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emmer wheat (Triticum dicoccoides), which is the tetra-
ploid progenitor of durum wheat, is a valuable source of 
novel stripe rust resistance genes for wheat breeding. T. 
dicoccoides accession G25 carries Yr15 on chromosome 
1BS. Yr15 confers resistance to virtually all tested Pst 
isolates; it is effective in durum and bread wheat intro-
gressions and their derivatives. Retrotransposons generate 
polymorphic insertions, which can be scored as Mendelian 
markers using techniques such as REMAP and IRAP. Six 
REMAP- and IRAP-derived SCAR markers were mapped 
using 1,256 F2 plants derived from crosses of the suscep-
tible T. durum accession D447 (DW1) with its resistant 
BC3F9 and BC3F10 (B9 and B10) near isogenic lines, which 
carried Yr15 introgressed from G25. The nearest markers 
segregated 0.1 cM proximally and 1.1 cM distally to Yr15. 
These markers were also mapped and validated at the same 
position in another 500 independent F2 plants derived from 
crosses of B9 and B10 with the susceptible cultivar Lang-
don (LDN). SC2700 and SC790, defining Yr15 on an inter-
val of 1.2 cM, were found to be reliable and robust co-dom-
inant markers in a wide range of wheat lines and cultivars 
with and without Yr15. These markers are useful tags in 
marker-assisted wheat breeding programs that aim to incor-
porate Yr15 into elite wheat lines and cultivars for durable 
and broad-spectrum resistance to stripe rust.

Introduction

Wheat exceeds all other food crops worldwide in hectares 
planted (FAOSTAT 2012) and becomes ever more impor-
tant as the global population increases. However, modern 
plant breeding practices have narrowed the genetic diver-
sity in wheat and in the germplasm reservoirs of resistance 
to biotic and abiotic stresses (Laidò et al. 2013). Stripe 
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rust, caused by Puccinia striiformis f.sp. tritici West. (Pst), 
is one of the most devastating diseases of wheat through-
out the world (Chen 2005; Chen et al. 2010). It can reduce 
yield by 70 % or, in severe cases, 100 % and lead to 
shriveled grains and stunted spikes (Chen 2005; McIntosh 
et al. 1995). Breeding resistant cultivars is the most eco-
nomical method for controlling stripe rust.

Wild emmer wheat (Triticum dicoccoides) harbors 
extensive genetic resources for wheat improvement includ-
ing genes for rust resistance (Fahima et al. 1998; Gerech-
ter-Amitai and Grama 1974; Nevo et al. 2002). An acces-
sion highly resistant to stripe rust, T. dicoccoides G25, 
was earlier described (Gerechter-Amitai and Grama 1974; 
Gerechter-Amitai and Stubbs 1970); its resistance was later 
shown to be conferred by a single dominant gene, desig-
nated Yr15 (Gerechter-Amitai et al. 1989a, b). Yr15 was 
shown to be effective against 24 Pst races from 18 coun-
tries worldwide (Gerechter-Amitai et al. 1989a) and to 26 
international isolates and Chinese races (Niu et al. 2000). 
More recent work showed that Yr15 was effective against 
all Pst races identified in the USA (Chen et al. 2010; Mur-
phy et al. 2009). Wide-scale introgression of Yr15 into cul-
tivated hexaploid bread wheat and tetraploid pasta wheat 
began in the 1980s following initial demonstration of the 
efficacy of Yr15 (Gerechter-Amitai and Grama 1974); it 
continues today (Yaniv et al. 2014).

Chen (2005) proposed combining all-stage (seedling) 
and HTAP (high-temperature adult plant) resistance as 
the most effective strategy for durable resistance to stripe 
rust. However, it is relatively difficult to combine genes 
for both forms of resistance into a single cultivar on the 
basis of phenotypic selection, and almost impossible, if 
the introgression involves two or more resistance genes 
to the same disease. Molecular markers that are closely 
linked to the genes of interest help to minimize introgres-
sion of unwanted flanking genes from the wild germplasm 
and thereby accelerate the process of developing wheat 
cultivars with stronger and more durable resistance. Fine 
genetic mapping in a large population is a prerequisite for 
both the application of marker-assisted selection and map-
based gene cloning.

