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1 Introduction

Recession forecasting is a key activity performed by numerous economic institutions.

Knowing whether in the next month or next year the economy will be in an expansion or

recession is an important piece of information for policymakers, investors and households.

For example, government authorities can tailor their spending with the knowledge of

how soon the economy will return to expansion, while central banks can review their

monetary policy in the light of future expected business cycle conditions.

In the applied econometric literature, recession forecasting has typically been based

on binary response frameworks, such as probit or logit models. In these studies, only a

few predictive variables at a time are used to forecast recession periods. It has generally

been found (see, e.g, Dueker (1997), and Estrella and Mishkin (1998)) that the spread

between the ten-year Treasury bond rate and the three-month Treasury bill rate is the

best leading indicator of the U.S. recessions. Furthermore, Wright (2006) finds that the

level of the federal funds rate has some additional predictive power over and above the

term spread, whereas similar results have been found for the stock market returns in

Estrella and Mishkin (1998) and Nyberg (2010).

In this paper, I propose a novel approach based on Bayesian shrinkage allowing for the

presence of a large number of predictors in the probit model. Using a high-dimensional

monthly dataset, I compute 1, 6, 9 and 12-month-ahead recession forecasts from a set

of models which differ in the number of explanatory variables used. The parsimonious

benchmark models include the variables that have been found useful recession leading

indicators, such as the term spread.

Despite the growing interest in predicting recessions, the use of large datasets for this

purpose has not been widespread. Nevertheless, there have been a few notable examples,

such as Chen, Iqbal, and Lai (2011), where the authors include estimated latent factors

extracted from a large dataset in the probit model. Fossati (2013) also proposes the

use of the constructed macroeconomic factors as predictors, even though he focuses on

smaller datasets than Chen et al. (2011) when estimating the dynamic factors. Recently,

Christiansen, Eriksen, and Møller (2014) use common factors in the probit models

to test the usefulness of sentiment variables. In contrast to these above-mentioned

binary response models, the predictive frameworks for continuous real-valued dependent

variables, such as GDP growth, containing a large number of predictors have been

commonly used in the previous literature since the seminal paper by Stock and Watson
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(2002). They introduced the use of principal components, estimated from a large

macroeconomic dataset, to forecast variables of interest (such as industrial production

or inflation). Dynamic factor settings have not been the only class of models used in

macroeconomic forecasting with large datasets. For example, De Mol, Giannone, and

Reichlin (2008) propose Bayesian shrinkage as an alternative to principal components,

while Banbura, Giannone, and Reichlin (2010) forecast macroeconomic variables using

a large Bayesian vector autoregression.

I apply a methodology similar to the one presented in De Mol et al. (2008) to

shrink the parameters of the explanatory variables toward zero, leading to a ridge

regression-type setting. The probit model is estimated with Bayesian methodology

via data augmentation as in Albert and Chib (1993). The main contribution to the

previous literature is that I am able to estimate a probit model with a large number of

predictors via Bayesian shrinkage. This is a key distinction from other works concerning

forecasting recession periods using factor-based models, where the information contained

in large datasets is condensed in a few unobservable common factors. My approach

has the desirable property of allowing to assess the effect of individual variables, with

convenient interpretation of the parameter estimates. Another problematic feature of

factor models is that they require a two-step estimation procedure (with potential issues

related to the generated regressor problem) but also produce predictors which have no

clear economic interpretation. Furthermore, another contribution on the research of

binary response models is the use of informative priors. This is different from what

is done in, e.g., Albert and Chib (1993) and Chauvet and Potter (2005), where the

authors rely on flat priors. In my case, I use a shrinkage prior, i.e. I center the prior

distribution of the parameters at zero, with the variance of the prior distribution used

to control how much the parameters are shrunk.

