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The objective of this thesis was text-based prediction of phrasal prominence. Improving
natural sounding speech synthesis motivated the task, because phrasal prominence, which
depicts the relative saliency of words within a phrase, is a natural part of spoken language.
Following the majority of previous research, prominence is predicted on binary level derived
from a symbolic representation of pitch movements. In practice, new classifiers and new
models from different fields of natural language processing were explored. Applicability of
spatial and graph-based language models was tested by proposing such features as word
vectors, a high-dimensional vector-space representation, and DegExt, a keyword weighting
method. Support vector machines (SVMs) were used due to their widespread suitability
to supervised classification tasks with high-dimensional continuous-valued input. Linear
inner product and non-linear radial basis function (RBF) were used as kernels. Furthermore,
hidden Markov support vector machines (HM-SVMs) were evaluated to investigate benefits
of sequential classification. The experiments on the widely used Boston University Radio
News Corpus (BURNC) were succesful in two major ways: Firstly, the non-linear support
vector machine along with the best performing features achieved similar performance than
the previous state-of-the-art approach reported by Rangarajan et al. [RNB06]. Secondly,
newly proposed features based on word vectors moderately outperformed part-of-speech tags,
which has been inevitably the best performing feature throughout the research of text-based
prominence prediction.
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1 Introduction

Phrasal prominence is an aspect of spoken language which depicts the relative
saliency of words within a phrase. Being part of prosody, prominence has
a multitude of functions describing elements of language that are encoded
by neither grammar nor choice of vocabulary, for instance, emphasizing
important terms, introduction of new terms, expressing contrasts, resolving
ambiguities and guide the dialogue structure. Phrasal prominence modeling
benefits a wide range of applications. Constructing a fluent natural sounding
speech synthesizer is just impossible without accurately modeling prominence.
Moreover, analyzing prominence from speech signal benefits automatic speech
recognition and speech-to-speech translation.

This thesis concentrates on predicting accurate instances of phrasal promi-
nence based on written text. The objective specifically is to support applica-
tions of speech synthesis in increasing their subjective naturalness. This is
an optimization problem, since instead of a single correct manifestation of
prominence, there usually exist a bunch of suitable alternatives that arise
from different interpretations of the text. Phrases in different contexts or
considered from different point of view bear different prominence.

Supervised machine learning techniques are used to classify prominence.
That is, models are trained from a set of text documents which are prelabeled
with a discrete symbolic representation of prominence. Humans are said
to be able to hear four distinct levels of prominence but there seems not
to be consensus among researchers about finer-grained separation than the
existence versus absence of prominence. Therefore, like most of the previous
work, this thesis treats the problem as a binary classification task.

Minimal supervision and maximal generalizability of proposed techniques
are the prevalent philosophies in the research of this thesis. Although the
classification of prelabeled text is a supervised task, those labels still need
to be generated either by human experts or by an unsupervised machine
learning approach. Hand-labeling is time consuming work even for experts.
Accordingly, the required amount of work to extract text-based features
is multiplied by every language they are applied to. For instance, part-
of-speech tags, the most successful feature so far, are based on categories
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constructed by humans and a language-dependent set of hand-labeled data is
required to train an automatic labeler. Obviously, successful selection of more
generalizable features reduces need to develop new features for new languages.
Statistical machine learning approaches are expected to be more appropriate
across language boundaries compared to constructions that rely on human
interpretation in greater extent.

Research of phrasal prominence has continued over decades. In its infancy,
linguistic research searched for endless amount of deviating cases by hand to
build rule-based classification systems. The research area revolutionized in
1990s due to development of various intermediate representations of prosody,
increasing availability of speech corpora, and recent advances in machine
learning. Ever since, a multitude of studies have attempted prominence
detection and prediction based on acoustic events and text-based features
separately or jointly. The community has seen a variety of algorithms from
decision trees to maximum entropy models, while evolution in extraction of
text-based features has been rather minimal. Features derived from part-
of-speech tags have remained evidently the most superior approach thus
far.

Contributions of this thesis are: evaluation of three new classifiers, proposal
of various existing statistical and graph-based language models for this specific
problem, and investigation of different ways to scale and preprocess input
features. Support vector machines (SVMs) are evaluated with linear and radial
basis kernels. Further, hidden Markov support vector machines (HM-SVMs)
are evaluated to investigate the benefits of predicting sequences of phrasal
prominence instead of prediction for individual words. The most remarkable
result is the newly proposed features based on word vectors, a continuous-
valued spatial language model, is shown to achieve better performance than
the part-of-speech based counterparts. It is also noticed that even very simple
features such as word lengths perform astonishingly well.

The thesis is organized as follows. Linguistic background is first explained
in Section 2.1 from the computer scientist’s point of view — expecting no prior
knowledge of the field and motivated by rather inconsistent and confusing use
of terminology in previous work. Then, the problem of phrasal prominence
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prediction is defined with more details in Section 2.2. Motivation for this
problem is discussed in Section 2.3.

Related work is surveyed in Section 3 covering not only text-based pre-
diction task but also prominence detection based on acoustic events. The
background is encompassed more comprehensively than would have been nec-
essary to consider the experimental part. Nevertheless, the provided bigger
picture is thought to be worthwhile due to so tightly related tasks. The most
relevant studies that perform text-based prediction are outlined in Section 3.2,
and Section 3.4 sums up the most important notions supporting the research
in this thesis.

Section 4 reviews construction of proposed phrasal prominence models.
Selection of previously studied and construction of the newly proposed features
are outlined in Sections 4.1 and 4.2 respectively. Support vector machines and
its extension to sequential classification are described and their use is discussed
in Section 4.3. Features and classifiers are fitted together by testing various
preprocessing and scaling techniques, which are described in Section 4.4.

Experiments are explained in Section 5. Selection of the Boston University
Radio News Corpus as a data set is discussed in Section 5.1. The data
is separated into an experiment set for model tuning and a held-out set
for validation As described in Section 5.2. Evaluation is done in speaker-
independent way with 6-fold cross validation. Section 5.3 explains selection
of features and tuning of classifier parameters step by step. The results are
then shown in Section 5.4.

Finally, results and future directions are discussed in Section 6, and
conclusions are outlined in Section 7.

2 Problem

The thesis aims at analyzing written text to accurately predict the level
of words’ saliency as a part of natural speech. This section describes the
necessary linguistic preliminaries, defines the targeted problem and discusses
the motivation for such research. The section of preliminaries intends to
clarify some rather ambiguously used terms, and give a quick introduction to
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the linguistic basis of the problem for computer scientists.

2.1 Preliminaries

The primary purpose of speech is to convey a message via a sequence of
words, but it contains a wide range of additional linguistic and paralinguistic
information as well [Cha08]. The speaker’s identity, gender, emotional state
and other speaker-specific features are examples of paralinguistic information,
whereas linguistic information inherently supports understanding the message
conveyed by an utterance.

Prosody is an information layer of spoken language that bears supple-
mental linguistic contents pertaining to a conveyed message [Cha08]. In
speech signal it appears as intonation, rhythm and pauses. It has a multitude
of functions describing elements of language that are encoded by neither
grammar nor choice of vocabulary. Prosody may resolve ambiguities [Gro83],
guide the dialogue structure [Bol78], emphasize important terms, express
contrasts, outline the focus of discourse, specify the type of the utterance
(statement, question, or command), indicate the presence of irony or sarcasm.
Furthermore, it can assist demarcating word and phrase boundaries, and in
some languages distinguish between phonetically similar sounds [Leh72].

The precise way in which the term prosody is defined varies among
researchers [Cha08]. The least agreed aspect of the term concerns the ab-
stractness versus concreteness of prosody. At one end are those who define
it as an abstract structure that organizes sound so that it is not coupled
with any realization. This is opposed by those who use the term to refer to
the realization itself, that is, to use it as a synonym for measurable prosodic
features of the speech signal. Most of the researchers probably fall in between
these two extremes by considering a linguistic structure coupled with its
realization.

A more comprehensive definition given by Cutler et al. [CDv97] states
that prosody is: "the linguistic structure which determines the suprasegmental
properties of utterances." Prosodic features are said to be suprasegmental be-
cause they affect over the boundaries of phonemic segments. On the contrary,
the sequence of words of an utterance, for example, is encoded in speech
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signal as a sequence of phonemic segments. The domain of prosodic features
ranges from syllables, up through words, phrases, sentences, paragraphs, to
whole discourses. Furthermore, acoustic features of prosody are relative in
nature and tend to require reference to the time-series of the speech to be
meaningful [Jak67, Lad96]. As a result of the suprasegmental nature and the
relativeness against time-series, modeling prosody is a more complex problem
than modeling segments of phonemes with absolute acoustic parameters.

Prominence is an aspect of prosody which depicts the relative emphasis
of a syllable within a word, or a word within a phrase [Roa02]. In respect to
words that is, a word is said to be prominent, if it noticeably stands out of the
rest of a phrase. Despite the decades of extensive research, there exist many
areas of disagreement and a lack of understanding, which in turn is visible as
inconsistent and confusing use of terminology. Accentuation and stress are
rather ambiguously used multifunction terms describing prominence.

Accent has two different meanings. As related to prominence, it means
the phonetic prominence of a syllable or a word. That is, a syllable is made
prominent by movements of pitch. Confusingly, the term pitch accent is
also widely used referring more specifically to the usage of pitch. Based on
the existence of this term, it seems that accent might have a wider meaning
than only the prominence produced by phonological variation. Alternatively,
accent may refer to the different ways in which speakers sharing the same
vocabulary and grammar pronounce the language. In this sense, accent is
distinguished from dialects — different variations of a language which usually
differ in vocabulary or grammar as well.

Stress denotes the speaker’s relative effort of producing syllables or words
[Roa02]. The term is used rather synonymously with accent, though some
divergence exist too. Stressed syllables or words are signaled for instance
by better articulation, greater intensity and longer vowels. Confusingly,
stress is also said to be audible as pitch prominence which was the case
with accent. Many writers have suggested that the term accent should
be considered as some of the manifestations of stress — particularly pitch
prominence. Nevertheless, despite the wide usage of the word, it has not
seemingly acquired distinctive meaning of its own.
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Stress is divisible into two separable aspects: prosodic stress and word
stress [CDv97]. Prosodic stress, synonymously phrasal stress or sentence
stress, denotes the prosodic prominence of words. The level of stress given to
a word in some context comes from prosody. This abstract representation
has granularity of a word and rules of word stress needs to be considered to
form the concrete representation of spoken stress.

Word stress, or lexical stress, concerns the way in which syllables are
stressed within words. Some languages have fixed-stress, where the stressed
syllable has a fixed position or its location is constrained by a simple rule. For
example, in Finnish the first syllable bears stress, and in Polish the stress is
positioned on the penultimate syllable. Other languages have variable-stress
in which case the word-internal positioning of stress is truly lexical: it must
be learned for each individual word as part of its pronunciation. English and
Russian are examples of such languages.

Prosodic realizations are continuous-valued and highly dependent on the
individual speaker’s style, gender, dialects and other phonological factors.
Therefore, utilizing such representation directly to analyze prominence is
in lesser extent useful. The non-uniform factors of prosody need to be
eliminated while prosodic patterns of interest should somehow be represented
in an interpretable way.

To overcome these complexities, a number of symbolic or parametric inter-
mediate representation schemes of prosody have been developed. Such schemes
include: Tones and Break Indices (ToBI) [SBP+92], TILT intonational model
[Tay98], Fujisaki model [FH82], Intonational Variation in English (IViE)
[GNF98], and International Transcription System for Intonation (INTSINT)
[HIV94]. These prosodic labeling approaches provide a common vocabulary
and framework for researchers to characterize prosody, allow transcriptions
of speech corpora and enhance the comparison of research results. From
computational point of view, these frameworks act as a discretization of more
complex continuous data. Anyway, it has been shown that some applications
benefit from avoiding intermediate categorical representations by directly
using prosodic correlates of raw or normalized speech signal.

The Tones and Break Indices framework is a symbolic intermediate rep-
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resentation of intonation and breaks developed by a large group of experts
from multiple research sites during four workshops held in 1990s. It is based
on Pierrehumbert’s intonational phonology [PH90]. A significant majority
of corpus-based computational research has been built upon it, which was
the intention of its creators and increases its importance. The framework
was initially developed for American English, but later it has been extended
to other languages. It was targeted to support different kinds of research.
On the other hand, the area was only partially understood at the time of
development and hence attention was paid not to build a too complex or
complete system. Two decades have passed since the creation of ToBI.

The ToBI framework contains a representation of pitch movements more
than a representation of prominence. Nevertheless, the information about
prominence can be extracted to some extent from those tones that are located
at the stressed syllables of words. However, it should be noted that there is no
consensus of how the prominence should be represented and even how many
different classes of prominence that representation should include. The ToBI
framework is used in the experiments of this thesis. The framework is further
discussed in Section 5.1 along with the conversion of the pitch movements to
acquire labels of phrasal prominence.

The reasonable number of phrasal prominence levels is a significant and
still open question. Binary representation describing existence versus absence
of prominence is widely used, but other alternatives exist as well. Mehrabani
et al. [MMC13] hypothesize that the number of levels is optimal, when every
pair of the levels are perceptually distinct from each other. On the other
hand, too few levels would leave important information out. Mehrabani
et al. [MMC13] experiment this by clustering segments of text based on
prominence, which is realized as pitch, duration and energy. They take
advantage of previous studies on Just-Noticeable-Differences (JND) of speech
prosody to indicate which vectors in the feature space are perceptually distinct.
By increasing the number of clusters and calculating the distances between
the cluster centroids, they show that four clusters are enough to achieve
the wanted distances. Furthermore, the conducted perceptual experiment
studying the naturalness and expressiveness of synthesized speech shows no
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statistically significant superiority between models with three and four levels.
However, the results trend towards the four levels of prominence.

