, the the balancing step (3.10) is a
Landweber–Kaczmarz step with respect to the equation (3.13). The
operator D is linear and bounded, which guaranties the existence of a
positive constant λ such that λD satisfies (3.14), which will be needed
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in the analysis of the embedded Landweber method. The iteration
defined in (3.9), (3.10) is terminated when for the first time

xnδ
⋆+1 = xnδ

⋆+1/2 = xnδ
⋆
. (3.26)

The artificial noise level ǫ : [0,∞) → [0,∞) satisfies ǫ(δ) → 0, as
δ → 0 and guaranties the existence of a finite stopping index in the
eLK method.

In the sequel we shall apply the results of the Section 3.1.2 to prove
convergence of the eLK method. As initial guess we use a constant
vector x0 := (x0)i whose components are identical to x0. Moreover,
our convergence analysis will again require the scaling assumption
(3.14) and the tangential cone condition (3.15) to be satisfied near
x0.

Remark 3.1.5 (Comparison with the classical Landweber iteration).
Let F := 1/

√
N · (F0, . . . , FN−1) and yδ := 1/

√
N · (yδ,0, . . . , yδ,N−1).

The Landweber iteration for the solution of F(x) = yδ, see (3.3), is
[34, 21]

xn+1 = xn − F′[xn]
∗(F(xn)− yδ)

= xn − 1
N ·

N−1∑
i=0

F′
i(xn)

∗(Fi(xn)− yδ,i)

= 1
N ·

N−1∑
i=0

(
xn − F′

i(xn)
∗(Fi(xn)− yδ,i)

)
.

If we set xin+1/2 := xn − F′
i(xn)

∗(Fi(xn) − yδ,i) then the Landweber

method can be rewritten in form similar to (3.9), (3.10), namely

xin+1/2 = xn − F ′
i (xn)

∗(Fi(xn)− yδ,i) ,

xn+1 = 1
N ·

N−1∑
i=0

xin+1/2 . (3.27)

Hence, the distinction between the Landweber and the eLK method
is that (3.27) in the Landweber method makes all components equal,
whereas the balancing step (3.10) in the embedded Landweber–Kacz-
marz method leaves them distinct.

In order to illustrate the idea behind the eLK method, we ex-
emplarily consider the case N = 3. In this case the mechanism of
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Figure 3.2: Landweber versus eLK method for solving ai · x = yi, i ∈
{0, 1, 2} with ‖a1‖ = 1. In this case xi

n+1/2 := xn − a∗

i (ai · xn − yi) is the

orthogonal projection of xn on li := {x ∈ R
2 : ai · x = yi}. Each step

of the Landweber iteration generates a single element in X (left picture),
namely the average 1/3

∑2
i=0 x

i
n. In contrast, a cycle in the embedded

Landweber–Kaczmarz method generates a vector in XN (right picture),
where each component of xn+1 is a linear combination of the xi

n.

the embedded iteration is explained in Figure 3.2 in contrast to the
Landweber method.

In the next theorem we prove that the termination index is well
defined, as well as convergence and stability of the eLK method.

Theorem 3.1.6. Assume that the operators Fi are Fréchet-differen-
tiable in Bρ(x0) and satisfy (3.14), (3.15). Moreover, we assume that
(3.1) has a solution in Bρ/2(x0). Then we have:

1. For exact data yδ,i = yi, the sequence xn in (3.9), (3.10) con-
verges to a constant vector (x)i, where x is a solution (3.1) in
Bρ/2(x0). Additionally, if the operators Fi satisfy (3.23), then

the sequence xn converges to the constant vector x† = (x†)i,
where x† is the unique solution of minimal distance to x0.

2. For noisy data δ > 0, (3.26) defines a finite termination in-
dex nδ⋆. Moreover, the embedded Landweber–Kaczmarz itera-

tion xnδ
⋆ converges to a constant vector x = (x)i, where x is

a solution (3.1) in Bρ/2(x0), as δ → 0. If in addition (3.23)

holds, then each component of xnδ
⋆ converges to x†, as δ → 0.
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Proof. In order to prove the first item we apply Theorem 3.1.4, item
1 to the system (3.7), (3.13). From (3.14) it follows that ‖F[x]‖ ≤ 1
for x ∈ Bρ(x0)

N . Moreover, since D is bounded linear, ‖λD‖ ≤ 1
for sufficiently small λ. The tangential cone condition (3.15) for Fi

implies

‖F(x)− F(x̄)− F′(x)(x− x̄)‖ ≤ η‖F(x)− F(x̄)‖ ,
x, x̄ ∈ Bρ(x0)

N .

Moreover, since λD is a linear operator, the tangential cone con-
dition is obviously satisfied for λD with the same η. Therefore, by
applying Theorem 3.1.4, item 1 we conclude that xn converges to a
solution x̃ of (3.1), (3.13). From (3.13) it follows that x̃ = (x̃)i is a
constant vector. Therefore, Fi(x̃) = yi, proving the assertion.

Additionally, let x† denote the solution of (3.7), (3.13) with mini-
mal distance to (x0)i. As an auxiliary result we show that x† = (x†)i,
where x† is the unique solution of (3.1) with minimal distance to x0.
Due to (3.13) we have x† = (x̃)i, for some x̃ ∈ X. Moreover, the
vector (x†)i is a solution of (3.1), (3.13) and

‖x̃− x0‖2 = 1
N

N−1∑
i=0

‖x̃− x0‖2 ≤ 1
N

N−1∑
i=0

‖x† − x0‖2 = ‖x† − x0‖2.

Therefore x† = (x†)i. Now, if (3.23) is satisfied, then

N (F′(x†)) ⊆ N (F′(x)) , x ∈ Bρ(x0)
N

and by applying Theorem 3.1.4 we conclude that xn → x†.
The proof of the second item follows from Theorem 3.1.4, item 2

in an analogous way as above.

As consequence of Theorem 3.1.6, if nδ⋆ is defined by (3.26) and

xnδ
⋆ = (x

nδ
∗

i )i, then

xn
δ
⋆ :=

N−1∑
i=0

x
nδ
⋆

i −→ x† , (3.28)

as δ → 0. However, Theorem 3.1.6 guaranties even more: All com-

ponents x
nδ
⋆

i converge to x† as the noise level tend to zero. Moreover,
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due to the averaging process in (3.28) the noise level in the actual

regularized solution xn
δ
⋆ becomes noticeable reduced.

3.2 Landweber-Kaczmarz method: Ba-

nach space approach

In this section we investigate the Landweber-Kaczmarz method in
Banach spaces (LKB) for obtaining regularized approximate solutions
for systems of nonlinear operator equations modelled by ill-posed
operators acting between Banach spaces.

3.2.1 Systems of nonlinear ill-posed equations

The inverse problem we are interested in consists of determining an
unknown physical quantity x ∈ X from the set of data (y1, . . . , ym) ∈
Y m, where X, Y are Banach spaces, X uniformly convex and smooth
[14], and m ≥ 1.

In practical situations, we do not know the data exactly. Instead,
we have only approximate measured data yδi ∈ Y satisfying

‖yδi − yi‖ ≤ δi , i = 1, . . . ,m , (3.29)

with δi > 0 (noise level). The finite set of data above is obtained by
indirect measurements of the parameter, this process being described
by the model

Fi(x) = yi , i = 1, . . . ,m , (3.30)

where Fi : Di ⊂ X → Y , and Di are the corresponding domains of
definition.

Example 3.2.1. A tutorial example of an inverse problem of the
form (3.30) is the identification of the space-dependent coefficient
a(x) (bounded away from zero) in the elliptic model

−∇(a∇u) = f , in Ω u = 0 , at ∂Ω ,

where Ω ⊂ R
2 is an open bounded domain with regular (smooth)

boundary ∂Ω. Available data for the identification problem are u|Ωi
,

i.e., the restrictions of the solution u to given open sets Ωi ⊂ Ω,
i = 1, . . . ,m.
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In the standard Hilbert space setting [21, 16] we have Fi : H
2(Ω) =

X ⊃ Di ∋ a 7→ (∆−1
a f)|Ωi

∈ Yi = L2(Ωi), where ∆a : H2(Ω) ∩
H1

0 (Ω) ∋ u 7→ −∇(a∇u) ∈ L2(Ω) and Di = D := {a ∈ X; a(x) ≥
a > 0, a.e. in Ω}, i = 1, · · · ,m.

A possible Banach space setting for this problem is analyzed in [49]
(for the case m = 1 and Ω1 = Ω), where the choice X = W 1,q(Ω),
Yi = Lr(Ωi) with q > 2 and r ∈ (1,∞) is considered. In particular,
it follows from [49, Corollary 3] that the convergence analysis results
derived here can be applied to this parameter identification problem
(see Assumption A3).

3.2.2 Regularization in Banach spaces

The starting point of our approach is the Landweber method [76, 49]
for solving ill-posed problems in Banach spaces.2 In the case of a
single operator equation, i.e., m = 1 in (3.30), this method is defined
by

x∗n = Jp(xn)− µnF
′(xn)

∗Jr
(
F (xn)− yδ

)
,

xn+1 = Jq(x
∗
n) ,

(3.31)

where F ′(x) is the Fréchet derivative of F at point x, and Jp, Jr,
Jq are duality mappings from X, Y , X∗ to their duals respectively.
Moreover, x0 ∈ D and p, q, r ∈ (1,∞) satisfy p+ q = pq.

The step-size µn depends on the constant of the tangential cone
condition, the constant of the discrepancy principle, the residual at
xn, and a constant describing geometrical properties of the Banach
spaces (see [76, Section 3]).

Convergence analysis for the linear case F ∈ L(X,Y ) can be
found in [76], while convergence for nonlinear operator equations is
derived in [49], where X is assumed to be uniformly smooth and
uniformly convex (actually, X is assumed to be p-convex, which is
equivalent to the dual being q-smooth, i.e., there exists a constant
Cq > 0 such that for all x∗, y∗ ∈ X∗ it follows ‖x∗ − y∗‖q ≤
‖x∗‖q − q〈Jq(x∗), y∗〉+Cq‖y∗‖q; see [49, Section 2.2]). For a detailed
definition of smoothness, uniform smoothness and uniform convexity
in Banach spaces, we refer the reader to [14, 76].

2See also [1, 21, 48] for the analysis of the Landweber method in Hilbert spaces.



[SEC. 3.2: LANDWEBER-KACZMARZ METHOD: BANACH SPACE APPROACH 57

3.2.3 The LKB method

The Landweber-Kaczmarz method in Banach spaces LKB consists
in incorporating the (cyclic) Kaczmarz strategy to the Landweber
method depicted in in (3.31) for solving the system of operator equa-
tions in (3.30).

This strategy is analog to the one proposed in [33, 31] regard-
ing the Landweber-Kaczmarz (LK) iteration in Hilbert spaces. See
also [17] for the Steepest-Descent-Kaczmarz (SDK) iteration, [32]
for the Expectation-Maximization-Kaczmarz (EMK) iteration, [3]
for the Levenberg-Marquardt-Kaczmarz (LMK) iteration, and [16]
for the iterated-Tikhonov-Kaczmarz (iTK) iteration.

Motivated by the ideas in the above mentioned papers (in partic-
ular by the approach in [32], where X = L1(Ω) and convergence is
measured with respect to the Kullback-Leibler distance), we propose
next the LBK method, which is sketched as follows:

x∗n = Jp(xn)− µnF
′
in(xn)

∗Jr
(
Fin(xn)− yδin

)
,

xn+1 = Jq(x
∗
n) ,

(3.32)

for n = 0, 1, . . . Moreover, in := (n mod m)+1 ∈ {1, ...,m}, and x0 ∈
X\{0} is an initial guess, possibly incorporating a priori knowledge
about the exact solution (which may not be unique).

Here µn ≥ 0 is chosen analogously as in (3.31) if ‖Fin(xn)−yδin‖ ≥
τδin (see Section 3.2.5 for the precise definition of µn and the discrep-
ancy parameter τ > 0). Otherwise, we set µn = 0. Consequently,
xn+1 = Jq(x

∗
n) = Jq(Jp(xn)) = xn every time the residual of the

iterate xn w.r.t. the in-th equation of system (3.30) drops below the
discrepancy level given by τδin .

Due to the bang-bang strategy used in to define the sequence of
parameters (µn), the iteration in (3.32) is alternatively called loping
Landweber-Kaczmarz method in Banach spaces.

As usual in Kaczmarz type algorithms, a group of m subsequent
steps (beginning at some integer multiple of m) is called a cycle. The
iteration should be terminated when, for the first time, all of the
residuals ‖Fin(xn+1) − yδin‖ drop below a specified threshold within
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a cycle. That is, we stop the iteration at the step

n̂ := min{ℓm+ (m− 1) : ℓ ∈ N , ‖Fi(xℓm+i−1)− yδi ‖ ≤ τδi ,

for 1 ≤ i ≤ m} . (3.33)

In other words, writing n̂ := ℓ̂m+(m−1), (3.33) can be interpreted as
‖Fi(xℓ̂m+i−1)−yδi ‖ ≤ τδi, i = 1, . . . ,m. In the case of noise free data
(δi = 0 in (3.29)) the stop criteria in (3.33) may never be reached,
i.e., n̂ = ∞ for δi = 0.

3.2.4 Mathematical background

Overview on convex analysis

Let X be a (nontrivial) real Banach space with topological dual X∗.
By ‖ · ‖ we denote the norm on X and X∗. The duality product
on X × X∗ is a bilinear symmetric mapping, denoted by 〈·, ·〉, and
defined as 〈x, x∗〉 = x∗(x), for all (x, x∗) ∈ X ×X∗.

Let f : X → (−∞,∞] be convex, proper and lower semicontinu-
ous. Recall that f is convex lower semicontinuous when its epigraph
epi(f) := {(x, λ) ∈ X × R : f(x) ≤ λ} is a closed convex subset of
X × R. Moreover, f is proper when its domain dom(f) := {x ∈ X :
f(x) <∞} is nonempty. The subdifferential of f is the (point-to-set)
operator ∂f : X → 2X

∗

defined at x ∈ X by

∂f(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ X}. (3.34)

Notice that ∂f(x) = ∅ whenever x /∈ dom(f). The domain of ∂f is the
set dom(∂f) = {x ∈ X : ∂f(x) 6= ∅}. Next we present a very useful
characterization of ∂f using the concept of Fenchel Conjugation. The
Fenchel-conjugate of f is the lower semicontinuous convex function
f∗ : X∗ → (−∞,∞] defined at x∗ ∈ X∗ by

f∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x). (3.35)

It is well known that f∗ is also proper whenever f is proper. It follows
directly from (3.35) the Fenchel-Young inequality

f(x) + f∗(x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗. (3.36)
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Proposition 3.2.2. Let f : X → (−∞,∞] be proper convex lower
semicontinuous and (x, x∗) ∈ X × X∗. Then x∗ ∈ ∂f(x) ⇐⇒
f(x) + f∗(x∗) = 〈x, x∗〉.
Proof. See Exercise 3.1.

An important example considered here is given by f(x) = p−1‖x‖p,
where p ∈ (1,∞). In this particular case, the following result can be
found in [14].

