
PERSONAL VERSION

This is a so-called personal version (author's manuscript as accepted for publishing after the
review process but prior to final layout and copyediting) of the article: Lindman, J, Riepula, M,
Rossi, M & Marttiin, P 2013 ,'Open source technology in intra-organisational software
development – Private markets or local libraries'. in J S Z Eriksson Lundström , M Wiberg , S
Hrastiski , M Edenius & P J Ågerfalk (eds), Managing Open Innovation Technologies. Springer,
Heidelberg, pp. 107-121., 10.1007/978-3-642-31650-0.
http://link.springer.com/chapter/10.1007/978-3-642-31650-0_7

This version is stored in the Institutional Repository of the Hanken School of Economics,
DHANKEN. Readers are asked to use the official publication in references.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33735181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/chapter/10.1007/978-3-642-31650-0_7

Open source technology in intraorganizational
software development – Private markets or local
libraries?

Juho Lindman

Aalto University School of Economics

Mikko Riepula

Aalto University School of Economics

Matti Rossi

Aalto University School of Economics

Pentti Marttiin

Aalto University School of Economics

Abstract. This chapter explores how two organizations have changed their soft-
ware development practices by introducing Open Source technology. Our aim is
to understand the institutional changes that are needed in and emerge from this
process. This chapter develops a conceptualization building on the insights of
entrepreneurial institutionalism, concentrating on the changing relationships of
organizational groups in the areas of decision-making, rewarding and communi-
cation. We identify the links between the 1) emerging, yet embedded technology
and 2) the underlying institutional decision-making, reward and communication
structures. We move the Open Source 2.0 research agenda forward by concen-
trating empirical work on the nuances of institutional change that open source
brings about in large hierarchical organisations. We will discuss the appropriate-
ness of internal accounting organized according to the principle of an open mar-
ket vs. a local library. We believe that both of these metaphors can support inno-
vation, but different groups will find different approaches more appealing.
Keywords: Open Source, Entrepreneurial Institutionalism, Organizational Change.

Introduction

The topic of this chapter is how open innovation technology, rather than open
innovation as such, changes an organisation. We study the institutional
transformation caused by the introduction of Open Source Software (OSS)
technology (practices and tools) within traditional software development
organizations.1 OSS literature often assumes a “bazaar” of development in a
virtual organization characterized by loose control, openness and community
orientation. However, inside a single large organization, where contributions
came from employees or subcontractors, the setting is different. The companies
introduce OSS practises and foster the creation of communities to serve their
business needs, that is, to create quality products. Such arrangements often
imply a looser structure, more open documentation, feedback from the user
community and the introduction of agile practises. These development
arguments are corroborated by business arguments of partial outsourcing to the
developer community, cost savings from using common (sometimes external
OSS) platforms and the possibility of creating industry standards through a wide
availability of the finished products.

The identified phenomenon is important because open source technologies 1)
are adopted in large organizations based only on a partial understanding of the
nature of the institutional change they enable, drive, or necessitate, and 2) are
not adopted in organizations because their consequences are seen to include
unnecessary or unknown risks. We believe that building a conceptualisation
based on extensive fieldwork will enable a better evaluation of these
technologies and their contextual appropriateness.

Therefore our research questions are:

• How can the introduction of open innovation technologies, such as OSS
technologies, be leveraged to improve development practises?

• What are the institutional effects of these changes?

1 We use the terms “OSS-style development” and “OSS practices” synonymously,
encompassing “OSS technologies” as a form of open innovation technologies. Our main
interest is how these can be used within companies developing products, not necessarily
OSS as such. By “OSS technologies” we do not mean the license of the developed soft-
ware, but the common infrastructural tools used in OSS communities. The tools include
concurrent versioning systems, issue trackers, email-driven and archived communication,
and web presence, which all support software development practices similar to OSS in
creative commons, but in our cases within a single organization.

