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Abstract 

Metabolites are low molecular weight compounds participating in different functions of 

cellular systems. Metabolites can be used as diagnostic biomarkers for numerous 

diseases.  Liquid chromatography tandem mass spectrometry (LC-MS/MS) is a powerful 

tool in quantification of metabolites from various sample matrices. Good sensitivity and 

specificity are the main benefits of the technique. Mass spectrometry is commonly used in 

industry, drug research and clinical diagnostics. Extensive validation of newly developed 

analytical methods will construct the basis to a reliable assay, and it is significant 

especially when analysing e.g. patient samples. 

 

The aim of this study was to develop quantitative assays for metabolites from biological 

samples for biomedical research and clinical diagnostics. We designed and constructed 

an on-line high performance liquid chromatography (HPLC) equipment and validated an 

assay for direct quantification of extracellular metabolites from cell cultivation. Automated 

sampling for LC-MS/MS analysis of intracellular metabolites was connected to the on-line 

system. The on-line analysis improves the methodology and shortens the time of analysis. 

Furthermore, a frequent sampling data can provide valuable information about 

physiological indications in various cell cultivations. On-line HPLC is suitable for various 

biotechnological applications because of its ability to monitor and collect data during cell 

cultivation. 

 

We developed and validated LC-MS/MS assays for neuroendocrine tumor (NET) 

biomarkers 5-hydroxyindole acetic acid (5-HIAA) and vanillylmandelic acid (VMA) from 

human serum. Generally, urinary HPLC assays are used for the determination of NET 

markers. HPLC assays have certain limitations and 24-h urine collection is laborious. Our 

LC-MS/MS assays are specific, fast and well suited for diagnostics of NETs. Furthermore, 

guidelines for urine collection advise to refrain from serotonin-containing foods for three 

days before sample collection. We showed that such a diet restriction before serum 5-

HIAA assay is not necessary. Instead, one day serotonin-free diet before sampling is 

sufficient because the half-life of 5-HIAA in circulation was found to be 1.3 hours.   

 

All assays developed during this study were sensitive and had a wide linear range. Our 

serum 5-HIAA LC-MS/MS assay is routinely used for the analysis of NET patient samples 

at the Helsinki University Central Hospital Laboratory, HUSLAB. Serum VMA LC-MS/MS 

assay will be in routine use in the HUSLAB in near future. Furthermore, On-line HPLC Ltd, 

(Helsinki, Finland) has commercialized the on-line HPLC equipment developed in this 

study.                                                                                                                                          
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1 Review of the literature 

1.1 Introduction 

Liquid chromatography (LC) combined to mass spectrometry (MS) is a powerful tool for 

the analysis of various compounds, e.g. small molecular weight metabolites from different 

sample matrices. The number of LC-MS/MS instruments has increased in clinical 

chemistry laboratories during the past decade. Metabolite data is used to understand 

biochemical functions of cellular systems, and biomarker invention. Recent development 

in mass spectrometry techniques has contributed to the quantification of metabolites. 

Furthermore, there is a need for improved assays in clinical diagnostics. 

In this study, we used LC and LC-MS/MS methods to develop and validate assays for 

metabolites from biological samples. The main aim was that the newly developed assays 

would be useful both in research and clinical diagnostics. 

 

1.2 The metabolites 

 

Metabolites are a group of low molecular weight intermediates and products of 

metabolism. Generally, these include organic species like amino and fatty acids, 

carbohydrates, hormones, vitamins and lipids1. Metabolites can be divided into 

endogenous and exogenous metabolites and the term metabolome includes all 

metabolites of an organism. Endogenous metabolites are inherent compounds 

participating in general metabolic reactions like glycolysis, citric acid cycle and the 

pentose phosphate pathway. They have a role in the signalling, growth and normal 

function of a cell, in defence and in interactions with other organisms2,3. Exogenous 

metabolites are formed as part of the biochemical process of degrading and eliminating 

exogenous compounds such as drugs, dietary components or environmental pollutants1. 

The size of a metabolome is enormous. A relatively simple species of yeast, the 

Saccharomyces cerevisiae, contains almost 600 metabolites4 while the human 

metabolome database5 contains detailed information of over 40 000 small molecule 

metabolites found in the human body. Metabolite data can help in understanding 

biochemical functions of complex cellular systems. In metabolite analysis, research data is 

used for phenotypic6 and genotypic analyses7, biomarker determination8-10 drug 

intervention11, nutrigenomics12, clinical diagnostics13, metabolic engineering14 and systems 

biology15. A substantial part of metabolite research is focused on finding new biomarkers 

for diseases and development of analysis methods for metabolite biomarkers. New 
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analysis methods can be exploited in drug research, diagnostics or other medical 

applications.  

 

1.2.1 Metabolites as biomarkers 

According to the National Institutes of Health’s Biomarkers Definition Group, the term 

biomarker means “a characteristic that is objectively measured as an indicator of normal 

biological processes, pathogenic processes or a pharmacological response to a 

therapeutic intervention”16. Biomarkers can be categorized into four different groups 

according to their use, i.e. diagnostic, predictive, metabolic and outcome biomarkers17. 

They can be used in the prediction, detection and classification of a disease or to 

determine the dose of medication. Metabolite biomarkers are used e.g. in screening of 

inborn errors in metabolism18,19 and testosterone measurement in clinical diagnostics20. 

Biomarker discovery is important in the field of medicine. Recent developments in 

metabolite profiling techniques have facilitated the discovery of new biomarkers21. 

However, a promising new biomarker is not necessarily a useful biomarker. The path of 

validation and implementation of a new biomarker is demanding (Fig. 1).  
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Figure 1. Biomarker validation process (modified from Rifai et al.22).  

 

1.2.2 Analysis of metabolites 

In clinical chemistry laboratories quantification of diagnostic biomarkers is based on 

several assay principles. The main principles include photometry, enzymatic assays, 

immunological assays, electrophoresis, chromatography and MS. For example, glucose 

and cholesterol are assessed by enzymatic assays coupled to photometric techniques by 

automatized clinical chemistry analyzers23. Immunological assays are proven to be 

efficient with good sensitivity and specificity e.g. for analysing thyroid hormones and 

cancer biomarkers. Serum thyrotropin (TSH) is a protein biomarker used as the primary 

screening test for thyroid dysfunctions. It is usually determined by automated 

immunoanalysers24,25. A radioimmunoassay (RIA) has shown good sensitivity in the 

analysis of hyperandrogenism and polycystic ovary syndrome biomarker 

dehydroepiandrosterone (DHEA) and its sulphate metabolite (DHEA-S) from serum26. 

Ease of use, high sample throughput and possibility of automation are advantages of 

these methods in clinical laboratory. 
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Recent advances in mass spectrometry technology have contributed to the development 

of new and better assays for disease biomarkers or therapeutic drug monitoring. For 

example, unspecific immunoassays are not recommended for the analysis of steroid 

hormones27. Also, LC-MS assays of immunosuppressants administered to prevent of 

transplant rejection have shown better specificity than immunological assays28. The high 

specificity and sensitivity of mass spectrometric detection and the possibility to combine 

multiple analyses into one MS equipment (multiplexing)29 enable improvement of assays.  

However, the use of MS techniques requires highly skilled laboratory staff. Manufactures 

are developing improved MS software and analytical kits. MS kits for common analytes 

like immunosuppressants30 or steroid hormones31 have been introduced for diagnostics.  

 

Novel biomarkers are constantly needed and metabolites are a possible source for 

discovery. Screening and identification of new metabolites is based on two main 

techniques; nuclear magnetic resonance (NMR) or MS32 in stand-alone mode or coupled 

to modern separation techniques such as gas chromatography33,34, liquid 

chromatography35,36 or capillary electrophoresis37,38. NMR is an efficient technique for 

structural analysis and it is used for fingerprinting of large amounts of metabolites39. 

However, it is less sensitive than MS and thus requires a larger sample sizes40. 

 

1.3 High pressure liquid chromatography 

Liquid chromatography (LC) is an important tool in metabolite analysis41. LC analysis is 

robust and rapid to perform, has good repeatability and is relatively easy to automate and 

connect to a mass spectrometer or other detection devices. The chemical properties of 

the compounds of interest are various. Therefore, different chromatographic separation 

techniques have been developed and are commercially available. Usually two types of 

stationary phases with several modification options are used; inorganic silica or organic 

polymer phase42. The stationary phase pore size in the LC columns is usually 80–300 Å 

and the size of the particles is 3–5 µm. Furthermore, the column length may vary from 30 

to 250 mm43,44. In HPLC, analytes are separated by using operational pressures of 50–

350 bar. The separation is based on interaction of analytes between the stationary and 

mobile phases44. Ultra High Performance Liquid Chromatography (UHPLC) is a relatively 

new technique and has gained popularity in metabolite discovery in particular45,46. The 

difference between HPLC and UHPLC is that in UHPLC smaller particle and column sizes 

are utilized (inner diameter of 1–2.1 mm) and separation of analytes occurs under very 

high pressure. The advantage of UHPLC is the narrow peaks, high peak capacity and 

short analysis times leading to increased sensitivity and sample throughput47. For 
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example, the UHPLC-MS protocol was used to produce global metabolic profiles from 

human urine48. 

 

1.3.1 Reversed phase chromatography 

On the basis of publications cited in the PubMed49 reversed phase chromatography (RP) 

has been by far the most employed technique in metabolite analysis (Fig. 2).  

 

      
Figure 2. PubMed search results with words ”reversed phase chromatography” or 

“hydrophilic interaction chromatography” and “metabolites”. Abbreviations: RPLC: 

reversed phase liquid chromatography, HILIC: Hydrophilic interaction chromatography. 

