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Abstract

Dependence logic is a novel logical formalism that has connections to database
theory, statistics, linguistics, social choice theory, and physics. Its aim is to provide a
systematic and mathematically rigorous tool for studying notions of dependence and
independence in different areas. Recently many variants of dependence logic have
been studied in the contexts of first-order, modal, and propositional logic. In this
thesis we examine independence and inclusion logic that are variants of dependence
logic extending first-order logic with so-called independence or inclusion atoms, re-
spectively. The work consists of two parts in which we study either axiomatizability
or expressivity hierarchies regarding these logics.

In the first part we examine whether there exist some natural parameters of
independence and inclusion logic that give rise to infinite expressivity or complexity
hierarchies. Two main parameters are considered. These are arity of a dependency
atom and number of universal quantifiers. We show that for both logics, the notion
of arity gives rise to strict expressivity hierarchies. With respect to number of
universal quantifiers however, strictness or collapse of the corresponding hierarchies
turns out to be relative to the choice of semantics.

In the second part we turn attention to axiomatizations. Due to their complexity,
dependence and independence logic cannot have a complete recursively enumerable
axiomatization. Hence, restricting attention to partial solutions, we first axioma-
tize all first-order consequences of independence logic sentences, thus extending an
analogous result for dependence logic. We also consider the class of independence
and inclusion atoms, and show that it can be axiomatized using implicit existential
quantification. For relational databases this implies a sound and complete axiomati-
zation of embedded multivalued and inclusion dependencies taken together. Lastly,
we consider keys together with so-called pure independence atoms and prove both
positive and negative results regarding their finite axiomatizability.
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1. Overview

Dependence logic [45] (FO(=(. . .))) extends first-order logic (FO) with depen-
dence atomic formulae
(1) =(x1, . . . , xn)
the meaning of which is that the value of xn is functionally determined by the
values of x1, . . . , xn−1. In this PhD thesis we study two variants of dependence logic,
independence logic (FO(⊥c)) and inclusion logic (FO(⊆)) [24, 18]. Independence
logic extends first-order logic with conditional independence atoms
(2) ~y ⊥~x ~z

which express that the values of ~y and ~z are independent for any fixed value of ~x.
Inclusion logic instead extends first-order logic with inclusion atoms
(3) ~x ⊆ ~y
which indicate that all the values of ~x appear also as values of ~y. The semantics
for these logics is given compositionally using sets of assignments (teams) instead
of single assignments [31].

This thesis is divided into two subcategories. In Papers I–III we examine ex-
pressiveness hierarchies within FO(⊥c) and FO(⊆). These hierarchies arise from
fragments of FO(⊥c) and FO(⊆) defined by restricting either the arity of non-first-
order atoms or the number of universal quantifiers. In Papers IV–VI we investigate
axiomatizability issues for variants of FO(=(. . .)).

2. Dependence and Independence

Notions of dependence and independence occur naturally in many different fields
of science. Any scientific discipline dealing with large numbers of data arising from
e.g. physical experiments or voting results, usually contains some study of depen-
dencies. While this is often spesified by the context, there exist similarities between
different fields. In dependence logic, one studies dependencies between variables
or terms. In statistics or in database theory one examines dependencies that oc-
cur between random variables or attributes of databases. For all of these different
approaches, one common research line is to examine the laws that describe the in-
teraction between dependencies. For instance, the probabilistic independence A‖B
between two sets of random variables A and B has been given the following sound
and complete axiomatization [22]:

• Empty set: A‖∅,
• Symmetry: A‖B → B‖A,
• Monotonicity: A‖BC → A‖B,
• Exchange: AB‖C → (A‖B → A‖BC).

Interestingly, exactly the same rules apply for the notion of independence between
variables or attributes. Namely, an analogous axiomatization is sound and complete
for independence atoms ~x ⊥ ~y, the meaning of which is that the values of ~x~y form
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a cartesian product in a team (or a relational database) [34]. While the study of
dependence logic and its variants is interesting in its own right, one goal of the
research is to provide new knowledge and applications that are relevant outside the
dependence logic community, similarly to the above example. The novelty with
dependence logic comes from the fact that different dependency notions are treated
together with logical connectives and quantifiers that are each given a compositional
interpretation in team semantics. This treatment of dependency notions as additions
to first-order logic has potential to generate new ideas and perspectives to the study
of dependencies in a variety of fields in mathematics and computer science.

