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Summary

Viruses infect all domains of life. They establish complex interactions with their host

cells to subvert and hijack multiple cellular processes and warrant their own replication.

Understanding virus-host interactions is critical to control spread of pathogenic viruses,

develop vaccines and search for antivirals. Besides that, understanding virus-host in-

teractions allows deciphering complex cellular processes and provides useful tools for

biotechnology.

My research is dedicated to influenza A virus, an important pathogen that infects

humans worldwide, represents a constant health care threat and elicits continuous ef-

forts to control the human spread of the disease. Influenza A expresses a non-structural

protein NS1 that is a key regulator of viral interactions with the host cell and an impor-

tant virulence factor. Versatile functions of NS1 modulate multiple cellular functions

to secure viral replication.

This work addresses several aspects of NS1-mediated modulation of core cellular

processes. We discovered that NS1 binds to dsDNA and inhibits transcription of cellular

genes, thus limiting antiviral responses. We found that NS1 secures general protein

synthesis and mapped several residues within NS1 that are essential for this function.

Further, we showed that the length of C-terminal “tail” of NS1 is essential for control

of cellular antiviral responses and virus pathogenicity. The presented results increase

the understanding of influenza A virus-host interactions and can be further utilized

in the search for antivirals and vaccine development. In addition, this work provides

a biotechnological application of influenza A NS1 protein for improvement of cell-free

translation system.
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1 Review of the Literature

1.1 Introduction

Viruses are seemingly simple in comparison to organisms that they infect and consist

of just a genome, structural proteins and sometimes a lipid bilayer envelope. Because of

this simplicity they have very limited capacity to encode factors essential for their own

replication. Viruses are obligate parasites of cells and have evolved multiple strategies

to interact with the cell at each step of viral life cycle. For this, specific viral proteins

interact with the numerous host factors and subvert cellular processes to fulfill the

needs of virus replication.

The initial interaction event between the virus and a susceptible cell occurs when

viral receptor-binding proteins recognize cellular proteins, carbohydrates or lipids ex-

posed on the cell surface (Grove and Marsh, 2011). Viruses enter the cell via non-

endocytic or endocytic routes, which often require interaction with cellular factors,

such as clathrin-coated vesicle components (Dimitrov, 2004; Yamauchi and Helenius,

2013). Interaction with the cellular cytoskeleton is widely used by viruses to accelerate

and direct their antero- and retrograde transport through the crowded intra-cellular

environment (Ploubidou and Way, 2001). Uncoating and release of viral genomes is

often triggered by interaction with specific cellular proteins (Suomalainen and Greber,

2013; Haywood, 2010). Furthermore, viruses that replicate their genomes in the nu-

cleus translocate viral components there in an active way which requires binding to

the proteins of nuclear pore complex (Kobiler et al., 2012).

Independently on whether they encode their own RNA polymerase or use the cel-

lular enzyme, complex interactions with the cellular transcription machinery ensure

effective synthesis of viral mRNA(s). For example, poliovirus and Rift Valley fever

virus, which use their own enzymes for RNA synthesis both shut down host transcrip-

tion, which is not essential for viral replication (Le May et al., 2004; Kundu et al.,

2005). In contrast, the viruses that require host transcription machinery, for example
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herpes simplex virus, set up regulatory interactions with cellular transcription factors

to support their own DNA synthesis (Wysocka and Herr, 2003).

Furthermore, being restricted in their encoding capacity viruses lack their own

functional translation machinery and fully rely on host protein synthesis (Walsh and

Mohr, 2011). Even Pandoravirus salinus with the biggest known viral genomes of 2.77

mega base pairs encodes only few required translation factors remaining dependent on

protein synthesis of its Acantamoeba host (Philippe et al., 2013). Viruses target the

cellular translational machinery to secure preferential translation of viral transcripts or

to shut off host translation when it is not required. For instance, vesicular stomatitis

virus utilizes specific 3’ structures on its mRNA and also interacts with the ribosome to

secure preferential synthesis of viral proteins (Whitlow et al., 2006; Lee et al., 2013a).

Viruses further utilize cellular processes for transport of their components or assembled

virions and for escape from the cell (Bartenschlager et al., 2011; Lyles, 2013). Thus,

human immunodeficiency virus type 1 usurps cellular endosomal sorting complexes

required for transport pathway to facilitate its effective budding (Morita et al., 2011),

whereas adenoviruses induce autophagy to enable cell lysis and viral exit (Jiang et al.,

2011).

The cells of plants, many invertebrates and vertebrates respond to infection with

robust induction of innate immune responses and no successful virus replication would

be possible without control over these responses. For this, viruses have evolved a mul-

titude of approaches to counteract their recognition by cellular detectors (Zinzula and

Tramontano, 2013), subvert signal transduction, prevent activation of antiviral genes

(Short, 2009), and, when necessary, limit apoptosis (Galluzzi et al., 2008).

The number of viral strategies to interact with the host cell is overwhelming. Al-

though research helped to deduce the basic strategies of viral life cycle from the nature

of viral genomes already in 1971 (Baltimore, 1971), the exact mechanisms of viral

replication are so diverse and complicated that we are still striving to understand

them. Studies of virus-host interactions are largely driven by attempts to improve the
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surveillance of pathogenic viruses, search for antivirals and development of vaccines

(Webby and Webster, 2003; Schwegmann and Brombacher, 2008). However, viruses

have also proven many times to be valuable tools for understanding cell functions,

from the initial discovery of DNA as genetic material (Hershey and Chase, 1952), up

to recent advances in tackling complex processes such as endocytosis (Pelkmans and

Helenius, 2003). Finally, understanding virus-host interactions brings novel applicable

tools widely used in biotechnology, such as viral vectors for gene transfer (Vannucci

et al., 2013) or baculovirus systems for heterologous protein production (van Oers,

2011). Although a great deal of mechanisms have been already discovered, the amount

of information that we get now is growing exponentially and the majority of discoveries

is perhaps still ahead.

1.2 Influenza A virus: an overview

This work is dedicated to influenza A virus, a member of the Orthomyxoviridae fam-

ily. Influenza A viruses are commonly classified based on their surface antigens—

hemagglutinin (HA) and neuraminidase (NA). HA subtypes 1–16 and all NA subtypes

1–9 are found in wild birds which, apparently, represent the main natural reservoir for

influenza A virus (Stallknecht and Brown, 2007). In addition, H17N10 and H18N11

viruses were recently found in bats that seem to represent a sylvatic mammalian reser-

voir for influenza A viruses (Tong et al., 2012; Tong et al., 2013). Certain viral subtypes

can also infect domesticated birds and multiple species of mammals, including humans.

Whereas influenza A virus is usually asymptomatic in its natural hosts, it can cause

mild to severe intestinal infections in poultry and asymptomatic to severe respiratory

infections in mammals (Webster et al., 1992).

Although the first human influenza A virus was isolated in 1933 (Smith et al.,

1933) and one of the first well-publicized influenza A pandemics occurred in 1918

(Taubenberger et al., 1997), numerous records indicate that humankind has been facing

influenza epidemics and probably also pandemics for at least several centuries (Potter,
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2001). There is molecular evidence that influenza A HA subtypes 1, 2, 3, 5, 7, 9 and 10

can infect humans, but currently only influenza A of H1 and H3 subtypes are circulating

in humans and are causing annual epidemics.

Circulating strains of influenza A cause seasonal infections in humans. In most

countries these infections result in annual epidemics which, according to World Health

Organization (WHO), affect up to 10 % of the population worldwide and result in

up to 500, 000 deaths. In addition to these annual epidemics, global pandemics can

occur when humans are infected with viruses capable of human-to-human spread to

which they are immunologically näıve. Although influenza A pandemics are relatively

rare events, humankind has faced three major pandemics in the twentieth century and

already one in the twenty-first (Lagacé-Wiens et al., 2010; Fineberg, 2014). Whereas

the mortality of seasonal influenza is modest, the mortality of pandemic influenza is

unpredictable and can vary: for example, during the H1N1 pandemic in 2009 it was

below 0.5 %, but during the H5N1 outbreak in 1997 it reached 60 % (Forrest and

Webster, 2010; Noah and Noah, 2013). In addition to annual influenza-related deaths,

the virus imposes an enormous economic burden on multiple sectors of societies (Szucs,

1999; Noah and Noah, 2013).

Influenza A virus genome is composed of eight single-stranded RNA (ssRNA)

molecules of negative polarity (Palese, 1977). It is replicated with the viral RNA-

dependent RNA polymerase (RdRp) which is error-prone and produces between 1.5

and 7.5 × 10−5 misincorporations per nucleotide. Because RdRp also lacks proofread-

ing activity these misincorporations cannot be repaired and on average one mutation

appears in the viral genome after each cycle of RNA replication (Parvin et al., 1986;

Drake, 1993). The gradual evolution of influenza A viruses due to frequent mutations

in viral proteins is referred to as antigenic drift. In addition, the viral genomic segments

can reassort during the co-infection of the same cell with two or more influenza A viruses

and give rise to progeny virions that contain segments derived from both “parental”

viruses (McGeoch et al., 1976; Desselberger et al., 1978). If the “parental” viruses be-
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long to different subtypes, the reassortant progeny virion(s) may harbor major changes

that are referred to as antigenic shift. Antigenic drift, antigenic shift and inter-species

transmission are the key drivers of viral evolution (Forrest and Webster, 2010). Anti-

genic drift limits efficacy of vaccines and antivirals and antigenic shift imposes constant

risk for new pandemics. Thus, improvements of options to control influenza are needed.

These efforts require careful virus surveillance, vaccine development and search for an-

tivirals with novel mechanisms of action. This is impossible without a comprehensive

understanding of influenza A virus-host interactions.

1.3 Influenza A virus organization and replication cycle

Influenza A virions are pleiomorphic, i.e. their shapes are not uniform and can be spher-

ical, kidney- or rod-shaped with an average size of 100–150 nm (Fujiyoshi et al., 1994).

The outer shell of the virion is composed of the host-derived lipid bilayer in which

viral HA, NA and M2 proton channel (M2) are incorporated. This shell is underlined

with the viral matrix protein (M1) (Harris et al., 2006). Each virion encompasses eight

genomic RNA segments packed in viral ribonucleoproteins (vRNPs)—supercoiled ring-

like structures in which paired 5’ and 3’ ends of the viral RNA are associated with

heterotrimetic viral polymerase complex and the rest of the RNA is densely covered

with viral nucleoprotein (NP) (Arranz et al., 2012). In the virion the vRNPs are asso-

ciated with the M1 protein (Rees and Dimmock, 1982; Ye et al., 1999). Eight genes of

all influenza A viruses encode 10 essential viral proteins: HA, NA, M1, M2, NP, poly-

merase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic

protein (PA), non-structural protein (NS1), and nuclear export protein (NEP) (Lamb,

1983). In addition, some influenza A strains may encode accessory proteins PB1-F2,

PB1-N40, PA-X, PA-155 and PA-182. Whereas HA, NA, M1, M2, NP, PB1, PB2, PA

and NEP are structural components of viral particle, NS1, PB1-F2, PB1-N40, PA-X,

PA-155 and PA-182 are considered to be non-structural and are involved in regulation

of virus-host interactions (Chen et al., 2001; Hale et al., 2008c; Wise et al., 2009; Jagger
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et al., 2012; Muramoto et al., 2013).

Influenza A replication cycle begins when the viral HA binds to the specific virus

receptor on cell surface. The key, but possibly not the only, receptors for influenza A

virus are sialic acids linked to cellular surface glycoproteins or glycolipids (Mart́ın et al.,

1998; Skehel and Wiley, 2000; Stray et al., 2000). HA molecules of avian influenza A

viruses recognize 𝛼-2,3-linked sialic acids and HAs of human influenza A viruses recog-

nize 𝛼-2,6-linked sialic acids (Connor et al., 1994; van Riel et al., 2010). HA recognition

of specific sialic acids to a large extent determines viral host specificity. After receptor

binding the viruses are endocytosed via clathrin-dependent or clathrin- and caveolin-

independent routes and are transferred towards the perinuclear space in endosomes

(Dourmashkin and Tyrrell, 1974; Matlin et al., 1981; Sieczkarski and Whittaker, 2002;

Lakadamyali et al., 2003). Acidification of late endosomes in perinuclear space triggers

two essential events that allow virus uncoating and delivery of vRNPs to the cyto-

plasm. First, low pH mediates the conformational change in the HA and enables fusion

of viral and endosomal membranes (Carr and Kim, 1993). Second, acidification of the

virus interior leads to dissociation of vRNPs from M1 which is a prerequisite for their

import into the nucleus, a site of viral RNA transcription and replication (Bui et al.,

1996; Stauffer et al., 2014).

Cytoplasmic transport of the vRNPs towards the nucleus is passive: it does not

require cellular cytoskeleton components and appears to rely on diffusion (Martin and

Helenius, 1991; Babcock et al., 2004). The nuclear import of vRNPs, in contrast, occurs

in an active way (Kemler et al., 1994). For this, importin 𝛼 isoforms 1 and 5 likely

recognize the surface-exposed nuclear localization sequences (NLSs) on viral NPs and,

together with the importin 𝛽, mediate traverse of vRNPs through the nuclear pore

complex and its delivery to the nucleus (Martin and Helenius, 1991; O’Neill et al.,

1995; Cros et al., 2005; Moeller et al., 2012; ying Chou et al., 2013).

In the nucleus the viral RNAs (vRNAs) are transcribed in cis by the viral poly-

merase associated with the vRNP (Moeller et al., 2012). Synthesis of viral mRNA is
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initiated using 10–13 nucleotide long primers with 5’ methylated guanine (5’meG) cap

(Beaton and Krug, 1981; Plotch et al., 1981). These primers are stolen from cellular

mRNAs during “cap-snatching” when 5’meG cap structures on host mRNAs are rec-

ognized and bound by PB2 subunit of viral polymerase (Guilligay et al., 2008) and

further endonucleolytically cleaved by viral PB1 and PA (Li et al., 2001a; Dias et al.,

2009; Yuan et al., 2009). The “snatched” 5’meG-caps also provide 3’-OH ends for viral

mRNA chain elongation by PB1 (Poch et al., 1989). The synthesis of viral mRNA ends

after reiterative copying of short uridine stretches located at the 5’ end of vRNA and

the resulting viral mRNA contains 150–200 adenine bases at its 3’ end (Plotch and

Krug, 1977; Robertson et al., 1981; Poon et al., 1999). Cap-containing polyadenylated

viral mRNAs are structurally indistinguishable from host transcripts. They are ex-

ported from the nucleus via the cellular mRNA export route and are translated in the

cytoplasm (Chen and Krug, 2000; Read and Digard, 2010). Many of the synthesized

viral proteins shuttle back to the nucleus to facilitate production of new vRNPs and

their export to the cytoplasm (Greenspan et al., 1988; Neumann et al., 1997; Huet

et al., 2010; Wang et al., 2013).