2.2 Definition

The objective in this thesis is to predict phrasal prominence for a discourse
as a sequence of words. This is approached by techniques of data mining.
That is, the predicting algorithm is statistically learned from recordings of
speech as spoken language is the natural source for prosody. Strictly speaking,
this thesis omits direct analysis of speech data and instead concentrates on
modeling prominence based on input texts. However, these are quite tightly
coupled problems and therefore, although not included in the experiments,
analysis of speech is still introduced, included in the literature review and
discussed. Consideration of word-internal prominence is excluded to restrict
the complexity of the problem and because it is possible to solve word
prominence separately given the information of phrasal prominence.

As whole, the general problem is divisible into two subproblems from
which the latter one is the primary interest in this thesis:

1. Prominence detection: Analyzing the acoustic correlations of speech
data to detect language-dependent usage of phrasal prominence and
represent it in terms of an intermediate representation.

2. Prominence prediction: Utilizing the detected representation and corre-
sponding text documents to statistically learn a model for predicting
phrasal prominence.

As a prerequisite, there must exist a representation for the phrasal promi-
nence detected from speech. The outcome would either be a continuous-valued
representation or a categorical discretization of phrasal prominence. Utilizing
a discrete symbolic intermediate representation enhances the decoupling of
the subproblems compared to more complex continuous-valued counterparts.
It might be desirable to avoid choosing a representation with meaningless
intricacy as the field of phrasal prominence is still somewhat poorly under-
stood.
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Empirical research results show that humans tend to be able to separate
four distinct classes of phrasal prominence [MMC13]. Thus there seems to be
no need of finer-grained information for a system aimed to be observed by
humans. In this thesis, a categorical representation is chosen because of its
simplicity and sufficiency. This choice turns the whole problem — and both
of the subproblems — into a classification problem, where each word of an
input speech or text is assigned with a prominence class.

The prominence detection task is mandatory to generate knowledge base
and hence be able to solve the second problem of predicting phrasal promi-
nence, which is based solely on text-based information. In practice, the
result of the prominence detection phase is a corpus of text labeled with
assignments of phrasal prominence classes. Unsupervised learning approaches
are necessary to achieve such classification of the acoustic events in speech
signal. Of course, knowledge generation could be performed manually by
human experts, but this is a far too slow process for creation of bigger corpora.
If there already exists a sufficiently large manually collected corpus, it could
possibly be extended in supervised manner to generate a larger one.

Prominence prediction is a supervised classification problem, where, given
a sequence of words, the objective is to find the most probable sequence of
prominence labels according to the learned data. This is formally defined
by a probabilistic objective function in Definition 1. Almost equivalent,
definitions are found throughout the surveyed research. The probabilistic way
of defining the objective function gives a formal, but very general definition.
It is not directly applicable to the algorithms in this thesis. However, it eases
observations and reasoning about which dependencies are relevant to this
problem.

Definition 1. Probabilistic objective function for prominence pre-
diction: Let C = {c1, . . . , cn}, n ∈ N, be a set of discrete symbols that
quantize phrasal prominence. Let W = (w1, . . . , wN) be a sequence of words
representing a text document of length N . Let L = (l1, . . . , lN), where
li ∈ C∀i such that 0 ≤ i ≤ N , be a sequence of assigned phrasal prominence
classes. Furhter denote by φ a mapping from a word to a feature vector. Let
k ∈ N denote a number of preceding and succeeding words in approximating
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context.
Now, given the text W and the input mapping φ the objective function

JW,φ : CN → R is:

JW,φ(L) = P (L | W ) (1)

≈
N∏
i=1

p(li | W ) (2)

≈
N∏
i=1

p(li | φ(w1), · · · , φ(wN)) (3)

≈
N∏
i=1

p(li | φ(wi−k), · · · , φ(ti+k)) (4)

Then, prediction of phrasal prominence is an optimization problem, where the
optimal solution is a label sequence L∗ that maximizes the objective function:

L∗ = arg max
L∈CN

JW,φ(L).

The objective function is outlined as a function of a sequence of phrasal
prominence labels given a sequence of words and a mapping from words to
feature vectors with numerical attributes. The function represents conditional
probabilities of label sequences given a constant input text, which makes the
situation equivalent to modeling joint probabilities of those two sequences as
the prior probabilities for constantly defined words are uniformly distributed.
The objective is to find a feasible solution that maximizes value of the objective
function.

Without any constraining assumptions the probability shown in Equation 1
is very hard to solve. In most of the previous research, prominence labels
are assumed to be independent and identically distributed (i.i.d.). That is,
given any two labels li, lj ∈ L, the posterior probabilities of these labels are
independent and they can be calculated separately: P (li, lj | W ) = P (li |
W ) · P (lj | W ). This leads to the situation described in Equation 2, where
prediction of a single label depends only on the word sequence. In practice,
such assumption is made, when a simple supervised model, such as decision
tree, support vector machine or maximum entropy model, is being applied.

The independence assumption is rather dubious, because phrasal promi-
nence tends to express relative saliency of words within a sentence. There
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might be several possible sequences of prominence for one sentence, and
each word of the sentence might be considered prominent in one of those
alternatives. Nevertheless, making all of the words or none of them prominent
would be very improbable. Several sequential classifiers have been previously
evaluated to take the dependencies of nearby prosody labels into account.
These include: hidden Markov models combined with decision trees [RO96]
and conditional random fields [GA04, NLX11]. The experiments of this thesis
continue the list by one more model, hidden Markov support vector machine.

Another simplifying approximation of the objective function is defined in
Equation (4). This approximation relies on the assumption that a symbol in
the sequence L does not significantly depend on all of the vectors in T but
instead it depends only on some of the nearest words. One solution would be
to consider the data within a context of a sliding window worthwhile. The
formal definition introduces the variable k which depicts the window size as
the number of preceding and succeeding words. Practically, this is taken into
more complex level in this thesis as different features have different window
sizes and the numbers of preceding and succeeding words are modeled with
two distinct variables.

The performance of experimented models is evaluated by measuring accu-
racy and F-measure. These are commonly used measures in previous work
and evaluation of machine learning models in general. Accuracy simply de-
notes the number of correctly predicted words divided by the number of all
predicted words. It is easy to interpret and compare but its descriptiveness is
also confined.

F-measure considers both precision p and recall r of the tests. Precision p
denotes the number of true positives (TP) — samples correctly predicted as
positive — divided by the number of samples predicted as positive — true
and false positives (TP + FP ). While recall (r) denotes the number of true
positives divided by the number of true positives and false negatives (FN) —
all the samples that should have predicted as positive. Thus, when precision
approaches one, the number of words incorrectly predicted as prominent
decreases, whereas increase of recall means decrease of the number of words
that were incorrectly predicted as non-prominent. Formally, precision is
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defined as p = TP
TP+FP , and recall as r = TP

TP+FN . Finally, the F-measure is
computed as an unweighted harmonic mean of precision and recall: F1 = 2 p·r

p+r .

2.3 Motivation

The primary motivation arises from the importance of phrasal prominence as a
layer of additive information in spoken language. Phrasal prominence supports
spoken language by emphasizing important words, outlining contrastiveness,
supporting overall understandability of discourse and even resolving ambi-
guities in conveyed messages. Especially spontaneous speech is usually not
as well-formed as written text in which case the sole sequence of words
and choices of vocabulary are more likely to be incoherent or even ambigu-
ous. In such conditions, phrasal prominence, and prosody in general, plays
more important role. There are multiple applications capable of benefiting
from these advantages. Basically, phrasal prominence is either produced to
support synthesized speech or analyzed to support speech recognition and
understanding.

When looking at text-to-speech synthesizers, phrasal prominence is per-
ceived by human perception. Hence, the most important goals for this
application are the naturalness and interpretability of the synthesized speech.
State-of-the-art speech synthesizers are capable of pronouncing distinct words
quite well, but synthesizing phrases or even longer unrestricted texts is the
current bottleneck in natural sounding synthesis. Phrases synthesized without
phrasal prominence appear to be rather monotonous, and making too many
words stressed is similarly bad or even worse solution.

To achieve a more fluent synthesis, phrasal prominence needs to be pre-
dicted based on features extracted from text. Obviously, this is an optimization
problem, because any input text can be correctly spoken out with differing
interpretations of prominence. The input text may even contain ambiguities
that are unresolvable in written text but would have been unambiguous in
the corresponding spoken utterance. These difficulties are well expressed by
Bolinger’s [Bol72] pessimistic view that one needs to be a mind reader to
predict accentuation, which is accepted by most of the researchers. Although
text-based prediction of phrasal prominence has its limitations, those mind-
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reading attempts have continued over decades resulting in more accurate
solutions. It must be noted that humans are able to speak out any piece of
text with reasonable layer of prosody even if they really do not understand
the content.

Another application is speech recognition where the analysis of phrasal
prominence is performed by computers. The purposes of such analysis are
rather similar to those with human perception. It might help with understand-
ing the conveyed message of a spoken utterance recalling that the phrasal
prominence provides additional information. For instance, knowing which
words are emphasized or de-emphasized could enhance extraction of keywords.

Performance of automatic speech recognition (ASR) can be improved in
many ways by taking into account the effects of phrasal prominence. Humans
tend to pronounce some syllables more clearly than others. This phenomenon
is strongly related with prominence. Stressed syllables are articulated with
greater intent, and therefore are more reliably correctly recognized. Further,
this allows better guesses about the identity of unstressed syllables against
vocabulary.

Prominence might support boundary detection task as well. For instance,
considering languages with fixed-stress — like Finnish in which the stress
is always on the first syllable of a word — make it possible to utilize the
detection of stressed syllables to improve the detection of word boundaries.
Note that boundary detection task significantly benefits from analysis of
phrasal boundary tones as part of prosody while the improvement described
here rely on the phrasal prominence.

On the other hand, assuming a language with lexical-stress (e.g. English)
gives yet another way to improve word detection [AN07]. Assume that
the speech recognition system in question produces a list of best candidate
words for a word being recognized. Now, if the word being recognized is
given prominence, these hypotheses can be rescored due to their lexical
stress patterns which are available in word pronunciation dictionaries. The
perceived sequence of word prominence statuses can be compared to the
lexical stress patterns of each candidate word. Scores of the candidate words
are decreased, if their lexical stress patterns do not equal the perceived
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patterns. Considering phrasal prominence for similar purposes could improve
selection of hypotheses consisting of multiple words even further. This
could be accomplished by comparing which words ought to bear prominence
against the observed phrasal prominence. Experimental results conducted by
Ananthakrishnan and Narayanan [AN07] show modest but still statistically
significant reduction in word error rate (WER) of 1.3% (relative) compared
to the baseline recognition system. Their results were achieved through
comparison of the lexical stress patterns alone.

In speech-to-speech translation a spoken utterance of a source language
is translated and spoken out in another language. This combines the two
previous applications. A typical state-of-the-art speech-to-speech translator
first utilizes automatic speech recognition to produce text in the source
language [RNB06]. This is followed by feeding the text to a translator
and then to a natural speech synthesizer of the target language. Here, the
prosody of the output is predicted from the target language and therefore
the information contained in the prosody of the source speech is lost.

The true interest towards speech translation has arisen from more sophis-
ticated approach, where the prosody of the source language is also recognized
and translated to the other language [RNB06]. Of course, due to differences
in usage of prosody this is not possible between every language. Even in such
cases improving speech understanding on the source-side could improve the
process of translation. Currently, the key requirement towards such solutions
is better understanding and reliable representations of prosody.

3 Related work

Research of phrasal prominence has continued over decades. In its early
years, linguistics researched phenomena by hand — searching and identifying
the endless amount of deviating cases. The methods of the whole research
area revolutionized in 1990s due to construction of various intermediate
representations of prosody, which in turn allowed creation of prosody labeled
speech corpora. Since the corpus-based statistical approaches — benefiting
from advances in computer science — have evolved and become a common
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method in linguistic research. The great impact of the computer science in such
research is indicated, for instance, by Hirschberg [Hir93] who mentions that
creation of a hand-crafted set of rules aimed at phrasal prominence prediction
took several months of intensive work compared to the automatically generated
decision tree with even better performance.

Many different approaches to detect and predict phrasal prominence have
been attempted during the previous two decades. These attempts vary in many
aspects such as: used language and information sources, preferred output and
its granularity, applied algorithms, selected dataset and arrangements of the
evaluation and validation.

The desired outcomes of the approaches vary from the binary existence of
phrasal prominence or pitch accent to multi-class representations determining
the type of the accentuation as well. The assignments are made for a domain
of words or syllables, from which the latter describes more information than is
required in terms of phrasal prominence. Accordingly, words, syllables, vowels
or short-term frames are considered as the granularity for the sequences of the
input data. In the majority of the experiments, pitch accents and boundary
tones are detected or predicted together but that is not covered here.

Surveyed research is restricted to consists only of experiments targeting
prominence of English. Several speech corpora are used to provide training
and test datasets. The Boston University Radio News Corpus (BURNC) is
used in most of the research reviewed here, and it is the most widely used
corpus for this specific task in general to the best of the author’s knowledge.
Use of this corpus is assumed in the experiments described in this section
unless another corpus is explicitly specified.

The survey covers such a large amount of technologies that it was decided
to exclude any further explanations. However, the most relevant parts are
described later, and other details are available in the referred literature. The
survey is separated into three parts according to the used input data: promi-
nence detection concerning only acoustic correlates of prosody is considered
first, followed by prediction approaches utilizing text-based features, and
finally the detection approaches combining both of the information sources.
The surveyed literature is summarized and the most important concepts are
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explained in Section 3.4.