In my empirical application to U.S. recession periods, I find that the probit models

containing a large set of predictors outperform the more parsimonious models. This

result, however, holds only in the case where we shrink the parameters of the model

toward zero. The overall superior forecasting performance is not only reflected in

statistical criteria, but models incorporating a large set of explanatory variables give

us predictions that are informative for decision making. Moreover, the large forecast-

ing models manage to beat factor-based recession forecasts, providing a competitive

alternative for the use of large datasets in recession prediction.
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The remainder of the paper is structured as follows: In Section 2, I introduce the

model and the shrinkage methodology. In Sections 3 and 4, I briefly describe the dataset

and report the empirical results. Section 5 concludes.

2 Methodology

2.1 Probit Model

Following the modeling approach by Albert and Chib (1993), I consider probit models

estimated with Bayesian methodology. In particular, I use the data augmentation

technique to obtain posterior draws for the model parameters and the latent variable

underlying the binary recession indicator.

Throughout this study, I am interested in forecasting a binary variable, yt, t =

1, 2, . . . , T , which can take the value one or zero. In our U.S. recession forecasting

application, following the usual practice in macroeconomic research, yt is thus the

NBER recession indicator defined as

yt =

 1, if the U.S. economy is in a recession at time t

0, if the U.S. economy is in an expansion at time t.
(2.1)

Furthermore, I assume that the realized values of yt are based on a latent variable zt
defining the values of (2.1) as follows:

yt =


1, if zt > 0

0, if zt ≤ 0.
(2.2)

In other words, negative values of zt imply yt = 0 (i.e. expansions), and vice versa for

recessions.

In the probit model, I use p lags of the explanatory variables to forecast recessions,

so our model for the latent variable zt becomes:

zt = X ′tβ + ut, (2.3)

where Xt = (1, x′t−1, . . . , x
′
t−p)′ is (np + 1) × 1 vector and ut is the error term which

follows a standard normal distribution. Due to the form of (2.3), β contains the constant

together with the coefficients associated with the predictors and their lags. Model (2.3)
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can be rewritten using a matrix notation as:

Z = Xβ + U, (2.4)

where the vector Z = (z1, . . . , zT )′ is (T × 1) vector, X = (X1, . . . , XT )′ is (T × np+ 1)

matrix and U = (u1, . . . , uT )′ is a (T × 1) vector.

From (2.2) and (2.3), we obtain:

Et−1(yt) = P (zt ≥ 0|Xt, β) = Φ(X ′tβ), (2.5)

where Φ(·) is the cumulative standard normal distribution function leading to the probit

model. Notice that following the properties of the Bernoulli distribution, the conditional

expectation Et−1(yt), i.e. the expected value of the recession indicator conditional on

the information set at time t− 1, is equal to the conditional probability P (zt ≥ 0|Xt, β).

The estimation of model (2.4) is carried out by Gibbs sampling. The details of the

sampler are given in Section 2.3.

2.2 Shrinkage Estimator

Similarly as Albert and Chib (1993), I assume that in (2.4) the error term U is

multinormally distributed with mean 0 and identity variance-covariance matrix IT
(i.e. U ∼ N(0, IT )). To derive the conditional posteriors for β and Z, I follow the

presentation of Zellner (1971).

Instead of using a flat non-informative prior for β (as is often done in the literature),

I impose the following prior

p(β) ∝ |A|1/2 exp[−1
2(β − β̄)′A(β − β̄)],

where A is a nonsingular matrix (in our case it is set to 1
λ
IK , with K = np+ 1 i.e. the

number of parameters). This implies that the prior for β can be written compactly as

β ∼ N(β̄, A−1). The likelihood for the latent variable Z, conditional on β, is given by

p(Z|X, β) ∝ exp[−1
2(Z −Xβ)′(Z −Xβ)].

We combine the likelihood with the prior to get

p(β|X,Z) ∝ exp{−1
2[(Z −Xβ)′(Z −Xβ) + (β − β̄)′A(β − β̄)]}.
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Notice that

(β − β̄)′A(β − β̄) + (Z −Xβ)′(Z −Xβ) =

β′(A+X ′X)β − 2β′(Aβ̄ +X ′Z) + Z ′Z + β̄Aβ̄ =

(β − β̃)′(A+X ′X)(β − β̃) + Z ′Z + β̄′Aβ̄ − β̃′(A+X ′X)β̃,

where β̃ = (A+X ′X)−1(Aβ̄ +X ′Z), allowing us to rewrite the conditional posterior of

β as

p(β|X,Z) ∝ exp{−1
2[n′c+ (β − β̃)′(X ′X + A)(β − β̃)]}, (2.6)

where n′c = Z ′Z + β̄′Aβ̄ − β̃′(A+X ′X)β̃ does not contain β and we can drop it from

the previous equation.