Proposition 3.2.3. Let p ∈ (1,∞) and f : X ∋ x 7→ p−1‖x‖p ∈ R.
Then

f∗ : X∗ → R, x∗ 7→ q−1‖x∗‖q , where p+ q = pq .

Proof. See Exercise 3.2.

For p ∈ (1,∞), the duality mapping Jp : X → 2X
∗

is defined by

Jp := ∂p−1‖ · ‖p .

From the proposition above, we conclude that

x∗ ∈ Jp(x) ⇐⇒ p−1‖x‖p + q−1‖x∗‖q = 〈x, x∗〉 , p+ q = pq.

It follows from the above identity that Jp(0) = {0}. On the other
hand, when x 6= 0, Jp(x) may not be singleton.

Proposition 3.2.4. Let X and the duality mapping Jp be defined
as above. The following identities hold:

Jp(x) = {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x‖ ‖x∗‖}
= {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x‖p}
= {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x∗‖q} .

Moreover, Jp(x) 6= ∅ for all x ∈ X.

Proof. Take x∗ ∈ Jp(x). Then p−1‖x‖p + q−1‖x∗‖q = 〈x, x∗〉. Now,
using the Young inequality for the real numbers ‖x‖ and ‖x∗‖, we
obtain

‖x‖ ‖x∗‖ ≤ p−1‖x‖p + q−1‖x∗‖q = 〈x, x∗〉 ≤ ‖x‖ ‖x∗‖ ,
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from what follows 〈x, x∗〉 = ‖x‖ ‖x∗‖ and ‖x‖ ‖x∗‖ = p−1‖x‖p +
q−1‖x∗‖q. Consider the real function ψ : R → R defined by ψ(t) =
p−1tp. The above identity tells us that ‖x∗‖ ∈ ∂ψ(‖x‖) = {‖x‖p−1}.
Thus, ‖x∗‖ = ‖x‖p−1. The other identities as well as the reverse
inclusion follow from analog reasoning.

Now take an arbitrary x ∈ X. From the Hahn-Banach theorem,
it follows the existence of z∗ ∈ X∗ such that ‖z∗‖ = 1 and ‖x‖ =
〈x, z∗〉. Then, defining x∗ := ‖x‖p−1z∗, we obtain ‖x∗‖ = ‖x‖p−1

and 〈x, x∗〉 = ‖x‖p−1〈x, z∗〉 = ‖x‖ ‖x∗‖, i.e, x∗ ∈ Jp(x).

Since f(x) = p−1‖x‖p is a continuous convex functions, Jp(x) is
a singleton at x ∈ X iff f is Gâteaux differentiable at x [10, Corol-
lary 4.2.5]. This motivates us to consider X a smooth Banach space,
i.e., a Banach space having a Gâteaux differentiable norm ‖ · ‖X on
X\{0}. As already observed, Jp(0) = {0} in any Banach space. In
particular in a smooth Banach space f(x) = p−1‖x‖p is Gâteaux
differentiable everywhere.

The following proposition gives a trivial characterization of smooth
Banach spaces.

Proposition 3.2.5. X is smooth iff for each x 6= 0 there exists a
unique x∗ ∈ X∗ such that ‖x∗‖ = 1 and 〈x, x∗〉 = ‖x‖.

Proof. See Exercise 3.3.

The next theorem describes a coercivity result related to geomet-
rical properties of uniformly smooth Banach spaces. For details on
the proof (as well as the precise definition of the constant Gq) we
refer the reader to [76, Section 2.1] or [84].

Theorem 3.2.6. Let X be uniformly convex, q ∈ (1,∞) and ρX∗(·)
the smoothness modulus of X∗ [14]. There exists a positive constant
Gq such that the function

σ̃(x∗, y∗) := q Gq

∫ 1

0

(‖x∗ − ty∗‖ ∨ ‖x∗‖)q t−1

ρX∗

(
t‖y∗‖ / 2(‖x∗ − ty∗‖ ∨ ‖x∗‖)

)
dt
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satisfies 1

‖x∗‖q − q 〈Jq(x∗), y∗〉+ σ̃q(x
∗, y∗) ≥ ‖x∗ − y∗‖q , ∀ x∗, y∗ ∈ X∗ .

Reciprocally, in uniformly convex Banach spaces we have [76].

Theorem 3.2.7. Let X be uniformly convex and p ∈ (1,∞). There
exists a constant Kp such that the function

σ(x, y) := pKp

∫ 1

0

(‖x−ty‖∨‖x‖)p t−1δX

(
t‖y‖ / 2(‖x−ty‖∨‖x‖)

)
dt

satisfies

‖x− y‖p ≥ ‖x‖p − p〈Jp(x), y〉+ σp(x, y) , ∀ x, y ∈ X .

Proof. See Exercise 3.4.

Overview on Bregman distances

Let f : X → (−∞,∞] be a proper, convex and lower semicontinuous
function which is Gâteaux differentiable on int(dom(f)). Moreover,
denote by f ′ the Gâteaux derivative of f . The Bregman distance
induced by f is defined as Df : dom(f)× int(dom(f)) → R

Df (y, x) = f(y)− (f(x) + 〈f ′(x), y − x〉) .

The following proposition is a useful characterization of Bregman
distances using Fenchel conjugate functions.

Proposition 3.2.8. Let f : X → (−∞,∞] be a proper lower semi-
continuous convex function which happens to be Gâteaux differen-
tiable on int(dom(f)). Then Df (y, x) = f(y)+f∗(f ′(x))−〈f ′(x), y〉,
for all (y, x) ∈ dom(f)× int(dom(f)).

Proof. Let x ∈ int(dom(f)). Since f ′(x) ∈ ∂f(x) we have f(x) +
f∗(f ′(x)) = 〈x, f ′(x)〉. Thus,

Df (y, x) = f(y) + (〈x, f ′(x)〉 − f(x))− 〈f ′(x), y〉
= f(y) + f∗(f ′(x))− 〈f ′(x), y〉 ,

completing the proof.

1We adopt the notation a ∨ b := max{a, b}, a ∧ b := min{a, b}, for a, b ∈ R.
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Based on this proposition, we derive the following two corollaries,
which are used in forthcoming convergence analysis. The proofs of
these corollaries follow as a particular case f(x) = p−1‖x‖p (p ∈
(1,∞)). We use the notation Dp instead of Df .

Corollary 3.2.9. Let X be a smooth Banach space. Then Jp : X →
X∗ is a single-valued mapping for which Dp : X ×X → R satisfies

Dp(y, x) = p−1‖y‖p + q−1‖Jp(x)‖q − 〈y, Jp(x)〉
= p−1‖y‖p + q−1‖x‖p − 〈y, Jp(x)〉.

Proof. See Exercise 3.5.

Corollary 3.2.10. Let X be a smooth Banach space. Then Jp : X →
X∗ is a single-valued mapping for which Dp : X ×X → R satisfies

Dp(y, x) = q−1 (‖x‖p − ‖y‖p) + 〈Jp(y)− Jp(x), y〉.

Proof. See Exercise 3.6.

3.2.5 Algorithmic implementation of LKB

In this section we introduce an algorithm for solving system (3.30)
with data satisfying (3.29), namely a numerical implementation of
the LKB method. From now on we assume the Banach space X to
be uniformly convex and smooth, e.g., Lp spaces for p ∈ (1,∞).2

These assumptions are crucial for the analysis derived in this section
as well as in the forthcoming one.

We denote by

B1
p(x, r) = {y ∈ X : Dp(x, y) ≤ r} ,

B2
p(x, r) = {y ∈ X : Dp(y, x) ≤ r} .

the balls of radius r > 0 with respect to the Bregman distanceDp(·, ·).
A solution of (3.30) is any x̄ ∈ D satisfying simultaneously the op-

erator equations in (3.30), while a minimum-norm solution of (3.30)
in S (S ⊂ X) is any solution x† ∈ S satisfying

‖x†‖ = min {‖x‖ : x ∈ S is a solution of (3.30)} .
2Notice that L1 and L∞ are not uniformly convex [76, Example 2.2].
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Assumption A3. Let p, q, r ∈ (1,∞) be given with p+q = pq. The
following assumptions will be required in the forthcoming analysis:

(A3.1) Each operator Fi is of class C1 in D. Moreover, the system
of operator equations (3.30) has a solution x̄ ∈ X satisfying
x0 ∈ B1

p(x̄, ρ̄) ⊂ D, for some ρ̄ > 0. Further, we require
Dp(x̄, x0) ≤ p−1‖x̄‖p. The element x0 will be used as initial
guess of the Landweber-Kaczmarz algorithm.

(A3.2) The family {Fi}1≤i≤m satisfies the tangential cone condition
in B1

p(x̄, ρ̄), i.e., there exists η ∈ (0, 1) such that

‖Fi(y)− Fi(x)− F ′
i (x)(y − x)‖ ≤ η ‖Fi(y)− Fi(x)‖ ,

for all x, y ∈ B1
p(x̄, ρ̄), i = 1, · · · ,m.

(A3.3) The family {Fi}1≤i≤m satisfies the tangential cone condition
in B2

p(x0, ρ0) ⊂ D for some ρ0 > 0, i.e., there exists η ∈ (0, 1)
such that

‖Fi(y)− Fi(x)− F ′
i (x)(y − x)‖ ≤ η ‖Fi(y)− Fi(x)‖ ,

for all x, y ∈ B2
p(x0, ρ0), i = 1, · · · ,m.

(A3.4) For every x ∈ B1
p(x̄, ρ̄) we have ‖F ′

i (x)‖ ≤ 1, i = 1, 2, · · · ,m.

In the sequel we formulate our Landweber-Kaczmarz algorithm
for approximating a solution of (3.30), with data given as in (3.29):

Algorithm 3.2.11. Under assumptions (A3.1), (A3.2), choose c ∈
(0, 1), and τ ∈ (0,∞) such that β := η + τ−1(1 + η) < 1.

Step 0: Set n = 0 and take x0 6= 0 satisfying (A3.1);

Step 1: Set in := n(mod m) + 1 and evaluate the residual
Rn = Fin(xn)− yδ

in ;

Step 2: IF (‖Rn‖ ≤ τδin) THEN
µn := 0;

ELSE
Find τn ∈ (0, 1] solving the equation

ρX∗(τn) τ
−1
n =

(

c(1− β) ‖Rn‖·

·
[

2q Gq(1 ∨ ‖F ′

in(xn)‖) ‖xn‖
]

−1
)

∧ ρX∗(1) ; (3.37)
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µn := τn‖xn‖
p−1 /

[

(1 ∨ ‖F ′

in(xn)‖) ‖Rn‖
r−1

]

;
ENDIF
x∗

n := Jp(xn)− µnF
′

in(xn)
∗Jr(Fin(xn)− yδ

in);

xn+1 = Jq(x
∗

n) ; (3.38)

Step 3: IF (in = m) AND (xn+1 = xn = · · · = xn−(m−1)) THEN
STOP;

Step 4: SET n = n+ 1; GOTO Step 1.

The next remark guarantees that the above algorithm is well de-
fined.

Remark 3.2.12. It is worth noticing that a solution τn ∈ (0, 1] of
equation (3.37) can always be found. Indeed, since X∗ is uniformly
smooth, the function (0,∞) ∋ τ 7→ ρX∗(τ)/τ ∈ (0, 1] is continuous
and satisfies limτ→0 ρX∗(τ)/τ = 0 (see, e.g., [76, Definition 2.1] or
[14]). For each n ∈ N, define

λn :=
(
c(1− β) ‖Rn‖

[
2q Gq(1 ∨ ‖F ′

in(xn)‖) ‖xn‖
]−1

)
∧ ρX∗(1) .

(3.39)
It follows from [76, Section 2.1] that ρX∗(1) ≤ 1. Therefore, λn ∈
(0, 1], n ∈ N and we can can find σn ∈ (0, 1] satisfying ρX∗(σn)/σn <
λn ≤ ρX∗(1). Finally, the mean value theorem guarantees the exis-
tence of corresponding τn ∈ (0, 1], such that λn = ρx∗(τn)/τn, n ∈ N.

Algorithm 3.2.11 should be stopped at the smallest iteration index
n̂ ∈ N of the form n̂ = ℓ̂m+ (m− 1), ℓ̂ ∈ N, which satisfies

‖Fin(xn)− yδin‖ ≤ τδin , n = ℓ̂m, . . . , ℓ̂m+ (m− 1) (3.40)

(notice that in̂ = m). In this case, xn̂ = xn̂−1 = · · · = xn̂−(m−1)

within the ℓ̂th cycle. The next result guarantees monotonicity of the
iteration error (w.r.t. the Bregman distanceDp) until the discrepancy
principle in (3.40) is reached.

Lemma 3.2.13 (Monotonicity). Let assumptions (A3.1), (A3.2) be
satisfied and (xn) be a sequence generated by Algorithm 3.2.11. Then

Dp(x̄, xn+1) ≤ Dp(x̄, xn) , n = 0, 1, · · · , n̂ ,

where n̂ = ℓ̂m+(m−1) is defined by (3.40). From the above inequal-
ity, it follows that xn ∈ B1

p(x̄, ρ̄) ⊂ D, n = 0, 1, · · · , n̂.
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Proof. Let 0 ≤ n ≤ n̂ and assume that xn is a nonzero vector satis-
fying xn ∈ B1

p(x̄, ρ̄). From assumption (A3.1) follows xn ∈ D.
If ‖Rn‖ ≤ τδin , then xn+1 = xn and the lemma follows trivially.

Otherwise, it follows from Corollary 3.2.9 that

Dp(x̄, xn+1) = p−1‖x̄‖p + q−1‖Jp(xn+1)‖q − 〈x̄, Jp(xn+1)〉 . (3.41)

Since Rn = Fin(xn)− yδin , we conclude from (3.38) and Jq = (Jp)
−1

[14] that

Jp(xn+1) = Jp(xn) − µnF
′
in(xn)

∗Jr(Rn) .

Thus, it follows from Theorem 3.2.6 that

‖Jp(xn+1)‖q = ‖Jp(xn)− µnF
′
in(xn)

∗Jr(Rn)‖q
≤ ‖Jp(xn)‖q − qµn〈Jq(Jp(xn)), F ′

in(xn)
∗Jr(Rn)〉

+ σ̃q(Jp(xn), µnF
′
in(xn)

∗Jr(Rn))

= ‖Jp(xn)‖q − qµn〈xn, F ′
in(xn)

∗Jr(Rn)〉
+ σ̃q(Jp(xn), µnF

′
in(xn)

∗Jr(Rn)) . (3.42)

In order to estimate the last term on the right hand side of (3.42),
notice that for all t ∈ [0, 1] the inequality

‖Jp(xn) − tµnF
′
in(xn)

∗Jr(Rn)‖ ∨ ‖Jp(xn)‖
≤ ‖xn‖p−1 + µn(1 ∨ ‖F ′

in(xn)‖)‖Rn‖r−1

≤ (1 + τn)‖xn‖p−1 ≤ 2‖xn‖p−1

holds true (to obtain the first inequality we used Proposition 3.2.4).
Moreover,

‖Jp(xn)− tµnF
′
in(xn)

∗Jr(Rn)‖ ∨ ‖Jp(xn)‖ ≥ ‖Jp(xn)‖ = ‖xn‖p−1.

