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FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright c� 2015 Liang Wang
ISSN 1238-8645
ISBN 978-951-51-0824-1 (paperback)
ISBN 978-951-51-0825-8 (PDF)
Computing Reviews (1998) Classification: C.2, C.2.1, C.2.2
Helsinki 2015
Unigrafia



Content, Topology and Cooperation in In-network Caching

Liang Wang

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
liang.wang@helsinki.fi
http://cs.helsinki.fi/liang.wang

PhD Thesis, Series of Publications A, Report A-2015-1
Helsinki, February 2015, 190 pages
ISSN 1238-8645
ISBN 978-951-51-0824-1 (paperback)
ISBN 978-951-51-0825-8 (PDF)

Abstract

In-network caching aims at improving content delivery and alleviating pres-
sures on network bandwidth by leveraging universally networked caches.
This thesis studies the design of cooperative in-network caching strategy
from three perspectives: content, topology and cooperation, specifically fo-
cuses on the mechanisms of content delivery and cooperation policy and
their impacts on the performance of cache networks.

The main contributions of this thesis are twofold. From measurement per-
spective, we show that the conventional metric hit rate is not sufficient in
evaluating a caching strategy on non-trivial topologies, therefore we intro-
duce footprint reduction and coupling factor, which contain richer informa-
tion. We show cooperation policy is the key in balancing various tradeoffs
in caching strategy design, and further investigate the performance impact
from content per se via different chunking schemes.

From design perspective, we first show different caching heuristics and
smart routing schemes can significantly improve the caching performance
and facilitate content delivery. We then incorporate well-defined fairness
metric into design and derive the unique optimal caching solution on the
Pareto boundary with bargaining game framework. In addition, our study
on the functional relationship between cooperation overhead and neighbor-
hood size indicates collaboration should be constrained in a small neighbor-
hood due to its cost growing exponentially on general network topologies.
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Chapter 1

Introduction

1.1 Background and Motivation

The emergence of Information-Centric Networking (ICN) is mostly at-
tributed to the fact that both academia and industry realized that nowa-
days our use of the Internet is mainly for content distribution. The origi-
nal point-to-point paradigm of the Internet, which can be traced back to
the very beginning of computer networks in 1960s and ’70s, is inept in
the new context wherein rich multimedia content prevails and dominates.
As a promising candidate for future Internet, ICN proposes a clean-slate
redesign which builds the network infrastructure around the content and
shifts the current Internet from sender-driven point-to-point communica-
tion to receiver-driven content distribution paradigm. This new alternative
to the future network architecture aims at ameliorating many issues con-
fronting the current Internet such as content distribution efficiency, conges-
tion, security, and etc. While there are several independent proposals [1–3]
in the ICN literature, the central idea contained is essentially the same –
accessing content by name; and universal caching.

However, ICN is not a silver bullet, and many research and engineering
challenges are still awaiting effective solutions. E.g. the number of con-
tent objects is orders of magnitude larger than the number of routers in
the Internet [4]. Conservative estimate based on the current size of web
content (i.e. number of URLs Google has indexed) indicates any ICN sys-
tem is expected to manage about 1012 objects. The huge disparity between
enormous space of content names and scarce routers’ resources still remains
as one of the biggest challenges for the practical large-scale deployment of
ICN. Among the new challenges posed by ICN on routing, content naming,
content addressing and etc., universal caching, which is often referred as
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2 1 Introduction

in-network caching, has aroused significant research interest these years.
One reason is caching has long been recognized as an effective technique in
solving scalability issues for large-scale systems. Another reason is caching
directly influences the efficiency of content distribution which further im-
pacts end-user experience in many Internet applications, rendering it an
indispensable component in ICN architecture.

The principal task of in-network caching research is analyzing and de-
signing effective caching strategies to improve the system performance,
which is also the focus of this thesis. Unfortunately, the prior experience
we learned from the long history of edge cache deployment only provides
limited help in the new context. Shifting from a single stand-alone cache to
a cache network invalidates a large part of our prior knowledge, and dras-
tically changes the way we measure and design a caching system as it used
to be, which urges us to understand the fundamental difference between
the traditional solution and its novel substitute. Besides that distributed
caching strategy design per se is already a challenging job, the proper mea-
surement metrics and sound methodology we shall adopt in evaluating an
ICN system are not trivial at all in the first place. In short, we want to
answer the following questions in this thesis:

1. What metrics should we use in evaluating an in-network caching strat-
egy? How should we describe the relationship among content, topol-
ogy and cooperation policy with the given metrics?

2. How should we incorporate multiple metrics into the design goals and
how to balance the tradeoff in a caching strategy via cooperation?

By simulation, heuristic design, mathematical modeling and analysis,
this thesis puts its initial effort into understanding the key features that
distinguish in-network caching from conventional edge caching, then further
focuses on the study of cooperation policy in a caching strategy. The thesis
approaches its goal from both empirical and theoretical perspectives.

We hope this thesis can make its original contribution to the ICN com-
munity, shed light on understanding the role of cooperation policy in dis-
tributed caching systems, and also provides some fundamental guidance in
designing caching strategies for future Internet infrastructures.

1.2 Thesis Contributions

In a very general sense, this thesis devotes itself to understanding the rela-
tionship among the content, topology and cooperation policy in the caching
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strategy design. Its major contributions are twofold as described in the
following. The detailed contributions will be stated separately in the be-
ginning of each individual chapter.

Firstly, from system measurement perspective, we show the conven-
tional metric (byte) hit rate is not sufficient in terms of evaluating an
in-network caching strategy. Other more complicated metrics such as foot-
print reduction, coupling factor and etc., which contain much richer in-
formation, should also be taken into account in order to more thoroughly
describe a system. With a concise yet expressive optimization model (in
Chapter 7), we illustrated the interplay of hit rate and footprint reduction
under cooperation policy, showing how they become conflicting with each
other on a nontrivial topology when system performance reaches its Pareto
frontier. The results not only contribute a new metric – coupling factor, a
scalar value containing the information from both content popularity and
network topological properties, but also lead to the key insight that it is co-
operation policy which couples the content with topology, and balances the
tradeoff between intra- and inter-domain traffic. In other words, adopting
multiple metrics implies the potentially infinite optimal caching strategies
with varying tradeoffs (between hit rate and footprint reduction) on the
Pareto boundary. From an ISP’s perspective, hit rate and footprint reduc-
tion represent the savings on inter- and intra-domain traffic respectively.
The results further imply that given the system resources are fully uti-
lized, further reducing the inter-domain traffic will inevitably increase the
intra-domain traffic.

Secondly, from protocol design perspective, based on the aforemen-
tioned important results, we focus on the analysis of cooperation policy
from both experimental and analytical perspectives. The en-route heuris-
tics with naive cooperation we designed in the beginning of this thesis is al-
ready able to significantly boost the performance before reaching the Pareto
frontier. Combined with smart routing schemes, we show the efficiency of
content delivery can be further improved. The more theoretical work in the
later chapters abstracts the cooperation policy with a node’s search radius
and formally models the in-network caching as a Nash bargaining game.
By translating the bargaining game to its equivalent convex optimization
problem, we derive a solution in finding the unique optimal caching strat-
egy which fulfills the requirements on Pareto optimality and well-defined
fairness such as proportional fairness and max-min fairness. We also thor-
oughly analyze the communication cost of the derived distributed caching
algorithm with various settings on neighborhood and types of graphs. More
importantly and interestingly, as the content locality is observed in the re-
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quest stream, our extensive simulations show that the similar property can
also be found in nodes’ cooperation, namely most of the interactions among
the nodes occur in a small neighborhood, which is also referred as topo-
logical locality. Eventually, we reach the final conclusion that while the
admission and eviction policy in a conventional caching algorithm aims at
capturing the content locality to improve the hit rate, cooperation policy
should be constrained in a small neighborhood and take advantage of the
topological locality to reduce the traffic footprint.

1.3 Thesis Organization

This thesis contains an introductory chapter, followed by an overview of
the recent work on ICN with a focus on in-network caching in Chapter 2.
Chapter 3 discusses the methodology and metrics we developed and used
throughout the thesis in the performance evaluation, also gives a detailed
description on our experiment platform.

In Chapter 4, we present several en-route caching heuristics and neigh-
borhood search technique, and also compare these naive cooperation poli-
cies to redundancy-elimination techniques. Chapter 5 compares several
popular mobility schemes, and shows combining compact routing in ICN
improves the content delivery efficiency and also solves its related mobil-
ity issue. Chapter 6 further develops the idea by enhancing the compact
routing with prefix embedding and topology-aware hashing.

From Chapter 7 and afterwards, we put more focus on the analytical
perspective. Chapter 7 contains the core idea of this thesis and depicts a
birdview of the topic. With an optimization model, we first illustrate the
effects of cooperation policy and topology on caching performance by cor-
relating the content popularity with topological properties, namely where
the popular content is deployed by cooperation policy. Then we further
propose the coupling factor and the categorization of cooperation policies.
Chapter 8 concentrates on the content itself, and builds an analytical model
to show the optimal chunking is too expensive and only brings marginal
benefits in practice. The results indicate the naive way currently adopted
in dividing the content is sufficient to achieve nearly-optimal performance.

Based on the results obtained in the previous chapters, we model the in-
network caching as a Nash bargaining game and solve its equivalent convex
optimization problem in Chapter 9. The derived distributed caching algo-
rithm is thoroughly analyzed and evaluated in the same chapter. Finally,
Chapter 10 concludes the thesis and outlooks the future directions.
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Chapter 2

Overview of ICN

In this chapter, we will give an overview of the cutting-edge research in ICN,
with specific interest on the recent work in in-network caching measurement
and design. We start the discussion with the brief history of ICN, list some
important designs, then focus on its core architectural components.

Launched in 2000, TRIAD project [5, 6] is arguably the first pioneer
work in ICN and is considered as a precursor of all the related work dis-
cussed in this thesis. In 2002, a similar point was expressed in [7], outlooked
the future Internet should shift from point-to-point communication to de-
livery of named objects. Both designs focus on the basic content delivery
by exploiting the existing DNS system, other critical aspects like security,
caching and etc. were not covered. Unfortunately, these two prominent
work did not capture enough attention in the research community since for
a long period of time, there was very few follow-up work on the topic.

In 2007, another seminal work [3] which is known as Data-Oriented
Networking Architecture (DONA), was published and gave the first com-
prehensive description on a clean-slate redesign of the Internet. In a couple
of years’ time, DONA ignited several important follow-up work [1, 8–15]
with the important ones listed as follows:

1. Content-Centric Networking (CCN) [1] in the Named Data Network-
ing (NDN) project, published in 2009.

2. Publish-Subscribe Internet Routing Paradigm (PSIRP) [8] in Publish-
Subscribe Internet Technology (PURSUIT) project, published in 2008.

3. Network of Information (NetInf) [9] in Scalable and Adaptive In-
ternet Solutions (SAIL) project (previously known as 4WARD [16]),
published in 2008.

7



8 2 Overview of ICN

These important work eventually brought the ICN into the mainstream
networking research. All these designs have fairly complex architecture
and are quite different even in their terminologies, but their common goal
is the same – providing efficient, reliable and safe content delivery with
an open and general purpose framework by constructing network infras-
tructure around the content. With this goal, these commonly called ICN
approaches resemble with each other in several fundamental principles we
will discuss one by one in the following. As supplements, [4, 17–21] give
very thorough overviews on different ICN designs by delving into their me-
chanical details.

2.1 Operation Primitives

We have to mention publish/subscribe (pub/sub) paradigm before intro-
ducing ICN operation primitives. Because in some sense, ICN is just an ap-
plication of pub/subs paradigm at Internet-scale. The concept of pub/sub
was already proposed over two decades ago (in 1980s) [22] and had a lot
of successful applications in different services and systems. The pub/sub
paradigm decouples the responses and requests in both time and space by
applying two operation primitives: PUBLISH and SUBSCRIBE. As a result of
decoupling, the content delivery from the content producer to content con-
sumer can be done in both asynchronous and location-independent manner.

Pub/sub paradigm has a profound influence on future network architec-
tures, including ICN. This explains the resemblance of the basic primitives
in all ICN proposals to those in pub/sub system. E.g. CCN uses REGISTER
and INTEREST, and Curling uses PUBLISH and CONSUME, PSIRP further di-
rectly borrows the pub/sub terminology without any change. Therefore,
ICN inherits the flexibility of pub/sub system in content delivery by adopt-
ing its operation primitives. In addition, ICN provides extra semantic to
the pub/sub primitives by allowing a content consumer to explicitly request
an object which has been published before.

There are fewer research activities in network primitives comparing to
other aspects in ICN. To solve certain problems, most work exploits and
adds more semantics to the existing primitives (often by adding new param-
eters) rather than introducing new ones. Hence, the operation primitives
are very stable and likely to remain the same even in the foreseeable future.
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2.2 Naming & Security

Content naming is a core component in ICN architecture, and it has nar-
rower request semantics comparing to pub/sub system where content can be
tagged with various keywords. Because individual content is identified and
accessed by its unique name and independent of its location and container,
the corresponding security mechanisms must be provided to guarantee the
data integrity, authenticity and provenance. Such mechanism is usually im-
plemented via verifiable binding between content and name, e.g. signature
with public key or other cryptography techniques. The ICN security model
assumes that the requester knows both content name and its publisher’s
public key, therefore is responsible for checking the authenticity, provenance
and integrity of the content.

As we can see from above, an ideal naming scheme is expected to be
unique, secure, scalable, user friendly and location-independent. In reality,
it is difficult if not impossible to find such a scheme satisfying all these
requirements. While all the ICN designs basically adopt the same network
primitives, they diverge in the choice of naming schemes. There are three
naming schemes exist – flat naming, hierarchical naming and attribute-
based naming [14], with the previous two (flat and hierarchical) dominate
the ICN literature, and are advocated by [23] and [24] respectively. The
diametrically opposing viewpoints expressed in [23] and [24] originates from
the different concerns and tradeoff on security, efficiency and scalability.

Similar to the current DNS, hierarchical naming often uses human-
readable, url-like names and enables name aggregation. Name aggregation
improves the scalability by reducing the number of entries in the routing
table, but it makes content multihoming difficult. However, multihoming
plays a key role in improving the content delivery efficiency by selecting
the best delivery paths from request to all the potential copies. The reason
is hierarchical naming with aggregation indicates the correlation between
content names and underlying network topology. To verify a content object
in hierarchical naming scheme, a requester needs to obtain the public key
of the publisher and there are various techniques available such as search
engine and so on. But there must be a global public key infrastructure
(PKI) so that ICN can bind content names to the keys. The prerequisite
on PKI is considered as a major disadvantage of hierarchical naming.