 

In RP, the stationary phase is a hydrophobic carbon chain covalently bound to solid silica 

or polymer and the separation is based on hydrophobicity of the sample molecules44. By 

increasing the content of the organic eluent, hydrophobic molecules can be eluted from 

the column. The eluents used in RP are often volatile and connecting to electrospray 

ionization (ESI) and MS is thus easy. The disadvantage of RP is its weak capability to 

bind polar molecules50. 

 

1.3.2 Hydrophilic interaction chromatography  

Hydrophilic interaction chromatography (HILIC) was first introduced in the 1970s51, but it 

became common in metabolite analysis in the 2000th century. HILIC is a variant of normal 

phase (NP) chromatography and its separation mechanism is based on hydrophilicity of 

the molecules. It is usually an alternative in cases where RP is not able to separate polar 

compounds. The separation is founded on partitioning of the compounds into hydrophilic 
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stationary phase, hydrogen bonding and weak electrostatic interactions52. Manufacturers 

are offering a wider selection of specifically designed HILIC stationary phases with diverse 

functionalities to improve selectivity and retention of polar compounds. Unmodified bare or 

hybrid silica materials are the most popular phases. The most common mobile phase 

eluent is acetonitrile and the elution of the analytes is achieved by a water gradient. To 

improve retention, buffering salts like ammonium acetate and formiate are used in HILIC 

as they are compatible with MS53. The major advantage of HILIC is the possibility to use 

organic solvents in sample preparation without a vaporization step before 

chromatography. HILIC is used e.g. in the determination of levosulpiride from human 

plasma54 and neurotransmitters from primate cerebral cortex55. 

 

1.4 Mass spectrometry 

The first mass analyzer was manufactured in 191256 and since then the number of mass 

analyzers has multiplied56,57. In mass spectrometry, the sample is first ionized and the ions 

are then separated based on their mass-to-charge ratio (m/z) values. The use of mass 

spectrometric techniques has become more and more popular in medical laboratories 

during the past decade58. Liquid chromatography tandem–mass spectrometry (LC-

MS/MS) is nowadays a standard tool in clinical chemistry laboratories. This technique has 

good specificity and sensitivity, wide dynamic range and robustness59. Its major 

applications in clinical laboratories are vitamin assays (especially D-vitamin)60,61, steroid 

hormone assays62-64 and therapeutic drug monitoring65,66. The strengths, weaknesses, 

opportunities and threats (SWOT analysis) of LC-MS/MS analysis in clinical diagnostics 

are presented in Table 1. 
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Table 1. SWOT analysis of LC-MS/MS in clinical diagnostics. SWOT is a tool for auditing 

an organization, its environment and its processes. The strengths and weaknesses are 

internal factors; opportunities and threats are external factors. (Modified from van den 

Ouweland et al.59). 

Strengths Weaknesses 

 High sensitivity 

 High specificity 

 High speed of development at low costs    

of new assays when compared to 

immunoassays by in vitro diagnostics (IVD) 

companies 

 Possibility to measure multiple analytes in 

the same sample simultaneously 

 Multiplexing opportunity 

 Versatility 

 Near reference methodology in routine 

setting 

 Compatible with automated sample 

handling configurations 

 Relatively high instrument cost 

 Serial (batch-wise), non random-access 

operation 

 Need for highly skilled personnel for 

method development, validation, operation 

and troubleshooting 

 Lack of clearly defined quality regulations 

 Limited sample throughput in 

conventional set-up 

 Limited experience of IVD requirements 

from MS vendors 

 

Opportunities Threats 

 Progress towards more user-friendly 

instruments 

 Adoption of MS technology by major IVD 

companies 

 Broader availability of IVD approved kits 

for LC-MS/MS analysis 

 Quantitative measurement of peptides 

and proteins 

 Profiling metabolically related metabolites 

 Speed of development of new 

instruments 

 Difficulty in finding skilled technicians and 

experience at an academic level 

 Lack of commitment from major IVD 

companies 

 Regulatory bodies applying restrictions 

on using home-brew assays for diagnostic 

purposes 

 Competition from innovations in 

immunoassays or from the introduction of 

new technologies 
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1.4.1 Electrospray ionization 

There are several different ionization techniques in MS i.e. atmospheric pressure photo 

ionization (APPI)67 and atmospheric pressure chemical ionization (APCI)68, but 

electrospray ionization (ESI) is the most commonly used in metabolite research40,69. In 

ESI, analytes are ionized directly from the solution, so it is easy to connect to the LC 

system. ESI is a robust technique and tolerates high buffer concentrations. The main 

advantage of ESI is its suitability for ionization of small and large polar biomolecules70. 

However, APCI and APPI are more compatible for non-polar compounds71. The sample is 

sprayed through a high voltage capillary producing positively or negatively charged ions. 

Due to the high pressure and voltage, the liquid is dispersed into small droplets. Nebulizer 

gas produces turbulence that assists in the formation of the droplets. Repulsion makes the 

charges attempt to the surface and the neutral dissolvent molecules evaporate from the 

drops at the same time. The charge density increases in the drops and when it reaches 

the maximum the drops decompose into smaller ones. Eventually, only ions which fly to 

the mass analyzer are left72,73 (Fig. 3). 

 
     

Figure 3. Principle of the ESI (modified from www.lamondlab.com74). 

 

Analytes of interest compete with other sample molecules in the ionization process. Some 

additives, like formic acid, can be added to improve the positive ionization of the analyte75. 

Ionization in ESI can provide singly or multiply charged compounds. Generally, larger 

molecules e.g. peptides are multiply charged. The composition of eluent, buffer, pH, flow 

rate and concentration of the analyte of interest also affect to ionization76-78. 
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1.4.2 Mass analyzers 

Mass analyzer is the part of an MS instrument where ions are separated based on their 

m/z values. Mainly five different types of mass analyzers have been used in the analysis 

of metabolites, i.e. quadrupole (Q), ion trap (IT), time-of-flight (TOF), Fourier transformer 

(FT) and Orbitrap mass analyzers44,79. These analyzers have different strengths and 

weaknesses from the point of metabolite analysis. MS instruments vary in size, price, 

resolution, mass range and their ability to perform tandem mass spectrometry (MS/MS) 

experiments40,57.  

 

1.4.3 Triple quadrupole and MS/MS 

The triple quadrupole mass analyzer (QqQ) is the working horse in absolute 

quantification. A QqQ consists of three quadrupoles; Q1, Q2 and Q3. The first Q1 and the 

last Q3 are operated as mass analyzers and Q2 as a collision cell where molecules can 

be fragmented (Fig. 4). The Q1 and Q3 can be used to scan or isolate ions of interest. 

When desired, ions leaving Q1 can be fragmented in the collision cell before entering 

Q380. In Q1 and Q3 the ions can be separated by their m/z values57. A quadrupole 

consists of four quadrupole rods that have opposite voltages81. The electromagnetic field 

between the rods causes a wave motion of arriving ions. Stable ions start to vibrate with 

small amplitude and fly through the quadrupole. Ions with high vibration amplitude are not 

stable within the quadrupole and collide to the quadrupoles or walls of the instrument71. In 

the collision cell, ions undergo collision with inert gas (e.g., helium, nitrogen, argon, 

xenon) molecules. The transfer of kinetic energy from the stream of collision gas causes 

fragmentation of ions. This process is called collision-induced dissociation (CID)82. CID is 

the most often applied ion fragmentation method in metabolite analysis, but ion 

fragmentation can also be induced by techniques called electron capture induced 

dissosiation83 or surface induced dissosiation84. 
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Figure 4. Schema of a triple quadrupole mass spectrometer.  

 

 

Compared to high resolution analyzers, the major advantages of triple quadrupole 

analyzers are the relatively low cost and small size, robustness, wide dynamic area and 

ease of use and maintenance. Triple quadrupoles can work in different scanning modes 

(Fig. 5). For example the TOF and Q-TOF instruments are not able to operate in multiple 

reaction monitoring mode. On the other hand, triple quadrupole analyzers have a low 

resolution and limited mass range, usually within m/z 0-200085. 

 

 

 
Figure 5. Different scanning modes in QqQ (modified from Domon and Aebersold86). 
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1.4.4 Multiple reaction monitoring 

Multiple reaction monitoring (MRM) has been used as a quantitative technique for the 

analysis small molecules for over 30 years. Baty and Robinson were the first to report the 

monitoring of phenytoin and its metabolites in plasma by MRM in 197787. In MRM, mass 

spectrometer scans only selected precursor-product ion pairs and excludes all other ions 

from the scan. This enhances specificity and sensitivity in targeted quantitative metabolite 

analysis. 

 

In the MRM mode, the instrument scans though a list of selected transitions in an 

operation called the cycle time. If the cycle time is one second, the intensity value is 

recorded for each transition at one second intervals. Dwell time, for one, is the length of 

time in seconds when the highlighted mass is monitored88. The number of transitions-of-

interest is a crucial factor in MRM. The amount of scanning points for each transition-of-

interest within a cycle time defines the shape of the peak. Therefore, an analysis should 

allow at least 10-15 scanning points for each peak to ensure acceptable peak shape and 

adequate quantification. Cycle times of 1.1 s (Fig 6A) and 0.4 s (Fig 6B) result in different 

shapes of the peak and have an impact on the accuracy of the measurement of the 

metabolite concentration. Cycle times and the amount of scanning points in the peak 

depend on the number of transitions. 

 

 
Figure 6. Impact of the cycle time on the peak shape in MRM. (A) 22 MRM transitions, 

cycle time 1.1 s. (B) 8 MRM transitions, cycle time 0.4 s. 
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1.4.5 Matrix effect 

Matrix effect is a phenomenon known to influence the accuracy of MS analyses89. Matrix 

effects have been demonstrated mainly in biological matrices like plasma and urine90,91. 