3.1 Acoustic detection

Early attempts to detect phrasal prominence based on acoustic correlates
involve analysis over short-term frames along with experimenting with Hidden
Markov Models (HMMs). Such ideas were first introduced by Chen and With-
gott [CW92] who applied the HMM model to features based on smoothed
pitch and intensity. Wightman and Ostendorf [WO94] approached detection
of prosodic patterns by combining two models. They used a decision tree
to provide estimates of probability distributions for the observations, and a
discrete hidden Markov model for sequential modeling. Speaker-dependent ex-
periments for detection of syllable-level existence of prominence were reported
to achieve accuracy of 86% on a subset of the BURNC corpus. Conkie et
al. [CRR99] approached syllable-level binary pitch accent detection by using
hidden Markov model for speaker normalized pitch and energy values. They
used a ToBI labeled data set consisting of only 1166 words, and reported
accuracy rate of 82.8%. Ananthakrishnan and Narayanan [AN05] assume
that acoustic correlates of prosody consist of multiple streams of information
that are further assumed to be correlated but not always synchronous. They
address correlatedness and asynchrony by applying coupled hidden Markov
model (CHMM) to prosody, which is realized in three streams of energy, pitch
and durations. Experiments were reported to achieve accuracies of 72.03%
and 73.97% for word-level and syllable-level respectively.

Maghbouleh [Mag96] adapts a logistic regression model for syllable-level
binary prominence detection. The usage of products-of-sums (POS) model
is reasoned by rather easy computability related to earlier models and need
for quite small data set. In experiments, features such as energy, identity of
nearest phonemes, lexical stress and position measures result with accuracy of
86%. Thus, the model is said to achieve 68% of the possible accuracy between
the baseline of always deaccenting with 69% accuracy and the human per-
formance of 94%. Ostendorf and Ross [OR97] propose a stochastic modeling
framework for syllable-level detection of prominence. The framework is based
on pitch, energy and duration features along with segmental characteristics of
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syllable sequence. Sun [Sun02] applies ensemble machine learning algorithms
to classify syllables into four classes of prominence: high, down-stepped high,
low and unaccented. Here, classification and regression trees (CARTs) are
aggregated with methods of bagging and boosting to detect prominence based
on the fundamental frequency contour, pitch targets, energy and segmental
duration. The experiments — conducted with the data from one female
speaker (F2B) from the Boston University Radio News Corpus — show that
the decision tree alone achieves an accuracy of 82.89%, whereas after either
bagging or boosting the accuracy is 84.71%. Rosenberg and Hirschberg [RH07]
experiment various filtered energy based predictors for binary prediction of
word-level prominence. Their best performing two-stage classifier tested on
Boston Direction Corpus (BDC) and Topic Detection and Tracking (TDT-4)
was able to detect prominence in read (BDC-R), spontaneous (BDC-S) and
broadcast news speech at 84.0%, 88.3% and 88.5% accuracy, respectively. The
first stage of the classifier involves extraction of energy-based features from
multiple frequency sub-bands, and the second stage attempts to correct the
predictions with pitch and duration features. Finally, a majority voting clas-
sifier is used for the corrected predictions. Chen et al. [CHC04] pursue more
generalized approach in terms of intra-speaker and inter-speaker variation.
They apply a Gaussian mixture model (GMM) to pitch, energy and duration
features, which are preprocessed by principal component analysis (PCA).
The leave-one-speaker-out evaluation task of the model resulted with 77.34%
accuracy for binary pitch accent detection at the syllable level. Chan [Cha08]
applies a maximum entropy model to solve binary pitch accent detection
problem. He uses Locality Preserving Projections (LPP) — a linear dimen-
sionality reduction technique — to preprocess the set of acoustic features. An
accuracy rate of 87.25% for word-level detection is achieved with less than
half of the original dimensions, and it performs even slightly better than with
the original feature set. Thus, the LPP method seems to provide more robust
model due to noise reduction and reduces the computational cost. Chan
further discusses usage of raw acoustic features to support speech recognition
without using any symbolic intermediate representations.

Several experimental results advocate use of neural networks to solve this
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problem. Ananthakrishnan and Narayanan [AN08b] compare binary pitch
accent detection performance of Gaussian mixture model with 18 components
and two-layer feed-forward neural network. Their experiments show that
the neural network performs better achieving a syllable-level accuracy rate
of 74.10% (compared to 72.18%) with speaker-independent five-fold cross
validation. Likewise, Jeon and Liu [JL09] compare performance of various
algorithms and contribution of features from four classes: pitch range, energy
range, pitch slope and duration. In their experiments, neural networks
outperform decision trees, Gaussian mixture models and maximum entropy
models by achieving a syllable-level accuracy rate of 83.53%. Moreover,
experiment conducted by Ni et al. [NLX11] support the superiority of neural
networks against decision trees. In their results, the presented neural network
detects syllable-level binary pitch accent with 83.95% accuracy, compared to
their decision tree with accuracy of 81.45%.

Continuous wavelet transform (CWT) is a widely used mathematical
tool for analyzing and visualizing various simultaneous temporal scales of a
signal. It has been successfully used for several applications of speech analysis.
Vainio et al. [VSA13] apply continuous wavelet transform to analysis of speech
prosody — especially prominence. They apply the CWT to intonation in form
of the fundamental frequency contour, and conclude that the local maxima at
the level of prosodic words correlate strongly with the perceived prominence
judged by listeners. The further direction of the research is suggested to
include development of visualization and analysis tools, discretization of the
CWT result for higher level applications, applying CWT to other prosodic
features and studying the human auditory processing against CWT analysis.

Mehrabani et al. [MMC13] discard use of the ToBI by automatically
constructing their own intermediate representation for phrasal prominence.
They apply an unsupervised K-means clustering algorithm with varying
number of clusters to find the optimal number of prominence levels. As their
goal is to enhance the naturalness of speech synthesis, they hypothesize that
the number of levels is optimal if the levels are perceptually distinct. They
use Just-Noticeable-Difference (JND) — the smallest perceivable difference
between two levels of a sensory stimulus — to pitch, energy and duration of
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the resulting cluster centroids. They show that with four levels of prominence
all of the features differ less than the corresponding experimental JND value.
Furthermore, they provide results of a perceptual experiment where speech
was synthesized with different number of levels. The experiment did not show
statistically significant results between 3-level and 4-level models, albeit the
results trend towards the 4-level model.

3.2 Text-based prediction

Text-based phrasal prominence predictions utilize various syntactic and lexical
features. Hirschberg [Hir93] presents a hand-derived set of rules and an
automatically generated decision tree to predict binary phrasal prominence.
She models the discourse structure with a global focus and a local focus each
filled with word roots during the analysis. This model is aimed to predict
whether a word in the text is determined as given — already discussed in
the discourse — or new otherwise. Other features in her experiments were
part-of-speech tags, broader word classes derived from POS tags, surface
position information and complex nominal analysis. The experiments were
conducted on several rather small corpora, one of them being FM Radio News
Corpus (FM-RNC) — a predecessor of the BURNC corpus. The experiments
achieved an accuracy of 82.4%, which was reported to be much better than
the simple function word versus content word distinction used in earlier
speech synthesizers. Ross and Ostendorf [RO96] extend this approach by
using a hidden Markov model in conjunction with the posterior probabilities
approximated by a decision tree. They utilized a multi-stage approach in
which the pitch accent placement is predicted first followed by pitch accent
type prediction and phrasal boundary intonation assignment. Predictions
are based on features derived from part-of-speech, word’s new/given status,
lexical stress, prosodic phrase and paragraph structures. According to their
evaluation with a single speaker (F2B), such model achieves pitch accent
location prediction accuracy of 87.7% at syllable-level and 82.5% at word-
level. Conkie et al. [CRR99] utilize a stochastic finite-state transducer (FST)
to estimate the joint probabilities of part-of-speech tags and binary pitch
accent to provide the most probable sequence of binary pitch accent labels.
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Their experiment evaluated with only 1166 words resulted with accuracy of
84.0% at syllable-level. Sun [Sun02] attempts to enhance the performance
of decision tree with ensemble machine learning methods — bagging and
boosting. Predictions are made at syllable level for four types of pitch accent:
high, low, down-stepped high, and unaccented, which were used also by Ross
and Ostendorf [RO96]. The features considered in the experiments are: vowel
identity, syllable stress, syllable positions within a word, word position within
a sentence, the number of syllables in the current and previous word, part-of-
speech, and combination of the POS tag and syllable stress. The experimental
results show only minor improvements as the bagging and boosting decision
trees achieves accuracies 80.64% and 80.50%, respectively, compared to the
baseline decision tree with an accuracy of 80.47%. The results were evaluated
with only a single speaker F2B of the BURNC corpus.

Gregory and Altun [GA04] propose use of conditional random fields (CRFs)
to phrasal prominence prediction for conversational speech. Furthermore, they
introduce a bunch of new predictors categorized as syntactic, probabilistic and
phonological variables. The probabilistic variables — aimed to incorporate
the information content of a word and collocation measures — include the
unigram word frequency, the probabilities of a word given the preceding
and succeeding words separately (bigram frequencies), and the two joint
probabilities of a word with its preceding and succeeding words separately.
The syntactic information consist of four classes derived from part-of-speech
tags, whereas the phonological predictors involving rhyme and timing include:
the number of syllables and phones, the length of the utterance and the word
position in it. Experiments performed on Switchboard Corpus show that their
discriminative model can predict world-level prominence with 76.36% accuracy.
Phrasal prominence prediction for conversational speech is also targeted by
Nenkova et al. [NBK+07] who introduce and evaluate a new feature - accent
ratio. The accent ratio is the probability for a word to be accented given its
identity. The words with insignificant number of appearances in the data
are detected with binomial test cut-off, and their probabilities are set to 0.5.
Accent ratio is compared to other features — namely unigrams, bigrams, word
givenness, stopwords, TF-IDF, TF-IDF2, ... — and all possible subsets of the
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features with decision tree. The experiments on the Switchboard Corpus show
that accenting words with accent ratio being greater than 0.38 outperforms
other single feature classifiers with an accuracy of 75.59% — compared to
unigram with an accuracy of 73.77%. Even the subsets of the other features
do not perform much better than that. Nevertheless, as the ratio of words
not in the accent ratio dictionary increases, the performance presumably
decreases because each unknown word is given a probability of 0.5 leading to
its accentuation.

Chen et al. [CHC04] propose use of multi-layer perceptron (MLP) to
word-level prediction. Their neural network is trained using standard error
back-propagation algorithm. The considered feature set is simple — consisting
of part-of-speech tags and the number of syntactic phrases a word initiates
and terminates. The experiments are evaluated with four speakers (F1A,
F2B, M1B and M2B) of the BURNC corpus by leave-one-speaker-out cross-
validation, which is only 3-fold as the speaker F2B is reported being always
contained in the training set. The speaker-independent evaluation results with
82.7% accuracy. Note that the results are not validated with any held-out
data and the number of round in the cross-validation is low. Rangarajan
et al. [RNB06] apply maximum entropy model to text-based prediction of
word-level prominence. They introduce use of supertags as additional feature
beside part-of-speech information and content versus function word status
obtained from POS tags. The speaker-independent experiments show that
this model predicts binary prominence with 85.22% accuracy, and the use of
supertags show only marginal improvement. These results are evaluated with
the same speakers and cross-validation procedure that Chen et al. [CHC04]
used.

Jeon and Liu [JL09] show performance comparison of multiple algorithms
to predict syllable-level binary classification of prominence. Part-of-speech,
syllable identity, lexical stress and binary word boundary indicator were
used as lexical and syntactic features to test applicability of decision tree,
neural network, maximum entropy model, and support vector machine. The
experiment shows that support vector machine with polynomial kernel out-
performed others achieving a prediction accuracy of 87.92%. The best results
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were obtained by analyzing POS, syllable identity, lexical stress and word
boundaries extracted from the preceding and succeeding contexts of length
2. Moreover, Ni et al. [NLX11] compare the applicability of decision tree,
support vector machine and conditional random fields to the same problem
at the syllable level. They utilize the number of syntactic phrases a word
initiates and terminates as two additional features to the set used by Jeon
and Liu [JL09]. Here, conditional random fields beat the other algorithms in
the conducted experiments with 88.54% accuracy rate, which is quite near to
the performance of the support vector machine perceived by Jeon and Liu
[JL09]. Confusingly, in the experiments of Ni et al. [NLX11], their support
vector machine (84.28% accuracy) performs worse than decision tree (86.34%
accuracy).

3.3 Combined acoustic and text-based models

Models that combine analysis of acoustic and text-based features are con-
structed in various ways. Some of them are based on the simplifying assump-
tion that the probabilities of text-based and acoustic features are conditionally
independent given the labels of prosody. Such models consist of different
models applied to different information sources learned separately. Alter-
natively, this assumption is discarded and the same model is used for both
sources. Nevertheless, such approaches could combine different models to
further improve the performance.

Conkie et al. [CRR99] combine acoustic-prosodic hidden Markov model
with stochastic syntactic-prosodic model. They report an accuracy of 88.3%
that was evaluated with a very small data set. Ananthakrishnan and
Narayanan [AN05] combine a acoustic-prosodic coupled hidden Markov model
and a language model based on the syntactic information of part-of-speech
tags. The language model utilizes back-off trigram LM to supply joint
probabilities of part-of-speech tags and pitch accent labels. They report a
word-level accuracy rate of 79.50% with 13.21% false positives, and respec-
tively, a syllable-level accuracy rate of 74.84% with 17.34% false positives.
The performance of the combined model does not improve much from the
syntactic-prosodic model with 79.70% accuracy at the word level, and like-
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wise the improvement from the syllable-level acoustic-prosodic model to the
combined one is less than a percentage (absolute).

Sun [Sun02] — targeting pitch accent detection of four classes — com-
pares the effects of bagging and boosting to the performance of decision
trees with acoustic, syntactic and lexical features. In contrary to the minor
improvements reported for the separate models, the combination of the in-
put sources is reported to improve the detection accuracy from 84.26% to
87.17% due to utilization of the boosting method, while bagging decision
trees achieves 86.89% accuracy. Chen et al. [CHC04] apply an acoustic
Gaussian mixture model along with syntactic artificial neural network to
syllable-level prominence detection. Their combined acoustic-syntactic model
is reported to achieve 84% accuracy, when evaluated in speaker-independent
way. Ananthakrishnan and Narayanan [AN08a] use maximum a posterior
framework, and the assumption that acoustic and syntactic-lexical features
are conditionally independent given the sequence of prosodic labels. Hence,
they combine the neural network based acoustic model with n-gram based
syntactic and lexical prosodic language model by production of the probabili-
ties assumed independent. The experimental results show that the presented
approach achieves binary detection of syllable-level pitch accent with an
accuracy of 86.75% and a false positive rate of 8, 08%. They also provide
the corresponding word-level accuracy and false positive rate of 84.59% and
9, 33%, respectively.