From the last two inequalities together with the monotonicity of
ρX∗(t)/t, it follows that (see Theorem 3.2.6)

σ̃q(Jp(xn), µnF
′
in(xn)

∗Jr(Rn)) ≤

qGq

∫ 1

0

(2‖xn‖p−1)q

t
ρX∗

(
tµn(1 ∨ ‖F ′

in
(xn)‖)‖Rn‖r−1

‖xn‖p−1

)
dt. (3.43)
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Consequently,

σ̃q(Jp(xn) , µnF
′
in(xn)

∗Jr(Rn))

≤ 2q q Gq ‖xn‖p
∫ 1

0

ρX∗(tτn)/tdt

= 2q q Gq ‖xn‖p
∫ τn

0

ρX∗(t)/tdt

≤ 2q q Gq ρX∗(τn)/τn‖xn‖p
∫ τn

0

dt

= 2q q Gq ρX∗(τn)‖xn‖p . (3.44)

Now, substituting (3.44) in (3.42) we get the estimate

‖Jp(xn+1)‖q ≤ ‖Jp(xn)‖q − qµn〈xn, F ′
in(xn)

∗Jr(Rn)〉
+ q 2q Gq ρX∗(τn)‖xn‖p .

From this last inequality, Corollary 3.2.9 and (3.41) we obtain

Dp(x̄, xn+1) ≤ Dp(x̄, xn)− µn 〈xn − x̄, F ′
in(xn)

∗Jr(Rn)〉
+ 2q Gq ρX∗(τn)‖xn‖p. (3.45)

Next we estimate the term 〈xn − x̄, F ′
in
(xn)

∗Jr(Rn)〉 in (3.45). Since
x̄, xn ∈ B1

p(x̄, ρ̄), it follows from (A3.2) and simple algebraic manip-
ulations (see Exercise 3.7).

〈x̄− xn, F
′
in(xn)

∗Jr(Rn)〉
= 〈yin − Fin(xn)− F ′

in(xn)(x̄− xn),−Jr(Rn)〉
− 〈R̃n, Jr(Rn)〉

≤ η‖R̃n‖‖Jr(Rn)‖ − 〈Rn, Jr(Rn)〉+ 〈yin − yδin , Jr(Rn)〉
≤ η (‖Rn‖+ δin) ‖Rn‖r−1 − ‖Rn‖r + δin‖Rn‖r−1

= (η(‖Rn‖+ δin) + δin)‖Rn‖r−1 − ‖Rn‖r
≤ [(η + τ−1(1 + η)] ‖Rn‖) ‖Rn‖r−1 − ‖Rn‖r
= −(1− β)‖Rn‖r , (3.46)

where R̃n := Fin(xn)−yin and β > 0 is defined as in Algorithm 3.2.11.
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Substituting this last inequality in (3.45) yields

Dp(x̄, xn+1) ≤
Dp(x̄, xn) − (1− β)µn‖Rn‖r + 2q Gq ρX∗(τn) ‖xn‖p. (3.47)

Moreover, from the formulas for µn and τn (see Algorithm 3.2.11) we
can estimate the last two terms on the right hand side of (3.47) by

− (1− β)µn ‖Rn‖r + 2q Gq ρX∗(τn)‖xn‖p

= −(1− β)
τn‖xn‖p−1‖Rn‖
1 ∨ ‖F ′

in
(xn)‖

+ 2q Gq ρX∗(τn)‖xn‖p

= −(1− β)
τn‖xn‖p−1‖Rn‖
1 ∨ ‖F ′

in
(xn)‖

·

·
(
1− 2q Gq(1 ∨ ‖F ′

in
(xn)‖)‖xn‖

(1− β)‖Rn‖
ρX∗(τn)

τn

)

≤ −(1− β)(1− c)
τn‖xn‖p−1‖Rn‖
1 ∨ ‖F ′

in
(xn)‖

. (3.48)

Finally, substituting (3.48) in (3.47) we obtain

Dp(x̄, xn+1) ≤ Dp(x̄, xn)

− (1− β)(1− c)τn‖xn‖p−1‖Rn‖
[
1 ∨ ‖F ′

in(xn)‖
]−1

, (3.49)

concluding the proof.

Remark 3.2.14. In the proof of Lemma 3.2.13 we used the fact that
the elements xn ∈ X generated by Algorithm 3.2.11 are a nonzero vec-
tors. This can be verified by an inductive argument. Indeed, x0 6= 0
is chosen in Algorithm 3.2.11. Assume xk 6= 0, k = 0, . . . , n. If
‖Rn‖ ≤ τδin , then xn+1 = xn is also a nonzero vector. Otherwise,
‖Rn‖ > τδin > 0 and it follows from (3.49) that Dp(x̄, xn+1) <
Dp(x̄, xn) ≤ · · · ≤ Dp(x̄, x0) ≤ p−1‖x̄‖p (the last inequality follows
from the choice of x0 in (A3.1)). If xn+1 were the null vector, we
would have p−1‖x̄‖p = Dp(x̄, 0) < Dp(x̄, xn) ≤ p−1‖x̄‖p (the iden-
tity follows from Corollary 3.2.9), which is clearly a contradiction.
Therefore, xn is a nonzero vector, for n = 0, 1, . . . , n̂.

In the case of exact data (δi = 0), we have xn 6= 0, n ∈ N.
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The following lemma guarantees that, in the noisy data case, Al-
gorithm 3.2.11 is stopped after a finite number of cycles, i.e., n̂ <∞
in (3.40).

Lemma 3.2.15. Let assumptions (A3.1), (A3.2), (A3.4) be satisfied
and (xn) be a sequence generated by Algorithm 3.2.11. Then

∑
n∈Σ̂

τn‖xn‖p−1‖Rn‖ ≤ (1− β)−1(1− c)−1Dp(x̄, x0) , (3.50)

where Σ̂ := {n ∈ {0, 1, · · · , n̂− 1} : ‖Rn‖ > τδin}. Additionally,
i) In the noisy data case, min {δi}1≤i≤m > 0, Algorithm 3.2.11 is
stopped after finitely many steps;
ii) In the noise free case we have limn→∞ ‖Rn‖ = 0.

Proof. Given n ∈ Σ̂, it follows from (3.49) and (A3.4) that

(1− β)(1− c)τn‖xn‖p−1‖Rn‖ ≤ Dp(x̄, xn)−Dp(x̄, xn+1) . (3.51)

Moreover, if n 6∈ Σ̂ and n < n̂, we have 0 ≤ Dp(x̄, xn)−Dp(x̄, xn+1).
Inequality (3.50) follows now from a telescopic sum argument using
the above inequalities.

Add i): Assume by contradiction that Algorithm 3.2.11 is never
stopped by the discrepancy principle. Therefore, n̂ defined in (3.40)
is not finite. Consequently, Σ̂ is an infinite set (at least one step is
performed in each iteration cycle).
Since (Dp(x̄, xn))n∈Σ̂ is bounded, it follows that (‖xn‖)n∈Σ̂ is bounded
[76, Theorem 2.12(b)]. Therefore, the sequence (λn)n∈Σ̂ in (3.39), is
bounded away from zero (see (3.37) and Remark 3.2.12), from what
follows that (τn)n∈Σ̂ is bounded away from zero as well. From this
fact and (3.50) we obtain

∑
n∈Σ̂

‖xn‖p−1 <∞ .

Consequently, (xn)n∈Σ̂ converges to zero in X and, arguing with the
continuity of Dp(x̄, ·) [76, Theorem 2.12(c)] or [14]), we conclude

p−1‖x̄‖p = Dp(x̄, 0) = lim
n∈Σ̂

Dp(x̄, xn) ≤

≤ Dp(x̄, xn′+1) < Dp(x̄, xn′) ≤ p−1‖x̄‖p ,
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where n′ ∈ N is an arbitrary element of Σ̂ (notice that (3.49) holds
with strict inequality for all n′ ∈ Σ̂). This is clearly a contradiction.
Thus, n̂ must be finite.

Add ii): Notice that in the noise free case we have δi = 0, i =
1, 2, · · · ,m. In this particular case, (3.51) holds for all n ∈ N. Con-
sequently,

∑
n∈N

τn‖xn‖p−1‖Rn‖ ≤ (1− β)−1(1− c)−1Dp(x̄, x0) .

Assume the existence of ε > 0 such that the inequality ‖Rnk
‖ > ε

holds true for some subsequence, and define Σ̂ := {nk; k ∈ N}. Using
the same reasoning as in the proof of the second assertion we arrive
at a contradiction, concluding the proof.

3.2.6 Convergence analysis

In this section the main results of the manuscript are presented. A
convergence analysis of the proposed method is given, and stability
results are derived. We start the presentation discussing a result
related to the existence of minimum-norm solutions.

Lemma 3.2.16. Assume the continuous Fréchet differentiability of
the operators Fi in D. Moreover, assume that (A3.3) is satisfied and
also that problem (3.30) is solvable in B2

p(x0, ρ0), where x0 ∈ X and
ρ0 > 0 is chosen as in (A3.3).
i) There exists a unique minimum-norm solution x† of (3.30) in the
ball B2

p(x0, ρ0).

ii) If x† ∈ int
(
B2
p(x0, ρ0)

)
, it can be characterized as the solution of

(3.30) in B2
p(x0, ρ0) satisfying the condition

Jp(x
†) ∈ N (F ′

i (x
†))⊥, i = 1, 2, · · · ,m (3.52)

(here A⊥ ⊂ X∗ denotes the annihilator of A ⊂ X, while N (·) repre-
sents the null-space of a linear operator).

Proof. As an immediate consequence of (A3.3) we obtain [34, Propo-
sition 2.1]

Fi(z) = Fi(x) ⇐⇒ z − x ∈ N (F ′
i (x)) , i = 1, 2, · · ·m, (3.53)
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for x, z ∈ B2
p(x0, ρ0). Next we define for each x ∈ B2

p(x0, ρ0) the set
Mx := {z ∈ B2

p(x0, ρ0) : Fi(z) = Fi(x), i = 1, 2, · · · ,m}. Notice that
Mx 6= ∅, for all x ∈ B2

p(x0, ρ0). Moreover, it follows from (3.53) that

Mx =
m⋂
i=1

(
x+N (F

′

i (x))
)
∩ B2

p(x0, ρ0). (3.54)

Since Dp(·, x0) is continuous (see Corollary 3.2.9) and B2
p(x0, ρ0) is

convex (by definition), it follows from (3.54) that Mx is nonempty
closed and convex, for all x ∈ B2

p(x0, ρ0). Therefore, there exists a

unique x† ∈ X corresponding to the projection of 0 onMx̄, where x̄ is
a solution of (3.30) in B2

p(x0, ρ0) [14]. This proves the first assertion.

Add ii): From the definition of x† and Mx̄ =Mx† , we conclude that
[76, Theorem 2.5 (h)]

〈Jp(x†), x†〉 ≤ 〈Jp(x†), y〉 , ∀y ∈Mx† . (3.55)

From the assumption x† ∈ int
(
B2
p(x0, ρ0)

)
, it follows that given h ∈

∩m
i=1 N (F ′

i (x
†)), there exists a ε0 > 0 such that

x† + εh , x† − εh ∈ Mx† , ∀ε ∈ [0, ε0) . (3.56)

Thus, (3.52) follows from (3.55), (3.56) in an straightforward way. In
order to prove uniqueness, let x̃ be any solution of (3.30) in B2

p(x0, ρ0)
satisfying

Jp(x̃) ∈ N (F
′

i (x̃))
⊥ , i = 1, 2, · · · ,m . (3.57)

Let i ∈ {1, 2, · · · ,m}. We claim that

N (F
′

i (x
†)) ⊂ N (F

′

i (x̃)). (3.58)

Indeed, let h ∈ N (F
′

i (x
†)) and set xθ = (1 − θ)x† + θx̃, with θ ∈ R.

Since x† ∈ int
(
B2
p(x0, ρ0)

)
, we obtain a θ0 > 0 such that xθ ∈

int
(
B2
p(x0, ρ0)

)
, for all θ ∈ [0, θ0). Take θ ∈ (0, θ0) and define

xθ,µ = xθ + µh, for µ ∈ R. Using the same reasoning we obtain
µ0 > 0 such that xθ,µ ∈ B2

p(x0, ρ0), ∀µ ∈ [0, µ0).

For a fixed µ ∈ (0, µ0), note that xθ,µ − x† = θ(x̃ − x†) + µh.

Using (3.53) we get x̃ − x† ∈ N (F
′

i (x
†)) and consequently xθ,µ −
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x† ∈ N (F
′

i (x
†)). From (3.53) it follows that F (xθ,µ) = F (x†) and

consequently F (xθ,µ) = F (x̃). Applying the same reasoning as above

(based on (3.53)) we conclude that xθ,µ − x̃ ∈ N (F
′

i (x̃)).

Since xθ,µ− x̃ = (1−θ)(x†− x̃)+µh and x†− x̃ ∈ N (F
′

i (x̃)) it follows

h ∈ N (F
′

i (x̃)), completing the proof of our claim.

Combining (3.57) and (3.58) we obtain Jp(x̃) ∈ N (F
′

i (x
†))⊥.

Consequently, Jp(x
†)−Jp(x̃) ∈ N (F

′

i (x
†))⊥. Since x†−x̃ ∈ N (F

′

i (x
†))

we conclude that 〈Jp(x†)− Jp(x̃), x
† − x̃〉 = 0. Moreover, since Jp is

strictly monotone [76, Theorem 2.5(e)], we obtain x† = x̃.

Theorem 3.2.17 (Convergence for exact data). Assume that δi = 0,
i = 1, 2, · · · ,m. Let the Assumption A3 be satisfied (for simplicity
we assume ρ̄ = ρ0). Then any iteration (xn) generated by Algo-
rithm 3.2.11 converges strongly to a solution of (3.30).
Additionally, if x† ∈ int

(
B2
p(x0, ρ0)

)
, Jp(x0) ∈ N (F ′

i (x
†))⊥ and

N (F ′
i (x

†)) ⊂ N (F ′
i (x)), x ∈ B1

p(x̄, ρ̄), i = 1, 2, · · · ,m, then (xn)

converges strongly to x†.

Proof. From Lemma 3.2.13 it follows that Dp(x̄, xn) is bounded and
so (‖xn‖) is bounded. In particular, (Jp(xn)) is also bounded. Define
εn = q−1‖xn‖p − 〈x̄, Jp(xn)〉, n ∈ N. From Lemma 3.2.13 and Corol-
lary 3.2.9 it follows that (εn) is bounded and monotone nonincreasing.
Thus, there exists ε ∈ R such that εn → ε, as n→ ∞.