The explanation of the mechanism is that the analyte and the co-eluting sample matrix 

components compete for ionization in the ion source. Such a competition between 

molecules may cause ion suppression or ion enhancement of the analyte. Molecules with 

higher mass tend to suppress the signal of smaller molecules, and polar molecules are 

more prone to suppression92. Phospholipids, which constitute a major part of the lipid bi-

layer in cell membrane, cause major ion suppression in MS93. The choice of ionization 

technique may play an important role in quantitative MS analysis. It has been shown for 

some compounds, that APCI is less prone to ion suppression than ESI94,95.  

 

Several attempts have been made to reduce matrix effects. Modifications of sample 

preparation or chromatographic conditions and standard addition method have proved to 

be powerful ways to compensate it92,96-100. A properly selected solvent composition and 

concentration101 and the use of stable isotope labeled compounds as internal standards 

can be used to correct for the inaccuracy caused by matrix effects. Labeled compounds 

mimic the analytes of interest in the ionization process and thus provide a powerful tool to 

correct for the suppression related to a non-linear response. However, in some cases it is 

not possible to use labeled compounds as internal standards. These compounds may be 

very expensive or synthesis of labeled standards may be challenging. Furthermore, the 

internal standard method does not always work as expected. Wang et al. have shown that 

high level of matrix suppression affected ionization of the analyte and its deuterated 

internal standard differently in human plasma making the correction of analyte response 

unreliable102. In MS assay for testosterone, the use of 13C labeled internal standard may 

underestimate the true concentration due to the natural 1.1% isotopic abundance of 13C 
103. Therefore, the method to compensate for the matrix effect must be chosen with care. 

 

1.5 Sample preparation in metabolite analysis by LC-MS/MS 

Analyzing specific compounds from biological samples is challenging because the sample 

contains large amounts of different components (lipids, salts, proteins, cellular 

components etc.)104. In metabolite analysis, the sample usually contains many undesired 

biomolecules (e.g. proteins) with different size and concentration. Furthermore, proteins 

may form complexes among themselves or with other biomolecules105. These factors 

complicate the sample preparation and make it an extremely important part of the 

analysis. Without proper sample preparation the risk of instrument contamination and loss 

of sensitivity and specificity are possible.  
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1.5.1 Solid phase extraction  

Solid phase extraction (SPE) is often used for sample pretreatment before analysis 

because of ease of use, specificity and selectivity106. The basic principle of SPE is 

adsorption of analytes into a chosen SPE sorbent material (reversed phase, normal 

phase, ion-exchange or covalent interaction)107. First, SPE sorbent is usually conditioned 

and equilibrated. Then, the sample is applied followed by washing steps and finally, the 

analytes are eluted from the sorbent. The advantages of SPE are selectivity, versatility, 

wide selection of sorbent materials and possibility of automation. Compared to 

precipitation techniques, SPE may be more laborious and more expensive to perform. 

SPE can be performed manually employing extraction cartridges, disks or microplates, or 

with commercial automation platforms (Hamilton, Tecan, Biotage Extrahera)108,109. In 

clinical chemistry laboratories, a 96 well microplate SPE is used e.g. in urinary 

metanephrines LC-MS/MS assay110. Thibeault et al.111 have developed a faster on-line 

SPE method compared to liquid-liquid extraction (LLE) in D-vitamin LC-MS/MS assay. 

Microextraction by packed sorbent (MEPS) is a miniaturized SPE technique that can be 

connected on-line to LC or GC. MEPS works with small sample volumes and the solvent 

volume used for the elution of the analytes can be injected directly into the LC system112. 

It has been used for instance in determination of cyclophosphamide from human plasma 

in therapeutic drug monitoring113. 

 

1.5.2  Liquid-liquid extraction  

Liquid-liquid extraction (LLE) is based on the partition of analytes and other compounds 

between an aqueous and an organic phase. Factors affecting the separation are analyte 

solubility, pKa, solution pH and ionic strength114. LLE has been used for the preparation of 

samples especially in environmental field106. In clinical chemistry laboratories LLE is used 

mostly for the preparation of steroid and vitamin samples115,116. LLE is a powerful sample 

preparation method, but more laborious to perform than SPE or precipitation. Without 

automated liquid handling LLE requires a lot of challenging manual pipetting of solvents.  

 

1.5.3 Protein precipitation  

Proteins can be precipitated by adding a denaturating organic solvent into the sample. 

Methanol, acetone and acetonitrile are used the most often in metabolite analyses. In 

addition, acid, salt or metal ions have been used as a denaturing agent117. Protein-

metabolite interactions are eliminated in the denaturation process. Phospholipids cause 

commonly ion suppression in MS assays118. Simultaneous protein precipitation and 

phospholipid removal can be performed in a specific commercial plate which allows 
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filtration of the precipitated samples119,120. For example, protein precipitation is used for 

immunosuppressants before LC-MS/MS assay121.  

 

1.5.4 On-line methods 

The development of on-line methods answers the needs for minimizing laboratory work 

and high-throughput assays. Furthermore, an interest for continuous monitoring and 

collecting data from biological processes requires on-line methodologies. The use of 

HPLC and LC-MS/MS on-line methods has increased in pharmaceutical industry and 

metabolite research122,123. On-line methodologies provide faster analyses, decrease 

laboratory work and enable continuous collecting of the data. The biggest challenge of on-

line methods is to ensure proper functionality of the automatic multi-step assay. Especially 

when developing quantitative assays, the possible interferences must be taken into 

consideration to ensure reliable quantification results. The above described chemistries 

can be utilized to on-line sample pretreatment. The sample preparation in on-line methods 

is often based on the automated 96-well format for solid-phase extraction (SPE) or liquid–

liquid extraction (LLE)124,125. Furthermore, direct injection from sample vials is also 

commonly used. For example, hemoglobin A1c and its variants have been measured 

directly from whole blood by HPLC including the hemolysis procedure126. On-line HPLC is 

used for continuous monitoring of compounds in fermentation processes127 and from 

waste water128. Membrane introduction mass spectrometry (MIMS) is also an effective 

technique for monitoring of metabolites. It has been used in continuous monitoring of 

metabolites from fermentation broths with 3-min sampling intervals129. There is a wide 

selection of membrane types in MIMS and the analysis time is short. However, it is most 

useful for small and non-polar compounds. 

 

1.6 Assay validation 

All analytical assays must undergo precise and systematic validation before 

implementation into routine use130. Validation determines the functionality of the assay, 

the validity of the results and whether the analytical method is suitable for the intended 

purpose. The importance of validation cannot be overestimated especially when analysing 

clinical or forensic samples. The forensic or doping results have to be reliable in the court. 

Furthermore, unreliable clinical results may lead to wrong diagnosis or treatment of the 

patient. Full validation is important when developing and implementing a new analytical 

method. Partial validation is accepted when an existing method is modified131. Clinical and 

forensic laboratories follow quality management and accreditation procedures according 

to international standards130. Also, the requirements of assay validation for studies to be 

accepted for publication in scientific journals are strict132.  
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Despite the robustness of LC-MS/MS methods there are several factors that influence the 

reliability of the quantitative analysis of metabolite concentrations in biological samples. A 

few were already mentioned earlier. In addition, sample loss during sample preparation 

and instrument specific “crosstalk” may cause unreliable quantification results. Usually, 

crosstalk may take place if several mass transitions with identical product ions are 

acquired133. Incorrect signals can be recorded if the collision cell is not emptied completely 

during the very short dwell time between different transitions. Crosstalk can also occur in 

transitions without similar product ions. It has been shown that plasma metanephrines 

affected the concentration of 3-methoxytyramine (3MT). Metanephrine calibration material 

was found to produce a measurable 3MT peak corresponding nearly 2% of the actual 

injected concentration. A likely explanation was that metanephrines may fragment within 

the ion source into ions mimicking 3MT134. Adequate scanning time of compounds in MS 

can be a crucial factor for reliable quantification135. Isotopically labeled internal standards 

are generally used to correct for loss of sample recovery during pretreatment. Especially 

in quantitative metabolomics, the objective is to quantify more and more metabolites in 

one analysis. This fact sets enormous challenges to achieve reliable metabolite 

quantification. In quantitative high-throughput analysis a substantial amount of compounds 

requires several internal standards. Only one or few internal standards do not fit a batch of 

several different compounds which have diverse chemical properties. Accordingly, these 

facts make appropriate internal standard selection problematic particularly if there is no 

possibility to use labeled standards. 

 

1.6.1 Analytical validation 

Analytical validation of a method includes tests to confirm assay specificity, sensitivity, 

precision, accuracy, recovery, linearity, limit of detection (LOD) and limit of quantification 

(LOQ). Each of these parameters should be investigated carefully before implementation 

of the assay131,136,137.  

 

Analytical specificity and sensitivity 

Specificity is the capability of an assay to separate and quantify an analyte from the 

sample. Sensitivity is the capability of the assay to discriminate small differences in the 

concentration of the analyte136. 
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Accuracy and precision 

Accuracy means the closeness of the measured analyte concentration to absolute 

concentration when the assay is performed in several repeats. Accuracy can be 

determined by spiking a standard into the sample matrix and calculating the recovery. The 

precision describes the difference in results between separate analyses136. The intra- and 

inter-assay precision should be determined separately. According to US Food and Drug 

Administration (FDA) bioanalytical method validation guideline assay inaccuracy and 

imprecision should be <15%131.  