To answer these questions, we analyse two cases of OSS technology being
introduced within a large corporation. Our goal is to build a conceptualization of
what happens in a hierarchical systems development organization when OSS
technology is adopted2. Informed by institutional theory (Scott, 2001;
Greenwood and Hinings, 1996), we seek to identify the inertia caused by old
institutional forces and the changes in reward structure and developer and
manager mindset needed to realize the benefits of more open development

This chapter is organised as follows. In the second section we review relevant
literature on OSS technology in commercial organizations. In the third section we
develop a conceptualization to explain the transformation. The fourth chapter is
about the research approach used. Case findings then demonstrate the links
between the embedded technology decision-making and communication and
reward structures. In the final section we conclude how OSS technology is
leveraged in the case companies' systems development and what the
accompanying institutional changes are.

OSS technologies in commercial organizations

OSS technologies have been successfully implemented in different organizations
and OSS-style development based on distributed and global practices has gained
industrial credibility (Fitzgerald, 2006). OSS as such is used more and more as an
integral part of all kinds of products. OSS development is often characterized by a
modular software architecture, distributed global development teams, meritoc-
racy, voluntarism, often elaborate decision making mechanisms, and the techni-
cal and legal openness of the code which enables code inspection, bug reporting,
and maintenance (Fitzgerald, 2006). OSS as such is traditionally defined as soft-
ware licensed under an OSI-approved software license (Välimäki, 2005). OSS
practices are practices that emulate development in an OSS community (techni-
cal infrastructure enabling communication, reward structures, supporting work
and knowledge transfer). OSS practices often include the use of email (and the
archives thus available) as the primary communication tool, availability of the
code from a source code repository via CVS (Concurrent Versioning System) or

2 One of the main reasons for companies to adopt OSS technology is their interest
in improving software reuse. At the same time companies are adopting distributed and
virtual teamwork practises and changing their software development processes from wa-
terfall to iterative, thus adopting agile practises (about traditional, agile and open source
practises in Barnett, 2004). These two changes favour the adoption of OSS tools, but failed
to address the challenge of reuse.

similar, web presence (for example Sourceforge), and some kind of issue tracker.
The main difference between traditional (closed source) and OSS development is
that the latter can sustain non-commercial communities as the source code is
available to all. The source code might belong to its developer or the community
in a way that prevents traditional software license sales (Dahlander and Magnus-
son, 2005). However, the availability of the source code outside the organisation
is not a prerequisite on implementing practices similar to OSS inside a company
(for example, Fitzgerald, 2006).

Inner source (van der Linden et al., 2009; Lindman et al., 2008) and corporate
source (Dinkelacker and Garg, 2003) as terms refer to OSS practices limited inside
companies. Often the introduction of OSS-style development starts with these
tools, but as “tools are not only tools” their productive application might require
fundamental changes in software development (Sharma, 2002). Inside a large
organization (Wesselius, 2008; Gurbani et al., 2010) or in a business-to-business
setting (Fink, 2003) the fundamental differences between OSS and traditional
software are smaller than inside small software companies. The license and cor-
porate policies and processes define how software is acquired, procured, in-
stalled, used, maintained and discarded. Furthermore, company guidelines, con-
tracts and/or licenses also define how software is developed, remuneration ac-
quired and benefits divided (Välimäki, 2005).

In the first phase of OSS commercialisation companies were interested in ways to
directly benefit from the revenue stream created by OSS (Rajala, 2006). OSS re-
search has traditionally focused more on individual motivations of the developers
and community-driven development than OSS in hierarchical organisations (Stol
and Babar, 2009). Now in the second phase of OSS commercialization, the use of
OSS-style development processes is gaining a foothold in large commercial or-
ganizations (Gurbani et al., 2010; Fitzgerald, 2006; Santos, 2008).

Conceptual framework

Organizations are struggling to balance the possibilities offered by OSS technol-
ogy, but research efforts have only recently started to focus more on organiza-
tional issues in large hierarchical organizations. We draw on literature streams of
institutional theory and focus on entrepreneurial institutionalism to understand
the phenomenon in organizational context.