Let m,n ∈ N such that m > n. It follows from Corollary 3.2.10
that

Dp(xn, xm) = q−1 (‖xm‖p − ‖xn‖p) + 〈Jp(xn)− Jp(xm), xn〉
= (εm − εn) + 〈Jp(xn)− Jp(xm), xn − x̄〉. (3.59)

The first term of (3.59) converges to zero, as m,n→ ∞. Notice that

|〈Jp(xn)− Jp(xm), xn − x̄〉|=
∣∣∣
〈m−1∑

k=n

(Jp(xk+1)− Jp(xk)), xk − x̄
〉∣∣∣

(3.38)
=

∣∣∣
〈m−1∑

k=n

µk F
′
ik
(xk)

∗Jr(Rk), xk − x̄
〉∣∣∣

≤
m−1∑
k=n

µk‖Jr(Rk)‖‖F ′
ik
(xk)(xk − x̄)‖ .
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Moreover, from (A3.2) we have

‖F ′
ik
(xk)(xk − x̄)‖ ≤ ‖Fik(xk)− Fik(x̄)− F ′

ik
(xk)(xk − x̄)‖

+ ‖Fik(xk)− Fik(x̄)‖
≤ ‖Fin(xnk

)− Fin(xn)− F ′
in(xn)(xnk

− xn)‖
+ ‖Fin(x̄)− Fin(xn)− F ′

in(xn)(x̄− xn)‖
+ ‖Fin(xnk

)− Fin(xn)‖
+ ‖Fin(x̄)− Fin(xn)‖

≤ (1 + η̄)
(
‖Fin(xnk

)− Fin(xn)‖
+ ‖Fin(x̄)− Fin(xn)‖

)

≤ (1 + η̄)
(
‖Rnk

‖+ 2‖Rn‖
)

≤ (1 + η) ‖Rk‖ ,

where the last inequality follows from the fact that n < nk. Therefore,
using (A3.4) and the definition of µk in Algorithm 3.2.11, we can
estimate

|〈Jp(xn)− Jp(xm), xn − x̄〉| ≤ (1 + η)
m−1∑
k=n

µk‖Rk‖r−1‖Rk‖

= (1 + η)
m−1∑
k=n

τk‖xk‖
p−1‖Rk‖

r

(1∨‖F ′
ik

(xk)‖)‖Rk‖r−1

≤ (1 + η)
m−1∑
k=n

τk‖xk‖p−1‖Rk‖

(notice that the last two sums are carried out only for the terms with
µk 6= 0). Consequently, 〈Jp(xn)− Jp(xm), xn − x̄〉 converges to zero,
from what follows Dp(xn, xm) → 0, as m, n → ∞. Therefore, we
conclude that (xn) is a Cauchy sequence, converging to some element
x̃ ∈ X [76, Theorem 2.12(b)]. Since xn ∈ B1

p(x̄, ρ̄) ⊂ D, for n ∈ N,
it follows that x̃ ∈ D. Moreover, from the continuity of Dp(·, x̃), we
have Dp(xn, x̃) → Dp(x̃, x̃) = 0, proving that ‖xn − x̃‖ → 0.

Let i ∈ {1, 2, · · · ,m} and ε > 0. Since Fi is continuous, we have
Fi(xn) → Fi(x̃), n → ∞. This fact together with Rn → 0, allow us
to find an n0 ∈ N such that

‖Fi(xn)− Fi(x̃)‖ < ε/2 , ‖Fin(xn)− yin‖ < ε/2 , ∀n ≥ n0 .
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Let ñ ≥ n0 be such that iñ = i. Then ‖Fi(x̃) − yi‖ ≤ ‖Fi(xñ) −
Fi(x̃)‖ + ‖Fiñ(xñ) − yiñ‖ < ε. Thus, Fi(x̃) = yi, proving that x̃ is a
solution of (3.30).

For each n ∈ N it follows from (3.38) and the theorem assumption
that

Jp(xn)− Jp(x0) ∈
n−1⋂
k=0

N (F ′
ik
(xk))

⊥ ⊂
n−1⋂
k=0

N (F ′
ik
(x†))⊥ .

Moreover, due to Jp(x0) ∈ N (F ′
i (x

†))⊥, i = 1, 2, · · · ,m, we have
Jp(xn) ∈

⋂m
j=1 N (F ′

j(x
†))⊥, n ≥ m. Then Jp(xn) ∈ N (F ′

i (x
†))⊥, for

n ≥ m. Since Jp is continuous and xn → x̃, we conclude that Jp(x̃) ∈
N (F ′

i (x
†))⊥. However, due to N (F

′

i (x̃)) = N (F
′

i (x
†)) (which follows

from Fi(x̃) = Fi(x
†)) we conclude that Jp(x̃) ∈ N (F ′

i (x̃))
⊥, proving

that x̃ = x†.

In the sequel we prove a convergence result in the noisy data
case. For simplicity of the presentation, we assume for the rest of
this section that δ1 = δ2 = · · · = δm = δ > 0. Moreover, we denote
by (xn), (x

δ
n) the iterations generated by Algorithm 3.2.11 with exact

data and noisy data respectively.

Theorem 3.2.18 (Semi-convergence). Let Y be an uniformly smooth
Banach space and Assumption A3 be satisfied (for simplicity we as-
sume ρ̄ = ρ0). Moreover, let (δk > 0)k∈N be a sequence satis-
fying δk → 0 and yki ∈ Y be corresponding noisy data satisfying
‖yki − yi‖ ≤ δk, i = 1, . . . ,m, and k ∈ N.
If (for each k ∈ N) the iterations (xδkn ) are stopped according to
the discrepancy principle (3.40) at n̂k = n̂(δk), then (xδkn̂k

) converges

(strongly) to a solution x̃ ∈ B1
p(x̄, ρ̄) of (3.30) as k → ∞.

Additionally, if x† ∈ int
(
B2
p(x0, ρ0)

)
, Jp(x0) ∈ N (F ′

i (x
†))⊥ and

N (F ′
i (x

†)) ⊂ N (F ′
i (x)), x ∈ B1

p(x̄, ρ̄), i = 1, 2, · · · ,m, then (xδkn̂k
)

converges (strongly) to x† as k → ∞.

Proof. For each k ∈ N we can write n̂k in (3.40) in the form ℓ̂km +
(m− 1). Thus, xδkn̂k

= xδkn̂k−1 = · · · = xδkn̂k−(m−1) and

∥∥Fin

(
xδkn

)
− ykin

∥∥ ≤ τ δk , n = ℓ̂km, · · · , ℓ̂km+ (m− 1) .
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Since in = 1, 2, · · · ,m as n = ℓ̂km, · · · , ℓ̂km + (m − 1), it follows
that

∥∥Fi

(
xδkn̂k

)
− yki

∥∥ ≤ τ δk , i = 1, 2, · · · ,m . (3.60)

At this point we must consider two cases separately:

Case 1: The sequence (n̂k) ∈ N is bounded.
If this is the case, we can assume the existence of n̂ ∈ N such that
n̂k = n̂, for all k ∈ N. Notice that, for each k ∈ N, the sequence
element xδkn̂ depends continuously on the corresponding data

(
yki

)m
i=1

(this is the point where the uniform smoothness of Y is required).
Therefore, it follows that

xδkn̂ → xn̂ , Fi

(
xδkn̂

)
→ Fi(xn̂) , k → ∞ , (3.61)

for each i = 1, 2, · · · ,m. Since each operator Fi is continuous, taking
limit as k → ∞ in (3.60) gives Fi(xn̂) = yi, i = 1, 2, · · · ,m, which
proves that x̃ := xn̂ is a solution of (3.30).

Case 2: The sequence (n̂k) ∈ N is unbounded.
We can assume that n̂k → ∞, monotonically. Due to Theorem 3.2.17,
(xn̂k

) converges to some solution x̃ ∈ B1
p(x̄, ρ̄) of (3.30). Therefore,

Dp(x̃, xn̂k
) → 0. Thus, given ε > 0, there exists N ∈ N such that

Dp(x̃, xn̂k
) < ε/2 , ∀n̂k ≥ N .

Since xδkN → xN as k → ∞, and Dp(x̃, ·) is continuous, there exists

k̃ ∈ N such that
∣∣Dp

(
x̃, xδkN

)
−Dp(x̃, xN )

∣∣ < ε/2 , ∀k ≥ k̃ .

Consequently,

Dp(x̃, x
δk
N ) = Dp(x̃, xN ) +Dp

(
x̃, xδkN

)
−Dp(x̃, xN ) < ε , ∀k ≥ k̃ .

Since Dp(x̃, x
δk
n̂k
) ≤ Dp(x̃, xN ), for all n̂k > N , it follows that

Dp(x̃, x
δk
n̂k
) < ε for k large enough. Therefore, due to [76, Theo-

rem 2.12(d)] or [14], we conclude that (xδkn̂k
) converges to x̃.

To prove the last assertion, it is enough to observe that, due to
the extra assumption, x̃ = x† must hold.
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3.3 Bibliographical comments

Standard methods for the solution of system (3.30) are based in the
use of Iterative type regularization methods [1, 21, 48, 76, 49] or
Tikhonov type regularization methods [21, 66, 82, 74] after rewriting
(3.30) as a single equation F (x) = y, where

F := (F1, . . . , Fm) :
m⋂
i=1

Di =: D → Y m (3.62)

and y := (y1, . . . , ym). However these methods become inefficient if
m is large or the evaluations of Fi(x) and F ′

i (x)
∗ are expensive. In

such a situation, Kaczmarz type methods [47, 63, 68] which cyclically
consider each equation in (3.30) separately are much faster [68] and
are often the method of choice in practice.

Ill-posed operator equations in Banach spaces is a fast growing
area of research. Over the last seven years several theoretical results
have been derived in this field, e.g,

• The classical paper on regularization of ill-posed problems in
Banach spaces by Resmerita [74];

• Tikhonov regularization in Banach spaces is also investigated
in [9], where two distinct iterative methods for finding the min-
imizer of norm-based Tikhonov functionals are proposed and
analyzed (convergence is proven). Moreover, convergence rates
results for Tikhonov regularization in Banach spaces are con-
sidered in [43].

• In [76] a nonlinear extension of the Landweber method to lin-
ear operator equations in Banach spaces is investigated using
duality mappings. The same authors considered in [77] the so-
lution of convex split feasibility problems in Banach spaces by
cyclic projections. See also [40, 39] for convergence analysis of
modified Landweber iterations in Banach spaces;
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• In [49] the nonlinear Landweber method and the IRGN method
are considered for a single (nonlinear) operator equation in Ba-
nach spaces, and convergence results are derived. Moreover,
the applicability of the proposed methods to parameter identi-
fication problems for elliptic PDEs is investigated;

• The Gauss-Newton method in Banach spaces is considered in
[1] for a single operator equation in the special case X = Y .
A convergence result is obtained and convergence rates (under
strong source conditions) are provided.

3.4 Exercises

3.1. Prove Proposition 3.2.2.

3.2. Prove Proposition 3.2.3.

3.3. Prove Proposition 3.2.5.

3.4. Prove Theorem 3.2.7.

3.5. Prove Corolary 3.2.9.

3.6. Prove Corolary 3.2.10.

3.7. Prove the inequality (3.46). (Hint: use Proposition 3.2.4)

3.8. Prove (3.53).

3.9. Derive equality (3.59).



Chapter 4

Double regularization

In the classical Least Squares approach the system matrix is assumed
to be free from error and all the errors are confined to the observa-
tion vector. However in many applications this assumption is often
unrealistic. Therefore a new technique was proposed: Total Least
Squares, or shortly, TLS1. This concept has been independently de-
velop in various literatures, namely, error-in-variables, rigorous least
squares, or (in a special case) orthogonal regression, listing only few
in statistical literature. It also leads to a procedure investigated in
this chapter named regularized total least squares.

In this chapter we shall introduce the TLS fitting technique and
the two variations: the regularized TLS and the dual regularized TLS.
Additionally to this survey we present a new technique introduced re-
cently in [7], extending results to Hilbert spaces and deriving rates of
convergence using Bregman distances and convex optimisation tech-
niques; similar as presented in the previous chapters.

4.1 Total least squares

Gene Howard Golub2 was an American mathematician with remark-
able work in the field of numerical linear algebra; listing only a few

1We hope to not mislead to truncate least squares notation.
2See wikipedia.org/wiki/Gene H. Golub.

77

http://en.wikipedia.org/wiki/Gene_H._Golub
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Figure 4.1: Gene H. Golub.

topics: least-squares problems, singular value decomposition, domain
decomposition, differentiation of pseudo-inverses, inverse eigenvalue
problem, conjugate gradient method, Gauss quadrature.

In 1980 Golub and Van Loan [26] investigated a fitting technique
based on the least squares problem for solving a matrix equation with
incorrect matrix and data vector, named total least squares (TLS)
method. On the following we presented the TLS method and we
compare it briefly with another classical approach; more details can
be found in [83, 62] and references therein.

Let A0 be a matrix in R
m×n and y0 a vector in R

m×1, obtained
after the discretisation of the linear operator equation Fu = g, where
F : U → H is a mapping between two Hilbert spaces. We then
consider3 solving the equation

A0x = y0 (4.1)

3We introduce the problem only for the one dimensional case Ax = y, i.e.,
when x and y are vectors. In the book [83, Chap 3] it is also considered the
multidimensional case AX = Y , where all elements are matrices.
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where both A0 and y0 information out of inaccurate measurement or
inherent some roundoff errors. More precisely, it is available only the
following pair ∥∥y0 − yδ

∥∥
2
≤ δ (4.2)

and ∥∥A0 −Aǫ

∥∥
F
≤ ǫ. (4.3)

In particular the classical least squares (LS) approach, proposed
by Carl Friedrich Gauss (1777-1855), the measurements A0 are as-
sumed to be free of error; hence, all the errors are confined to the
observation vector yδ. The LS solution is given by solving the follow-
ing minimization problem

minimizey
∥∥y − yδ

∥∥
2

subject to y ∈ R(A0)

or equivalently
minimize

x

∥∥A0x− yδ
∥∥
2
. (4.4)

Solutions of the ordinary LS problem are characterised by the
following theorem.

Theorem 4.1.1 ([83, Cor 2.1]). If rank(A0) = n then (4.4) has a
unique LS solution, given by

xLS = (AT
0 A0)

−1AT
0 yδ. (4.5)

the corresponding LS correction is given by the residual

r = yδ −A0x
LS = yδ − yLS , yLS = PA0

yδ

where PA0
= A0(A

T
0 A0)

−1AT
0 is the orthogonal projector onto R(A0).

Proof. See Exercise 4.1.

This approach is frequently unrealistic: sampling errors, human
errors and instrument errors may imply inaccuracies of the data ma-
trix A0 as well (e.g., due discretisation, approximation of differential
or integral models).

Therefore the need of an approach which amounts to fitting a
“best” subspace to the measurement data (Aǫ, yδ) leads to the TLS
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approach. In comparison to LS method the new minimization prob-
lem is with respect to the pair (A, y). The element paring ÃxTLS = ỹ
is then called the total least squares solution, where Ã and ỹ are the
arguments which minimizes the following constrained problem4

minimize(A,y)

∥∥[A, y]− [Aǫ, yδ]
∥∥
F

subject to y ∈ R(A)
. (4.6)

The basic principle of TLS is that the noisy data [Aǫ, yδ], while
not satisfying a linear relation, are modified with minimal effort, as
measured by the Frobenius norm, in a “nearby” matrix [Ã, ỹ] that
is rank-deficient so that the set Ãx = ỹ is compatible. This matrix
[Ã, ỹ] is a rank one modification of the data matrix [Aǫ, yδ].