By looking at the right-hand side of (2.6), we see that the posterior of β, conditional

on the latent variable Z, follows a multivariate normal with mean β̃ and variance

(A + X ′X)−1. Notice that setting A = 1
λ
IK and β̄ = 0 (i.e. I impose shrinkage on

the parameters), we get that β̃ = (X ′X + 1
λ
IK)−1(X ′Z), which is the same estimate

obtained by a penalized ridge regression in a frequentist setting as pointed out in De Mol

et al. (2008). In particular, β̃ = βRidge is the parameter estimate that minimizes the

standard sum of squared errors plus the penalization term 1/λ∑np
j β2

j . The value of λ

determines how much we are shrinking the parameters: with a large λ we are imposing

a looser shrinkage, giving us estimates that are very close to the OLS solution, while

a low value of λ will lead to coefficients being very close to 0. This is reflected in the

minimization problem, where a very large value of λ will lead the penalization term to

be zero, and hence the estimator reduces to the standard OLS formula.

To set the hyperparameter λ, I follow a similar approach as in De Mol et al. (2008).

I first compute the in-sample fit of the model with a few explanatory variables, and

set λ for richer models in a way to achieve equal in-sample fit. It is expected that λ

should decrease with model size, indicating a need of a tighter shrinkage for models

with a large number of predictors. To account for the fact that higher order lags of the

predictors should have a lower forecasting power, I modify the priors in such a way to

impose tighter shrinkage on lags further in the past. To achieve this, I set A = 1
λ
JK ,

where the matrix JK is diagonal with ones for the elements corresponding to the first

lag of the variables, and higher values on the diagonal elements corresponding to the

subsequent lags. A common choice is to set the diagonal elements of JK as p2, where p

5



indicates the lag length of the predictors.

2.3 Estimation of the Probit Model

The probit model (2.4) can be estimated using the Gibbs sampler suggested by Albert

and Chib (1993), which takes the following form. Given the initial values of zt and β,

in steps j = 1, . . . ,m:

1. Draw zjt , conditional on βj−1, from a truncated normal with mean X ′tβ
j−1 and

standard deviation 1, on the interval (−∞, 0) if yt ≤ 0, otherwise draw zjt from a

truncated normal on the interval (0,∞)

2. Draw βj , conditional on zjt , from a multivariate normal with mean β̃j and variance

( 1
λ

+X ′X)−1. The form of the conditional posteriors are presented in Section 2.2.

I repeat the above iterations m times. In this application, m is set to 10000 with an

initial burn-in period of 1000 iterations, giving us a total of 9000 draws.

2.4 Forecast Computation

The computation of recession forecasts using model (2.4) is fairly straightforward,

provided the estimated parameters. Once I have carried out the estimation with the

Gibbs sampler, I have mef = m− 1000 = 9000 valid draws for β and Z. Based on those,

I obtain mef forecasts for the latent variable zt. One-month-ahead forecast is obtained

in the following way. First, compute

ẑjTin+1 = X ′Tin
βj, (2.7)

where Tin is our last in-sample observation. From these mef forecasts of the latent

variable, we obtain mef probabilities of recession, denoted as P̂Tin+1,

P̂ j
Tin+1 = Φ(X ′Tin

β̂j), (2.8)

where j = 1, . . . ,mef . I follow Dueker (1997) and Chauvet and Potter (2005) and obtain

one-month-ahead point forecasts by averaging the predictions given by (2.8) over mef .

