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ABSTRACT 
Leaf angle distribution (LAD) is one of the most important parameters used to 

describe the structure of horizontally homogeneous vegetation canopies, such as field 

crops. LAD affects how incident photosynthetically active radiation is distributed on 

plant leaves, thus directly affecting plant productivity. However, the LAD of crops is 

difficult to quantify; usually it is assumed to be spherical. 

The purpose of this dissertation is to develop leaf angle estimation methods and study 

their effect on leaf area index (LAI) and chlorophyll a and b content (Cab) measured 

from optical observation. The study area was located in Viikki agricultural 

experimental field, Helsinki, Finland. Six crop species, faba bean, narrow-leafed 

lupin, turnip rape, oat, barley and wheat, were included in this study. A digital camera 

was used to take photographs outside the plot to record crop LAD. LAI and Cab were 

determined for each plot. Airborne imaging spectroscopy data was acquired using an 

AISA Eagle II imaging spectrometer covering the spectral range in visible and near-

infrared (400–1000 nm). 

A recently developed method for the determination of leaf inclination angle was 

applied in field crops. This method was previously applied only to small and flat 

leaves of tree species. The error of LAI determination caused by the assumption of 

spherical LAD varied between 0 and 1.5 LAI units. The highest correlation between 

leaf mean tilt angle (MTA) and spectral reflectance was found at a wavelength of 748 

nm. MTA was retrieved from imaging spectroscopy data using two algorithms. One 

method was to retrieve MTA from reflectance at 748 nm using a look-up table. The 

second method was to estimate MTA using the strong dependence of blue (479 nm) 

and red (663 nm) on MTA. The two approaches provide a new means to determine 

crop canopy structure from remote sensing data. 

LAI and MTA effects on Cab sensitive vegetation indices were examined. Three 

indices (REIP, TCARI/OSAVI and CTR6) showed strong correlations with Cab and 

similar performance in model-simulated and empirical datasets. However, only two 

(TCARI/OSAVI and CTR6) were independent from LAI and MTA. These two 

indices were considered as robust proxies of crop leaf Cab. 

Keywords: leaf angle; leaf area index; leaf chlorophyll; digital photograph; imaging 
spectroscopy; PROSAIL model; vegetation indices 
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1. INTRODUCTION 

1.1 Optical observation of vegetation 

Vegetation covers approximately 100 million km2, approximately 66%, of the land 

surface on earth and is an important component of the biosphere. It is involved in 

various biogeochemical cycles, for example, those of water and energy (Bonan et al., 

2003). Plant canopy structure characteristics affect most ecological and agronomic 

processes, such as radiation interception, photosynthesis and evapotranspiration. 

Canopy structure is also an indicator of vegetation water and nitrogen status (Casa 

and Jones, 2004). Accurate estimates of vegetation biochemical and biophysical 

characteristics are important for modelling the exchange of energy and matter 

between the land surface and atmosphere (Houborg et al., 2007). 

Canopy structure is characterised by the location, orientation, size and shape 

of the vegetation elements (Ross, 1981). One of the most important characteristics of 

canopy structure is leaf area index (LAI), which is defined as the one-sided leaf area 

per unit ground area (Watson, 1947). It is a critical structure parameter for 

understanding the exchange of energy, carbon and water fluxes in terrestrial 

ecosystems (Norman et al, 1995; Chen et al., 1999; Myneni et al., 2002). LAI is the 

main input parameter for simulating radiation and transmission through a vegetation 

canopy and is also a key input variable in the ecosystem productivity model 

(Knyazikhin et al., 1998; Liu et al., 1997; Colombo et al., 2003).  

The second important plant canopy structure characteristic is leaf angle 

distribution (LAD).  LAD plays a crucial role in controlling light interception in the 

canopy (Hikosaka and Hirose, 1997; Utsugi, 1999; James and Bell, 2000) and has a 

strong impact on energy and mass balance in a soil-vegetation-atmosphere-transfer 

system (Thanisawanyangkura et al., 1997; Werner et al., 2001; Baldocchi et al., 2002; 

Falster and Westoby, 2003). For a simple horizontally relatively homogenous plant 

canopy, LAD and LAI are the only two structure parameters characterising radiation 

fluxes reflectance, transmittance and absorbance (Ross, 1981; Lang et al., 1985).  A 

variety of mathematical description functions have been developed and used for 

simplifying LAD (de Wit, 1965; Goel and Strebel, 1984; Campbell, 1990; Weiss et al., 

2004). 

            Plant pigments are integrally related to the physiological function of leaves 

and of tremendous significance in the biosphere (Sims and Gamon, 2002; Blackburn, 

2007). Photosynthetic pigments include chlorophylls a and b and several carotenoids 

(Ustin et al., 2009). Chlorophyll enables light harvesting and determines 

photosynthetic capacity within leaf and plant productivity, and is also a good indicator 

of vegetation stress (Anderson, 1986; Carter, 1994; Peñuelas and Filella, 1998; Boegh 

et al. 2002). Foliar chlorophyll a and b content (Cab) is related to nitrogen content, 

thus monitoring Cab can provide information on fertilizer availability (Vina et al., 

2004; Zarco-Tejada et al., 2004; Haboudane et al., 2008). 

           Traditional destructive in situ measurements of vegetation biochemical and 

biophysical variables are laborious and unfeasible for large-scale measurements. 

Destructive methods do not allow the measurement of structural variations over time 

for the whole canopy or a single leaf. By contrast, indirect optical methods provide a 

non-destructive way of measuring all these canopy characteristics. LAI can be 

http://www.sciencedirect.com/science/article/pii/S0378112705007735#bib47
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determined from the transmittance of light through the canopy (Weiss et al., 2004; 

Jokckheere et al., 2004). Leaf mean tilt angle (MTA) is determined through the 

inversion of the directional gap fraction below a canopy (Welles and Norman, 1991; 

Welles and Cohen, 1996). Portable chlorophyll meters (e.g., SPAD) provide a non-

destructive method. They determine the chlorophyll optical absorbing features and are 

widely used in agricultural studies (Filella et al., 1995; Steele et al., 2008). These 

ground-based measurement methods are local and site-specific, and therefore not 

sufficient for ecosystem model applications in large areas.  

To estimate vegetation variables consistently using multiple scales and multi-

temporally, an appropriate option is remote sensing. During the past decades, remote 

sensing of vegetation biophysical and biochemical properties for various scales has 

gained importance. A variety of new approaches have been developed and validated. 

In the solar radiation domain (400−2500 nm), various algorithms and models have 

been developed for different sensors, ranging from multispectral instruments to 

imaging spectrometers, from low to high spatial resolution instruments (Soudani et al., 

2006; Colombo et al., 2008; Berni et al., 2009; Guanter et al., 2014). In recent years, 

the emergence of Light Detection and Ranging (LiDAR) and Polarimetric 

Interferometric Synthetic Aperture Radar (POLInSAR) technologies has resulted in 

the development of numerous methodologies to estimate vegetation structure and 

biochemical parameters (Praks et al., 2007; Le Toan et al., 2011; Kaasalainen et al., 

2014; Nevalainen et al., 2014). Moreover, the multi-sensorial approach, which utilises 

the combination of radar and lidar data with optical dataset has gained interest 

(Moghaddam et al., 2002; Hyde et al., 2007; Mcinerney et al., 2010). The rapid 

development and wide application of remote sensing of vegetation make it an 

interesting and promising research subject. 

1.2 Field measurement of vegetation biophysical variables 

1.2.1 Field measurement of LAI 

The validation and assessment of LAI estimation from remote sensing data is critical 

for large-scale observations (Weiss et al., 2007). Field measurements of LAI can be 

classified into three categories: direct, semi-direct and indirect methods. Direct 

methods include the destructive method and leaf litter collection method. An 

allometric relationship is an example of a semi-direct method. The most commonly 

used are the indirect methods of LAI determination from optical transmittance 

measurements.    

 Direct methods are the most accurate and can provide a reference for semi-

direct or indirect methods. However, direct methods are laborious and time-

consuming. For the destructive method, leaf samples need to be harvested and dry 

weighed. Leaf specific leaf area is determined from a small sample and used to 

convert dry leaf mass to leaf area (Jonckheere et al., 2004). Litter needs to be 

collected in traps distributed below the canopy during vegetation leaf fall, but for 

some species, leaves are replaced during the growing seasons, which makes this 

method problematic (Jonckheere et al., 2004).  