The foundation is the singular value decomposition (SVD), an
important role in a number of matrix approximation problems [27];
see its definition in the upcoming theorem.

Theorem 4.1.2 ([27, Thm 2.5.1]). If A ∈ R
m×n then there exist or-

thonormal matrices U = [u1, . . . , um] ∈ R
m×m and V = [v1, . . . , vn] ∈

R
n×n such that

UTAV = Σ = diag(σ1, . . . , σp), σ1 ≥ · · · ≥ σp ≥ 0

where p = min {m,n}.

Proof. See Exercise 4.2.

The triplet (ui, σi, vi) reveals a great deal about the structure of
A. For instance, defining r as the number of nonzeros singular values,
i.e., σ1 ≥ · · · ≥ σr > σr+1 = · · ·σp = 0 it is known that

rank(A) = r and A = UrΣrVr
T =

r∑

i=1

σiuivi
T (4.7)

where Ur (equivalently Σr and Vr) denotes the first r columns of the
matrix U (equivalently Σ and V ). The Equation (4.7) displays the
decomposition of the matrix A of rank r in a sum of r matrices of
rank one.

4we use the same Matlab’s notation to add the vector y as a new column to
the matrix A and so create an extended matrix [A, y] ∈ Rm×(n+1)
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Through SVD we can define the Frobenious norm of a matrix A
as

‖A‖2F :=

m∑

i=1

n∑

j=1

a2ij = σ2
1 + · · ·+ σ2

p, p = min{m,n}

while the 2-norm

‖A‖2 := sup
x 6=0

‖Ax‖2
‖x‖2

= σ1.

The core of matrix approximation problem is stated by Eckart-
Young ([19] with Frobenious norm) and Mirsky ([64] with 2-norm)
and summarised on the next result, known as Eckart-Young-Mirsky
(matrix approximation) theorem.

Theorem 4.1.3 ([83, Thm 2.3]). Let the SVD of A ∈ R
m×n be

given by A =
∑r

i=1 σiuivi
T with r = rank(A). If k < r and Ak =∑k

i=1 σiuivi
T , then

min
rank(D)=k

‖A−D‖2 = ‖A−Ak‖2 = σk+1

and

min
rank(D)=k

‖A−D‖F = ‖A−Ak‖F =

√√√√
p∑

i=k+1

σ2
i , p = min {m,n}

Proof. See Exercise 4.3.

On the following we give a close form characterising the TLS
solution, similar as (4.5) for the LS solution.

Theorem 4.1.4 ([83, Thm 2.7]). Let Aǫ = U ′Σ′V ′T (respectively,
[Aǫ, yδ] = UΣV T ) be the SVD decomposition of Aǫ (respectively,
[Aǫ, yδ]). If σ′

n > σn+1, then

xTLS = (AT
ǫ Aǫ − σ2

n+1I)
−1AT

ǫ yδ (4.8)

and

σ2
n+1

[
1 +

n∑

i=1

(u′i
T
yδ)

2

σ′
i
2 − σ2

n+1

]
= min

∥∥Aǫx− yδ
∥∥2
2

(4.9)
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Proof. See Exercise 4.4.

In order to illustrate the effect of the use of TLS as opposed to
LS, we consider here the simplest example of parameter estimation
in 1D.

Example 4.1.5. Find the slope m of the linear equation

xm = y

for given a set of eight pairs measurements (xi, yi), where xi = yi for
1 ≤ i ≤ 8. It is easy to find out that the slop (solution) is m = 1.
Although this example is straightforward and well-posed, we can learn
the following geometric interpretation: the LS solution displayed on
Figure 4.2 with measurements on the left-hand side fits the curve on
the horizontal direction, since the axis y is free of noise; meanwhile,
the LS solution displayed on Figure 4.3 with measurements on the
right-hand side fits the curve on the vertical direction, since the axis
x is fixed (free of noise).

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

slope 45.1487

LS−2 Noisy Operator

 

 

LS2 Solution

noisy left side

true data

Figure 4.2: Solution for the
data (xǫ, y0), i.e., only noise on
the left-hand side.

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

5

slope 45.7666

LS Noisy Data

 

 

Ls solution

noisy right side

true data

Figure 4.3: Solution for the
data (x0, yδ), i.e., only noise on
the right-hand side.

The TLS solution on Figure 4.4 illustrates the estimation with
noise on both directions and now the deviations are orthogonal to
the fitted line, i.e., it minimizes the sum of squares of their lengths.



[SEC. 4.1: TOTAL LEAST SQUARES 83

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

slope 45.9078

TLS Noisy Data + Noisy Operator

 

 

TLS solution

noisy right + left side

true data

Figure 4.4: Solution for the data (xǫ, yδ), i.e., noise on the both sides.

Therefore, this estimation procedure is sometimes called as orthogonal
regression.

Van Loan commented on her book [83] that in typical applica-
tions, gains of 10–15 percent in accuracy can be obtained using TLS
over the standard LS method, almost at no extra computational cost.
Moreover, it becomes more effective when more measurements can be
made.

Another formulation for the TLS, investigate e.g. in [60], of the
set Aǫx ≈ yδ is given through the following constrained problem

minimize
∥∥A−Aǫ

∥∥2
F
+
∥∥y − yδ

∥∥2
2

subject to Ax = y
. (4.10)

This formulation emphasises the perpendicular distance by minimiz-
ing the sum of squared misfit in each direction. One can also recast
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this constrained minimization as an unconstrained problem, by re-
placing y = Ax in the second term of Equation (4.10).

In the upcoming section we extend this approach to the regular-
ized version, that is, adding a stabilisation term.

4.1.1 Regularized total least squares

Since our focus is on very ill-posed problems the approach introduced
in the previous section is no longer efficient. We can observe from
the discretisation of ill-posed problems, such as integral equations
of the first kind, that the singular values of the discrete operator
decay gradually to zero. The need of a stabilisation term leads us to
regularization methods, e.g., the Tikhonov method already defined
in the Chapter 2. We introduce now one equivalent formulation ( see
commentaries on [25]) called regularized least squares problem, as the
following constrained optimisation problem

minimize
∥∥A0x− yδ

∥∥2
2

subject to
∥∥Lx

∥∥2 ≤M
. (4.11)

This idea can be carried over when both sides of the underlying
Equation (4.1) are contaminated with some noise, i.e., using TLS
instead of the LS misfit term.

So was Tikhonov regularization recast as a TLS formulation and
the resulting was coined regularized total least squares method (R-
TLS), see [26, 36, 25]. Intuitively it is added some constrained to the
TLS problem (4.10). Consequently, in a finite dimensional setting5,
the R-TLS method can be formulated as

minimize
∥∥A−Aǫ

∥∥2
F
+
∥∥y − yδ

∥∥2
2

subject to

{
Ax = y∥∥Lx

∥∥2
2
≤M .

(4.12)

The optimal pair (Â, ŷ) minimizes the residual in the operator and in
the data, measured by Frobenius and Euclidian norm, respectively.
Moreover, the solution pair is connected via the equation Âx = ŷ,

5we keep the same notation as in the infinite dimensional setup.



[SEC. 4.1: TOTAL LEAST SQUARES 85

where the element x belongs to a ball in V of radius M . The “size”
of the ball is measured by a linear and invertible operator L (often
the identity). Any element xR satisfying these constraineds defines a
R-TLS solution.

The Karush-Kuhn-Tucker (KKT6) condition for the optimisation
problem introduced in (4.12) are summarised in the upcoming result.

Theorem 4.1.6 ([25, Thm 2.1]). If the inequality constrained is ac-
tive, then

(
AT

ǫ Aǫ + αLTL+ βI
)
xR = AT

ǫ yδ and
∥∥LxR

∥∥ =M

with α = µ(1 +
∥∥xR

∥∥2), β = −
∥∥Aǫx

R − yδ
∥∥2

1 + ‖xR‖2
and µ > 0 is the

Lagrange multiplier. The two parameters are related by

αM2 = yTδ (yδ −Aǫx
R) + β.

Moreover, the TLS residual satisfies

∥∥[Aǫ, yδ]− [Â, ŷ]
∥∥2
F
= −β (4.13)

Proof. See Exercise 4.5.

The main drawback on this approach is the following: the method

requires a reliable bound M for the norm
∥∥Lxtrue

∥∥2, where such
estimation for the true solution is not known. In [60] there is an
example showing the dependence and instability of the method for
different values of M .

Observe that the R-TLS residual given in (4.13) is a weighted LS
misfit term. In other words, it is minimized the LS error with weight

w(x) =
1

1 + ‖x‖2
. (4.14)

Moreover, the solution of both problems are the same, as stated
in the next theorem.

6KKT are first order necessary conditions for a solution in nonlinear program-
ming to be optimal, provided that some regularity conditions are satisfied; see
more details in [70].
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Theorem 4.1.7 ([60, Thm 2.3]). The R-TLS problem solution of
the problem (4.12) is the solution of the constrained minimization
problem

minimize
x

∥∥Aǫx− yδ
∥∥2

1 +
∥∥x

∥∥2 subject to
∥∥Lx

∥∥ ≤M (4.15)

Proof. See Exercise 4.6.

In the next section we comment on another approach to deal with
this class of problems. Moreover, this approach leads to error bounds.

4.1.2 Dual regularized total least squares

The accuracy of the R-TLS depends heavily on the right choice of
M , which is usually difficult to obtain, as commented previously.

An alternative is the dual regularized total least square (D-RTLS)
method proposed few years ago [60, 61, 59]. When some reliable
bounds for the noise levels δ and ǫ are known it makes sense to look
for approximations (Â, x̂, ŷ) which satisfy the side conditions

Ax = y,
∥∥y − yδ

∥∥ ≤ δ and
∥∥A−Aǫ

∥∥ ≤ ǫ.

The solution set characterised by these three side conditions is
nonempty, according to [60]. This is the major advantage of the dual
method over the R-TLS, because we can avoid the dependence of the
bound M .

Selecting from the solution set the element which minimizes ‖Lx‖
leads us to a problem in which some estimate (Â, x̂, ŷ) for the true
(A0, x

true, y0) is determined by solving the constrained minimization
problem

minimize ‖Lx‖22

subject to





Ax = y

‖y − yδ‖22 ≤ δ

‖A−Aǫ‖2F ≤ ǫ ,

(4.16)

where ‖·‖F still denotes again the Frobenius norm. Please note that
most of the available results on this method do again require a finite
dimensional setup, see, e.g., [60, 61, 80].
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Theorem 4.1.8 ([60, Thm 3.2]). If the two inequalities constraineds
are active, then the dual R-TLS solution xD of the problem (4.16) is
a solution of the equation

(
AT

ǫ Aǫ + αLTL+ βI
)
xD = AT

ǫ yδ

with α =
ν + µ

∥∥xD
∥∥2

νµ
, β = −µ

∥∥Aǫx
D − yδ

∥∥2

ν + µ
∥∥xD

∥∥2 and ν, µ > 0 are Lan-

grange multipliers. Moreover,

∥∥Aǫx
D − yδ

∥∥ = δ + ǫ
∥∥xD

∥∥ and β = −ǫ
(
δ + ǫ

∥∥xD
∥∥)

‖xD‖ (4.17)

Proof. See Exercise 4.7.

As result of the above theorem (see [60, Remark 3.4]), if the two
constraineds of the dual problem are active, then we can also char-
acterise either by the constrained minimization problem

minimize ‖Lx‖
subject to ‖Aǫx− yδ‖ = δ + ǫ ‖x‖

or by the unconstrained minimization problem

minimize
x

‖Aǫx− yδ‖2 + α ‖Lx‖2 − (δ + ǫ
∥∥x

∥∥)2

wiht α chosen by the nonlinear equation ‖Aǫx− yδ‖ = δ + ǫ ‖x‖.
The relation of constrained and unconstrained minimization prob-

lems is essential for understanding the new regularization method
proposed in the upcoming section.

Additionally to this short revision we list two important theorems
concerning error bounds for both R-TLS and D-RTLS method, for the
standard case L = I (identity operator). As indicated in the article
[60] these are the first results to prove order optimal error bounds so
far given in the literature and they depend on the following classical
source condition

x† = A∗
0ω ω ∈ U . (4.18)

This SC-I is the same type assumed on the previous chapter, see
(2.6) and (2.17), respectively, for the linear and nonlinear case.
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Theorem 4.1.9 ([60, Thm 6.2]). Assume that the exact solution x†

of the problem (4.1) satisfies the SC (4.18) and let xD be the D-RTLS
solution of the problem (4.16). Then

∥∥xD − x†
∥∥ ≤ 2 ‖ω‖1/2

√
δ + ǫ ‖x†‖.

Proof. See Exercise 4.8.

In contrast we present also convergence rate for the R-TLS solu-
tion, that is to say, both of order O

(√
δ + ǫ

)
.

Theorem 4.1.10 ([60, Thm 6.1]). Assume that the exact solution
x† of the problem (4.1) satisfies the SC (4.18) and the side condition∥∥x†

∥∥ =M . Let in addition xR be the R-TLS solution of the problem
(4.12), then

∥∥xR − x†
∥∥ ≤ (2 + 2

√
2)1/2 ‖ω‖max

{
1,M1/2

}√
δ + ǫ.

Proof. See Exercise 4.9.

4.2 Total least squares with double regu-

larization

In our approach, we would like to restrict our attention to linear op-
erators that can be mainly characterised by a function, as it is, e.g.,
the case for linear integral operators, where the kernel function de-
termines the behaviour of the operator. Moreover, we will assume
that the noise in the operator is due to an incorrect characterising
function. This approach will allow us to treat the problem of finding
a solution of an operator equation from incorrect data and operator
in the framework of Tikhonov regularization rather than as a con-
strained minimization problem.

In this chapter we introduce the proposed method as well as its
mathematical setting. We focus on analysing its regularization prop-
erties: existence, stability and convergence. Additionally we study
source condition and derive convergence rates with respect to Breg-
man distance.
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4.2.1 Problem formulation

We aim at the inversion of linear operator equation

A0f = g0

from noisy data gδ and incorrect operator Aǫ. Additionally we as-
sume that the operators A0, Aǫ : V → H, V,H Hilbert spaces, can
be characterised by functions k0, kǫ ∈ U . To be more specific, we
consider operators

Ak : V −→ H
v 7−→ B(k, v) ,

i.e., Akv := B(k, v), where B is a bilinear operator

B : U × V → H
fulfilling, for some C > 0,

∥∥B(k, f)
∥∥
H

≤ C
∥∥k

∥∥
U

∥∥f
∥∥
V
. (4.19)

From (4.19) follows immediately
∥∥B(k, ·)

∥∥
V→H

≤ C
∥∥k

∥∥
U
. (4.20)

Associated with the bilinear operator B, we also define the linear
operator

F (:) U −→ H
u 7−→ B(u, f) ,

i.e., F (u) := B(u, f).
From now on, let us identify A0 with Ak0

and Aǫ with Akǫ
. From

(4.20) we deduce immediately

‖A0 −Aǫ‖ ≤ C‖k0 − kǫ‖ , (4.21)

i.e., the operator error norm is controlled by the error norm of the
characterising functions. Now we can formulate our problem as fol-
lows:

Solve A0f = g0 (4.22a)

from noisy data gδ with ‖g0 − gδ‖ ≤ δ (4.22b)

and noisy function kǫ with ‖k0 − kǫ‖ ≤ ǫ . (4.22c)
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Please note that the problem with explicitly known k0 (or the op-
erator A0) is often ill-posed and needs regularization for a stable
inversion. Therefore we will also propose a regularizing scheme for
the problem (4.22a)-(4.22c). Now let us give some examples.