Institutional theory

Institutional theory views institutions as “multifaceted, durable social structures,
made up of symbolic elements, social activities, and material resources” (Scott,
2001, p. 49). Institutional structures, such as reward and communication struc-
tures, are set up by regulative, normative and cultural elements or pillars (Scott,
2001). Institutional theory (Powell and Dimaggio, 1991) has been accommodated
to explain change (Greenwood and Hinings, 1996), even though it has been criti-
cized for mainly focusing on “convergence” (similarity). It should be noted that
institutional theory is far from a monolithic tradition (for a more thorough dis-
cussion about ”old” and “new” institutionalism, see Powell and Dimaggio, 1991;
Greenwood and Hinings, 1996))

Institutional theory underlines the “relationship” between an organisation's
normative context and the varying interests of the groups (stakeholders) within
the organisation. Functionally different groups in organisations are not neutral
towards each other, but instead the technical boundaries of the groups are rein-
forced cognitively (Greenwood and Hinings, 1996). Our conceptual framework
draws on institutional theory (Scott, 2001) and social constructionism by analys-
ing using the concept of an “organizing vision” (Swanson and Ramiller, 1997).
There are tensions between the traditions of institutionalism and social construc-
tionism, but as Scott (2001) notes “choice [in organizations] is informed and con-
strained by the ways in which knowledge is constructed…” We posit that while
normally the actors and proponents of organizational change truly subscribe to
OSS inspired values for the better, “the OSS spirit”, they are also renegotiating
the exact meaning of OSS to fit the organisational context. These negotiations
can be understood better by analysing the term “OSS” as a justification for organ-
isational change. The exact meaning of adapted OSS is renegotiated and implies
changes in the allocation of resources and the division of work between units.

Entrepreneurial institutionalism

Research in institutionalism, which focuses on change, is called entrepreneurial
institutionalism. It is a response to the call for institutional theory to focus more
on agency and organizational change (Garud et al., 2007). Work on institutions
has traditionally focused on continuity (Garud et al., 2007, p. 960). In contrast,
work on entrepreneurship has focused on change. In institutional theory, this
contrast of structure and agency has been identified as the paradox of embedded
agency (DiMaggio and Powell, 1991). One solution to this paradox is to view

structures as platforms for change rather than constraints (Garud and Karnoe,
2003).

Any new technology is a change in status quo, with winners and losers. The
meaning of organizational visions (Swanson and Ramiller, 1997) is renegotiated
within the boundaries of a certain language community and draw on local discur-
sive resources. OSS technology is an organizational tool that stresses local issues
regarding software production in the context of a certain organization. OSS also
provides ways of addressing these issues. It can be seen as a metaphor used in an
organisation that is making sense of its changing business environment so that it
is able to operate in it. OSS often offers a promise of a more agile development
approach, more contribution, more open discussion and less hierarchy in soft-
ware development. In short, it gives certain justifications, reasoning and oppor-
tunities to a decision-maker faced with difficult decisions concerning reorganiza-
tion or introducing a new organizational innovation (Van de Ven, 1993).

We use the institutional entrepreneurship lens to identify how the meaning of
OSS technology changed during implementation and how our two organizations
evolved when OSS technology was institutionalised. We aim to provide insight on
the process of OSS technology institutionalisation and the underlying changes. In
order to explain the institutionalisation of OSS technology we focus on three
structures within the companies: the reward, decision-making and communica-
tion structures. However, we do not claim that these would be easily separated
entities.

We chose the different organizational groups to highlight their different interest
and incentives in the process. The different selected groups (stakeholders) are 1)
the technology provider unit (the central group), 2) the technology user unit
(business unit), and 3) the developer/users.

Research approach

The nature of our research problem, human behaviour and interaction, led us to
use a qualitative research approach (Seaman, 1999; Klein and Myers, 1999). We
chose a case study approach and adopted the principles of interpretive case stud-
ies.
Practical Tip. When planning organizational changes, understanding the current
situation makes transitions processes smoother. This is especially true when a
specific technology related to innovations is being adapted. Identifying and mobi-
lization of the different stakeholders requires on-site research of the different
organizational groups involved.

As the main data collection method, we applied semi-structured thematic inter-
views. We interviewed two to three persons per case organisation in three occa-
sions over two-year intervals to better capture the nuances of the changing or-
ganisation. We stopped interviewing after the 14th interview, because recent
interviews did not convey additional information regarding the actual events.
Research design can thus be considered longitudinal. The first interviews were
gathered in 2006 and the second round of interviews was conducted in 2008. The
final round took place in 2010-2011. Most interviews lasted about one hour.