LAI can be calculated from the forest inventory (e.g., tree height and stem 

diameter) using a semi-direct allometry method.  LAI is linked to these inventory data 

through destructive sampling. Allometric estimates of LAI are comparable to those of 

other LAI measurements (Gower et al., 1999; Majasalmi et al., 2013). However, 
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allometric method is site and species-specific, and related to local climate conditions 

(Le Dantec et al., 2000). 

Optical measurement techniques can make the LAI measurement fast and non-

destructive (Morisette et al., 2006). When compared to allometric methods, the 

approach provides more accurate estimates of LAI (Smith et al., 1991). The principle 

of the optical method is to measure direct or diffuse light transmittance through the 

plant canopy (Jonckheere et al., 2004; Weiss et al., 2004) and infer LAI through 

radiative transfer theory (Beer-Lamber law) (Anderson, 1971; Ross, 1981). LAI is 

calculated from the canopy gap fraction:  

                              P (θ) = exp (-G(θ, LAD)LAI/cos(θ)), 

where P(θ) is the gap fraction, G(θ, LAD) is the G-function, the mean projection of a 

foliage area unit in a plane perpendicular to direction θ. G(θ, LAD) is dependent on 

LAD. For this gap fraction-based method, two assumptions are made: the distribution 

of leaves is horizontally uniform in the canopy and leaf size is small compared with 

the canopy. In reality, foliage is clumped; the distribution of leaves is not 

homogeneously uniform (Chen and Black, 1992). Furthermore, due to non-green 

canopy elements (e.g., stems, branches and flowers) interacting with the light, the 

optical method does not yield the LAI but “plant area index” (Neumann et al., 1989). 

Many optical instruments have been developed for estimates of LAI, including 

LAI-2000 (Li-Cor, Lincoln, Nebraska, USA), SunScan (Delta-T Devices Ltd, 

Cambridge, UK), AccuPAR (Decagon Devices, Pullman, USA), DEMON (CSIRO, 

Canberra, Australia), TRAC (3rd Wave, Ontario Canada) and Digital Hemispherical 

Photograph (DHP). The SunScan device is well suited to a low uniform canopy (e.g., 

cereal crops) and widely used (Lambert et al., 1999; Sone et al., 2009; López-Lozano 

et al., 2010). 

1.2.2 Field measurement of LAD 

The traditional direct method for LAD measurement is to use clinometers in contact 

with the leaf surface (Campbell and Norman, 1998), which is laborious and time 

consuming. Some specialised instruments have been developed, for example 3D 

digitisers of plant elements (Sinoquet et al., 1998), portable spectropolarimeters for 

canopy-polarised reflectance measurements (Shibayama, 2004) and portable scanning 

lidar systems (Hosoi et al., 2009). As a result of the high cost of the instruments, these 

approaches are not widely used. Similar to LAI measurement is indirect measurement 

of MTA, which is conducted through the inversion of the directional gap fraction of 

canopy covers (Welles and Norman, 1991; Welles and Cohen, 1996). For example, 

MTA can be estimated from the gap fraction measurement of LAI-2000 and DHP. 

Due to the canopy structural effects on light transmittance, transmittance 

measurements yield large uncertainties. As a restult of the lack of LAD 

measurements, LAD is usually assumed to be spherical. Recently, a photographic leaf 

angle measurement method has been developed and validated in broadleaf tree 

species (Ryu et al., 2010; Pisek et al., 2011, 2013). This approach provides a fast, 

low-cost and repeatable LAD estimation. The uncertainty of photographic MTA 

measurement is within 4˚. Usually, crop leaves are different from those of tree 

species. For cereal crop species, the leaves are long and curved and thus cannot be 

measured directly from the photographs. 
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1.3 Imaging spectroscopy 

Imaging spectroscopy (IS), or hyperspectral remote sensing, is the acquisition of 

images in many (tens to hundreds) narrow (<10 nm) contiguous spectral bands thus 

providing continuous spectral information.  Imaging spectroscopy over multi-spectral 

data is the ability to select the wavelengths best suited for the application, even when 

these were not known at the time of data acquisition. Some of the widely used sensors 

are available either for space-or airborne-platforms. These imaging 

spectroradiometers are operated for research or commercial purposes. 

The development of imaging spectroradiometers provided the capability to 

quantitatively estimate plant biophysical and biochemical variables. Many studies 

have focused on the retrieval of vegetation leaf pigments from IS data. One of the 

most important pigments retrievable using IS is leaf chlorophyll content (Zarco-

Tejada et al., 2005; Zhang et al., 2008; Malenovsky et al., 2013; Hunt et al., 2013). IS 

data on canopy structure parameters estimation has also been developed. Leaf area 

index, one of the most important canopy properties, has received the most attention 

(Haboudane et al., 2004; Meroni et al., 2004; Darvishzadeh et al., 2011; Heiskanen et 

al., 2013; Xie et al., 2014), whereas few studies have been performed for LAD. 

Imaging spectroscopy data provides continuous narrow bands in the visible 

and infrared spectral region. In order to retrieve the relationship between IS data and 

plant traits, a variety of methods and analyses are applied on IS data. Generally, two 

approaches are widely used. The first approach is to combine the IS data assimilated 

with the radiative transfer model. LAI, Cab and other vegetation parameters could be 

estimated. (Botha et al., 2007; Houborg et al., 2009; Jacquemoud et al., 2009; Kokaly 

et al., 2009; Vohland et al., 2010; Banskota et al., 2014). The second widely used 

approach is to establish an empirical relationship between vegetation variables and 

vegetation indices calculated from IS data (Oppelt and Mauser, 2004; Haboudance et 

al., 2008; Gitelson, 2012; Zhu et al., 2012; Hernández-Clemente et al., 2012).  

1.4 Canopy reflectance models 

The confounding effects on canopy reflectance are from canopy structure elements 

and leaf biochemical properties. The interaction of radiation inside the canopy is a 

complex process (Goel and Strebel, 1983). Physically based canopy reflectance (CR) 

models (following the physical laws of nature) can explicitly quantify the connections 

between canopy properties and canopy reflectance (Bothaet al., 2007). Physically 

based CR models can be classified as radiative transfer (RT) models, geometric 

optical (GO) models and computer simulation models. One type of RT model, 

referred to as the turbid medium model, assumes the vegetation canopy is composed 

of homogenous vegetation layers and the canopy elements are randomly distributed 

and form a “turbid medium”. The canopy is assumed to be infinite in the horizontal 

direction (Verhoef, 1984; Verstaete et al., 1990; Liang and Strahler, 1993). This 

model type is widely used for modelling canopy reflectance for field crops. One of the 

famous models is the light Scattering Arbitrarily Inclination Leaves (SAIL) model 

(Verhoef, 1984), which extended the Suit (Suit, 1972) model with variations of leaf 

inclination angles.  

Computer simulation models are used for accurately computing radiation 

within a complex canopy configuration and validation of simplified analytical models. 

One of the typical models is the Monte Carlo ray tracing method (Ross and Marshak, 

1988; Goel et al., 1991), but due to the large input parameters required, this type of 
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model is difficult to invert (Goel, 1988). A simpler approach known to work well in 

field crops needs to be chosen, although a simulation model would have worked. 

One CR model can be run in forward mode (structural inputs: output canopy 

reflectance). The Canopy Bidirectional Reflectance Factor (BRF) can be computed 

for a certain set of canopy parameter combinations. Running a model in forward mode 

helps to elucidate the canopy properties’ influence on reflectance (Rautiaine et al., 

2004; Feret et al., 2011). The CR model can be applied to retrieve canopy properties 

from the measured spectral reflectance. The CR model is inverted by interpolating the 

degree of agreement between the CR models’ simulated and measured spectra. A 

number of inversion approaches have been developed for different existing canopy 

reflectance models, including the iterative optimisation method (Jacquemoud et al., 

1995, 2000; Meroni et al., 2004; Houborg and Boegh, 2008), look-up table (LUT) 

approach (Knyazikhin et al., 1998; Weiss et al., 2000; Combal et al., 2002; 

Darvishzadeh et al., 2012) and Artificial Neural Network (ANN) method (Gong, 1999; 

Weiss and Baret, 1999; Fang et al., 2003; Walthall et al., 2004; Bacour et al., 2006; 

Schlerf and Atzberger, 2006). In the iterative optimization method, the search 

algorithm may become trapped at a local minimum before achieving the global 

optimal value. LUT and ANN methods rely on a large database of simulated spectral 

reflectance. For the ANN method, it is time-consuming to train the neutral network 

method. The LUT approach is simple for inverting a CR model. A LUT is built-in 

advance of model inversion. It avoids the search trapping a local minimum and time-

consuming model training.  