In order to support speech-to-speech translation, Rangarajan et al. [RNB06]
combine syntactic-prosodic maximum entropy model with acoustic-prosodic
hidden Markov model to detect phrasal prominence. The acoustic-prosodic
model is based on discretized features — including deltas and second order
deltas — derived from pitch and energy contours over 10ms frames. Accord-
ing to the experimental results, this approach achieves binary classification
accuracy of 86.01% at the word level.

In addition to syntactic-prosodic and acoustic-prosodic models, Jeon and
Liu [JL09] provide experimental results for a combined classifier, which models
the acoustic-prosodic component with a neural network and the syntactic-
prosodic component with a support vector machine. The two models are
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combined as a maximum likelihood classifier assuming the independence
between acoustic and syntactic observations given the sequence of prosodic
labels. Their evaluation shows a binary pitch accent classification accuracy
of 89.8% at the syllable level. Fernandez and Ramabhadram [FR10] apply
conditional random fields restricted to first-order chains to detect existence
of pitch accent at the word level. They use a single model with a large
set of fully automatically extracted acoustic and linguistic features that are
quantized with K-means clustering. The feature set includes several ratios
based on the accent ratio but for different features. They explore simple
unsupervised approaches to adapt the model for data without labels, and
further experiment the effects of reducing the amount of training data to
the results. The experimental results are concluded to show robustness
of the presented model with the best F-measure of 83.5%. Moreover, for
small training data sets the performance is improved by the adaptation,
albeit for larger training set the effect might be negative. Ni et al. [NLX11]
propose a complementary model to pitch accent classification. Unlike in
the majority of the research referred here, Ni et al. [NLX11] discard the
assumption of conditional independence between syntactic, lexical and acoustic
observations given the prosody. Features from different sources are modeled
together instead of using different models for different information sources.
Nevertheless, different models are combined to construct a complementary
model. The reported experimental results show that the complementary
model combining Boosting CART* and CRFs is able to classify pitch accent
with 91.40% accuracy, while the CRFs achieve 90.40% accuracy alone.

Gonzalez-Ferreras et al. [GEVC12] present a multi-class classifier of pitch
accent based on syntactic and acoustic features. They divide the more complex
problem of multi-class classification into several subproblems of pairwise binary
classification. The multi-class model is then built by combining those pair-
wise classifiers. Each pair-wise classifier is a coupled classifier consisting of a
decision tree and a neural network. The reported experimental results show
that the approach achieves an accuracy of 70.8%, when classifying word-level
pitch accents into eight classes.
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3.4 Summary

Research concerning text-based prediction is the most essential part and di-
rectly used in the experiments of this thesis. The other research is surveyed to
give more complete view of the targeted problem as whole. Table 1 summarizes
the reviewed attempts towards text-based prediction of prominence.

Paper Corpus Classes Model Accuracy
Word Syllable

Hirschberg [Hir93] FM-RNC 2 decision-
tree

82.4 -

Ross and Ostendorf
[RO96]

FM-RNC 2 (and
4)

HMM,
CART

82.5 87.7

Conkie et al.
[CRR99]

news (ToBI) 2 stochas-
tic FST

84.0 -

Sun [Sun02] BURNC
(F2B)

4 Boosting
CART

- 80.50

Sun [Sun02] BURNC
(F2B)

4 Bagging
CART

- 80.64

Gregory and Altun
[GA04]

Switchboard 2 CRFs 76.36 -

Chen et al.
[CHC04]

BURNC 2 MLP 82.67 -

Rangarajan et al.
[RNB06]

BURNC 2 MaxEnt 85.22 -

Nenkova et al.
[NBK+07]

Switchboard 2 accent
ratio

75.59 -

Jeon and Liu [JL09] BURNC 2 SVM - 87.92
Ni et al. [NLX11] BURNC 2 CRFs - 88.54

Table 1: Summarization of text-based prominence prediction approaches. The
emphasized results are compared to the new experimental results as described
in this section.

Comparability of the reviewed studies is restricted by the many differences
in the targeted problem definitions and conducted experiments. Most of
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the incomparability arise from differing output granularity from word to
syllable level and the number of output labels. Another influential factor is
the used corpus, and even the same data set can be organized in differing
ways to train and test the models. For instance, only few studies involved
use of a held-out validation set to ensure generalizable results. Use of cross-
validation appears more commonly but the number of the validation rounds
vary. Furthermore, some of the experiments are carried out in speaker-
independent way, where the training and test sets never contain data from a
common speaker [CHC04, RNB06].

There are three major aspects to be compared to previous results: features,
classifiers and their combinations as complete models. Most of the research
has targeted prediction of binary level placement of prominence while only few
studies provide evaluation of prediction performance on word-level. Including
those studies with binary phrasal prominence prediction on word-level and ex-
cluding those that used very small data sets, and mostly lacked cross-validation,
results with a total of four studies [GA04, CHC04, RNB06, NBK+07]. The
decision of using news data from the BURNC corpus constrains the com-
parable set further leaving only two studies of Chan et al. [CHC04] and
Rangarajan et al. [RNB06]. Therefore, the experimental results of this thesis
are compared against these two previous studies that are carried out with
the same subset of the BURNC corpus as described in Section 3.2. Note also
that Rangarajan et al. [RNB06] report the overall best results for word-level
prediction.

The comparable studies perform cross-validation in a speaker-independent
manner, which is argued by increased generalizability. This sounds reasonable
because those studies aim to support speech recognition and speech synthesis
[CHC04] or particularly speech-to-speech translation [RNB06]. Note that
following the speaker-independence in this thesis makes it more comparable
to those experiments. The only exception is that they don’t use held-out
validation set.

What comes to features, different constructions of word classed based on
part-of-speech tags appear to be the most widely used and distinctly the most
efficient approach previously. This observation is common for studies of both
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syllable and word level prediction. Exceptionally, accent ratio is reported to
achieve better performance with the Switchboard corpus [NBK+07]. However,
as mentioned, this feature is measured for each word separately and therefore
is not very efficient for previously unseen words. The same study shows good
performance for unigrams — a simple statistical measure, which motivated
consideration of statistical approaches and features simple as possible.

4 Phrasal prominence modeling

This section describes the construction of the studied phrasal prominence
models. A model consists of one or more features extracted from input
text, preprocessing and scaling techniques applied to these features and a
supervised machine learning classifier. Generalizability and minimal amount
of human-intervention were the most emphasized criteria when selecting those
techniques.

Selection and extraction of the features is covered in two sections. Previ-
ously experimented features are first described and rationalized in Section 4.1
followed by the newly proposed features in Section 4.2. Some of the previously
well-performed features were chosen due to two reasons: to achieve viable
comparisons between new and state-of-the-art features, and being able to
properly evaluate the algorithms relying on a good basis of the data repre-
sentation. Spatial and graph-based approaches were assumed appropriate
based on the author’s personal beliefs, and therefore new ideas were searched
from the literature addressing applications of information retrieval, keyword
extraction and language modeling techniques. Such models were thought to
fit well with the considered criteria.

For most of the features, the feature vectors are constructed from a
context of nearby words. This is necessary, because word prominence is
conditionally dependent from its context as demonstrated in Definition 1
(sec. 2.2). Consideration of contexts is common in the literature and is also
experimented here with varying context sizes. The context size is considered
here to be a part of feature’s configuration, which allows different contexts
for different features.
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Proposed models are learned from data with support vector machines and
hidden Markov support vector machines, which are discussed in Section 4.3 in
details. Several preprocessing techniques and value scaling functions were used
to adjust the extracted features to work properly with the chosen algorithms.
Those are described in the final Subsection 4.4.

4.1 Features drawn from literature

A wide range of syntactic, semantic and lexical features have been experi-
mented in previous work from which part-of-speech tags, unigrams, bigrams,
word’s position within a sentence and word’s givenness status were selected
to be evaluated in this thesis.

Part-of-speech (POS) tags represent the human-derived word classes
such as nouns, adjectives and verbs. In the literature, part-of-speech tags
[Hir93, RO96, Sun02, NBK+07, RNB06, JL09, NLX11] and its derivatives
such as the content versus function word separation [Hir93, RNB06] or some
other broader word classes [GA04, NBK+07] are the most frequently used
and the best performing type of features. POS tags are used in this thesis,
because, according to the literature, they alone provide a good basis for
modeling prominence, covering prominence’s syntactic aspects. Furthermore,
as state-of-the-art feature, it gives a reasonable baseline for comparison for new
features. The downside is that, although they can be predicted automatically
with supervised machine learning modeling, prior knowledge is required about
the target language. That is, the word classes must be derived and a set of
data has to be labeled by hand for each target language.

POS tags form a categorical feature with one category per word except the
clitized words, where two words are emerged together and there is a category
for both of them. For example, pronoun it and verb is could form a cilitized
word it’s, which would then get categorized into both of the mentioned
word classes. The POS tags are taken from the BURNC corpus, where they
have been automatically generated and hand-corrected. Following general
conventions of data mining, the categorical attribute is transformed into n
binary attributes, where n is the number of the categories and each binary
value denotes assignment of the specific category.
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More strictly speaking, three approaches were considered for the conversion
of POS tags into a binary vector. In one approach, the POS tags available in
the BURNC corpus were directly mapped to binary attributes as is, which
means separate attributes for each combination of the categories of clitized
words. In the other two approaches, categories of clitized words were encoded
by two attributes. The third approach is further structured by splitting
POS tags into major word classes and modifiers that are then encoded as
binary attributes. For instance, nouns (NN), adjectives (JJ) and verbs (VB)
are considered major word classes, while plural, denoted by suffix S, is an
example of a modifier. Hence, a plural noun would be represented with the
two attributes corresponding to noun and plural. Adding such structure
to the binary interpretation of the categories reduces the dimensionality of
the produced feature vectors. The last approach were chosen based on the
reduced dimensionality and experienced slightly better performance results.
The complete set of classes contained NN, IN, NP, DT, JJ, VB, RB, CC, CD,
TO, PP, MD, POS, WP and RP, while the modifiers were W, R, S, Z, G, D,
N, P and $ resulting with a total of 24-dimensions. The constructed binary
vectors were finally normalized to unit norm.

The other syntactic features used in literature include but do not limit to:
stopwords [NBK+07], accent ratio [NBK+07], surface position information
[Hir93], complex nominal analysis [Hir93], and supertags [RNB06]. Fur-
thermore, location of words have been expressed by word position within
a sentence [Sun02, GA04], length of a sentence [GA04] and the number of
syntactic phrases a word initiates and terminates [NLX11].

Word positions within sentences are evaluated in this thesis too due
to the marginal improvement shown in the previous research. It is also a very
simple feature and trivial to implement. Lengths of sentences were not used
as the author expected that it would evoke sparsity in the used data set with
relatively small number of sentences. But instead, another positional indicator
that measures the relative position within a sentence was considered.

Semantic features proposed in previous work aim at extracting the salient
topics, focus contrastiveness and other discourse-level information. Promi-
nence emphasizes introduction of new topics, and thus word givenness has
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been repeatedly considered. That is, word existence in the preceding con-
text has been checked in deterministic way [Hir93]. The word’s givenness
status is represented here as a single binary value — denoting whether a
word has appeared earlier in the discourse or not. The search is done in
case-insensitive way, but no other preprocessing steps are taken. This feature
is further compared to a newly proposed continuous-valued counterpart that
is based on cosine similarity of word vectors.

Previously, semantic information has also been accumulated from sta-
tistical data of the language such as: unigrams and bigrams [NBK+07]. In
addition to these background statistics, discourses have also been analyzed in
terms of TF-IDF and TF-IDF2 measures [NBK+07].

Unigrams and bigrams, generally N -grams, are frequencies of sequences
of N adjacent words in text. Unigram (1-gram) and bigram (2-gram)
frequencies, taken from the United States section of the Google’s publicly
available N -gram corpus, are used directly as real-valued attributes in this
thesis. The frequencies are also scaled with a variety of scaling functions as
described later in Section 4.4. The N -gram modeling fits into the philosophy
of choosing statistical and unsupervised techniques. Furthermore, these
frequencies are widely used in natural language processing although usually
they are refined into more sophisticated features.

4.2 Newly proposed features

The features proposed in this thesis were selected to target more of the seman-
tic characteristics of prominence due to the already existing strong syntactic
basis. Although, it is not always obvious which aspects of the language a
feature might reflect. Language-independence and features requiring minimal
human intervention in construction were preferred. Following the recent
trends of natural language processing, the experiments focus on graph-based
and spatial language models.

The newly proposed features are based on a spatial word vector represen-
tation and a graph-based keyword weighting model named DegExt. These
models and their extraction methodologies are described in the following
subsections.
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In addition, applicability of a simpler feature, the number of letters witihin
words, were tested. Like other continuous-valued features not already limited
to a small numeric range, lengths of words were scaled with different scaling
functions described in Section 4.4. This feature was motivated by its simplicity
and similar features in literature. Syllable-level prominence prediction often
involved analysis of lexical and phonological features. Identities of syllables,
vowels or phonemes were proposed [Sun02, JL09] along with utilizing a
dictionary of lexical stress for stress patterns of syllables [RO96, Sun02, JL09].
Also, number of syllables, vowels and phonemes within words were considered
[GA04].

4.2.1 Word vectors

Distributed word representations have been applied to a variety of natural lan-
guage processing tasks [BDVJ03]. A distributed representation is motivated,
for instance, by the curse of dimensionality problem in modeling of joint
probabilities of word sequences. To illustrate this problem, consider modeling
of joint probabilities for word sequences of length k within a vocabulary V
of size |V |. In this case, the size of the feature space is |V |k, which would
count as much as 1050 degree of freedom if a context length of k = 10 and
vocabulary size of 105 were chosen. Thus, many interesting sequences are
not present in the training data and due to lack of information the model is
unable to assign any proper probabilities for such sequences. A distributed
representation of words provides a way of measuring word similarities, which
makes it possible to assign a probability for an unseen sequence through the
joint probabilities of the most similar known sequences.