Replication of influenza A viral genomes occurs through two steps. First, com-

plementary ribonucleoproteins (cRNPs) containing positive single-stranded cRNA are

produced. Next, these cRNPs serve as templates for production of progeny vRNP (El-

ton et al., 2005). In contrast to mRNA, the synthesis of both cRNA and vRNA is

carried out in trans by the free viral polymerase available in the nucleus after synthesis

and import of new viral proteins (Jorba et al., 2009; Moeller et al., 2012). Moreover,

initiation of both cRNA and vRNA synthesis does not require cell- or virus-derived

primers and occurs de novo resulting in the presence of triphosphates at their 5’ ends

(Hay et al., 1982; Zhang et al., 2010). The progeny vRNPs are assembled in the nucleus

and contain copies of parental vRNA, a single viral polymerase and multiple copies of

NP. They can be transcribed and later exported from the nucleus for virion assembly

(Resa-Infante et al., 2011).
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The ultimate virion assembly and budding occur at the cellular plasma membrane

and require transport of essential components of progeny virions to the site of assembly.

The vRNPs in a complex with M1 and NEP are exported from the nucleus via cellular

Crm1/exportin-1 pathway and then are transported to the site of budding via cellular

microtubules (Akarsu et al., 2003; Momose et al., 2007; Kawaguchi et al., 2012). The

transport of vRNPs along microtubule tracks is characterized by an intermittent mo-

tion typical for microtubule-mediated cargo, although no specific motor complex has

yet been identified (Amorim et al., 2011; Momose et al., 2011; Avilov et al., 2012). Viral

envelope proteins (HA, NA and M2) obtain specific sorting signals for their targeting

to the budding site (Hughey et al., 1992; Kundu et al., 1996; Tall et al., 2003) and are

transported there through the Golgi network (Daniels-Holgate and Edwardson, 1989).

The virion assembly is localized to specific cholesterol- and sphingolipid-enriched re-

gions of plasma membrane referred to as lipid rafts (Scheiffele et al., 1999). The budding

requires HA for initiation of cellular membrane curvature, coordinated interaction of

M1 and vRNPs for packaging of viral genomes and M2 for bud scission (Nayak et al.,

2009; Rossman and Lamb, 2011). After virion assembly and bud formation NA cleaves

the sialic acids off the cellular surface releasing new virions that can initiate another

infection cycle (Barman et al., 2004).

1.4 Host factors involved in influenza A virus replication cycle

Because of the limited capacity of influenza A virus to encode its own proteins, its

effective replication relies on cellular factors. A large number of such factors has been

recently identified using yeast two-hybrid assay, genome-wide RNAi screening, and

proteomic approaches (Mayer et al., 2007; Hao et al., 2008; Brass et al., 2009; Shapira

et al., 2009; Karlas et al., 2010; König et al., 2010; Shaw, 2011; Song et al., 2011).

At least 128 of them were identified in two or more screens simultaneously. Functional

clustering of these factors revealed their involvement in essentially all stages of viral

replication (Watanabe et al., 2010). A scheme summarizing host factors involved in
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different steps of the influenza A replication cycle is presented on Figure 1.

The clathrin-mediated endocytosis of influenza A requires cellular clathrin and

epsin-1 (Chen and Zhuang, 2008) and the efficient endosomal transport depends on

cellular GTPases Rab5 and Rab7 (Sieczkarski and Whittaker, 2003). Fusion of vi-

ral and endosomal membranes is dependent on vacuolar proton-ATPase that acidifies

endosomal interior and several subunits of this macromolecular complex have been

identified as host factors required for influenza A replication (Watanabe et al., 2010).

Nuclear import of vRNPs occurs in an active way and requires the interaction of NP

with importin 𝛼1 or importin 𝛼5 (Cros et al., 2005). Although viral RdRp is sufficient to

transcribe influenza A RNAs and does not require additional factors, it interacts with

cellular DNA-dependent RNA polymerase II presumably to facilitate cap-snatching

(Engelhardt et al., 2005). Furthermore, influenza A utilizes cellular splicing machinery

to process its mRNAs derived from segments 7 and 8 (Dubois et al., 2014) and cellular

nuclear export machinery to deliver its transcripts to the cytoplasm (York and Fodor,

2013). As the virus encodes none of the translation machinery components, its protein

synthesis completely depends on the host translation machinery and the efficacy of

viral protein production is secured via the tight interaction between viral NS1 and

cellular translation factors (de la Luna et al., 1995; Aragon et al., 2000; Burgui et al.,

2003).

Effective synthesis of vRNPs requires interaction of RdRp with cellular minichro-

mosome maintainance complex (Kawaguchi and Nagata, 2007) and serine/threonine

phosphatase 6 (York et al., 2014). The export of vRNPs is dependent on the interac-

tion of M1-vRNP with the cellular nuclear export receptor Crm1, which presumably is

bridged by viral NEP (Brunotte et al., 2014) and their further transport to the bud-

ding site requires interaction of viral NP with cellular Rab11 GTPase (Eisfeld et al.,

2011). Finally, assembly of the virion at the budding site and bud formation requires

functional actin microfilaments and cellular energy sources (Nayak et al., 2004). The

above mentioned interactions give just a few examples of a complex interactome that
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Figure 1. Influenza A virus replication cycle and cellular factors involved in it. The abbreviated host
factors are: 𝛼-2,6-SA—𝛼-2,6-linked sialic acids; EGFR—epidermal growth factor receptor; COPI—
coatomer 1 vesicular transport complex; vATPase, vacuolar H+-ATPase; Rab 5/7/8/10/11—
small GTPases; Mcl-1—induced myeloid leukemia cell differentiation protein Mcl-1; NPC—nuclear
pore complex; CRM1—exportin-1; HRB — HIV rev-binding protein; HSP40/70/90—heat shock
protein 40, 70 or 90 kDa; CK2—casein kinase 2; Rab 8/11—small GTPases; eIF4GI—eukaryotic
initiation factor 4 gamma 1; PABPI/II—polyadenylate-binding protein cytoplasmic isoforms I and
II; GRSF1—G-rich sequence factor 1; TCP1, T-complex protein 1; NXF1—nuclear mRNA export
factor 1; P15—mRNA export factor; Rae1—mRNA export factor 1; E1B-AP5—heterogeneous
nuclear ribonucleoprotein U-like protein 1; MCM—minichromosome maintenance complex IREF-
1; Tat-SF1—Tat-specific factor 1; UAP56—helicase UAP56; RNR—ribonucleotide reductase;
ACC—acetyl-CoA carboxylase; FAS—fatty acid synthase; COX-2—cyclooxygenase 2; HMGCR—
3-hydroxy-3-methylglutaryl-coenzyme A reductase; Raf/MEK/ERK—Ras/Raf/mitogen-activated
protein kinase/extracellular signal-regulated kinase pathway; PI3K/Akt, phosphatidylinositol-3-
kinase/RAC-alpha serine/threonine-protein kinase pathway; DHODH—dihydroorotate dehydro-
genase.

the virus establishes during infection: accession of host-pathogen interaction database

(Kumar and Nanduri, 2010) yielded published associations of viral proteins with over

400 host factors (www.agbase.msstate.edu, accessed on 10.12.2014).

Influenza A replication triggers innate immune responses and therefore its effec-

tiveness is not limited to recruiting essential host factors but expands far beyond that.
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Establishment of tight control over innate immune responses to infection is absolutely

critical for successful viral replication in an immune-competent system.

1.5 Innate immune responses to influenza A infection

In mammals influenza A is transmitted mainly through aerosols and droplets and en-

ters the host through the respiratory tract (Brankston et al., 2007). The first line of

antiviral defense in the respiratory tract is represented by the airway mucus. It consists

mainly of glycoproteins, antimicrobial and antiviral substances and is an essential bar-

rier for virus infection (Thornton et al., 2008; Nicholas et al., 2006). The viruses that

penetrate the airway mucus barrier initiate infections of the respiratory tract epithelial

cells and can also spread to immune cells of the respiratory tract, mainly macrophages

and dendritic cells (DCs) (Perrone et al., 2008; Bender et al., 1998). Infection of suscep-

tible cells with influenza A is rapidly detected by innate immune sensors that trigger

induction of antiviral gene expression and activation of pro-inflammatory responses.

Antiviral gene products are essential for restriction of viral replication and reduction

of virus burden, whereas pro-inflammatory responses are required for establishment

of inflammation (Iwasaki and Pillai, 2014). Furthermore, the onset of innate immune

responses is required for informing the adaptive immunity that regulates clearance of

the infection site and generation of immune memory (Iwasaki and Medzhitov, 2010).

Although innate responses involve a complex network of events that are hard to

tackle, in recent years substantial progress has been made towards the understanding

of critical processes that regulate virus detection, antiviral signaling and activation of

immune-related genes.

1.5.1 Virus recognition by innate immunity

Eukaryotic cells evolved a way to distinguish between “self” and “non-self” via ex-

pression of specific detection molecules called pattern recognition receptors (PRRs)

(Janeway and Medzhitov, 2002). These PRRs recognize specific molecular signatures
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produced by invading microorganisms that are called pathogen-associated molecular

patterns (PAMPs) and initiate downstream signaling events to activate innate immune

responses (Janeway, 1989). The current paradigm of innate immunity to influenza A

virus assumes that during replication the virus produces three types of PAMPs. These

PAMPs are single- and double-stranded viral RNA and 5’ triphosphates generated dur-

ing viral genome synthesis by RdRp (Lund et al., 2004; Guillot et al., 2005; Hornung

et al., 2006; Kato et al., 2006). They are recognized in the endosome or in the cyto-

plasm by three major classes of cellular PRRs: NOD-like receptors (NLRs), Toll-like

receptors (TLRs), and RIG-I-like receptors (RLRs) (Iwasaki and Pillai, 2014).

Viral recognition in the endosome relies on three different TLR class members:

TLR3 which recognizes dsRNA, and TLR7 and TLR8 which recognize ssRNA (Fig. 2)

(Iwasaki and Pillai, 2014). TLR3 is constitutively expressed in pulmonary and airway

epithelial cells and in DCs (Guillot et al., 2005; Schulz et al., 2005; Ioannidis et al.,

2013). It has been initially shown to recognize dsRNA and induce interferon (IFN)

production in response to it (Alexopoulou et al., 2001; Guillot et al., 2005). TLR3

signaling is activated in response to replicating influenza A virus (Guillot et al., 2005).

TLR7 is expressed by airway epithelial cells and DCs and plasmocytoid DCs (Ioannidis

et al., 2013; Lund et al., 2004). TLR7 can be activated by ssRNA and is proposed to

recognize genomic vRNA of influenza A virus in the endosome (Diebold et al., 2004).

Unlike other TLRs, TLR8 has been so far only found in macrophages and monocytes

where it is activated in response to ssRNA and 5’ triphosphates (Ablasser et al., 2009).

TLR8 signaling is activated upon influenza A infection and leads to production of

interleukin (IL)-12, however its distinct role in regulation of innate immunity is yet to

be determined (Lee et al., 2013b).

The listed TLRs are expressed in endosomal compartments of the cells, except

TLR3, which was also found in the outer membrane (Diebold et al., 2004; Schulz et al.,

2005; Ablasser et al., 2009). The proposed mechanisms for their activation in response

to influenza A are, however, unclear for several reasons: (i) influenza A does not produce
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detectable amounts of dsRNA during its replication due to activity of cellular RNA

helicase UAP56 (Wisskirchen et al., 2011); (ii) paired 5’ and 3’ ends of vRNA are

bound to viral RdRp, which can hinder 5’ triphosphates from their recognition by

TLRs (Arranz et al., 2012); (iii) TLR3 and TLR8 are dispensable for influenza A

recognition and only TLR7 seems to be critical for it (Lund et al., 2004); and (iv) it is

not clear whether TLR7 recognizes any specific structures or sequences within RNA,

as it was shown to become readily activated in response to both “self” and “non-self”

RNA (Diebold et al., 2004).

TLR7 and TLR8 interact with their common adapter MyD88 (Figure 2) (Medzhitov

et al., 1998). MyD88 recruits IRAK family kinases which mediate phosphorylation and

nuclear translocation of interferon regulatory factor (IRF)3 and IRF7—transcription

factors that induce IFN gene expression (Burns et al., 2003; Honda et al., 2005). In addi-

tion, MyD88 activates mitogen-activated protein kinases (MAPKs) signaling and tran-

scription factor activator protein 1 (AP-1), that controls expression of pro-inflammatory

genes (Kawai and Akira, 2007). TLR3 induces its signaling via interaction with TIR-

domain-containing adapter-inducing interferon-𝛽 (TRIF) and its downstream pathways

bifurcate (Guillot et al., 2005; Kumar et al., 2009). One of those induces type I IFN

production via TBK1 and inhibitor of nuclear factor kappa-B kinase (IKK) kinases and

IRF3 and IRF7. Another one stimulates production of pro-inflammatory cytokines via

IKK and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) or via

MAPK signaling and transcription factor AP-1 (Guillot et al., 2005; Vercammen et al.,

2008).

Viral recognition in the cytoplasm relies on RLRs and NLRs. RLRs is a group of

helicases named after its representative retinoic acid inducible gene I (RIG-I). RLRs are

constitutively present in low amounts in multiple cell types, but their most prominent

location is airway epithelium (Bogefors et al., 2011) where they play an essential role

in detection of airborne pathogens. The RLR group consists of three proteins: RIG-I,

melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and
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physiology-2 (LGP-2) (Kang et al., 2004; Yoneyama et al., 2004; Yoneyama et al., 2005).