3. Dependence Logic

Although introduced in 2007 by Väänänen in his book by the same name, the
history of dependence logic dates back to the 1960s. First-order logic extended with
branching quantifiers (Henkin 1961, [27]) is equi-expressive to dependence logic,
as is independence-friendly logic (Hintikka and Sandu 1989, [30]). Henkin gives
quantifiers a partial ordering, while Hintikka and Sandu introduce quantifiers of the
form ∃x/y (or ∀x/y), the meaning of which is that the choice for the value of x must
not depend on the value of y. Both logics have a game theoretic semantics similar
to that of first-order logic. The only exception is that the availability of information
to the players can be restricted at the quantifier level. Since all the expressions in
these two formalisms have equivalent second-order skolemizations, these two logics
are equi-expressive to existential second order logic (ESO).

Unlike its predecessors, dependence logic does not introduce dependencies be-
tween quantifiers, but instead between variables. The syntax of dependence logic
extends that of first-order logic, defined in terms of ∨, ∧, ¬, ∃ and ∀, with depen-
dence atoms of the form (1). The semantics of dependence logic is formulated using
sets of assignments, called teams. For a model M and its domain M , an assign-
ment s of M is a finite mapping from variables into M . A team X of M is a set
of assignments of M , all sharing a common domain Dom(X). For an assignment s
of M and a ∈M , s(a/x) denotes the assignment (with domain Dom(s)∪ {x}) that
agrees with s everywhere except that it maps x to a. For a team X and a mapping
F : X →M , we define the supplementation team as

X[F/x] := {s(a/x) : s ∈ X, a = F (s)},
and the duplication team as

X[M/x] := {s(a/x) : s ∈ X, a ∈M}.
Team semantics is now given as follows. Dependence atoms are first given the
following semantic rule:

• M |=X=(x1, . . . , xn) iff for all s, s′ ∈ X with s(x1) = s′(x1), . . . , s(xn−1) =
s′(xn−1), we have that s(xn) = s′(xn).

Otherwise, we define team semantics as in Definition 4. From now on, we restrict
attention to formulae where negation is only allowed to appear in front of first-order
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atomic formulae. We also use M |=s φ to denote the usual Tarskian semantics of
first-order logic.
Definition 4 (Team Semantics). For formulae φ, models M and teams X, the
satisfaction relationM |=X φ is defined as follows:

• If φ is a first-order literal, thenM |=X φ iffM |=s φ for all s ∈ X.
• M |=X φ ∧ ψ iffM |=X φ andM |=X ψ.
• M |=X φ ∨ ψ iff there exist Y, Z ⊆ X, Y ∪ Z = X such thatM |=Y φ and
M |=Z ψ.
• M |=X ∃xφ iff there exists F : X →M such thatM |=X[F/x] φ.
• M |=X ∀xφ iffM |=X[M/x] φ.

As an immediate consequence of the definition we obtain that the first condition
generalizes to all negation normal form first-order formulae.
Proposition 5 (Flatness). Let φ be a first-order formula in negation normal form.
Then for all modelsM and teams X:

M |=X φ iffM |=s φ for all s ∈ X.
Next we introduce some basic properties of FO(=(. . .)). Unless otherwise stated,

these results were proved in [45]. For a team X and V ⊆ Dom(X), we let X � V to
denote the team {s � V : s ∈ X} where s � V is the restriction of s to V . Also, let
Fr(φ) denote the set of free variables of φ, defined as for first-order logic. A formula
with no free variables is called a sentence. The following proposition show that the
truth of a formula depends only on the values of variables that occur free in the
formula.
Proposition 6 (Locality). Suppose φ ∈ FO(=(. . .)) and V are such that Fr(φ) ⊆ V .
Then

M |=X φ iffM |=X�V φ.

All dependence logic formulae also satisfy the following downward closure prop-
erty.
Proposition 7 (Downward Closure). LetM be a model, X and Y teams such that
Y ⊆ X, and φ ∈ FO(=(. . .)). ThenM |=X φ impliesM |=Y φ.

Over sentences, the expressive power of FO(=(. . .)) coincides with that of ESO.
Namely, for all sentences of FO(=(. . .)) there exists an equivalent ESO sentence,
and vice versa. Recall that ESO formulae are of the form

∃R1 . . . ∃Rnψ

where Ri is a relation or function symbol and ψ a first-order formula. For a team
X with domain {x1, . . . xn}, we denote by rel(X) the relation

{(s(x1), . . . , s(xn)) : s ∈ X}.
The following two theorems describe the expressive power of open FO(=(. . .)) for-
mulae.
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Theorem 8. Let τ be a vocabulary and φ a FO(=(. . .))[τ ] formula with free variables
x1, . . . , xn. Then there is a ESO[τ ∪ {R}] sentence ψ in which R appears only
negatively, and such that for all modelsM and teams X with domain {x1, . . . , xn}:

M |=X φ iff (M, rel(X)) |= ψ.