Yr15 was localized to chromosome 1BS using cytoge-
netic analysis (McIntosh et al. 1996) and mapped using 
molecular markers (Chague et al. 1999; Peng et al. 2000; 
Sun et al. 1997) and shown to be flanked by two RAPD and 
RFLP markers in an interval of 7 cM (Peng et al. 2000). 
These markers have the disadvantages of being neither 
closely linked nor easily used for marker-assisted selec-
tion (MAS); they are ineffective against introgression of 
unwanted flanking traits (“linkage drag”). In wheat, 1 cM 
of genetic distance is approximately equivalent to 4.4 Mb 
(Delaney et al. 1995), although it has been shown to vary 
from 0.36 to 20 Mb (Saintenac et al. 2011). Moreover, the 

large monoploid genomes (5.6 to 6.2 Gbp) of wheats and 
the correspondingly high proportion of repetitive DNA, 
predominantly retrotransposons (Breen et al. 2013a; Inter-
national Wheat Genome Sequencing Consortium 2013; 
Paux et al. 2006), complicates map-based cloning in wheat 
(Feuillet et al. 2003; Uauy et al. 2006). Finding markers 
very closely linked to a target gene by mapping in large 
segregating populations can ease the isolation of a locus on 
one or a few BAC clones and narrow the pool of candidate 
genes therein. We therefore set out to develop new molecu-
lar markers for refinement of the mapping interval carrying 
Yr15 for MAS and for map-based cloning of this gene.

Retrotransposons not only comprise most of large 
genomes like that of wheat, but also may be harnessed as 
molecular markers (Kalendar and Schulman 2006; Schul-
man et al. 2012). Direct comparisons of retrotransposon 
marker methods with AFLP indicate that the former are 
some 25 % more polymorphic (Waugh et al. 1997; Yu and 
Wise 2000). While regions rich in retrotransposons tend to 
have lower rates of recombination (He and Dooner 2009), 
they are also expected to have more polymorphism arising 
from retrotransposon insertions. Although retrotransposons 
in grass genomes can be found in large arrays depauper-
ate of genes (Kronmiller and Wise 2007), they also nev-
ertheless frequently flank plant genes (White et al. 1994). 
A comparison found that retrotransposons comprise only 
8 % less (67 vs. 75 %) of the sequence of gene-bearing 
BACs than of random BACs (International Barley Genome 
Sequencing Consortium et al. 2012). These properties 
make retrotransposons well suited for gene mapping (Leigh 
et al. 2003; Manninen et al. 2000; Queen et al. 2004; Tan-
huanpää et al. 2007).

Various molecular marker systems have been used for 
fine mapping of stripe rust resistance genes (Huang et al. 
2003; Kota et al. 2006; Ling et al. 2003; Mago et al. 2005; 
Stein et al. 2000; Yan et al. 2003). In the current study, six 
IRAP- (inter-retrotransposon amplified polymorphism) and 
REMAP (retrotransposon-microsatellite amplified poly-
morphism) -derived SCAR markers tightly linked to Yr15 
were developed. These are both co-dominant and locus-
specific. Two of these markers are highly polymorphic 
across different genetic backgrounds and can be used reli-
ably to introgress Yr15 into elite wheat lines and cultivars 
and through MAS.