Example 4.2.1. Consider a linear integral operator A0 defined by

(A0f) (s) :=

∫

Ω

k0(s, t)f(t)dt = B(k0, f)

with V = H = L2(Ω) and let k0 be a function in U = L2(Ω
2). Then

the bilinear operator B yields

‖B(k0, f)‖ ≤ ‖k0‖U ‖f‖V .

The considered class of operators also contains deconvolution prob-
lems, which are important in imaging, as well as blind deconvolution
problems [53, 13, 46], where it is assumed that also the exact convo-
lution kernel is unknown.

Example 4.2.2. In medical imaging, the data of Single Photon Emis-
sion Computed Tomography (SPECT) is described by the attenuated
Radon transform [67, 18, 72]:

Af(s, ω) =

∫

R

f(sω⊥ + tω) · e
−

∞∫
t

µ(sω⊥+τω) dτ
dt .

The function µ is the density distribution of the body. In general,
the density distribution is also unknown. Modern scanner, however,
perform a CT scan in parallel. Due to measurement errors, the re-
constructed density distribution is also incorrect. Setting

kǫ(s, t, ω) = e
−

∞∫
t

µǫ(sω
⊥+τω) dτ

,

we have
Aǫf = B(kǫ, f) ,

and similar estimates as in (4.19) can be obtained.
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4.2.2 Double regularized total least squares

Due to our assumptions on the structure of the operator A0, the
inverse problem of identifying the function f true from noisy measure-
ments gδ and inexact operator Aǫ can now be rewritten as the task
of solving the inverse problem

B(k0, f) = g0 (4.23)

from noisy measurements (kǫ, gδ) fulfilling
∥∥g0 − gδ

∥∥
H

≤ δ, (4.24a)

and ∥∥k0 − kǫ
∥∥
U
≤ ǫ. (4.24b)

In most applications, the “inversion” of B will be ill-posed (e.g.,
if B is defined via a Fredholm integral operator), and a regularization
strategy is needed for a stable solution of the problem (4.23).

The structure of our problem allows to reformulate (4.22a)-(4.22c)
as an unconstrained Tikhonov type problem:

minimize
(k,f)

Jδ,ε
α,β

(
k, f

)
:=

1

2
T δ,ε (k, f) +Rα,β (k, f) , (4.25a)

where

T δ,ε (k, f) =
∥∥B(k, f)− gδ

∥∥2 + γ
∥∥k − kǫ

∥∥2 (4.25b)

and
Rα,β (k, f) =

α

2

∥∥Lf
∥∥2 + βR(k). (4.25c)

Here, α and β are the regularization parameters which have to be
chosen properly, γ is a scaling parameter, L is a bounded linear and
continuously invertible operator and R : X ⊂ U → [0,+∞] is proper,
convex and weakly lower semi-continuous functional . We wish to
note that most of the available papers assume that L is a densely
defined, unbounded self-adjoint and strictly positive operator, see,
e.g. [60, 58]. For our analysis, however, boundedness is needed and it
is an open question whether the analysis could be extended to cover
unbounded operators, too.
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We call this scheme the double regularized total least squares meth-
od (dbl-RTLS). Please note that the method is closely related to the

total least squares method, as the term
∥∥k − kǫ

∥∥2 controls the error

in the operator. The functional Jδ,ε
α,β is composed as the sum of two

terms: one which measures the discrepancy of data and operator, and
one which promotes stability. The functional T δ,ε is a data-fidelity
term based on the TLS technique, whereas the functional Rα,β acts
as a penalty term which stabilizes the inversion with respect to the
pair (k, f). As a consequence, we have two regularization parameters,
which also occurs in double regularization, see, e.g., [85].

The domain of the functional Jδ,ε
α,β :

(
U ∩ X

)
× V −→ R can be

extended over U × V by setting R(k) = +∞ whenever k ∈ U \ X.
Then R is proper, convex and weak lower semi-continuous functional
in U .

4.2.3 Regularization properties

In this section we shall analyse some analytical properties of the pro-
posed dbl-RTLS method. In particular, we prove its well-posedness
as a regularization method, i.e., the minimizers of the regularization
functional Jδ,ε

α,β exist for every α, β > 0, depend continuously on both
gδ and kǫ, and converge to a solution of B(k0, f) = g0 as both noise
level approaches zero, provided the regularization parameters α and
β are chosen appropriately.

For the pair (k, f) ∈ U × V we use the canonical inner product

〈(k1, f1), (k2, f2)〉U×V := 〈k1, k2〉U + 〈f1, f2〉V ,

i.e., convergence is defined componentwise. For the upcoming results,
we need the following assumption on the operator B:

Assumption A4. Let the operator B be strongly continuous, i.e.,
if (kn, fn)⇀ (k̄, f̄) then B(kn, fn) → B(k̄, f̄).

Proposition 4.2.3. Let Jδ,ε
α,β be the functional defined in (4.25). As-

sume that L is a bounded linear and continuously invertible operator
and B fulfills Assumption A4. Then Jδ,ε

α,β is a positive, weakly lower
semi-continuous and coercive functional.
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Proof. By the definition of T δ,ε, R and Assumption A4, Jδ,ε
α,β is pos-

itive and w-lsc. As the operator L is continuously invertible, there
exists a constant c > 0 such that

c
∥∥f

∥∥ ≤
∥∥Lf

∥∥

for all f ∈ D(L). We get

Jδ,ε
α,β

(
k, f

)
≥ γ‖k − kǫ‖2 +

αc

2
‖f‖2 → ∞

as
∥∥(k, f)

∥∥2 :=
∥∥k

∥∥2 +
∥∥f

∥∥2 → ∞ and therefore Jδ,ε
α,β is coercive.

We point out here that the problem (4.23) may not even have a
solution for any given noisy measurements (kǫ, gδ) whereas the regu-
larized problem (4.25) does, as stated below:

Theorem 4.2.4 (Existence). Let the assumptions of Proposition

4.2.3 hold. Then the functional Jδ,ε
α,β

(
k, f

)
has a global minimizer.

Proof. By Proposition 4.2.3, Jδ,ε
α,β

(
k, f

)
is positive, proper and coer-

cive, i.e., there exists (k, f) ∈ D(Jδ,ε
α,β) such that Jδ,ε

α,β

(
k, f

)
<∞.

Let ν = inf{Jδ,ε
α,β

(
k, f

)
| (k, f) ∈ dom Jδ,ε

α,β}. Then, there exists

M > 0 and a sequence (kj , f j) ∈ dom Jδ,ε
α,β such that J(kj , f j) → ν

and
Jδ,ε
α,β

(
kj , f j

)
≤M ∀j.

In particular we have

1

2
α
∥∥Lf j

∥∥2 ≤M and
1

2
γ
∥∥kj − kǫ

∥∥2 ≤M.

Using
∥∥kj

∥∥−
∥∥kǫ

∥∥ ≤
∥∥kj − kǫ

∥∥ ≤
(
2M

γ

)1/2

it follows

∥∥kj
∥∥ ≤

(
2M

γ

)1/2

+
∥∥kǫ

∥∥ and
∥∥f j

∥∥ ≤
(
2M

αc2

)1/2

,
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i.e., the sequences (kj) and (f j) are bounded. Thus there exist subse-
quences of (kj), (f j) (for simplicity, again denoted by (kj) and (f j))
s.t.

kj ⇀ k̄ and f j ⇀ f̄,

and thus
(kj , f j)⇀ (k̄, f̄) ∈ (U ∩X)× V.

By the w-lsc of the functional Jδ,ε
α,β we obtain

ν ≤ Jδ,ε
α,β

(
k̄, f̄

)
≤ lim inf Jδ,ε

α,β

(
kj , f j

)
= lim Jδ,ε

α,β

(
kj , f j

)
= ν

Hence ν = Jδ,ε
α,β

(
k̄, f̄

)
is the minimum of the functional and (k̄, f̄)

is a global minimizer,

(k̄, f̄) = argmin{ Jδ,ε
α,β

(
k, f

)
| (k, f) ∈ D(Jδ,ε

α,β)}.

The stability property of the standard Tikhonov regularization
strategy for problems with noisy right hand side is well known. We
next investigate this property for the Tikhonov type regularization
scheme (4.25) for perturbations on both (kǫ, gδ).

Theorem 4.2.5 (Stability). Let α, β > 0 be fixed the regularization
parameters, L a bounded and continuously invertible operator and
(gδj )j, (kǫj )j sequences with gδj → gδ and kǫj → kǫ. If (kj , f j)

denote minimizers of J
δj ,εj
α,β with data gδj and characterising function

kǫj , then there exists a convergent subsequence of (kj , f j)j. The limit

of every convergent subsequence is a minimizer of the functional Jδ,ε
α,β.

Proof. By the definition of (kj , f j) as minimizers of J
δj ,εj
α,β we have

J
δj ,εj
α,β

(
kj , f j

)
≤ J

δj ,εj
α,β

(
k, f

)
∀(k, f) ∈ D(Jδ,ε

α,β), (4.26)

With (k̃, f̃) := (kδ,ǫα,β , f
δ,ǫ
α,β) we get J

δj ,εj
α,β

(
k̃, f̃

)
→ Jδ,ε

α,β

(
k̃, f̃

)
. Hence,

there exists a c̃ > 0 so that J
δj ,εj
α,β

(
k̃, f̃

)
≤ c̃ for j sufficiently large.

In particular, we observe with (4.26) that
(∥∥kj − kǫj

∥∥)
j
as well as(∥∥Lf j

∥∥)
j
are uniformly bounded.
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Analogous to the proof of Theorem 4.2.4 we conclude that the
sequence (kj , f j)j is uniformly bounded. Hence there exists a subse-
quence (for simplicity also denoted by(kj , f j)j) such that

kj ⇀ k̄ and f j ⇀ f̄.

By the weak lower semicontinuity (w-lsc) of the norm and conti-
nuity of B we have

∥∥B(k̄, f̄)− gδ
∥∥ ≤ lim inf

j

∥∥B(kj , f j)− gδj
∥∥

and ∥∥k̄ − kǫ
∥∥ ≤ lim inf

j

∥∥kj − kǫj
∥∥ .

Moreover, (4.26) implies

Jδ,ε
α,β

(
k̄, f̄

)
≤ lim inf

j
J
δj ,εj
α,β

(
kj , f j

)

≤ lim sup
j

J
δj ,εj
α,β

(
k, f

)

= lim
j
J
δj ,εj
α,β

(
k, f

)

= Jδ,ε
α,β

(
k, f

)

for all (k, f) ∈ D(Jδ,ε
α,β). In particular, Jδ,ε

α,β

(
k̄, f̄

)
≤ Jδ,ε

α,β

(
k̃, f̃

)
. Since

(k̃, f̃) is by definition a minimizer of Jδ,ε
α,β , we conclude Jδ,ε

α,β

(
k̄, f̄

)
=

Jδ,ε
α,β

(
k̃, f̃

)
and thus

lim
j→∞

J
δj ,εj
α,β

(
kj , f j

)
= Jδ,ε

α,β

(
k̄, f̄

)
. (4.27)

It remains to show

kj → k̄ and f j → f̄ .

As the sequences are weakly convergent, convergence of the se-
quences holds if

∥∥kj
∥∥ →

∥∥k̄
∥∥ and

∥∥f j
∥∥ →

∥∥f̄
∥∥.
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The norms on U and V are w-lsc, thus it is sufficient to show
∥∥k̄

∥∥ ≥ lim sup
∥∥kj

∥∥ and
∥∥f̄

∥∥ ≥ lim sup
∥∥f j

∥∥.

The operator L is bounded and continuously invertible, therefore
f j → f̄ if and only if Lf j → Lf̄ . Therefore, we accomplish the prove
for the sequence (Lf j)j . Now suppose there exists τ1 as

τ1 := lim sup
∥∥Lf j

∥∥ >
∥∥Lf̄

∥∥

and there exists a subsequence (fn)n of (f j)j such that Lfn ⇀ Lf̄
and

∥∥Lfn
∥∥ → τ1.

From the first part of this proof (4.27), it holds

lim
j→∞

J
δj ,εj
α,β

(
kj , f j

)
= Jδ,ε

α,β

(
k̄, f̄

)
.

Using (4.25) we observe

lim
n→∞

(
1

2

∥∥B(kn, fn)− gδn
∥∥2 + γ

2

∥∥kn − kǫn
∥∥2 + βR(kn)

)

=
1

2

∥∥B(k̄, f̄)− gδ
∥∥2 + γ

2

∥∥k̄ − kǫ
∥∥2 + βR(k̄) (4.28)

+
α

2

(∥∥Lf̄
∥∥2 − lim

n→∞

∥∥Lfn
∥∥2

)

=
1

2

∥∥B(k̄, f̄)− gδ
∥∥2 + γ

2

∥∥k̄ − kǫ
∥∥2 + βR(k̄) +

α

2

(∥∥Lf̄
∥∥2 − τ1

2
)

<
1

2

∥∥B(k̄, f̄)− gδ
∥∥2 + γ

2

∥∥k̄ − kǫ
∥∥2 + βR(k̄) ,

which is a contradiction to the w-lsc property of the involved norms
and the functional R. Thus Lf j → Lf̄ and

f j → f̄ .

The same idea can be used in order to prove convergence of the
characterising functions. Suppose there exists τ2 s.t.

τ2 := lim sup
∥∥kj − kǫ

∥∥ >
∥∥k̄ − kǫ

∥∥

and there exists a subsequence (kn)n of (kj)j such that (kn − kǫ)⇀
(k̄ − kǫ) and

∥∥kn − kǫ
∥∥ → τ2.
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By the triangle inequality we get
∥∥kn − kǫ

∥∥−
∥∥kǫn − kǫ

∥∥ ≤
∥∥kn − kǫn

∥∥ ≤
∥∥kn − kǫ

∥∥+
∥∥kǫn − kǫ

∥∥ ,

and thus
lim
n→∞

∥∥kn − kǫn
∥∥ = lim

n→∞

∥∥kn − kǫ
∥∥ .

Therefore

lim
n→∞

(
1

2

∥∥B(kn, fn)− gδn
∥∥2 + βR(kn)

)

=
1

2

∥∥B(k̄, f̄)− gδ
∥∥2 + γ

2

(∥∥k̄ − kǫ
∥∥2 − lim

n→∞

∥∥kn − kǫn
∥∥2

)
+ βR(k̄)

=
1

2

∥∥B(k̄, f̄)− gδ
∥∥2 + γ

2

(∥∥k̄ − kǫ
∥∥2 − τ2

2
)
+ βR(k̄)

<
1

2

∥∥B(k̄, f̄)− gδ
∥∥2 + βR(k̄) ,

which is again a contradiction to the w-lsc of the involved norms and
functionals.