That is,

P̂Tin+1 = 1
mef

mef∑
j=1

P̂ j
Tin+1. (2.9)
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Multistep-ahead forecasts can be computed in a direct fashion (cf. the discussion

of direct and iterative multistep forecasting methods in the usual AR model, e.g., in

Marcellino, Stock, and Watson (2006)). This means that, for h-months-ahead forecasts,

I estimate a model similar as (2.3):

zt = X ′t−hβ + ut, (2.10)

where Xp
t−h = (1, x′t−h, x′t−h−1, . . . , x

′
t−h−p)′. This procedure gives horizon-specific pa-

rameters estimates, from which I can compute the forecasts by

P̂ j
Tin+h = Φ(X ′Tin−hβ̂

j). (2.11)

Finally, the point forecasts P̂Tin+h are obtained by averaging over the number of draws

in a similar way as in (2.9).

3 Data

I compute recession forecasts using a monthly U.S. data. My dataset starts in February

1959 and ends in February 2009. The predictive variables are taken from Stock and

Watson (2012) dataset, which includes 106 variables, ranging from real activity indicators,

price indices and financial variables.

I use seven probit models, all with p = 3 lags to account for the information of the

previous quarter (three-month period). Variables are transformed to achieve stationarity

and standardized to have mean 0 and standard deviation 1 (this data transformation is

required for the factor extraction). All models including different predictors are subsets

of the Stock and Watson data. The models are:

• Model (SP) contains the predictors considered the best leading indicators in

recession forecasting, i.e. the spread between between long-term and short-term

interest rates, and the federal funds rate, (see, e.g., Wright (2006)).

• A small model (SMALL), containing 5 variables including the spread between

10-year government bond and 3-month Treasury bill rates, the effective federal

funds rate, industrial production, non-farm employment and the consumer price

inflation (all items).

• A model (MEDIUM) containing 10 variables. This set of predictors includes the

variables of SMALL plus M2 money aggregate, total reserves, real consumption,
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capacity utilization and the effective exchange rate.

• A model (LARGE) which comprises 20 variables. In addition to the variables

of MEDIUM, I add average hourly earnings, M1 money aggregate, Standard &

Poor stock market returns, Yields on 5 years US Treasury Bond, the National

Association of Purchasing Managers and the producer price indices, housing starts,

help wanted and civilian labor force indices and consumer credit outstanding.

• A model with 30 variables (VLARGE), which adds to the previous datasets the

AAA bonds yields, BAA bond yields, the Bureau of Labor Statistics spot market

price index, oil price, the dollar pound exchange rate, the Dow Jones stock market

returns, the consumer expectation index, new orders, commercial and industrial

loans and unemployment duration.

• A very large model (GIANT) which contains all 106 variables of the Stock and

Watson(2012) macroeconomic dataset. This includes all the predictive variables

listed above.

Finally, it is of interest to compare the forecasting performance of our models against

the factor-augmented probit models by Chen et al. (2011) and Christiansen et al.

(2014). They provide a natural comparison, given that factor models are commonly

used to incorporate large datasets’ information in macroeconomic analysis. In practice,

following their methodology, I use a two-step procedure where in the first step a set of

common factors is extracted using the principal component-based estimator presented

in Stock and Watson (2002), and in the second step, I employ the estimated factors as

predictors in the usual probit model. The factors are extracted from the whole dataset

containing 106 variables, examined in model GIANT, and the number of factors is

selected using the information criterion proposed in Bai and Ng (2002). I find that the

optimal number of factors is 4, giving us a parsimonious model and hence I do not

apply shrinkage to it. I denote this model as FACTORS hereafter.

It is also worth noting that in recent years, there has been a surge in the use of

dynamic probit models to forecast recession periods. That is, the lagged values of the

recession indicator yt are used as predictors in the probit model. Notable examples are

Kauppi and Saikkonen (2008), Startz (2008), Chauvet and Potter (2005) and Nyberg

(2010, 2014). In this study, I follow another approach where the use of a large set of

predictors is seen as an alternative to the dynamic models. In particular, similarly as

including the lags of yt, I am taking the coincident state of the economy into account
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at the time I make the prediction by adding coincident economic indicators (and their

lags), like industrial production and retail sales, to our predictive information set.