Materials and methods

Plant materials

The plant materials used for this study consisted of an 
F2 population of 1,256 individuals derived from crosses 
between the susceptible T. durum accession D447 
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(LD393/2*Langdon ND58-322) and its resistant BC3F9 
(B9) and BC3F10 (B10) near isogenic line (NIL) deriva-
tives. B9 and B10 carry Yr15 on a 1BS chromosome seg-
ment introgressed from T. dicoccoides accession G25, 
which had been produced by selection for resistance and 
for morphological similarity to the cultivar in each genera-
tion (Yaniv et al. 2014). From this population, 598 individ-
uals were screened by PCR with SSR markers Xgwm911 
and Xgwm18, which flank Yr15, and 33 F2 recombinants 
within the interval were identified. The 33 recombinants 
were used to develop new SSRs in the interval. The remain-
ing 658 individuals were then screened with the new SSR 
markers, Xbarc8 and Xgwm413, which flank Yr15 in an 
interval of 7.7 cM, and 87 F2 recombinants were identi-
fied. All of the 120 (33 + 87) F2 recombinants served as the 
population for fine mapping.

The B9 and B10 NILs were screened by PCR for mark-
ers Xbarc8 (Song et al. 2002) and Xuhw252 (E. Yaniv, 
unpublished data), which flank Yr15, to select recombinants 
in the interval. Ten F3 seeds from each F2 recombinant 
were screened with flanking markers to select homozygous 
recombinants. Eight F4 seeds of each homozygous recom-
binant were tested for seedling response to Pst race 38E134 
as described by Gerechter-Amitai et al. (1989a). In addi-
tion, 61 bread and durum wheat lines and cultivars, some 
containing Yr15 and some not, were used to validate and 
confirm two tightly linked markers, which flank Yr15, as 
candidates for MAS.

DNA isolation and SSR analysis

Ten-day-old seedling leaves were collected for use in DNA 
preparation. DNA was prepared by the CTAB method 
(Ausubel et al. 1995) with RNase A treatment. Primers for 
SSR markers Xgwm413 and Xbarc8, assigned to chromo-
some 1B between Xgwm911 and Xgwm18, were used for 
PCR amplification. Primer sequences were obtained from 
the GrainGenes website (http://wheat.pw.usda.gov/cgi-
bin/graingenes/browse.cgi?class=marker). Amplifications 
were performed on 60 ng genomic DNA in 20 μL volumes 
containing 1× buffer (BioTools B&M Labs, Madrid) con-
taining 2 mM MgCl2, 200 nM of each primer, 200 μM 
dNTP, and 1 U Taq polymerase (Biotools or Fermentas). 
Amplification was performed for 34 cycles. After initial 
denaturation for 4 min at 94 °C, each cycle consisted of 
40 s at 94 °C, 40 s at 60 °C, and 2 min at 72 °C. A 5 min 
final extension at 72 °C followed. Amplification prod-
ucts were separated by electrophoresis on 2 % agarose 
(RESolute Wide Range, BIOzym) and detected by eth-
idium bromide staining. Gel pictures were scanned with 
the FLA-5100 imaging system (Fuji photo film GmbH). 
The PCR fragments produced by Xgwm413 were resolved 
on an automated laser fluorescence (ALF) sequencer 

3130XL-ABIprism. To allow this, one primer of each pair 
was labeled at the 5′ end with Fam fluorescein dye. Frag-
ment sizes were calculated with Peak Scanner software v 
1.0 (Applied Biosystems) by comparison to the internal 
size standards of GS120 L12™ that were added to each 
lane in the loading buffer.

ISSR, IRAP, REMAP and EST-SSR analysis

A total of 42 ISSR and 100 IRAP single primers as well 
as 200 REMAP primer combinations (derived from 10 
ISSR primers in combination with 20 IRAP primers) 
were screened on the mapping parents. ISSR primers are 
anchored at the 3′ or 5′ ends of SSR repeats with a nucle-
otide at the 3′ end of the primer that does not match the 
repeat itself. Polymorphic markers potentially linked to 
Yr15 were tested on recombinants to determine genetic 
distances. Conditions for PCR, electrophoresis, stain-
ing, and gel scanning were, with minor modifications, as 
described by Kalendar and Schulman (2006). The IRAP 
and REMAP primers are specified in Supplementary Table 
S1. Five wheat EST sequences that contain SSRs and that 
match genes within the rice genomic region collinear to 
the wheat region of Yr15 were used to develop EST-based 
SSR markers. The sequences, based on ESTs TC8999, 
TC90000, TC67764, TC78819 and TC64667, were 
obtained from the International Triticeae Mapping Initia-
tive (ITMI) website (http://wheat.pw.usda.gov/ITMI/EST-
SSR/LaRota/Table3_est-ssr%20designed%20primers.xls). 
The conditions used for PCR, electrophoresis, stain-
ing, and gel scanning were the same as for the IRAP and 
REMAP markers.