 

Recovery and linearity  

Recovery is a measure of yield after sample preparation. Recovery can be estimated by 

adding a known amount of the analyte of interest to the sample and calculating the 

recovery after sample preparation. With well optimized assays recovery is usually more 

than 70%. The use of an internal standard can correct for sample loss. Linearity verifies 

that two quantities (e.g. concentration and peak area) are directly proportional within a 

given range. The liner range of an assay can be determined by preparing and analyzing 

calibrators in different concentrations (covering 50% to 150% of the normal analyte 

concentration) during several days. Calibrators should be prepared and analysed at least 

three times137. 

 

LOD and LOQ 

LOD is the lowest concentration of an analyte in a sample that can be detected. LOD is 

sometimes confused with the sensitivity of the method. LOD can be determined as the 

average + 3 standard deviations of ten to fifteen blank samples. LOQ is the lowest 

concentration that can be quantified with inaccuracy and imprecision less than 20%131. 

The LOQ can be divided to the lower limit of quantitation (LLOQ) and the upper limit of 

quantitation (ULOQ) and they are the highest and lowest standard curve points, 

respectively, that can be used for quantification.  

 

1.6.2 Preanalytical validation  

Preanalytical validation includes all crucial steps, which may influence result reliability 

before the performance of the assay. Factors related to sample collecting, handling and 

storage before analysis need to be studied (Table 2). Sample stability may be affected for 

example by repeated cycles of freezing and thawing or long-term storage. There are 

several studies reporting that steroid hormones have significant diurnal variation138,139. 

Male testosterone concentrations are at the highest level in the morning140. Renin-

aldosterone ratio is used for the diagnosis of primary aldosteronism. Medication, dietary 
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sodium, posture and time of day affect renin and aldosterone concentrations141. Thus, it is 

crucial to eliminate any preanalytical factors affecting the test results. In order to do so, 

lucid instructions for sample donors and adequate training of the laboratory staff are the 

most important things to keep in mind.  

 
Table 2. Preanalytical validation parameters. 

Step Parameter 

Collecting Sample matrix (serum, plasma, urine, saliva etc.) 

Sampling device 

Postprandial effect 

Diurnal variation 

Effect of diet 

Effect of medication 

Effect of exercise 

Effect of stress 

Posture (lying/sitting position) 

Handling and 
transport 

Handling time of sample (immediately, delayed) 

Delivery of samples (at room temperature, on ice, frozen) 

Way of transport (pneumatic mail, by car etc.) 

Storing Storing temperature (room temperature, + 4oC, - 20oC, - 

80oC) 

Storing time (length of time at different temperatures) 

Freeze-thawing (amount of times) 

 

1.6.3 Clinical validation of diagnostic biomarkers 

Reference values 

Gräsbeck and Saris introduced the concept of reference values in 1969142. Reference 

values are for describing the normal levels of the analyte in healthy individuals. The 

reference interval is determined with an upper and lower reference limit and includes 

population-based reference intervals usually consisting of 95% of healthy individuals. The 

selection of reference individuals is crucial in the determination of reference values. A 

representative sample is a group including at least 120 reference individuals from different 

age groups and both genders. Two statistical methods, a nonparametric and a parametric, 

are generally used for determining the reference limits143. However, determination of 

reference intervals is sometimes challenging and expensive. Therefore, laboratories also 

adopt carefully verified reference intervals from other laboratories. Analytical performance 
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of an assay and an analytical system employed may affect to reference values. This must 

be taken into consideration in the transference of reference values143.   

 

Ability of the assay to discriminate between healthy individuals and patients – ROC 

analysis  

The performance of a clinical assay is described by sensitivity, specificity, efficiency, 

usefulness and value of the test. Many terms can describe the clinical performance but 

the main idea is diagnostic accuracy of the assay. The most important point is how well a 

test performs clinically and discriminates between false negatives and positives from true 

negatives and positives. Receiver operating characteristic (ROC) is an adequate way to 

describe the diagnostic accuracy of a clinical assay144. ROC methodology is based on 

statistical decision theory and it is a practical tool to define the ability of an assay to 

discriminate between healthy and diseased individuals145. The area under the curve 

(AUC) is a commonly used summary of the ROC curve. The basic principle of ROC is that 

the closer the AUC is to value of 1, the better the assay discriminates between healthy 

individuals and diseased ones (Fig. 7). The ROC analysis also summarizes the sensitivity 

and specificity of an assay. Sensitivity determines the part of actual positives (i.e. a patient 

has a disease) which are identified correctly, and is also called the true positive rate. 

Specificity (sometimes called the true negative rate) determinates the part of negatives 

(i.e. a patient does not have a disease) which are identified correctly. For example, when 

comparing three different immunological assays of carbohydrate antigen 19-9 (CA19-9) in 

gastrointestinal cancer patients, the Architect CA 19-9XR assay provided the best 

discrimination by ROC between benign and malignant disease146.  

 
 

Figure 7. ROC analysis and AUCs of CA 19-9 immunological assays for differentiation 

between benign GI disease and pancreatic cancer (modified from Hotakainen et al.146). 
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1.7 Neuroendocrine tumors 

Neuroendocrine tumors (NETs) are heterogeneous due to their diverse anatomical and 

cellular origins147. Classification of NETs was made by the World Health Organisation 

(WHO) in 2000148,149. NETs originate mainly from entrochromaffin and Kulchitsky cells and 

are slow-growing tumors with hypersecretory symptoms150. A small but significant 

proportion of NETs are malignant and difficult to manage. NETs can secrete various 

bioactive substances151. A tumor which secretes specific hormones and forms liver 

metastases, leads usually to a carsinoid syndrome. The diagnosis of NETs is based on 

symptoms, biomarker assays, radiological and nuclear imaging and pathology152.  

 

1.7.1 Classification of the tumor 

Classification of NETs is complex according to International Classification of Disease for 

Oncology (ICD-O-3)153 and they are divided to three different grades (G1-G3)154. NETs are 

categorized according to their origin from different embryonic division of the gut into 

tumors of foregut (lungs, bronchi, stomach, pancreas, duodenum, thymys), midgut (small 

intestine, appendix and proximal large bowel) and hindgut (distal colon and rectum)155. 

Tumors of adrenal glands are called pheochromocytomas156.  Paragangliomas are 

catecholamine secreting tumors outside of the adrenal gland157. Catecholamine secreting 

neuroblastomas are the most common malignant extracranial tumors of childhood158. 

NETs may originate from almost any organ but around 95% of them are derived from the 

appendix, rectum and small intestine159-161. The biological and clinical characteristics of  

NETs may vary considerably. Therefore, a classification system takes into account also 

tumor differentiation and hormone production155,162. Some NETs are named by the 

secreted hormone; e.g. insulin – insulinoma.  

 

1.7.2 Symptoms and prevalence 

NETs are often indolent asymptomatic tumors and definitive diagnosis can be difficult to 

make. The symptoms are caused by overproduction of hormones and other biologically 

active substances. Episodic flushing, diarrhea, wheezing, sweating, eventual right-sided 

valvular heart disease are general symptoms of NETs163,164. The incidence of NETs is 

approximately 3.7/100 000 cases165. The number has increased during the past 

decades166,167. The 5-year survival rate for all NETs is 70-80%167,168. The stage of the NET 

affects the prognosis and the poorest survival rate is in patients with distant metastatic 

NET166. In 75% of the small intestine NET patients the disease will recur in 15 years169. 
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1.7.3 NET markers 

NET markers are hormones and amines that are secreted by NETs derived from the 

enterochromaffin cells. There is no ideal marker for NETs because these tumors may 

secrete varying amounts of serotonin, tachykinins, prostaglandins, catecholamines and 

histamine170,171. Urinary serotonin metabolite 5-HIAA is universally the most often used 

marker for NETs. It is a good indicator especially for midgut tumors, which are the most 

common type of NETs172,173. Serotonin is synthesized from an amino acid called L-

tryptophan. However, the major part of dietary tryptophan is exploited for protein synthesis 

and only 1–3% is metabolized to serotonin174. Approximately half of plasma serotonin is 

taken up by platelets by a transport mechanism175. Ninety-nine percent of serotonin is 

metabolized to 5-HIAA by monoamine oxidase (MAO)176 (Fig. 8B). Other tumor markers 

like chromoganin A (CgA) are used side by side with the 5-HIAA assay. Welin et al.177 

showed that CgA is an important marker with radically operated midgut NETs. However, 

CgA is ineffective in first-line diagnostics of NETs178. Furthermore, tachykinins neurokinin 

A and substance P are used as biomarkers for midgut carcinoid tumors179. Pancreatic 

polypeptide (PP) levels are increased in 80% of the patients with pancreatic tumors and in 

50% of the patients with neuroendocrine tumors180,181.  

 

VMA and metanephrines are used as markers for catecholamine-secreting tumors e.g. 

neuroblastoma and pheochromocytoma.  Three catecholamines; norepinephrine, 

epinephrine and dopamine are known to occur in vivo and NETs may secrete all or only 

one of them182,183. Dopamine is first metabolized to norepinephrine and VMA is the end-

product of catecholamine metabolism. In Figure 8A the biosynthesis route of VMA is 

described. The final enzymatic steps take place in the liver by MAO and catechol-O-

methyltransferase (COMT).       
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Figure 8. Metabolism of catecholamines (A) and serotonin (B) (modified from de Jong et 

al.184). Abbreviations: TYR: tyrosine, DOPA: 3,4-dihydroxyphenylalanine, DOPAC: 3,4-

dihydroxyphenyl-acetic acid, HVA: homovanillic acid, DA: dopamine, 3-MT: 3-

methoxytyramine, NE: norepinephrine, NMN: normetanephrine, VMA: vanillylmandelic 

acid, MHPG: 3-Methoxy-4-hydroxyphenylglycol, E: epinephrine, MN: metanephrine, 

COMT: catechol-O-methyltransferase, AADC: aromatic acid decarboxylase, PNMT: 

phenylethanolamine N-methyltransferase, MAO: monamine oxidase, TPH: tryptophan 

hydroxylase; 5-HTP: 5-hydroxytryptophan; ALDH: aldehyde dehydrogenase; ALDR: 

aldehyde reductase; 5-HIAA: 5-hydroxyindole acetic acid. 