They are structurally similar and contain RNA-binding C-terminal domain (CTD) and

a DExD/H box helicase domain (Cui et al., 2008; Takahasi et al., 2009). RIG-I and

MDA5 also contain two consecutive N-terminal caspase recruitment domains (CARDs)

that mediate signaling (Yoneyama et al., 2004; Kang et al., 2004). All RLRs recognize

dsRNA, and RIG-I can also recognize ssRNA with 5’ triphosphates (Cui et al., 2008).

In the cytoplasm RIG-I is normally present in an inactive autorepressed state in

which its CARDs are sequestered by the helical domain, preventing non-specific induc-

tion of RIG-I downstream signaling (Figure 2) (Kowalinski et al., 2011). Upon sensing

its ligands by CTD, RIG-I undergoes conformational rearrangement which liberates

its CARDs for downstream signaling (Kowalinski et al., 2011). Activation of RIG-I

is dependent on its ubiquitination by E3 ubiquitin ligases TRIM25 and Riplet or on

binding to free polyubiquitin chains generated by TRIM25. Both TRIM25 and Riplet

are required for RIG-I signaling in vitro and in vivo (Gack et al., 2007; Oshiumi et

al., 2010; Zeng et al., 2010). The modified RIG-I oligomerizes (Patel et al., 2013) and

undergoes additional conformational rearrangements that enable interaction with its

adapter mitochondrial antiviral-signaling protein (MAVS) (Kawai et al., 2005; Seth

et al., 2005). For this, RIG-I is targeted to mitochondria in a “translocon” complex

containing TRIM25 and mitochondrial targeting chaperone 14-3-3𝜖 (Liu et al., 2012).

Upon binding RIG-I, MAVS oligomerizes and forms a scaffold for a multi-kinase sig-

naling complex which includes c-Jun N-terminal kinase (JNK), TANK-binding kinase

1 and IKK𝜖 complex, and IKK𝛼/𝛽/𝛾 complex (McWhirter et al., 2005). These kinases

eventually activate transcription factors IRF3, AP-1 and NFkB which regulate type I

IFN genes (McWhirter et al., 2005).

The only NLR that detects influenza A is LRR- and pyrin domain-containing pro-

tein 3 (NLRP3) found in lung and bronchial epithelial cells, monocytes, macrophages

and DCs (Guarda et al., 2011; Kim et al., 2014). It is constitutively present in an

inactive form in the cell cytoplasm. During influenza A infection NLRP3 is activated
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Figure 2. Viral PAMPs detection by endosomal and cytoplasmic PRRs. TLRs 3, 7 and 8 recognize
dsRNA in the endosome and induce downstream signaling via the adapter proteins MyD88 or
TRIF. The signal transduction is mediated by protein kinases MAPK, IRAK4,1, TBK1/IKK and
IKK𝛼/𝛽. RIG-I recognizes dsRNA and 5’triphosphorylated-ssRNA and undergoes conformational
changes followed by its uniquitination by TRIM25 and Riplet. The modified RIG-I oligomerizes
and translocates to mitochondrion where it triggers oligomerization of the adapter protein MAVS.
MAVS facilitates signal transduction by protein kinases JNK, IKK𝜖, TBK1 and IKK𝛼/𝛽/𝛾. TLR
and RIG-I signaling activates transcription factors AP-1, NF𝜅B, IRF3 and IRF7 which translocate
to the nucleus and transcriptionally induce expression of interferons, interferon-stimulated genes
and pro-inflammatory cytokines, thus activating the innate immune responses to influenza A
infection.

by sensing viral ssRNA or proton flux mediated by viral M2 in trans Golgi network

(Thomas et al., 2009; Allen et al., 2009; Ichinohe et al., 2010). Virus-mediated activation

and oligomerization of NLRP3 leads to formation of the inflammasome—a multipro-
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tein complex that includes NLRP3, apoptosis-associated speck-like protein containing

a CARD domain and pro-caspase 1 (Tschopp and Schroder, 2010). The inflammasome

is required for proteolytic self-activation of pro-caspase 1, which afterwards cleaves

IL1𝛽 and IL18 precursors, resulting in production of IL1𝛽 and IL18.

Whereas RIG-I activation results in induction of antiviral responses by IFNs and

interferon-stimulated genes (ISGs), signaling by NLRP3 and TLRs can also induce

pro-inflammatory responses (see section 1.5.3. for more details) (Le Goffic et al., 2007;

Allen et al., 2009; Kawai and Akira, 2007).

1.5.2 Antiviral responses by interferons and interferon-stimulated genes

Following detection of viral PAMPs and establishment of PRR signaling, the infected

cells produce and secrete small regulatory proteins known as interferons (Fensterl and

Sen, 2009). Interferons are subdivided into three types (I–III) based on their respective

receptors (Branca and Baglioni, 1981; Sheppard et al., 2003). Type I and III IFN signal-

ing activates ISGs and antiviral responses in autocrine and paracrine manner (Kotenko

et al., 2003; Garćıa-Sastre and Biron, 2006), reinforces PRR production (Pothlichet et

al., 2013), and regulates adaptive responses via enhancement of antigen presentation

to CD4+ and CD8+ T-cells (Zietara et al., 2009).

Both type I and III IFNs are secreted by nearly all cell types, although the majority

of them is secreted by DCs (Siegal et al., 1999; Odendall et al., 2014). Type I IFNs

include IFN𝛼 and IFN𝛽 and utilize dimeric receptor IFNAR1/IFNAR2 on cell surface

(Mogensen et al., 1999). Type III IFNs are IFN𝜆1, IFN𝜆2, IFN𝜆3 (also called IL29,

IL28A and IL28B, respectively), and IFN𝜆4. They bind to their heterodimeric receptor

IL10R2/IFNLR1 (Kotenko et al., 2003; Sheppard et al., 2003). Both type I and III IFN

receptors activate signaling through the Janus kinases (JAKs) / signal transducer and

activator of transcription (STAT) pathway (Figure 3). Binding of IFN to its receptor

triggers a series of phosphorylation events in which receptor-bound JAKs phosphory-

late themselves, the IFN receptor and receptor-associated proteins STAT1 and STAT2
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(van Boxel-Dezaire et al., 2006). Phosphorylation of STAT1 and STAT2 triggers their

heterodimerization and formation of regulatory complex with IRF9 (Fu et al., 1990).

This complex is translocated to the nucleus where it transcriptionally activates ISGs

(Levy et al., 1988). A schematic illustration of IFN signaling is presented in Figure 3.

Figure 3. A schematic representation of type I and type III IFN responses. Interaction of type
I and type III interferons with their corresponding receptors results in autophosphorylation of
receptor-associated JAK kinases JAK1 and TYK2, which phosphorylate STAT1 and STAT2 pro-
teins. Phosphorylated STAT1 and STAT2 form heterodimers that interact with regulatory protein
IRF9. The STAT1-STAT2-IRF9 complex translocates to the nucleus where it transcriptionally
activates interferon-stimulated genes. Interferon-stimulated gene products inhibit viral entry and
uncoating, suppress protein synthesis in infected cell, regulate degradation of vRNAs and control
interferon signaling via feedback loops.

ISGs are a diverse group of genes that control multiple cellular processes: they

enhance virus sensing by PRRs, target pathways essential for viral replication, upregu-

late cytokine and chemokine production, control IFN response via positive and negative

feedback loops. The best-described ISGs with antiviral action include myxovirus resis-

tance gene product (MxA), interferon-inducible transmembrane protein 3 (IFITM3),

cholesterol 25-hydroxylase, ubiquitin-like protein ISG15, protein kinase R (PKR), and

2’-5’-oligoadenylate syntethase (OAS) (Sadler and Williams, 2008).

IFITM3 is localized in late endosomes and exerts its antiviral activity during virus

entry. It alters properties of the endosomal membrane and prevents viral fusion (Desai
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et al., 2014). Indeed, in cells overexpressing IFITM3 virus-like particles bearing 𝛽-

lactamase do not fuse in late endosomes and no cytoplasmic 𝛽-lactamase activity can

be detected (Desai et al., 2014).

Human MxA gene product is a dynamin-like guanosine triphosphatase (Nakayama

et al., 1992). It is localized in the cytoplasm of infected cells where it self-assembles

into ring-like ordered structures (Gao et al., 2010). Although the detailed mechanism

of its antiviral activity is yet do be established, MxA oligomers presumably recognize

and bind vRNPs in the cytoplasm, preventing their nuclear import and thus attenuate

influenza A replication (Haller et al., 2010).

PKR and OAS act at later stages of viral replication cycle. PKR is a multifunctional

serine/threonine kinase that has a critical role in host antiviral responses (Garćıa et

al., 2006). It is constitutively present in the cytoplasm at low abundance, and its

expression is trancsriptionally induced by type I and III IFNs (Meurs et al., 1990). PKR

is activated via its interaction with dsRNA or protein activator of the interferon-induced

protein kinase (Li et al., 2006b). It phosphorylates and inactivates translation initiation

factor 2𝛼 (eIF2𝛼) (Levin and London, 1978), which is indispensable for initiation of cap-

and often of internal ribosome entry site (IRES)-driven translation. Thus, activation

of PKR in response to virus infection shuts down protein synthesis (Kimball, 1999).

In addition to controlling translation in infected cells, PKR can also detect dsRNA,

mediate IFN𝛾-induced NFkB activation (Deb et al., 2001), modulate STAT1 signaling

(Wong et al., 1997), induce JNK and MAPK signaling in response to viral infection

(Chu et al., 1999), induce apoptosis and autophagy following the shut down of protein

synthesis (Gil and Esteban, 2000; Tallóczy et al., 2002). PKR mediates death of infected

cells unless the virus counteracts its action (Takizawa et al., 1996; Hatada et al., 1999).

As no cytoplasmic dsRNA is detectable during influenza A replication (Wisskirchen et

al., 2011), PKR activation during infection is likely mediated by TLR signaling (Jiang

et al., 2003) or by binding to its protein activator (Garćıa et al., 2006).

OAS and ribonuclease L (RNAse L) act together in the antiviral RNA decay path-
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way. Both enzymes are upregulated by IFN, but they are also present constitutively in

cell cytoplasm (Sadler and Williams, 2008). Like PKR, OAS can be activated by bind-

ing to dsRNA (Castelli et al., 1998). Upon its activation, OAS synthesizes 2’-5’-linked

adenosine triphosphate oligomers, which, in turn, act as inducers of latent RNAse

L (Rebouillat and Hovanessian, 1999). Activated RNAse L catalyzes endonucleolytic

degradation of cellular and viral ssRNAs and mRNAs thus contributing to host an-

tiviral responses (Dyer and Rosenberg, 2006). In addition to viral RNA elimination,

RNAse L reinforces virus detection by TLRs and RIG-I, supports IFN response, and

regulates apoptosis in infected cells (Liang et al., 2006). Replication of influenza A

virus that is unable to inhibit OAS/RNAse L pathway is attenuated (Min and Krug,

2006).

Some ISGs are also implicated in interferon response control via negative feedback

loops (Schneider et al., 2014). For example, SOCS proteins inhibit JAK/STAT signaling

(Hong and Carmichael, 2013) and USP18 binds to IFNAR2 and inhibits it (Ritchie et

al., 2004).

1.5.3 Pro-inflammatory responses

Pro-inflammatory responses induced by TLR and NLRP3 signaling activate production

of chemokines including IL1-𝛽, IL6, IL8, IL18, RANTES, MCP-1, MCP-3 and MIP-3𝛼

(Julkunen et al., 2000; Le Goffic et al., 2007). Unlike type I IFNs, pro-inflammatory

cytokines may not induce direct antiviral resistance, but are required for antigen presen-

tation, establishment of inflammation, recruitment of leukocytes to the site of infection

and proliferation of CD8+ cytotoxic T lymphocytes (CTLs) (Van Der Sluijs et al.,

2005; Schulz et al., 2005; Le Goffic et al., 2006). Consequently, they do not inhibit viral

replication, but are essential for the host resistance to infection (Pang et al., 2013). In

addition, the correct onset of pro-inflammatory responses regulates adaptive immunity

to influenza A infection (Trinchieri, 2003; Ichinohe et al., 2009). However, robust in-

duction of pro-inflammatory response to some influenza A subtypes, e.g. H5N1, can be
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detrimental to the host and lead to severe immunopathology, thereby increasing viral

pathogenicity (La Gruta et al., 2007).

1.6 Apoptosis

In addition to activating antiviral and pro-inflammatory responses, influenza A was

shown to induce apoptosis in infected cells (Fesq et al., 1994; Hinshaw et al., 1994;

Mori et al., 1995; Brydon et al., 2005). The central role in apoptotic response belongs

to cysteinyl proteases (caspases) which proteolytically inactivate numerous cellular

proteins leading to cell death (Cohen, 1997; Thornberry and Lazebnik, 1998)

A variety of cellular signaling pathways, including MAPK, NFkB, PKR and phospho-

inisitide-3-kinase/Akt, are implicated in apoptosis regulation during infection (Gil and

Esteban, 2000; Xing et al., 2010; Lu et al., 2010). Activation of apoptosis can play a

role in host defense via facilitating premature cell death and also via triggering pro-

duction of pro-inflammatory cytokines (Julkunen et al., 2000). It also contributes to

viral clearance in cell culture and in vivo being essential for CD8+-mediated killing of

infected cells (Ishikawa et al., 2005; Brincks et al., 2008). On the other hand, onset of

apoptic responses can be beneficial for the virus and influenza A propagation is atten-

uated in the presence of caspase inhibitors due to retention of vRNPs in the nucleus

(Wurzer et al., 2003). Due to this twofold role of apoptosis in influenza A infection, it

is tightly controlled by both cellular and viral factors.

1.7 Viral counteraction to innate responses. NS1.

Successful counteraction to antiviral responses is critical for influenza A replication

and several viral proteins support overcoming of intrinsic barriers and replication in

the context of immune response. For instance, NA cleaves sialic acids in host mucus to

facilitate viral penetration (Cohen et al., 2013), PB1-F2 inactivates RIG-I/MAVS and

NFkB signaling (Varga et al., 2011; Dudek et al., 2011; Reis and McCauley, 2013), and
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NP mediates resistance to MxA (Dittmann et al., 2008). Both PB1-F2 and M2 can

contribute to regulation of apoptosis during infection (Herold et al., 2012).