 The model inversion method has ill-posed problems (Atzberger, 2004; 

Combal et al., 2002): different model input parameter combinations might generate 

similar spectral features (Weiss and Baret, 1999) and no unique solution can be found. 

Prior knowledge of the model inputs (e.g.,model input parameters range) can 

constrain the model variables and improve the inversion accuracy (Combal et al., 

2002; Lavergne et al., 2007).  

1.5 Vegetation indices 

Vegetation indices (VIs) are comprised of reflectance at a few discrete spectral 

wavelengths. VIs are widely used for extracting vegetation characteristics from 

remote sensing data (Broge and Leblanc, 2001; Hatfield and Prueger, 2010; Nguy-

Robertson et al., 2014). Most of the indices are in employed ratio or normalised 

format of reflectance at two or three wavebands to improve the sensitivity of 

reflectance to interesting properties and reduce the effects of other factors (Carter, 

1994; Gitelson and Merzlyak., 1994, 1997; Maccioni et al., 2001). Indices could be 

calculated from derivative spectra (Datt, 1999; Vogelman et al., 1993) or calculated as 

a combination of other indices (Daughtry et al., 2000; Haboudane et al., 2002; Wu et 

al., 2008). Many indices have been developed in specific spectral ranges to increase 

VIs sensitivity. For example, red-edge wavelengths are acquired from many satellite 

sensors to estimate chlorophyll content (Gitelson et al., 2005; Gitelson et al., 2012). 

Visible and near-infrared wavelength indices have been found to be sensitive to both 

chlorophyll content and LAI (Gitelson et al., 2002; Baret et al., 2007). 

               The empirical relationship between VIs and vegetation properties provides a 

simple and efficient approach for the remote sensing of vegetation. However, this 

approach lacks generality. Canopy reflectance is affected by the complex interaction 

between internal and external factors (Baret, 1991), which make the empirical 
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relationship be site, time and species-specific, and thus one VI cannot be directly 

applied on another study site or vegetation type (Baret and Guyot, 1991; Colombo et 

al., 2003; Gobron et al., 1997). 

1.6 Research problems and objectives 

The general purpose of this dissertation is to study the spectral reflectance of LAD in 

a crop canopy and the measurement methods. New LAD determination methods were 

developed from digital camera and airborne imaging spectroscopy data. This 

dissertation is comprised of three research papers. 

I. LAD is an extremely important canopy structure characteristic. However, 

current LAD measurement methods are laborious, time-consuming, unfeasible 

or expensive. Due to the lack of LAD measurements, LAD is usually assumed 

to be spherical. Recently, a LAD measurement method has been developed 

and validated for tree species. As the tree species leaves are different from 

crop leaves, this method could directly apply in field crops. This paper 

extended the feasible and low-cost photographic LAD method to field crops.  

 

II. The in situ photographic method is confirmed for LAD measurement in field 

crops in I. Field LAD measurement is local and site-specific. Thus, it is not 

possible to apply this method in a large area. In this paper, two remotely 

sensed MTA algorithms were developed.   

 

III. Vegetation indices are widely used for Cab estimation. A number of VIs has 

been developed, tested and reported in the literatures. The effects of canopy 

structure on canopy reflectance and Cab sensitive VIs are complex. In this 

paper, the MTA and LAI effects on the performance of Cab sensitive VIs were 

evaluated.  
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2 MATERIALS AND METHODS 

2.1 Study area 

The study site was located at Viikki Experimental Farm, Helsinki, Finland (60.224˚ N, 

25.021˚ E) (Fig. 1). Helsinki is situated at the southern edge of Finland. The yearly 

average temperature for Helsinki is 6˚C, and in the warmest month, July, the average 

temperature is 18˚C. In July and August 2011, it was warm at the begging of the    

period but quite wet at the end, as well as in 2012.  

Fig. 1.  a) Location of research area, b) AISA image of the test site 

(red: 814 nm, green: 691 nm, blue: 570 nm). 

a 

b 
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2.2 Test site  

A total of 162 plots of six crop species (Fig. 2), faba bean (Vicia faba L. “Kontu”), 

narrow-leafed lupin (Lupinus angustifolius L. “Haags Blaue”), turnip rape (Brassica 

rapa L. ssp. oleifera (DC.) Metzg. “Apollo”), wheat (Triticum aestivum L.emend 

Thell. “Amaretto”), barley (Hordeum vulgare L. “Streif”, “Chill” and “Fairytale”) and 

oat (Avenasativa L. “Ivory” and “Mirella”) were included in this study. The largest 

plot size was 50 m × 12 m and the smallest size was 10 m × 2 m. Different fertilizer 

treatments were applied for each species. The row space was 12.5 cm. During the 

series of field experiment periods, the crop canopy height was less than 1 m. The 

detailed description of plot size, number of plots, fertilizer application, seeding 

density and soil types are in I Table 1. The dataset used in this dissertation was taken 

from this study area.  

 

 
 

  

 

Fig. 2. Examples of the six crop species: a) narrow-leafed lupin, b) 

barley, c) oat, d) turnip rape, e) faba bean and f) wheat. 

a b 

c d 

e f 
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2.3 Field data  

A brief description of the field measurement data used in this thesis is given in this 

section. The instruments used and the measurement times are summarized in Table 1.  

Quantity Instrument Measurement time 

LAD Digital camera 6 July 2012 

Leaf shape Portable document scanner 3 August 2012 

MTA LAI-2000 5 − 6 July 2012 

LAI SunScan 20 − 21 July 2011 

Cab SPAD-502 19 – 22 July 2011 

Soil spectrum ASD 7 October 2011 

 

2.3.1 Leaf angle measurement 

Leaf inclination angle was measured using two approaches: a) a photographic method 

using a digital camera and b) an optical method using LAI-2000.  

The crops were photographed using a Nikon D1X digital camera (Nikon 

Corporation, Tokyo, Japan) on 6 July 2012. The photographs were taken 

approximately 1m from the border of the plot, with the camera facing the crops. The 

camera was fixed on a tripod and levelled with a bubble level. The camera height was 

between 30 cm and 50 cm, depending on the crop height. The barley and oat plots 

were surrounded by grass. Before taking photographs, the grass was flattened so it 

would not obstruct the view. The plots for the other species were surrounded by areas 

of bare soil. Five to six photographs were taken for each species. 

The LAI-2000 measurement was taken on 5 and 6 July 2012 for the plots 

for all six species (Fig. 3). Two or three plots were measured for each species. The 

measurements were taken 2 hours before sunset to avoid direct solar illumination 

from reaching the sensor. The measurement was taken along the plot edges. A 180˚ 

view restricting cap was used to minimise the effects from the observer and plot edge, 

and the detected solar radiation was entirely through the top surface of the canopy. 

The same sensor was used to measure below and above-canopy radiation. Depending 

on plot size, four to ten below-canopy measurements were taken and averaged for 

each plot. LAI-2000 measured radiation in five concentric rings and thus calculated 

canopy transmittance at five view zenith angles. MTA was calculated using an 

empirical polynomial relationship between the leaf angle and the slope of the G-

function between 25˚ and 65˚ (Lang, 1986). The algorithm was implemented using 

FV2000 software provided by the instrument manufacturer.  

2.3.2 Leaf shape measurement 

Leaves of the three cereal crop species (wheat, barley and oat) were scanned using a 

USB-powered portable document scanner taken to the test site. For each species, 20 

leaves were cut and scanned immediately. The images were stored on a PC in TIFF 

format (Fig. 4). 
  

Table 1.  The instruments and measurement times for field measurement data. 
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2.3.3 LAI measurement 

LAI was measured weekly during the crop growing season in 2011. LAI was 

determined using a SunScan SS1 ceptometer rod (Fig. 5). Sixty-four miniature solar 

radiation sensors were mounted on the rod and each was aligned. The SunScan sensor 

was entered from the edge of the plot at approximately 45˚ to the crop row direction 

to minimise row effects. Simultaneously, a separate sunshine sensor type BF3 was 

recording outside the plot the direct and diffuse downwelling irradiance. LAI was 

computed from the radiance measurements, assuming exponential extinction of 

radiation inside the crop canopy. An ellipsoidal LAD model dependent on one 

parameter χ was used for the computations. As a default, spherical LAD was assumed, 

corresponding to χ = 1. The computations were made using SunScan hardware. The 

full description of the algorithms is provided in the user manual (SunScan SS1 user 

manual version 2.0). The LAI of each plot was averaged from four to five readings. 