In the following, we investigate the regularization property of our
approach, i.e., we show, under an appropriate parameter choice rule,
that the minimizers (kδ,ǫα,β , f

δ,ǫ
α,β) of the functional (4.25) converge to

an exact solution as the noise level (δ, ǫ) goes to zero.

Let us first clarify our notion of a solution. In principle, the
equation

B(k, f) = g

might have different pairs (k, f) as solution. However, as kǫ → k0 as
ǫ → 0, we get k0 for free in the limit, that is, we are interested in
reconstructing solutions of the equation

B(k0, f) = g.

In particular, we want to reconstruct a solution with minimal
value of ‖Lf‖, and therefore define:

Definition 4.2.6. We call f† a minimum-norm solution if

f† = argmin
f

{‖Lf‖ | B(k0, f) = g0} .
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The definition above is the standard minimum-norm solution for
the classical Tikhonov regularization (see for instance [21]).

Furthermore, we have to introduce a regularization parameter
choice which depends on both noise level, defined through (4.29) in
the upcoming theorem.

Theorem 4.2.7 (convergence). Let the sequences of data gδj and kǫj
with

∥∥gδj − g0
∥∥ ≤ δj and

∥∥kǫj − k0
∥∥ ≤ ǫj be given with ǫj → 0 and

δj → 0. Assume that the regularization parameters αj = α(ǫj , δj)
and βj = β(ǫj , δj) fulfill αj → 0, βj → 0, as well as

lim
j→∞

δ2j + γǫ2j
αj

= 0 and lim
j→∞

βj
αj

= η (4.29)

for some 0 < η <∞.
Let the sequence

(kj , f j)j :=
(
k
δj ,ǫj
αj ,βj

, f
δj ,ǫj
αj ,βj

)
j

be the minimizer of (4.25), obtained from the noisy data gδj and kǫj ,
regularization parameters αj and βj and scaling parameter γ.

Then there exists a convergent subsequence of (kj , f j)j with
kj → k0 and the limit of every convergent subsequence of (f j)j is a
minimum-norm solution of (4.23).

Proof. The minimizing property of (kj , f j) guarantees

J
δj ,εj
αj ,βj

(kj , f j) ≤ J
δj ,εj
αj ,βj

(k, f), ∀(k, f) ∈ D(Jδ,ε
α,β).

In particular,

0 ≤ J
δj ,εj
αj ,βj

(kj , f j) ≤Jδj ,εj
αj ,βj

(k0, f
†)

≤
δ2j + γǫ2j

2
+
αj

2

∥∥Lf†
∥∥2 + βjR(k0), (4.30)

where f† denotes a minimum-norm solution of the main equation
B(k0, f) = g0, see Definition 4.2.6.

Combining this estimate with the assumptions on the regulariza-
tion parameters, we conclude that the sequences

∥∥B(kj , f j)− gδj
∥∥2,

∥∥kj − kǫj
∥∥2,

∥∥Lf j
∥∥2,R(kj)
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are uniformly bounded and by the invertibility of L, the sequence
(kj , f j)j is uniformly bounded.

Therefore there exists a weakly convergent subsequence of (kj , f j)j
denoted by (km, fm)m := (kjm , f jm)jm with

(km, fm)⇀ (k̄, f̄) .

In the following we will prove that for the weak limit (k̄, f̄) holds
k̄ = k0 and f̄ is a minimum-norm solution.

By the weak lower semi-continuity of the norm we have

0 ≤ 1

2

∥∥B(k̄, f̄)− g0
∥∥2 + γ

2

∥∥k̄ − k0
∥∥2

≤ lim inf
m→∞

{1

2

∥∥B(km, fm)− gδm
∥∥2 + γ

2

∥∥km − kǫm
∥∥2

}

(4.30)

≤ lim inf
m→∞

{δ2m + γǫ2m
2

+
αm

2

∥∥Lf†
∥∥2 + βmR(k0)

}

= 0,

where the last equality follows from the parameter choice rule.
In particular, we have

k̄ = k0 and B(k̄, f̄) = g0.

From (4.30) follows

1

2

∥∥Lfm
∥∥2 + βm

αm
R(km) ≤ δ2m + γǫ2m

2αm
+

1

2

∥∥Lf†
∥∥2 + βm

αm
R(k0) .

Again, weak lower semi-continuity of the norm and the functional
R result in

1

2

∥∥Lf̄
∥∥2 + ηR(k̄) ≤ lim inf

m→∞

{1

2

∥∥Lfm
∥∥2 + ηR(km)

}

= lim inf
m→∞

{1

2

∥∥Lfm
∥∥2 + βm

αm
R(km)

}

≤ lim inf
m→∞

{δ2m + γǫ2m
2αm

+
1

2

∥∥Lf†
∥∥2 + βm

αm
R(k0)

}

(4.29)
=

1

2

∥∥Lf†
∥∥2 + ηR(k0) .
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As k̄ = k0 we conclude that f̄ is a minimum-norm solution and

1

2

∥∥Lf̄
∥∥2 + ηR(k̄) = lim

m→∞

{
1

2

∥∥Lfm
∥∥2 + βm

αm
R(km)

}
(4.31)

=
1

2

∥∥Lf†
∥∥2 + ηR(k0).

So far we showed the existence of a subsequence (km, fm)m which
converges weakly to (k0, f̄), where f̄ is a minimizing solution. It re-
mains to show that the sequence also converges in the strong topology
of U × V.

In order to show fm → f̄ in V, we prove Lfm → Lf̄ . Since is
Lfm ⇀ Lf̄ it is sufficient to show

∥∥Lfm
∥∥ →

∥∥Lf̄
∥∥,

or, as the norm is w.-l.s.c.,

lim sup
m→∞

∥∥Lfm
∥∥ ≤

∥∥Lf̄
∥∥.

Assume that the above inequality does not hold. Then there exists
a constant τ1 such that

τ1 := lim sup
m→∞

∥∥Lfm
∥∥2 >

∥∥Lf̄
∥∥2

and there exists a subsequence of (Lfm)m denoted by the sequence
(Lfn)n := (Lfmn)mn

such that

Lfn ⇀ Lf̄ and
∥∥Lfn

∥∥2 → τ1.

From (4.31) and the hypothesis stated above

lim sup
n→∞

βn
αn

R(kn) = ηR(k0) +
1

2

(∥∥Lf̄
∥∥2 − lim sup

n→∞

∥∥Lfn
∥∥2

)

< ηR(k0),

which is a contradiction to the w.-l.s.c. of R. Thus

lim sup
m→∞

∥∥Lfm
∥∥ ≤

∥∥Lf̄
∥∥,
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i.e., fm → f̄ in V.
The convergence of the sequence (km)m in the topology of U fol-

lows straightforward by

∥∥km − k0
∥∥ ≤

∥∥km − kǫm
∥∥+

∥∥kǫm − k0
∥∥

≤
∥∥km − kǫm

∥∥+ ǫm
(4.30)−→ 0 as m→ ∞.

Moreover, if f† is unique, the assertion about the convergence of the
whole sequence (kj , f j)j follows from the fact that then every subse-
quence of the sequence converges towards the same limit (k0, f

†).

Remark 4.2.8. Note that the easiest parameter choice rule fulfilling
condition (4.29) is given by

β = ηα, η > 0.

For this specific choice, we only have one regularization parameter
left, and the problem (4.25) reduces to

minimize
(k,f)

Jα
(
k, f

)
:=

1

2
T δ,ε (k, f) + αΦ(k, f) , (4.32)

where T δ,ε is defined in (4.25b) and

Φ(k, f) :=
1

2

∥∥Lf
∥∥2 + ηR(k). (4.33)

It is well known that, under the general assumptions, the rate of
convergence of (kj , f j)j → (k0, f

†) for (δj , ǫj) → 0 can be in gen-
eral arbitrarily slow. For linear and nonlinear inverse problems con-
vergence rates were obtained if source conditions are satisfied (see
[22, 21, 12, 74] and Chapter 2).

For our analysis, we will use the following source condition:

R(B′(k0, f
†)∗) ∩ ∂Φ

(
k0, f

†
)
6= ∅,

where ∂Φ denotes the subdifferential of the functional Φ defined in
(4.33). This condition says there exists a subgradient (ξk0

, ξf†) of Φ
s.t.

(ξk0
, ξf†) = B′(k0, f

†)∗ω, ω ∈ H.
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Convergence rates are often given with respect to the Bregman
distance generated by the regularization functional Φ. In our setting,
the distance is defined by

D
(ξū,ξv̄)
Φ

(
(u, v), (ū, v̄)

)
= Φ(u, v)− Φ(ū, v̄)

− 〈(ξū, ξv̄), (u, v)− (ū, v̄)〉 (4.34)

for (ξū, ξv̄) ∈ ∂Φ
(
ū, v̄

)
.

Lemma 4.2.9. Let Φ be the functional defined in (4.33) with L = I.
Then the Bregman distance is given by

D
(ξū,ξv̄)
Φ

(
(u, v), (ū, v̄)

)
=

1

2

∥∥v − v̄
∥∥2 + ηDζ

R

(
u, ū

)
, (4.35)

with ζ ∈ ∂R
(
ū
)
.

Proof. By definition of Bregman distance we have

D
(ξū,ξv̄)
Φ

(
(u, v), (ū, v̄)

)
=

(
1
2 ‖v‖

2
+ ηR(u)

)
−

(
1
2 ‖v̄‖

2
+ ηR(ū)

)

− 〈(ξū, ξv̄), (u− ū, v − v̄)〉
= 1

2 ‖v‖
2 − 1

2 ‖v̄‖
2 − 〈ξv̄, v − v̄〉

+ ηR(u)− ηR(ū)− 〈ξū, u− ū〉
= 1

2 ‖v − v̄‖2 + ηDζ
R

(
u, ū

)

with ζ = 1
η ξū. Note that the functional Φ is composed as a sum of a

differentiable and a convex functional. Therefore, the subgradient of
the first functional is an unitary set and it holds (see, e.g.,[15])

∂Φ
(
ū, v̄

)
= ∂

(
‖v̄‖2 + ηR(ū)

)

=
{
(ξū, ξv̄) ∈ U∗ × V∗ | ξv̄ ∈ ∂‖v̄‖2 and ξū ∈ η∂R

(
ū
)}

For the convergence rate analysis, we need the following result:
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Lemma 4.2.10. Let B : U × V → H be a bilinear operator with
‖B(k, f)‖ ≤ C ‖k‖ ‖f‖. Then its Fréchet derivative at point (k, f) is
given by

B′(k, f)(u, v) = B(u, f) +B(k, v),

(u, v) ∈ U ×V. Moreover, the remainder of the Taylor expansion can
be estimated by

‖B(k + u, f + v)−B(k, f)−B′(k, f)(u, v)‖ ≤ C

2

∥∥(u, v)
∥∥2 . (4.36)

Proof. See Exercise 4.10.

The following theorem gives an error estimate within an infinite
dimensional setting, similar to the results found in [60, 80]. Please
note that we have not only an error estimate for the solution f ,
but also for the characterising function k, i.e., we are able to derive
convergence rate for the operator via (4.21).

Theorem 4.2.11 (Convergence rates). Let gδ ∈ H with
∥∥g0− gδ

∥∥ ≤
δ, kǫ ∈ U with

∥∥k0−kǫ
∥∥ ≤ ǫ and let f† be a minimum norm solution.

For the regularization parameter 0 < α < ∞, let (kα, fα) denote the
minimizer of (4.32) with L = I. Moreover, assume that the following
conditions hold:

(i) There exists ω ∈ H satisfying

(ξk0
, ξf†) = B′(k0, f

†)∗ω,

with (ξk0
, ξf†) ∈ ∂Φ

(
k0, f

†
)
.

(ii) C
∥∥ω

∥∥
H
< min

{
1, γ

2α

}
, where C is the constant in (4.36).

Then, for the parameter choice α ∼ (δ + ǫ) holds

∥∥B(kα, fα)−B(k0, f
†)
∥∥
H

= O (δ + ǫ)

and

Dξ
Φ

(
(kα, fα), (k0, f

†)
)
= O (δ + ǫ) .
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Proof. Since (kα, fα) is a minimizer of Jα, defined in (4.32), it follows

Jα
(
kα, fα

)
≤ Jα

(
k, f

)
∀(k, f) ∈ U × V.

In particular,

Jα
(
kα, fα

)
≤ Jα

(
k0, f

†
)

≤ δ2

2
+
γǫ2

2
+ αΦ(k0, f

†). (4.37)

Using the definition of the Bregman distance (at the subgradient
(ξk0

, ξf†) ∈ ∂Φ
(
k0, f

†
)
), we rewrite (4.37) as

1

2

∥∥B(kα, fα)− gδ
∥∥2 +

γ

2

∥∥kα − kǫ
∥∥2 (4.38)

≤ δ2 + γǫ2

2
+ α

(
Φ(k0, f

†)− Φ(kα, fα)
)

=
δ2 + γǫ2

2
− α

[
Dξ†

Φ

(
(kα, fα), (k0, f

†)
)

+ 〈(ξk0
, ξf†), (kα, fα)− (k0, f

†)〉
]
.

Using

1

2

∥∥B(kα, fα)−B(k0, f
†)
∥∥2 ≤

∥∥B(kα, fα)− gδ
∥∥2 +

∥∥gδ − g0
∥∥2

≤
∥∥B(kα, fα)− gδ

∥∥2 + δ2

and
γ

2

∥∥kα − k0
∥∥2 ≤ γ

∥∥kα − kǫ
∥∥2 + γ

∥∥kǫ − k0
∥∥2

≤ γ
∥∥kα − kǫ

∥∥2 + γǫ2,

we get

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2 + γ

4

∥∥kα − k0
∥∥2

≤ 1

2

∥∥B(kα, fα)− gδ
∥∥2 + γ

2

∥∥kα − kǫ
∥∥2 +

(
δ2 + γǫ2

2

)

(4.38)

≤
(
δ2 + γǫ2

)
− α

[
Dξ†

Φ

(
(kα, fα), (k0, f

†)
)

+ 〈(ξk0
, ξf†), (kα, fα)− (k0, f

†)〉
]
.
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Denoting

r := B(kα, fα)−B(k0, f
†)−B′(k0, f

†)((kα, fα)− (k0, f
†))

and using the source condition (i), the last term in the above inequal-
ity can be estimated as

−〈(ξk0
, ξf†), (kα, fα)− (k0, f

†)〉
= −〈B′(k0, f

†)∗ω, (kα, fα)− (k0, f
†)〉

= 〈ω,−B′(k0, f
†)
(
(kα, fα)− (k0, f

†)
)
〉

= 〈ω,B(k0, f
†)−B(kα, fα) + r〉

≤ ‖ω‖
∥∥B(kα, fα)−B(k0, f

†)
∥∥+ ‖ω‖ ‖r‖

(4.36)

≤ ‖ω‖
∥∥B(kα, fα)−B(k0, f

†)
∥∥

+
C

2
‖ω‖

∥∥(kα, fα)− (k0, f
†)
∥∥2.