Theorem 9 ([35]). Let τ be a vocabulary and R 6∈ τ a k-ary relation symbol. Then
for every ESO[τ ∪ {R}] sentence ψ in which R appears only negatively, there is a
FO(=(. . .))[τ ] formula φ with free variables x1, . . . , xn, and such that for all models
M and teams X 6= ∅ with domain {x1, . . . , xn}:

M |=X φ iff (M, rel(X)) |= ψ.

Note that these two theorems together imply that FO(=(. . .)) captures all down-
wards closed ESO definable properties of teams. Note also that the empty team ∅
satisfies all FO(=(. . .)) formulae, and is hence omitted in the theorem.

4. Independence and Inclusion Logic

Since the introduction of dependence logic, many variants of it have been in-
troduced. In [24] Väänänen and Grädel defined independence logic, a variant of
FO(=(. . .)) that extends FO with conditional independence atoms. Galliani consid-
ered adding inclusion and exclusion atoms to FO in [18]. Due to flexibility of team
semantics in use, there is no a priori limit for extending FO with various depen-
dency notions. Often these notions have analogous counterparts in database theory.
For instance, dependence atoms correspond to functional dependencies (FDs), con-
ditional independence atoms to embedded multivalued dependencies (EMVDs), and
inclusion atoms to inclusion dependencies (INDs). Usually, since these dependency
notions are first-order definable and negation is allowed only in front of first-order
atoms, the expressive powers of the logics obtained do not exceed that of ESO, as is
the case with FO(=(. . .)). However, some of the properties of FO(=(. . .)), such as
locality or downward closure, might fail or depend on which alternative definition
of team semantics is being used.

In this PhD thesis we mainly consider independence and inclusion logic which
extend FO with atoms of the form (2) or (3), respectively. The semantic rules for
these atoms are given as follows. For ~x := (x1, . . . , xn). we write s(~x) = s′(~x) if
s(x1) = s′(x1), . . . , s(xn) = s′(xn).

• M |=X ~y ⊥~x ~z iff for all s, s′ ∈ X such that s(~x) = s′(~x), there exists s′′ ∈ X
such that s′′(~x) = s(~x), s′′(~y) = s(~y) and s′′(~z) = s′(~z).
• M |=X ~x ⊆ ~y iff for all s ∈ X there exists s′ ∈ X such that s(~x) = s′(~y).

The semantics of FO(⊆) or FO(⊥c) is usually given as in Definition 4 except that
the rule for existential quantification is a non-deterministic one. For a team X and
a mapping G : X → P(M) \ {∅}, the supplementation team is now defined as

X[G/x] := {s(a/x) : s ∈ X, a ∈ G(s)}.
Then lax semantics is obtained from Definition 4 by replacing the rule for existential
quantification with:
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• M |=X ∃xφ iff there exists G : X → P(M) \ {∅} such thatM |=X[G/x] φ.
Another way to modify the team semantics of Definition 4 is to require that the
two subteams of the disjunction rule are disjoint. Strict semantics is now obtained
from Definition 4 by replacing the disjunction rule with:

• M |=X φ ∨ ψ iff there exist Y, Z ⊆ X, Y ∪ Z = X, Y ∩ Z = ∅, such that
M |=Y φ andM |=Z ψ.

From now on we will consider lax semantics unless otherwise stated. Let C be a
subset of {=(. . .),⊥c,⊆}. We denote by FO(C) (omitting the set parenthesis of C)
the logic obtained by adding the atoms of C to first-order logic. First note that for
FO(=(. . .),⊥c,⊆) the locality principle holds.
Proposition 10 (Locality). Suppose φ ∈ FO(=(. . .),⊥c,⊆) and V are such that
Fr(φ) ⊆ V . Then

M |=X φ iffM |=X�V φ.

However, under strict semantics neither FO(⊆) nor FO(⊥c) satisfy locality. To
illustrate this in FO(⊆), let φ := x ⊆ y ∨ z ⊆ y and let X be as in Figure 1.
Then clearly X |= φ.1 However, X � {x, y, z} 6|= φ since X � {x, y, z} collapses as

x y z v
s0 0 1 2 3
s1 1 0 1 3
s2 1 0 1 4
s3 2 1 0 4

Figure 1. X

illustrated in Figure 2.

x y z
s0 0 1 2
s1 1 0 1
s3 2 1 0

Figure 2. X � {x, y, z}

Also neither FO(⊆) nor FO(⊥c) is downwards closed. To illustrate this in FO(⊥c),
we first choose a simple pure independence atom x ⊥ y. A pure independence atom
is an atom of the form ~x ⊥∅ ~y, written as a shorthand ~x ⊥ ~y. Since Y of Figure 3
satisfies x ⊥ y but its subteam Y \ {s3} does not, FO(⊥c) is not downwards closed.