The interviewed people represented three different organizational groups, one
person from the service provider group, one from the service user group and—
except for the last round—one from the developer/user group. We chose mana-
gerial respondents from the business and central groups to gain an understand-
ing of the management rationale for introducing OSS technology. The developers
were included to bring in the user viewpoint.

One of the researchers works in one of the case companies and was therefore
able to provide access to the organization and, as a “native”, reflect on the or-
ganizational context. We were very careful to eliminate any bias this connection
might introduce to the setting. In addition, we used secondary data obtained in
the course of the industry research project such as project descriptions, manuals,
portal usage data, documentation and visits to the sites to familiarize ourselves
with the setting.

In the first two rounds, we analysed the interviews by first recounting the organ-
izational history and change as described by the respondents. We circulated the
transcribed interviews back to the respondents, so they could correct the views
should they have been misinterpreted. The last round mainly focused on what
had changed since the previous rounds of interviews.

The systematic analyses were based on pattern matching recurring themes be-
tween different interviews and then categorizing the data according to the
themes.

The themes we focused on were how the respondents talked about 1) instituting
new technology, 2) changes in the communication media and the reward struc-
tures between units and individuals, and 3) changes in the different ways the
respondents described their group involvement. The authors extracted all the
instances where the respondents talked about the themes and reported the find-
ings.

We classified the findings into three areas: 1) how OSS technology is renegoti-
ated to fit the organizational context and how OSS infrastructural tools are used
inside companies, 2) how the respondents saw the change between business

units and central unit, and 3) how the respondents described the reward, deci-
sion-making and communication structures as both a platform and driver of
change.

Cases

The two cases were selected among the partner companies of the ITEA-COSI pro-
ject, which also set the context and enabled access to the case companies. ITEA-
COSI was a joint academic and industrial project focused on software commodifi-
cation.

Philips Inner Source

The offering of Philips Healthcare (PH) consists of a wide variety of medical sys-
tems, for example X-ray technology, ultrasound, magnetic resonance and infor-
mation management. The factory-preinstalled software is customised and con-
figured, but not sold separately. PH normally maintains the software for 10 years,
which often leads to a large installed base and makes large changes very compli-
cated. PH is maintaining and developing a large software base including a set of
software components reused in all business units.

Historically components were developed in a central software group (Wesselius,
2008). In this configuration it was difficult to manage the different development
activities and unaligned roadmaps. Lack of required domain knowledge in the
central group made asset reuse difficult.

To solve these two issues, the business units started to contribute to developing
new software assets. This would enable the business unit with the best domain
knowledge to develop the software and then contribute it to a shared portfolio.
Business units would not have to wait for the central group to develop the (often
rushed and high priority) asset. OSS technology (tools and practices) was intro-
duced in PH to legitimate the change.

The division of work was based on the idea that the central group was responsi-
ble for the common platform and business units developed add-ons, customised
and configured the software. Components are distributed via intranet, email, ftp
and CD. Business units choose the components for use, customization and con-
figuration. Different groups offer services to each other (for example support and
maintenance) based on agreements between internal customers. Developed

software was also made available to other business units. One of the main bene-
fits of a common platform is that it would avoid duplicate work and promote the
reuse of software. Co-development activities with business units and central
group were favoured in order to benefit from organizational learning.

There were also certain risks involved mainly dealing with the distributed setting.
The central group would become more dependent on several business units at
the same time. The overall quality would be more difficult to control, if business
units would only make stand-alone add-ons. Business unit incentives were also
un-aligned, as it seems that there is no guarantee that units would actually con-
tribute back and not only use the resulting code. This applies also to the mainte-
nance of the software asset and balancing the maintenance between business
units. The scenario where one business unit is putting a lot of resources and ef-
fort on development and maintenance, but all the business units would use the
outcome was considered problematic.