On the other hand, flat naming, or the better-known name as self-
certifying naming, is PKI independent. Namely, the key is bound to content
name itself. Self-certification is usually achieved by either simply embed-
ding the content hash into its name, or embedding both publisher’s public
key and content hash signed with secret key into the name. With either



10 2 Overview of ICN

way, self-certifying name is not human-readable, cannot be aggregated and
but is able to free an ICN system from using a global PKI or trusting any
other third parities. As claimed in [23], self-certifying name makes the
infrastructure immune to denial-of-service attack without the need of un-
derstanding user trust model. Being PKI-independent is a big architectural
advantage, and is often the reason why self-certifying naming is considered
as a key enabler of the paradigm shift by its advocates. Last, instead of
name aggregation, routing aggregation is feasible by taking advantage of
some embedded structures in self-certifying names.

2.3 Name Resolution & Routing

There are two key functions in a conventional point-to-point network –
name resolution function which finds out all potential locations of the re-
quested content, and routing function which selects the best path based on
some well-defined metrics. Since most ICN designs embrace the concept
of locator/identifier split from pub/sub paradigm, content can be retrieved
by merely using its identifier regardless of the actual location in a network.
Therefore in ICN, to discover and retrieve a content for a given name, the
network is expected to implement either name resolution which maps iden-
tifier to locator, or content-based routing which directly routes a request
on its name.

The choice on these two approaches reflects on the tradeoff between effi-
ciency and accuracy. On one hand, name resolution guarantees the content
discovery, but may degrade delivery efficiency due to the query overheads.
On the other hand, directly routing on content names is more efficient
by bypassing the query steps but only promises probabilistic discovery,
which positively correlates to the portion of the network being explored.
From network traffic and operation complexity perspective, content-based
routing is more expensive because it usually requires flooding the messages
over the whole network to propagate the update. However, name resolution
needs maintain at least two databases at a logically central point: identifier
to locator mapping and reachability information, which renders the whole
system vulnerable and inevitably increases management complexity.

In reality, NetInf and PSIRP use name resolution approach while DONA
and CCN choose content-based routing. The implementation of routing
heavily relies on the actual naming scheme adopted in the system and can be
divided into two main parts: intra- and inter-domain routing. Intra-domain
routing is usually implemented in various ways and differs mechanistically
from one proposal to another. For inter-domain routing, some designs [1]
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leverage the existing system like BGP, and some [2] implement their own
protocols.

Technically, given a flat naming scheme, we can sidestep the quandary
over identifier and locator with greedy routing. The application of greedy
routing in ICN is studied in [25, 26] and shown to be a promising solution
to mobility and other related issues like real-time content dissemination.
Essentially, greedy routing implements a DHT underlay and transforms all
the content routers into rendezvous points. Greedy routing can coexist with
standard routing protocol in an ICN system as supplement for some specific
settings (e.g. mobility). The successful application of greedy routing largely
depends on how to find a proper greed embedding for a given network.

2.4 In-Network Caching

Caching is inherent in ICN architecture. In-network caching strategy is
designed to alleviate the pressure on bandwidth and improve delivery effi-
ciency by taking advantage of universally deployed in-network caches, and
is reportedly the hottest research area in ICN. Content can be cached along
the path from the data sink to source, which is referred as en-route caching.
Its close resemblance in web caching is hierarchical caching. Or objects can
be cached off-path in which case cooperation is needed to locate the near-
est copy. In addition to content caching, some ICN designs can also cache
requests, which is referred as request aggregation. The future requests on
the same recently requested content can be suppressed before the content is
actually cached by the router, so that extra network traffic can be avoided.

In ICN research, both centralized and distributed caching algorithms
are studied. The centralized solutions are usually used to demonstrate an
algorithm’s overall behaviors or analyze its performance bounds. The dis-
tributed ones gain broader research interest due to its practical use. In dis-
tributed caching strategy design, a strategy is often decomposed into three
parts and studied separately: admission policy, replacement/eviction pol-
icy and cooperation policy. The admission and replacement policy closely
relate to the conventional caching algorithms which capture the content lo-
cality in a request stream. The cooperation policy is far more complicated
not only because it needs to take both content and topology into account,
but also because cooperation can be achieved in various ways.

Difference to the Prior Technologies

Though similar at its first glance, in-network caching is fundamentally dif-
ferent to the previous technologies for content distribution such as web,
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Content Distribution Network (CDN) and Peer-to-Peer (P2P) caching.

Openness: ICN provides an open and unified caching framework with
consistent naming, therefore is application-independent and makes con-
tent names network-aware. On the contrary, cache systems in the prior
technologies are often closed, application-dependent and typically use pro-
prietary protocols. Despite of some efforts in building a shared cache in-
frastructure [27], cache transparency is generally difficult to achieve with
conventional solutions.

Design goals: Prior technologies are usually specifically designed for
certain content and traffic type, whereas ICN is expected to deal with a
wide range of content and traffic from web, streaming, file-sharing and etc.
Specific design context leads to explicit design goals, e.g. P2P cache aims
at reducing the traffic while web cache aims at reducing both traffic and
latency. ICN cache needs to balance the competition among various traffic
types on the limited space and operate at line-speed [28–30].

Chunk popularity: Content in ICN is sliced into small self-certifiable
chunks for the efficiency of transmitting and caching. Chunking operation
makes us reexamine those well-established theories and partial caching al-
gorithms from web caching and P2P [31–33], since chunk-level popularity
depends on in-file access pattern therefore can not be simply extrapolated
from file popularity. Evidence [34] clearly showed that in-file access pattern
can be an arbitrary mix of non-continuous portions. So-called independent
reference model is also invalidated to some extent because chunks from the
same file are often correlated. While [35] claimed none analytical work on
chunk-level popularity has been done based on their knowledge, Chapter 8
of this thesis made its original contribution to this challenge.

Network topology: Conventional cache system usually resides in a
network of regular structures like line cascading structure or hierarchical
tree structure. Besides the cache location is predetermined, the access
pattern is often known as given input (e.g. in CDN). Early work attests
mathematical modeling and optimization are relatively straightforward in
this setting [36–38]. However, moving to a more general graph makes
mathematical techniques more difficult to apply. Most recent analytical
work [39–43] on in-network caching is still based on hierarchical structures,
while some [44, 45] attempt to advance to more general graphs by using
approximate models.

High dynamic: Besides the diversity in content and traffic, the ob-
jects in cache are volatile and the demands may change frequently due to
nodes’ mobility. Classic technique developed for optimal placement prob-
lem is difficult to apply in such high dynamic setting, especially when the
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apriori knowledge on topology and demands is missing [46]. Large-scale
cooperation is often too expensive to achieve.

As we see, all aforementioned features distinguish in-network caching
from the conventional caching technologies, further change the way we
model, optimize and evaluate a caching algorithm. Especially coopera-
tion policy, which plays a central role and interconnects all other features,
attracts most research interest. In the following, we focus on coopera-
tion policy of in-network caching strategy design, and present two different
viewpoints on this topic.

Cooperative Caching

“Cooperation”, “collaboration” and “coordination”, all three terms are
used in ICN literature, we stick to the first two and use both interchange-
ably in this thesis simply for the purpose of consistency. Cooperation in
caching is meant for improving the visibility of cached content in order to
achieve two main objectives: reduce content duplicates in the network to
increase cache utilization (e.g. DHT and hierarchical caching); push pop-
ular content to the network edge to reduce latency (e.g. CDN and web
caching). As [47] shows, the two objectives can become conflicting on the
Pareto frontier. Comparing to the prior technologies, cooperation in in-
network caching needs to be low-complexity, topology-aware and adaptive
to the high traffic dynamic.

Modelling cooperation in a simple yet expressive way is not trivial, [47]
describes a cooperation policy from two perspectives: search radius and
tolerance on duplicates. Search radius represents the neighborhood size
that cooperation can cover, while tolerance on duplicates represents how
many duplicates are allowed in the neighborhood. Given system perfor-
mance is optimal, the tolerance on duplicates is a dependent variable on
search radius. Based on search radius, in-network caching strategies can be
roughly categorized as bellow: en-route caching with none or limited co-
operation [1, 3, 36, 38, 48–53], neighborhood cooperation [54–59] and global
cooperation [43,46,47].

Most research activities are devoted to en-route caching strategies, be-
cause the requirements on line-speed operation and acceptable traffic over-
heads largely constrain the search radius of cooperation policy. The com-
plexity of cooperation grows accordingly as we are pursuing higher and
higher hit rate. Chapter 9 carefully studied the growth of traffic overhead
on different graphs and its functional relation with search radius. Global
cooperation, on the other hand, is seldom used in practice except for illus-
trating overall system behaviors.
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Pessimistic View on Cooperation

Even though caching per se has long been recognized as an effective tech-
nique to improve scalability and efficiency, the viewpoints on cooperative
caching are clearly divided into two opposing groups in ICN community.
On one hand, the prior experience in web caching, especially in hierarchical
caching, shows edge caches contribute most of the benefits [60]. The cache
utilization drastically decreases in upstream caches. Especially in the net-
work core, the dynamic is so high that it becomes extremely difficult for the
core caches to capture the temporal/spatial locality in the request stream.
Some believe that any attempt in deploying caches in network core or in-
corporating cooperative caching will only increase deployment complexity
and even impose negative impacts on system performance.

The pessimistic view was supported by the study on large-scale web
trace in [60], and is even exacerbated by the recent work done in Face-
book [61] which shows the Facebook’s internal caches only provide marginal
benefits in their image-serving system. [31, 62] further examined the con-
tent popularity distribution in both web and P2P system, the results are
even more unfriendly to cooperative caching, showing the cache utiliza-
tion increases logarithmically with cache size after entering into the long
tail of the content set. [4] further claims the ineffectiveness of cooperative
caching pertains to all heavy-tailed popularity distributions. Therefore, re-
cent work [63–65] proposes that ICN should be deployed incrementally at
edge caches with existing technologies (e.g. HTTP, DNS and etc.).

Optimistic View on Cooperation

On the other hand, there is also plenty of supportive work for cooperative
caching in both conventional context (web, P2P and share file system)
[66–71] and ICN context [46,47,50,54,59,72–76]. In general, the optimistic
advocates of cooperative caching disagree with the opposing view in the
following aspects:

1. Almost all the negative results are obtained by applying classic caching
algorithms (LRU, LFU and etc.) which aims at maximizing local
caching performance. However, in the context of cache networks, the
immediate question is whether it is safe (or even correct) to assume
local optimum indicates global optimum. On a nontrivial topology,
the answer is clearly negative from optimization theory perspective.

2. Furthermore, filtering effect was already noticed in hierarchical caching
systems. The thorough studies in [77, 78] confirmed that the effec-
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tiveness of upstream caches is deteriorated by filtering effect, which
is the direct consequence of optimizing locally without cooperation.
Their work also showed the filtering effect can be ameliorated with
a mixture of different caching algorithms. [72] further showed naive
cooperation in en-route caching can effectively reduce the negative
impact on cache utilization.

3. Cooperative caching emphasizes the fundamental difference between
conventional caching and ICN caching, wherein network topology
comes into play in performance measurement [30], parameter tuning,
and protocol design [79]. [80] shows cache size should be well-tuned ac-
cording to a node’s degree centrality. Chapter 9 of this thesis shows
the overhead due to cooperation depends on a network topological
properties. However, thorough study on the effects of network topol-
ogy in ICN context is still in a vacuum state based on our knowledge.

4. “Zipf distribution matters”, as argued in [81] which holds an negative
view on in-network caching, indicates only the most popular content
resides at the head part of a popularity distribution determines the
actual caching performance. Both [81] and [4] use this as a strong ar-
gument against (cooperative) in-network caching. However, it must
be pointed out that the aggregated cache size, especially its ratio to
the aggregated size of the popular content, as an important determi-
nant factor of caching performance, was unfortunately missed in the
arguments. Noticing one major goal of cooperative caching is aggre-
gating the networked caches as a single cache, arguments in [4, 81]
may need further investigation by explicitly taking aforementioned
ratio and cooperation into account.

5. The shift from single cache to cache network requires better under-
standing of their commonalities and fundamental differences. It also
suggests new measurement metrics and evaluation methods which are
either under development or largely missing in the current research.
Without a sound set of criteria, it is too early and hasty to sentence
cooperative caching to its death. [47] initiated the first discussion on
thorough evaluation of cooperation policy in a distributed caching
strategy.

In general, the quality of an ICN design is evaluated from various as-
pects such as scalability, security, complexity and so on. From caching
perspective, a system is usually measured with hit rate. This widely-used
metric has a history as long as that of computers. In ICN context, pursuing
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higher hit rate is equivalent to pursuing an algorithm which can utilize the
aggregated cache size in the network as a single big cache. However, from
measurement perspective, hit rate contains limited information to describe
a system and it is arbitrary to judge the quality of a design merely with
hit rate. As argued in Chapter 3, other metrics like footprint reduction,
which measures the traffic within a network, should also be adopted in
evaluation. [47] shows after hitting the Pareto boundary of system perfor-
mance, higher hit rate is achieved at the price of lower footprint reduction.
Nonetheless, the clear tradeoff between intra- and inter-domain traffic in
caching strategy design does not seem to capture enough attention in most
of the prior work, let alone the cooperation policy which plays a key role
in balancing these two metrics.

2.5 Discussion

Though it has been over a decade since the concept of ICN was proposed,
there are many open questions yet to be answered and requires better
understanding. Some of them should be categorized as design choices that
cannot be answered with a simple “yes” or “no”, but mostly depends on the
specific context and various tradeoff taking different factors into account.
Whereas some are important system architectural problems that need fur-
ther investigation since many researchers hold diametrically opposing views
upon them.

In this thesis, we try to hold an neutral stance on the viewpoints towards
in-network caching, more specifically, cooperative in-network caching. Though
our work give supportive results on the effectiveness of cooperation in im-
proving caching performance, we feel that it is still too early to jump to
any hasty conclusion. Instead, we focus on the interactions among the
content, topology and cooperation policy, and try to study how the cooper-
ation takes effects in various settings from an impartial viewpoint. In other
words, given the cooperation is implemented in an ICN system, what is its
role in a distributed caching algorithm and how it should be designed to
satisfy certain well-defined requirements.