LAI data with the measurement date closest to the airborne flight campaign were used 

in this study; the used LAI measurements were taken within five days of airborne data 

acquisition. 

Fig. 4. Scanned narrow and curved leaves (oat). 

Fig. 3. LAI-2000 instrument and field measurements. Photographs by 

Annika Müller and Matti Mõttus. 
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2.3.4 Leaf chlorophyll content measurement   

Leaf chlorophyll a and b content (Cab) was determined using the SPAD-502 

instrument (Minolta Corporation, Osaka, Japan) (Fig. 6). SPAD-502 is an optical 

device that measures leaf transmittance at wavelengths sensitive to chlorophyll and 

produces a unitless reading. The measurement dates of all the plots were within five 

days of airborne data acquisition. The 15 to 30 sampled leaves were randomly 

selected within each plot, depending on the plot size. The average SPAD value was 

used for the corresponding plot. 

Fig. 6. SPAD-502 chlorophyll meter. Photograph by Clara Lizarazo Torres. 

Fig. 5. The SunScan instrument: a BF3 sunshine sensor and the ceptometer rod in a 

carrying box. The schematic diagram provided by Delta-T Devices Ltd. 
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2.3.5 Soil spectrum meas urement 

The bare soil spectrum was measured using a handheld spectroradiometer 

manufactured by Analytical Spectral Devices (Boulder, Colorado, USA) (Fig. 7). The 

measurement was taken on a harvested area on 7 October 2011 between 11:30 and 

12:30 local time (UTC+2:00). The solar zenith angle varied between 66.0˚ and 68.3˚. 

The spectral range was 400–1000 nm, which was the same as that for the airborne 

imaging spectroscopy data. Four soil samples were measured separately for four plots 

that were close to the place of LAD measurement.  The averages of the four spectra 

were used as soil spectra for the whole study area. Before the measurement, the loose 

debris on sample surface was cleared away. A series of 5 to 15 radiance 

measurements was taken for each soil sample. A white Spectralon reference panel 

was measured before and after the soil sample measurements. The white reference 

panel measurements were interpolated to the time of each soil measurement. The soil 

Hemispherical-Directional Reflectance Factor (HDRF) was calculated from the 

radiance measurements of the soil and Spectralon.  

The measured soil HDRF was transformed using a soil reflectance model. This 

model was developed by Walthal et al. (1985) and modified by Nilson and Kuusk 

(1989) to match the illumination condition during the airborne data measurement 

(solar zenith was 49.4˚). Based on the light reciprocity relationship, the measured soil 

HDRF was transformed to HDRF at the condition that the solar zenith was 49.4˚. The 

diffuse sky radiation was ignored in the transformation. After transformation, the soil 

HDRF increased by approximately 25%.  

2.4 Imaging spectroscopy data 

Airborne imaging spectroscopy data was acquired on 25 July 2011 using an AISA 

Eagle II imaging spectrometer (Specim Ltd., Oulu, Finland) (Fig. 8). The instrument 

had 1024 channels, of which 512 were used and binned into 64 channels covering the 

spectral range from 400 nm to 1000 nm. The spectral resolution was 9 nm to 10 nm. 

The flight direction was perpendicular to the solar illumination direction. The flight 

height was approximately 600 m. The ground spatial resolution was 0.4 m. The 

measurement was carried out between 9:36 and 10:00 local time. During the airborne 

measurement, the average solar zenith was 49.4˚. The imagery was radiometrically 

calibrated using the CaliGeo software package (Specim Ltd., Oulu, Finland) and 

georectified using Parge (ReSe Applications Schlapfer, Wil, Switzerland) via ground 

Fig. 7. Soil spectrum measurement. Photographs by Matti Mõttus 
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control points and navigation records. Atmospheric correction was performed and 

radiance data was converted into reflectance using ATCOR-4 (ReSe Applications 

Schlapfer, Wil, Switzerland). The water vapour estimate used in the atmospheric 

correction was calculated from an AISA spectral measurement at water vapour 

windows (850–890 nm) and absorption (940 nm) wavelengths. The detailed 

description of the water vapor calculation algorithm was provided by Schläpfer et al. 

(1998). Aerosol optical thickness data from sun photometer observations 

approximately 4 km from the study area provided a visibility estimate of 47 km. 

Finally, spectra of each plot were extracted visually using ENVI software. 

Representative plot spectra for each species, with Cab and LAI values closest to the 

species mean, are provided in III Fig. 3. 

 

  

Fig. 8. AISA flight campaign in 2011: aircraft, sensor and sample data. 
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2.5 Canopy reflectance modelling 

2.5.1 PROSAIL model 

The PROSAIL canopy reflectance model consists of the coupled PROSPECT-5 leaf 

level radiative transfer model and SAILH canopy level reflectance model (Verhoef, 

1984; Kuusk, 1991). PROSPECT-5 uses six input parameters: leaf chlorophyll a and b 

content (Cab), leaf carotenoid content (Car), leaf dry matter content (Cm), leaf 

equivalent water thickness (Cw), leaf brown pigment content (Cbp) and leaf structure 

parameter N. The PROSPECT-5-simulated leaf bidirectional reflectance and 

transmittance were input into the SAILH model. The additional parameters used as 

inputs for the SAILH model were LAI, MTA, hot spot size parameter, soil reflectance, 

solar zenith angle, sensor view zenith and azimuth angle and fraction of incident 

diffuse sky radiation. The leaf level PROSPECT-5 model-simulated leaf reflectance 

and transmittance were used as inputs for the SAILH model, and then reflectance was 

simulated at canopy level. The PROSAIL model is a turbid medium RT model. It 

defines the vegetation canopy as a homogenous and infinite layer in the horizontal 

plane. The canopy elements are small compared with the canopy and act as absorbing 

and scattering particles. In this model, the one-parameter (MTA) ellipsoidal 

distribution model is used for characterising LAD. The assumptions of the PROSAIL 

model are very suitable for a field crop canopy.  

2.5.2 Model input 

The PROSAIL model input parameters were taken from the measurements. The 

values not available for the test site were taken from scientific literature. The leaf 

structural parameter N was fixed to 1.55, the average for the six crops provided in 

literature (Haboudane et al., 2004). Based on field measurements, Cab varied between 

25 μg cm-2 and 100 μg cm-2, LAI between 1 and 5, and MTA between 15˚ and 70˚. 

The Cw was in a reasonable range from 0.001 cm to 0.02 cm (leMaire et al., 2004; 

Darvishzadeh et al., 2008). The leaf dry matter content Cm of short-lived graminoids 

(wheat, oat and barley) was 0.004 g cm-2 (Vile et al., 2005). For the other three 

species, faba bean, turnip rape and narrow-leafed lupin, the Cm has been reported to 

vary from 0.003 g cm-2 to 0.008 g cm-2 (Mäkelä et al., 1997; Dennett and Ishag, 1998; 

Pinheiro et al., 2005). In the model simulations, Cm was fixed to 0.005 g cm-2, the 

average value for the six species. Assuming that the crops had no withered leaves 

during the growing season, the brown pigment content was set to zero (Houborg et al., 

2009). Car was linked to Cab based on the high reported correlation between the 

content of the two pigments (Feret et al., 2008). For the 17 herbaceous species (22 

samples) in the LOPEX93 database (Hosgood et al., 1994), the average ratio of 

Car:Cab was found to be 1:5. This ratio was used in the model simulation. The hot 

spot parameter was fixed to 0.01, the default value of the model. The sensor and solar 

geometric parameters were coincided with the measurement conditions. The ratio of 

the direct and diffuse irradiance was calculated from the 6S atmospheric radiative 

transfer model (Vermote et al., 1997). The water vapour parameter for the model was 

generated from AISA imagery and the aerosol optical depth was taken from the 

observations of the sun photometer. The soil reflectance spectrum was taken from 

field measurements. 
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2.5.3 Database of reflectance spectra 

For the feasible model input parameters, parameter values were randomly generated 

within the input parameter range. In total, 100,000 model inputs parameter 

combinations were built. All parameter combinations were used as model input. By 

running the model for each parameter combination, 100,000 spectrum data were 

simulated with 1 nm resolution. Finally, the spectrum data were resampled to 

correspond to AISA bands (binning the neighbouring spectrum reflectance central 

wavelength). The resampled spectrum and corresponding input parameters were 

combined as a LUT database.  

2.5.4 Simulating the reflectance spectra of test plots 

For the 162 field measured plots, plot-wise spectra were simulated using the 

PROSAIL model with the measured LAI, MTA and Cab as inputs. PROSAIL-

simulated plot-wise canopy reflectance was compared with AISA measured 

reflectance in visible (452 nm, 551 nm and 682 nm) wavelengths, red edge (729 nm) 

wavelength and NIR (786 nm and 852 nm) wavelengths. 