The communication plan was to be as explicit as possible and share information
with all the interested parties. Co-development activities required informal dis-
cussions between developers, but broader issues were decided in formal settings
such as steering groups and operational teams. There were also formal architect
meetings and a monthly platform group meeting that all interested parties could
participate in. Information was also posted on the intranet and PH mailing lists. A
back channel of communication were the so called marketers, who were chosen,
per business unit, to promote inner source and gather feedback in case of prob-
lems. Development work is somewhat controlled by steering groups and opera-
tional meetings, but development was mainly driven by business groups which
need new functionality.

A couple of years ago, Philips was thinking of a new scheme for sharing the de-
velopment costs. The old model was based on centralised component develop-
ment and a component tax where the central group did not have profit targets
(Wesselius, 2008). The central group performed maintenance of the compo-
nents. The component tax levied from business units was based on component
development and maintenance activities and on an agreed upon roadmap on a
yearly basis. Based on the relative amount of component usage and the size of
the unit’s external sales, the estimated costs were then distributed among the
business units. Users of old component versions paid more for maintenance to
offset the burden of maintaining many old versions.

When moving to an inner source approach, the component tax model is not ideal
since it does not promote contributing to the shared component base. A business
unit that contributes a reusable component has to make an extra effort to make
the component reusable. Business units have profit targets and investing re-

sources to make components reusable is conflicting with these targets. It wasn’t
clear which group was expected to perform maintenance for the contributed
component or allocate the maintenance resources. If the contributing business
unit has to do the maintenance, this will again add costs to the unit. However,
making the central component group responsible for maintenance would require
this group to build competences for maintaining software components devel-
oped by other groups. The central group would be enlarged and take away the
domain experts from the business units.

Nokia iSource

Nokia is one of the leading mobile communications companies. It is a publicly
held company with listings in five major exchanges and in 2004 (prior to the
merger of its Network unit with Siemens to form Nokia Siemens Networks or
NSN) its net sales totalled EUR 29.2 billion. We study the organizational changes
from the viewpoint of technology adoption and focus on the role of the source
code portal called iSource.

The idea to adopt collaborative development utilizing open source software prac-
tices was presented for Nokia in the early 2000s. It was encouraged by the posi-
tive experiences when adopting open source practises in a company context
(Dinckelacker et al., 2002). The aim was to tackle the challenges of reuse and
cost-effective re-development of software with multiple parties. These chal-
lenges are typical of centrally developed platforms that multiple services use for
a long period. At a time of the study, Nokia had several application platform con-
cepts. Several research projects contributed to MITA (Mobile Internet Technical
Architecture), Mobile Platforms unit delivered platforms to mobile phones, and
Nokia Networks had worked with for example DX200, NMS, NEMU, Flexi- and TSP
platforms.

The iSource portal, meant to support collaborative development, was piloted
among research projects and promoted company-wide. A corporation-wide
iSource -service was established in 2003 by the Nokia IT department to support
infrastructure and to promote the portal tool. A service level agreement was
made between the IT department and the business units. Creation of the iSource
service adds the third organization group which we use in our analyses in addi-
tion to the perspective of business unit and individual developer.

iSource is a corporation wide source code portal that for agile, fast cycle, multi-
site software development (Lindman et al., 2008). The main idea behind iSource
was to provide a portal enabling visibility of software and the source code inside

the company. The goals were to increase individual engineers’ awareness of
software developed inside the company, and to boost innovation by avoiding the
problem of re-implementing the wheel. iSource's origins are in the free version of
SourceForge that has been later upgraded to GForge. The web portal integrates a
set of tools for use by projects including version control tools (Subversion, CVS),
issue tracker, mailing lists (Mailman), forums, and file management. Today both
Nokia and NSN have their own corporation wide instances of iSource.

The adoption of iSource can be divided to two phases: “bottom-up” adoption
(2001-2006) and “top-down” introduction (2007-). These phases also reflect the
need for portal tools, the maturity of the environment, and the company's trust
on open source software.

First adopters of the portal have been leading edge research projects that were
co-working with universities and research institutes. iSource has been easy to
take into use in small projects, especially if co-workers were using the same
tools. The iSource service released projects from the need to manage their own
tools and infrastructure. The portal also provided a controlled way to work with
external parties. Several projects that were first developed inside a company
were open sourced later (e.g. Maemo and Python for S60).