Besides the aforementioned neutral stance, the ICN under our discus-
sion is a simplified model which remains the core design principles and
possesses most commonalities in different proposals. We know the actual
implementation varies from design to design, this thesis only focuses on the
general architecture instead of delving into low-level mechanistic details.
Sometimes we use a specific ICN design (e.g. CCN) as an example, but we
try to keep our claims as general as possible.
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Chapter 3

Measurement Metrics and
Methodology

Information-centric networks are an interesting new paradigm for distribut-
ing content on the Internet. They bring up many research challenges, such
as addressing content by name, securing content, and wide-spread caching
of content. Caching has caught a lot of attention in the information-centric
networks research community, but a lot of the work suffers from a poor un-
derstanding of the different metrics with which caching performance can be
measured. In this chapter we present a comprehensive overview of different
caching metrics that have been proposed for information-centric networks,
and discuss their merits. As we show, many commonly used metrics have
several failure modes which are largely ignored in literature. We identify
these problems and propose remedies and new metrics to address these fail-
ures. Our work highlights the fundamental differences between information-
centric caches and “traditional” cache networks and we demonstrate the
need for a systematic understanding of the metrics for information-centric
caching. We also discuss how experimental work should be done when eval-
uating networks of caches. In addition, we give a detailed description on
the design of Litelab – the experiment platform we used in the evaluation.

3.1 Introduction

Information-centric networking (ICN) provides a new paradigm for address-
ing and accessing content on the Internet. The current Internet was devel-
oped as a host-centric network, where the main focus was on interconnect-
ing computers, or hosts, but the modern usage of Internet is very much
information-centric, i.e., users do not care from where the information they
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want to access comes from; they simply are interested in getting the infor-
mation. The web is in its essence a host-centric system, although content
delivery networks (CDN) and technologies do break the dependence on
(particular) hosts serving specific content to some extent. However, funda-
mentally the web is still a host-centric system and its different components,
such as naming and security, are tied to this host-centric world.

ICN puts the focus on the content as opposed to the hosts to ad-
dress the architectural issues preventing the web from becoming a full-
blown information-centric system. There are several independent propos-
als around ICN [1–3, 9]. They each present a different solution to try to
re-construct the current Internet, and build a new architecture around the
notion of content. While the details in the proposal differ, we can identify
three common components that are fundamental to information-centric net-
working: addressing content by name, securing content, and wide-spread
caching.

Of these three, the last one, wide-spread caching, seems to have at-
tracted the most attention in the research world lately. Our focus in this
chapter is on measuring the effectiveness of caching, but first we outline
the main issues in naming and security, highlighting in particular how they
impact caching.

Addressing content by name is an important change to how content is
addressed in the web. Although URLs are “names” of content, they have
internal structure which indicates the server hosting that content as well
as a local “path” on the server to the content. While at first sight similar,
names in ICN may have structure, but the structure does not identify a
particular server in the network that would need to be accessed to retrieve
the content. Content discovery is a big challenge in ICN and two different
choices seem to emerge from the ICN proposals. One possibility is to use
an indexing service [9] which keeps track of copies of objects; however it is
not clear if this will scale up to a global scale. The other possibility, used
in most of the other ICN proposals, is to route requests based on some
components in the content name, with the hope that this routing converges
on a copy of the object. Especially in the latter case, en-route caching
becomes an attractive option to speed up discovery and spread the load on
content distribution. In this chapter, we mainly follow this kind of a model
and assume that content requests are routed in the same way from all over
the network and that the routing converges towards existing copies of the
content. Caching is assumed to happen en-route and cached copies are not
tracked in any way.

Security on the web is essentially based on identifying the server pro-



3.2 System View of Cache Networks 21

viding the content via SSL and its associated certificates. Since content no
longer has a single origin in ICN, this approach does not work anymore.
Instead, the ICN approaches all focus on securing the content, by ensuring
via signatures and public keys that the content has not been tampered with
in the network. This also allows caching to take place since any piece of
content, no matter from which server it is served from, can be authenticated
to be the same content that the originator put in the network. Obviously,
this does not tie the content to a real world entity, but this can be achieved
in a similar way to how it is done on the web.

Finally, wide-spread caching is used to store the content in the network
and allow for faster delivery. Caching also reduces traffic in the network
and is therefore attractive for network operators since it has the potential
to reduce their costs.

Although all three above factors are fundamental to ICN, caching seems
to have attracted the most attention in recent research. Caching is a topic
that has been researched in many different contexts and it is attractive in
the sense that it can be measured quantitatively with relative ease, whereas
effectiveness of naming schemes or security solutions tend towards more
qualitative measurements. However, a lot of the work on caching in ICN
uses the “old” caching metrics that are known from processors or web
caches. As we discuss in this chapter, ICN is a network of caches and there
are fundamental differences between ICN caching and, e.g., web caching.
Web caches can also be organized in networks, however they work in a
fundamentally different way from the network of caches in ICN.

Our key contributions in this chapter are to highlight the fundamental
differences between different caching metrics and show how they impact the
metrics that should be used to measure the effectiveness of caching. We
present several metrics and show how they vary in their complexity and
expressiveness. The goal of this chapter is to demonstrate that caching in
ICN is a novel area of research and that existing solutions have only limited
applicability in this field.

3.2 System View of Cache Networks

In this chapter we focus on CCN-like [1] ICN where requests for (pieces
of) content are forwarded via routers and these routers are equipped with
a cache where they can store content. We focus on the case of a single
ISP, as shown in Figure 3.1, which depicts several clients, one server, and
a network of routers. Some of the routers are connected towards clients
and some towards servers. We do not distinguish whether these are actual
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Server

Client A
Client B

Client C

X

X

Figure 3.1: Model of the network

clients or other ISPs that are connected to the clients; they represent the
incoming requests. Likewise, the servers represent sources of content and
do not necessarily need to be connected to this particular ISP. From the
ISP’s point of view, the traffic reduction that caching brings can have two
goals. Firstly, it reduces traffic towards the servers (inter-ISP traffic) which
typically has a (direct) financial cost for the ISP. Secondly, it reduces traffic
within the ISP’s own network (intra-ISP traffic). Intra-ISP traffic has no
direct connection to the ISP’s costs, however lower intra-ISP traffic means
that the ISP is able to serve more customers with the same infrastructure,
which does have a positive financial effect.

The fundamental difference between ICN caching and, for example, web
caching is that in ICN caching we have a network of caches that can work
together to optimize the performance of the whole network. Although hi-
erarchical web caching implemented similar networks of caches, each cache
was operated by a different real-world entity and attempted to optimize its
own performance. This led to issues like the filtering effect [60, 77] where
first caches in the hierarchy capture the most popular objects because they
attempt to optimize their own performance. This in turn leads to the
following caches to see a request stream with less locality, making their
performance suffer. In the context of web caching where every cache is op-
erated by a different entity, this is reasonable, but in the context of ICN, a
single entity controls multiple caches and is able to make them cooperate to
optimize the overall performance. Results in [72] show that even a simple
randomization of where to cache a particular piece of content has a signif-
icant boost of overall performance because it mitigates the filtering effect.
As example, consider Figure 3.1. In the web caching model, the routers
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next to the clients would cache the most popular content, but in ICN, it is
feasible to have some other routers do that, for example the green routers
marked with X. In other words, [72] shows that caches being less greedy in
optimizing their own performance is beneficial to the whole system. This
implies that when evaluating networks of ICN caches, we need to look at
the performance of the whole network instead of optimizing performance of
individual caches.

3.3 Core Metrics and Potential Extensions

We now present the main contribution of the chapter and outline different
metrics that can be used to measure performance of a network of caches.
We consider three metrics that have been used in literature and present a
new metric called coupling factor.

(Byte) Hit Rate

Typically cache performance has been measured via hit rate, which captures
the ratio between cache hits (requests found in the cache) to the total
number of requests seen by the cache. Byte hit rate is its natural extension
where every hit is weighted by the size of the object, hence byte hit rate
measures the reduction in outgoing traffic from the cache. As our focus is
on traffic reduction, we use byte hit rate in the following. When we apply
byte hit rate as the performance metric, we effectively aggregate the whole
network of caches as a single cache and look at its performance. (Note that
since multiple caches may hold a copy of the same object in ICN, such an
“aggregate” cache has less storage than the individual caches together; this
does not influence the metric.) Byte hit rate is location-agnostic since it
only cares whether there was a hit in any cache; it does not provide any
information about where the hit happened.

Byte hit rate is an often-used metric, partly because caches have tradi-
tionally been measured by hit rate, partly because it is easy to compute,
and partly because it translates directly to savings in inter-ISP traffic, i.e.,
financial savings. Reducing duplicate copies of objects in the network is the
most effective way of improving byte hit rate; however an efficient reduction
in number of copies requires an efficient cooperation method between the
caches to discover the cached copies.

While byte hit rate is easy to compute, it treats the network of ICN
caches as a black box since it does not take into account where the hit
happens. Another argument against byte hit rate as a metric stems from
the current trends of content distribution in the Internet. Large content
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delivery networks or content providers, who host the most popular content,
install their servers in or close to the ISPs where the users are. Although
the servers are in the ISP’s network, the normal way of calculating byte hit
rate would consider them external, thus traffic to them would be counted
the same way as any outgoing traffic; yet there is typically no cost to the
ISP for traffic to them. Hence, most of the popular content actually comes
from inside the ISP, and only the savings in the less popular content are
relevant for the ISP. Byte hit rate is not able to capture this and therefore
we recommend that it should not be used as a general metric; in specific
situations it may be appropriate, but it is not appropriate as a general
metric for all situations.

Average Hops

Measuring the number of hops a request needs to traverse in order to find
the content is also a metric that has been recently used [82]. It is appealing
in the sense that it augments byte hit rate by taking into account where the
hit happens, however it does not provide any meaningful way of estimating
savings in outgoing traffic. In addition, as is done in [82], average hops is
sometimes used as a proxy for download latency.

Our previous work [72] shows that average hops as a metric does not
discriminate well, i.e., while the qualitative ranking of caching solutions is
correct, the quantitative differences between them are very small, which
can easily lead to an impression that the performance differences would
be small [82]. Other metrics we consider in this chapter do not share this
weakness. The reason behind this is that average hops measures absolute
values and because many networks are scale-free, the number of hops is
typically small. Hence, differences between caching strategies will appear
small, but this is actually an artifact of the metric, not an indicator that
the strategies would be close to each other according to other metrics.

Another difficulty in using average hops as a metric relates to what value
to assign to content retrieved from outside the ISP, i.e., a miss. Assigning
a high value puts emphasis on avoiding misses, i.e., the metric becomes
similar to hit rate. Assigning a low value emphasizes the location of con-
tent in the ISP’s network, i.e., it gives an impression of intra-ISP traffic.
However, as the amount of data is not part of the metric, it does a poor job
in capturing something useful and a better metric, like footprint reduction
described below, is needed.
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Footprint Reduction

Traffic footprint in traffic engineering is defined as a product traffic volume
and the distance it travels within the network. The distance is usually
measured in terms of hops. To calculate the footprint, we need to sum
up all the products of every data packet sizes and their travel distances.
Footprint reduction is the fraction of reduction in footprint when caching
is enabled.

Compared to byte hit rate, footprint reduction takes into account where
the hit happens, since the number of hops is counted in the metric. How-
ever, since footprint reduction uses the size of the content, it gives more
accurate information about traffic reduction than simply using the aver-
age hops. Also, it measures relative change and gives therefore a better
picture of the differences between caching strategies. Note that footprint
reduction measures only reduction of intra-ISP traffic and does not give
any indication about possible reductions in inter-ISP traffic.

Byte hit rate and footprint reduction are the two key metrics in eval-
uating performance of networks of ICN caches, but they must be used in
conjunction; using only one of them leads to biased results (using only av-
erage hops will lead to even more bias). For example, consider two caching
strategies which achieve the same byte hit rate, but different footprint re-
ductions. Higher footprint reduction indicates that the hits happen closer
to the clients, thus less intra-ISP traffic and generally better performance
for the users. We have identified and quantified the tradeoff between byte
hit rate and footprint reduction [47] and will briefly outline this tradeoff
below.

A naive solution for improving footprint reduction is to place the popu-
lar content as close to the clients as possible, i.e, edge caching [82]. However,
this leads to large redundancy in cached content and leads to (much) lower
byte hit rate. This tradeoff between the two metrics is mediated by a co-
operation policy which enables richer cooperation between the clients than
a simple en-route caching allows [47]. As discussed in [47], the tradeoff can
be mediated by adjusting the number of copies for a content item and the
range of how widely we search for the content in the network in case of a
miss. The search range covers all possible cases from en-route caching to
searching the whole network (obviously with a cost that would need to be
accounted for). Adjusting the number of copies is harder to do exactly, but
simple mechanisms like Cachedbit [72] are likely to be sufficient in many
cases. For more details, we refer the reader to [47, 72].

One thing is worth pointing out is “no caching” was selected as baseline
in calculating footprint reduction. In other words, it represents the traffic
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saving comparing to a special caching strategy in which all the caches are
disabled. Doubts have been raised that if we change to another caching
strategy as baseline, whether the results (or observation) will remain valid.
Below, we give a simple proof to show it actually does not matter which
strategy we choose as a baseline, the results are affine.

Let xα, xβ and xθ denote the traffic footprint for caching strategy α,
caching strategy β, and no caching θ respectively, and yα, yβ , and yθ are the
corresponding footprint reduction. Our current way of calculating footprint
reduction is defined as:

yα = 1− xα
xθ

(3.1)

yβ = 1− xβ
xθ

(3.2)

yθ = 1− xθ
xθ

= 0 (baseline) (3.3)

As we can see, xθ is just the baseline we are comparing to. Obviously,
the footprint reduction yθ is zero when comparing against itself. We can
of course change the baseline to the caching strategy β’s footprint xβ , then
we have the corresponding new metrics y�α, y

�
β and y�θ calculated as below:

y�α = 1− xα
xβ

(3.4)

y�β = 1− xβ
xβ

= 0 (baseline) (3.5)

y�θ = 1− xθ
xβ

(3.6)

From Eq (3.2), we have xβ = xθ(1 − yβ). If we let a = 1 − yβ and
b = 1− 1

1−yβ
, then Eq (3.4), (3.5) and (3.6) can be rewritten as follows

y�α = 1− xα
xβ

= 1− xα
xθ(1− yβ)

=
1

1− yβ
(1− xα

xθ
) + 1− 1

1− yβ
= ayα + b

(3.7)

y�β = 1− xβ
xβ

= 1− xβ
xθ(1− yβ)

=
1

1− yβ
(1− xβ

xθ
) + 1− 1

1− yβ
= ayβ + b

(3.8)

y�θ = 1− xθ
xβ

= 1− xθ
xθ(1− yβ)

=
1

1− yβ
(1− xθ

xθ
) + 1− 1

1− yβ
= ayθ + b

(3.9)
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So we can see that the new metrics (y�α, y
�
β and y�θ) are simply affine

transformation of the old ones (yα, yβ and yθ). It means the footprint re-
duction is independent of the choice on which caching strategy as baseline,
since it will not change the “ranking” of the results. In some sense, geomet-
rically, it simply means where we want to set our “origin” point, namely
“0” point.