 

Different NET markers, tumor sites and analysis methods are presented in Table 3. 
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Table 3. Common NET markers, sites and general assays (modified from Lloyd185). 

Tumor site Tumor type Marker Specificity General assay 

Ileum Midgut tumor 5-HIAA, Serotonin High HPLC 

Colon and 

Rectum 

Hindgut tumor Peptide YY, 

Somatostatin 

Intermediate Immunometric 

Thymys Foregut tumor Adrenocorticotropic 

hormone (ACTH) 

Intermediate Immunometric 

Bronchus Foregut tumor ACTH, 5-HIAA, 

Serotonin 

Intermediate Immunometric, 

HPLC 

Stomach Foregut tumor, 

Gastrinoma, 

Ghrelinoma 

Histamine, Gastrin, 

Ghrelin 

Intermediate 

Low 

Immunometric 

Pancreas Gastrinoma, 

Insulinoma 

Gastrin, Insulin High Immunometric 

Duodenum Gastrinoma, 

Somatostatinoma 

Somatostatin, 

Gastrin 

High Immunometric 

Adrenal 

gland 

Pheocromocytoma, 

Paraganlioma, 

Neuroblastoma 

VMA, 

Metanephrines 

High HPLC,  

LC-MS/MS 

  

 

1.7.4 Treatment and follow-up 

The objective of NET treatment is removal or reducing of tumor mass by surgery, 

alleviation of symptoms and extension of the patient’s lifespan186. The main issues in the 

follow-up are the symptoms experienced by the patient, the analysis of the tumor markers 

and imaging studies187. The follow-up is generally lifelong and for an asymptomatic patient 

a follow-up interval of 6-12 months is adequate188. The 24-h urine collections for NET 

marker analysis are troublesome to perform. All 24-h urine should be collected and the 

sample should be kept in the refrigerator during the collection period189. Serotonin and 

catecholamine-containing foods may increase the urinary excretion of 5-HIAA and VMA, 

respectively, and are advised to be avoided for 3 days prior to urine collection172,190. 

Furthermore, coffee and tea stimulate catecholamine and thus VMA secretion and some 

medications decrease it189,191,192. For the patient, the relatively frequent laboratory tests 

are a burden and for the laboratory, the conventional HPLC assays are laborious to 

perform and prone to interferes184. Sample preparation in conventional HPLC assay is a 

multistep and time-consuming procedure. Furthermore, some medications can cause 

chromatographic interference and may affect quantification results. Therefore, alternatives 
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for urinary HPLC assays have been developed193,194. Improved assays are still needed, 

and that was the main goal of our study. In the diagnosis of neuroblastoma, point 

measurement of urinary VMA has been shown to be as good as that from 24-h urine 

collection195. Therefore, point measurement of serum VMA and 5-HIAA is a notable 

alternative for the diagnosis of NETs. 
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2 Aims of the study 

The aim of this study was to develop sensitive and specific assays, exploiting LC and MS 

techniques, for the quantification of relevant metabolites from biological samples and 

accomplish marked benefit with these new methods in biomedical research and clinical 

diagnostics. The main goal was to design new methods which would be useful in research 

and clinical practice. 

 

  

 The more detailed aims of the research papers (I–IV) were:  

 

 To develop on-line LC and off-line LC-MS/MS methods for the analysis of extra- 

and intracellular metabolites directly from cell cultivations to be used in 

biotechnology (I).  

 

 To develop and validate quantitative LC-MS/MS methods for the analysis of NET 

biomarkers from human serum to be used in clinical practice (II, III, IV). 

 

 To study the effect of serotonin containing foodstuffs to serum NET biomarker 5-

HIAA concentrations and to review the diet restriction protocol before the 5-HIAA 

LC-MS/MS assay (III). 
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3 Materials and methods 

The materials and methods are described briefly in the next chapters. More detailed 

information can be found in the original publications or the supplementary material. 

 

3.1 Reagents 

-Ketoglutarate (AKG), malate (MAL), citrate/isocitrate (CIT/ICIT) and glucose-1-

phosphate (G1P), glucose 6-phosphate (G6P), fructose 1,6-bisphosphate (F16P), 

bisphosphoglycerate (BPG), phosphoenolpyruvate (PEP), 5-HIAA and VMA were 

purchased from Sigma Aldrich (St. Louis, MO). Deuterium labeled 5-HIAA-D2 and VMA-D2 

were from Medical isotopes Inc. (Pelham, NH). The 50% sodium hydroxide (NaOH), 

sodium chloride (NaCl), methanol for quenching the metabolism, MS-grade methanol, 

MS-grade acetonitrile (ACN), formic acid and ammonium formate were from Fluka 

(Sigma-Aldrich Co.). All reagents were of the highest analytical grade. 

 

3.2 Cell cultivations (I) 

The yeast strain used was Saccharomyces cerevisiae Yeast Strain CEN.PK113-7D from 

Euroscarf (Frankfurt, Germany). Yeast cultivation was performed by a Braun Biostat CT5-

DCU 3 bioreactor (B. Braun Biotech International GmbH, Meisungen, Germany). The 

bioreactor was equipped with automated sampling and measurement of the optical 

density (OD) of the cells. The parameters of cultivation were adjusted to a temperature of 

+30 oC, pH 5, aeration 2.5 L/min and agitation 1000 revolutions per minute (rpm).  

In on-line HPLC analysis, a software-controlled sequence automatically pumped the 

sample from the sample collector through the filter and injected 10 L of the filtrate into 

the separation column. On-line HPLC samples were taken at 5-min intervals. 

Quantification software automatically detected peaks of glucose, glycerol, acetate, and 

ethanol from the chromatogram. Samples for off-line HPLC and manual OD 

measurements were obtained from the manual valve at the bottom of the bioreactor at 1-h 

intervals. 

 

Samples for intracellular metabolite analysis were collected automatically at 1-hour 

intervals into plastic tubes containing 70% methanol placed in a sampling carousel 

submerged into ethanol-filled Lauda RE120 cold bath (Lauda, Lauda-Königshofen, 

Germany) at 35 °C. Rapid sampling to cold methanol was used to guarantee the 

quenching of all metabolic reactions. The methanol-containing samples were centrifuged 
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at 10 °C and the cell pellets were stored at 80 °C until sample preparation.  Schema of 

the on-line system is presented in Figure 9. 

 

 

 

   
  Figure 9. Schema of the on-line system. 

 

 

3.3 Patient samples (II, III, IV) 

Serum samples were obtained from healthy volunteers participating in the Nordic 

Reference Interval Project (NORIP) 196 and from our laboratory staff. For method 

validation and comparison, we also used urine, serum and lithium-heparin plasma 

samples from healthy volunteers, and from patients who were in suspicion of or followed 

for NET (Study II, III and IV). The patient samples were collected during June 2010 and 

August 2013. Informed consent was obtained from all healthy individuals. Patient samples 

were analyzed as part of their normal diagnostic process or follow-up of NET at Helsinki 

University Central Hospital. This study was approved by the Ethical Committee of Helsinki 

University Central Hospital, Helsinki, Finland (permission number 211/13/03/00/14). 

 

3.4 Sample preparation 

Manually collected samples for off-line HPLC analysis (study I) were centrifuged, and the 

supernatants were frozen and stored in HPLC vials at 20°C until analysis. 

The intracellular metabolite samples (study I) were automatically collected into cold 

methanol, manually extracted with boiling ethanol, centrifuged and the remaining 
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supernatants, containing the metabolite fraction, were dried (SPD Speed Vac, Thermo 

Savant, Waltham, MA), dissolved into IS (500 µmol/L piperine acid) and analysed by LC-

MS/MS. 

 

Serum samples and calibrators (study II, III and IV) were pipetted into the wells of a 96-

well microtiter plate along with IS working solution. A µElution SPE plate was conditioned 

with methanol and water. Samples and standards with IS were transferred into the 

µElution wells followed by washing. Finally, the analytes were eluted into 96-well plates 

and analyzed by LC-MS/MS.    

 

3.5 Preanalytical validation 

To study the stability of serum 5-HIAA and VMA (study II and IV), freshly drawn serum 

samples from healthy individuals were divided into aliquots and stored at room 

temperature, +4 °C and 20 °C for various time periods. Samples were allowed to reach 

room temperature before LC-MS/MS analysis. Blood samples from 18 healthy volunteers 

were collected into plain serum tubes, serum catalyzator tubes (CAT), serum gel tubes 

(SST™ II Advance, all from BD Vacutainer, Plymouth, UK) and lithium-heparin tubes 

(Venosafe 60 USP U Lithium Heparin, Terumo, Leuven, Belgium) to compare the effect of 

the sampling device (study II and IV). The diurnal variation of serum 5-HIAA and VMA 

concentrations (study II and IV) was studied in 7 volunteers. The samples were collected 

at 8 a.m., 12 a.m. and 4 p.m. and frozen immediately until LC-MS/MS analysis. When 

studying the of effect of  breakfast (study II and IV), blood samples were collected before 

10 a.m. during one week before and after a regular Finnish breakfast that consists of 

some of these: coffee, tea, milk, juice, bread, cheese, ham, porridge, cereals or yogurt.  