These coincident variables are highly correlated with the recession indicator, as the

latter is based on their values, and hence, in principle, including the past values of the

recession indicator would not increase the predictive power significantly. As discussed

in Chauvet and Potter (2005), the Bayesian estimation of dynamic probit models, even

for rather simple dynamics, is computationally burdensome, making this kind of models

undesirable when we are interested in a large number of predictors. Finally, the values

of the binary recession indicator are available after months’ delay. Thus, including

coincident variables directly in the probit model appears to be an interesting alternative

to dynamic probit models.

4 Empirical Results

4.1 Forecast Evaluation

As described in Section 3, the sample period ranges from February 1959 to February

2009. The in-sample period is set to end in November 1979 (250 observations), while

the remaining observations are used to evaluate out-of-sample forecasts. In this way, I

obtain more than half of the sample for forecast evaluation. This time span includes

five recessions: two recessions in the early 1980s, one in the early 1990s, the short

recession of the beginning of 2000s and finally the recent economic crisis which started

in December 2007. I compute forecasts using an expanding window approach where

the estimation window increases by one observation at each time when computing new

forecasts.

The hyperparameter λ is set such that the in-sample fit, calculated in the initial

estimation period, of the larger models (model MEDIUM and richer specification) is

close to the in-sample fit of model SMALL, which is estimated without imposing any

shrinkage. For example, when I set λ parameter for the model MEDIUM, I minimize

the difference:

|R2
pseudo_SMALL −R2

pseudo_MEDIUM|.

I repeat this procedure for all the models including many predictors. The in-sample fit
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is evaluated by the pseudo-R2 (see Estrella (1998)) defined as:

R2
pseudo = 1−

(
lnl
lnc

(2/Tin)lnc)
,

where lnl = ∑Tin
t=1(yt×ln(P̂ in

t )+(1−yt)×ln(1−P̂ in
t ), lnc = Tin(ȳ×ln(ȳ)+(1−ȳ)×ln(1−ȳ)).

In these expressions, ȳ is the sample average of recession periods, P̂ in
t is the fitted

(in-sample) recession probability obtained from (2.4) and (2.5) and Tin is the number of

in-sample observations. Notice that lnc corresponds to the value of the log-likelihood

function obtained by a model which includes just a constant term. R2
pseudo takes a value

between 0 and 1, and it has a similar interpretation to the usual R2 obtained in linear

models for real-valued variables. The value of R2
pseudo obtained from model SMALL in

the in-sample period with λ = 1000 (which implies no shrinkage) is around 0.70.

Table 1 shows the values of λ selected for our models. I consider both the case where

the same shrinkage is imposed on all lags (i.e. matrix IK) and the one where we impose

tighter shrinkage on predictors further in the past (using matrix JK).

Shrinkage R2
pseudio λMEDIUM λLARGE λVLARGE λGIANT

IK 0.70 0.0244 0.0061 0.0042 0.001

JK 0.70 0.0732 0.018 0.008 0.002

Table 1: The values of λ selected for different models given R2
pseudo = 0.70 for model SMALL.

In Table 1, λ tends to decrease as I add more variables, indicating that the model

needs more shrinkage to prevent overfitting. Moreover, when I impose a tighter shrinkage

on longer lags of the predictors, i.e. I use matrix JK , the optimal values of λ are larger

than when matrix IK is used. This result is in line with the basic intuition and with

previous studies (see De Mol et al. (2008)).

Out-of-sample forecasting results are evaluated using the Quadratic Probability

Score, which is the counterpart of the mean squared forecast error in the models for

real-valued variables (see, e.g., Christiansen et al. (2014)). It is defined as

QPS = 2
(T − Tin+1)

T∑
t=Tin+1

(P̂t − yt)2, (4.1)

where P̂t indicates the posterior mean of the h-months-ahead forecasts calculated

following (2.9) and (2.11). The value of the QPS is between 0 and 2 so that lower

values indicate more accurate forecasts.