Coupling Factor

We propose a new metric, the coupling factor, to capture the effects of
the network topology on the performance of caching. We achieve this by
identifying the “position” in the network where the hit happens. Recall that
byte hit rate does not give any information about where the hit happens,
and footprint reduction is limited to finding content only along the routing
path. A cooperation policy that searches wider in the network is able to
find content in other locations as well. In this case, the position has a direct
impact on the calculation of the metrics.

We define the coupling factor as a function of content popularity and
network topology and it measures the impact of topology on content place-
ment, and thus the impact on metrics like byte hit rate and footprint reduc-
tion. Content popularity is easy to obtain, but for characterizing topology,
we have many more options, such as degree centrality, betweenness cen-
trality, closeness centrality and so on. Therefore, coupling factor can have
several forms depending on which metrics are used in calculating the cor-
relation, but the general idea is the same: we need a way of showing the
relationship between popularity and topology.

Figure 3.2 shows how different degrees of coupling affect the placement
of the most popular content. The red dots represent the most popular con-
tent and the concentric circles group nodes according to their betweenness
centrality. Strong coupling means that the most popular content is placed
in the nodes with high betweenness, i.e., the network core. Weak coupling
means the opposite, i.e., the popular content is placed at the network edge.
(Strictly speaking, if using correlation between popularity and node degree
as a metric, strong coupling is indicative of strong positive correlation and
weak coupling implies strong negative correlation.) By adjusting the range
of the search and the number of copies, we can influence the placement of
content in the system, i.e., adjust the degree of coupling. When the popu-
lar content is in the core, we improve byte hit rate and when the popular
content is near the edge, we favor footprint reduction. This means that the
two parameters, search range and number of copies, can be used to adjust
the tradeoff between the two metrics.
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(a) Strong coupling (b) Moderate coupling

(c) Weak coupling

Figure 3.2: Coupling between content popularity and network topology

Other Useful Metrics

The metrics we presented in Section 3.3 are by no means the only metrics
that can be used for measuring cache performance.

As is well known, the popularity distribution significantly influences
caching performance in all kinds of caches. However, new content is con-
stantly added and popularity of content changes which may influence the
metrics that are being used to measure the performance of caches. Typi-
cally, some kind of aging is used to rid the system of old popularity infor-
mation and test a caching strategy’s ability to adapt to changes in content
popularity. Since popularity typically follows a power law and is charac-
terized by a (single) parameter, it is a common technique to measure the
effects of changes in that parameter on other system metrics.

Another interesting measure would be to find a way to quantify the
filtering effects. Filtering effect has been noticed in hierarchical cache sys-
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tems [77], and it refers to the phenomenon that the popularity of the most
popular part in a miss stream is “flattened” because the downstream router
filters out the most popular content. Filtering effect degrades the caching
performance of upstream routers. We do not yet have a good metric to
quantify the filtering effect, however results in [72] seem to indicate that
simple solutions might be able to fight the filtering effect, thus obviating the
need for its measurement. However, this is a question for future research.

As mentioned, content popularity changes dynamically, but also the
network topology changes, be it due to failures or simply an evolution of
the infrastructure. This question needs more research in order to evaluate
how often these kinds of topology changes affect an information-centric
cache network and how large the impact would be.

3.4 Beyond the Metrics: Experiment Design

Choosing the right metrics is the first step, but it is not enough. Design-
ing experiments is as critical as selecting the right measurements, since
it directly influences the ability to extract the right information from the
experiment, as needed by the metrics that are to be computed. A poorly
designed experiment will not allow the correct information to be extracted,
leading to possibly erroneous conclusions. In terms of ICN experiments,
there are three key elements in experiment design: content, topology, and
traffic model.

Content popularity is a key factor affecting performance of caching sys-
tems. In the absence of publicly available request traces from recent years,
many researchers are forced to use synthetic request traces. For synthetic
traces, it is important that its characteristics match those of realistic traces
as closely as possible; obviously it will not be an exact match, but basic
statistical characteristics should match real traces. Research has shown
that real world traces can often be modeled by either Zipf of Weibull dis-
tributions [83]. A further aspect of modeling the content is the size of the
content set, i.e., how many objects are included in the synthetic trace; a
real trace has its own fixed number of objects. The reason why the content
set size is important is the “heavy tail” nature of these popularity mod-
els which drags down performance is the content set is too large (for the
amount of cache storage in the system).

Topology of the network is also of high importance in a correct experi-
mental setting. Research has showed that most realistic networks, including
the Internet are scale-free, so a Barabási-Albert model could be used to gen-
erate synthetic network topologies. However, as work in [84] shows, real
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ISP router topologies do not always conform to the scale-free model, so it is
also important to experiment with real topologies. As opposed to request
traces, network topologies, both at ISP and AS level, are readily available,
so unless the experiment setting requires a network much larger than exists
in traces, using a real network topology is preferable to synthetic topolo-
gies. Obviously, work needs to consider many different topologies in order
to eliminate specifics of particular topologies from the results.

The third element, traffic, has two components: how much traffic and
between which points it goes? In the real world, requests from users at the
network edge and traffic volume is typically proportional to the population
of an edge routers geographical location. These observations have led to
the so-called “gravity model” which has been used in many papers. Typi-
cally servers are connected to routers with high degree, i.e., near the core
of the network and clients are connected to edge routers. The question
then becomes how many clients should the network have? If all routers
are assigned as servers or clients, there is no “intermediate layer” of caches
and this may lead to a stronger filtering effect which degrades the per-
formance of the system. Based on our experience, we have observed that
placing a small number of servers according to the gravity model and then
assigning 20–30% of the edge routers as clients works well. In addition,
the placement of clients should be randomized, varied from one experiment
run to another, and we should perform a sufficient number of repetitions
to guarantee statistically meaningful results, using for example confidence
intervals to determine the number of repetitions.

3.5 Evaluation Platform: Litelab

For network researchers, large-scale experiment is an important tool to test
distributed systems. A system may exhibit quite different characteristics
in a complex network as opposed to behavior observed in small-scale ex-
periments. Thorough experimental evaluation before real-life deployment
is very useful in anticipating problems.

This means that the system should be tested with various parameter
values, like different network topologies, bandwidths, link delays, loss rates
and so on. It is also useful to see how the system interacts with other
protocols, e.g. routers with different queueing policies.

Due to the large parameter space, researchers usually need to run
thousands of experiments with different parameter combinations. As Eide
pointed out in [85], replayability is critical in modern network experiments.
Not being able to replay an experiment implies the results are not repro-
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ducible, which makes it difficult to evaluate a system, because the results
from different experiments are not comparable.

A simulator has been a popular option due to its simplicity and control-
lability. It also has other benefits like reproducible results and low resource
requirements. However, a simulator is only as good as the models used.
Choosing the right granularity of abstraction is a tradeoff between more
realistic results and increased computational complexity.

Experiments on real systems can overcome many problems of simula-
tors, because all the traffic flows through a real network with real-world
behavior. However, running large-scale real-world experiments requires a
lot of resources. Virtualization may help, but configuring and managing
large experiments is still difficult.

Recently, high performance clusters are becoming common, virtualiza-
tion technology advances, and overlay networks seem to become the de facto
paradigm for modern distributed systems. All these emerging technologies
change the way we build and evaluate networked systems.

In the following, we present LiteLab, our flexible platform for large-
scale networking experiments. We show its design, functionalities, key fea-
tures and an evaluation of its accuracy and performance. With LiteLab,
researchers can easily construct complex network on a resource-limited in-
frastructure.

LiteLab is easy to configure and extend. Each router and links between
them can be configured individually. New queueing policies, caching strate-
gies and other network models can be added in without modifying existing
code. The flexible design enables LiteLab to simulate both routers and end
systems in the network. Researchers can easily plug in user application and
study system behaviors. LiteLab takes advantages of overlay network tech-
niques, providing a flexible experiment platform with many uses. It helps
researchers reduce the experiment complexity and speeds up experiment
life-cycle, and at the same time, provides satisfying accuracy.

General Architecture

The goal of LiteLab is to provide an easy to use, fully-fledged network
experiment platform. Figure 3.3 shows the general system architecture.
LiteLab consists of two subsystems: Agent Subsystem and Overlay Subsys-
tem, presented below.

We first illustrate how LiteLab works by describing how an experiment
is performed on this experiment platform.

All experiments are jobs in LiteLab and are defined by a job description
archive provided by a user. An archive can contain multiple configuration
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Figure 3.3: LiteLab Architecture

files which specify the details of the experiment, e.g., network topology,
router configuration, link properties, etc. The Agent Subsystem has one
leader node which is responsible for starting and managing jobs. We use
the Bully election algorithm for selecting the leader dynamically.

Second, the user submits the job to LiteLab which processes the job
description archive, determines needed resources and allocates necessary
physical nodes from the available nodes. We have developed and run Lite-
Lab on our department’s cluster, but the design puts no constraints on
where the nodes are located.1 Nodes with lighter loads are preferred.

Third, LiteLab informs the selected nodes and deploys an instance of
the Overlay Subsystem on them (see below). The Overlay Subsystem is
started to construct the network specified in the job description archive.

Finally, LiteLab starts the experiment, and the job is saved into the
JobControl module, which continuously monitors its state. If a node is
overloaded, LiteLab will migrate some SRouters to other available nodes
to reduce the load. If an experiment successfully finished, all the log files
are automatically collected for post processing.

Agent Subsystem

The Agent Subsystem provides a stable and uniform experiment infrastruc-
ture. It hides the communication complexity, resource failures and other
underlying details from the Overlay Subsystem. It is responsible for man-
aging physical nodes, allocating resources, administrating jobs, monitoring
experiments and collecting results. The main components of the Agent

1
For geographically dispersed nodes, strong guarantees about network performance

may be hard or impossible to provide.
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Subsystem are NodeAgent, JobControl and Mapping.

1. NodeAgent represents a physical node, thus there is one-to-one
mapping between the two. It has two major roles in LiteLab. First, it
serves as the communication layer of the whole platform. Second, it
presents itself as a reliable resource pool to Overlay Subsystem. We
use the Bully algorithm to elect a leader responsible for managing the
resources and jobs.

2. JobControl manages all the submitted jobs in LiteLab. After pre-
processing, JobControl allocates the resources and splits a job into
multiple tasks which are distributed to the selected nodes. The job
is started and continuously monitored.

3. Mapping maps virtual resources to physical resources. The goal is
to maximize resource utilization and perform the mapping quickly. It
is also a key component to guarantee the accuracy. Mapping module
runs an LP solver to achieve the goal.

Resource Allocation: Dynamic Migration

Resource allocation focuses on the mapping between virtual nodes and
physical nodes, and it is the key to platform scalability. We have subdivided
the resource allocation problem into two sub-problems: mapping problem
(below) and dynamic migration

The mapping should not only maximize the resource utilization, but also
guarantee there is no violation of physical capacity. We take four metrics
into account as the constraints: CPU load, network traffic, memory usage
and use of pseudo-terminal devices. Deployment of the software-simulated
routers (SRouter) must respect the physical constraints while optimize the
use of physical resources.

Suppose we have m physical nodes and n virtual nodes. We first con-
struct an m× n deployment matrix D. All the elements in D have binary
values. If Di,j is 1, then virtual node i is deployed on physical node j,
otherwise Di,j is 0. We denote Ci as the CPU power, Mi as the memory
capacity, U as egress bandwidth and V as ingress bandwidth of physical
node i. We also denote cj , mj , uj and vj as virtual node j’s requirements
for CPU, memory, egress and ingress bandwidth respectively.

We model the processing capability of a node in terms of its CPU power:

n�

j=1

Di,j × cj ≤ Ci, ∀i ∈ {1, 2, 3..m} (3.10)
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Figure 3.4: Inputs and output of Mapping module

Total memory requirements from virtual nodes running on the same
machine should not exceed its physical memory:

n�

j=1

Di,j ×mj ≤ Mi, ∀i ∈ {1, 2, 3..m} (3.11)

The aggregated bandwidths are also subject to physical node’s band-
width limit:

n�

j=1

Di,j × uj ≤ Ui, ∀i ∈ {1, 2, 3..m} (3.12)

n�

j=1

Di,j × vj ≤ Vi, ∀i ∈ {1, 2, 3..m} (3.13)

A virtual node can only be deployed on one physical node, and the total
number of virtual nodes is fixed. Two natural constraints follow:

m�

i=1

Di,j = 1, ∀j ∈ {1, 2, 3..n} (3.14)

m�

i=1

n�

j=1

Di,j = n (3.15)

Our mapping strategy is to use as few physical nodes as possible, and
give preference to less loaded nodes. In other words, we try to deploy as
many virtual nodes as possible on physical nodes with the lightest load.
We define node load L:
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L = w1 × avg cpu load+ w2 × traffic

+w3 ×memory usage+ w4 × user activities
(3.16)

The four metrics are given different weights to reflect different level of
importance. In our case, we set w1 > w2 > w3 > w4, but this choice is
rather arbitrary; Emulab uses a similar rationale [86]. In our evaluation,
we have found that our simple rule for the weights is sufficient, but further
study would be required to gain more understanding on their importance.

Larger L implies heavier load. We give each machine a preference factor
pi equal to the reciprocal of its load, L−1. Node with the lightest load has
the largest preference index.

We formalize the mapping problem into a linear programming problem
(LP). The objective function is as follows:

max
m�

i=1

n�

j=1

pi ×Di,j (3.17)

subject to the constraints in equations (3.10)–(3.15).

Each node sends its state information to the leader, which then has
global knowledge needed for solving the LP problem. Our LP solver is a
python module, which takes node states and job description as inputs, and
outputs the optimal deployment matrix. Figure 3.4 shows how Mapping
module works.

We also adopted other mechanisms into our LP solver to further improve
the efficiency by reducing the problem complexity. We discuss these in
detail in Section 3.5.

Resource Allocation: Dynamic Migration

The static mapping cannot efficiently handle the dynamics during an exper-
iment. For example, a node overloaded by other users’ activities may skew
our experiment results. We use dynamic migration to solve these problems.