 

The effect of serotonin-containing foodstuffs (study III) was studied in 35 healthy 

volunteers (31 women and 4 men). After avoiding serotonin-containing foods for three 

days, a blood sample was drawn between 8–9 a.m. into a plain serum tube. The subjects 

then ate either banana, pineapple, tomatoes, walnuts or kiwi-fruit during the next 30 min 

or freely during the first day. Additional samples were drawn at 10 a.m., 12 a.m., 14 p.m. 

and following three mornings at 8 a.m. The samples were centrifuged and kept at –20 oC 

until LC-MS/MS analysis. 

 

Reference intervals for serum 5-HIAA and VMA (study II and IV) were established using 

111 serum samples from healthy volunteers. Reference ranges were calculated according 

to the guidelines of the International Federation of Clinical Chemistry and Laboratory 

Medicine (IFCC). To study the stability of 5-HIAA and VMA in the NORIP samples, that 
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had been kept frozen at –70 °C for 10–12 years, we compared the 5-HIAA and VMA 

concentrations in the NORIP sample and in freshly drawn samples from the laboratory 

staff in the different age groups.   

 

3.6 Analytical methods 

Automated on-line HPLC system (study I) consisted of a sample collector, a cross-flow 

filter, an injection valve, a separation column (Aminex Fast Acid 100 × 7.8 mm, Bio-Rad, 

Hercules, CA), a peristaltic pump, an HPLC pump and a refractive index (RI) detector 

(Knauer WellChrom K-2301, Berlin, Germany). 

 

Off-line HPLC analysis (study I) was performed with a Waters HPLC system (Waters, 

Milford, MA) containing a 717 autosampler, a 600S controller, a 626 pump, a degasser 

and a 2414 RI detector. Chromatographic separation was carried out using a Rezex RHM-

monosaccharide analytical column (150 × 7.80 mm) (Phenomenex, Torrance, CA).  

 

Intracellular metabolite analysis (study I) was performed with the Alliance HPLC system 

(Waters) connected to triple quadrupole Quattro Micro mass spectrometer (Mircomass, 

Manchester, UK). We used a Dionex IonPac AS11 (2 x 250 mm) anion exchange column 

connected to a Dionex IonPac AG11 (2 x 50 mm) guard column. The mass spectrometer 

was equipped with an electrospray ionization (ESI) interface.  

 

LC-MS/MS analyses (study II, III and IV) were performed with an Agilent 1200 liquid 

chromatograph (Agilent Technologies, Santa Clara, CA) and a 4000 QTRAP mass 

spectrometer (AB Sciex, Toronto, Canada) equipped with a Turbo-V electrospray ion 

source.  The analytical column was an Atlantis HILIC 50 x 2.10 mm 2.6 µm from Waters. 

 

Gel filtration chromatography (study III and IV) was carried out with the ÄKTApurifier 

system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden, www.gelifesciences.com) 

using a Superdex™ 200 10/300 GL column (GE Healthcare Biosciences). The column 

was equilibrated with phosphate buffered saline (PBS) and absorbance at 280 nm was 

monitored. 

 

Urinary 5-HIAA and VMA HPLC analyses (study II and IV) were performed with the 

Agilent 1200 system connected to Antec Leyden Intro electrochemical detector (Boston, 

MA). Chromatographic separation was carried out using a ZORBAX Eclipse XDB-C18 5 

µm (150 × 4.60 mm) (Agilent Technologies).  
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Plasma CgA samples (study II) were analysed by a commercial radioimmunoassay 

(EURIA-Chromogranin A, Euro Diagnostiga, Malmö, Sweden). The samples were 

collected to lithium-heparin tubes, separated by centrifugation at +4oC and stored at  

-20oC. The samples were diluted 1:10 with the assay diluent. The calibrators, controls and 

samples were pipetted along with assay reagents and incubated. The radioactivity of the 

pellets was counted in a gamma counter. 

 

Serum normetanephrine (Nor), metanephrine (Met) and 3-methoxytyramine (3MT) (study 

IV) were analyzed by a LC-MS/MS consisting of an Atlantis HILIC Silica 50x2.10 mm 

column (3 µm, Waters). The mobile phases were ACN and 100 mmol/L ammonium 

formate, pH 3. The samples were extracted using Oasis® WCX µElution plate (Waters, 

Milford, MA, USA). To each eluate, 100 µL of 95% ACN – 5% 100 mmol/L NH4-formiate, 

pH 3.0 was added.  

 

3.7 MS data analysis 

The MS data was acquired and processed by the QuanLynx software (Waters) in the 

study I and by the Analyst software (Ver. 1.5, AB Sciex) in studies II, III and IV. 

 

3.8 Statistical methods 

All statistical tests were performed by Analyse-it software for Microsoft Excel 2010 (Ver. 2, 

Analyse-it software Ltd., Leeds, UK, http://www.analyse-it.com). 
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4 Results  

The main results are described below. More specific details can be found in the original 

publications or the supplementary material. 

 
4.1 Study I. On-line high performance liquid chromatography measurements of extracellular 

metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture 

 

The on-line HPLC assay of cell culture medium was linear up to 50 g/L for all metabolites 

and the LOQ was 0.08 g/L for glucose, 0.1 g/L for glycerol, 0.2 g/L for acetate and 0.25 

g/L for ethanol. The intra and inter assay precision were 5.5% and 2.8% (averages for all 

metabolites), respectively. The accuracy was 7% for glycerol and 9.5% for glucose.  

 

The on-line HPLC measurements of extracellular metabolites in three different cell 

cultivations were in line. In all cell cultivations, glucose was consumed within the first 7.5 

hours. The non-fermentable carbon sources were consumed within 11 hours (acetate), 

14.5 hours (glycerol) and 16 hours (ethanol) (Fig. 10). 
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Figure 10. Average concentrations (n=3) of extracellular metabolites during cell 

cultivations.  

 

The on-line HPLC assay was compared to the off-line HPLC assay with manual sample 

preparation (n=35). On-line and off-line results of extracellular metabolites correlated 

according to formula y=0.97x + 0.04 for glucose (r2 =0.99), y=0.85x + 0.15 for ethanol 

(r2=0.97) and y=0.92x + 0.04 for glycerol (r2=0.96) and y=0.98x + 0.02 for acetate 

(r2=0.94). The on-line and off-line OD measurements were comparable. 

 

Quantification of intracellular metabolites revealed that the concentrations of G6P and 

F16P were at the highest level during the first eight hours of cultivation (Fig. 11). The 

CIT/ICIT ratio was the highest when the cells were consuming mainly acetate. After 

acetate consumption ceased, the CIT/ICIT ratio also decreased. Intracellular 
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concentrations of PEP peaked after ethanol and hence all the major carbon sources were 

consumed.  

 

     
Figure 11. Averages of intracellular metabolite concentrations of G6P, F16P, PEP and 

CIT/ICIT during three different cell cultivations. 

 

 

4.2 Study II. Analytical and preanalytical validation of a new mass spectrometric serum 5-

hydroxyindoleacetic acid assay as neuroendocrine tumor marker 

 

The developed LC-MS/MS assay for serum 5-HIAA is sensitive (LOQ 5 nmol/L) and has a 

wide linear range (5–10000 nmol/L). The inter-assay and intra-assay variation were 

5.3 8.0% and 2.7 7.1%, respectively. The recovery of added 5-HIAA was 98 101% in 

three serum samples. Slight ion suppression (13%) of 5-HIAA was detected.  5-HIAA in 

serum was stable for several days at various temperatures and during five freeze-thaw 

cycles. There was a significant difference between serum samples drawn into gel tubes 

and plain tubes (Fig. 12). No differences were observed between the other sampling 

devices.  
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Figure 12. Serum 5-HIAA concentrations when using different sampling devices. 

 

We found no diurnal variation (p 0.20) and a typical Finnish breakfast meal had no effect 

on serum 5-HIAA (p=0.89). A reference range of 35 123 nmol/L was established for 

combined age groups and genders because there was no significant difference between 

them (p 0.27) (Fig. 13). The upper reference limit (123 nmol/L) was suggested as clinical 

cut-off value into NET diagnostics.    

 

        
Figure 13. Serum 5-HIAA concentrations in men (M) and women (F) in different age 

groups (p 0.27). 
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Our LC-MS/MS assay for serum 5-HIAA was compared to urinary 5-HIAA HPLC and 

plasma chromogranin A (CgA) assays using samples from healthy individuals (n=8) and 

NET patients (n=129). The LC-MS/MS assay correlated well with both urine 5-HIAA HPLC 

(Fig. 14) and plasma CgA assays. The correlation was determined by Deming regression 

and the serum LC-MS/MS assay correlated with the urinary HPLC  and plasma CgA 

assays according to formulas y (LC-MS/MS) = 5.81 × (HPLC)  122.02 (Sy|x = 165.34, n 

= 137) and y (LC-MS/MS) = 25.92 × (CgA)  129.63 (Sy|x = 475.69, n = 120), 

respectively.  

 

          
Figure 14. Correlation between concentrations of 5-HIAA by serum LC-MS/MS and 

urinary HPLC assays. 

 

In ROC analysis of 46 NET patients and 29 healthy individuals the AUC was 0.83 for 

urinary 5-HIAA, 0.81 for serum 5-HIAA and 0.76 for plasma CgA assay (Fig. 15). There 

was no significant difference between the assays (p 0.17). The sensitivity and specificity 

was 57% and 95%, respectively, for serum 5-HIAA LC-MS/MS assay. 
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Figure 15. ROC-analysis of serum 5-HIAA LC-MS/MS, urinary 5-HIAA HPLC and plasma 

CgA immunological assays. 