2.6 Data processing 

2.6.1 Determination of LAD from photographs 

The leaf inclination angles in the crop photographs were determined using the ImageJ 

software package (http://rsb.info.nih.gov/ij/). From the images, 75–100 leaves were 

measured. For the three species with flat leaves (faba bean, narrow-leafed lupin and 

turnip rape), the leaf inclination angle could be measured directly from the 

photographs as described by Pisek et al. (2011). The leaves that were perpendicular to 

the viewing direction and visible as straight lines in the image were selected. The 

angle between the leaf surface normal and zenith was measured as the leaf inclination 

angle: the angle between the line in the image corresponding to the leaf and the 

vertical direction (Fig. 9). Assuming the leaf orientation was randomly distributed 

with the azimuth direction, the selected leaves could be representative of all leaves.  

Fig. 9. Measurement of leaf inclination angle: (a) flat leaf (b) long and 

curved cereal leaf 
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For the three species with narrow and long leaves (wheat, barley and oat), the 

leaf inclination angle could not be measured directly from the photograph because 

there was no single leaf inclination angle for the whole leaf. The leaf inclination angle 

was measured segmentally after separating the leaf into measurable sections. The 

orientation of a section perpendicular to the viewing direction was measured using the 

same approach as for simple flat leaves. Simultaneously, the relative position of this 

section in the whole leaf was measured and recorded. This relative position on the 

whole leaf was converted into the relative leaf area via the leaf shape function. The 

relative area was used as the weight for each leaf segment.   

2.6.2 Leaf shape function 

The scanned leaves were divided into ten equal length sections in the leaf length 

direction. For each segment, the leaf width was measured and recorded.  The leaf 

shape function was defined as the relative leaf width as a function of the relative 

distance in the leaf length direction (I Fig 2). The shape function was fitted using 

fourth order polynomial function. With the fitted leaf shape function, the relative area 

of any leaf section could be calculated using integration.   

2.6.3 LAD: beta distribution 

LAD was fitted using the two-parameter beta distribution function, which was 

demonstrated to be reasonable for fitting natural LAD (Wang et al., 2007). The 

distribution of the leaf inclination angle θL (or the zenith angle of the leaf normal) is 

quantified using the density function: 

                                         𝑓(𝑡) =
1

𝐵(𝜇,𝜈)
(1 − 𝑡)𝜇−1𝑡𝜈−1,                                        (1) 

where t = 2θL/π, , and 𝐵(𝜇, 𝜈) is the beta function. The two parameters μ and ν are 

calculated as follows: 

                                                𝜇 = (1 − 𝑡) (
𝜎0

2

𝜎𝑡
2 − 1),                                            (2) 

                                                      ν = 𝑡 (
𝜎0

2

𝜎𝑡
2 − 1),                                                 (3) 

where 𝑡  and 𝜎𝑡
2  are the mean value and variance of t, respectively, and σ0

2  is the 

maximum variance of t calculated as follows: 

                                                    σ0  
2 = 𝑡(1 − 𝑡).                                                     (4) 

For the leaf cereal species with curved leaves, the relative leaf area was used for each 

measured segment’s angle as a weight. Thus, for these species,  𝑡 and 𝜎𝑡
2 were the 

weighted mean leaf angle and variance of t.  

2.6.4 LAD: ellipsoidal distribution 

Another important and commonly used LAD model is the ellipsoidal LAD model 

(Campbell, 1990). This distribution density function is expressed as 

                                            f (𝜃L)= 
2χ 3 sin 𝜃L  

Ʌ(cos2 𝜃L+χ 2 sin2 𝜃L)
,                                      (5) 

where 𝜃L is the leaf inclination angle and χ is a the ratio of the horizontal semi-axis 

length and the vertical semi-axis length of an ellipsoid. Ʌ is a parameter determined 

by χ. When χ = 1, the distribution is spherical, Ʌ = 2: 
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                                Ʌ= χ +
sin−1 𝜖

𝜖
, 𝜖= (1 − χ 2)1/2, (χ ≤ 1),                             (6) 

                           Ʌ= χ +
ln[(1+𝜖)/(1−𝜖)] 

2𝜖χ
, 𝜖=(1 − χ 2)1/2, (χ > 1).                       (7) 

LAD is described by one parameter χ; the relationship between χ and MTA is 

quantified as follows: 

                                               χ =−3 + (
MTA

553
)−0.6061.                                          (8) 

2.6.5 G-function 

LAD is related to the extinction coefficient, which can be quantified using the Ross-

Nilson G-function (Ross and Nilson, 1965). The G-function equals the projection of a 

unit leaf area on the plane perpendicular to beam direction and can be expressed as 

follows (Warren Wilson, 1967): 

                            G (𝜃) =∫ 𝐴(𝜃, 𝜃𝐿)𝑓(𝜃𝐿)d𝜃L
π/2

0
,                                     (9) 

    

        𝐴(𝜃, 𝜃𝐿) = {
cos 𝜃 cos 𝜃𝐿 , if |cot 𝜃 cot 𝜃𝐿| > 1

cos 𝜃 cos 𝜃𝐿 [1 +
2

𝜋
(tan 𝜓 − 𝜓)] ,

 
 otherwise,

     (10) 

where 𝜃 is the view zenith angle, 𝜃𝐿  is the leaf inclination angle, and 

                                     𝜓 = cos−1(cot 𝜃 cot 𝜃𝐿).                                                     (11)  

We calculated 𝐺(𝜃)  from the two-parameter beta distribution fitted to actual 

measurements as the function f (θL). 

2.6.6 Correction of LAI estimates using species-specific MTA 

Photographic species-specific MTA was used instead of the spherical LAD (χ = 1) 

assumption in the SunScan LAI calculation model. The species-specific LAD 

parameter χ was calculated from Eq.8 and utilised in the SunScan LAI calculation 

algorithm. The SunScan LAI algorithm was implemented using software. A more 

accurate LAI estimate was generated and compared with the original estimate. 

2.6.7 Effect of LAD on spectral reflectance 

The Pearson correlation coefficients between PROSAIL-simulated spectra and model 

input parameters (Cab, Cw, LAI and MTA) were calculated. To reduce the large 

unbalance within the dataset, the empirical dataset was grouped by LAI values (LAI: 

1–2, 2–3, 3–4, 4–5 and 5–6) and species.  Finally, the 162 plots were grouped into 16 

groups by species and LAI intervals. The average reflectance was used for each 

group. The correlation coefficients between measured MTAs (photographic MTA and 

LAI-2000 MTA) and AISA-measured spectral reflectance were calculated for each 

AISA spectral band.  Model-simulated canopy reflectance spectra were extracted in 1˚ 

MTA intervals starting at 15˚, 30˚, 40˚, 50˚, 60˚ and 69˚. The spectral reflectance data 

were plotted in the red (663 nm)-blue (479 nm) plane.  

2.6.8 MTA estimation algorithms 

MTA was estimated from AISA spectral reflectance using two methods. One method 

was to invert the PROSAIL model through a LUT method from single reflectance at 

748 nm. The Relative Root Mean Square Difference (RRMSD) between AISA 
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spectral reflectance and LUT spectral reflectance at 748 nm was calculated. For the 

LUT, the 100 MTA producing the lowest RRMSD were retrieved and the mean value 

was calculated.  

The other method was based on a new rotated axes at 68.4˚ to the blue (479 

nm) axis (slope=2.4). The “ratio axis” was defined perpendicular to the “brightness 

axis”. There was a strong correlation between the MTA and ratio axis (μ) coordinate:  

                                    MTA = -6793μ + 93,                                            (12) 

which was generated from the model-simulated data used to convert plot-wise 

calculated μ into MTA. For each field plot, the ratio axis (μ) was calculated from 

AISA-measured spectra. Only species-specific MTA was available from photographic 

measurements. The spectroscopic data-estimated MTA was averaged for each species 

and compared with species-specific MTA.                                        

2.6.9 Uncertainty of MTA estimation 

For the PROSAIL model inversion method using LUT at red edge reflectance, the 

standard deviation was defined as U, which was calculated from 100 MTA values of 

the 100 canopy configurations producing the lowest RRMSD between LUT and AISA 

reflectance. For the brightness and ratio axes method, there is no unique relationship 

between MTA and μ, as each μ corresponded to an MTA range. Six narrow μ intervals 

of 0.00002 uniformly distributed from μ = 0.006 to 0.011 were created and the U of 

MTA was calculated for each interval. U was calculated for the narrow μ intervals. 