Dynamic migration is implemented as a sub-module in NodeAgent. It
keeps monitoring the load (defined by e.q (3.16)) on its host. If NodeAgent
detects a node is overloaded, some tasks will be moved onto other machines
without restarting the experiments. Migration is not able to completely
mask the effects from other users, but can alleviate the worst problems.
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Overlay Subsystem

Overlay Subsystem constructs an experiment overlay by using the resources
from Agent Subsystem. One overlay instance corresponds to a job, therefore
LiteLab can have multiple overlay instances running in parallel at the same
time. JobControl module manages all the created overlays.

The most critical component in Overlay Subsystem is SRouter, which
is a software abstraction of a realistic router. Due to its light-weight, mul-
tiple SRouters can run on one physical node. Users can configure many
parameters of SRouters, e.g., link properties (delay, loss rate, bandwidth),
queue size, queueing policy(Droptail, RED), and so on.

Queues

Figure 3.5 shows SRouter architecture and how the packets are processed
inside. SRouter maintains a TCP connection to each of its neighbors.
The connection represents a physical link in real-world. For each link,
SRouter maintains a queue to buffer incoming packets. In the job descrip-
tion archive, user can specify the link delay, loss rate and bandwidth for
each individual link. All these properties are modelled within the SRouter
so that they are not subject to TCP dynamics.

SRouter maintains three FIFO queues inside: iqueue, equeue and cqueue.
All incoming packets are pushed into iqueue before being processed by a
chain of functions. All outgoing packets are pushed into equeue. Aggre-
gated traffic shaping is done on these two queues. If a packet’s destination
is the current SRouter itself, then it enters into cqueue. Later, the packet
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will be delivered to user application.

Processing Chain

We borrowed the concept of chains of rules from iptables when we designed
SRouter. If a packet waiting in the ingress queue gets its chance to be
processed, it will go through a chain of functions, each of which can modify
the packet. We call such a function an ihandler. If an ihandler decides
to drop the packet, then the packet will not be passed to the rest of the
ihandlers in the chain.

The default ihandler is bypass handler, and is always the last one in the
chain. It simply inserts an incoming packet into cqueue or equeue. If a
packet reaches the last ihandler, it will be either delivered to the next hop
or to the user application.

Users can insert their own ihandlers into SRouter to process incom-
ing packets. SRouter has a very simple but powerful mechanism to load
user-defined ihandlers. User only needs to specify the path of the folder
containing all the ihandlers in job description archive. After LiteLab starts
a job, SRouter will load them one by one, in the specified order.

VID

To be neutral to any naming scheme, LiteLab uses logical ID (VID) to
identify a SRouter. A VID can be an integer, a float number or an arbitrary
string. By using VID, we do not need to allocate separate IP address for
each SRouter. Every VID is mapped to <IP:PORT> tuple and an SRouter
maintains a table of such mappings. These mappings are also a key to
enabling dynamic migration, because LiteLab can migrate an SRouter onto
another node by simply updating the VID mapping table.

Routing

Routing in LiteLab is also based on VID. In LiteLab, an experimenter can
use his own routing algorithm either by plugging in ihandlers or by defining
a static routing policy. LiteLab has three default routing mechanisms:

1. OTF: Uses OSPF [87] protocol. Given the topology file as input, the
routing table is calculated on the fly when an experiment starts. The
routing table construction is fast, but the routes are not symmetric.

2. SYM: Symmetric route is needed in some experiments. In such cases,
LiteLab uses Floyd-Warshall algorithm [88] to construct routing ta-
ble. In the worst case, Floyd-Warshall has time complexity of O(|V |3)
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and space complexity of Θ(|V |2). Therefore, the construction time
might be long if the topology is extremely complex.

3. STC: This method loads the routing table from a file, avoiding the
computational overheads in the other two methods and giving full
control over routing.

User Application

ihandler provides a passive way to interact with SRouters. Besides ihan-
dler, SRouter has another mechanism for users to interact with it: user
application. This feature makes it possible to use SRouter as a functional
end-system. In the beginning of an experiment, LiteLab will also start the
user applications running on SRouters after they successfully load all the
ihandlers.

SRouter exposes two interfaces to user application: send and recv.
Equivalent to standard socket calls, a user application can use them send-
ing and receiving packets. Currently, we have a synchronous version imple-
mented, an asynchronous version is in our future work. User applications
can also access various other information like VID, routing table, link usage,
etc.

In a nutshell, LiteLab is highly customizable and extensible. It is very
simple to plug in user-defined modules without modifying the code and
substitute default modules. SRouter can also be used as end-system instead
of simply doing routing task. When used as end-system, user-implemented
applications can be run on top of it.

Features & Limitations

We performed thorough evaluation on LiteLab to test its accuracy, perfor-
mance and flexibility. In following sections, we present how we evaluates
various aspects of LiteLab and how we adapted it to get around practical
issues. We also give some use cases to illustrate the power of the platform.

Accuracy: Link Property

In terms of accuracy, we have two concerns with using software-simulated
router on general purpose operating system. First, is SRouter able to satu-
rate the emulated link if it is operating at full speed? Second, can SRouter
emulate the link properties (delay, loss rate and bandwidth) accurately?

We performed a series of experiments to test the accuracy and precision
of SRouter. We used different values for bandwidth, delay, packet loss, and
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packet size in the evaluation. Our test nodes run Ubuntu SMP with kernel
3.0.0-15-server. The operating system clock interrupt frequency is 250HZ.
We set up an experiment where we use two SRouters as end-systems, each
running both a server and a client.

In bandwidth limit experiments, we used one-way traffic. A server keeps
sending packets to a client on the other node. Table 3.1 summarizes the
experiment results. With 1518-byte packets, SRouter can easily saturate
a 100 Mbps link. With 64-byte packets, two directly connected SRouters
can exchange 10000 packets (625 KB) per second. This low number stems
mainly from our use of Python to implement LiteLab. Although C would
be faster, we opted for Python in the interest of simplicity and flexibility.
We also tested a multi-hop scenario and observed only negligible additional
decreases in bandwidth.

Compared with the results in [86], SRouter is much better than nse [89]
and close to dummynet. One reason why dummynet has slightly better ac-
curacy is it increases the clock interrupt frequency of the emulation node
to 10000HZ, 40 times of ours, which improves the precision accordingly.
Another reason is that dummynet works at the kernel level thus has no
user-level overheads. Based on the results, SRouter makes a reasonable
tradeoff between accuracy and complexity. It shows that application layer
isolation is able to provide satisfying accuracy and precision. We can in-
crease experiment scale greatly without sacrificing too much reality.

Table 3.2 summarizes the results from delay test. We used the same
topology as in the bandwidth limit test, with the difference that traffic
is two-way and there is no bandwidth limit. In an ideal situation, the
observed value should be twice the set value. The results show that as
the delay increases, the error drops even though the standard deviation
(stdev) also increases. Both small and large packets suffer from large error
rate when the delay is less than 10ms. We also noticed that a high-speed
network (10 Gbps) can provide better precision than a low-speed network
(1 Gbps) in both experiments and comparing with previous work [86].

Table 3.3 summarizes the experiments for packet loss observed by the
customer. The accuracy of the modeled loss rate mainly relies on the
pseudo-random generator in the language.

Scalability: Topology

Being able to quickly construct new topologies certainly improves efficiency.
Compared to Emulab and PlanetLab, LiteLab’s configuration and setup is
lighter. Nodes are identified with VIDs and no additional IP addresses are
needed.
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Table 3.1: Accuracy of SRouter’s bandwidth control as a function of link
bandwidth and packet size.

BW (Kbps) Packet Size Observed Value
(bytes) BW (Kbps) % err

56 64 55.77 0.41
1518 57.62 2.89

384 64 382.56 0.37
1518 387.96 1.03

1544 64 1539.23 0.31
1518 1546.32 0.15

10000 1518 9988 0.12
45000 1518 44947 0.12

Table 3.2: Accuracy of SRouter’s delay at maximum packet rate as a func-
tion of 1-way link delay and packet size.

OW Delay (ms) Packet Size Observed Value
(bytes) RTT stdev % err

0 64 0.190 0.004 N/A
1518 0.221 0.007 N/A

5 64 10.200 0.035 2.00
1518 10.230 0.009 2.30

10 64 20.212 0.057 1.06
1518 20.185 0.015 0.92

50 64 100.209 0.060 0.21
1518 100.218 0.031 0.22

300 64 600.189 0.083 0.03
1518 600.273 0.034 0.04

To test how fast LiteLab can construct an experiment network, we
used both synthetic and realistic topologies, deployed on 10 machines. For
realistic topologies, we used 4 ISPs’ router-level networks from Rocketfuel
Project [84]. Table 3.4 shows the time used in constructing these networks
using two different routing table computing methods (OTF and STC from
Section 3.5). The result shows LiteLab is very fast in constructing realistic
networks, most of them finished within 5 seconds. Even for the largest
network NTT, the time to construct is only about 10 seconds.

In some cases, the experimenters need symmetric routes. As we men-
tioned in Section 5.2, network constructed with OTF cannot guarantee
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Table 3.3: Accuracy of SRouter’s packet loss rate as a function of link loss
rate and packet size.

Loss Rate (%) Packet Size Observed Value
loss rate (%) % err

0.8 64 0.802 0.2
1518 0.798 0.2

2.5 64 2.51 0.4
1518 2.52 0.8

12 64 11.98 0.1
1518 11.97 0.2

Table 3.4: Time to construct realistic ISP networks. OTF: routing table
is calculated on the fly; STC: routing table is pre-computed and loaded by
routers

ISP # of routers # of links OTF STC
Exodus 248 483 1.5s 16s
Sprint 604 2279 4.6s 141s
AT&T 671 2118 4.2s 204s
NTT 972 2839 10.1s 312s

symmetric routes. SYM is impractical for complex topologies, so STC is
the only option, although much slower than OTF. The first bottleneck is
transmitting the pre-computed routing file to the local machine; the second
bottleneck is loading the routing table into the memory. There are several
ways to speed up STC: first, storing the routing file in local file system;
second, using more physical nodes.

We also used synthetic network topologies in the evaluation. The pur-
pose is to illustrate the relation between construction time and network
complexity. We chose Erdős-Rényi model to generate random network and
Barabási-Albert model to generate scale-free network. Figure 3.6 shows the
results of 50 different synthetic networks with the different average node
degrees. The number of nodes increases from 100 to 1000. In the biggest
network, there are about 16000 links. From the results, we can see given the
node degree, the time to construct network increases linearly as the num-
ber of nodes increases in random network. However, the growth of time is
slower in scale-free network because the nodes with high degree dominate
the construction time.
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Figure 3.6: Time to construct synthetic networks of different type.

# of PHY # of SR Naive (s) Heur (s)
128 100 1.30 0.03
128 200 3.23 0.08
128 400 5.37 0.23
128 800 11.61 1.00

256 100 1.93 0.03
256 200 4.62 0.08
256 400 9.47 0.23
256 800 22.24 0.98

Table 3.5: Efficiency of LP solver as a function of different network size.
PHY:physical nodes, SR:SRouters

Adaptability: Resources Allocation

As mentioned, we use an LP solver to map virtual nodes to physical nodes.
The LP solver module uses CBC 2 as engine, takes node states and job
requirements as inputs, and outputs a deployment matrix. We tested how
well our LP solver scales by giving it different size of inputs. Table 3.5
shows the results.

The size of deployment matrix is the product of the number of physical
nodes and the number of SRouters. The results (Naive column in Table
3.5) show that as the deployment matrix grows, the solving time increases.
It implies that even for a moderate overlay network, solving times can be
significant if there are a lot of physical resources.

2
https://projects.coin-or.org/Cbc
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Figure 3.7: Reduce deployment matrix size by selecting minimum physical
node set that satisfies the job requirement.

To reduce solving time, we must reduce matrix size. We cannot reduce
the number of SRouters in the experiment, but can limit the number of
physical nodes. Algorithm 1 shows our heuristic algorithm which attempts
to limit the number of physical nodes. The algorithm picks the minimum
number of nodes needed to satisfy the aggregate resource requirements of
the experiment and then attempts to solve the LP. Because the actual
requirements like CPU or memory of a single SRouter cannot be split onto
two physical nodes, it is possible that the LP has no solution. We then
double the aggregate resources required, add more physical nodes, and
attempt to solve the LP again. Eventually a solution will be found or the
problem will be deemed infeasible, i.e., although the aggregate resources
are sufficient, it is not possible to find a mapping which satisfies individual
node and SRouter constraints. In our tests, we discovered that the optimal
solution is in most cases found on the first try. Figure 3.7 shows how the
matrix size is reduced.

The efficiency of the LP solver with heuristic algorithm is also shown in
Table 3.5 (Heur column). By comparing with naive LP solver, the solving
time is significantly reduced and it is independent of the number of available
physical nodes.

Application: Use Cases

We have used LiteLab as an experiment platform in many projects. Com-
pared to other platforms, LiteLab speeds up experiment life-cycle without
sacrificing accuracy, especially for very complex experiment networks. We
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1: Input: job requirements R, physical nodes L
2: Output: minimum physical node set S
3: Calculate overall job requirement R
4: Order nodes from lightest to heaviest load into L
5: for all node N in L do
6: Add N to S
7: Calculate capacity of S: C
8: if R < C then
9: Solve LP

10: if optimal solution exists then
11: break
12: else
13: R ← 2×R
14: end if
15: end if
16: end for

Algorithm 1: Heuristic to improve mapping efficiency

have tested LiteLab in the following situations:

1. Router experiment: new queueing and caching algorithms can be
plugged into LiteLab and test its performance with various link prop-
erties.

2. Distributed algorithms: LiteLab is also a good platform for study-
ing distributed algorithms, gossip and various DHT protocols can be
implemented as user applications.

3. Information-centric network experiments: various routing and caching
algorithms can be easily tested on complex networks, using realistic
ISP networks.

Limitations

LiteLab aims at being a flexible, easy-to-deploy experiment platform and in
this goal, it must make some tradeoffs regarding accuracy and performance.
In terms of accuracy, the main factor is the precision of the system interrupt
timer, especially when simulating low-level link properties. Increasing timer
frequency, like in [86], will improve accuracy, but requires root privileges
and possible recompilation of the kernel. LiteLab runs in user space and
does not require root privileges.
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Overall system load will also affect LiteLab’s performance. LiteLab at-
tempts to avoid these issues by selecting lightly loaded nodes and migrating
tasks from heavily loaded nodes, however it cannot completely eliminate
external effects from other processes running on the test platform. Any
platform on a shared infrastructure suffers from this same problem and the
only solution would be to use a dedicated infrastructure.