For logics L and L′ and a vocabulary τ , we write L[τ ] ≤ L′[τ ] if every L[τ ]-
sentence is logically equivalent to some L′[τ ]-sentence. We also write L ≤ L′ if

1We use X |= φ as a shorthand forM |=X φ if the truth of φ depends only on the team X.
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x y
s0 0 0
s1 1 1
s2 0 1
s3 1 0

Figure 3. Y

L[τ ] ≤ L′[τ ] for all vocabularies τ . Equality and inequality relations are obtained
from ≤ naturally. The following theorem characterizes the expressive powers of
FO(⊥c) and FO(⊆). For FO(⊥c), the result is no surprise, but for FO(⊆) we obtain
two different characterizations, depending on which version of team semantics is
being used. Under lax semantics FO(⊆) captures positive greatest fixed-point logic
(GFP+) but, as we show in Paper I, under strict semantics its expressive power
coincides with that of ESO.

Theorem 11 ([20, 23]).
• FO(⊥c) = ESO,
• FO(⊆) = GFP+,
• FO(⊆) = ESO (under strict semantics).

Also on the level of open formulae, FO(⊥c) captures all ESO definable classes
of teams [18], being hence strictly more expressive than FO(=(. . .)) (note that by
Proposition 7 even the simple pure independence atom x ⊥ y is not definable in
FO(=(. . .))). It is also worth noting that FO(⊥), that is FO extended with only
pure independence atoms, already captures the full expressive power of FO(⊥c),
both on the level of sentences and open formulae [21]. From Theorem 11, using
classical results in descriptive complexity theory, we obtain the following corollary.

Corollary 12 ([33, 46, 14]).
• A class C of finite linearly ordered models is definable in FO(⊆) iff it can be
recognized in PTIME.
• A class C of finite models is definable in FO(⊥c) iff it can be recognized in

NP.

5. Expressivity Hierarchies

In this section we consider the first part of the thesis. The idea is to examine
whether there exist some natural parameters of independence and inclusion logic
that give rise to infinite expressivity or complexity hierarchies. As an example of
such a parameter, note that many logics have some notion of arity. In second-order
logic this arises from arity of quantified relations, and in fixed-point logic from arity
of fixed-point operators. A natural question is then to ask whether in these situ-
ations increase in arity implies also increase in expressive power or complexity. In
this section we survey Papers I-III that examine analogous questions in indepen-
dence and inclusion logic. Two main parameters are considered. These are arity
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of a dependency atom and number of universal quantifiers. By restricting either of
these parameters we define different fragments of independence and inclusion logic.
Then relating these fragments to their analogues in existential second-order logic
or fixed-point logics we show that they generate infinite expressivity and complex-
ity hierarchies. When considering number of universal quantifiers, we notice that
the corresponding expressivity hierarchies sometimes collapse at a low level. These
results in turn follow from properties of independence and inclusion atoms.

The following fragments are studied:

Definition 13. Let C be a subset of {=(. . .),⊥c,⊥,⊆} and let k ∈ N. Then
(1) FO(C)(k−dep) is the class of sentences of FO(C) in which dependence atoms

of the form =(~z, y), where ~z is of length at most k, may appear.
(2) FO(C)(k−ind) is the class of sentences of FO(C) in which independence

atoms of the form ~y⊥~x~z, where ~x~y~z has at most k+1 distinct variables, may
appear.

(3) FO(C)(k−inc) is the class of sentences of FO(C) in which inclusion atoms of
the form ~a ⊆ ~b, where ~a and ~b are of length at most k, may appear.

(4) FO(C)(k∀) is the class of sentences of FO(C) in which every variable is quan-
tified exactly once and at most k universal quantifiers occur.

For an increasing (with respect to ≤) sequence of logics (Lk)k∈N, we say that
the Lk-hierarchy collapses at level m if Lm = ⋃

k∈N Lk. If the Lk-hierarchy does
not collapse at any level, then we say that the hierarchy is infinite. An infinite
Lk-hierarchy is called strict if Lk < Lk+1 for all k ∈ N.