Since the joint merger of Nokia and Siemens (2007), the focus of the service has
been on launching Subversion for company wide use. During the “top down”
phase the iSource portal was deployed for traditional software development
driven by cost-optimization and simplification needs. Business units started to
make their decisions to transition to iSource from more complex and expensive
commercial tools.

Analysis, findings and discussion

On examining the cases in our study, it seems that OSS technology has become
institutionalized in both organizations, even if detached from the classical style of
developing OSS as an open endeavour. New tools have gained acceptance, pro-
vided inspiration and become familiar for the developers. Both case companies
use OSS tools and processes as a way to promote software projects inside the
organization.

The meaning of the term “OSS” is re-negotiated locally

In retrospect we can see a process of implicitly renegotiating the meaning of the
term “OSS” to suit the organizational context. The adopted practices do not re-
semble OSS as understood by the "classical OSS movement", which was based on
voluntarism, peer-recognition and public discussion. Instead, the OSS technology
institutionalized in these two cases supports designated projects based on em-
ployment contracts. Costs are made visible and cost sharing between units is
based on agreements between units. The differences are summarized in table 1.

TABLE1: Renegotiating the term “OSS”.
Classical “OSS” Renegotiated “OSS” both at NSN

and PH
Reward struc-
ture

Mostly voluntary task as-
signment, peer-
recognition, occasionally
sponsored development.

Designated projects, contributions
based on employment contracts and
task assignment, development costs
shared based on negotiation between
actors if at all.

Decision-
making struc-
ture

Meritocracy, loose com-
mand structures, debates
sometimes leading to cri-
ses; developers walking
away from poorly function-
ing projects and contrib-
uting to the more attrac-
tive ones.

Hierarchical, traditional corporate
chain of command, partly based on
technical expertise. Some signs of seek-
ing more consensus, though. Resources
assigned to projects in project/matrix
organisations.

Communication
structure

Open discussion email-
lists, open message boards,
web-presence of projects,
open documentation, open
training materials. Email
and instant messaging.

Intranet, visibility to selected partners
who share the development costs. Use
of modern de facto corporate commu-
nication tools such as email, instant
messaging, voice calls, video confer-
encing etc. Some constrains due to not
all information being public.

As the table above summarizes, the reward and decision-making structures are
quite different, whereas the communication structure remains largely the same,
when we compare the two cases to pure-form OSS projects.

Practical Tip. How “OSS” is renegotiated locally emphasizes how important it is to
reserve enough time to go through the change related to the local practices in
any innovation technology. The process of learning related to the new technical
infrastructure and in the way of working is likely to take some time and organiza-
tional effort.

In one of the two case companies, promotion of OSS technologies was a way to
sell the organizational innovation—the inner source approach—to the affected
parties by aligning the change process to fit the agendas, and to serve the inter-
ests of three key groups: the business units, the central unit and developers. As a
result, the changes needed for the new software development processes seem to
have been easier. Despite this some groups are interested only in the tools per se
and ignore the opportunity to share components on the inner source platform.
One of the interviewees suspected that the main reason for such reluctance to
share the results is in the traditional project resourcing: if a group’s task is, and
its success is measured by, the delivery of projects in a given time, budget and
scope, then this gives no time or money to maintain or support the components
in the library. Once the component projects have already been finished, the re-
sources will have been moved on to new projects and support is no longer avail-
able from the developers most familiar with the component.

In the other case company, the promotion of the inner source approach was
done more explicitly as a process change: a rationale for enabling easier reuse.
Along with this process change came the technologies that are now de facto
standard corporate tools (such as SVN as the version control tool). Their chal-
lenges have been on a higher level as the organization has grown through acqui-
sitions and thus the development practices have been quite heterogeneous to
start with.

The market vs. library metaphors

The inner source approaches were specifically geared towards enhancing reuse,
but they present the management with an incentive issue: basically, why would a
business unit contribute its developments to the inner source platform?3

We saw that bundling attractive tools to the platform is a way to sell the proposi-
tion of sharing. Nevertheless, the issue of support and maintenance remains—

3 In the classic, pure-form OSS development the motivational factors are quite
well-known, including fun and enjoyment, peer recognition and so on, but these do not
directly transfer into the corporate setting where business unit leaders make such decisions.

what’s in it for the contributing group? We identified the metaphors of a private
market and a local library to highlight two very different ways in which these
technologies become institutionalized.