To overcome the curse of dimensionality, Bengio et al. [BDVJ03] propose
simultaneous computation of a continuous vector space representation of words
along with the joint probabilities of word sequences. In continuous vector
space, a word w is represented as a n-dimensional real-valued vector w ∈ Rn.
The joint probability function of the word sequences can be modeled with
a probabilistic neural network. The network’s input consists of vocabulary
indices of the k context words, which are projected to k feature vectors in the
first hidden layer. This is a linear layer as it consists of a |V | × n matrix of
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weights from which only k feature vectors are active at a time. These vectors
are then forwarded to another hidden layer with non-linearity to model the
probabilities. The output is computed through softmax to normalize the
probabilities, and it is interpreted as the conditional probability:

P̂ (wk | wk−1, . . . , w1),

where (w1, w2, . . . , wk) is a word sequence.
This work has been followed by many others and it has been shown that

the word vectors can be computed without modeling the complete neural
network. Recently proposed use of a much simpler log-linear model to learn
word vectors reduces the required computational complexity allowing use
of larger data sets and learning higher dimensional vectors in reasonable
time [MCCD13]. Continuous bag-of-words and continuous skip-gram models
were proposed to be used with the log-linear model. The continuous bag-of-
words is similar to the conditional probabilities considered with the neural
networks. Here, the conditional probabilities of the current word given a
context word are averaged over all the context words. The skip-gram model is
a reversed version as conditional probabilities for the context words given the
current word are learned. Despite of the weaker modeling of the language, the
availability of larger data sets and higher dimensionality enable learning of
high-quality word vectors that have state-of-the-art performance on measuring
syntactic and semantic word similarities.

Very recent research shows that the syntactic and semantic relations
between words can be modeled by simple linear operations of the normalized
word vectors [MCCD13, MYZ13]. For example, computing king − man +
woman results in a vector that is the most similar with the vector of the word
queen except the calculated words (king, man and woman). Thus, the vector
woman−man seems to model semantic transition between counterparts over
sexes. Correspondingly, this method applies also to other semantic relations,
and further to syntactic relations such as singular nouns versus plurals or
adjectives versus comparative adjectives.

The similarity between two word vectors x,y ∈ Rn can be computed as
cosine similarity: cos(x,y) = 〈x,y〉

‖x‖‖y‖ . Normalizing the vectors to unit length
further simplifies this to 〈x,y〉 — the inner product in the vector space. The
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normalization projects the vectors to the surface of multi-dimensional unit
ball. Therefore, Euclidean distance can be equivalently used to measure
distance between words as well, because if vectors x and y are more similar
than x and z, more precisely 〈x,y〉 ≥ 〈x, z〉, then reverse inequality holds for
the Euclidean distances: ‖x− y‖ ≤ ‖x− z‖ and its square form.

In this thesis, the word vectors are taken from the precomputed archive
published on the Internet 1. This archive is trained with part of the Google
News Corpus and it contains three million vectors in 300-dimensional space.
The words are learned with the skip-gram model over a context of length 10,
and softmax is replaced with negative sampling as described by Mikolov et al.
[MSC+13].

Word vectors were directly used as feature vectors (with or without
normalization) as they seem to provide the intriguing syntactic and semantic
information. Using the linear kernel of SVM yields inner products of the
word vectors, which is equivalent to the previously proposed cosine similarity
measure. This applies to the RBF kernels to some extent due to the explained
correlation between Euclidean distances and cosine similarities of normalized
vectors. Word vectors were looked up from the precomputed archive by
applying case-sensitive search first and then again case-insensitively. Words
missing corresponding vectors were assigned with vector 0, which is equally
distant from all of the normalized vectors.

Cosine similarity of word vectors were used to construct two additional
features. One models the similarities between the predicted word and the
words surrounding it, while the other is a continuous-valued extension of the
discrete word givenness status used in literature. That is, each predicted word
is compared to the whole preceding context of a discourse and the maximum
of the cosine similarity is chosen to represent the givenness status. In case of
missing word vectors, the similarities are assigned to 0, which is in the middle
of the scale [−1, 1].

1http://code.google.com/p/word2vec/
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4.2.2 Decomposed word-vectors

Decomposition techniques were applied to the word vectors to prevent sparsity
of the data in a high-dimensional space. Sparsity becomes even a greater
problem when the word vectors of several words are combined into one
feature vector. Mikolov et al. [MSC+13] conclude that the parameters, for
example the dimension, of the word vector representation are dependent of
the targeted task. As it would have been too time consuming to generate
and test multiple representations with varying dimensions in the scope of this
thesis, independent component analysis were chosen to decompose the vectors
into lower-dimensional spaces. Decomposition could reduce noise of the data,
and it does not necessarily produce comparable results with decreasing the
dimensionality of the whole representation in first place.

Independent component analysis is carried out by FastICA algorithm
described by Hyvärinen and Oja [HO00]. Implementation of the Sklearn
Python package was used. Functions logcosh, cube, and exp were tested to
approximate the neg-entropy in the ICA. It turned out that their performances
differ only a little and lacking any further reasoning the exp function was
selected. Word vectors were normalized before decomposition, and the optimal
number of components was searched with precision of 10 for both RBF and
linear SVMs separately. The best performing number of components from
the linear case was adopted to HM-SVM, which uses the same kernel.

4.2.3 DegExt — a keyword weighting model

DegExt is a language-independent keyword extraction model recently proposed
by Litvak et al. [LLK12]. It does not require corpus based learning but instead
is constructed solely from an input text document. Thus, it is thought to
represent characteristics of text and at least happens to bear knowledge of
words’ saliency or documents’ topics. The method is reported to outperform
the two state-of-the-art keyword extraction models: TextRank and GenEx
[LLK12]. They were tested against collections of benchmark summaries in
English and Hebrew.

The method requires lemmatization and stopword removal as its prepro-
cessing step, which somewhat challenges the language-independency. Still,
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the rest is truly unsupervised. After the preprocessing of a document the
remaining words form a sequence D = (w1, w2, . . . , wn). Now, every remaining
unique word is considered as a node v ∈ V = {wi | 0 < i <= n} in a graph
G = (V,E). The set of directed edges E represented order-relationships
between words. if two words u, v ∈ V appear as adjacent within any sentence
of the document D, then there is an edge (u, v) ∈ E between these nodes.
The edges are further labeled with a set of IDs of sentences that provided the
edge to the graph.

The keywords are weighted simply by the degrees, the number of adjacent
edges, of the corresponding nodes. Keywords tend to occur more often in
the text and presumably in different contexts of words generating more edges
connected to that node. More complex degree centrality measures for this
simple graph representation were reported to perform worse. In addition,
multi-word key phrases are constructed up to length 3 by combining vertices
connected by edges labeled with same sentence IDs. The key phrases are
weighted with the average weight of its nodes.

Here, instead of extracting a set of keywords, the degree of a word available
in the graph is used as a feature for prominence prediction. The value is
set to zero for stop words, which were excluded from the graph. They were
removed in first place based on the assumption that they do not represent
the topics of a text.

The feature is scaled in various ways to perform better with SVM. The
values are divided by the maximum value of a document or scaled with
functions described in detail later in Section 4.4.

4.3 Algorithms

Support vector machines (SVMs) with different kernel functions and an
extension with Hidden Markov Models (HMMs) were selected to be evaluated.
Spatial and graph-based language models and continuous-valued features are
believed by the author to outperform discrete attributes. Thus, classifiers that
directly take advantage of continuous-valued features without any quantization
methods are seen more promising. For instance, quantizing the word vectors —
one of the newly proposed features — is rather impossible and such attempts
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would decay the benefits of the whole representation. Support vector machines
could provide generalizable models, because they measure the similarities
between the continuous feature vectors.

Previous works evaluated classifiers from decision trees, neural networks,
conditional random fields, support vector machines to maximum entropy
models. Further, ensemble methods and hidden Markov models were used to
boost the performance of decision trees. Although the SVMs have already been
tested, the results reported by different authors, [JL09] and [NLX11], were
inconsistent, and hence additional experiments are considered appropriate.
This is motivated even more due to the fact that SVMs are easily used in
inappropriate way, because of the importance of kernel selection, parameter
tuning and data preprocessing. This is further discussed in Section 4.4.

4.3.1 Support vector machines

Support vector machines (SVMs) are a supervised statistical learning algo-
rithm that separates a multi-dimensional feature space into two classes by
hyperplanes. SVM is a maximum-margin classifier as it tries to maximize
the separating margin between the data points of the two classes. By max-
imizing the margin, SVMs minimize the generalization error, which differs
from neural networks that try to minimize the classification error instead.
Non-linear hard-margin SVMs were proposed by Boser et al. [BGV92] in
1992 albeit much of the theoretical background is older. This model requires
strictly separable data allowing no errors in the training data. The model was
extended by Cortes and Vapnik [CV95] in 1995 to soft-margin SVM, which
can manage also data with errors.

SVMs have become a popular classification technique. Much of its power
arises from the non-linearity as the feature vectors x ∈ Rn, n ∈ N, are not
necessarily linearly separable in the input space. In the non-linear SVM
[CV95], the feature space Rn is non-linearly mapped to a high-dimensional
Hilbert spaceH. Then, linearly separating the transformed vectors inH allows
classification of more complex tasks, because the target space H is higher in
dimensions, or even infinite dimensional, and because of the non-linearity of
the mapping function.
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In practice, a non-linear mapping ψ : Rn → H is implicitly defined by
defining a kernel function k : Rn × Rn → R. The relation between the
kernel function k and the mapping ψ is defined by the equation: k(x,y) =
〈ψ(x), ψ(y)〉H ∀ x,y ∈ Rn. Thus, a kernel function allows easy computation
of the inner product in the high-dimensional space given the vectors of the
original space. Note that not all functions Rn → H are valid kernels.

A variety of kernels have been proposed for SVMs. Given feature vectors
x,y ∈ Rn the most common kernels are:

• Linear kernel: k(x,y) = 〈x,y〉

• Radial basis function (RBF): k(x,y) = exp−γ‖x− y‖2, where
γ > 0

• Polynomial: k(x,y) = (x · y + r)d, where r ∈ R and d ∈ N, d > 1.

• Sigmoid (hyperbolic tangent): k(x,y) = tanh(κx · y + c), for some, but
not every, κ > 0 and c < 0.

Solving a SVM is a quadratic programming problem. The separating
hyperplane is linearly determined by the training vectors closest to the margin.
These vectors are called support vectors, and usually they consist of a small
portion of the vectors in training data.

More formally, given a training data set {(x1, y1), . . . , (xm, ym)} of feature
vectors xi ∈ Rn and their labels yi ∈ {−1, 1}, SVM algorithm outputs a
function f : Rn → R of form:

f(x) =
m∑
i=1

αixik(xi,x),

where αi ≥ 0 ∀ i. Thus, a vector xi in the training set is a support vector if
and only if αi 6= 0. The classifier is defined based on the decision function f
as g(x) = sign(f(x)).

Although SVMs are basically binary classifiers, several approaches for
SVM-based multi-class classification have been proposed. Multi-class predic-
tion problems are typically solved by decomposing the problem into multiple
binary classification tasks. But it is also possible to learn multi-class classifiers
directly with a single model [CS02].
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Support vector machines have one common hyperparameter C, which de-
termines the weight of how much each support vector affects the classification.
The other possible hyperparameters are parameters of the kernel functions,
for instance, γ for RBF and sigmoid kernels, d for polynomial kernel and r
for sigmoid and polynomial kernels.

To achieve acceptable results with SVM, a practical guide [HCL03] suggests
cross-validated grid search for the hyperparameters. The guide considers
the RBF kernel as a reasonable first choice, because it transforms the input
vectors into infinite dimensional space and it brings only one additional
hyperparameter to estimate. For very high dimensional feature vectors, a
linear kernel could be appropriate choice instead as it is computationally
simpler. Testing an exponential range over values of the hyperparameters is
suggested first, followed by another round of search with tighter range close
to the best parameters found in the first search. It is recommended to use
only portion of the training data to the exponential parameter search and
the whole data to the fine tuning search.

The practical guide further highly recommends some sort of scaling of
the features. The values should be scaled between ranges [−1, 1] or [0, 1] to
avoid attributes with greater values dominating those with values in smaller
numeric ranges. Too large values may also cause computational problems, for
example with the polynomial kernel. For categorical features, a representation
of binary parameters with values 0 and 1 is suggested.

In this thesis, the SVM implementation of the Python machine learning
package scikit-learn is used [PVG+11].

4.3.2 Hidden Markov support vector machines

Support vector machine predicts only one label at a time. This would be ap-
propriate, if the assumption of conditional independence between prominence
labels, shown in Definition 1 (sec. 2.2), is really applicable. Such assumption,
in spite of its widespread use, is questionable considering the nature of phrasal
prominence. Therefore, a classifier that predicts sequences of labels were
thought worth of research.

Hidden Markov support vector machine (HM-SVM) proposed by Altun et
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al. [ATH03] combines hidden Markov models and support vector machines
into a single optimization problem. In this model, instead of predicting
individual class labels, output consists of finite-length sequences of labels.
Sequential dependencies between labels are modeled via the Markov chain
dependency structure for which Viterbi decoding gives an efficient dynamic
programming formulation. The other side of the model is the linear kernel-
based maximum margin classification technique derived from SVMs. In
HM-SVM, support vectors are constructed from sequences of input vectors
and corresponding labels. The authors of the technique note that the resulting
model might be extremely sparse, because only a small portion of the negative
samples end up as support vectors.

The author of this thesis is in the impression that this classifier is not
earlier used for phrasal prominence prediction. However, the same line of
research have seen conditional random fields and a combination of HMM and
maximum entropy models from which the conditional random fields were
experimented for text-based prominence prediction [GA04, NLX11]. And
even earlier, probabilities from a decision tree were given to a hidden Markov
model [RO96].