5.1. Universal Hierarchies. The background for studying fragments defined by
restricting the number of universal quantifiers is in analogous ESO fragments.We
let ESOf (k∀) be the class of ESO sentences in Skolem normal form

∃f1 . . . ∃fn∀x1 . . . ∀xlψ

where l ≤ k, and ψ is a quantifier-free formula. In [25] Grandean and Olive showed
that ESOf (k∀) captures the complexity class NTIMERAM(nk). This means that
classes of models A definable by an ESOf (k∀) sentence are exactly those that can
be recognized by a non-deterministic random acces machine in time O(nk) where
n is the size of Dom(A). From Cook’s hierarchy theorem for non-deterministic
polynomial time, it follows that NTIMERAM(nk), and hence also ESOf (k∀), form
a strict hierarchy [10]. In [12] Kontinen and Durand related FO(= (. . .))(k∀) to
ESOf (k∀) and showed that

Theorem 14 ([12]). FO(=(. . .))(k∀) < FO(=(. . .))((2k + 2)∀).

In Papers I-III we continue in this line by considering analogous hierarchies in
independence and inclusion logic. In Paper II we study the fragments FO(⊆)(k∀)
and FO(⊥c)(k∀) under strict semantics. For FO(⊥c) we obtain an infinite hierarchy,
similar to that of FO(=(. . .)). We show that FO(⊥c)(k-ind) ≤ ESOf ((k + 1)∀) and
ESOf (k∀) ≤ FO(⊥c)(2k∀), thus obtaining the following theorem.
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Theorem 15 (II). Under strict semantics, FO(⊥c)(k-ind) < FO(⊥c)((2k + 4)-ind).

Surprisingly though, we show that FO(⊆)(k∀) captures ESOf (k∀) and hence also
NTIMERAM(nk). This gives rise to a strict expressivity hierarchy.

Theorem 16 (II). Under strict semantics, FO(⊆)(k∀) < FO(⊆)((k + 1)∀).

Note that Theorems 14-16 hold for any vocabulary. In Papers I and III, we show
that under lax semantics the universal hierarchies for FO(⊆) and FO(⊥) collapse
at levels 1 and 2, respectively:
Theorem 17 (I,III).

• FO(⊆)(1∀) = FO(⊆),
• FO(⊥)(2∀) = FO(⊥).

The idea behind these two results is that universal quantification ∀x can be sim-
ulated by existential quantification ∃x together with inclusion (or independence)
atoms that force one to extend assignments of a team with all possible evaluations
of x.

5.2. Arity Hierarchies. Let us then consider arity hierarchies. For results regard-
ing independence logic the background is again in existential second-order logic.
Ajtai showed that even cardinality of a k + 1-ary relation cannot be expressed as
an ESO sentence where quantified relations are at most k-ary [2]. In [12] and Pa-
per I this result is related to arity fragments of dependence and independence logic,
respectively. If ESOf (k-ary) is the class of ESO sentences in which at most k-ary re-
lations and functions are quantified, then we have the following arity correspondence
between ESO, FO(=(. . .)) and FO(⊥c).

Theorem 18 ([12], I). ESOf (k-ary) = FO(=(. . .))(k-dep) = FO(⊥c)(k-ind).

Then using Ajtai’s result (that extends to ESOf (k-ary), see [13]) we obtain a
strict arity hierarchy for our logics.
Theorem 19 ([2, 12], I).

• FO(=(. . .))(k-dep) < FO(=(. . .))(k + 1-dep),
• FO(⊥c)(k-ind) < FO(⊥c)(k + 1-ind).

However, it remains open whether these hierarchies are strict over all vocabularies
τ . By Theorem 18, solving these questions would have consequences beyond depen-
dence or independence logic. In the special case where τ is empty strictness would
imply a strict arity hierarchy within spectra of first-order sentences (a spectrum of
a first-order sentence is the set of cardinalities of its finite models). This question of
whether the spectrum arity hierarchy is strict or not was left open in [15] and is still
unanswered. It is not even known whether there exists any spectrum that is not
the spectrum of a first-order sentence over one binary relation symbol. These ques-
tions and their analogues regarding generalized spectra (i.e. ESO definable classes
of finite models) have been studied by Fagin in [15] (see also [17]). So far for ESO,
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FO(=(. . .)) and FO(⊥c) we know from Ajtai’s result that for all vocabularies τ there
is a strict arity hierarchy up to k whenever τ contains a k-ary relation symbol.

In Paper III we study hierarchies in inclusion logic. We prove the following srict
arity hierarchy.

Theorem 20 (III). FO(⊆)(k-inc) < FO(⊆)(k + 1-inc).