In a private market, the internal units can place their components on sale in the
inner source system, and see who, if anyone is willing to buy the component at
the given terms addressing use, support and maintenance. Unlike in a public
market, we’ll assume that in a private market there is no (or at least much less)
fraud, and therefore the components can be posted openly for anyone to view,
inspect and try out, but as soon as the component ends up in another group’s
product, this will have an internal accounting implication as per the terms and
conditions agreed between the buyer and seller units. This can solve the basic
incentive issue, but still leaves the resourcing issue with support and mainte-
nance: typically a contributing unit would move on in its product development
and the resources previously allocated to a given component will be reallocated
to another project and other components, not allowing much time to be spent on
support and maintenance of the old components. However, the currently prevail-
ing model is still far away from a marketplace and closer to a local library model.
The old component tax model is still effectively in use and brings in a price ele-
ment from the market metaphor, since at least the heavy users need to pay
more.

The practical difficulties of adopting such a model aside, if a particular group’s
components are in such high demand that others are willing to buy them at a
premium, seen from the perspective of overall efficiency it would make sense for
this group to focus on maintaining those components instead of starting new
projects. Additionally, in hopes of more revenue, units would be promoting their
components and their development on the intranet (if not globally and for all on
SourceForge, for example) already before they are finalized, and thus one could
expect the search costs of the users to be lowered.

The library metaphor is closer to the classic OSS licensing model: use of compo-
nents is free; someone just needs to develop and contribute the components to
the library. In a corporate development hierarchy, one can find platform units
that get their yearly budget irrespective of the actual and immediate use of their
components in the library. This obviously does away with the time and effort
needed to negotiate between the contributor and user, but the main issue is now
in central decision making: How much should be budgeted to what kind of devel-
opment, and who are the people that will get the budget to perform the job?
And who should make that decision?

Perhaps we should view the private market arrangement as a promising one
for highly differentiating and value-adding components, whereas “corporate

commodity” components could be freely distributed in a library without compli-
cated negotiations. If the market and library metaphors are seen as extremes of
a continuum, then the two cases could be placed on that continuum roughly as
follows. (1=PH, 2=NSN).

FIGURE 1: Relative positions on the continuum between a market and a library.

The private market metaphor is an appealing one—although it is in contradiction
with the classical OSS spirit—and it is not surprising that in the other case com-
pany this was seriously considered. After all, it does present some benefits of
open innovation (ideas flowing freely, quick diffusion of inventions to enable in-
cremental innovation, reuse) while addressing the appropriation in a fairly practi-
cal manner.

Conclusions

In this chapter we have identified and described different ways in which OSS de-
velopment practices can become institutionalised in a commercial organization.
The literature emphasizes the changes brought by OSS-style development when
compared to traditional development approaches in hierarchical organisations,
but our data suggests that the introduction of OSS technologies and develop-
ment practices has changed the two case organisations surprisingly little. How-
ever, the meaning of the term OSS has undergone considerable changes. As to
how resources should be allocated inside organisations, we identified the meta-
phors of private markets and local libraries. Our respondents explicitly used both
these metaphors when they made sense of the organisational change.

These two development organisations are embracing OSS technology in a way
suitable for them: more tools, components and terminology are being adopted
little by little, but the basic mode of operations still remains the same. There is
no radical shift to the OSS mindset, but a slow one towards a more open and

Market Library
1 2

collaborative working style, coinciding with more open communication (and,
simply, more communication) and a more democratic, consensus-seeking deci-
sion making. Rather than claiming that OSS as such or OSS technologies would
have changed everything in the organisational ways these corporations do soft-
ware development, we’d argue that the same technological and societal devel-
opments that have contributed to the proliferation of OSS are now becoming
institutionalized in hierarchical businesses.

The organisational inertia—most notably that resulting from the way budgeting
and project management are performed within a large development organization
—can be used to explain how large development organisations mould and rede-
fine “OSS” to fit their old trajectory. It seems that companies have considerable
leeway and interpretive flexibility in determining what their processes are like
even if they were labelled as open.