The implementation called SVM-Struct is used in the experiments [TJH+05].
Sequences are delimited by all punctuation marks including quotes and colons.
The order of dependencies transitions in HMM was set to 3 being the maximal
value, and correspondingly, the order of dependencies in emissions was set to 1.
The threshold error value for terminating the iterative maximization process
is set to 0.001, which seemed to result with infinitely continuing process for
some of the weakly performing models. HM-SVM introduces parameter C
similar to other support vector machines but its interpretation is different,
because in HM-SVM it trades-off effect of sequences, not singular cases.

4.4 Preprocessing and scaling

Attributes need to be scaled to achieve accurate models with support vector
machines. Kernel functions, such as RBF, polynomial and linear kernels, tend
to rely on some sort of a distance function like inner product or Euclidean
distance. Those measures are greatly sensitive to the varying numeric ranges
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of the individual attributes. That is, an attribute with a greater numeric
range easily dominates the variation in the concerned measures, and therefore
dominates the whole model. This is problematic especially in tasks that
combine various types of features, for example, if classification is based on two
attributes: one binary attribute converted to values 0 or 1, and one attribute
that bears the number of letters within a word. Then, obviously the difference
between words of lengths 3 and 10 is more affecting than change in the
binary attribute. Furthermore, large values might increase the computational
complexity of the kernel functions compared to small constrained numeric
ranges.

To avoid those stumbling blocks, Hsu et al. [HCL03] recommend linear
scaling of the attributes to ranges [0, 1] or [−1, 1]. However, not every attribute
is limited with a global maximum value, which would allow a simple linear
transformation by dividing with the maximum. Further, if the distribution
of an attribute is remarkably uneven, that could disadvantageously affect
the distances measured by the kernel functions. Consider word lengths for
instance, where the maximum length could easily be very high. But if it turns
out that only the differences between the shortest words has any effect, those
values populate a small portion of the rescaled range and thus the distances
between interesting values are shorter than is expected.

To overcome the described problems, a set of non-linear transformations
were chosen to be experimented in addition to the simple linear scaling. These
transformations allow rescaling to a specific range without use of varying
maximums. For example, inverse of word lengths emphasizes the variation
among shorter words compared to the longer words, which might be reasonable.
At least, the transformation is stable across all of the training and test data
without any changing maximums.

The rescaled range was chosen to be either [0, 1] or [−1, 1] based on the
feature in question. That is, if the original values contain negative values, the
negative part of the range is included. It is assumed by the author that the
differences in those scales do not significantly affect performance.

Given an attribute x ≥ 0, the proposed value scaling functions are:

• none: x 7→ x
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• linear: x 7→ x−minx
max x−minx ∈ [0, 1]

• sentence relative: x 7→ x
m
∈]0, 1], wherem is the sentence-wide maximum

value.

• exp: x 7→ e−x ∈]0, 1]

• inverse: x 7→ 1
x+1 ∈]0, 1]

• inverse square root: x 7→ 1√
x+1 ∈]0, 1]

• logarithm: x 7→ log x

Efficiency of two preprocessing techniques, namely standardization and
normalization, are evaluated in addition. Normalization refers to scaling the
length of an input vector to one, and in standardization the distribution
of each separate attribute is transformed to zero mean and unit variance.
These are applied to the already scaled values of the input vectors. These are
commonly used preprocessing steps in data mining.

5 Experiments on prominence prediction

The experimental part of the thesis is described in this section. In practice,
the models described in the previous Section 4 are trained and tested with the
data from the Boston University Radio News Corpus, which is represented in
Section 5.1. The following Section 5.2 continues by discussing the procedures
for evaluation of the models, and the efforts made to ensure valid and gener-
alizable results. Tuning of classifier parameters and selection of features and
their configurations are described step by step in Section 5.3, and finally the
achieved results are shown in Section 5.4.

5.1 Dataset

A dataset consisting of text transcribed with sentence level information of
prominence is required. Full text documents are necessary since prominence
has discourse-wide effects. The most restricting criterion in choosing a corpus
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is the selection of proper representation of prominence and availability of data
with such transcriptions.

Prominence is not a very well understood area of research, and multiple
representations have been proposed. Probably the most used representation in
corpus-based prominence research is the Tones and Break Indices framework
but even that does not directly provide labels for phrasal prominence. Instead,
it offers a symbolic representation of pitch movements and breaks in speech
data. These pitch movements can in turn be utilized to detect whether a
word is given prominence or not by analyzing their location within a word. A
pitch movement that is located on a stressed syllable of a word is called a
pitch accent, which indicates that the word is spoken with prominence. The
ToBI is used in this work due to its widespread use in the research community
and the easy interpretation of the discrete symbols.

The ToBI framework consists of four separate information tiers: ortho-
graphic transcriptions, tones, break indices and miscellaneous non-speech
events such as disfluencies, breathiness and laughter. The tonal tier is a
symbolic representation of the intonation contour. It marks three types of
pitch events: boundary tones located near intonational phrase boundaries;
pitch accent events associated with accented syllables; and two additional
labels to support investigation of peak alignment and phrasal pitch range.
The tonal tier has two primary tones: high tone (H) denoting local maxima
in pitch contour and low tone (L) denoting local minima. The rest of the
symbols are combinations of the high and low tones. Tones marked with
diacritic (*) are aligned onto stressed syllables and hence are pitch accents.
The categories of pitch accents in the ToBI framework consist of: two symbols
(’L*’ and ’H+!H*’) indicating low or falling accent tones; two (’H*’ and
’L+H*’) indicating high and rise to a peak; and a scooped accent (’L*+H’)
marking a local minima on the accented syllable followed by a peak.

Other important criteria for choosing a dataset are the size of the set,
the quality of the transcriptions and the genre of the documents. Firstly,
more data usually provides better results but reliably labeling tones of the
ToBI framework is a time-consuming process, which restrains sizes. Secondly,
the genre of the documents could have strong correlation to the quality and
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Total Speakers
f2b m1b f1a m2b f3a m3b

Stories 92 39 14 14 8 13 4
Sentences 1644 675 252 248 198 158 113
Words 30600 12855 5029 4386 3431 2805 2094

Prominent (%) 55.4 55.5 54.3 56.6 57.8 55.2 52.0

Table 2: The basic statistics from the BURNC corpus.

consistency of the labels. For example, audio books and news are spoken by
professionals and thus could have a more correctly formed layer of prosody
than spontaneous conversations. Radio announcers and audio book performers
strive to be informative and to sound natural. Moreover, different genres may
emphasize different uses or manifestations of prominence.

The experiments in this thesis are conducted with the Boston University
Radio News Corpus (BURNC). It consists of radio news spoken in American
English by professional radio announcers and a part of it is annotated with
ToBI framework by human labelers. This corpus is used, because it contains
speech of professional speakers and it has been widely used in earlier works
making comparisons much easier.

The annotated part of the BURNC corpus consists of 92 stories with
1644 sentences and 30600 words. There are only 18 questions and a single
exclamation. Thus, the data contains significantly only statements. The
news stories are spoken by seven speakers of which six have ToBI labels
annotated. The recordings were captured in a radio studio and laboratory
environments. Table 2 shows the number of stories, sentences, words and
proportion of prominent words. These values are given in total and for each
separate speaker. The speakers are divisible into females (f) and males (m).
The set of tonal symbols present in the tonal tier of the BURNC corpus and
their distribution over the whole data are shown in Figure 1. Symbols *, *?
and X*? denote partly annotated or unsure pitch accentuation.
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Figure 1: Summary of the pitch accent labels and their distribution over the
data set. The proportion of unaccented words is referred to as none.

Binary labels for existence versus absence of phrasal prominence are
generated by assigning a word as prominent if it carries any pitch accent.
In terms of ToBI labels, this means that each word labeled with a symbol
containing a diacritic is assumed prominent. Also, equally to the research of
Rangarajan et al. [RNB06], the partly annotated and unsure pitch accent
symbols are included — considered prominent. Labeling the data in the
described manner provides 55.4 percents of prominent words, which introduces
the lower bound for the success rate of prominence prediction as it is easily
reached by constantly predicting each word prominent. Ratios of prominent
words are shown for each speaker separately and in total in Table 2.

5.2 Evaluation and validation methodology

Performances of experimented models are evaluated with accuracy and F-
measure. Accuracy is used to compare the results throughout the research
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from parameter tuning to feature selection. F-measures are provided to give
more information and comparability.

Following good machine learning practices, the dataset is first split into
two subsets: an experiment set for experimenting with models and a held-out
validation set for validating the evaluation of the final models. Each of the
sets contains complete news stories — they are not split, because predicting
a story is one indivisible task.

Three possible procedures for separating the held-out set from the experi-
ment set were considered:

1. Randomly drawing stories from each speaker with approximately the
same ratio.

2. Randomly drawing a story out of the experiment set until the requested
ratio is reached.

3. Choosing a single speaker to act as the held-out validation set.

The first procedure was chosen yielding a held-out set that contains data
from all of the speakers. Speaker-independency is guaranteed by evaluating
each portion of the validation set with a model trained from all other speakers
of the experiment and validation set, which enables more training data for
the validation step compared to model experimentations. High variation of
the news story lengths and the number of samples from different speakers
makes it quite hard to split the data somewhat randomly but still preserving
completeness of the stories and the requested split ratio.

The third option would provide even stronger speaker-independent val-
idation as the speaker of the validation data is completely unknown when
tuning the models with the experiment set. The downside of this procedure
is, however, that the choice of the validation speaker could affect the results
greatly. There might exist some other factors, for instance varying transcrip-
tion quality, in the data that make it unbalanced. The second option falls
somewhere between the other two options. Randomly choosing the validation
stories from the whole data might leave some speakers out of the validation
set, and those speakers are most probably the ones with the least data.
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Speaker
Stories Words (%)

experiment set held-out set experiment set held-out set
f3a 10 3 2260 (9.4) 545 (8.4)
m1b 10 4 3796 (15.7) 1233 (19.1)
f2b 30 9 10248 (42.5) 2607 (40.3)
f1a 10 4 3441 (14.3) 945 (14.6)
m3b 3 1 1657 (6.9) 437 (6.8)
m2b 7 1 2727 (11.3) 704 (10.9)

Total
70 22 24129 6471
92 30600

Table 3: The distribution of the dataset over speakers and the experiment
versus held-out validation sets.

The distribution of stories and words over speakers resulted from the
performed separation are shown in Table 3. As the table shows, the realized
ratio for the split slightly differs from the planned 80 : 20 ratio, which is
an obvious consequence of randomly splitting indivisible stories of varying
lengths.

Models are evaluated using leave-one-out cross-validation. That is, the
data of each speaker is in turn used as a test set, while training with the rest of
the speakers experiment set. Thus, models are evaluated in six phases — one
for each of the six speakers. This ensures that no data from the same speaker
exists in the training and the test sets. The evaluation is said to be speaker-
independent, which makes the results more generalizable and complicates
the problem on the other hand. Furthermore, such six-fold cross-validation
enables use of larger amount of training data as the test sets can be smaller.

Accuracies, F-measures and confusion matrices are calculated so that the
cross-validation process is first done completely and the measures are taken
from the whole data. This is reasonable, because the number of samples from
different speakers and thus the sizes of the test sets vary drastically. Just
averaging over the results of separate cross-validation rounds would provide
unbalanced measures.

The final results were validated with the held-out set. In addition to the
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speaker-independent six-fold cross validation, results were also validated with
two other data configurations. Firstly, results were evaluated following the
instructions by Rangarajan et al. [RNB06] and Chen et al. [CHC04], who
provided the previously best performing approaches. Secondly, the effect of
relaxing the speaker-independence restriction between training and test sets
is investigated by training models with the whole experiment set and testing
it with the whole held-out set.

5.3 Parameter tuning and feature selection

The aim is to search for accurate models combining classifiers with different
parameters and data representations with varying configurations. Degree
of freedom for the whole configuration of models would be too much to
be searched in reasonable amount of time. Thus, different aspects are ex-
perimented in separate steps that hopefully cover a reasonable part of the
search space. Features are first optimized by varying context sizes, value
scaling functions and preprocessing techniques, namely normalization and
standardization. The feature configurations are searched with support vector
machine using both RBF and linear kernels. The results from the linear case
are assumed directly applicable to the sequential classifier HM-SVM, which
uses a linear kernel as well. Then, parameters of the classifiers are tuned with
some of the best performing features separately and in combinations.

The following list summarizes the process of parameter tuning and feature
selection, which is then elaborated step by step in the rest of the section:

1. Selection of initial classifier parameters

2. Search for optimal configurations for each feature

3. Classifier parameter tuning with some individual features

4. Search for efficient multi-featured models

5. Another round of classifier parameter tuning with multi-featured models

To bootstrap evaluation of support vector machines, some initial kernel
parameters are required. As there is no prior knowledge about suitable kernel
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nor parameterization for this specific problem, the initial values were chosen
according to the earlier general experience of the classifiers. Two kernels
were chosen: the RBF kernel and the linear kernel. The RBF function has
been suggested as a reliable first choice [HCL03], and the linear kernel was
chosen due to its computational simplicity and comparability to the HM-SVM
classifier.

SVMs and HM-SVM use general parameter C to trade-off between minimal
misclassifications and simplicity of the decision surface. Higher values mean
smoother margin due to lesser amount of support vectors, whereas the other
end implies more complex model and probably less misclassification errors.
Additionally, the RBF kernel defines the γ parameter, which is a constant
modifier to kernel distances. The lower the gamma value is, the higher are
the values of the kernel, and hence effect of each support vector reaches
farther. Lacking better reasoning for selection of the initial parameters, the
values were chosen to be the default parameters suggested by authors of the
Scikit-learn implementation [PVG+11]. That is, the initial values are: C = 1
and γ = 1

n
, where n ∈ N denotes the dimension of the input vectors.