10



4.2 In-sample Results

I first consider the in-sample fit of various models using the full sample period. In

particular, I shrink the parameters of larger models to prevent overfitting, following

the procedure described above in Section 4.1. The choice of λ is based on the data

included in the first in-sample period. Below, in Figure 1, I depict the plots of the fitted

values for models SMALL, LARGE and GIANT. The reason to focus on these three

models is that they represent different degrees of data availability. Model SMALL does

not have any shrinkage and includes only the term spread and the federal funds rate,

while model LARGE includes also stock market information and finally model GIANT

includes the full information set available.
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Figure 1: The in-sample fit with shrinkage.

As expected, when I impose shrinkage on the parameters, the in-sample fit of different

model does not seem to differ substantially. This insight can be confirmed by looking

at the values of the R2
pseudo for our models in Table 2.

Shrinkage on Lags SP SMALL MEDIUM LARGE VLARGE GIANT FACTORS

IK 0.64 0.74 0.72 0.68 0.72 0.70 0.77

JK 0.64 0.74 0.69 0.75 0.68 0.67 0.77

Table 2: The values R2
pseudo for given λ (see Table 1).

Remember that λ is selected in such a way to achieve equal in-sample fit of model

SMALL in the first estimation period (corresponding roughly to the half of the total

observations available in the data). It is therefore normal that the final R2
pseudo values

are different when I consider the entire time span of the analysis. However, the shrinkage

seems to be working for both the case where I have IK and JK . Adding more variables

to the model, when shrinking, does not improve its fit. Notice, that I do not shrink the
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parameters of model FACTORS and thus it seems to have the best in-sample fit.

It is interesting to see how the models would perform in terms of in-sample predictions

if I do not impose any shrinkage (i.e. set λ large). In Figure 2, I depict the results

when all the models are estimated without applying any shrinkage on the parameters.
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Figure 2: In-sample fit without shrinkage.

The figures already indicate that in the absence of shrinkage, as expected, larger

models achieve very accurate in-sample fit. For example, in model GIANT the fitted

values mimic the recession indicator almost perfectly. This good in-sample performance

can also be seen in the R2
pseudo-values reported in Table 3.

SP SMALL MEDIUM LARGE VLARGE GIANT FACTORS

0.64 0.74 0.75 0.82 0.89 0.95 0.77

Table 3: The values of the R2
pseudo for the different models, with λ = 100.

As expected, imposing no shrinkage on the parameters leads to very good in-sample

fit, and it is monotonically increasing with the size of the model as smaller models

are just subsets of the largest model. However, we have to bear in mind that good

in-sample fit does not necessarily imply accurate forecasting performance out of sample.

Actually, due to overfitting, it is likely that models with very high predictive accuracy

in-sample may have very poor forecasting performance. Out-of-sample forecasts are

examined in more detail in the next section.

4.3 Out-of-sample Results

I now turn to the out-of-sample forecasting performance of the models by looking at

the estimated posterior mean probabilities of recession computed using (2.9) and (2.11).

In Figure 3, I present the plots of the mean of the posterior predictive distributions, our
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point estimates for the probability of recession, one-month-ahead (h=1) using shrinkage

method described above.
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(c) Model GIANT

Figure 3: One-month-ahead forecasts with shrinkage.

The plots in Figure 3 already indicate that the shrinkage strategy works well

in forecasting recessions in the near future. Model GIANT, which has more than

100 predictors, seems to provide pretty accurate one-month-ahead forecasts without

producing any false alarm. An example of a false alarm is visible in the model SMALL

around the year 2006, where the probability of recession in the next month reaches 0.7,

but as we can see that there was no recession around that time.

While interesting from a methodological perspective, and in a possible nowcasting

setting, forecasting recessions one-month-ahead have not been the main focus of the

literature. Studies as Chauvet and Potter (2005) and Nyberg (2010), among others,

have focused on long-horizon recession forecasting, most commonly one-year-ahead.

Therefore, in Figure 4 I report the plots for the 12-month-ahead forecasts, applying

shrinkage to the parameters.
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Figure 4: 12-month-ahead forecasts with shrinkage.