 

 

4.3 Study III. Transient elevation of serum 5-HIAA by dietary serotonin and distribution of 5-

HIAA to plasma protein fractions 

 

Dietary serotonin (1.2–28.4 mg) had a significant but transient effect to serum 5-HIAA 

concentration (p 0.001). Serum 5-HIAA concentration increased within 2 hours after 

ingestion of serotonin containing food and was the highest (average 1797 nmol/L, n=3) in 

samples from individuals who had eaten walnuts (Fig. 16). A decrease in serum 5-HIAA 

was seen within 4 hours after ingestion and concentration reached the basal level after 24 

hours in all individuals. The calculated half-life of 5-HIAA in circulation was 1.3 hours. 
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Figure 16. Serum 5-HIAA concentrations in test individuals (n=7) who has eaten walnuts. 

 

Analysis of 5-HIAA in gel filtration fractionated serum samples revealed that the peaks 

eluting at 1.1 min, 1.5 min, 2.3 min and 3.1 min are derived from the background, from 

free 5-HIAA, and from 2-globulin and albumin fractions, respectively (Fig. 17). Only the 

peak from background eluting at 1.1 min was detected in every gel filtration fraction.  

 

 

      
Figure 17. Chromatograms of serum 2-globulin and albumin fractions by the 5-HIAA 

assay. 
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 Our study revealed that in serum from a NET patient with elevated serum 5-HIAA and 

from a diet test individual with a transient increase of 5-HIAA, the majority of 5-HIAA (84% 

and 65%, respectively) was found in the free 5-HIAA fraction and 11% and 29%, 

respectively, presumably in the albumin fraction. In serum from a healthy individual only 

5% of 5-HIAA was free and 83% was presumably in the albumin fraction. Furthermore, in 

all samples 11% of 5-HIAA was found probably in the 2-globulin fraction. 

 

4.4 Study IV. Preanalytical validation and reference values of mass spectrometric assay of 

serum vanillylmandelic acid for diagnosis of catecholamine secreting neuroendocrine tumors  

 

Our LC-MS/MS assay for serum VMA was linear over the concentration range of 1.25–

10000 nmol/L. The LOQ was 1.25 nmol/L and the intra- and inter-assay variations were 

2.7–6.0% and 5.4–6.4% at 60 nmol/L and 610 nmol/L, respectively. The recovery of 

added VMA was 97–99%. Minor matrix effect (average 3%) was detected. Serum VMA 

was stable for two days at +4 oC and at least for seven days at room temperature, during 

two freeze-thaw cycles and for at least 98 days at -20 oC (Fig. 18). There were no 

significant differences (p 0.45) between VMA concentrations in samples drawn into plain 

tubes, gel tubes, Li-heparin tubes and in clotting activator tubes.  

 

          
   Figure 18. Average serum VMA concentrations in samples (n=9) kept at -20oC.  

 

No diurnal variation of serum VMA concentrations was observed. However, there was a 

significant difference in serum VMA concentrations between samples drawn after 

breakfast and 12-h fasting (p=0.0031). We found no effect of catecholamine rich 

foodstuffs to serum VMA concentrations (p 0.18). There were significant differences in 

serum VMA concentrations between the various age groups (p 0.0001), but not between 
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the genders within the same age group (p 0.1445). We suggest cut-off values of 62 

nmol/L, 80 nmol/L and 108 nmol/L for combined genders in age groups 18 50 yrs (n=53), 

51 70 yrs (n=33) and >70 yrs (n=24), respectively. In gel filtration fractions of serum from 

a healthy individual, VMA was only found in the fraction corresponding to free VMA by our 

LC-MS/MS assay, i.e. our assay determines serum free VMA. 

 

Our serum VMA LC-MS/MS assay and urinary VMA HPLC assay correlated according to 

the formula y(LC-MS/MS) = 3,906x(HPLC) + 30,07 (n=17) by Deming regression (Fig. 19). 

We analyzed samples (<16 yrs) from active neuroblastoma patients (n=4) compared to 

healthy individuals (n=9) and patients in remission from neuroblastoma (n=4). Serum VMA 

was elevated in three out of four samples from active neuroblastoma patients. However, 

urinary VMA and serum normetanephrine and 3MT were elevated only in two out of four 

samples from active neuroblastoma patients. In analysis of samples of study subjects over 

16 years of age (one paraganglioma patient, one adenoma patient and 25 healthy 

individuals), serum VMA was slightly elevated (147 nmol/L, mean of healthy individuals 59 

nmol/L) in a sample from the paraganlioma patient. In these samples the concentrations 

of urinary (23.3 µmol, mean of healthy individuals 1.3 µmol) and serum (9.7 µmol, mean of 

healthy individuals 0.9 µmol) normetanephrine were also elevated. Only serum VMA was 

slightly elevated in a sample from the adenoma patient. 

 

            
 

Figure 19. Correlation between concentrations of VMA by serum LC-MS/MS and urinary 

HPLC assays (n=17).  
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5 Discussion 

5.1 Method development  

In this study, a need for improved methods was the main objective in all original research 

papers. HPLC combined to mass spectrometric detection is a very powerful technique for 

developing highly sensitive assays of metabolites. Urinary NET markers 5-HIAA, VMA and 

the metanephrines are generally analyzed by HPLC with electrochemical or fluorometric 

detection197,198. These assays may suffer from analytical interferences like drugs or other 

interfering molecules. Furthermore, the collection of 24-hour urine is prone to errors, and 

HPLC assays may be laborious to perform because of multistep sample preparation 

before the analysis172. Our mass spectrometric assays for measuring 5-HIAA and VMA 

from human serum improve analytical specificity and minimize the laboratory work.  

 

An on-line HPLC was constructed and developed for monitoring of extracellular 

metabolites on time during cell cultivation with frequent automatized sampling of 

intracellular metabolites. This enables continuous quantitation data of cultivation and 

observation of physiological processes of cells. The on-line system also enables 

automated optical density and gas exhaust measurements and sample storage. Sample 

preparation methods were improved in all assays. In on-line HPLC, sample preparation is 

totally automatized by using specific filtration before chromatographic column. On-line 

measurement decreases the laboratory work significantly compared to off-line 

measurements199. In 5-HIAA and VMA assays, a 96-well plate SPE protocol is fast and 

efficient when compared to urinary HPLC sample preparation in separate tubes and 

cartidges200. Serum sample collection is well controlled and easier to perform than 24-h 

urine collection.  

 

To verify the performance and functionality of the newly developed assays they were 

compared with the existing assays. Serum 5-HIAA LC-MS/MS assay correlated well with 

urinary HPLC and plasma CgA assays. According to preliminary results, serum VMA LC-

MS/MS showed good correlation with urinary VMA HPLC and plasma metanephrine 

assays. However, the clinical performance of the VMA LC-MS/MS assay needs further 

clinical studies with larger patient sample material.  On-line measurements were 

performed with three different cell cultivations to examine the reproducibility of the 

automated sampling and measurement system. On-line HPLC results of extracellular 

metabolites correlated well with those measured by off-line HPLC. The co-efficient of 

determination (r2) was 0.96–0.99 for all four metabolites. Automated OD measurements 

showed also good correlation compared to manual OD measurements.  
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5.2 Analytical and preanalytical validation  

All developed assays had a wide linear range. Our LC-MS/MS assays for 5-HIAA and 

VMA were linear at least from 5 to 10 000 nmol/L and our on-line HPLC assay for 

extracellular metabolites was linear up to 50 g/L. Sadilkova et al.194 reported recently a 

linear range of 2 1000 ng/mL (10 5000 nmol/L) for VMA UPLC-MS/MS assay. LOQs and 

linear ranges of our 5-HIAA and VMA assays were lower or similar when compared to 

previous reports193,194. In our on-line HPLC assay, the LOQ of glucose was 0.08 g/L. 

Glucose is the limiting nutrient in the medium and its concentration can affect cell 

growth201. Sufficiently low LOQ enables the monitoring of the consumption of the final 

glucose concentrations in cell cultivation.  

 

We observed a slight matrix effect (–13%) in our serum 5-HIAA LC-MS/MS assay. Miller 

et al.193 reported also minor ion suppression in their study. However, the recovery of 5-

HIAA in our assay was 98 101%. Thus, use of IS corrects the ion suppression 

completely. Minor ion suppression (3%) was observed with our VMA LC-MS/MS assay. 

Fang et al.202 reported 60% ion suppression in plasma VMA in LC-MS/MS assay, but they 

were able to reduce the matrix effect by changing the mobile phase conditions. 

 

5-HIAA serum sample concentrations were significantly lower in serum gel tubes 

compared to plain serum tubes, but no such differences were observed between VMA 

samples drawn into different kinds of tubes. In our experience, plasma samples may block 

the µelution SPE matrix. Therefore, we suggest plain or CAT serum tubes for sampling of 

5-HIAA and VMA assays. We found that both 5-HIAA and VMA are stable at -20 oC for at 

least 98 days. Furthermore, 5-HIAA is unaffected by five and VMA by two freeze-thaw 

cycles, and both were stable for at least seven days at room temperature. Therefore, 

serum samples from outpatient clinics can be transported to the analytical laboratory at 

room temperature which is convenient and cost-effective when compared to cooled or 

frozen samples. 

 

No diurnal variation was observed for serum VMA and 5-HIAA concentrations. We found 

that a typical Finnish breakfast had no effect on serum 5-HIAA concentrations and 

concluded that a meal without serotonin-containing foodstuffs before sampling does not 

affect the results. However, it has been indicated that serotonin-containing food increases 

serum and urinary 5-HIAA concentrations significantly, but the duration of the increase in 

serum had not been studied203-205. We wanted to study the effect and duration serotonin-

containing food to serum 5-HIAA concentrations. Our findings showed that dietary 
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serotonin causes a significant but transient dose-dependent increase in serum 5-HIAA. 