The proof of Theorem 20 is based on Grohe’s work in [26] where he proved a strict
arity hierarchy for transitive closure logic (TC), least fixed-point logic (LFP), infla-
tionary fixed-point logic (IFP) and partial fixed-point logic (PFP). More precisely,
it was shown that

(21) TCk 6≤ PFPk−1

where the superscript part gives the maximum arity allowed for the fixed-point
operator. Since TCk ≤ LFPk ≤ IFPk ≤ PFPk, a strict arity hierarchy is obtained
for each of these logics. However, unlike the previous case, this does not directly
lead to a proof of Theorem 20 because translations between inclusion logic and
fixed-point logics do not seem to respect arities (see [20]). Hence we show (20) in
a more constructive way. First we define a first-order formula indicating that the
k-tuples ~x and ~y form a 2k-clique in a graph. That is, we define EDGEk(~x, ~y) as
follows:

EDGEk(~x, ~y) :=
∧

1≤i,j≤k

E(xi, yj) ∧
∧

1≤i 6=j≤k

(E(xi, xj) ∧ E(yi, yj)).

Then we take negation of the transitive closure of EDGEk(~b,~c) where ~b and ~c are
k-ary constant sequences, and show that this property is definable in FO(⊆)(k-inc)
but not in FO(⊆)(k − 1-inc) (the same property was also used to show (21)). The
definability in FO(⊆)(k-inc) follows from Galliani’s observation in [18], and the non-
definability in FO(⊆)(k − 1-inc) is showed by applying results of [26] in the team
semantics setting. In addition to this we show in Paper I that k-ary inclusion logic
translates into k-ary independence logic.

Theorem 22 (I). FO(⊆)(k-inc) < FO(⊥c)(k-ind).

Note that the inequality in the previous theorem is strict since FO(⊥c)(1-ind)
can already express properties that are inexpressible in FO(⊆). For instance, even
cardinality of finite models is definable in FO(⊥c)(1-ind) since FO(⊥c)(k-ind) =
ESOf (k-ary), but cannot be expressed in FO(⊆) by the result of [20].

An interesting open question is whether arity fragments of inclusion logic can be
related to subclasses of PTIME if one restricts attention to finite ordered models.
In this restricted case we know that arity fragments of PFP form a strict hierarchy
since they can be related to the degree hierarchy within PSPACE. However, collapse
of the arity hierarchy for IFP (or LFP) implies PTIME < PSPACE and strictness
implies LOGSPACE < PTIME [32]. It remains open whether settling these questions
for inclusion logic have such consequences.
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6. Axiomatizations

The search for axiomatizations describing (as completely as possible) truth in a
mathematical structure or validities of a formal language is fundamental in math-
ematics and computer science with dependence logic being no exception. In this
section we consider Papers IV-VI that contain results regarding axiomatizability of
different variants of dependence logic. Although the set of valid dependence or inde-
pendence logic sentences is highly undecidable, meaning that no sound and complete
axiomatization exists, certain possibilities remain still open. One possibility is to
consider an analogue of Henkin semantics. This reduces complexity to the level
of first-order logic, thus enabling complete recursively enumerable axiomatizations.
Galliani has taken this direction for independence logic in [19]. Another strategy
is to search for axiomatizations that capture logical consequence completely with
respect to some fragment of a logic. For instance, it is a recursively enumerable
problem to decide whether a first-order sentence follows from an arbitrary depen-
dence logic sentence. This follows from the fact that dependence logic sentences
translate into ESO. Therefore, it is possible to define axioms that are complete
with respect to all first-order consequences of FO(=(. . .)) sentences, and such an
axiomatization has been presented in [36]. In Paper IV we generalize this approach
by presenting an axiomatization that is complete with respect to all first-order con-
sequences of FO(⊥c) sentences. Namely, for a set of FO(⊥c) sentences T ∪ {φ}, we
write T |= φ if φ is true in all models that satisfy the sentences of T , and T `I φ if
φ is provable from T in our deduction system. Then we prove the following.

Theorem 23 (IV). Let T ∪ {φ} be a set of sentences of FO(⊥c) where φ is first-
order. Then T |= φ iff T `I φ.

Another scenario occurs if we restrict attention to atomic fragments of our logics.
This is particularly interesting since studying these fragments relates directly to the
theory of dependencies in relational data models. Before introducing the results
of Papers V-VI, let us survey this connection shortly. The research of database
dependencies initiated in the early 1970s by the introduction of relational models
and functional dependencies [8, 9]. Soon many different classes of dependencies
were presented and the field saw a rapid explosion (for instance, a survey from 1986
gives references to more than 600 research papers on dependency theory [44]). Some
of the new dependencies were motivated by practical examples while some had a
pure theoretical motivation. The most important dependencies introduced include
functional, inclusion, join and multivalued dependencies. Many of these have been
also studied extensively in the team semantics setting as variants of dependence
logic [18, 23, 45].