There are few things we need to be aware of, when examining these plots. It
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seems that larger models provide much less volatile forecasts compared with the model

including only five variables (SMALL) and no shrinkage. While one-year-ahead recession

forecasts in model GIANT never reach very high recession probabilities, it is pretty clear

when the recession probability spikes with respect to non-recession periods. This result

is line with the findings of Kauppi and Saikkonen (2008), where dynamic models seem

to give weaker, albeit sharper signals of actual recessions in contrast of slowdowns of the

economy during expansions. Moreover, it seems that model GIANT is able to forecast

the recessions, without creating too many false alarms. Actually, most of the false

alarms produced by the model GIANT are in proximity of the recession periods so they

provide important information regarding the future state of the economy. Only around

the year 1983, the model GIANT create a false alarm which is far from the subsequent

recession. On the other hand, more parsimonious models such as SMALL and LARGE

have difficulties in forecasting the early 1990s and 2000s recessions, together with the

latest (2008-2009) recession. However, these two models do a good job in forecasting

the recessions in the 80’s.

Figure 3 and 4 are useful to get a grasp of the forecasting performance of our models

but numerical indicators are easier to interpret in comparing the predictive accuracy

of the models under examination. Below, in Table 4, I report the QPS-statistics (4.1),

for the models described in Section 3 for forecast horizons h = 1, 6, 9 and 12 , where λ

is set according to Table 1. I include the results both for the shrinkage independent

of the lag order (i.e. we use the matrix IK) and with smaller λ imposed on the higher

order lags (matrix JK).

Shrinkage IK JK

h=1 h=6 h=9 h=12 h=1 h=6 h=9 h=12

SP 0.28 0.29 0.27 0.27 0.28 0.29 0.27 0.27

SMALL 0.13 0.25 0.27 0.27 0.13 0.25 0.27 0.27

MEDIUM 0.14 0.27 0.28 0.26 0.14 0.28 0.31 0.25

LARGE 0.11 0.23 0.28 0.27 0.13 0.22 0.24 0.25

VLARGE 0.11 0.22 0.24 0.24 0.14 0.21 0.23 0.23

GIANT 0.11 0.21 0.23 0.23 0.13 0.21 0.23 0.23

FACTORS 0.10 0.23 0.25 0.26 0.10 0.23 0.25 0.26

Table 4: Out-of-sample QPS statistics for the models with shrinkage and matrix IK and JK .

It is clear that adding real activity predictors (going from SP to SMALL) improves

considerably short-term forecasts while it does not seem to have a large effect on the
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longer term horizons. This result is likely to reflect the presence of information (as

discussed in Section 3) about the coincident state of the economy at the time the forecast

is computed. Even though the determination of recession periods reflect a somewhat

subjective judgment, coincident indicators such as the ones included in SMALL and

the larger dataset are strongly correlated with the NBER’s definition of a recession.

However, the long-term forecasts are largely unaffected by the inclusion of real economic

activity indicators. This is due to the fact that the term-spread (already present in the

simplest model) is a dominant leading indicator for recession periods. Nevertheless,

increasing the set of explanatory variables, while shrinking the parameters toward zero,

provides superior forecasting performance at all the forecast horizons. Model GIANT

creates the most accurate forecasts between the specifications considered here. For

example, 12-month-ahead forecasts obtained with model SP present 14% larger value of

the out-of-sample QPS than model GIANT. However, the model FACTORS provides

the best one-month-ahead forecasts.

As we can see in Table 4, imposing matrix JK , instead of the identity matrix, to shrink

the parameters of larger models does not seem to influence a lot the out-of-sample

performance. Only model LARGE seems to benefit from the additional shrinkage

imposed on the predictors further in the past.

Finally, it is interesting to see how the models would perform in the case of no-

shrinkage. First, in Figures 5 and 6, I provide plots of the posterior mean predictive

distributions for the forecast horizons h = 1 and h = 12 with no shrinkage.
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(c) Model GIANT

Figure 5: 1-month-ahead forecasts with no shrinkage.
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Figure 6: 12-month-ahead forecasts with no shrinkage.