Development of IRAP- and REMAP-derived SCAR 
markers

IRAP and REMAP PCR products were separated by elec-
trophoresis, excised from agarose gels, purified by gel 
extraction, and cloned. From colonies containing recombi-
nant plasmids, suspended in 200 µL colony storage solution 
(10 mM NaCl, 5 mM MgCl2, 10 mM Tris–HCl pH 7), 2 µL 
were tested by PCR amplification using the corresponding 
IRAP or REMAP primers (Supplementary Table S1) in a 
reaction volume of 20 µL. Following an initial denaturation 
for 5 min at 95 °C, the PCRs consisted of 23 cycles of 20 s 
at 95 °C, 40 s at 60 °C, and 10–120 s at 72 °C (depending 
on the insert fragment size), with a 5-min final extension 
at 72 °C. Electrophoresis, staining, and gel scanning were 
carried out as above. Clones yielding PCR products of cor-
rect size were sequenced. Specific primers were designed 
for each sequence and tested again on the parents and 
recombinants in order to verify that the correct PCR prod-
ucts were cloned.

http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://wheat.pw.usda.gov/cgi-bin/graingenes/browse.cgi?class=marker
http://wheat.pw.usda.gov/ITMI/EST-SSR/LaRota/Table3_est-ssr%20designed%20primers.xls
http://wheat.pw.usda.gov/ITMI/EST-SSR/LaRota/Table3_est-ssr%20designed%20primers.xls
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Statistical analysis

Marker order was determined using Mapmaker software 
(Lander et al. 1987). Because most of the markers analyzed 
were very closely linked (Ling et al. 2003), recombination 
frequencies was equal to centiMorgans (cM). Sequence-
specific primers were designed using FastPCR software 
(Kalendar et al. 2014; http://primerdigital.com/fastpcr.html).

Results

Fine genetic mapping at the Yr15 locus

The SSR markers Xgwm91-1, Xgwm413, and Xgwm18 
(Röder et al. 1998) flanked Yr15 over an interval of 20 cM, 
which was later narrowed to 7.2 cM with markers Xbarc8 
and Xgwm413 (Peng et al. 2000). That interval was more 
precisely mapped here. First, we tested the five EST-SSR 
primer pairs that match genes within the rice genome that 
are collinear to the wheat region of Yr15; no informative 
polymorphism was linked to Yr15. Five new ISSR markers 
were potentially linked to Yr15 on 1BS, but were not closer 
than the SSR markers reported previously (Peng et al. 
2000; Röder et al. 1998). A total of 28 IRAP primers and 
40 REMAP primer combinations were then tested; they 
yielded 70 markers that showed linkage to Yr15. One IRAP 
marker, IR2107, and five REMAP markers, RE425–485, 
RE443–495, RE443–834, RE438–483, and RE440–679 
(named according to the IRAP or REMAP primers used to 

develop them), were closely linked to Yr15 (Fig. 1). These 
six were taken forward for conversion to locus-specific and 
co-dominant SCAR markers.