However, the critical role in inhibition of antiviral responses and regulation of virus-

host interactions is assigned to NS1 (Garcia-Sastre et al., 1998). NS1 is a non-structural

protein, but it is expressed in high quantities in infected cells (Ritchey et al., 1976).

Initial studies indicated that NS1 is essential for viral replication (Koennecke et al.,

1981) and further investigations proved that it is a versatile viral protein which is a

key regulator of influenza A virus-host interactions (Ayllon and Garcia-Sastre, 2015).

Indeed, viruses lacking functional NS1 are severely attenuated, especially in immune-

competent systems, and can only replicate in the absence of STAT1 or PKR (Garcia-

Sastre et al., 1998; Egorov et al., 1998; Donelan et al., 2003; Falcón et al., 2004). Due

to its critical role in viral replication NS1 has been extensively studied and its roles

in regulation of virus-host interactions stretch beyond regulation of IFN responses

and include regulation of vRNA synthesis, enhancement of viral protein production,

regulation of virion assembly, modulation of cellular signaling, apoptosis inhibition,

contribution to host range definition and pathogenesis.

1.7.1 NS1 synthesis and localization

The mRNA of NS1 is generated by colinear transcription of the 8th genomic segment

(NS). About 10 % of NS transcripts are spliced and generate the mRNA of another

viral protein, NEP (Lamb et al., 1980), which shares the first 10 amino acids with NS1

(Inglis et al., 1979; Lamb and Choppin, 1979; Lamb et al., 1980). As NS1 is not found

in virions, it appears in infected cells only after viral transcripts have been generated

and translated. Although intracellular localization of NS1 may vary depending on its

abundance, the virus strain, cell type and polarity, and time post infection, the majority

NS1 is localized in the cellular nucleus, but a fraction of it is also present in the

cytoplasm (Greenspan et al., 1988; Li et al., 1998; Melen et al., 2007; Newby et al.,

2007; Melen et al., 2012).
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Generally, proteins of under 30 kDa smoothly diffuse through the nuclear pore com-

plex channel and do not require specific NLSs, whereas proteins of 40–60 kDa usually

are delivered to the nucleus via active import (Macara, 2001; Wang and Brattain, 2007;

Ma et al., 2012). NS1 is a relatively small protein and its molecular mass is only 26 kDa

(Ward et al., 1994), however, its nuclear import occurs in an active way. Depending

on the virus subtype, NS1 can contain one or two NLSs which mediate interaction

with cellular importin 𝛼 (Melen et al., 2007), thus securing rapid nuclear import of

NS1 (Privalsky and Penhoet, 1981). The monopartite NLS1 is located close to the

protein N-terminus, involves amino acids (aas) R35, R38 and K41, and is conserved

across most influenza A isolates. The bipartite C-terminal NLS2 is present in a subset

of viral strains expressing extended 237 aa NS1. It is located around aa 219–237 and

also serves as a nucleolar localization sequence (Melen et al., 2007; Melen et al., 2012).

Cytoplasmic localization of NS1 seems to depend on nuclear export sequence (NES)

which lies within residues 138–147 (Li et al., 1998). This NES, however, is masked by

adjacent residues 148–161 and its activation requires “unmasking” which presumably

occurs via the conformational change upon interaction of NS1 with and unidentified

protein partner(s).

1.7.2 Post-translational modifications of NS1

Initial studies indicated that a large portion of NS1 is phosphorylated during infection

and this phosphorylation occurs in the nucleus (Privalsky and Penhoet, 1981). Four

residues within NS1 can be phosphorylated—S42, S48, T197 and T215—although their

phosphorylation may be virus subtype specific (Petri et al., 1982). Phosphorylation of

NS1 at S48 by protein kinase A, at T197 by an unidentified kinase and at T215 by

cyclin-dependent kinase 5 and extracellular signal-regulated kinase 2 do not seem to

affect viral replication and roles of these modifications need further elucidation (Hale

et al., 2009; Hutchinson et al., 2012; Hsiang et al., 2012). Phosphorylation at S42

by protein kinase C alpha is proposed to attenuate viral replication presumably via
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impairing the nucleic acid binding function of NS1 (Hsiang et al., 2012).

NS1 can be also modified by linkage of small ubiquitin-like modifier protein (SUMO)—

a small regulatory protein that affects activity, stability, localization and interactions

of its targets (Pal et al., 2010; Johnson, 2004). NS1 extensively interacts with the

cellular SUMOylation system in the nucleus and can be modified with three SUMO

isoforms—SUMO1 and SUMO2/3 (Pal et al., 2011; Santos et al., 2013). This modifica-

tion is subtype-specific: NS1 from some, but not all H5N1, H9N2 and H1N1 influenza

A viruses can be SUMOylated (Xu et al., 2011). SUMOylation sites are lysines 219

and 221 in NS1 C-terminus (Xu et al., 2011). So far only two studies have addressed

the functional role of this modification. They indicate that it regulates NS1 stability,

abundance of NS1 dimers and trimers and may facilitate immunomodulatory functions

of NS1 (Xu et al., 2011; Santos et al., 2013).

Another modification of NS1 that occurs in infected cells is conjugation of a small

ubiquitin-like protein ISG15, that is produced in response to various stress stimuli in-

cluding influenza A infection (Pitha-Rowe and Pitha, 2007; Sadler and Williams, 2008;

Hsiang et al., 2009). ISG15 conjugation to NS1 by its IFN-induced ligases Ube1L,

UbcH8 and Herc5 occurs primarily at lysines 41, 126, 217 and 219 (Zhao et al., 2010;

Tang et al., 2010). It inhibits NS1 dimerization, interaction with PKR and with im-

portin 𝛼, alleviates NS1-mediated inhibition of cytokine production by the infected

cell and attenuates viral growth kinetics (Zhao et al., 2010; Tang et al., 2010). Like

other modifications of NS1, ISGylation is strain-specific: avian NS1s differ from human

in their ISGylation profiles (Tang et al., 2010). Experiments with recombinant human

H3N2 influenza A virus showed that mutation K41R in NS1 renders ISGylation inef-

ficient without compromising NS1 functions and hence acquisition of such mutations

may be beneficial for the virus (Zhao et al., 2010).
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1.7.3 Structure of NS1

NS1 is a relatively small protein of 219–237 aa depending on the virus strain (Hale et al.,

2008c). It is subdivided in four regions: the N-terminal RNA-binding domain (RBD),

the inter-domain linker, the effector domain (ED) and a disordered C-terminal “tail”,

for which no crystal structure is available (Figure 4A) (Hale, 2014). Several structural

studies have provided detailed information on the organization of NS1 domains, the

full-length protein and on the structural polymorphisms of NS1s from different viral

sybtypes (Chien et al., 1997; Liu et al., 1997; Wang et al., 1999; Bornholdt and Prasad,

2006; Yin et al., 2007b; Hale et al., 2008a; Cheng et al., 2009; Xia et al., 2009; Kerry

et al., 2011; Carrillo et al., 2014). As implied by their names, the RBD of NS1 interacts

with the RNA, whereas ED accommodates the majority of interaction sites with NS1

cellular partners (Hale et al., 2008c).

Figure 4. Crystal structure of H5N1 NS1 R38A, K41A mutant protein (Bornholdt and Prasad,
2008). (A) NS1 monomer. The three 𝛼-helices of RBD are marked as 1, 2 and 3 (B) NS1 dimer.
Groove-forming 𝛼-helices of distinct RBD’s are marked as 2 and 2’. Residues 38 and 41 are shown
in red. (C,D) Oligomerized NS1. The dimers are marked with distinct colors, residues 38 and 41
shown in red can be seen inside the transparent helix.
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RBD comprises the first 73 N-terminal aa of NS1 (Qian et al., 1995a; Yin et al.,

2007b). About 80 % of its residues are organized into three positively charged 𝛼-helices

(Qian et al., 1995a; Liu et al., 1997). RBD itself forms highly stable dimers in which

anti-parallel 𝛼-helices 2 and 2’ of corresponding monomers form the groove in which

RNA can be accommodated (Figure 4B) (Chien et al., 1997; Wang et al., 1999). As

a dimer NS1 can bind ss- and, with higher affinity, dsRNA in a sequence-unspecific

manner (Hatada and Fukuda, 1992; Qian et al., 1995b; Chien et al., 1997). Residue

R38 is critical and residue K41 is important for both RBD dimerization and NS1 ability

to interact with RNA (Hatada and Fukuda, 1992; Wang et al., 1999).

Inter-domain linker in most cases is comprised of residues 74-84, but its length may

vary between viral subtypes, contributing to NS1 structural polymorphism (Bornholdt

and Prasad, 2006; Carrillo et al., 2014; Kerry et al., 2011).

ED in most viral subtypes encompasses residues 88–202 (Hale, 2014). It comprises

seven 𝛽-strands and three 𝛼-helices and can also homodimerize (Bornholdt and Prasad,

2006; Hale et al., 2008a; Xia et al., 2009). The dimerization occurs primarily via helix-

helix interface, in which strictly conserved residue T187 plays a critical role (Hale et al.,

2008a; Kerry et al., 2011). Unlike stable RBD dimerization, the interactions between

ED monomers are likely to be transient (Kerry et al., 2011; Hale, 2014).

Dimerization is important for NS1 function and NS1 monomers have not been ob-

served in vitro or in vivo (Hale, 2014). The crystal structure of NS1 dimer suggests

that its formation relies on the stable interactions between RBDs of NS1 monomers

whereas EDs are not directly involved in dimerization and are probably free for inter-

actions with cellular proteins (Figure 4B) (Bornholdt and Prasad, 2008). Interestingly,

the full-length protein not only can dimerize, but also may form hollow helices (Born-

holdt and Prasad, 2008). The formation of such oligomers is mediated by inter-NS1

interactions of both RBD and ED (Figure 4C, D) (Bornholdt and Prasad, 2008; Car-

rillo et al., 2014). In addition, full-length NS1 retains conformational plasticity with

three possible orientations of ED to RBD. Preference for certain states is dependent
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on NS1 inter-domain linker length, residue 71 and a mechanical hinge, and determines

strain-specific variations in NS1 structure and function (Carrillo et al., 2014).

1.7.4 Inhibition of interferon signaling at pre-transcriptional level

Inhibition of the interferon response is a function of NS1. The mechanisms behind

this function have been extensively studied over the past two decades and according to

the current paradigm NS1 subverts development of immune responses by counteracting

PRR signaling, co- and post-transcriptional inhibiting of host gene expression and post-

translationally inactivating interferon-stimulated gene products (Ayllon and Garcia-

Sastre, 2014). For this, the multi-functional NS1 targets numerous factors, which are

discussed below. The mapped interactions of NS1 are schematically shown in Figure 5.

Figure 5. Schematic representation of NS1 and its described interactions. NS1 length is 219–237
amino acids, depending on the viral subtype. Residues 1–73 comprise an RNA-binding domain
(RBD), residues 85-202 comprise an effector domain (ED) and residues 202–219/230/237 com-
prise a C-terminal “tail”. NS1 contains two nuclear localization signals (NLS1 and NLS2) and a
nuclear export signal (NES). NS1 is thought to interact with RNA, RIG-I, TRIM25 and Riplet
to alleviate RIG-I signaling, with PABPII and CPSF30 to inhibit cellular mRNA processing, with
PKR, eIF4GI and PABPI to facilitate viral protein synthesis, with nuclear pore complex compo-
nents NXFI, p15, Rae1 and E1B-AP5 to inhibit nuclear export of cellular mRNAs, with p85𝛽,
PDZ-domain containing proteins, Crk and Crk-like proteins to regulate cellular signaling.

NS1 inhibits interferon signaling at the pre-transcriptional level by preventing ac-

tivation and nuclear translocation of IRF3, AP-1, NFkB mainly via alleviating RIG-I

signaling (Talon et al., 2000; Ludwig et al., 2002; Wang et al., 2000; Geiss et al., 2002;

Munir et al., 2012). Multiple studies indicate that NS1 employs both its RBD and ED
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to subvert RIG-I signaling at multiple steps (Wang et al., 2000; Ludwig et al., 2002;

Haye et al., 2009; Tisoncik et al., 2011). NS1 binds RIG-I, although direct inhibitory

effects of this interaction have not been reported yet (Opitz et al., 2007; Mibayashi

et al., 2007). It also established inhibitory interactions with two indispensable RIG-I

regulators: TRIM25 and Riplet (Gack et al., 2009; Rajsbaum et al., 2012). Interaction

with TRIM25 requires E96, E97 residues within NS1 ED and RNA-binding residues

R38, K41, although it is not clear whether the latter are involved in interaction with

TRIM-25 (direct or RNA-mediated) or just support suitable NS1 conformation (Gack

et al., 2009). Interaction with Riplet requires R38, K41 although again their exact roles

in this interaction still need clarification (Rajsbaum et al., 2012). The involvement of

R38 and K41 residues in regulation of RIG-I has raised discussions of another possi-

ble mechanism of RIG-I inhibition by NS1 in which NS1 sequesters dsRNA, a known

RIG-I inducer, thereby preventing activation of the RIG-I signaling axis. The role of

NS1 RNA-binding in pre-transcriptional control of immune responses, however, needs

to be elucidated, because (i) influenza A does not seem to generate dsRNA during its

replication (Wisskirchen et al., 2011) and (ii) the affinity of NS1 for dsRNA is much

lower than that of RIG-I (Chien et al., 2004; Yin et al., 2007a; Vela et al., 2012).

In addition to inhibition of RIG-I signaling, NS1 has evolved several other ways

to effectively inhibit interferon induction at the transcriptional level. It subverts both

canonical and non-canonical NFkB pathways (Ruckle et al., 2012) and prevents nuclear

translocation of NFkB via direct inhibition of alpha and beta subunits of IKK (Gao

et al., 2012). NS1 impairs c-Jun and JNK signaling, preventing AP-1-regulated gene

expression (Ludwig et al., 2002). It also alleviates IFN response by inducing suppressor

of cytokine signaling-3, a negative regulator of JAK-STAT signaling (Pauli et al., 2008).