As expected, the forecasting performance seems to deteriorate greatly when I do

not impose any shrinkage on larger models. The forecasts become extremely volatile

at both long and short-term horizons, creating many false alarms and giving no useful

information to policy makers. To confirm these findings, in Table 5, I present the QPS

statistics for the forecasting models estimated by setting λ to very large values (i.e. no

shrinkage imposed).

Model h=1 h=6 h=9 h=12

SP 0.23 0.26 0.26 0.26

SMALL 0.13 0.23 0.27 0.25

MEDIUM 0.20 0.30 0.32 0.31

LARGE 0.13 0.32 0.31 0.33

VLARGE 0.16 0.34 0.36 0.35

GIANT 0.17 0.35 0.32 0.33

FACTORS 0.10 0.23 0.25 0.26

Table 5: QPS for the models with no shrinkage.

We see that imposing a flat prior deteriorates the forecasting performance of larger

models substantially. This confirms the need of shrinkage when increasing the set of

explanatory variables. This is expected as the models with a large number of predictors

suffer from overfitting.

Looking at the empirical results gathered in this section, it seems that model GIANT

generally provides the best out-of-sample performance, at least for forecast horizons

longer than one month. Moreover, as we saw in Figure 4, model GIANT provides useful

insights to predict the state of the economy when going beyond the actual QPS values.

While the computed recession probabilities never reach high values, the spikes during

the economic downturns are clearly visible. The good performance of large models is a
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remarkable result also in the light of actual implementability. Nowadays, large datasets

are available to central banks, statistical offices and many other institutions, so being

able to use all the information available to forecast the future state of the economy is

highly beneficial. Bayesian shrinkage examined in this paper allows us to deal with

large information set without incurring into the problem of overfitting and, as we have

seen above, giving competitive out-of-sample forecasts.

5 Conclusions

The use of large datasets in macroeconomic forecasting has been widely adopted in the

last few decades. However, in forecasting business cycle recession periods, the literature

has focused on the use of a small number of predictive variables. A few attempts to

incorporate large information sets into the analysis have relied on the use of factor-based

models (see, e.g., Christiansen et al. (2014)), where the extracted factors are employed

in the probit model. In this study, I adopt a Bayesian shrinkage approach to estimate

probit models which include a large number of predictive variables. I set the shrinkage

proportionally to the number of predictors included so that the (in-sample) predictive

power of larger models is equal to the specification with only a handful of predictors.

In terms of the in-sample fit, the methodology works well, preventing overfitting issues

even for the models with more than 100 predictors. The ability of using a large number

of predictors, without estimating latent factors is the key contribution of this research.

Bayesian shrinkage facilitates economic interpretation of the predictors in the analysis

(contrary to factor-model based forecasts, which rely on extracted common components

with no clear economic interpretation).

I find that the probit model including all the predictive variables yields the best

out-of-sample predictions for all forecast horizons. Models including a large number of

predictors are able to beat the factor-based model, albeit the latter gives us the best

one-month-ahead forecasts. Moreover, the forecasts from the largest model, even for

the 12-month horizon, do not present evident false alarms, while they provide a clear

indication of when future recession is likely. This result holds true for all the recession

periods we have in our sample.

The models we have considered here are static, i.e. they do not include any dynamics

of the recession indicator or the latent variable underlying it. While the presence of

large information sets, especially the inclusion of coincident indicators such as industrial
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production, should already compensate for missing dynamics, it could be interesting to

examine in the future research (outside the scope of this paper) dynamic models similar

to Chauvet and Potter (2005). Another interesting extension of this paper lies in the

priors’ selection. In this study, I shrink all the parameters toward 0. However, we know

from previous literature that a subset of predictors are especially useful in recession

forecasting. It could be beneficial to impose priors that reflect this knowledge, i.e.

shrinking toward non-zero values, possibly drawn from previous studies such as Nyberg

(2010) and Wright (2006). Finally, the ability to include large amount of variables is

desirable in a real-time environment, where the decision makers might have access to

large data, but do not have a clear guidance on which variables to select. Examining

the forecasting performance of our models in a real-time analysis, where we take into

account the time delays due to the publication lags of different variables including the

binary recession indicator, can also be the subject of future research.
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