Thus, we obtain

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2 + γ

4

∥∥kα − k0
∥∥2

+ αDξ†

Φ

(
(kα, fα), (k0, f

†)
)

(4.39)

≤
(
δ2 + γǫ2

)
+ α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥

+ α
C

2
‖ω‖

∥∥(kα, fα)− (k0, f
†)
∥∥2.

Using (4.35) and the definition of the norm on U × V, (4.39) can
be rewritten as

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2 + α

2
(1− C ‖ω‖)

∥∥fα − f†
∥∥2

+ α ηDζ
R

(
kα, k0

)

≤
(
δ2 + γǫ2

)
+ α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥

+
1

2

(
αC ‖ω‖ − γ

2

)∥∥kα − k0
∥∥2

≤
(
δ2 + γǫ2

)
+ α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥, (4.40)
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as
(
C ‖ω‖ − γ

2α

)
≤ 0 according to (ii). As (1− C ‖ω‖) as well as the

Bregman distance are nonnegative, we derive

1

4

∥∥B(kα, fα)−B(k0, f
†)
∥∥2 − α ‖ω‖

∥∥B(kα, fα)−B(k0, f
†)
∥∥

−
(
δ2 + γǫ2

)
≤ 0,

which only holds for

∥∥B(kα, fα)−B(k0, f
†)
∥∥ ≤ 2α ‖ω‖+ 2

√
α2 ‖ω‖2 + (δ2 + γǫ2).

Using the above inequality to estimate the right-hand side of
(4.40) yields

∥∥fα − f†
∥∥2 ≤

(
2

1− C ‖ω‖

)
·

(
δ2 + γǫ2

α
+ 2α ‖ω‖2 + 2 ‖ω‖

√
α2 ‖ω‖2 + (δ2 + γǫ2)

)

and

Dζ
R

(
kα, k0

)
≤ δ2 + γǫ2

ηα
+

2 ‖ω‖
η

(
α ‖ω‖+

√
α2 ‖ω‖2 + (δ2 + γǫ2)

)
,

and for the parameter choice α ∼ (δ+ ǫ) follows the convergence rate
O (δ + ǫ).

Remark 4.2.12. The assumptions of Theorem 4.2.11 include the
condition

C
∥∥ω

∥∥
H
< min

{
1,

γ

2α

}
.

Note that γ
(2α) < 1 for α small enough (i.e., for small noise level δ

and ǫ), and thus (ii) reduces to the standard smallness assumption
common for convergence rates for nonlinear ill-posed problems, see
[21].
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4.2.4 Numerical example

In order to illustrate our analytical results we present first recon-
structions from a convolution operator. That is, the kernel function
is defined by k0(s, t) := k0(s − t) over Ω = [0, 1], see also Example
4.2.1 in Section 4.2.1, and we want to solve the integral equation

∫

Ω

k0(s− t)f(t)dt = g0(s)

from given measurements kǫ and gδ satisfying (4.24). For our test,
we defined k0 and f as

k0 =

{
1 x ∈ [0.1, 0.4]

0 otherwise
and f =

{
1− 5|t− 0.3| t ∈ [0.1, 0.5]

0 otherwise
,

respectively, the characteristic and the hat function. An example of
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−0.2

0

0.2
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0.8

1

1.2
noisy kernel

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2
noisy data

Figure 4.5: Simulated measurements for k0 (left) and g0 (right), both
with 10% relative error.

noisy measurements kǫ and gδ is displayed in Figure 4.5.
The functions k and f were expanded in a wavelet basis, as for

example,

k =
∑

l∈Z

〈k, φ0,l〉φ0,l +
∞∑

j=0

∑

l∈Z

〈k, ψj,l〉ψj,l ,

where {φλ}λ and {ψλ}λ are the pair of scaling and wavelet function
associated to Haar wavelet basis. The convolution operator was im-



108 [CHAP. 4: DOUBLE REGULARIZATION

plemented in terms of the wavelet basis as well. For our numerical
tests, we used the Haar wavelet. The integration interval Ω = [0, 1]
was discretized into N = 28 points, the maximum level considered by
the Haar wavelet is J = 6. The functional R was defined as

R(k) := ‖k‖ℓ1 =
∑

λ∈Λ

|〈k, ψλ〉|,

where Λ =
{
{l} ∪ (j, l) | j ∈ N0, l ≤ 2j − 1

}
.

In order to find the optimal set of coefficients minimizing (4.25)
we used Matlab’s internal function fminsearch.

Figure 4.6 displays the numerical solutions for three different (rel-
ative) error levels: 10%, 5% and 1%. The scaling parameter was set
to γ = 1 and the regularization parameters are chosen according to
the noise level, i.e., α = 0.01(δ + ε) and β = 0.2(δ + ε), (η = 20) was
chosen. Our numerical results confirm our analysis. In particular it
is observed that the reconstruction quality increases with decreasing
noise level, see also Table 4.1.

∥∥krec − k0
∥∥
1

∥∥f rec − f true
∥∥
1

∥∥krec − k0
∥∥
2

∥∥f rec − f true
∥∥
2

10% 6.7543e-02 1.8733e-01 8.1216e-03 1.7436e-02
5% 4.0605e-02 1.7173e-01 6.9089e-03 1.5719e-02
1% 2.0139e-02 1.1345e-01 6.5219e-03 8.0168e-03

Table 4.1: Relative error measured by the L1- and L2-norm.

Please note that the optimisation with the fminsearch routine is
by no means efficient. In the upcoming chapter we shall propose a
fast iterative optimisation routine for the minimization of (4.25).

4.3 Bibliographical comments

Heretofore we listed only few approaches to treat ill-posed problems
with error in both operator and data, namely, the first regularized
version of TLS (R-TLS) method proposed in 1999 and the D-RTLS,
which was the first approach given with rates of convergence.
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Figure 4.6: Reconstruction of the characterising function k0, the sig-
nal f (solution) and the data g0. From top to bottom: reconstruction
with 10%, 5% and 1% relative error ( both for gδ and kǫ). The re-
constructions are coloured from [7].

One efficient algorithm for solving the R-TLS problem was devel-
oped in [73], based on the minimization of the Rayleigh quotient

φ(x) :=

∥∥Aǫx− yδ
∥∥2

1 +
∥∥x

∥∥2 .

To be more precise, it solves the equivalent problem (4.15), also
known as weighted LS or normalised residual problem, instead of
minimizing the constrained functional (4.12). Usually one refers to
this formulation as regularized Rayleigh quotient form for total least
squares (RQ-RTLS).

Adding a quadratic constrained to the TLS minimization problem
can be solved via a quadratic eigenvalue problem [24]. It results in an
iterative procedure for solving the R-TLS proposed in [79], named as
regularized total least squares solved by quadratic eigenvalue problem
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(RTLSQEP). The authors of [54] also analysed the same problem,
focusing in the efficiency of solving the R-TLS in mainly two different
approaches: via a sequence of quadratic eigenvalue problems and via
a sequence of linear eigenvalue problems.

A typical algorithm for solving the D-RTLS is based on model
function, see e.g., [61, 59]. The D-RTLS solution xD has a close
form given in the Theorem 4.1.8, but it depends on two variables,
i.e., xD = x(α, δ). The parameters α and β are found to be the
solution of the (highly) nonlinear system (4.17). The main idea is
to approximate the unconstrained minimization problem by a simple
function which relates the derivatives of this functional with respect
to each parameter. The “simple” function is called model function
and it is denoted by m(α, β), to emphasise its parametrisation, and
it should solve a differential equation. We skip further comments and
formulas, recommending to the reader the article [61] and references
therein for more details.

Finally we cite a very new approach towards nonlinear operators
[57]. In this article is considered a standard Tikhonov type functional
for solving a nonlinear operator equation of the form F0(u) = g0,
where additionally to the noisy data gδ it is assumed the noisy oper-
ator Fǫ holds

sup
u

∥∥F0(u)− Fǫ(u)
∥∥ ≤ ǫ

with a known constant ǫ referring to the operator noise level. A
regularized solution is obtained, as well as convergence rates.

For numerical implementation on dbl-RTLS we recommend the
upcoming article [8], which shall introduce an alternating minimiza-
tion algorithm for functionals over two variables.

4.4 Exercises

4.1. Prove Theorem 4.1.1.

4.2. Prove Theorem 4.1.2.

4.3. Prove Theorem 4.1.3.

4.4. Prove Theorem 4.1.4.
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4.5. Prove Theorem 4.1.6.

4.6. Prove Theorem 4.1.7.

4.7. Prove Theorem 4.1.8.

4.8. Prove Theorem 4.1.9.

4.9. Prove Theorem 4.1.10.

4.10. Prove Lemma 4.2.10.
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T. Schuster. Minimization of Tikhonov functionals in Banach
spaces. Abstr. Appl. Anal., pages Art. ID 192679, 19, 2008.

[10] J. Borwein and J. Vanderwerff. Convex functions: constructions,
characterizations and counterexamples, volume 109 of Encyclo-
pedia of Mathematics and its Applications. Cambridge Univer-
sity Press, Cambridge, 2010.

[11] L. Bregman. The relaxation method for finding the common
point of convex sets and its applications to the solution of prob-
lems in convex programming. USSR Computational Mathemat-
ics and Mathematical Physics, 7:200–217, 1967.

[12] M. Burger and S. Osher. Convergence rates of convex variational
regularization. Inverse Problems, 20(5):1411–1421, 2004.

[13] M. Burger and O. Scherzer. Regularization methods for blind
deconvolution and blind source separation problems. Math. Con-
trol Signals Systems, 14(4):358–383, 2001.

[14] I. Cioranescu. Geometry of Banach spaces, duality mappings and
nonlinear problems, volume 62 of Mathematics and its Applica-
tions. Kluwer Academic Publishers Group, Dordrecht, 1990.

[15] F. H. Clarke. Optimization and Nonsmooth Analysis, volume 5 of
Classics in Applied Mathematics. SIAM, Philadelphia, 2 edition,
1990.

[16] A. De Cezaro, J. Baumeister, and A. Leitão. Modified iter-
ated Tikhonov methods for solving systems of nonlinear ill-posed
equations. Inverse Probl. Imaging, 5(1):1–17, 2011.

[17] A. De Cezaro, M. Haltmeier, A. Leitão, and O. Scherzer. On
steepest-descent-Kaczmarz methods for regularizing systems of
nonlinear ill-posed equations. Appl. Math. Comput., 202(2):596–
607, 2008.



BIBLIOGRAPHY 115

[18] V. Dicken. A new approach towards simultaneous activity and
attenuation reconstruction in emission tomography. Inverse
Problems, 15(4):931–960, 1999.

[19] C. Eckart and G. Young. The approximation of one matrix by
another of lower rank. Psychometrika, 1(3):211–218, Sept. 1936.

[20] I. Ekeland and R. Témam. Convex analysis and variational prob-
lems, volume 28 of Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
english edition, 1999. Translated from the French.

[21] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of in-
verse problems, volume 375 of Mathematics and its Applications.
Kluwer Academic Publishers Group, Dordrecht, 1996.

[22] H. W. Engl, K. Kunisch, and A. Neubauer. Convergence rates for
Tikhonov regularisation of non-linear ill-posed problems. Inverse
Problems, 5(4):523, 1989.

[23] J. Flemming and B. Hofmann. A new approach to source condi-
tions in regularization with general residual term. Numer. Funct.
Anal. Optim., 31(1-3):254–284, 2010.

[24] W. Gander, G. H. Golub, and U. von Matt. A constrained eigen-
value problem. Linear Algebra Appl., 114/115:815–839, 1989.

[25] G. H. Golub, P. C. Hansen, and D. P. O’leary. Tikhonov regu-
larization and total least squares. SIAM J. Matrix Anal. Appl,
21:185–194, 1999.

[26] G. H. Golub and C. F. Van Loan. An analysis of the total least
squares problem. SIAM J. Numer. Anal., 17(6):883–893, 1980.

[27] G. H. Golub and C. F. Van Loan. Matrix computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

[28] C. W. Groetsch. Generalized inverses of linear operators: rep-
resentation and approximation. Marcel Dekker, Inc., New York-
Basel, 1977. Monographs and Textbooks in Pure and Applied
Mathematics, No. 37.



116 BIBLIOGRAPHY

[29] C. W. Groetsch. The theory of Tikhonov regularization for Fred-
holm equation of the first kind. Pitman, Boston, 1984.

[30] M. Haltmeier. Convergence analysis of a block iterative version
of the loping Landweber-Kaczmarz iteration. Nonlinear Anal.,
71(12):e2912–e2919, 2009.

[31] M. Haltmeier, R. Kowar, A. Leitão, and O. Scherzer. Kacz-
marz methods for regularizing nonlinear ill-posed equations. II.
Applications. Inverse Probl. Imaging, 1(3):507–523, 2007.

[32] M. Haltmeier, A. Leitão, and E. Resmerita. On regularization
methods of EM-Kaczmarz type. Inverse Problems, 25:075008,
2009.

[33] M. Haltmeier, A. Leitão, and O. Scherzer. Kaczmarz methods for
regularizing nonlinear ill-posed equations. I. Convergence anal-
ysis. Inverse Probl. Imaging, 1(2):289–298, 2007.

[34] M. Hanke, A. Neubauer, and O. Scherzer. A convergence analy-
sis of the Landweber iteration for nonlinear ill-posed problems.
Numer. Math., 72(1):21–37, 1995.

[35] P. C. Hansen. Regularization Tools version 4.0 for Matlab 7.3.
Numer. Algorithms, 46(2):189–194, 2007.

[36] P. C. Hansen and D. P. O’leary. Regularization algorithms based
on total least squares. In in S. Van Huffel (Ed.), Recent Advances
in Total Least Squares Techniques and Errors-inVariables Mod-
eling, SIAM, pages 127–137, 1996.

[37] T. Hein. Convergence rates for regularization of ill-posed prob-
lems in Banach spaces by approximate source conditions. Inverse
Problems, 24(4):045007, 10, 2008.

[38] T. Hein and B. Hofmann. Approximate source conditions for
nonlinear ill-posed problems—chances and limitations. Inverse
Problems, 25(3):035003, 16, 2009.

[39] T. Hein and K. Kazimierski. Accelerated Landweber iteration
in Banach spaces. Inverse Problems, 26(5):055002, 17, 2010.



BIBLIOGRAPHY 117

[40] T. Hein and K. Kazimierski. Modified Landweber iteration in
Banach spaces—convergence and convergence rates. Numer.
Funct. Anal. Optim., 31(10):1158–1184, 2010.

[41] B. Hofmann. Approximate source conditions in Tikhonov-
Phillips regularization and consequences for inverse problems
with multiplication operators. Math. Methods Appl. Sci.,
29(3):351–371, 2006.

[42] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A
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[76] F. Schöpfer, A. K. Louis, and T. Schuster. Nonlinear iterative
methods for linear ill-posed problems in Banach spaces. Inverse
Problems, 22(1):311–329, 2006.
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