1.7.5 Inhibition of interferon signaling at post-transcriptional level

NS1 acts beyond pre-transcriptional level and controls development of antiviral re-

sponses also post-transcriptionally by targeting pre-mRNA processing and nuclear ex-
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port machinery of the host. The majority of cellular mRNAs produced by RNA poly-

merase II undergo cleavage of their 3’ termini and subsequent addition of a polyadenine

stretch (poly(A)) which is required for their effective translation and also regulates

their nuclear export (Vassalli et al., 1989; Zarkower and Wickens, 1987; Huang and

Carmichael, 1996). Pre-mRNA cleavage and polyadenylation are catalyzed by cleav-

age and polyadenylation specific factor (CPSF)—a polyprotein complex formed by

four subunits (Wilusz et al., 1990; Colgan and Manley, 1997). NS1 binds CPSF30,

the smallest protein of subunit 4, thereby inhibiting the activity of the whole complex

(Nemeroff et al., 1998). The interaction between NS1 ED and CPSF30 has been charac-

terized both biochemically and structurally and the current model proposes interaction

of NS1 ED with F2F3 zinc finger pocket of CPSF30 (Noah et al., 2003; Twu et al., 2006;

Kochs et al., 2007; Das et al., 2008). Recent crystal studies suggest that ED dimeriza-

tion is incompatible with CPSF30 interaction (Aramini et al., 2011; Kerry et al., 2011).

Hydrophobic residues 184–188 within NS1 ED are essential for this interaction and mu-

tation of G184 prevents NS1-CPSF complex formation (Das et al., 2008). In addition,

residues F103 and M106 facilitate NS1-CPSF30 complex formation (Kochs et al., 2007;

Das et al., 2008). Residues 223–237 within C-termini of some NS1 proteins comprise a

site for interaction with poly(A)-binding protein (PABP)II—another protein essential

for effective polyadenylation (Li et al., 2001b). Blocking cellular pre-mRNA processing

via interactions with CPSF30 and PABPII provides several advantages for viral replica-

tion: (i) it prevents production of functional cellular mRNAs, including those involved

in IFN response; (ii) it prevents nuclear export of capped cellular mRNAs providing

a pool of 5’ caps to be “snatched” by viral polymerase (Nemeroff et al., 1998); (iii)

it does not inhibit production and export of viral mRNAs whose polyadenylation is

independent of CPSF30 (Plotch and Krug, 1977). The residues involved in CPSF30

binding are highly conserved among human influenza A NS1 proteins (Kochs et al.,

2007; Das et al., 2008).

NS1 also inhibits mRNA splicing by binding to the formed spliceosome and sup-
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pressing its catalytic activity (Lu et al., 1994; Qiu et al., 1995). Interestingly, this effect

is specific to host mRNAs. Although viral mRNAs recruit cellular spliceosome for their

post-transcriptional processing, NS1 does not affect splicing of its own mRNA (Robb

et al., 2010) and has little, if any, effect on M mRNA splicing (Salvatore et al., 2002;

Robb and Fodor, 2012). The possible reason for such selectivity could be recognition

of specific motifs within viral mRNAs by NS1, which, however, is questionable, since

no sequence specificity is so far known for NS1 RNA binding. Another possibility is

recruitment of different spliceosomal factors to viral transcripts by viral polymerase

(Fournier et al., 2014).

In addition to its direct effects on mRNA synthesis and processing, NS1 also in-

hibits nuclear export of cellular mRNAs. It specifically binds to nuclear pore complex

components NXF1, p15, Rae1 and E1B-AP5, thus contributing to retention of cellular

mRNAs in the nucleus (Satterly et al., 2007). Importantly, inhibition of nuclear pore

complex by NS1 does not attenuate viral replication, as export of viral RNAs relies on

the alternative Crm1-mediated pathway (Neumann et al., 2000).

The combination of NS1 effects on host mRNAs production, processing and ex-

port contributes to host protein synthesis shut-off which is commonly observed during

influenza A infection (Beloso et al., 1992).

1.7.6 Direct inhibition of interferon-stimulated gene products

In addition to the control at pre-transcriptional, transcriptional and post-transcriptional

level, NS1 antagonizes IFN responses by directly targeting PKR and OAS.

Influenza A mRNAs are structurally indistinguishable from cellular mRNA and

hence production of viral proteins requires functional cap-dependent translation. For

this, the virus prevents activation of the negative translational regulator PKR (Katze

et al., 1986; Katze et al., 1988). Inhibition of PKR is to a large extent a function of NS1,

as viruses lacking functional NS1 can only replicate in the absence of PKR (Bergmann

et al., 2000). NS1 was proposed to prevent activation of PKR by binding to dsRNA and
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thus sequestering it away from PKR (Lu et al., 1995). Such regulation, however, seems

controversial for several reasons: (i) while PKR senses dsRNA in the cytoplasm, the site

of influenza A RNA transcription and replication is the nucleus, and thus the presence

of virus replication intermediates in the cellular cytoplasm seems unlikely (Jackson et

al., 1982), (ii) viral genomes are exported to the cytoplasm as vRNPs, and thus base-

paired regions of vRNA are likely to be inaccessible to PKR (Coloma et al., 2009), (iii)

the affinity of NS1 for dsRNA is much lower than that of PKR (Chien et al., 2004;

Husain et al., 2012), and (iv) dsRNA binding function of NS1 is not required for PKR

inhibition (Li et al., 2006a). NS1 has been shown to form a complex with PKR which

appears to be inhibitory for PKR activation (Tan and Katze, 1998; Li et al., 2006a).

It has been shown that residues 123–127 within NS1 are required for interaction with

PKR and its inhibition (Min et al., 2007).

Inhibition of OAS/RNAse L pathway is also a function of NS1. So far only one

study has described the putative mechanism of NS1 control over the OAS/RNAse L

pathway which presumes that dsRNA binding by NS1 is required for sequestration

of dsRNA away from OAS (Min and Krug, 2006). This observation is supported by

low affinity of OAS to dsRNA (Hartmann et al., 2003), however, the abundancy of

influenza-generated dsRNA in cell cytoplasm still remains an open question.

1.7.7 Other pro-viral functions of NS1

In addition to its critical role in control of innate immune responses, NS1 targets a

number of other cellular factors to facilitate virus replication. These additional pro-viral

functions of NS1 include regulation of production of viral RNA and protein synthesis,

control of apoptosis and modulation of cell signaling.

Influenza A virus RNA production occurs in two phases: early, when NS1 and NP

vRNAs are preferentially synthesized, and late, when all eight segments are produced

in equimolar quantities (Skehel, 1973; Shapiro et al., 1987). This temporal regulation

of vRNAs production has been shown to require functional NS1 (Falcón et al., 2004)

30



and is linked to residues 123 and 124 within its ED (Min et al., 2007). Although these

residues overlap with the PKR binding site on NS1, NS1 regulates vRNA independently

of its interaction with PKR, which has been proven using PKR-deficient mice (Min

et al., 2007). NS1 through an as yet unknown mechanism also specifically regulates

production of HA vRNA (Maamary et al., 2012). The regulation of vRNA production

by NS1 is likely linked to its interaction with vRNPs which disrupts inhibitory binding

of cellular helicase DDX21 to PB1 (Marión et al., 1997; Chen et al., 2014).

NS1 has been also discussed as a factor that regulates protein synthesis in infected

cells. As viral mRNAs contain 5’meG “cap” and 3’ poly(A), they are structurally in-

distinguishable from cellular mRNAs and require the same subset of translation factors

(Poch et al., 1989; Poon et al., 1999). The bottleneck of the complex translation pro-

cess is its initiation which requires coordinated assembly of translation factors and

43S pre-initiation complex on mRNA followed by start codon scanning and ribosome

assembly (Pestova et al., 2001). In addition to the prevention of eIF2𝛼 inhibition by

PKR described in section 1.7.6, NS1 contributes to translational control by direct in-

teractions with translation initiation factors. Thus, fragment 1–81 has been shown to

bind the translation initiation factor 4GI (eIF4GI) via protein-protein interactions and

is supposed to facilitate recruitment of this factor onto viral mRNAs (Aragon et al.,

2000). In addition, it interacts with PABPI, another factor essential for translation

initiation (Burgui et al., 2003). The proposed mechanism of translational regulation by

NS1 suggests preferential recruitment of translation initiation factors on viral mRNAs

due to specific recognition of their 5’ untranslated region (UTR) by NS1 (de la Luna

et al., 1995). Such a mechanism, however, is in controversy with the very low affinity

of NS1 to ssRNA and with its proposed nonsequence-specific binding to RNA (Hatada

and Fukuda, 1992) and requires further description of NS1 interactions with translation

factors and/or search for possible specificity of NS1 towards viral mRNAs.

Influenza A infection induces prolonged activation of PI3K and its downstream effec-

tor Akt several hours post infection due to NS1 activity (Ehrhardt et al., 2006; Ehrhardt
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and Ludwig, 2009). Structural information suggests that NS1 ED forms heterotrimeric

complex with regulatory (p85) and catalytic (p110) subunits of PI3K. Interaction with

NS1 alters positions of p85 and p110 in respect to each other and results in PI3K/Akt

signaling activation (Hale et al., 2008b; Hale et al., 2010a). The interaction between

NS1 and p85 is dependent on the 164PxxP1167 Src-homology 3 domain (SH3) motif

and a conservative tyrosine 89 within NS1 ED (Hale et al., 2006; Shin et al., 2007a;

Shin et al., 2007b). As PI3K/Akt signaling inhibits apoptosis, its activation by NS1

was initially regarded as a mechanism to prevent premature cell death and secure viral

replication (Ehrhardt et al., 2007; Zhirnov and Klenk, 2007). However, p85-binding de-

ficient NS1 also exibits anti-apoptotic activity indicating possible redundancy in NS1

approaches to control apoptosis (Jackson et al., 2010a).

In addition to the PI3K/Akt branch, NS1 also controls the JNK branch of apoptosis.

This control is realized through binding of SH3 domains present in some NS1 subtypes

to cellular adapter proteins Crk and Crk-like (Heikkinen et al., 2008; Hrincius et al.,

2010).

Another way by which NS1 protects infected cells from apoptosis could be its ability

to bind to signaling proteins that contain a domain called PDZ (postsynaptic density

protein 95, Drosophila disc large tumor suppressor, and zonula occludens 1 protein)

(Liu et al., 2010). The C-terminus of 230 aa long avian NS1s can contain a PDZ-binding

motif ESEV/EPEV, which mediates interaction with PDZ-domain containing proteins

(Golebiewski et al., 2011). In addition to apoptosis regulation, PDZ binding may pro-

vide control over formation of cellular junctions and establishment of cell polarity,

although these possibilities, as well as the overall effect of PDZ-binding on influenza A

virulence are yet to be investigated (Jackson et al., 2010b; Zielecki et al., 2010; Javier

and Rice, 2011).
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1.7.8 NS1 diversity

NS1 contributes to influenza A variability by displaying a substantial number of se-

quence, length, structure, modification and functional polymorphisms. Initial studies of

sequence similarity revealed two groups of NS1 proteins designated as alleles A and B

(Scholtissek and von Hoyningen-Huene, 1980). Allele A NS1s have been found in avian,

as well as in mammalian strains, whereas allele B appears to be exclusively avian indi-

cating the contribution of NS1 to host-specificity (Treanor et al., 1989; Ludwig et al.,

1991). The percentage of sequence identity is over 90 % within alleles, but between

alleles it is below 70 % (Scholtissek and von Hoyningen-Huene, 1980).

Structural polymorphisms of NS1 are mainly dependent on the length of inter-

domain linker. A recent study has shown that the linker length and residue 71 determine

the preference of RBD orientation towards ED and provide the structural basis for

strain-dependent NS1 functions (Carrillo et al., 2014). Interestingly, whereas the inter-

domain linker is 12 amino acid long in the majority of NS1s, its length in highly

pathogenic avian influenza A viruses is only 7 amino acids, indicating that although

there are no known interaction motifs within the linker, it still can determine virulence

(Long et al., 2008).

Although functional NS1 is required for replication in immune-competent systems

(Garcia-Sastre et al., 1998; Donelan et al., 2003), NS1s from different subtypes may

vary in their ability to modulate certain cellular responses. For example, although

different NS1s are able to bind components of the RIG-I pathway, the extent to which

they inhibit RIG-I signaling varies and some H1N1, H2N2 and human H3N2 viruses

fail to pre-transcriptionally block IFN induction (Kochs et al., 2007; Haye et al., 2009;

Munir et al., 2011; Munir et al., 2012). These viruses compensate for their inefficiency

in pre-transcriptional control with strong CPSF30 binding, whereas the mouse-adapted

PR8 strain as well as the pandemic H1N1/2009 (pH1N1/2009) acquired mutations that

prevent interactions with CPSF30 (Kochs et al., 2007; Hale et al., 2010c). Human and

avian NS1 proteins also markedly differ in their ability to modulate signaling pathways:
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instead of functional PDZ-binding motifs ESEV/EPEV found in avian strains human

NS1s contain RSKV/RSEV motifs that can not interact with PDZ-domain containing

proteins (Liu et al., 2010). Furthermore, interaction with CRK and CRK-like protein

adapters is also a characteristic of avian strains and the 1918 pandemic influenza A

virus which contain SH3-binding motif (Heikkinen et al., 2008).

Naturally occurring NS1 proteins vary in length due to C-terminal truncations

and extensions that arise via appearance or loss of nonsense codons (Parvin et al.,

1983). Although selective pressure maintains avian and avian-originated human NS1

at 230 aa and human pH1N1/2009 at 219 aa, the appearance of truncated isolates

has been observed (Suarez and Perdue, 1998; Lakspere et al., 2014). The attempts

to address the effects of NS1 C-terminal truncations on viral pathogenicity brought

controversial results and the significance of these truncations is still unclear (Hale et

al., 2010b; Tu et al., 2011). The relatively short NS1 C-terminus can accommodate,

lose or acquire a number of binding motifs and modification sites that can mediate

virus-host interactions, including PDZ- and Crk/CrkL-binding sites (Heikkinen et al.,

2008; Liu et al., 2010), histone mimic motif (Marazzi et al., 2012), PABPII (Li et al.,

2001b), nuclear and nucleolar localization sites (Melen et al., 2012), phosphorylation

(Hsiang et al., 2012) and ISGylation sites (Hsiang et al., 2009). Therefore addressing

the role of NS1 C-terminal polymorphisms could be beneficial for understanding viral

evolution and pathogenicity.
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2 Objectives of the Present Study

The objective of the present study was to provide novel insights into modulation of

influenza A virus-host cell interactions by NS1 and to utilize that knowledge further.