In the 1980s it was observed that most of the considered dependencies are ex-
pressible in first-order logic [40]. These expressions can be usually written in the
form:

(24) ∀x1 . . . ∀xnφ(x1, . . . , xn)→ ∃z1 . . . ∃zkψ(y1, . . . , ym),
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where {z1, ..., zk} = {y1, ..., ym} \ {x1, ..., xn}, and φ is a possibly empty conjuntion
and ψ is a non-empty conjunction of atoms. In both φ and ψ one finds relational
atoms of the form R(w1, . . . , wl) and equality atoms of the form w = w′ where each
of w,w′, w1, . . . , wl is a variable. Dependencies of the form (24) are in general called
embedded dependencies, and in absence of existentially quantified variables zi they
are called full dependencies.

This division to embedded and full dependencies is important when trying to
understand the implication problem for various classes of dependencies. An impli-
cation problem is given as a set Σ ∪ {σ} of dependencies, and the problem is to
decide whether σ is true in all relations that satisfy Σ (written Σ |= σ). A finite
implication problem instead, is to decide whether the above is true over all finite
relations (written Σ |=FIN φ). If Σ = {σ1, . . . , σn}, then Σ |= σ (or Σ |=FIN σ) iff
there is no unrestricted (finite) model of σ1 ∧ . . .∧σn ∧¬σ. Restricting attention to
full dependencies only, we notice that the above sentence can be rewritten in prenex
normal form where the quantifier prefix has the form ∃∗∀∗. The class of sentences of
this form (and with no function symbols) is called the Bernays-Schönfinkel class [4],
and it is straightforward to show that the unrestricted and finite satisfiability prob-
lems coincide for this class. Hence it follows that the two problems are decidable
(actually NEXPTIME-complete [37]), and therefore we obtain that the implication
problem for full dependencies is decidable.

For embedded dependencies the situation is different since already for the subclass
of embedded multivalued dependencies the implication problem is undecidable [28,
29]. An EMVD X � Y |Z is given for attribute sets X, Y, Z and is satisfied by a
relation r if for all tuples t, t′ ∈ r that agree on X there exists t′′ ∈ r that agrees
with t on XY and with t′ on Z \ XY . Since their implication is undecidable it
also follows that they lack finite axiomatization, meaning that no finite sound and
complete set of Horn rules exists for EMVDs (otherwise a decision procedure would
follow). However, this does not mean that EMVDs cannot be axiomatized within
a larger class of dependencies (a trivial example uses inference rules of first-order
logic). Hence one strategy in such situations has been to search for inference rules
that are complete for some generalized class of dependencies. This has in part lead
to a multitude of different dependency notions [1].

In Paper V we present an axiomatization for embedded multivalued dependen-
cies together with inclusion dependencies but we use a slightly different approach
and follow Mitchell’s axiomatization for the implication problem of functional and
inclusion dependencies taken together [38]. It is worth noting that this problem is
undecidable even though the implication problem for FDs (or INDs) alone is de-
cidable and enjoys finite axiomatization [3, 6, 7, 39]. The key axiom in [38] is the
following:

• Attribute Introduction:

if U ⊆ V ∧ V → B, then UA ⊆ V B.
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In this rule A is called new which means that it is not allowed to appear in any as-
sumption or in any previous step of a deduction. The idea is that this new attribute
is to be thought of as implicitly existentially quantified. Although the axiomati-
zation in [38] is finite, the corresponding decision procedure does not necessarily
terminate since there is no a priori limit for the number of new attributes needed in
a deduction. In Paper V we take a similar approach to this and present the follow-
ing axioms for conditional independence (i.e. EMVDs) and inclusion dependencies
taken together.

Definition 25.
(1) Reflexivity:

~x ⊆ ~x.
(2) Projection and Permutation:

if x1 . . . xn ⊆ y1 . . . yn, then xi1 . . . xik
⊆ yi1 . . . yik

,

for each sequence i1, . . . , ik of integers from {1, . . . , n}.
(3) Transitivity:

if ~x ⊆ ~y ∧ ~y ⊆ ~z, then ~x ⊆ ~y.
(4) Identity Rule:

if ab ⊆ cc ∧ φ, then φ′,
where φ′ is obtained from φ by replacing any number of occurrences of a by
b.

(5) Inclusion Introduction:

if ~a ⊆ ~b, then ~ax ⊆ ~bc,
where x is a new variable.

(6) Start Axiom:
~a~c ⊆ ~a~x ∧~b ⊥~a ~x ∧ ~a~x ⊆ ~a~c

where ~x is a sequence of pairwise distinct new variables.
(7) Chase Rule:

if ~y ⊥~x ~z ∧ ~a~b ⊆ ~x~y ∧ ~a~c ⊆ ~x~z, then ~a~b~c ⊆ ~x~y~z.
(8) Final Rule:

if ~a~c ⊆ ~a~x ∧~b ⊥~a ~x ∧ ~a~b~x ⊆ ~a~b~c, then ~b ⊥~a ~c.