Some data and accurately performing features are needed in order to
tune the classifier parameters for the specific problem. Consequently, feature
configurations were optimized with the classifiers using their initial parameters.
The features were inspected carefully at this point, because performance of
both features and classifier parameterizations depends on: the dimension of the
data vectors, preprocessing techniques, scaling of feature values, applicability
of the feature to model phrasal prominence, error rates of the data and
so forth. For instance, inappropriate selection of preprocessing or scaling
techniques might completely ruin the usability of a feature. Moreover, context
of multiple words was used to build input vectors and the context size is
the major cause for changes in dimensionality. The context size introduces
a trade-off between amount of useful data against increasing sparsity and
level of noise. Wider context provides more information but unnecessarily
increasing the context might also lower the performance and increase the time
complexity of training for sure.

Features were tested with different scaling functions and varying sizes of
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context. They were tested with and without standardization and normal-
ization of feature vectors. The number of preceding and succeeding words
was optimized by grid search over the set: {0, 5, 10, 15, 20, 25, 30, 35}. Then,
another grid search was applied around the best performing context lengths
from the first search. The second search searched all possible modifiers to the
result of the first round within range [−5,+5].

Classifier parameters were evaluated with several features to avoid ungener-
alizable effects of an individual feature. Part-of-speech tags, word vectors,
decomposed word vectors, word lengths and DegExt performed better than
the simple discrete word givenness status and were therefore considered to
form a comprehensive test basis with their best performing parameterizations.

To tune the kernel parameters, Hsu et al. [HCL03] suggest use of grid
search over the kernel parameters in their practical guide for SVMs. Following
their instructions, the search was done for exponentially growing parameter
values. For the non-linear SVM, the parameters C and γ were firstly both
drawn from set: {2−12, 2−9, 2−6, . . . , 21, . . . , 26, 29}. Then, they were further
tuned by finer-grained search near the best performing values from the coarser
search. Given the best parameter p from the coarse search, the second search
was done across the set of {p∗2−2, p∗2−1, p∗2−0.5, p∗2−0.25, p∗20.25, . . . , p∗22}.
In the case of linear SVM, values between 0 and 1 were tested with resolution of
0.05 along with greater values 2, 8, 64, 128 and 256. In the sequential HM-SVM
the parameter C is used as a parameter for sequences of vectors that makes
the situation completely different from the original SVM. The parameter is
first searched across a very coarse set {100, 101, . . . , 104}, and then across
finer-grained set {10x−0.5, 10x−0.4, . . . , 10x, . . . , 10x+0.4, 10x+0.5} near the best
resulting value 10x from the first search.

Changes of the parameter C turned out to have very little effect on the
performance of SVMs with both linear and RBF kernels. Only values near
zero and much greater than one significantly decreased performance. In linear
case, the differences between the default value and the best performing values
were not even visible with precision of permille except word vectors which
differed 0.4 percents. Correspondingly, the non-linear classifier followed the
same trends. As C parameter has no direct interpretation and due to the

49



minimal differences, the default value is still used when testing the combined
models.

However, the parameter C influenced the performance of the HM-SVM
classifier in much greater extent. Small values, including the default C = 1,
invariably resulted with the worst performances. Use of the default value
totally ruined performance of features based on decomposed word vectors and
word lengths, while for part-of-speech tags the change was significantly the
least, being less than one percentage. Therefore, the default value must be
replaced to successfully evaluate combinations of the features. The resulted
best values for C varied dramatically among the features ranging from 101.5

to 103.4, where the highest values were resulted by the very same features
that performed badly with the default C. Still the accuracies did not change
much in the second search. The first search resulted with values of either
102 or 103, and further observations of the results from the second search
showed that the values near 102.5 performed generally rather well. Thus, the
combined features were tested with that compromising value 102.5, which at
least is far better choice than the default.

For RBF kernel, the gamma parameter affected performance in greater
extent compared to C. Values above one quickly ruined the performance, and
classification with different features resulted with significantly varying values
for γ. To shed more light on the reasons for the experimented variation, the
resulted values were transformed into a form of γ = Γ 1

n
, where n ∈ N denotes

the number of dimensions. In this formulation, the Γ mainly varied around
1 and 2 except part-of-speech tags, which resulted with a multiplier Γ ≈ 30.
Therefore, it seems that most of the variation is explained by the number of
dimensions.

The deviation of gamma does not affect the prediction performance based
solely on part-of-speech tags but efficiently merging the tags into multi-feature
classifiers with one common parameter value encouraged further inspection of
the phenomenon. The γ constant of the RBF function acts as a modifier to
distances between feature vectors, and hence, modifying the vector distances
of the data would allow efficient use of different, more widely suitable gamma.
Considering the binary vector representation of part-of-speech tags shows

50



that the squared Euclidean distances of such vectors are within range [0, 22],
because norm of the vectors is one. On the other hand, the squared distance
between two n-dimensional standardized word vectors is 2n in average, which
is defined in Lemma 2 and briefly proven below. Attributes of standardized
vectors are assumed to be independent, which is underpinned by empirical
observations.

Lemma 2. Expectation value of squared Euclidean distance be-
tween standardized vectors:
Let x, y ∈ Rn, n ∈ N, be n-dimensional standardized vectors. Assuming
that the attributes of standardized vectors are independent, the expectation
value for squared Euclidean distance is ‖x− y‖ = 2n, and thus it is directly
proportional to the number of dimensions.

Proof. Let X, Y be independent random variables such that E(X) = E(Y ) =
0 and VarX = VarY = 1. Definition of variance gives: VarX = E(X2) −
E(X)2 =⇒ E(X2) = VarX + E(X)2. Therefore it holds that:

E((X − Y )2) = E(X2 −2XY + y2) (5)
= E(X2) −E(2XY ) + E(Y 2) (6)
= VarX + E(X)2 −2E(X)E(Y ) + VarY + E(Y )2 (7)
= 1 + 0 −2 ∗ 0 + 1 + 0 (8)
= 2 (9)

Now, let x, y ∈ Rn, n ∈ N, be n-dimensional standardized vectors. Then,
assuming that the independence holds, the expectation value for the squared
Euclidean distance ‖x− y‖2 becomes:

E(‖x− y‖2) = E(
n∑
i=1

(xi − yi)2) (10)

=
n∑
i=1

E((xi − yi)2) (11)

=
n∑
i=1

2 (12)

= 2n (13)
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This motivated scaling the binary vectors to get distances similar to those
of standardized data, like rest of the best performing features with non-linear
prediction. As only a constant number of dimensions differ from zero by a
constant, the binary vectors were multiplied with

√
n, where n ∈ N denotes

the number of dimensions. Then, the distance between two distinct vectors
x, y ∈ {0,

√
n}n, n ∈ N becomes ‖x− y‖2 = 2

√
n

2 = 2n and the image of the
RBF function becomes: {e−2, e0}. This was also tested in practice. Parameter
tuning with the rescaled part-of-speech feature provided values of Γ similar
to the other features.

The described phenomenon arose yet another question about whether
the standardized features performed better due to the selection of the initial
gamma value which was relative to the number of dimensions. Normalized
word vectors were tested without standardization and with γ = 1, and it
turned out to perform as accurately as standardized word vectors with the
parameter γ = 1

n
. Other features were accordingly tested with normalization

and unit gamma but they seemed to perform worse. Nevertheless, it seems
that dimension-dependent gamma is appropriate for standardized features,
whereas normalized features perform well with γ = 1 or another nearby
constant.

The next step in the experiments was evaluation of multi-featured mod-
els. All non-binary attributes were standardized for non-linear SVM due
to observed better performances. Therefore, initial value for the parameter
gamma was chosen to be relative to the number of dimensions. The very
initial parameter value γ = 1

n
was used again in absence of any obvious way

of finer tuning. To fit into this setting, feature vectors constructed from
part-of-speech tags were scaled in the way explained above. In the case of
linear SVM, no standardization, and thus no binary vector rescaling, were
used, because it would break the inner product. The initial value of parameter
C was unchanged for the SVMs due to absence of good reasoning for use of
any other value.

Multi-featured models were evaluated in two steps, because searching
across all subsets of the features would be too time-consuming. Firstly, a
subset of the best performing features was selected to test all of their possible
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combinations. This set was limited to those features that performed better
than the word givenness status. Such set was small enough to be searched in
reasonable amount of time. Secondly, the other, weaker features were added
one by one to the best performing combination from the first step.

The classifier parameters were considered one more time for the best
performing multi-featured models. The very same procedures were followed
for each classifier as in the earlier tuning steps. It turned out that the default
gamma for RBF and parameter C = 102.5 for HM-SVM still resulted with the
best performances. Therefore, no other models were tuned and those values
were used in the final validated evaluation.

The final optimized feature configurations are summarized for the non-
linear RBF-based SVM in Table 5, and for both linear models, namely
Linear-SVM and HM-SVM, in Table 4. These configurations are used in
all of the models presented in the results. Independent component analysis
(ICA), which is tested only to preprocess word vectors, is introduced and
its parameterization is discussed in Section 4.2.2. The features are later on
referred by their abbreviations specified in the tables.

Normalization was effective for word vectors overall, DegExt weights for
the linear kernel and binary vectors (e.g. part-of-speech tags) for the non-
linear case. Standardization was more widely useful as it was successfully
applied to every continuous-valued attribute when modeling with the RBF
kernel. For linear kernel and binary attributes, standardization made results
dramatically worse. Non-linear scaling were observed to outperform linear
transformation, at least when evaluating word lengths, DegExt and sentence
positions. The most successful scaling functions were e−x and 1

x
. Context

sizes varied across features and classifiers. Word vectors, being the highest
dimensional feature, did not benefit from bigger context than three words
possibly because rapidly increasing sparsity. Bigger contexts were effective for
the part-of-speech tags and the biggest for word lengths and DegExt weights,
which were lowest in per word dimensions.
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Feature Abbr. Context Preprocessing
Word vectors WV [−1,+1] normalized
Decomposed word vectors DWV [−1,+1] ICA: R300 → R300

Part-of-speech tags POS [−9,+4] -
Word lengths WLen [−29,+24] x 7→ 1

x

DegExt weights DegExt [−22,+31] x 7→ e−x, normalized
Relative sentence position SPRel [−0,+0] -
Discrete word givenness WGiven [−0,+0] -

Table 4: Best performing parameterizations for features when predicting with
the linear classifiers (Linear-SVM and HM-SVM).

Feature Abbr. Context Preprocessing
Word vectors WV [−1,+1] normalized
Decomposed word vectors DWV [−1,+1] ICA: R300 → R90

Part-of-speech tags POS [−4,+8] x ∗
√

24
Word lengths WLen [−28,+34] x 7→ 1

x

DegExt weights DegExt [−31,+34] x 7→ e−x

Relative sentence position SPRel [−0,+0] -
Discrete word givenness WGiven [−0,+0] -

Table 5: Best performing parameterizations for features when predicting with
the non-linear SVM (RBF-SVM).
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5.4 Results

This section focuses on how different features and classifiers performed in
the prominence prediction task. The results are elaborated starting from the
individual features, then proceeding to multi-featured models, and finally con-
cluding with the results of the best performing model along with comparison
to previous results.

Performances of the single features (Table 6) were dominated by word
vectors, which alone achieved an accuracy of 84.16%. This is remarkably
better than the earlier state-of-the-art feature, namely part-of-speech tags
that achieved an accuracy of 82.58%. A permutation-based procedure was
used to test whether the difference between the accuracies is statistically
significant [Coh95]. Null hypothesis is that accuracies of the two models
come from the same distribution. Labels of the tested models were randomly
permuted 10000 times to obtain a sample of the test statistic under the
null hypothesis. A two-tailed p-value was obtained as the proportion of the
absolute difference between the accuracies that were equal of greater than
the observed difference. The null hypothesis was rejected for part-of-speech
tags and word vectors (p ≤ 0.0001), so the observed difference is statistically
significant.

Results of the best single features are shown in Table 6 for each classifier.
Decomposing word vectors by ICA affected performance minimally, while
for RBF-based prediction it reduced dramatically the dimensionality. Word
vectors utilized a smaller context of words (cf. Tables 4-5) and still provided
more accurate predictions than part-of-speech tags. Reducing dimensionality
by decomposition did not allow use of bigger contexts. Keyword weighing with
DegExt performed a little better than word lengths with RBF and HM-SVM.

Search for efficient combinations of features resulted with different optimal
sets for different algorithms. Thus, those results are separated by the classifier
into three tables (7-9). The displayed results were selected to consist of: the
best performing single feature, the best combination of the strong features
with and without part-of-speech tags, and lastly the best multi-feature model
including the weak features (see Section 5.3 for explanation of the strong and
weak features). Note that features are selected based on prediction results
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Feature Accuracy
HM-SVM Linear-SVM RBF-SVM

WV 82.10 81.78 84.16
DWV 81.97 82.15 84.14
POS 80.88 80.54 82.58
WLen 77.47 77.10 78.80
DegExt 80.06 75.91 79.01

Table 6: Best performing single features.

with the experiment set but the displayed values are validated accuracies.
The models are ordered from weakest to strongest, although this does not
fully generalize to the results from the held-out set. The differences between
the models adjacent in the tables are statistically significant (permutation
test; p ≤ 0.001), unless otherwise specified.

Use of multiple features improved classification performance to a lesser
extent. The improvements were smallest with the non-linear SVM, where
word vectors achieved accuracy of 84.16% compared to the best performing
multi-feature model resulting with 84.42% accuracy. However, the only
statistically insignificant difference was caused by inclusion of POS tags. The
linear counterparts showed a bit more variation possibly because separating a
space with a linear hyperplane is harder than separating higher-dimensional
space as a product of a non-linear mapping. Adding more features increases
dimensionality and thus separability of the problem space. Differences with
linear SVM were statistically significant except for addition of word givenness
status. HM-SVM was the most unstable classifier as the models benefitted
significantly from neither POS tags nor sentence position.

The non-linear SVM with RBF kernel (Table 9) achieved the best perfor-
mance also with multi-featured models. Correspondingly, the lowest accuracies
resulted from the SVM with linear kernel as shown in Table 7. The perfor-
mance of the linear classifier improved only slightly when the hidden Markov
extension was applied (Table 8).