Urinary 5-HIAA collection guidelines172,190 advise to avoid serotonin-containing food for 

three days before sampling. We showed that a diet restriction for several days before 

blood collection is not necessary for the diagnosis of NET. On the other hand, we 

observed that breakfast increased, but cathecholamine-containing food as such had no 

effect on serum VMA concentrations. It is known that typical breakfast drinks, coffee and 

tea stimulate catecholamine secretion191,192 and this is likely to explain our finding. 

Therefore, we suggest sampling for serum VMA after an overnight fast.  

 

5.3 On-line analysis 

On-line HPLC assays can be used in different applications in the research, industry and 

clinical laboratories. These systems have often been in-house-built equipment and used 

for the production of engineered proteins206, monitoring of azo dye degradation 

processes207 and production of monoclonal antibodies in cell culture208.  

 

Our software controlled on-line HPLC was able to collect samples from cell cultivation 

within 5 min intervals for quantification. Extracellular metabolites; ethanol, acetate, 

glucose and glycerol were directly analyzed from the supernatant and the quantification 

results were immediately available. This sampling equipment also collected samples 

automatically at 1-hour intervals for intracellular metabolite MS analysis. Combined on-line 

HPLC and intracellular metabolite data indicated two phases of diuaxic shift in cell 

cultivation. The cultivated yeast cells consumed primarily glucose for nutrition. By frequent 

sampling it was possible to show the turning point when the consumption of glucose was 

switched to consumption of acetate, glycerol and ethanol. The concentrations of 

intracellular metabolites were at the lowest level during the consumption of the last 

glucose residues. After acetate had been consumed, but the cells were still consuming 

glycerol and ethanol, the levels of CIT/ICIT and MAL decreased. Intracellular 

concentrations of PEP and G1P peaked when ethanol and all the major carbon sources 

were consumed. To our knowledge, this was the first study to show the two phases in a 

diauxic shift in yeast cell cultivation. Gene expression during the diauxic shift has been 

studied widely209-211. A 5-minute interval for sampling of four metabolites in our study is 

frequent. Usually, the sampling interval in multiple metabolite HPLC assays is 

approximately 20 to 35 minutes207,212. Due to the frequent sampling interval, our HPLC 

device is applicable for detailed physiological characterization of the cells. 

 

Our on-line HPLC system has been commercialized by On-line HPLC Ltd. (Helsinki, 

Finland)213. The system has been used for monitoring of the production of glycolic acid in 
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Saccharomyces cerevisiae and Kluyveromyces lactis cell cultivations214. Glycolic acid is 

used widely in medical industry, for example as starting material in packing products or 

drug delivery215,216. The on-line HPLC is also well suited for monitoring of mammalian cell 

cultures (Chinese hamster ovarian cells, Tohmola et al. unpublished data).  

The main benefit of the on-line HPLC is the possibility of simultaneous monitoring and 

collecting the quantification data. Processing of biofuel by micro-organisms is a growing 

field in the biotechnological research. Accurate and frequent monitoring of metabolite 

concentrations in biofuel process is important and made possible by on-line sampling217. 

Our newly developed on-line HPLC enables automated and scheduled sampling without 

sample preparation and monitoring of multiple bioreactors with one HPLC. As a result, the 

analysis becomes more cost-effective when the hours of manual laboratory work are 

decreased. On-line assays are likely to increase in the industry and research in the future.  

 

5.4 NET marker analysis 

We found that serum VMA concentrations in apparently healthy individuals increased with 

age, but there were no differences between the genders. However, no such differences 

were seen for serum 5-HIAA. Therefore, we suggest a cut-off value of 123 nmol/L for 5-

HIAA, and 62 nmol/L, 80 nmol/L and 108 nmol/L for age groups 18 30 yrs, 51 70 yrs and 

>70 yrs, respectively, for VMA. These reference values are in line with previously reported 

studies. Tellez et al.218 and Carling et al.219 reported cut-off values of 115 nmol/L and 118 

nmol/L for 5-HIAA, respectively. Neuroblastoma occurs usually in the childhood. Due to 

low incidence, our sample material was limited and the reference individuals were 18 yrs. 

However, Sadilkova et al.194 calculated a plasma VMA cut-off value of 100 nmol/L for 

children <16 yrs and our cut-off value of 62 nmol/L for the age of group 18-30 yrs is in 

accordance with this. In future studies, true pediatric reference values for our VMA assay 

remain to be established. Urinary VMA concentrations have been reported to be similar in 

boys and girls220 and to show age-dependent elevation221. Therefore, our results on serum 

VMA are similar to the findings on urinary VMA. 

 

In the clinical diagnosis of NET, our serum 5-HIAA LC-MS/MS assay was comparable with 

urinary HPLC 5-HIAA and plasma CgA assays. The ROC analysis revealed that serum 5-

HIAA (AUC = 0.81) and urinary 5-HIAA (AUC = 0.83) assays discriminated better between 

NET patients and healthy individuals than the CgA assay (AUC = 0.76), but the difference 

was not statistically significant (p 0.17). The diagnostic sensitivity and specificity of our 5-

HIAA assay were 57% and 95%, respectively, with a cut-off value of 123 nmol/L. The 

sensitivity is lower compared to urinary 5-HIAA assay (67%), but the difference is not 

significant. The serum assay is a point measurement compared to 24-h urine collection 
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and this might explain the difference in the results. According to our preliminary data, VMA 

LC-MS/MS assay showed good discrimination with active NET patients (3 

neuroblastomas and one paraganglioma). In the case of our adenoma patient, only serum 

VMA concentration was increased compared to urinary and plasma metanephrines and 

urinary VMA. Blood sampling is well controlled and convenient for the patient when 

compared to 24-h urine collection.  
 

In 5-HIAA LC-MS/MS assay, we observed additional peaks with the same transitions as 5-

HIAA in the chromatograms. Therefore, we wanted to study the distribution of 5-HIAA and 

VMA in serum fractions and to find out whether our LC-MS/MS assay determines free or 

protein-bound 5-HIAA and VMA. 5-HIAA and VMA were found in gel filtration fractions 

corresponding to free 5-HIAA and VMA. In addition, a possible 5-HIAA peak was also 

found in the albumin and alpha-2-globulin fractions. This may explain the additional late-

eluting peaks seen in the 5-HIAA chromatograms. Itkonen et al.222 have reported a late-

eluting hepcidin peak in the LC-MS/MS chromatogram of their hepcidin assay. After 

similar gel filtration studies, the late-eluting peak was found in the albumin fraction in 

which the presence of albumin was confirmed with matrix assisted laser desorption 

ionization (MALDI) mass spectrometry. The majority of assumed 5-HIAA was found in the 

albumin fraction and only 5% of 5-HIAA was free in the serum of a healthy individual. The 

distribution of 5-HIAA in plasma has not been studied earlier. Further studies are needed 

to confirm the binding or association of 5-HIAA to the proteins in the albumin and alpha-2-

globulin fractions.  In conclusion, 5-HIAA is likely to bind to albumin and proteins in the 

alpha-2-globulin fraction, but our assays determine serum free 5-HIAA and VMA. 

 

Our LC-MS/MS assays for serum 5-HIAA and VMA are well suited for use in clinical 

laboratories and for diagnosis of NETs. Serum 5-HIAA LC-MS/MS assay has been used 

in routine diagnostics in HUSLAB in Helsinki University Central Hospital since January 

2013. Serum VMA LC-MS/MS assay will be introduced to the test panel after training of 

the personnel. 
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6 Conclusions and future prospects 

The main findings of this study are: 

 

 We developed and validated an on-line HPLC equipment for direct quantification of 

extracellular metabolites from cell cultivation. The equipment was connected to 

automatic sampling for intracellular metabolites. The HPLC equipment has been 

commercialized by On-line HPLC Ltd, Helsinki, Finland. 

 

 We developed and validated LC-MS/MS assays for NET markers 5-HIAA and 

VMA from serum. 5-HIAA LC-MS/MS assay is routinely used for the analysis of 

NET patient samples in the HUSLAB, Helsinki University Central Hospital. VMA 

LC-MS/MS assay will be in routine use in the near future after training of the 

personnel. 

 

 We observed that a diet restriction for 3 days before serum 5-HIAA assay is not 

necessary. Instead, one day restriction before sampling is sufficient because the 

half-life of 5-HIAA is only 1.3 hours. The diet restriction protocol for patients was 

reassessed according to these findings. 

 

 

There is a need for more specific and straightforward assays in research and industrial 

laboratories. The use of MS technology is likely to increase in clinical laboratories and 

manufactures are making efforts to simplify analysis protocols.  Like all other assays, LC-

MS/MS assays, too, should undergo systematic validation before introduction into patient 

care. There are some pitfalls in MS analyses and the users should be aware of potential 

limitations of the methodology. 

 

The methods developed in this study are sensitive and well suited for the purpose of 

demand. Furthermore, compared to the existing methods all assays developed in this 

study improved the methodology. The 5-HIAA assay has been in clinical use for two years 

with expected performance and reliability. Awareness of the new assay among clinicians 

is increasing and the monthly sample amounts are constantly growing (Fig. 20). The 

patient sample material in study IV was limited due to low incidence and time constrains. 

There is a plan for collection of lager amounts of patient samples in the near future. After 

collecting of the sample material, we will establish pediatric reference intervals for serum 

VMA. Furthermore, some new assays for tumor markers or other metabolites will be 

developed.   
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Figure 20. Monthly sample amounts of serum (S -5HIAA) and urinary (dU -5HIAA) 5-HIAA 

assays during 2013-2014. 
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