The six narrow μ intervals were converted into MTA using Eq.12. Hence, the 

relationship between U and the six MTAs was established. This relationship was 

linearly interpolated to calculate the U for each estimated species-specific MTA from 

AISA data. For some AISA-estimated MTA beyond the range of the six MTA values, 

a constant U corresponding to the extreme values of the six intervals was used.  

To calculate the retrieval uncertainty of species-specific MTA D from imaging 

spectroscopy data, two uncertainties were considered. One uncertainty was from the 

retrieval algorithms U, the other was from the retrieved MTA variations within 

species, which were characterised by the standard deviation of the mean; 

                                                STDmean = 
STDspecies

√𝑛
,                                              (13) 

where STDspecies  is the species-specific standard deviation and n is the number of the 

plots for each species. The two uncertainties U and STDmean were assumed to be 

independent of each other. Finally, the uncertainty D was calculated as follows: 

                                               D = √𝑆𝑇𝐷𝑚𝑒𝑎𝑛
2 + 𝑈2.                                             (14)    

2.6.10 Vegetation indices 

In totally, 58 published chlorophyll sensitive vegetation indices were calculated. 

Although model simulated data and imaging spectroscopy data were from the canopy 

level, some of the best performing leaf level indices were also included. The majority 

of indices belonged to two groups. The first group included simple ratio indices 

calculated as rx/ry, where rx is the reflectance factor at wavelength x (15 indices). The 

second group were normalised difference indices (rx - ry)/(rx + ry) or their 

modifications (23 indices). In addition to the two groups, 18 wavelength combination 

indices and two derivative spectra indices were tested in this study. The derivative 



19 

 

spectrum was calculated as the difference spectra between two neighbouring channels 

(Dawson and Curran, 1998) 

                                               Dλ(i) = (rλ(j+1)− rλ(j))/Δλ,                                             (15) 

where λ(i) is the midpoint between the central wavelengths of bands j and j+1, λ(j) is 

the central wavelength of band j, rλ is the reflectance at wavelength λ and Δλ = λ(j+1) 

– λ(j).  

All the vegetation indices were calculated using simulated and AISA data. The 

measured wavelength closest to that reported in the literature was used. The 

maximum difference in wavelength between the reported and used values was 5 nm.  

2.6.11 Statistical analysis of the performance of indices 

The coefficients of determination (R2) between Cab and VIs were calculated for 

model-simulated and empirical data, and were referred to as the R2-model and R2-

empirical, respectively. To determine the MTA and LAI effects on VIs, the R2-model 

and R2-empirical values were calculated at different LAI and MTA values. In model 

simulated data, two LAI intervals (LAI = 1−2 and LAI = 4−5) were selected, 

presenting low and high LAI values. For empirical data, the low LAI values were 

selected as LAI = 2−3 to increase the number of observations. In model simulated 

data, two MTA intervals (MTA = 15˚−20˚ and MTA = 60˚−65˚) were selected to 

represent horizontal and vertical MTA values. Due to the MTA distribution in the 

actual data, the MTA effects test could not be performed for empirical data. 

 Linear Regression Functions (LRF) were calculated between Cab and VIs in 

model-simulated data and empirical data, referred to as the LRF-model and LRF-

empirical, respectively. To compare the difference between the LRF-model and LRF-

empirical, the relative difference of the slope and intercept of the LRF-model and 

LRF-empirical was calculated for each index: 

                                  RD = |Xmodel − Xempirical|/Xmodel,                                (16) 

where X  is the either the slope or intercept of the linear regression model and the 

subscript X denotes it is calculated from model-simulated or empirical data. The 

indices with high values for the R2-model and R2-empirical, and low values of RD for 

the slope and intercept, were assumed to be the best performing VIs.  
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3 RESULTS 

3.1 LAD from the photographic method 

The LAD for each of the six species was fitted from photographic leaf angle 

measurements (Fig. 10). Generally, disregarding measurement noise, the beta 

distribution fitted well with the measured LAD.  Faba bean, narrow-leafed lupin and 

turnip rape showed more horizontal LAD (Fig. 10a-c) than wheat, barley and oat (Fig. 

10d-f). Narrow-leafed lupin had the most horizontal leaves and oat had the most 

vertical leaves. For cereal crop species, the difference between the weighed and non- 

weighed LAD was evident. The weighted method made the maximum LAD move 

slightly towards to the more horizontal LAD values and the maximum effect was 

approximately 6˚ (I Table 3). One of the two beta distribution parameters υ varied 

between 1 and 3, and the other parameter μ was between 1 and 8. MTA was highly 

correlated with μ; the R2 was 0.90. MTA had no correlation with υ (R2 = 0.01). 

The G-function for the six species could be separated clearly (Fig. 11). The G-

function calculated from faba bean LAD was quite close to the G-function calculated 

from planophile LAD. The G-function of barley was inseparable with that of uniform 

LAD. The G-function of oat overlapped with that of spherical LAD. For cereal crop 

species, the weighting effect on the G-function was not ignorable. The non-weighted 

G-function of oat was that of electrophile LAD, but after weighting, the G-function 

became that of spherical LAD. The corresponding effects of weighting on the G-

function can be seen in I Fig. 3b.  

For five of the six species (excluding narrow-leafed lupin), the species-

specific MTA measured using the photographic method and LAI-2000 were highly 

correlated (R2 = 0.92) (Fig. 12). For these five species, the LAI-2000 determined 

species-specific MTA that were systematically larger than the MTA measured using 

the photographic method. When considering all six species, this correlation dropped 

to 0.29. The big variation in this correlation could be attributed to the large difference 

in narrow-leafed lupin MTA determined from the two methods. For the photographic 

method, the MTA of narrow-leafed lupin was 18˚ but the MTA reported by LAI-2000 

was 62˚. 

3.2 LAI corrections from species-specific MTA 

The LAI corrected using species-specific MTA had a strong correlation (R2=0.98) 

with the LAI calculated from SunScan using the spherical ellipsoidal LAD model. 

The slope and intercept of the linear regression function is provided in I Table 5 for 

all species. The slope was between 0.66 and 1.27, depending on the species and MTA 

measurement method. According to the photographic MTA determination, the LAD 

of the six species was more horizontal than the spherical LAD assumption. After the 

correction by photographic MTA, the estimated LAI changed 0-1.5 unit depending on 

the species.  

 



22 

 

 

Fig. 10. Leaf distribution probability density measured using the photographic 

method and fitted by the beta distribution: (a) faba bean, (b) narrow-leafed lupin, (c) 

turnip rape, (d) wheat, (e) barley, and (f) oat. The leaf inclination angle α is 

measured from horizontal (α = 90˚ indicates a vertical leaf) 
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3.3 Crop spectra 

Representative spectra for each species measured by the AISA spectroradiometer, 

with Cab and LAI values closest to the mean of each species, are plotted as 

representative crop spectra in Fig. 13. Comparing this with the AISA spectral 

measurement, model-simulated spectra were underestimated at the six wavelengths, 

especially at visible wavelengths (Fig. 14a). Reflectance simulated in NIR (Fig. 14b) 

was simulated more accurately than that at visible wavelengths. 

In the model-simulated dataset, Cab was strongly correlated with BRF at the 

green and red edge, and had a sharp local trough at the 663 nm wavelength (Fig. 15b). 

MTA had a strong correlation with BRF at NIR especially at the far red edge. The 

highest correlation was found at the 748 nm wavelength with R2 = 0.78 (II Fig. 6). 

 

Fig. 11. The leaf projection function G(θ) calculated from beta distributions fitted 

to measured LADs as well as five theoretical LADs. For cereals (wheat, barley 

and oat), the G-functions were calculated using leaf-area-weighted beta 

distribution. 
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Fig. 12. The correlation between the species-specific mean tilt angles (MTA) 

determined using the photographic method and using the LAI-2000. A potential 

outlier, narrow-leafed lupin, is plotted with a filled square. Correlation coefficients 

and regression lines are given separately for all six species and for a subset 

excluding narrow-leafed lupin. 

Fig. 13. Measured bidirectional reflectance factor (BRF) of the representative plot 

of each species. 
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Fig. 14. AISA-measured and model-simulated reflectance factors at selected 

wavelengths: (a) visible light (452 nm, 551 nm and 682 nm), (b) the red edge and 

near-infrared (729 nm, 786 nm and 852 nm). 