The IR2107 and RE443–495 markers produced, in resist-
ant lines, locus-specific and co-dominant markers with 
fragment sizes of 1,600 and 790 bp, respectively; these 
were implemented as SCAR markers SC1600 and SC790. 
REMAP markers RE425–485 and RE443–834 yielded co-
dominant markers in resistant lines and were developed as 
SCAR markers SC2700 and SC1028. The REMAP mark-
ers RE438–483 and RE440–679 were developed as SCAR 
markers SC800 and SC338. Yr15 was flanked on the dis-
tal side by SC790 (1.1 cM, Fig. 2a) and on the proximal 
side by SC2700 (0.1 cM; Fig. 2b). Markers SC1600 and 
SC1028, which co-segregated, mapped at a distance of 
1.2 cM proximal to Yr15. Markers SC800 and SC338 were 
proximal to the gene, respectively, at distances of 2.1 and 
2.8 cM  (Fig. 3a). The SCAR markers were also mapped 
and validated on 41 F3 homozygous recombinants, derived 
from 500 F2 individuals from crosses of B9 and B10 with 
Langdon (LDN). The SCAR marker positions relative to 
Yr15 were the same as those in the above population, but 
the genetic distances were slightly different (Fig. 3b).

IRAP and REMAP-derived SCAR markers are highly 
efficient for MAS of Yr15

To evaluate the effectiveness of the newly identified, IRAP- 
and REMAP-derived SCAR markers, we assayed the four 
closest markers (SC790, SC2700, SC1600, and SC1028) 

Fig. 1  IRAP and REMAP 
polymorphisms developed into 
SCAR markers. The SCAR 
markers were developed as 
follows: a IRAP, IR2107; 
b REMAP, RE425–485; 
c REMAP, RE443–495; 
d REMAP, RE443–834; 
e REMAP, RE438-483; f 
REMAP, RE440-679. In b–f, 
the sample order is the same as 
in a B9 and B10 are resistant 
RILs; G25 is the resistant donor 
of Yr15; DW1 and LDN are the 
susceptible T. durum cultivars. 
Arrows point to the polymor-
phic bands developed into 
SCAR markers

B9 B10  G25 DW1 LDN
A B C

D E F

http://primerdigital.com/fastpcr.html
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on 25 wheat lines containing Yr15 and ten lines that lack it 
(Fig. 4; Tables 1, 2). All except two of the lines (HSB2408 
and HSB2955) were distinguishable by SC790 and SC2700. 
All of the remaining lines and cultivars showed complete 
correspondence between these two markers and response 
to Pst. Marker SC1600 was not polymorphic in any tested 
line or cultivar. It amplified the resistance-associated allele 
in all lines, except cv. Boston, which by phenotype contains 
Yr15. However, the resistance-associated allele was present 
in all lines and cultivars except line N163 that did not pos-
sess Yr15. Marker SC1028 was clearly not closely associ-
ated with the Pst resistance phenotype (Table 1). Thus, 
of the markers tested and developed, SC2700 and SC790 
appeared to be closely linked and reliable, either alone or in 
combination, for monitoring Yr15 in MAS. These markers 
are available via a material transfer agreement; please con-
tact the corresponding author.

The efficiency of the above four markers for tagging 
Yr15 was further assayed in 13 hexaploid cultivars into 
which Yr15 was introgressed by backcrossing. Markers 
SC1600 and SC1028 were again unreliable in distinguish-
ing the cultivars and derivatives with and without the intro-
gressed Yr15. Markers SC2700 and SC790 discriminated 
all pairs of lines, except for cv. Stiletto and Stiletto Yr15 
(Table 2), thus indicating that they can be used reliably in 
MAS programs.

Discussion

MAS and map-based cloning of the stripe rust resistance 
gene Yr15 depends on the development of markers closely 
linked to the gene. Yr15 was previously mapped using SSR, 
RFLP, and RAPD markers, but for use in MAS breeding 
programs these markers suffer from relatively loose link-
age to the gene and variable polymorphism among culti-
vars. In the present study, the availability of co-dominant 

SSR markers (Xgwm911, Xgwm18, Xgwm413, and Xbarc8) 
assisted in identification of recombinant lines in a high-res-
olution mapping population. Of available marker systems, 
the retrotransposon-based IRAP and REMAP methods 
proved both highly polymorphic and effective.