Rules 5 and 6 are analogous to Attribute Introduction in the sense that they
introduce new variables that are not allowed to appear in assumptions or in earlier
proof steps. However, the novelty here is that these new variables should be in-
terpreted as existentially quantified in the lax semantics sense. With the so-called
strict existential quantification (see item 4 of Definition 4), Rule 5 is not sound. We
write Σ ` φ if φ does not contain any new variables and can be deduced from Σ
using the rules of Definition 25. We then show the following theorem.
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Theorem 26 (V). Let Σ ∪ {φ} be a finite set of conditional independence and
inclusion atoms. Then Σ |= φ iff Σ ` φ.

In Paper VI we consider another implication problem that combines two sorts
of different dependencies. Namely, we examine the interaction between keys and
(pure) independence atoms. Both of these atoms are important in everyday prac-
tise of data processing, and have hence received detailed interest from the database
research community since the 1970s [5, 11, 16, 22, 34, 41]. Although their inter-
arction has not yet been studied, it is known that both classes in isolation enjoy
simple axiomatizations. Our contribution is to show that the situation changes
drastically when these classes are considered together. At first, we show that their
finite and unrestricted implication problems differ from each other. Secondly, we
show that the finite implication problem has no finite axiomatization. The question
of whether the finite and unrestricted implication problems are decidable remains
open. However, understanding axiomatizability can be seen as a first step towards a
solution. For instance it was shown in [42] that embedded multivalued dependencies
lack finite axiomatization both for the finite and unrestricted implication, and later
it was shown that both these problems are undecidable [28, 29]. On the other hand,
lack of a finite axiomatization does not always mean that the corresponding impli-
cation problem is undecidable. Join dependencies are instances of full dependencies
and hence their implication is decidable. However, it is known that they cannot be
finitely axiomatized [43].

Keys and (pure) independence atoms are now defined as follows. Let R be a
relation schema i.e. a set of attributes, and let X ⊆ R. Then K(X) is an R-key,
given the following semantic rule for a relation r over R:

• r |= K(X) if and only if for all t, t′ ∈ r: if t(X) = t′(X), then t = t′.
Also, if X, Y ⊆ R, then X⊥Y is an R-independence atom, given the following
semantic rule:

• r |= X⊥Y if and only if for all t, t′ ∈ r there exists a t′′ ∈ r such that
t′′(X) = t(X) ∧ t′′(Y ) = t′(Y ).

A simple example shows that if keys and independence atoms are taken together,
then the unrestricted and finite implication problem differ from one another. This
holds already in the case where independence atoms are allowed to be at most unary
i.e. of the form X ⊥ Y where X and Y are single attributes.
Theorem 27 (VI). Let R := {A,B,C,D} and Σ := {A ⊥ B,C ⊥ D,K(AD),
K(BC)}. Then Σ |=FIN K(AB) and Σ 6|= K(AB).

Already in this restricted case, the finite implication problem cannot have a k-
ary axiomatization. A k-ary axiomatization consists of at most k-ary Horn rules i.e.
rules of the form σ1 ∧ . . . ∧ σn → τ where n ≤ k.
Theorem 28 (VI). For no natural number k, there exists a sound and complete k-
ary axiomatization of the finite implication problem for keys and unary independence
atoms taken together.
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The general implication problem is however finitely axiomatizable. We write
Σ `I φ if φ can be deduced from Σ using the rules of Table 1.
Theorem 29 (VI). Assume that R is a relation schema and Σ ∪ {φ} consists of
R-keys and unary R-independence atoms. Then Σ `I φ iff Σ |= φ.

∅⊥X
X⊥Y
Y ⊥X

X⊥X Y ⊥Z
XY ⊥Z

(trivial independence, R1) (symmetry, R2) (constancy, R3)

X⊥Y Z
X⊥Y

X⊥Y XY ⊥Z
X⊥Y Z K(R)

(decomposition, R4) (exchange, R5) (trivial key, R6)

K(X)
K(XY )

X⊥X K(XY )
K(Y )

X⊥Y K(X)
Y ⊥Y

(upward closure, R7) (1st composition, R8) (2nd composition, R9)

Table 1. Axiomatization I of Independence Atoms and Keys in
Database Relations

Note that Theorem 28 generalizes to the case where independence atoms have no
arity restrictions. This concludes the preview of the results of the thesis.
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