SRouter’s processing power is another limitation as it can only process
about 10000 packets per second. Adding more user-defined modules will
further slow down SRouter. This limitation stems mainly from our choice
of Python as implementation language and a C implementation would yield
better performance. Using Python has made the development of LiteLab a
lot easier and less error-prone than using C. This means that LiteLab is not
well-suited for low-level, fine-grained protocol work. However, for studying
system-level behavior and performance of a large-scale system, Litelab is
better suited than existing platforms.

Other Tools

We now compare features and capabilities of LiteLab with the three other
existing approaches. LiteLab is a time- and space-shared experiment plat-
form. It leverages the existing nodes available to the experimenters and
attempts to maximize utilization of all available physical resources.

Compared to NS2/3 (and other simulators like [90–92]), LiteLab runs
over a real network and allows deployment of user applications on top of
the experiment platform. LiteLab allows experimenting with very large
topologies with relatively little physical resources. Specific-purpose sim-
ulators, e.g., [93–96], are lighter than NS2/3, but are limited to a single
application. Parallel simulation [97] may offer a solution to the scalability
issues of simulators.

Compared with Emulab, LiteLab runs on generic hardware and does
not require any particular operating system or root privileges. Emulab is
more accurate in simulating certain network-level parameters, but LiteLab
is able to run a much larger experiment with the same hardware because
multiple SRouters can run on a single physical node. Work of Rao et
al. [98] is close to our approach. However, their work focuses on a specific
application whereas LiteLab is a generic network experimentation testbed.

LiteLab is very similar to PlanetLab, with a few key differences. Plan-
etLab runs on a dedicated infrastructure whereas LiteLab can leverage any
existing infrastructure. PlanetLab has the advantage of using a real net-
work between the nodes, but at the same time, is not able to guarantee
network performance between nodes. LiteLab, on the other hand, can con-
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figure the network properties with very good accuracy and allow better
repeatability for experiments.

3.6 Conclusion

In this chapter, we have argued that measuring the performance of caching
in information-centric networks is fundamentally different from previous
networks of caches, like web caching hierarchies. We have discussed dif-
ferent metrics and showed common mistakes in use of metrics in caching
in information-centric networks. In addition, we have highlighted some
lesser-known metrics which we consider more appropriate, and have pro-
posed new metrics that capture more fine-grained information about the
performance of an ICN caching network. Finally, we have considered how
ICN caching experiments should be set up and discussed key elements of
experimental work. The discussion over the measurement metrics is also
complemented with a full description of the experiment platform we used
in our evaluation. To summarize,

• We need to evaluate the performance of the network as a whole as
opposed to optimizing individual caches.

• Byte hit rate measures only reduction in inter-ISP traffic and due
to content providers installing their servers close to clients may not
reflect a true reduction in outgoing (costly) traffic.

• Using average hops as a metric is not a good idea since it does not
discriminate well and has issues related to assigning the number of
hops for cache misses.

• Footprint reduction measures reduction in intra-ISP traffic and gives
more information about where the hits happen. It is to be preferred
over byte hit rate and average hops.

• A more refined metric, like the coupling factor, can help characterize
the performance by looking at several aspects (content popularity and
topology in this case) and provide insight into the inherent behavior
of a network of caches.

• Experiment setup needs careful thinking and its execution needs tight
control in order to get meaningful results.



Chapter 4

Neighborhood Search and
Admission Control

In-network caching of content is a popular technique for eliminating re-
dundant traffic from the network and improve the performance of network
applications. In this chapter we present a novel cooperative caching strat-
egy to improve performance of in-network caches. Our cooperative scheme
is composed of an admission policy for the incoming data and a content
exchange protocol between neighbor network caches to improve the search
zone. The admission policy enforces that a previously cached data is not
unnecessary replicated in other caches, resulting in more space for new
data. The content exchange protocol allows for exchange on cached data,
increasing the hit rate for incoming requests. The benefits are twofold:
first, we reduce the redundant content caching in the network, and sec-
ond, we improve the hit rate by informing the content cached in the nearby
caches. As a proof-of-concept, we have implemented a prototype and evalu-
ated its performance using different large-scale topologies against standard
non-cooperative caching algorithms. Our numerical results show that both
admission and content exchange policies yield large performance gains over
standard algorithms.

4.1 Introduction

The hype with user generated content (UGC) such as Youtube videos and
IPTV, has put the current Internet infrastructure under high burden. Ac-
cording to a Cisco survey [99], the global IP traffic is expected to grow four
times from 2009 to 2014, approaching 64 Exabytes per month in 2014, and
by that time, various forms of video (TV, video-on-demand, and P2P) will
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exceed 91% of the traffic.

Despite these predictions, ISPs lack incentives to upgrade their infras-
tructure, an issue known as the middle mile problem [100]. The middle mile
is the infrastructure that interconnects the transit points between different
ISPs, and ISPs do not have enough incentives to upgrade this infrastruc-
ture because they do not receive any direct revenue from that upgrade.
On the flip side, ISPs have incentives to upgrade the last mile, which is
the infrastructure that connects subscribers to the Internet. Also, content
providers have incentives to upgrade the first mile to provide better service
availability and user experience.

In order to reduce the immediate upgrade pressure in the infrastruc-
ture, ISPs have deployed Web caches [38] in their networks to reduce the
redundant traffic passing through their networks. Caches provide a simple
but effective storage mechanism to reduce the latency and bandwidth us-
age. Content delivery networks (CDNs) have been deployed in the Internet
to improve the user experience by placing content in the client side of the
network, i.e., in the same ISP or close to it, reducing the latency and even-
tual bandwidth bottlenecks between ISPs. There are two main incentives
for the usage of caches in the Internet. First, storage prices have decreased
substantially faster than bandwidth costs. Second, data consumption is
time-correlated in the Internet, i.e., a given piece of data is produced once
and consumed many times in the Internet following a Zipf probabilistic
distribution [31]. Recent surveys [101, 102] confirm that a large portion of
the network traffic is redundant and could easily be cached.

In this chapter, we propose a cooperation protocol for network caches to
improve the caching capacities. The general idea is to use content routers
to provide routing and caching capabilities together in the network. Addi-
tionally, these content routers implement a novel admission control in the
caches, described as cached-bit, and a content look up procedure described
as neighbor search. The cached-bit strategy reduces the redundant data
in the network through a bit set in the content header and the neighbor
search procedure allows for content discovery in the neighbor caches, re-
sulting in footprint reduction. As a proof-of-concept, we implemented the
caching network together with these caching strategies and evaluated them
experimentally through emulation using Rocketfuel topologies. We com-
pare the bandwidth savings, cache hit and the control overhead against
simpler models.

The organization of this chapter is as follows. Section 4.2 describes the
background on in-network caching and Bloom filters, then proposes the
routing mechanism based on exchanged cache digests. Section 4.3 presents
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Figure 4.1: Basic store-n-forward content router.

the prototype implementation and describes the evaluation in several sce-
narios. We present and discuss the results in Section 4.3. Finally, Section
4.5 summarizes the chapter.

4.2 Heuristic Cooperative Caching

Our cooperative caching strategy is composed of an admission policy and a
content discovery protocol. In the following, we start with the background
of cooperative caching. Then we describe the admission policy, followed by
the neighbor search scheme with Bloom filters and the combination of both
of them.

Background

The basic in-network caching mechanism is performed by a content router
(CR) [103]. A CR is a data forwarder similar to a regular router, but it
also has internal memory that can be used to store data in transit. The
simplest model works as follows: first, for each data response, any CR on
the path between a server and clients caches the data in their memory.
Further requests can be served by the local copy in the CR. This model
is simple and works just as a network storage mechanism with a simple
income queue, presenting some benefits such as reduction in the content
retrieval latency and bandwidth usage. Fig. 4.1 illustrates an example of
CR in a network topology.

The simple CR model has limitations, especially in scenarios where they
need to work as a single system. First, the usual admission policy is basi-
cally to cache everything that is possible, meaning that all in-transit data
should be cached in the CR. However, CRs have limited storage capacity
and they need more fine grained admission control policies to filter the
insertion of new entries in the caches. Second, there is no cooperation be-
tween CRs, leading them to cache the same piece of content in the network.
For example, a line of CRs between a client and a server will cache the same
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content, reducing the effectiveness of the caching mechanism. Therefore, we
focus on two main topics: cache admission policies and cache cooperation
strategies.

In [103], we proposed the general idea of a neighbor search mechanism
that improves the cache hit ratio in cooperative caching networks. The idea
is to allow queries to be diverted to neighbor caches, resulting in higher hit
rate. However, this strategy alone does not improve the hit rate much due
to the fact that all caches tends to have the same content in a linear path.
Therefore, neighbor searching in CRs that have the same content results in
poor performance. Another limitation of the old neighbor search strategy is
that each CR holds a pointer to the CR that has the content, requiring ad-
ditional memory to store neighbor information. In this chapter we propose
a new admission policy that improves the efficiency of storage space use
and propose a new neighbor search algorithm combined with Bloom filters
to store neighbor information. Bloom filters are space efficient structures
that allows for aggregated neighbor information storage, resulting in higher
hit ratio. Bloom filters are detailed below.

Admission Policy

An admission policy of a CR decides whether a piece of data should be
cached or not. For network caching scenarios, we need a simple yet effective
way to decide the admission since the CRs work as routers and need fast
decisions. According to [31], the cache hit rate grows logarithmically with
the cache size. Thus, it is interesting if we could aggregate the cache sizes
by removing all the redundant content in these caches.

As a solution, we propose the cached bit admission control. The cached
bit is a single bit set in the header informing whether a given piece of
data has already been cached in the network or not. Whenever there is
a message carrying some data, the first CR that caches the data also sets
the bit in the header, informing further CRs along the path that piece of
content has already been cached in the network. Therefore, other CRs know
that they do not need to cache that piece of content again. The benefit of
this approach is that the overall caching capacity can be improved in the
network. Compared to the cache all admission policy, the cached bit can
reduce the amount of redundant data in the network. The cached bit policy
solves the previous limitation of the CR model in [103], where caches along
the path had the same content. In this approach, just one CR has a given
piece of content. Fig. 4.2 illustrates the basic CR model with the cached
bit strategy.

In this example, the content server answers with data to client one (red
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Figure 4.2: Basic cache-and-forward with Cached Bit strategy.

line). The CR with id = 13 caches the data, thus, neither CR with id = 07
nor CR with id = A1 will cache the same data again. Thus, the cached
bit reduces the amount of replicated data along a network path. Despite
the improvement with the cached bit policy, we can see that if there is a
second client (client 2) located in another edge of the topology, she will not
benefit from the cached bit policy.

Neighbor Search with Bloom Filters

The Neighbor Search (NbS) strategy is a cooperative scheme to improve the
hit rate in the cases shown in the above example where subsequent requests
for the same content do not follow the path of the original request. This
increases chances of finding the content and improves hit rate and reduces
network traffic. The basic model is illustrated in Fig. 4.3.

Each CR has a neighbor table, where each entry contains a content ID
and the interface where the data came from. Hence, upon receiving a con-
tent request, the CR looks up in the neighbor table for the entry, and if
positive, it forwards to the interface where the data was last seen. We use
Content Bloom Filters (CBF) to store content identifiers from neighbor-
ing CRs. Each CR broadcasts to its immediate neighbors a Bloom filter



52 4 Neighborhood Search and Admission Control

Figure 4.3: Content BF distribution in a network.

informing its currently cached content. Receiving neighbors add this CBF
in their neighbor tables, allowing for opportunistic content routing towards
CRs that have the content. The benefit of the augmented neighbor search
model with Bloom filters is to allow re-directions towards CRs that may
have the content with much high probability. Effectively this aggregates
the storage of all neighbor CRs, and a request does not query a single CR,
but a set of CRs in the network.

Fig. 4.4 illustrates how CBFs can be used to take the routing decisions.
First, the content ID is hashed using the internal hash functions (three in
this example). Then it will generate a BF mask that is going to be used
against the neighbor CBFs stored in memory. In this example, the CRs
stores the neighbor CBFs and neighbors-of-neighbors CBFs, indicated by
the distance in the number of hops.1

CBFs have some drawbacks, false misses and false hits. False miss is
when a piece of content is present in a CR, but the CBF does not reflect
it. A false hit is when a CR does not contain the data anymore, but the
CBF still has it.

Neighbor Search with Cached Bit

Combining the cached bit admission policy with the neighbor search co-
operation strategy aims to improve the cache hit rate further. Cached bit
reduces redundant data in the network. As the hit rate is logarithmically
proportional to the cache size, the reduction of the replicated data increases

1
The number of hops can be tuned depending on the amount of memory available in

the CRs.
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Figure 4.4: CR neighbor look up table.

the storage capacity and the hit rate as well. Neighbor Search increases
the search space by aggregating a set of CRs in one larger storage. As
consequence, a single query may implicitly go through several CRs for a
cache hit. CRs work both cooperatively to reduce the redundant data and
also increase the query space.

Refreshal Procedure

The CBF generation and refreshal is triggered by two events. First, at reg-
ular intervals, CRs generate CBFs and advertise them, for example, every
second. The main benefit of this approach is that the overhead generated
by the CBF exchange is known a priori and can be used in a network
management system. CRs can also be configured to invalidate CBFs after
that interval, thus, reducing problems with failovers. The drawback of this
approach is that CRs do not analyze the data in-transit, for example, in-
transit content refreshal. In this scenario, if the data changes too fast, the
source CR is not able to update the CBF quickly to reflect its current state,
increasing the number of false misses. Conversely, if changes are slow, there
will be a number of unnecessary updates with small changes in the CBF.

Second, a CR sends an updated CBF when a certain number of events
have happened such that, e.g., a given fraction of content in the CR is not
represented in the CBF. The benefit of this approach is that it adapts to
the real network conditions, for example, if suddenly the network changes
due to popular content, it can quickly update its neighbors. However, this
means that the amount of network traffic is unpredictable, since a flash
crowd will trigger a lot of CBF updates. Fig. 4.3 illustrates an example
of CBF broadcast to the immediate neighbors. The CRs populate their
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routing tables with the CBFs which are used in the routing decision towards
the most likely location where the content is located.

Miscellaneous

The bootstrapping procedure is straightforward: CRs periodically broad-
cast CBF to its immediate neighbors, informing which content it has. Re-
ceiving CRs add an entry in the neighbor list and use it for further for-
warding decisions. Failovers can also be detected in the same way. Each
CBF has a validity associated and when it expires, the CR invalidates that
entry and does not use that entry for the routing purposes.