The specific aims were:

1. To study the functional role of the NS1 nucleic acid binding in transcriptional

control of cellular genes

2. To understand how NS1 regulates protein synthesis

3. To determine the contribution of the NS1 C-terminal “tail” to viral replication

and pathogenicity

4. To utilize understanding of translational modulation by NS1 for improvement of

a biotechnologically important cell-free protein synthesis system
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3 Materials and Methods

The material and methods used in this study are described in details in the original

publications and manuscripts (I – IV). This section briefly summarizes them.

All cells used in this study were maintained in their recommended culture media

containing required supplements at 37 ∘C at 5 % CO2. The cells were regularly checked

for Mycoplasma contamination. The list of established cell lines and primary cells used

in this study is presented in Table 1.

Table 1. Cells used in the study

Cells Study

Madin-Darby Canine Kidney cell line (MDCK) I, IV

Human retinal pigment epithelium cell line (RPE) I

Adenocarcinomic human alveolar basal epithelium cell line (A549) IV

African green monkey kidney cell line (Vero) I, III

Human embryonic kindey 293 cells (HEK) I, III

Primary human macrophages I, III

The plasmids used in the study are summarized in Table 2. Their detailed descrip-

tion can be found in corresponding articles.

Table 2. Plasmids used in the study

Plasmid Application Source Study

pHW181-PB2 influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW182-PB1 influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW183-PA influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III
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Table 2. Plasmids used in the study

Plasmid Application Source Study

pHW184-HA influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW185-NA influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW186-NP influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW187-M influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW188-NS influenza A reverse

genetics

(Hoffmann et al.,

2000)

I, III

pHW188-NS1-RK/AA influenza A reverse

genetics

in-house I, III

pHW188-NS1-202 influenza A reverse

genetics

in-house III

pHW188-NS1-220 influenza A reverse

genetics

in-house III

pCMV-tag4A transfection

experiments

Agilent

Technologies

I

pCMV-tag4A-NS1-WT NS1 expression in cells in-house I

pCMV-tag4A-NS1-

RK/AA

NS1 expression in cells in-house I

pNic28-H5N1-NS1 NS1 protein production Dr. Denis Kainov II

pNic28-H5N1-NS1-

RK/AA

NS1 protein production Dr. Denis Kainov II, IV

pNic28-H5N1-NS1-

RK/AA-25,26

NS1 protein production in-house II

pNic28-H5N1-NS1-

RK/AA-48

NS1 protein production in-house II
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Table 2. Plasmids used in the study

Plasmid Application Source Study

pNic28-H5N1-NS1-

RK/AA-67

NS1 protein production in-house II

pNic28-H5N1-NS1-

RK/AA-25,26,48,67

NS1 protein production in-house II

pNic28-H5N1-RBD NS1 protein production in-house II

pNic28-H5N2-NS1 NS1 protein production Dr. Denis Kainov II

pNic28-H5N2-NS1-

RK/AA

NS1 protein production Dr. Denis Kainov II

pNic28-H5N2-NS1-

delC

NS1 protein production Dr. Denis Kainov II

pET151-H1N1-NS1-

RK/AA

NS1 protein production Dr. Denis Kainov II

pET151-H1N1-NS1-

RK/AA-25,26

NS1 protein production MA II

pET151-H1N1-NS1-

RK/AA-48

NS1 protein production in-house II

pET151-H1N1-NS1-

RK/AA-67

NS1 protein production in-house II

pET151-H1N1-NS1-

RK/AA-25,26,48,67

NS1 protein production in-house II

Luciferase control DNA mRNA synthesis Promega II, IV

pGL-HCV-poly(A) mRNA synthesis Dr. Ilya Terenin IV

pGL-HCV-poly(A) mRNA synthesis Dr. Ilya Terenin IV

pGL-globin-SV40 mRNA synthesis Dr. Ilya Terenin IV

pGL-globin-poly(A) mRNA synthesis Dr. Ilya Terenin IV

pGL-EMCV-poly(A) mRNA synthesis Dr. Ilya Terenin IV

The viruses used in this study were generated using a reverse genetics system for
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influenza A (Hoffmann et al., 2000) and propagated in MDCK or Vero cells. Wild type

and mutant viruses were sequenced to ensure the absence of undesirable substitutions

and the proper introduction of required mutations. Titers of viral stocks were deter-

mined by plaque assay on MDCK cells. The viruses used in the study are summarized

in Table 3.

Table 3. Recombinant viruses used in the study

Virus Description Study

WSN-WT Wild type influenza A/WSN/33 (H1N1) virus I, III, IV

WSN-

RK/AA

Influenza A/WSN/33 (H1N1) virus expressing R38A,

K41A mutant NS1 protein

I

WSN-202 Influenza A/WSN/33 (H1N1) virus expressing 202

amino acids long truncated NS1 protein

III

WSN-220 Influenza A/WSN/33 (H1N1) virus expressing 220

amino acids long truncated NS1 protein

III

The list of antibodies used in the study is presented in Table 4.

Table 4. Antibodies used in the study

Antibody Source Study

primary rabbit polyclonal anti-NS1 Prof. Ilkka Julkunen I

primary mouse monoclonal

anti-phospho-eIF2𝛼 (Ser51)

Cell signaling unpublished

primary goat polyclonal anti-luciferase Promega II

secondary IRDye680-conjugated donkey

anti-mouse

Li-Cor unpublished

secondary Alexa594-conjugated goat

anti-rabbit

Invitrogen I

secondary Cy5-conjugated donkey

anti-goat

Abcam II

The methods used in the current study are listed in Table 5.

39



Table 5. Methods used in the study

Method Study

Mammalian cell culture I, III, IV

Isolation of human peripheral blood mononuclear cells I, III

DNA-mediated transformation of mammalian cells I, III

Plasmid-based reverse genetics system for Influenza A I, III

Virus culture and purification I, III

Plaque assay I, III

Influenza A infections I, III, IV

RNA isolation I, III, IV

Reverse transcription I, III

Polymerase chain reaction I, III

One step reverse transcription and polymerase chain reaction I, III

Quantitative polymerase chain reaction I, II

Nuclear protein isolation I

Cytokine profiling I, III

Phosphoprotein profiling III

Enzyme-linked immunosorbent assay I

Immunofluorescence I

Gene expression profiling I, III

Chromatin immunoprecipitation (ChIP) I

Chomatin immunoprecipitation followed by next generation

sequencing (ChIPseq)

I

Recombinant protein production and purification II, IV

Electrophoretic mobility shift assay I, II

In vitro transcription I, II, IV

Sodium dodecyl sulphate polyacrylamide gel electrophoresis I, II, III
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Table 5. Methods used in the study

Method Study

Molecular cloning I, III, II

Agarose gel electrophoresis I, IV

Cell free protein synthesis II, IV

Luciferase reporter assay II, IV

Microscale thermophoresis I

Density centrifugation in sucrose gradient IV

Determination of influenza A morbidity and mortality in vivo III
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4 Results and Discussion

4.1 Conserved residues within NS1 bind dsDNA and control

transcription of cellular genes (Study I)

The nucleic acid binding function of NS1 is extremely important for influenza A repli-

cation and residues R38 and K41 are conserved across viral subtypes (Hatada and

Fukuda, 1992; Zohari et al., 2008). The mutations R38A and K41A were shown to pre-

vent dsRNA binding by NS1, and result in increased IFN production by infected cells

and severely attenuated viral phenotype (Donelan et al., 2003). Although the proposed

role of nucleic acid binding by NS1 is sequestration of viral replication intermediates

away from cellular PRRs, it is controversial as stated in Section 1.7.4. We addressed the

role of nucleic acid binding function of NS1 using the recombinant influenza A/WSN/33

(WSN) viruses expressing wild type NS1 or its R38A, K41A (RK/AA) mutant which

can not bind nucleic acids. In agreement with previous studies (Min and Krug, 2006),

RK/AA WSN virus exhibited severely attenuated phenotype in cell culture.

Gene expression profiling of human macrophages infected with RK/AA viruses re-

sulted in strong up-regulation of a large set of cellular genes (I, Fig. 1A and B). Gene

set enrichment analysis (Subramanian et al., 2005) indicated that these genes were in-

volved in the regulation of innate and adaptive immune responses and belonged to TLR

and Jak/STAT signaling pathways, cytokine-cytokine receptor interaction and natural

killer cell mediated cytotoxicity pathways. Accordingly, RK/AA infection resulted in

increased production of both antiviral and pro-inflammatory cytokines (I, Fig. 1C).

Importantly, the effect of RK/AA mutations on cellular gene expression and cytokine

production was not specific to immune cells and was also observed in a retinal pigment

epithelium (RPE) cell line (I, suppl. Fig. 1A and B).

Wild type NS1 is abundant in the insoluble fraction of cell lysate (I, Fig. 2A), where

it associates with cellular chromatin, presumably via protein-DNA, protein-protein or

both interactions (I, Fig. 2B). Although the direct binding of NS1 to dsDNA has
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not been shown previously, the structure of NS1 RBD and full-length dimer does not

exclude its interaction with dsDNA (Bornholdt and Prasad, 2008; Cheng et al., 2009).

Therefore, we tested this possibility in an electophoretic mobility shift assay using

purified recombinant wild type and RK/AA NS1 proteins and synthetic DNA. Indeed,

purified wild-type NS1 did interact with 190 bp long linear dsDNA and the dissociation

constant (Kd) was 11.1 ± 0.7 𝜇M, indicative of a probably nonspecific binding. The

residues R38 and K41 were absolutely required for dsDNA interaction (I, Fig. 3B, C).

The ability of NS1 to associate with cellular chromatin and to bind dsDNA prompted

us to test its effects on transcription. To dissect effects of NS1-dsDNA binding and

upstream events we addressed this question in a cell-free run-off transcription assay

using purified wild type and RK/AA NS1 proteins. Binding of wt NS1 to DNA had

inhibitory effects on RNA synthesis by RNA polymerase II and time of addition exper-

iment suggested that NS1 inhibited transcription at its initiation step (I, Fig. 3D, E).

Interestingly, NS1 prevented RNA synthesis after preincubation with dsDNA or with

transcription factors and RNA polymerase II (I, Fig. 3F). This finding indicates that

NS1 binds dsDNA and inhibits transcription initiation by preventing pre-initiation

complex and RNA polymerase II loading on dsDNA. Alternatively, dsDNA binding

could coordinate inhibitory protein-protein interactions between NS1 and components

of transcription initiation machinery.

Is the dsDNA binding by NS1 that we observed in vitro relevant to infection? To

answer this question we addressed NS1 interaction with dsDNA in infected cells. Chro-

matin immunoprecipitation (ChIP) experiment in infected cells revealed the presence

of NS1 on the promoter and exon regions of the IFNB1 gene which is strongly in-

duced upon influenza A infection. Interaction of NS1 with IFNB1 DNA was R38-,

K41-dependent, suggesting direct dsDNA binding as was observed in an in vitro assay

(I, Fig. 4A). The pattern of NS1 association with IFNB1 promoter and exon regions

was opposite to that of RNA polymerase II, which may indicate possible inhibition of

IFNB1 gene expression due to NS1 DNA-binding.
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Functional versatility of NS1 complicates studying the role of its dsDNA binding in

the context of viral infection, because in addition to nucleic acid binding residues R38

and K41 are involved in inhibitory interactions with TRIM25, RIPLET and RIG-I,

which also prevent transcriptional activation of IFNB1 (Gack et al., 2009; Rajsbaum

et al., 2012). To separate NS1 transcriptional effects from its role in virus-induced RIG-

I signaling, we addressed the function of residues R38 and K41 in cells overexpressing

NS1, taking advantage of the absence of RIG-I activation in such a set up. In this system

the wild type NS1 was detected on promoter and exon regions of housekeeping gene

EML4, indicating its ability to interact with cellular dsDNA (I, Fig. 4C). As expected,

the RK/AA mutant NS1 was not able to do so. To address direct effects of NS1 dsDNA

binding on transcriptional regulation of cellular genes we exposed cells expressing wild

type or RK/AA mutant NS1 to polyinosinic:polycytidylic acid (poly(I:C)). External

poly(I:C) is detected by cell surface TLR3 and thus IFN responses are induced without

activation of dsRNA signaling (Karpala et al., 2005). As expected, the wild type NS1

capable of dsDNA binding strongly inhibited poly(I:C)-induced activation of IFNB1,

IFNA1 and IFNA16, supporting our hypothesis of its role in direct transcriptional

control of cellular immune-related genes (I, fig. 4D).

In summary, these results provide a novel insight into IFN response control by

NS1, suggesting direct binding of NS1 to promoter and exon regions of DNA and

prevention of effective transcription of cellular genes. The Kd of NS1-dsDNA binding

was 11.1 ± 0.7 𝜇M and is comparable to the Kd of NS1-dsRNA binding, which is also

in micromolar range (Yin et al., 2007a). Provided this, and also given that the NS1

is predominantly localized in cellular nucleus, where its concentration is very high (Li

et al., 2010; Marazzi et al., 2012), we can propose that the dsDNA-binding of NS1 is as

important as its well-described dsRNA-binding. Further studies in RIG-I-, PKR- and

OAS-deficient systems would be helpful for dissecting these two essential functions of

NS1.

From our studies we can not determine, whether NS1 interacts with dsDNA as a
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dimer or as an oligomer. Interestingly, the tunnel diameter inside the NS1 oligomer

was reported to be 20 Ångström (Å) (Bornholdt and Prasad, 2008), and, if no con-

formational changes occur during binding, it is more likely to accommodate a 20 Å

B-form DNA double helix, rather than 26 Å RNA double helix. This question could

be addressed in detail with further biophysical and structural studies of NS1-dsDNA

complex.