References

Dahlander, L. and Magnusson, M. (2005). Relationships between open source software compa-
nies and communities: Observations from Nordic firms. Research Policy 34, 481-493.

DiMAggio, P and Powell, W. (1991). Introduction. In Powel, W. and Dimaggio (Eds.) The new
institutionalism in organizational analysis. 1-38. Chicago, University of Chicago Press.

Fink, M. (2003). The Business and Economics of Linux and Open Source. Upper Saddle River, NJ:
Prentice Hall PTR.

Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS Quarterly 30(3), 587-
598.

Garud, R., Hardy, C., and Maguire, S. (2007). Organization Studies 28, 957-969.
Garud, R., and P. Karnøe. (2003). Bricolage vs. breakthrough: Distributed and embedded agency

in technology entrepreneurship. Research Policy 32, 277–300.Greenwood R., and Hinings,
C.R. (1996). Understanding radical organizational change: bringing together the old and the
new institutionalism. Academy of Management Review 21(4), 1022-1054.

Klein, H. K. and Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating Interpre-
tive Field Studies in Information Systems. MIS Quarterly 23 (1), 67-94.

Powell, W.W., and DiMaggio P.J. (Eds.) (1991). The new institutionalism in organisational analy-
sis. Chicago: University of Chicago Press.

Rajala, R., Nissilä, J. and Westerlund,M. (2006). Determinants of Open Source Software Revenue
Model Choices. Proceedings of the 14th European Conference on Information Systems (ECIS
2006), 12 - 14 June, Göteborg, Sweden.

Seaman, C. B. (1999). Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering 25 (4), 557-572.

Scott, W.R. (2001). Institutions and Organizations, 2nd ed.. CA, Thousand Oaks.
Stol, K. and Babar, M. (2009). Reporting empirical research in open source software: the state

of practice, in Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A. (eds.) Proceedigns of
the 5th Conference on Open Source Ecosystems: Diverse Communities Interacting, June 3rd-

6th, Skövde, Sweden, IFIP Advances in Information and Communication Technology
299/2009, Springer 2009, 156-169.

Swanson, B., and Ramiller, N. (1997). The Organizing Vision in Information Systems Innovation.
Organization Science 8 (5), 458-474.

Van de Ven, A.H. (1993). Managing the Process of Organizational Innovation in Huber, G.P. and
Glick, W.H. (Eds.). Organizational Change and Redesign: Ideas and Insights for Improving
Performance. Oxford University Press, New York.

Wesselius, J. (2008). The Bazaar inside the Cathedral: Business Models for Internal Markets.
IEEE Software 25 (3), 60-66.

Further reading

Barnett, L. (2004). Applying Open Source Processes in Corporate Development Organisations.
(http://www.forrester.com/rb/Research/applying_open_source_processes_in_corporate_d
evelopment/q/id/34466/t/2, Forrester Research.

Dinkelacker, J., Garg, P., Miller, R. and Nelson, D. Progressive open source. In Proceedings of
ICSE 2002, 177-184.

Gurbani V., Garvert, A., and Hersleb, J. (2010). Managing a Corporate Open Source Asset. Com-
munications of the ACM 53 (2), 155-159.

van der Linden, F., Lundell, B., Marttiin, P. (2009). Commodification of Industrial Software - a
Case for Open Source. IEEE Software 26 (4),77-83.

Lindman, J., Rossi, M., and Marttiin, P. (2008). Applying Open Source Development Practices
Inside a Company. 4th International Conference on Open Source Systems. 7-10 September
2008, Milan, Italy.

Santos, C. (2008). Understanding Partnerships between Corporations and the Open Source
Community: A Research Gap. IEEE Software 25(6), 96-97.

Sharma, S., Sugumaran, V. and Rajagopalan, B. (2002). A framework for creating hybrid-open
source software communities. Information Systems Journal 12(1), 7-25.

Välimäki, M. (2005). The Rise of Open Source Licensing. A Challenge to the Use of Intellectual
Property in the Software Industry. Helsinki University of Technology, Helsinki, Finland.