Fig. 15. a) The coefficient of determination (R2) between spectral reflectance 

factor and MTA measured by both photographic method and LAI-2000. b) The R2 

between PROSAIL-simulated spectral reflectance and three variables: MTA, Cab 

and LAI. 
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This MTA-related spectral feature coincided with the empirical dataset (Fig. 

15a and I Fig. 8). In the empirical dataset, the coefficient of determination between 

reflectance at 748 nm and MTA determined from photographs was 0.64 (I Fig. 8). 

 The reflectance at red (663 nm) and blue (479 nm) belonging to each MTA 

interval was highly correlated (R2 > 0.99) (Fig. 16). The points were clustered and 

formed a straight line. These lines were separated clearly and nearly parallel with each 

other. The slopes of these linear regression functions varied between 2.1 and 2.9. 

On the brightness and ratio axes, the coordinate brightness axis was mainly 

determined by LAI (II Fig. 3). The coordinate of the ratio axis was highly correlated 

with MTA (II Fig. 9). The six species were separated on the AISA spectra rotated 

brightness and ratio axes (II Fig. 5). Wheat occupied a range from 0.02 to 0.08 on the 

brightness axis. Turnip rape had the largest coordinates for both brightness (between 

0.07 and 0.08) and ratio axes (between 0.012 and 0.014). Barley had the smallest 

value on the ratio axis (between 0.001 and 0.005). Although the ratio values for oat 

(between 0.007 and 0.008) overlapped with those for wheat on the ratio axis, they 

were separated on the brightness axis. 

3.4 Determination of leaf angles from imaging spectroscopy data 

Photographic species-specific MTA had a strong correlation with LUT-estimated 

MTA (R2 = 0.60) (Fig. 17a). The RMSD was 11.4˚ between remotely-estimated and 

field-measured MTA. The MTAs of five of the six species (excluding narrow-leafed 

lupin) were underestimated using the red edge method compared with species-specific 

MTA (II Table 3). In Fig. 17b, the accuracy of MTAs estimated from the red-blue 

method was worse than that of the red edge method. The coefficient of determination 

between red-blue estimated MTA and field-measured MTA was 0.34, and the RMSD 

was 18.7˚. For different species, the red edge and red-blue methods had contrasting 

performances. For example, the MTA was well-estimated from the red edge for faba 

bean (RMSD = 3.2˚). The red-blue method yielded a MTA for this species with only 

average accuracy. The best-estimated MTA using the red-blue method was that of 

narrow-leafed lupin, but this species had the second-worse-estimated MTA from the 

red edge method.  

In Fig. 18, for the red edge method, the standard deviation (STD) was a 

function of the retrieved MTA. The minimum STD was 4˚, corresponding to a 

retrieved MTA of approximately 20˚. The STD reached a maximum (approximately 

11˚) when the retrieved MTA was approximately 40˚. With a further increase of 

retrieved MTA, the STD decreased to approximately 6˚. In Fig. 18, for the red-blue 

method, the STD varied between 1˚ and 5˚. When the retrieved MTA was between 

15˚ and 50˚, the STD had a smooth variation between 1˚ and 2˚.  When the retrieved 

MTA was over 50˚, the STD increased sharply to the maximum value. 

3.5 Effect of canopy structure on Cab estimation 

The 58 vegetation indices analysed in the study are ordered according to the R2-model 

values in III Fig. 4. In model-simulated data, BGI showed the highest R2-model value, 

followed by TCARI/OSAVI and Vogelmann (III Fig. 4). Approximately one-third of 

the VIs had an R2-model value above 0.5. R2-empirical was weakly correlated with 

the R2-model. VIs that had R2-empirical values above 0.6 (e.g., TACRI/OSAVI, 

REIP, MTCI, Datt3 and CTR6), had moderate R2-model values (above 0.4), while 

others produced near-zero R2-empirical values (Vogelmann, MCARI/OSAVI and 
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Datt4). Similarly, VIs that had high R2-empirical values (e.g., NDVI1 and 

TCARI2/OSAVI2) only had moderate R2-empirical values (approximately 0.4). The 

eight VIs that demonstrated above-average performance in both the empirical and 

model-simulated data were assumed as satisfactory indices (e.g., TCARI/OSAVI, 

REIP, MTCI, Datt3, CTR6, Datt5, NDRE, Datt2 and NDVI1).  

In III Fig. 5, R2 calculated for higher LAI intervals was larger than the R2- 

model for lower LAI intervals for most of the VIs, except, for example, 

TCARI/OSAVI, CTR6, Datt4, DD and PSRI. In III Fig. 6, for most of the indices, R2 

produced from low MTA (greater horizontal leaf angle) was higher than R2 calculated 

from high MTA (greater vertical leaf angle) interval data, while the R2-model 

calculated from the full MTA range (15−70˚) was situated between the high and low 

Fig. 16. Reflectance in blue (479 nm) and red (663 nm) for different MTA 

values (MTA=15º, 30º, 40º, 50º, 60º and 70º) according to PROSAIL 

simulations. The rotated axes were defined as “brightness axis” and “ratio axis”. 

The ratio axis was used for retrieving MTA. 
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MTA curves. The RDs of slope and intercept for REIP were small; the values were 

both approximately 0.1 (III Fig. 7). Two of the VIs, TCARI/OSAVI and CTR6 had 

the RDs of slope and intercept within 1. In model-simulated and empirical data, these 

three indices, REIP, TCARI/OSAVI and CTR6 had a relatively high correlation 

(model: R2 > 0.62 and empirical: R2 > 0.40) with Cab (Fig. 19). 

Fig. 18. MTA retrieval uncertainty of the red edge method (red points), and the 

red-blue method (blue square). For the red edge method, standard deviation 

values were calculated for each retrieved MTA. For the red-blue method and 

the MTA values outside 18° – 52° interval, the standard deviation was assumed 

constant. 

Fig. 17. Comparison of MTA retrieval accuracy for the two methods: a) MTA 

retrieved using LUT and canopy reflectance at 748 nm vs. field-measured 

MTA, b) MTA retrieved from reflectance in blue and red vs. field-measured 

MTA. 
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Fig. 19. Correlation between Cab and the three best performing vegetation indices 

(REIP, TCARI/OSAVI and CTR6) in model-simulated (smaller dense points) and 

empirical dataset (larger points). 
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4 DISCUSSION 

LAD controls the light interception in the canopy and affects energy and mass balance 

in the soil-vegetation system. LAD is also a confounding factor for estimating LAI 

and Cab using optical approaches. An accurate estimation of LAD in both the stand 

and regional scales is indispensable for understanding radiation and transmission 

within the vegetation canopy, and contributes to the accurate estimation of parameters 

of interest, e.g. LAI and Cab. Nevertheless, there is so far no efficient, repeatable and 

inexpensive method for in situ crop LAD measurement. Moreover, there is no 

effective remote sensing method for LAD measurement on a large scale. Well-known 

limitations of traditional LAD measurement methods are that they are laborious, time-

consuming and constrained to stand scale. Therefore, new methods are needed to 

improve the efficiency and accuracy of LAD estimation. Moreover, new methods are 

required to make it possible for estimating LAD over a large area. This thesis focused 

on developing new methods for crop LAD measurements. To achieve this goal, two 

studies were carried out. First of all, this thesis solved the problem of in situ crop 

LAD measurement, especially for cereal crop species, by including leaf shape 

function. Secondly, new methods were developed for solving the problem of the 

remote-sensing method of LAD measurement. The LAD measurement technologies 

developed in this thesis realized efficient, repeatable and inexpensive estimations of 

LAD, and also a possibility of mapping LAD over a large area. Quantitative 

estimations of LAD contributed to the understanding of light interception and 

radiation distribution within the vegetation canopy. When coupling with the canopy 

reflectance and transmittance models, accurate estimations of LAD can improve the 

quantification of LAI and leaf biochemical pigments by getting rid of the confounding 

effect of LAD. 

In this study, MTA was considered because species-specific as it tends to vary 

more between species than within species (Ross, 1981; Campbell, 1990; Campbell 

and Norman, 1998; Weiss et al., 2004; Houborge et al., 2007). Thus, although the 

MTA used in the study was measured at the same crop growing stage one year after 

the spectroscopic measurement, it is feasible to combine the two measurements. The 

applicability of species-specific MTA is supported by the strong correlation between 

photographic and LAI-2000 measurements for five of six species (Fig. 12). The 

species-specific nature is also confirmed from remote sensing measurements. In 

spectroscopic MTA measurements, the STD of species-specific MTA was all within 

5˚ for the red edge method and within 7˚ for the red-blue axes method (II Table 3).  In 

addition, for the red-blue method, the points belonging to different species were 

separated on the brightness-ratio axes (II Fig. 5).  