With regards sequence specificity of NS1 dsDNA binding, our results suggest the

lack of it, however, one can speculate that during infection transcriptionally active

chromatin, i.e. IFN genes, is more accessible to NS1. This question, however, needs

to be addressed in detail using genome-wide studies, for example, ChIP combined

with sequencing. Furthermore, our in vitro results suggest that NS1 is able to bind

dsDNA per se, however it would be interesting to investigate whether NS1 interacts

with possible cellular factors to facilitate its targeting to dsDNA in a crowded nucleus

environment.

When this study was initiated, NS1 had been thought to control activation of an-

tiviral genes at pre-transcriptional level (see section 1.7.5). However, later it was shown

that NS1 also inhibits cellular transcription by targeting histone H3-interacting tran-

scription elongation complex PAF1 (Marazzi et al., 2012). Such an inhibition, however,

required histone-mimic sequence 226ARSK229 in NS1 C-terminus and was specific to

viruses of H3N2 subtype (Marazzi et al., 2012). The mechanism of transcriptional con-

trol by NS1 discovered in our study, in contrast, seems to be general across different

influenza A subtypes and involves conserved residues R38, K41. The importance of NS1

dsDNA binding for viral replication and conservation of R38 and K41 suggest that this

function of NS1 could be an interesting target for development of antivirals. Indeed, a

recent study utilized SELEX approach to select ssDNA aptamers that are bound by

NS1 with high affinity and suppress its anti-interferon functions (Woo et al., 2013).
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4.2 Regulation of general protein synthesis by NS1 (Studies

II, IV)

Another essential function of NS1 is to support effective viral protein synthesis in the

context of infection and thus secure viral replication. Influenza A infection activates

cellular PKR which phosphorylates and inactivates translation initiation factor eIF2𝛼,

thus inhibiting protein synthesis and inducing death of infected cells (Levin and Lon-

don, 1978). NS1 regulates general protein synthesis by preventing PKR activation and

its residues 123–127 are thought to be essential for this (Lu et al., 1995; Min et al.,

2007). In addition, NS1 interacts with translation initiation factors eIF4GI and PABPI

and few studies proposed that it recruits these factors to viral mRNAs thus specifi-

cally enhancing viral protein synthesis (de la Luna et al., 1995; Aragon et al., 2000;

Burgui et al., 2003). Such recruitment, however, would require specific binding of NS1

to distinct sequences on viral mRNAs.

We addressed regulation of protein synthesis by NS1. To separate the effects of

NS1 on protein synthesis from its other functions we used a rabbit reticulocyte lysate

(RRL) cell-free translation system.

Avian high pathogenic H5N1 NS1 enhanced translation of reporter mRNA and

protein production by RRL over six fold (II, Fig. 2A and C). Importantly, the RNA-

binding function of NS1 was not required for translation regulation in RRL and the

RK/AA mutant protein was as efficient enhancer of translation as the wild type NS1

(II, Fig. 2A). This observation allowed us to use the RK/AA NS1 proteins in fur-

ther experiments as they show remarkably better solubility compared to the wild type

proteins (Bornholdt and Prasad, 2008).

NS1 effects on translation in RRL were subtype specific: avian H5N1 and H5N2

NS1s were efficient translational enhancers, whereas pH1N1/2009 NS1 did not affect

protein synthesis (II, Fig. 2B and C).

Translational enhancement by NS1 was not limited to viral mRNAs. In RRL pro-
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grammed with RNAs extracted from infected cells at different time points post infection

NS1 promoted production of both viral and cellular proteins (IV, Fig. 1A). This finding

was supported by our observation that RNA-binding was not required for NS1 transla-

tional control in RRL and hence in this system the protein synthesis rate does not seem

to depend on virus-specific sequences on RNA with which NS1 could interact, meaning

that one should observe enhancement of both cellular and viral mRNA translation.

In addition to its interactions with translation factors, NS1 has been shown to

associate with human homolog of Drosophila melanogaster Staufen protein (hStaufen)

on polysomes in infected cells (Falcón et al., 1999). As the hStaufen has been implicated

in regulation of mRNA stability, we addressed if translational enhancement in RRL in

the presence of NS1 was a result of increased mRNA stability. This appeared not to

be the case and NS1 did not affect the mRNA degradation rate (II, Fig. 2E and F).

Instead, NS1 enhanced association of mRNA with ribosomes and polysomes in RRL

reactions which suggested its possible role in translation initiation (IV, Fig. 1B).

We utilized differential effects of H5N1, H5N2 and pH1N1/2009 NS1 proteins on

RRL protein synthesis to map NS1 residues essential for translation enhancement. The

NS1 protein of pH1N1/2009 is 11 aa shorter than H5N1 and H5N2 NS1s due to a

C-terminal truncation. However, neither 11 C-terminal residues, nor the whole ED was

essential for translation modulation by NS1. RBD alone was sufficient for this function

(II, Fig. 2G and H). Importantly, the RBD of NS1 can be involved in protein-protein

interactions and therefore we searched to potential determinants of those. The RBD of

pH1N1/2009 NS1 contained several unique amino acids compared to H5N1 and H5N2:

N25, G26, N48 and W67 (II, Fig. 1A). Introduction of these residues singularly or all

at once into H5N1 NS1 resulted in loss of its function in RRL protein synthesis. In a

reciprocal experiment introduction of Q25/N26 and R67 from H5N1 in pH1N1/2009

NS1 resulted in its gain of function confirming that these residues are essential for

translational control in RRL (II, Fig. 2I). In the 3D structure of NS1 the side chains

of these amino acids are exposed to solvent, indicating their possible involvement in
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interaction(s) between NS1 and its protein partner(s) (II, Fig. 4B). Thus, our results

clearly indicate that in RRL NS1 non-specifically enhances production of both viral

and cellular proteins and critical residues for this function are Q25, E26, S48 and R67

with NS1 RBD.

In the system that we used, the stimulation of protein synthesis in RRL was not

specific to viral mRNAs and also did not require NS1 RNA-binding function. Therefore,

this approach can not address the ability of NS1 to target translation factors to viral

mRNAs and our data neither contradict, nor support previous studies.

Translational enhancement by NS1 in RRL occurred due to prevention of eIF2𝛼

phosphorylation (Fig. 6). There are four kinases that are known to phosphorylate

eIF2𝛼: PKR, PKR-like endoplasmic reticulum kinase (PERK), general control non-

derepressible kinase 2 (GCN2) and heme-regulated inhibitor (HRI) (Donnelly et al.,

2013). Of these, only PKR has an assigned role in influenza infection. NS1 is proposed

to prevent activation of the PKR in infected cells by two mechanisms: (i) by binding

to dsRNA with its R38 and K41 and sequestering it away from PKR (Lu et al., 1995)

or (ii) by direct interaction with PKR via its residues 123–127 (Min et al., 2007) and

the latter activity is proposed to be critical for PKR inactivation. It is possible that

endogenous PKR is activated in RRL and NS1 prevents this activation thus securing

protein synthesis. However, three observations are not in line with this mechanism: (i)

RNA-binding function of NS1 was not required for its function in RRL. Therefore, NS1

could not prevent eIF2𝛼 phosphorylation by sequestering possible dsRNA substrates of

PKR; (ii) in our experiments NS1 RBD alone was sufficient to prevent eIF2𝛼 phospho-

rylation in RRL via its residues Q25, E26, S48 and R67, whereas previously published

data suggests that PKR inhibition by NS1 requires aas 123–127 within its ED; and

(iii) a previous study by Min et al. reported that RBD of A/Udorn/72 H3N2 which is

highly similar to H5N1 and H5N2 NS1 RBDs and contains residues Q25, E26, S48 and

K67 did not inhibit PKR (Min et al., 2007). Therefore, it is possible that the protein

target of NS1 in RRL is not PKR. The other kinases possibly inhibited by NS1 are
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HRI, GCN2 and PERK. Although their role in influenza A infection are not known, all

of them are induced in response to various stress stimuli (Donnelly et al., 2013). The

possible inhibition of one of these kinases by NS1 could represent an additional ap-

proach by which influenza A secures protein synthesis during cellular stress. However,

the exact target is yet to be identified.

Figure 6. NS1 inhibits eIF2𝛼 phosphorylation in RRL. RRL reactions were supplied with H5N1
RK/AA NS1 or control buffer and incubated for the time indicated. Equal amounts of reaction
mixes were loaded on the SDS-polyacrylamide gel and phosphorylation status of eIF2𝛼 was assayed
using immunoblot.

Because NS1 proteins used in our work were deficient of RNA binding, our results

do not address possible targeting of NS1 on specific sequences on mRNA. However,

in a recent study Marc et al. have identified virus-specific motifs on RNAs to which

NS1 bound with nanomolar Kd (Marc et al., 2013). Biologically, such binding could be

related to several essential processes in virus life cycle, including enhanced translation

of viral mRNAs, however, it is still yet to be confirmed in infected cells. Altogether, our

results do not contradict possible targeting of NS1 to viral mRNAs, but demonstrate

a strategy of general protein synthesis stabilisation during infection employed by the

virus.

4.3 C-terminus of NS1 contributes to modulation of host an-

tiviral responses (Study III)

Although NS1 is a well structured protein, its C-terminus is likely to be unstructured

(Hale et al., 2008c). Nevertheless, it can play an essential regulatory role in infection,

as it accommodates numerous interaction motifs and modification sites that can mod-

ulate virus-host interactions, ofter in strain-specific manner (Li et al., 2001a; Hsiang
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et al., 2009; Liu et al., 2010; Hsiang et al., 2012; Marazzi et al., 2012; Melen et al.,

2012). Naturally occurring truncations and extensions of NS1 C-terminus are have been

described in influenza A viruses of different genetic backgrounds (Suarez and Perdue,

1998). The NS1 protein of H1N1 viruses isolated in 2009–2014 is typically 219 aa long,

and H1N1 viruses encoding NS1 of 202 and 230 aa have been recently reported in

Finnish patients (Lakspere et al., 2014). However, the relevance of NS1 C-terminal

truncations and extensions to viral replication and virulence is unclear.

We aimed to address the functional role of NS1 C-terminus length using influenza A

viruses of well-characterized A/WSN/33 background that express NS1 proteins of 202,

220 and 230 amino acids (III, Fig. 1B). All viruses were able to propagate in immune-

competent MDCK cells, but the virus with the shortest NS1 (202 aa) displayed delayed

growth kinetics (III, suppl. Fig. 1A).

We addressed the effects of NS1 C-terminus length in human macrophages. Se-

quential truncations of NS1 C-terminus increased transcriptional activation of cellular

genes and the virus expressing the shortest NS1 was least successful in control of host

gene expression (III, Fig. 2A). The majority of genes differentially regulated by NS1

C-terminus length, e.g. MX1, ISG15, OASL, CCL8, IL6, and IL8, was involved in the

regulation of innate and adaptive immune responses (III, Fig. 2B). This effect was to

some extent reflected on the level of cytokine secretion and amounts of IL-6 and IL-8

secreted by macrophages were increased upon NS1 truncations (III, Fig. 2C and D).

Differential regulation of immune-related gene expression and cytokine production

prompted us to address the role of NS1 C-terminus in cellular signaling pathways. We

observed that C-terminal truncations of NS1 upregulated phosphorylation of several

phosphoproteins involved in control of immune responses. The shorter the NS1 C-

terminus was, the stronger was observed phosphorylation of STAT3, JNK, HSP60 and

AMPK𝛼1 (III, Fig. 3).

We used the viruses that express 230 and 202 aa long NS1 to address the effect

of NS1 C-terminus in vivo. NS1 C-terminus deletion reduced influenza A virulence
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and pathogenicity in mice (III, Fig. 4A and B), suggesting the regulatory role of

NS1 C-terminus in infection. Thus, our results indicate that the length of NS1 C-

terminus is essential for interactions with the host cell, control of antiviral responses

and modulation of viral pathogenicity.

The C-terminus of A/WSN/33 NS1 contains human-like PDZ-binding motif for

which no interactions have yet been identified and a phosphorylation site T215 for

which the effect is also unclear (Jackson et al., 2010b; Hsiang et al., 2012). Nevertheless,

our data indicate the functional role of NS1 C-terminus length in the regulation of the

host immune responses and in viral pathogenicity and virulence. Sporadic truncations

and extensions of NS1 are quite seldom events, but they could provide opportunities

to lose, acquire or activate functional motifs within NS1 C-terminus. For example, de-

spite that in initial experiments appearance of functional Crk/CrkL-binding motif in

H1N1 NS1 C-terminus did not bring on notable effects (Hale et al., 2010b), it seems

that a combination of Crk/CrkL and NS1 C-terminus extension could promote viral

replication and increase virulence (Dr. Eike Hrincius, personal communication). Fur-

ther modeling of C-terminal polymorphisms on pH1N1/2009 genetic background could

provide deeper insights in virus-host interactions and influenza A adaptation to host.

The H1N1 influenza A viruses isolated from 2009 demonstrate the highest substi-

tution rate in NS1 compared to other known viral subtypes (Xu et al., 2011). A recent

study conducted in UK indeed reported that currently circulating pH1N1/2009 virus

rapidly adapted to human, and acquired mutations in multiple viral genes, includ-

ing NS1, that increase viral replication and limit host cytokine production (Elderfield

et al., 2014). Several isolates of pH1N1/2009 influenza A have acquired a functional

Crk/CrkL-binding domain or an extended C-terminus (III, Fig. 1A). Although such

viruses may not be of immediate concern, monitoring of changes within NS1 and its

C-terminus is worth undertaking, as while amino acid variations in NS1 C-terminus

are not detrimental, they provide the opportunity for influenza A viruses to probe

additional ways of virus-host interactions under human selection pressure.
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4.4 NS1 as a tool to improve cell-free protein synthesis system

(Study IV)

The effects of NS1 on translation in RRL observed in Study II prompted us to utilize

NS1 for improvement of RRL cell-free translation system. RRL is widely used for

translation of specific templates, membrane protein studies, to study post-translational

events in folding and protein modification, and high-throughput screening for protein-

protein interactions (Fuller and Cuthbert, 2000; Douthwaite, 2012; Fixsen and Howard,

2010; Wang et al., 2011). However, low protein yield is a considerable limitation of RRL,

which should be overcome to improve its current applications (Carlson et al., 2012).