Fig. 2  Polymorphism of 
retrotransposon-derived SCAR 
markers on resistant and 
susceptible F3 homozygous 
recombinant plants. a Marker 
SC790; lines carrying Yr15 (B9, 
B10, G25, respectively, lanes 
1, 2, 3) can be distinguished 
by the higher MW band of the 
susceptible cultivars (DW1, 
LDN, respectively, lanes 4, 5) 
and F3 lines thereby genotyped 
(unlabeled lanes). b SCAR 
SC2700, where the parental 
and recombinant lines carrying 
Yr15 display a lower MW band 
(labeled as in a)

A

B

1 2 3 54

1 4 5

Xbarc8

SC790

SC2700

SC1600
SC1028

SC800

SC338
Xuhw252

Xgwm413

Centromere

Xbarc8

SC790

SC1600
SC1028

SC2700

SC800

SC338

Xuhw252

Centromere

Yr15 Yr15

A B

Fig. 3  Fine genetic map of stripe rust resistance gene Yr15 in chro-
mosome 1BS of wheat. Maps resulting from the analysis of a 1,256 
F2 plants of the cross of near isogenic lines B9 and B10 × D447, and 
b 500 F2 plants of the populations B9 and B10 × LDN
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A total of 70 polymorphic IRAP and REMAP bands, 
potentially linked to Yr15, were generated in our study. 
To facilitate marker-assisted breeding of wheat against 
stripe rust, we identified co-dominant PCR-based mark-
ers SC2700 and SC790 flanking Yr15 at genetic dis-
tances of 0.1 and 1.1 cM, respectively. The reliability 
of these markers was tested on independent large F2 
populations and also on a range of lines and cultivars 
with different genetic backgrounds. These tightly linked 
markers can be easily detected using 2 % agarose gels 
and readily used to incorporate Yr15 into elite breeding 
lines. They may also serve in predicting the presence of 
Yr15 in populations and collections. They are therefore 
expected to be useful for minimizing linkage drag asso-
ciated with the gene and, for example, for combining 
Yr15 and HTAP resistance (Chen 2005) during further 
breeding.

The high frequency of polymorphic retrotransposon 
bands suggests that the retrotransposon families chosen 
for IRAP and REMAP primers have been transposition-
ally active in durum wheat and its wild ancestor, T. dicoc-
coides. The tight association of SC2700 and Yr15 and the 
high polymorphism of the retrotransposon-based markers 
linked to Yr15 may not be coincidental. Sequence analy-
ses of the regions containing disease resistance genes in 
rice (Song et al. 1998), maize (Ramakrishna et al. 2002), 

barley (Shirasu et al. 2000; Wei et al. 2002), potato (Ball-
vora et al. 2007), and soybean (Innes et al. 2008) are 
consistent with this result. In general, these studies show 
highly dynamic changes in the retrotransposon content 
as well as a breakdown in the colinearity of resistance 
genes, which may be driven by recombination between 
retrotransposons.

Conversely, many genetic and molecular studies show 
that genes for disease resistance are frequently clustered 
or closely associated (Islam et al. 1989; Joshi and Nayak 
2013; Leister 2004; Michelmore and Meyers 1998). 
Among the named genes conferring resistance to stripe 
rust,  Yr10, Yr15, Yr24, and YrH52 are reportedly located 
on chromosome 1BS (McIntosh et al. 1998). Therefore, 
1BS is an important carrier of stripe rust resistance genes. 
Sequencing, annotation, and functional verification will 
ultimately establish if the 1B resistance genes are indeed 
clustered. Yr15 was earlier reported to be in the 1S0.8 
region of 1BS, which is both very rich in genes and highly 
recombinogenic, having only 365 kb per cM (Gill et al. 
1996; Sandhu et al. 2001). These features suggest that 
SC2700 and SC790 may be closely linked to Yr15 physi-
cally, particularly on the distal side, and therefore should 
be reliable markers with which to screen a BAC library for 
the positional cloning of Yr15 and possibly other nearby 
resistance genes.