The best model evaluated in this thesis achieved better performance than
any of the earlier models as far as the author knows. The proposed model
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Features Accuracy F-measure
DWV 82.15 84.14
DWV, WLen, DegExt 82.60 84.70
DWV, WLen, DegExt, POS 82.88 84.88
DWV, WLen, DegExt, POS, WGiven 83.08 85.04

Table 7: Best performing models for linear SVM.

Features Accuracy F-measure
WV 82.10 83.98
WV, WLen, DegExt 83.26 85.10
DWV, Wlen, DegExt, POS 82.66 84.78
DWV, Wlen, DegExt, POS, SPRel 82.77 84.89

Table 8: Best performing models for HM-SVM.

Features Accuracy F-measure
WV 84.16 86.03
WV, DWV, WLen 84.36 86.26
WV, DWV, POS 84.44 86.32
WV, DWV, POS, WGiven 84.42 86.32

Table 9: Best performing models for RBF-based SVM.
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Actual Predicted
Non-prominent Prominent

Non-prominent 8556 2446
Prominent 971 12156

Table 10: Confusion matrix for the best performing model computed from
the experiment set.

slightly surpasses the maximum entropy model of Rangarajan et al. [RNB06]
by increasing the prediction accuracy from 85.22% to 85.30%. As displayed
on the last row of the Table 9, this was accomplished by applying RBF-based
SVM classifier to word vectors with and without decomposition accompanied
by previously proposed POS tags and word givenness status. Confusion
matrix for the best model computed from the experiment set is shown in
Table 10. The number of words incorrectly classified as prominent is over a
half more than those incorrectly non-prominent.

In addition to the primary speaker-independent six-fold cross-validation
with the held-out set, some of the best performing models were further
evaluated with two other arrangements of training and testing. Firstly, for
comparability, models were evaluated equivalently to the procedure taken
by Chen et al. [CHC04] and Rangarajan et al. [RNB06]. That is, the
speakers f3a and m3b with the least number of words were left out of the
cross-validation, and f2b, the speaker with the most data, was used only for
training. Moreover, the whole data set was used in evaluation instead of the
held-out set. Such evaluation with only a subset of the corpus produced the
highest accuracies. Table 11 shows the best model from two of previously
the most successful studies, which are compared to the best model from the
experiments of this thesis. The model based on POS tags is also included
for better comparison between the classifiers. Word vectors are the best new
feature and naturally compared to POS tags as the previously best feature.

Secondly, for experimental purposes, models were trained with the whole
experiment set and tested with the held-out set, which means the largest
possible amount of training samples and breaking speaker-independence.
Such evaluation showed the greatest variation, which was expected as the
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Algorithm Features Accuracy (%)
MLP [CHC04] POS 82.67
MaxEnt [RNB06] POS 85.22
RBF-SVM POS 83.54
RBF-SVM WV 84.59
RBF-SVM WV, DWV, POS, WGiven 85.30

Table 11: Accuracies of the best performing models evaluated equivalently
and compared to the previous results.

evaluation contains only one round of training and testing. It was observed
that the more accurate a model was the less varied its performance between
different arrangements of evaluation. In spite of larger set of training data
and the simplified task, this experimental setup produced lower accuracies
compared to the evaluation adopted from literature. Six-fold cross-validation
with speaker-independence resulted the lowest accuracies of all the attempted
arrangements but the differences were minor overall.

6 Discussion

Non-linear support vector machines with RBF kernel were observed to achieve
the best results among the experimented classifiers overall. When comparing
models that utilize part-of-speech tags, SVM with RBF kernel is slightly
more accurate than what Chen et al. [CHC04] reported for their multi-layer
perceptron. Correspondingly, the maximum entropy model is reported by
Rangarajan et al. [RNB06] to perform better than the SVMs but their
classifier is intended more for binary data than kernel based approaches are.
The perceptron outperformed both linear SVM and HM-SVM on predictions
based on POS tags, whereas the newly proposed classifiers performed better
with other combinations of the newly proposed features. HM-SVM classifier
mostly performed better than the original linear SVM, and the differences
were more apparent for weaker features such as word lengths and DegExt.
Seemingly modeling conditional dependencies of word sequences is beneficial
but HM-SVM struggles to take advantage of it or needs more sequences than

59



those available in the BURNC corpus.
Although linear models are weaker than the RBF-based support vector

machine, they are also tremendously faster to compute. As a practical example,
average durations for one cross-validation round with a 900-dimensional input
space consisting of word vectors are 6 and 800 seconds for the linear and
non-linear SVMs respectively. Therefore, the amount of training data for the
linear models could be increased much more than would be practical with
the RBF kernel. It seems that natural language processing can benefit from
relatively simple language models (e.g. vector representations, word lengths
and DegExt), and thus linear SVM with a much larger data set could still be
of interest.

Parameter tuning of the evaluated classifiers turned out not to be as
influential as expected. Applying grid-search to optimize the parameters for
RBF-based SVM seems exaggeratedly complex in light of the observed results.
It is sufficient to choose the γ parameter in such way that it restricts the
squared Euclidean distances of the RBF function into a small constant sized
range, [0, 2] for instance. In other words, value of 1

n
is an eligible choice for

n-dimensional input vectors with norms relative to n, and correspondingly
γ = 1 suits vectors with a small constant norm well. The dimension dependent
option is therefore eligible with standardization, which was observed to be an
efficient preprocessing step for any continuous-valued attribute. Furthermore,
binary vectors can be easily fit to such model by modifying their norms to n
with a simple multiplication.

HM-SVM appeared to be the hardest classifier to tune as its C parameter
varied greatly, especially for single-featured modeling. Fortunately, this
variation became steadier when more features were combined together making
selection of a suitable value easier. For the original support vector machines,
eligible values of C varied only between zero and one, and affected accuracy
quite minimally. The C parameter is harder to interpret and tune for HM-
SVM, because that model compares sequences instead of singular words.

In experiments evaluation was applied in such way that training and
test sets did not contain data from common speakers. This arrangement is
reasonable when prominence prediction aims at supporting speech recogni-
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tion for instance. However, if the targeted application is speech synthesis,
speaker-independence complicates the task unnecessarily. Speech recognition
is obviously targeted to recognize speech of many different speakers while for
speech synthesis the desired result is one voice with its own way of giving
prominence. The results showed that accuracies did not improve much when
the speaker-independence constraint was relaxed. The data still consisted of
discourses spoken by multiple speakers, who probably speak with remarkably
unique styles.

The BURNC data corpus appears to be highly prominent as 55.4 percent
of the words bear pitch accent. Furthermore, predicting prominence based
only on the number of letters within words performed surprisingly well. What
if prominence in spoken news stories is caused by some special factors? It
would be logical that news announcers tend to speak with especially good
articulation and hence make words more easily prominent. At least, based
on author’s subjective experience of conversations about prominence with
non-experts while working on the thesis, people apparently easily over-stress
their speech when consciously trying to put prominence on words. And why
the number of letters within words — the simplest feature the author even
could think of — is achieving so good results? Do news announcers speak
with rhythm, or are news texts produced in such way that they show rhythm
or other specific structuring.

Observed performance with part-of-speech tags shows that most of promi-
nence in the data has strong syntactic basis, which presumably holds also for
many other text genres. News script writers probably try to avoid ambiguities
as much as it is possible by linguistic means at text level. Structures of
sentences could be more restricted due to less freedom of choice in construct-
ing news scripts. For instance, grammatical tenses, more constrained use of
adjectives, and continuingly referring to different sources of information sound
like reasonable restrictions. Such issues may reduce the need for phrasal
prominence in its full diversity. Perhaps more subtle semantic features are
overwhelmed by noise and syntactic reasons in too conscious or professionally
precise speech.

An important question though is which genres would show more distinctly
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non-syntactically caused instances of prominence. News announcers attempt
to speak more accurately than pleasantly. For the author it sounds like
announcers have something very important to say with every word they utter.
More appropriate source for prominence modeling could be audio books,
where texts are more freely written and texts are primarily intended to be
read, not spoken. Audio books are also produced by professional speakers,
who try to empathize to the story more than news announcers do. Further
advantages are that audio books have been produced for many languages
and they contain a lot of data spoken by a single speaker. Real applications
of future natural speech synthesis could even benefit from learning different
aspects of prominence from different styles of text, and then somehow combine
them together.

Observed dominance of syntactic causes for prominence may also be
induced by classifying only on binary level. Syntactic phenomena are probably
more visible in prominence placement while semantic aspects are manifested
by finer-grained levels of prominence. The Tones and Break Indices framework
utilized in the majority of prominence modeling gives no obvious way to derive
finer levels. Thus, based on the author’s beliefs, currently the most important
direction of future work is developing a better intermediate representation of
prominence addressing the problem of automated prominence detection.

7 Conclusions

The target of this thesis was to improve performance of text-based phrasal
prominence modeling. In practice, new classifiers and new models from
different fields of natural language processing were explored. Applicability of
spatial or graph-based language models was personally considered promising
and has not been tested before. This lead to selection of such features as
word vectors, a high-dimensional word representation, and DegExt, a keyword
weighting method. Support vector machine was chosen due to its widespread
suitability to supervised classification tasks with high-dimensional continuous-
valued input. Linear inner product and non-linear RBF kernels were tested,
and additionally hidden Markov support vector machine was evaluated to
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investigate benefits of sequential classification. SVMs were earlier tested only
with polynomial kernel and for syllable-level prominence.

Non-linear SVM with RBF kernel was substantially the best of the tested
classifiers. HM-SVM mostly performed slightly better than the original SVM
with linear kernel advocating use of sequential modeling. However, HM-SVM
was found to be the hardest classifier to tune, and it seems not to generalize
very well as is evident from the variation of the validated results. Linear
SVMs can be trained orders of magnitudes faster than RBF-based, and could
therefore be worth of further testing with larger sets of data.

Evaluation of the proposed models was successful in two major ways:
the best performing model appeared to slightly surpass the previously best
prediction accuracy and a new state-of-the-art feature was invented. The
best performing model resulted with accuracy of 85.30% when evaluated in
the comparable way. It is only slightly higher than the accuracy of 85.22%
reported by Rangarajan et al. [RNB06]. Their maximum entropy model is
based on hand-corrected part-of-speech tags, whereas the outperformer is
a SVM with radial-basis kernel function and input additionally consisting
of: word vectors, decomposed word vectors, part-of-speech tags, and word
givenness status. As far as the author knows, these are the state-of-the-art
models for word-level binary prediction of phrasal prominence. Though, the
achieved improvement is quite insignificant, and the new model used more
features.

Nevertheless, a more important result is that the features based on word
vectors performed surprisingly well — even significantly better than part-
of-speech tags, which has been inevitably the most successful feature so far.
Using normalized word vectors directly as input for SVM with the RBF kernel
performed nearly as well as the best combination of the features. Moreover,
when evaluated equivalently to what Rangarajan et al. [RNB06] did, word
vectors achieved almost as high accuracies as their model that utilized hand-
corrected POS tags from a context of seven words. So, word vectors utilized
a smaller context of only three words and still performed better or almost
as well. The word vectors also benefit from decomposition by independent
component analysis, which reduced the number of dimensions to 30% of the
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original without significantly affecting the performance.
Spatial representations of words have several advantages compared to part-

of-speech tags. Word vectors are a product of completely unsupervised process
compared to the automatically generated but human-derived word classes.
Furthermore, word vectors are able to describe more sensitive phenomena
than those wide word classes. On the other hand, this also means greater level
of sparseness. However, this is compensated by the smoothing of kernel-based
classifiers as they take into account the distances of the data points. Distances
of word vectors are more meaningful compared to categorical binary vectors
whose distances are constant across the data.

The accomplished experiments also provided more evidence for appli-
cability of vector representations to different problems in natural language
processing. Mikolov et al. [MCCD13] demonstrated the success of word
vectors by answering questions in the form of: "What is the word that is
similar to x in the same sense as y is similar to z?" They tested simple linear
calculations of words in vector space against a hand-collected set of word
pairs with syntactic or semantic linguistic relationships. Their notion of
word vectors’ suitability to natural language processing is supported in this
thesis by the experiments showing good performance for a real world task
with evaluation on real world data. It is known that phrasal prominence
highly depends on syntactic aspects and word vectors performed well as an
alternative source of information to part-of-speech tags. Word vectors and
part-of-speech tags separately performed rather as well, and combining them
into a single model did not improve accuracy much further. This might
indicate that word vectors are able to provide similar syntactic information
than POS tags do.

Word vectors utilized less input words than part-of-speech tags. Training
with larger data set could allow use of wider contexts and thus improve
the accuracy of the feature even more. Anyhow, results with word vectors
are very promising, because the features tested here are very simple. What
could be possible with more sophisticated models? It is known that different
relationships between words in vector space can be encoded by subtracting
the related word vectors from each other. Such subtractions result with a
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set of vectors pointing into different directions with different lengths, and
leading to words differently related to the original word. However, the tested
kernel functions are spherical in nature meaning that they are not able to
fully utilize the available information. It could be beneficial to consider some
set of relationship-encoding vectors to unevenly weigh the effect of vectors’
dimensions to the measure. Or considering a simpler kernel function that
would make equally distant vectors more similar if their subtraction is more
unevenly distributed over the dimensions.

Prominence prediction benefitted also from much simpler features. Lengths
of words and the keyword weighing with DegExt were observed to perform
relatively well, especially considering their simplicity. Together with the
success of POS tags this questions applicability of the used corpus, or more
generally, use of news data to learn phrasal prominence. In the future, it
would be reasonable to test other text genres, use a larger data set, and
representing prominence more informatively. This in turn requires improving
automatic detection of prominence from speech as well as introduction of a
more sophisticated intermediate representation of prominence that is designed
directly for the required purposes instead of pitch movements. As discussed
earlier, audio books were personally considered to be a promising source of
data as they are spoken by professionals like news stories but with more
emphasis on naturalness and interpretation of more freely written texts.
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