For photographic LAD measurements, leaf photographs were taken from a 

few plots for each species. The plots were assumed to be representative of each 

species. In addition, the photographs were taken from outside the plots. The 

representability of the selected plots and the effects of plot edge on LAD 

measurements are unknown.  

Leaf chlorophyll content was converted from SPAD readings using an 

empirical relationship (Markwell et al., 1995; Vohland et al., 2010). The exact 

relationship between Cab and SPAD readings is specific to each instrument. 

Unfortunately, no exact calibration was available for each instrument used in this 

study. Therefore, the Cab values obtained in this study should be treated with care. 
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However, the calibrated relationships for different instruments are expected to be 

similar (Markwell et al., 1995). While the absolute scale of Cab measurements may 

therefore be biased, the values of the obtained Cab relative to each other are correct.  

Compared to LAI-2000 MTA measurements, photographic MTA values were 

systematically lower. The largest difference was obtained for narrow-leafed lupin. 

LAI-2000 measured the “effective” MTA or LAI that fitted the best angular 

distribution of transmittance. The “effective” MTA is affected by other canopy 

structure characteristics and the tilt angle of canopy elements other than leaves. In the 

LAI-2000 MTA calculation algorithm, the plant canopy is assumed be horizontally 

homogeneous and the plant leaves uniformly distributed in the azimuth direction. 

However, in reality, narrow-leaf lupin has palmate compound leaves attached to long 

petioles and nearly vertical stems. Although the leaflet in the canopy is flat, as 

confirmed by our photographs, the more vertical petioles and stems affect the output 

from LAI-2000. Moreover, the vegetation structure (clumping) increases the 

transmittance (gap fraction) measurement made under a diffuse sky condition. If the 

gap fraction increases by the same proportion in each LAI-2000 sensor ring, MTA 

will be overestimated. This is most likely the case for narrow-leafed lupin. 

The PROSAIL model simulated a lower reflectance factor compared with 

AISA measurements, especially at visible wavelengths. This could partly be attributed 

to the soil spectrum used in PROSAIL. Differences in soil moisture are expected 

between the time of airborne spectroscopic data acquisition (25 July 2011) and field 

spectral measurement after harvest (7 October 2011). Another reason could be the 

assumptions of the model inputs. For example, Cab and Car were connected in the 

model input and the brown pigments were ignored, whereas, most of the crops had 

non-green elements in their canopies such as flowers or heads. Thus, the 

underestimation is equivalent to having brown elements (at least) at the top of the 

canopy. Unfortunately, the real value of the brown pigment is not available. The 

differences between modelled and measured spectra inevitably lead to the difference 

of R2 of VIs and Cab correlations (III Fig. 4). 

Compared with the two remote sensing MTA retrieval methods, using single 

reflectance at 748 had better performance than the red-blue method. In theory, based 

on PROSAIL model simulations, both methods are able to retrieve the MTA of a 

homogeneous canopy to a satisfactory accuracy. In model simulation, MTA has 

stronger correlation with red-blue rotated coordinates (Fig. 17) than with reflectance 

at 748 nm (II Fig. 6). The exact reason of the discrepancy in the performance between 

the two methods in model-simulated data and empirical data is unknown. This also 

could be attributed to the assumptions of the model inputs. Reflectance at 748 nm is 

affected by brown pigments (Peñuelas et al., 2004). These were ignored in the model 

simulations.  Furthermore, some of the non-green materials (e.g., cereal crop ears and 

flowers) were located at the top of canopy which strengthens their effects on 

reflectance. The canopy elements other than leaflet have different angular distribution 

than that of the leaves, thus affecting the MTA estimation from remote sensing data.  

The difference of R2 values (correlation between VIs and Car) between model- 

simulated and empirical data are not only affected by the model assumptions. The 

difference was attributed to the different distribution of the model simulated input 

parameters and that of empirical data. The model input parameters were uniformly 

distributed, whereas the skewedness of the distribution of LAI, MTA and Cab in 
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empirical data was clear (III Fig. 1). Another reason might be caused by the statistical 

correlation between field measured crop parameters.  

For the model-simulated data, the best performing index was BGI, a ratio 

index between blue and green wavelengths. However, this index failed in the 

empirical data. The reason could be the wavelength. The difference between the 

model-simulated and measured reflectance factor was large at blue and green 

wavelengths. The reflectance at the blue wavelength was heavily affected by 

atmospheric scattering and specular scattering from the leaf surface. The failure of the 

third best performing index for model-simulated data was for the Vogelmann index, 

which is calculated from the normalised difference of a spectrum close to the red 

absorption maximum, where the canopy reflectance is relatively low. The noise in the 

remote sensing measurement is suspected to be the potential reason. 

The one-parameter ellipsoidal LAD model can describe most of the measured 

vegetation LADs. However, the one-parameter ellipsoidal LAD model cannot 

describe the bimodal distribution such as extremophile and a more complex model, 

for example the two-parameter beta distribution (Goel and Strebel, 1984) needs to be 

employed. When the beta distribution LAD model was tested in PROSAIL, the 

relationship between canopy reflectance characteristics and MTA did not change from 

the value the ellipsoidal LAD model obtained. In PROSAIL model inputs, MTA is the 

exclusive parameter used to quantify horizontal homogenous canopy structure 

orientation. In reality, the crop canopy is not homogenous, and plant materials are 

grouped and placed regularly (I Fig. 10). The canopy structure effects on its 

reflectance are complicated, and it is likely that they are not completely explained by 

MTA. Although neither of the two remote sensing MTA retrieval methods was able to 

retrieve the exact MTA of crops, both methods provide information on the species-

specific canopy structure.  

MTA and LAI have a similar influence on the canopy reflectance spectrum, 

especially in NIR, which confounded the LAI estimation from remote sensing data. 

Most of the satellite remote sensing data was from single near-nadir observation. The 

two MTA remote sensing algorithms provide a possibility to uncouple MTA and LAI 

effects on canopy reflectance for satellite data, for example, with the next generation 

hyperspectral sensor HyspIRI proposed by NASA to be mounted on a satellite in low 

earth orbit. After quantifying MTA, LAI estimation from canopy reflectance could be 

enhanced. MTA is also a confounding factor for the remote sensing of Cab. The two 

variables both have an influence on visible and red edge wavelengths. For example, 

when Cab is estimated from canopy reflectance model inversion, quantified MTA 

could be used as prior knowledge and reduce the ill-posed problem.  

5 CONCLUSIONS AND FUTURE STUDIES 

In this thesis, two general results were contributed to the scientific community. The 

first contribution is that an in situ LAD measurement method was developed and 

validated for field crops. The second contribution is that new methods were developed 

for remotely estimating the LAD of field crops. These contributions solved the 

problem of estimating vegetation LAD. After quantifying canopy LAD, this 

information could be separated from the optical observations of the canopy and used 

to improve the estimation of LAI or leaf pigment content (e.g., Cab).    
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The usability of photographic techniques for crop LAD determination was 

confirmed. For long curved leaves of cereal crops, leaf angle should be measured on 

the basis of segments and the relative area of each section should be considered. This 

method can be used to measure crop LAD efficiently, and the results can be 

reproduced. 

A high correlation between MTA and far red edge reflectance (748 nm) was 

confirmed for both the PROSAIL model-simulated and empirical data. In the 

PROSAIL model-simulated data, blue (479 nm) and red (663 nm) reflectance values 

exhibited dependence on MTA. In the empirical data, the blue and red reflectance 

values could be used to separate six crop species (assuming species-specific MTA). 

These two LAD estimation methods can be used for satellite imaging spectroscopy 

data to produce canopy structure products in the future.  

Among the analysed 58 narrow-band vegetation indices, many of them 

depended on LAI or MTA. Only two indices (TCARI/OSAVI and CTR6) produced 

strong and similar correlations with Cab in both model-simulated and empirical data, 

and they were less dependent on LAI and MTA. These two indices can be used to 

estimate Cab across various canopy structures and species. 

The LAD estimation technologies developed in this thesis facilitate the 

development of remote sensing of vegetation traits using airborne imaging 

spectroscopy data. However, there is no limitation for applying these methods using 

satellite imaging spectroscopy data. The results of this thesis enriched the application 

of imaging spectroscopy data on vegetation and can help to form the foundation of the 

global mapping of vegetation LAD. Furthermore, they could potentially be used for 

separating plant species using remote sensing data.  
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