A 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 191617 18 20 2221 2523 24 26 27 28 29 30 31

B 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 191617 18 20 2221 2523 24 26 2728 29 30 31

+―

+―

Fig. 4  Polymorphism of retrotransposon-derived SCAR markers on 
wheat lines and cultivars. a Marker SC790. Lanes from left: 1, B9; 
2, B10; 3, G25; 4, DW1; 5, LDN; 6, Reeves; 7, Sel32; 8, Sel46; 9, 
Sel20; 10, Legron; 11, Agrestis; 12, Cortez; 13, Boston; 14, Sel7; 
15, Maverick; 16, G90; 17, Wed; 18, Baxter; 19, Avocet; 20, Avo-
cet Yr15; 21, Sel4; 22, HSB2398; 23, HSB2527; 24, Combat; 25, 
QT3960; 26, Kern Yr15; 27, Kern; 28, UC1107 Yr15; 29, UC1107; 

30, UC1104 Yr15; 31, B1. b Marker SC2700. Lanes from left: 
1, B9; 2, B10; 3, G25; 4, DW1; 5, LDN; 6, Legron; 7, Agrestis; 8, 
Cortez; 9, Kulin; 10, Kulin Yr15; 11, Avocet; 12, Kern; 13, Avocet 
Yr15; 14, Kern Yr15; 15, UC1107; 16, UC1041; 17, UC1107 Yr15; 
18, UC1041 Yr15; 19, Boston; 20, Reeves; 21, Sel7; 22, M708; 23, 
Maverick; 24, G90; 25, Wed; 26, Sel32; 27, Combat; 28, Baxter; 29, 
Ruby; 30, Sel46; 31, Sel20
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Table 1  Polymorphism of newly identified IRAP- and REMAP-
derived SCAR markers between different hexaploid lines and culti-
vars

+ resistance-associated allele, − susceptibility-associated allele

Cultivar/line Phenotype Genotype

Yr15 SC2700 SC790 SC1600 SC1028

Sel32 + + + + +
Sel46 + + + + +
Sel20 + + + + +
Sel7 + + + + +
Sel07-97 Merav/

N163/G25
+ + + + +

Sel4 + + + + +
HSB 2398 + + + + +
HSB 2408 + – – + +
HSB 2527 + + + + +
HSB 2944 + + + + –

HSB 2949 + + + + +
HSB 2955 + – – + +
Legron + + + + –

Agrestis + + + + –

Cortez + + + + +
Boston + + + – –

B1 + + + + –

B2 + + + + +
79W793 + + + + –

G90 + + + + –

Wed + + + + –

BM383B195 + + + + +
B70 + + + + –

B174C93.8 + + + + –

B176c193.10 + + + + –

Reeves – – – + +
M708 – – – + +
Merav – – – + +
N 163 – – – – –

Ruby – – – + +
Sapphire – – – + +
Combat – – – + +
QT3960 – – – + +
Maverick – – – + +
Baxter – – – + +

Table 2  Polymorphism of newly identified IRAP- and REMAP-
derived SCAR markers between genotypes with and without Yr15

+ resistance-associated allele, − susceptibility-associated allele

Cultivar Phenotype Genotype

Yr15 SC2700 SC790 SC1600 SC1028

UC1107 Yr15 + + + + +
UC1107 – – – + +
UC1358 Yr15 + + + + +
UC1358 – – – + +
UC1128 Yr15 + + + + +
UC1128 – – – + +
Kern Yr15 + + + + –

Kern – – – + +
UC1037 Yr15 + + + + –

UC1037 – – – + +
UC1110 Yr15 + + + + +
UC1110 – – – + +
UC1041 Yr15 + + + + –

UC1041 – – – + +
Avocet Yr15 + + + + +
Avocet – – – + +
Corrigin Yr15 + + + + –

Corrigin – – – + +
Excalibur Yr15 + + + + +
Excalibur – – – + +
Kulin Yr15 + + + + –

Kulin – – – + +
Stiletto Yr15 + + + + –

Stiletto + + + + –

Suncea Yr15 + + + + –

Suncea – – – + +
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