As viruses have evolved multiple ways to facilitate protein synthesis, a possible way to

improve cell-free protein synthesis is addition of viral factors which regulate translation.

These include viral proteins and specific regulatory structures on mRNA such as UTRs

or IRESs.

The NS1-mediated enhancement of RRL translation occurred through inhibition

of eIF2𝛼 phosphorylation (Fig. 6) and stabilization of translation initiation and was

not specific to viral mRNAs (IV, fig. 1). We reasoned that RRL translation could be

reinforced using mRNAs with specific 5’ and 3’ regulatory structures which together

with NS1 would exert a cumulative effect. For this several reporter mRNAs with 5’meG

or IRES and with different 3’ UTRs were tested in RRL at their optimal concentration

(II, Fig. 2D; IV, Fig. 2A). We observed the most robust enhancement of translation

when mRNA containing 5’ encephalomyocarditis virus (EMCV) IRES and 3’ poly(A)

sequence was used together with NS1. The protein production by RRL in this case was

increased over 11 fold (IV, Fig. 2B). The EMCV IRES is known to initiate translation

with limited initiation factor requirement and without ribosome scanning for AUG

codon (Pestova et al., 2001). However, it is still dependent on non-phosphorylated

eIF2𝛼 (Terenin et al., 2008), which in our system is controlled by NS1.

In summary, our strategy to use viral enhancers of translation provides an easy and
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efficient way to improve cell-free translation in RRL and enhance its protein yield. This

strategy appears to be more effective compared to traditional usage of small molecular

inhibitors of eIF2𝛼 kinases (Jammi et al., 2003). It also provides a proof-of-concept for

generally utilizing viral proteins to modify cell-free translation systems from different

origins.
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5 Conclusions and Future Perspectives

NS1 is an extremely versatile protein that controls influenza A virus-host interactions

at multiple levels. It has been extensively studied over the past few decades, but despite

a great deal of information obtained, the understanding of multiple functions of NS1 is

still far from being complete. For example, nucleic acid binding by R38 and K41 of NS1

has been well-described, but its role in the viral replication cycle still needs elucidation.

NS1 interactions with cellular factors of translation might facilitate selective synthesis

of viral proteins, but the exact mechanism needs to be described. Furthermore, a C-

terminal disordered “tail” of NS1 is a key contributor to NS1 diversity and length

polymorphisms, but its role in viral replication is far from being understood.

In this work I set specific questions aiming to provide novel insights into modulation

of influenza A virus-host interactions by NS1: What is the role of NS1 nucleic acid

binding and residues R38 and K41 in infection? Does NS1 specifically or non-specifically

enhance translation? What is the contribution of NS1 C-terminus in modulation of

virus-host interactions?

We approached of nucleic acid binding by NS1 in our study I and demonstrated that

NS1 can directly bind dsDNA and inhibit cellular gene expression at transcriptional

level. This does not exclude the RNA-binding—a well-characterized function of NS1—

but seems to be as important and provides additional level of NS1 control over host

immune responses. As it often occurs in science, our observation not only uncovers a

previously undescribed function of NS1, but also brings up several questions for further

elucidation.

How does NS1 inhibit transcription in the cell, without leading to its premature

death? Does it target specific cellular gene subsets? Are there any cellular factors hi-

jacked by the virus to secure this targeting? Addressing these questions in genome-wide

distribution of NS1 on cellular dsDNA using a high-throughput method such as ChIP-

seq, and identification of NS1 interacting partners using immunoprecipitation coupled
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with mass-spectrometry analysis could contribute to understanding the mechanistic

details of transcriptional control by NS1. As the NS1 residues involved in this function

are conserved, one would expect that the transcriptional control by dsDNA binding is a

common function of NS1 proteins. Is it so? This can be addressed in question with sim-

ilar studies using other influenza A viruses, such as A/Udorn/72 (H3N2), A/PR8/34

(H1N1) and A/California/07/2009 (pH1N1/2009) for which reverse genetics systems

are available. Furthermore, as the NS1 nucleic acid binding function(s) appear to be

critical for influenza A replication in immune competent systems and residues R38 and

K41 are conserved, targeting this function with an inhibitor molecules may provide a

promising antiviral, to which resistance is less likely to develop.

In our study II we addressed the translation modulation by NS1 in a cell-free

translation system. We observed that NS1 non-specifically enhanced translation of

viral and cellular mRNAs. The mapped residues within NS1 that secure this function

indicate that it occurs via protein-protein interactions and RNA binding is not involved.

Thus, our results did not disprove or support previous suggestions that NS1 specifically

targets viral mRNAs and recruits translation factors therein. We rather added a new

level of translational control by NS1. Although our studies of translational control by

NS1 might be limited by the system used, our results provoke further investigation

of cellular responses to influenza A infection. Are there translational regulators, other

than PKR, induced by viral infection and the linked cellular stress? Answering this

question by specific studies of activation of eIF2𝛼 kinases upon influenza A infection

and probing possible protein-protein interactions between NS1 and these kinases can

bring new insights in understanding of complex control over cellular protein synthesis

during infection.

Interestingly, our observation that NS1 prevents eIF2𝛼 phosphorylation in RRL al-

lowed us to develop an approach to utilize NS1 to improve biotechnologically important

cell-free translation system and to increase the protein yield. Our study IV has laid

a proof-of-principle for using viral translational enhancers in biotechnological systems.
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As Influenza A infects mammals, our method improved mammalian cell-free transla-

tion system based on RRL. Viruses infect all forms of life and are obligate parasites

of host translation, hence further studies may identify viral enhancers for any given

cell-free translation system.

Finally, in our study III we showed that the length of NS1 C-terminal tail con-

tributes to control over cellular antiviral responses and regulates virus pathogenicity.

These findings suggests that further monitoring of NS1 length polymorphisms should

be undertaken. As human infections with influenza A of pH1N1/2009 origin are still a

cause of concern, it would be important to address the role of NS1 C-terminal trun-

cations and extensions using reverse genetics system for pH1N1/2009. Furthermore,

influenza A strains lacking NS1 protein are considered as potential vaccine candidates

(Mossler et al., 2013), however, in my experience propagation of such viruses in cell

culture is extremely challenging. As viruses expressing C-terminally truncated NS1 in-

duce stronger antiviral responses and their virulence is limited, such viruses could be

investigated further as potential candidates for vaccine development.

Altogether, this work added three new functions of different NS1 determinants in

regulation of several aspects of virus host interactions. Although it would be interesting

to study each of these functions in more detail, it reminds us of a bigger question to

address: How does such a small protein like NS1 retain its functional versatility? Such a

versatility is apparently controlled at the level of protein structure, modifications, and

temporal and spatial regulation. Unfortunately, multiple studies addressingJAKAKA

these issues, were performed using different viral strains and experimental approaches

and, although they provided a huge amount of information, the detailed control of NS1

multifunctionality in a cell during infection still remains largely elusive. Undoubtedly,

further studies of influenza A virus-host interactions and their modulation by NS1 will

bring deeper understanding of multiple functions of this extremely interesting protein

and hopefully will contribute to improvement of current means to control influenza A.
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Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzel-
mann KK, Schlee M, Endres S, and Hartmann G. “5’-Triphosphate RNA is the
ligand for RIG-I.” In: Science 314 (2006), pp. 994–997.

Hrincius ER, Wixler V, Wolff T, Wagner R, Ludwig S, and Ehrhardt C. “CRK adap-
tor protein expression is required for efficient replication of avian influenza A
viruses and controls JNK-mediated apoptotic responses”. In: Cellular Microbiol-
ogy 12 (2010), pp. 831–843.

Hsiang TY, Zhou L, and Krug RM. “Roles of the phosphorylation of specific serines
and threonines in the NS1 protein of human influenza A viruses”. In: Journal of
Virology 86.19 (2012), pp. 10370–10376.

Hsiang TY, Zhao C, and Krug RM. “Interferon-induced ISG15 conjugation inhibits
influenza A virus gene expression and replication in human cells.” In: Journal of
Virology 83 (2009), pp. 5971–5977.

Huang Y and Carmichael GG. “Role of polyadenylation in nucleocytoplasmic transport
of mRNA.” In: Molecular and Cellular Biology 16 (1996), pp. 1534–1542.

Huet S, Avilov S, Ferbitz L, Daigle N, Cusack S, and Ellenberg J. “Nuclear import
and assembly of the influenza A virus RNA polymerase studied in live cells by

68



Fluorescence Cross Correlation Spectroscopy”. In: Journal of Virology 84 (2010),
pp. 1254–1264.

Hughey PG, Compans RW, Zebedee SL, and Lamb RA. “Expression of the influenza
A virus M2 protein is restricted to apical surfaces of polarized epithelial cells.” In:
Journal of Virology 66.9 (1992), pp. 5542–5552.

Husain B, Mukerji I, and Cole JL. “Analysis of high-affinity binding of protein kinase
R to double-stranded RNA.” In: Biochemistry 51.44 (2012), pp. 8764–8770.

Hutchinson EC, Denham EM, Thomas B, Trudgian DC, Hester SS, Ridlova G, York
A, Turrell L, and Fodor E. “Mapping the Phosphoproteome of Influenza A and B
Viruses by Mass Spectrometry”. In: PLoS Pathogens 8 (2012).

Ichinohe T, Lee HK, Ogura Y, Flavell R, and Iwasaki A. “Inflammasome recognition
of influenza virus is essential for adaptive immune responses.” In: The Journal of
Experimental Medicine 206 (2009), pp. 79–87.

Ichinohe T, Pang IK, and Iwasaki A. “Influenza virus activates inflammasomes via its
intracellular M2 ion channel.” In: Nature Immunology 11 (2010), pp. 404–410.

Inglis SC, Barrett T, Brown CM, and Almond JW. “The smallest genome RNA segment
of influenza virus contains two genes that may overlap.” In: Proceedings of the
National Academy of Sciences of the USA 76 (1979), pp. 3790–3794.

Ioannidis I, Ye F, McNally B, Willette M, and Flaño E. “Toll-like receptor expression
and induction of type I and type III interferons in primary airway epithelial cells.”
In: Journal of Virology 87 (2013), pp. 3261–70.

Ishikawa E, Nakazawa M, Yoshinari M, and Minami M. “Role of tumor necrosis factor-
related apoptosis-inducing ligand in immune response to influenza virus infection
in mice”. In: Journal of Virology 79 (2005), pp. 7658–7663.

Iwasaki A and Medzhitov R. “Regulation of adaptive immunity by the innate immune
system.” In: Science 327 (2010), pp. 291–295.

Iwasaki A and Pillai PS. “Innate immunity to influenza virus infection”. In: Nature
Reviews Microbiology Immunol 14.5 (2014), pp. 315–328.

Jackson DA, Caton AJ, McCready SJ, and Cook PR. “Influenza virus RNA is synthe-
sized at fixed sites in the nucleus.” In: Nature 296 (1982), pp. 366–368.

Jackson D, Killip MJ, Galloway CS, Russell RJ, and Randall RE. “Loss of function
of the influenza A virus NS1 protein promotes apoptosis but this is not due to a
failure to activate phosphatidylinositol 3-kinase (PI3K)”. In: Virology 396 (2010),
pp. 94–105.

Jackson RJ, Hellen CU, and Pestova TV. “The mechanism of eukaryotic translation ini-
tiation and principles of its regulation”. In: Nature Reviews Molecular and Cellular
Biology 11.2 (2010), pp. 113–127.

Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartz-
man LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth
AE, Taubenberger JK, and Digard P. “An Overlapping Protein-Coding Region in
Influenza A Virus Segment 3 Modulates the Host Response”. In: Science 337 (2012),
pp. 199–204.

Jammi NV, Whitby LR, and Beal PA. “Small molecule inhibitors of the RNA-dependent
protein kinase”. In: Biochemical and Biophysical Research Communications 308.1
(2003), pp. 50–57.

69



Janeway CA. “Approaching the asymptote? Evolution and revolution in immunology”.
In: Cold Spring Harbor Symposia on Quantitative Biology. Vol. 54. 1989, pp. 1–13.

Janeway CA and Medzhitov R. “Innate immune recognition.” In: Annual Review of
Immunology 20 (2002), pp. 197–216.

Javier RT and Rice AP. “Emerging Theme: Cellular PDZ Proteins as Common Targets
of Pathogenic Viruses”. In: Journal of Virology 85 (2011), pp. 11544–11556.

Jiang H, White EJ, Ŕıos-Vicil CI, Xu J, Gomez-Manzano C, and Fueyo J. “Human
adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered
caspase activity.” In: Journal of Virology 85 (2011), pp. 4720–4729.

Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BRG, and Li X. “Poly(I-
C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and
MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent
pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR .”
In: Journal of Biological Chemistry 278.19 (2003), pp. 16713–16719.

Johnson ES. “Protein modification by SUMO.” In: Annual Review of Biochemistry 73
(2004), pp. 355–382.

Jorba N, Coloma R, and Ort́ın J. “Genetic trans-complementation establishes a new
model for influenza virus RNA transcription and replication”. In: PLoS Pathogens
5 (2009).

Julkunen I, Melén K, Nyqvist M, Pirhonen J, Sareneva T, and Matikainen S. “Inflam-
matory responses in influenza A virus infection.” In: Vaccine 19 Suppl 1 (2000),
S32–S37.

Kang DC, Gopalkrishnan RV, Lin L, Randolph A, Valerie K, Pestka S, and Fisher
PB. “Expression analysis and genomic characterization of human melanoma differ-
entiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-
inducing gene.” In: Oncogene 23 (2004), pp. 1789–1800.

Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D, Khalil
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Kochs G, Garćıa-Sastre A, and Mart́ınez-Sobrido L. “Multiple anti-interferon actions
of the influenza A virus NS1 protein.” In: Journal of Virology 81 (2007), pp. 7011–
7021.

Koennecke I, Boschek C, and Scholtissek C. “Isolation and properties of a temperature-
sensitive mutant (ts 412) of an influenza A virus recombinant with a is lesion in the
gene coding for the nonstructural protein”. In: Virology 110.1 (1981), pp. 16–25.

König R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG,
Tscherne DM, Ortigoza MB, Liang Y, Gao Q, Andrews SE, Bandyopadhyay S,
De Jesus P, Tu BP, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T,
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