Extending the query area represented by the CBFs would be possible
when allowing CRs to forward CBFs from other CRs. This may result in
routing loops so we would need to add identifiers in CBFs to indicate which
is the original source CR so that CRs receiving duplicate CBFs would be
able to drop them.

4.3 Implementation & Evaluation

We have implemented a CR prototype in Python. Our evaluations are per-
formed on self-developed experiment platform, the core of which is software-
implemented router. Software-implemented router simulates a realistic
router. On our experiment platform, each router and the links between
them can be configured individually in terms of link bandwidth, delay, loss
rate and so on. User modules like queuing policy and caching strategy can
be easily plugged into router.

Fig. 4.5 shows the packet header used in the neighbor search mecha-
nism. The header has six fields and it was designed to be aligned to 32 bits.
The type field has 4 bits that defines the type of the message. The TTL
has a 8-bit field defining the time-to-live of the message. The loop-BF is a
116-bit field containing a BF of all IDs of CRs that the message has been
through, in order to prevent loops. The CR ID is a 128-bit field contain-
ing the CR ID of the source CR. The nonce is a 128-bit field containing
a number that is used as message identifier between CRs, i.e., a receiving
CR can distinguish the order of the received messages in order to update
the neighbor table. The CBF is the content BF containing a set of content
IDs aggregated in the BF, to be used as neighbor information.



4.3 Implementation & Evaluation 55

Figure 4.5: Neighbor search header.

Testbed Set-up

All the experiments are performed on our department cluster consisting of
240 Dell PowerEdge M610 nodes. Each node is equipped with 2 quad-core
CPUs, 32GB memory, and connected to a 10-Gbit network. All the nodes
run Ubuntu SMP with 2.6.32 kernel. The experiment platform will allocate
necessary physical resources according to the simulated ISP network size.
If ISP’s network size is larger than the actual cluster size, routers will be
multiplexed onto one node.

Methodology

We use the following metrics to evaluate our proposal:

• Hit Rate: What fraction of requests was served by CRs. Because
all objects are of the same size, the hit rate is also the byte hit rate.

• Average Number of Hops: Average number of hops that a request
need to go in the network before finding a cache or a server that holds
a copy of the requested data.

• Footprint Reduction: Network footprint is the product of the
amount of data and the network distance from which the data was
retrieved. It measures the amount of internal traffic reduction, i.e., a
smaller footprint (larger reduction) means less traffic within the ISP’s
network.
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In the experiments, we used two POP-level topologies from real ISP
networks [104], the Sprint and AT&T networks. For the deployment, in
each network, we selected the top 20 routers with highest degrees as servers,
and the rest as clients. The clients keep requesting data from the servers
in the experiment, and the requests are uniformly distributed to different
servers.

The request pattern follows Zipf distribution with α = 0.9, which is
very close to real-life distribution shown in [102]. We also tested two traffic
patterns, one is the constant traffic rate, while the other follows a gravity
model used in [105]. In gravity model, the fraction of the traffic from
each client is determined by the city population. However, no significant
difference in results has been found in the evaluation.

Our request trace requests chunks of content, which are assumed to
be independent of each other (the popularity of chunks follows the above
Zipf distribution). We assigned each CR with storage capacity of a certain
number of chunks and assumed that every CR in the network had the
same amount of storage. We report our results as a function of the per-CR
storage, which at the largest sizes (1024 chunks) was around 1% of the total
amount of content.

Experimental Results

We used the three metrics explained above: hit rate, average number of hops
and footprint reduction. For the experiments, we use 4 different strategies
as defined in Section 4.2:

• ALL: no admission policy, CR caches everything

• Cachedbit: one CR caches the content along a path

• NbSA: Neighbor search with ALL policy

• NbSC: Neighbor search with Cachedbit admission policy

Figures 4.6 and 4.7 show the results for Sprint and AT&T networks, re-
spectively. The graphs show hit rate, average hops, and footprint reduction.
X-axis is the per-CR storage capacity.

Concerning hit rate, ALL strategy has the worst performance because
all CRs along the same path store the same content. Therefore, if there
is a miss in one CR, then, it is likely that all CRs in the same path will
result in cache miss as well. Cachedbit stores at most one copy per path,
so it is better able to use the storage and a miss at one CR might be a
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Figure 4.6: Comparison between ALL, Cachedbit, NbSA and NbSC in the
Sprint Network.

hit in the next CR. NbSA strategy allows for content lookup within a set
of CRs, resulting in a combination of a CR with all its neighbors, thus,
increasing the search domain. As a result, it has a better performance than
ALL and Cachedbit. The best performance comes from the combination of
Cachedbit and Neighbor search since Cachedbit reduces redundant data.
Compared to ALL, NbSC can increase the hit ratio up to 50% at a small
cost.

Concerning average hops, the same ranking between the strategies holds.
One point of importance is the behavior of ALL and NbSA for small cache
sizes. When encountering a miss, NbSA searches around for the content,
but because of the small cache sizes, the other CRs are unlikely to have
the content, hence the searching actually costs a lot of traffic. Therefore,
neighbor search strategies might not perform well for small caches. How-
ever, it performs better as the cache size grows. Again, the combination of
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Figure 4.7: Comparison between ALL, Cachedbit, NbSA and NbSC in the
AT&T Network.

Cachedbit and Neighbor Search results in the smallest number of hops.

As for footprint reduction, we see the same behavior and ranking as
with hit rate and average hops, including NbSA’s weakness with small
cache sizes. Again, the performance of NbSC is the best of them.

In the next set of experiments, we evaluate the performance of neighbor
search versus how many hops away we look for cached content. Results are
in Figures 4.8 and 4.9 for Sprint and AT&T, respectively. As expected,
querying a larger set of neighbors yields a slightly higher hit rate, and at
the cost of increased network traffic. However, hit rate improves much
faster by increasing the per-CR storage than extending the search radius,
thus there is little benefit from searching for content from far away. The
ranking between NbSA and NbSC remains the same with NbSC having
the advantage, even with the larger search radius. This underscores the
importance of the admission policy.
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Figure 4.8: Search zone effects for 1 hop and 32 hop search radii and both
admission policies, Sprint network

In the next experiment, we analyze the impact of the Bloom filters and
the false positive rate. All the previous experiments have been performed
with a 1% false positive rate. False positives happen when a CR has a
content Bloom filter that is unsynchronized with the source CR. Therefore,
the CR forwards the request to a peer CR that actually does not have that
content anymore, resulting in cache miss.

We experimented with 0.1%, 1%, and 5% false positive rates for both
neighbor search mechanisms, with 1 hop search radius. We found out that
the difference in performance between 0.1% and 1% false positive rates
was negligible, i.e., it is not necessary to use very large bloom filters in an
attempt to minimize the number of false positives. Going to a 5% false
positive rate had a negative effect on performance, in particular on average
hops and footprint reduction, but less so with hit rate. For example, for the
AT&T network with CR cache size of 512 chunks, the footprint reduction
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Figure 4.9: Search zone effects for 1 hop and 32 hop search radii and both
admission policies, AT&T network

was 40% and 24% for false positive rates of 0.1% and 5%, respectively.

The BF overhead is m = − n ln p
(ln 2)2 , for a given false positive rate p and

number of entries n. Assuming a cache size C and an average file size F ,
the number of bits needed by a BF is equal to m = − C ln p

F (ln 2)2 . In terms

of memory consumption q, namely the percent of cache needed to store
the BF, is q = km

C = − k ln p
F (ln 2)2 , assuming each router has k neighbors on

average. The formula shows that for larger file sizes, we will have smaller
BF and vice-versa. Also, additional neighbors require more memory to
store the neighbors’ BFs.

Figure 4.10 expands on the results on effects of bloom filter false posi-
tive rate and search radius on hit rate and footprint reduction for NbSC in
the Sprint network. Results for AT&T network and NbSA are similar and
are not shown. The results show that the hit rate remains practically the
same across different false positive rates but the footprint reduction drops
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Figure 4.10: Performance comparison of NbSC vs. false positive rates and
radius, 128 chunks of per-CR storage

as the conditions get worse. This is expected since a cache miss due to an
unsynchronized Bloom filter (large false positive rate) will result in addi-
tional hops and it does not influence the content cached in the network. As
consequence of the increase in the number of hops, the footprint reduction
decreases.

Fig. 4.10b shows the comparison of hit ratio, footprint reduction as a
function of the search radius. As the results show, the number of searched
zones have a small effect when the search zone increases from one to two,
but larger search zones result in a drop in footprint reduction, since we
search content wider, but often without finding it.

Summary of the Results

We summarize our main findings as follows:

• Admission policy in CRs is very important in ensuring good perfor-
mance. This is evidenced by the better performance of the strategies
using the Cached Bit admission policy vs. the admit-all policy.

• Searching content in neighbor CRs is beneficial, but even a single
hop search radius is typically sufficient for getting good gains and
increasing search radius yields diminishing returns.

• Bloom filter size (and the associated false positive rate) is not critical
and a false positive rate of 1% appears sufficient.
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4.4 Comparison to Redundancy-Elimination

Redundancy elimination (RE) techniques have been proposed to handle the
huge amount of data in the access networks. Their main aim is to remove
requests and/or responses of redundant data in the network, reducing the
traffic and costs in the access network.

RE techniques can be classified into two kinds: (a) caching to remove
transfers, and (b) data replacement with a shim header. Former relies on
caching network-level objects and storing them temporarily in the network.
Caching techniques rely on redundancy of the traffic [106, 107], implying
that a large portion of the network traffic is duplicated and could be cached
for later requests. Another incentive is that storage prices have decreased
faster than bandwidth costs [27].

The second approach replaces redundant data with a shim header in
an upstream middlebox (usually close to the server) and reconstructing it
in a downstream middlebox before delivering it to the client. Commercial
products provide WAN optimization mechanisms through RE in enterprise
networks [108–110]. Recently, RE has received considerable attention from
the research community [107, 111–113]. In [112], the authors propose a
network-wide approach for redundancy elimination through deployment of
routers that are able to remove redundant data in ingress routers and recon-
struct it in egress routers. However, they also require tight synchronization
between ingress and egress routers in order to correctly reconstruct the
packet and they also require a centralized entity to compute the redun-
dancy profiles. In [113], the authors propose to use caches in the local host
and use prediction mechanisms to inform servers that they have already the
following redundant data. However, they are not able to share the cached
data among other nodes due to the local characteristic of the cache.

Although both caching and RE have been around in the research com-
munity, there has not been any thorough comparison in the effectiveness
of the two above-mentioned strategies: in-network caching vs. redundancy
elimination. Work in [114] combines in-network caching and RE, but lim-
iting the applicability of the solution to a single content source only.

In the following, we perform a comparison between an in-network caching
architecture (INCA) and state-of-the-art RE solutions. Although INCA
models a generic network caching architecture, it is effectively CCN-like [1,
115]. However, as we want to understand the performance differences be-
tween caching and RE, we do consider low-level protocol details.
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Overview of RE

Modern RE schemes use a fingerprint-based data stripping model. Nodes
generate a set of fingerprints for each packet in transit, where each fin-
gerprint can be generated over a pre-defined block size. Upon detecting a
cached fingerprint, the upstream node replaces the data by a fingerprint and
the downstream node replaces the fingerprint with the original data, reduc-
ing the overall data transmission over the network. As described in [116],
both upstream and downstream nodes need to be strongly synchronized in
order to work correctly. A similar approach is presented in [117].

Work in [111, 112] proposes to extend the RE technique to the whole
network, i.e., to make RE as a basic primitive for Internet.The main idea
is to collect redundancy profiles from the network and use a centralized
entity to compute paths between destinations within an ISP with higher
RE capabilities. Therefore, data going through these networks have higher
RE footprint reduction than going to other paths in the network. Despite
the improved RE capacity, it still requires strong synchronization between
the upstream and downstream routers in order to work properly.

A third RE approach [113] was recently proposed to overcome the syn-
chronization issue in order to be deployed in data-center networks. As
cloud elasticity favors the migration and distribution of work among a set
of nodes, it is hard to set up the synchronization between two fixed nodes.
Therefore, the main idea of [113] is to create a local cache together with a
predictive mechanism to acknowledge already cached data to the server. In
this scenario, the service sends a predictive acknowledgement to the server
informing that the requested data is already present in the client, thus, re-
moving the redundant data. Despite the improvement over the fixed node
requirement, the use of local storage prevents the sharing among other
nodes, increasing the overall sharing capacity and hit ratio. Therefore, the
RE is not network wide, but for redundant data that may be requested
again in the local node.

INCA vs. SmartRE

SmartRE [111] uses two network elements, the redundancy profiler and the
redundancy-aware route computation element. The redundancy profiler
collects in-transit data statistics in order to create a profile of the most
popular data to be the ones to be cached in the routers. The redundancy
aware route computation computes the paths based on the content stored in
the network in order to optimize the redundancy elimination of the network
by solving a linear programming (LP) problem. The benefit of such cen-
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Network FP Reduction
Exodus 27.55%
Sprint 28.79%
AT&T 31.59%
NTT 30.45%

Table 4.1: SmartRE footprint reductions in different networks under ideal
conditions

tralized element is the fact that it knows the complete topology and makes
it possible to compute a good result for the RE. A totally decentralized
SmartRE model is not possible since there must be an entity controlling
the synchronization between these points.

SmartRE reduces the network footprint, because the caches between the
ingress and egress store parts of the data and the ingress simply indicates
which parts a cache is to substitute in a packet. There is no effect on
external traffic. The LP solver knows the redundancy profile of the traffic
and calculates a caching manifest which indicates which parts of which
packets should be decoded at which caches. There is a very strong link
between the total amount of storage in the network and the length of the
sampling period which defines how long traffic is observed to compute the
redundancy profile. According to [111], sampling periods on the order of a
few tens of seconds are to be expected to be reasonable.

We implemented SmartRE on top of our CR testbed. We noticed that
SmartRE, or rather the LP defined in [111], is very sensitive to the pa-
rameters in the model. Small deviations often lead to large differences in
performance, typically for the worse. We were able to determine parameters
for what corresponds to the settings in [111] and calculated the footprint re-
ductions for the same traffic as with INCA. These ideal footprint reductions
are shown in Table 4.1.

Figure 4.11 shows the internal traffic reduction as measured by the
network footprint reduction. The y-axis shows the fraction of internal traffic
that was reduced by the caches in the CRs. As with the other metrics, the
differences between the three admission policies are small. Again, NbSC
is clearly superior to Cachedbit which, in turn, is clearly superior to the
ALL policy. Footprint reduction is the reason why we tweaked Cachedbit
to create a copy of the chunk at the CR closest to the client. Without the
additional copy, ALL-policy is better at footprint reduction than Cachedbit.
We observed that this additional copying drops the hit rate by a negligible
amount, but raises the footprint reduction considerably.
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Contrasting the numbers in Table 4.1 with the INCA footprint reduc-
tions in Figure 4.11, we see that they are similar in value. For small INCA
cache sizes, SmartRE yields a higher reduction, whereas for larger cache
sizes, INCA has the upper hand. However, even for very modest cache
sizes, NbSC is able to achieve an equal footprint reduction to SmartRE
and for large cache sizes, the footprint reduction is improved by 50–65%.
Cooperative caching is therefore much more efficient at reducing internal
traffic than SmartRE.

Recall that our INCA experiments considered one chunk to represent
one file, whereas in the SmartRE experiments, a chunk is one packet. This
means that the footprint reduction numbers cannot be directly compared
since traffic is different in the two cases. However, based on the numbers
presented in [111], we can infer a mapping between SmartRE and INCA
experiments. In [111] it is shown that SmartRE gets close to its ideal
performance with 6 GB of storage per router. Assuming the same 6 GB of
storage per CR, the case of 1024 chunks of storage, where 1 chunk equals
1 file, would imply the average file size to be about 6 MB. If the content
is a mixture of text, images, and short videos, this seems like a reasonable,
if not even conservative, number. (For content consisting mainly of larger
videos, this would not be sufficient.)

We ran experiments with SmartRE where we took the ideal cache size
used to obtain the numbers for Table 4.1, and set it to 1/2, 1/4, and 1/8
of that value. For each case, we then ran the experiment to obtain the
reduction in footprint. This allows us to plot the INCA and SmartRE foot-
print reductions on the same x-axis, shown in Figure 4.11. This confirms
that INCA is more efficient in reducing internal traffic in the network. The
additional reduction in traffic varies between almost 200% for small caches
and 50% for large caches.

Cachedbit is similar to the heuristic “Heur1” from [111] in how it at-
tempts to place the content. In [111], the performance of these two heuris-
tics was found lacking when compared to the SmartRE algorithm with its
centralized controller deciding on what to cache where. If the same trans-
lates to an INCA caching network, a centralized controller deciding on
placement of chunks in CRs would be a superior choice. However, similar
placement problems are often NP-complete [118], although some simplifica-
tions are likely to yield a linear program. We have not considered a central
placement agent in INCA, although it could be included in future work.

An important difference is that INCA is able to share cache space be-
tween clients, whereas SmartRE has fixed buckets for each ingress-egress
flow. This gives INCA more possibilities in exploiting the cached data, thus



66 4 Neighborhood Search and Admission Control

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 Sprint, α= 0.9

 

 

NbSC
Cachedbit
ALL
SmartRE

(a) Sprint

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 AT&T, α= 0.9

 

 

NbSC
Cachedbit
ALL
SmartRE

(b) AT&T

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 NTT, α= 0.9

 

 

NbSC
Cachedbit
ALL
SmartRE

(c) NTT

Figure 4.11: Comparing footprints of INCA and SmartRE

reducing footprint and improving hit rate. We believe this sharing of cache
space between all client and server pairs is what gives INCA an advantage
over SmartRE. Contrasting our results to the single server case presented
in [114] is part of our future work.

Comparing INCA with SmartRE, we come to the following conclusions:

• For external traffic reduction, INCA is always superior, because SmartRE
has no effect on external traffic.

• For internal traffic reduction, performance of INCA (with neighbor
search) is in most cases clearly superior, up to 50–65% more reduc-
tion in internal traffic. However, the differences depend on how the
mapping between cache sizes is done and the file size distribution,
thus in different environments the results could be different.

However, in our experimental environment INCA with neighbor search
is far more effective in reducing both internal and external traffic.
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Figure 4.12: INCA vs. EndRE

INCA vs. End-to-End RE

Figure 4.12 shows the bandwidth savings of both INCA and EndRE [117]
on three different networks. We show cache sizes of 128 and 256 chunks.
The bandwidth savings of EndRE remains the same on three networks
because it is end-to-end solution. The network topology does not affect
its performance. We can clearly see that INCA is superior to EndRE.
Even the ALL strategy is slightly better than EndRE in all three networks.
PACK [113] is another end-to-end RE solution, but according to [113], its
performance is about 2% worse than EndRE. Larger cache sizes improve
INCA’s performance; figures not shown due to space limitations. Note that
INCA’s savings are a combination of results shown in Figures ?? and 4.11.

Anand et al. [107] have evaluated real trace captures and their results
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suggest that a middlebox-based solution (i.e., something akin to INCA) has
an advantage over end-to-end RE solutions in saving network bandwidth.
INCA does have a definite advantage in not requiring synchronization be-
tween the server and client and since some content can be served from CRs
along the path, we avoid having to do a round-trip to the origin of the
content, possibly speeding up the transfer.

Summary of the Results

The key findings in the experiments of comparing INCA and RE can be
summarized as follows:

• In terms of reducing external network traffic, INCA is always superior
when compared to ISP-internal RE solutions [111]. End-to-end RE
solutions [112, 113] can reduce external traffic, but are outside the
control of the ISP; furthermore, they are not as effective as INCA.

• In terms of reducing internal network traffic, INCA is in most cases
clearly superior to state-of-the-art RE solutions [111], with at least
50–65% improvements in internal traffic reduction.

4.5 Conclusion

In [40,119], the authors present an analytical model for data transfer, band-
width and caching performance in information-centric networks. The pro-
posed model uses a traffic generator with variable request rate for different
parts of the same content, different caching capacities along the same path
towards a piece of content and the LRU replacement policy within the net-
work caches. Compared to our model, we use a simpler traffic generator
that requests the content chunks based on a Zipf distribution, and our focus
is on evaluating the admission policy and the caching strategy, leaving the
analysis as future work. As our results show, admission policy is critical
for good caching performance.

Internet Cache Protocol (ICP) [120] was proposed to increase the coop-
eration among Web-caches. Whenever a Web-cache receives a client query,
it holds the query and multicasts an ICP message to all peer Web-caches
to query for the requested content. Upon receiving the answer from some
Web-cache, it stores locally a copy of the requested data and forwards to the
data to the client. Although ICP could increase the hit ratio, the protocol
increased the bandwidth usage due to the multicast query to all Web-cache
peers. SummaryCache [66] was proposed to overcome ICP’s limitation by
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reducing the number of queries that a Web-cache needed to send. Each
Web-cache broadcasts a Bloom filter with its current content to all peers
and upon receiving a query, it checks which Bloom filter has the content
and sends just to those Web-caches. Compared to our model, CRs can not
hold the request while it looks for content since it is in the network level.
Hence, the ICP model can not be applied to our model, which is much more
constrained in terms of storage and latency.

Content Centric Network (CCNx) [1] is a content-oriented communica-
tion model driven by interests. Content requests are identified by URLs and
they are routed directly based on URLs towards the server. Caches on the
path are able to identify these requests and answer with the requested data
if they have cached, otherwise, they forwards the requests and mark their
interest in the content. Despite the similar approach in the caching model,
our proposal implements more efficient caching strategies with cached-bit
and neighbor search to increase the caching capacity and efficiency in the
network. Our CR model is very close to CCN, but we do not explicitly
consider how the requests are sent and interpreted by the CRs.

Content-centric Caching (CONIC) [57] is a clean-slate approach for con-
tent retrieval in caches based on Conic Routers (CR). Clients requesting
data send requests to the servers and CRs on the path intercept the request
and query other clients cache for the content. CONIC works for HTTP data
and has look up latency associated for each request.

Cache-and-Forward (CNF) [121] is an in-network caching architecture
where routers have a large amount of memory for storage. These routers
perform content-aware caching, routing and forward packet requests based
on location-independent identifiers. In contrast, we provide extra features
to improve the cache hit in the network and also content search capabilities.
Also, we are not restricted to HTTP as CNF is.

Cachecast [122] proposes a redundant traffic elimination technique in
the multicast communication. They place small caches on links that in-
spects all frames and replaces with a shim header that represents the re-
dundant data and the shim header is translated to the actual data in the
destination. Our work is different since instead of removing redundant
traffic, we assume that clients can use caches as alternative sources.

These approaches are architectural in nature, and do not investigate
the effectiveness of the distributed caching from caching effectiveness point
of view, which is our focus.

To summarize, in this chapter we have presented an admission policy
and a neighbor search mechanism for in-network caching architectures. Our
admission policy attempts to ensure only a single cached copy of a piece
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of content, via informing other content routers via a bit in the header.
The neighbor search strategy implements a cache cooperation protocol to
exchange information about cached data between peer caches, allowing for
content search in neighbor caches. Our key findings in the chapter are
that an admission policy is needed for good performance and that neighbor
search is beneficial in finding content in nearby CRs, thus avoiding the need
to retrieve the content from the origin. We have implemented and evaluated
the admission policy and neighbor search protocol and the results show an
increase of 33% on the hit ratio and decrease of 23% and 20% on the
average number of hops and footprint reduction. In addition, the proposed
algorithm was compared with redundancy elimination thoroughly.



Chapter 5

Compact Routing in Hyperbolic
Space

While Information-centric networking tries to solve many problems in the
current Internet and opens the door to many novel applications, it also
leaves many challenges unanswered, e.g., mobility support and mobile con-
tent publishing and dissemination. In this chapter, we use CCN as an
example and show how a greedy routing can be implemented in CCN ar-
chitecture to support mobility. This allows for efficient content publisher
mobility and supports seamless handoffs for interactive connections. We
present our solution – MobiCCN, and evaluate it thoroughly in realistic
network topologies to show it outperforms other popular mobility schemes.

5.1 Introduction

Content-Centric Networking (CCN) [1] shifts the current Internet paradigm
from point-to-point communication to content-centric dissemination. CCN
aims at solving some problems in current Internet like network congestion,
content delivery and security and etc. The essence of CCN is accessing
content by name. All content is identified, addressed and retrieved by
name instead of physical locations. A client requests a content item by
sending out an Interest packet into the network. The network nodes can
potentially store the content to serve the future requests.

Naming also poses significant challenges on routing. In current Internet,
DNS handles the mapping between hostnames and IP addresses. However,
as far as content is concerned, the number of items to handle is orders of
magnitude larger than names handled by DNS. Hierarchical names have
been proposed because they offer performance gains through aggregation.

71
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However, this assumes the names are correlated with the underlying net-
work topology, and may leave lots of gaps if the content has high mobility.
While Caesar et al. showed flat name is feasible in [123], Ghodsi et al. ar-
gued in [23] that both hierarchical and flat names are essentially the same.

Due to its receiver-driven design, CCN inherently supports receiver mo-
bility. A lost packet can be recovered by retransmitting the Interest.
However, sender or publisher mobility is difficult to achieve. One scenario
is maintaining the communication between mobile caller and callee in a
VoIP call. Another is mobile content publishing and dissemination. In
both cases, data sources are highly mobile. The standard CCN requires
necessary name operations to handle data source mobility, but updating
and propagating names are expensive operations in network. Performance
and scalability are hard to achieve in such cases.

All these issues boil down to the question how we route the packets
to the correct destination. Routing and name resolution form the core of
the problem. An interesting direction in routing research is greedy routing
which was first applied to mobile ad-hoc network, but it can also be used in
traditional wired network. Zhang et al. in [124] presented a greedy routing
based on underlying metric space. The idea is that each router is assigned
a coordinate from a name-based metric space. The router makes the for-
warding decisions based on the distance of its directly connected neighbors
and the destination in the packet. CAIDA has also done experiments in
evaluating greedy routing, but they have been limited to small-scale and
manually assigned (geographical) coordinates [125].

In this chapter, we show that by introducing a greedy routing into
CCN architecture, we can provide an efficient mechanism for seamless mo-
bility, also solve the disparity between enormous space of names and scarce
routers’ resources. Even though we focus the discussion on CCN, it is worth
pointing out that our solution can be equally applied to other similar sys-
tems. Our contributions are as follows:

1. We show that greedy routing can be implemented as routing policy
in CCN.

2. We present MobiCCN, our mobility scheme, and evaluate it thor-
oughly in realistic settings.

3. We compare MobiCCN with other schemes from literature, and show
that it outperforms them.

The chapter is organized as follows. We present MobiCCN in Section 5.2
and evaluate it in Section 5.3. Section 5.4 gives a comparison of common
mobility schemes in CCN. Finally, Section 5.5 concludes the chapter.
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5.2 System Model

In this section, we first give a brief introduction on CCN mechanisms and
greedy routing technique. Then we present our MobiCCN design by de-
scribing how communication happens in the system. Furthermore, we give
a specific scenario of VoIP in Section 5.2.

CCN Routing

Information-Centric Networking (ICN) has been an active research area for
several years. There are several similar independent proposals [1–3], and all
of them are essentially based on the similar concept – accessing content by
name. We use CCN [1] as basis for our work, but many of the key elements
of our solution can be applied in other ICN architectures as well.

CCN is a receiver-driven model. To retrieve a content, the user needs
to construct an Interest packet first, which contains the content name.
The Interest is sent to the network and routed in a hop-by-hop manner
by CCN routers. Each router checks the content name and if there is a
copy in the local storage – Content Store (CS), the response will be sent
back immediately. Otherwise, the router checks its Forwarding Information
Base (FIB) and uses longest prefix matching to determine which face the
Interest will be forwarded to. The forwarded Interest leaves an entry in
router’s Pending Interest Table (PIT). If the Interest finally reaches the
data source and is replied by the server, the response can follow the entries
in PIT left by the previous Interest and goes back to the user.

CCN inherently supports receiver-side mobility. To recover a lost packet
during mobility, receiver only needs to retransmit the previous Interest.
Intermediate routers can use the copies in their CS to serve the request.
However, if the data source is mobile, retrieving data will be much more
difficult. Common schemes use hierarchical naming and if a data source
moves into a new domain, it has to perform expensive name operations to
handle the mobility. In some schemes, the receiver needs to be informed
about the changes so that communication can continue. In [126], Kim et
al. compared several mobility schemes, including their own solution.

Greedy Routing

Greedy routing has a long history in mobile and sensor networks. In such
networks, a node does not have global knowledge of the network topology
and only knows its neighbors. Greedy routing makes it possible to route
packets in the “dark” by assigning coordinates to nodes. However, greedy
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routing doesn’t specify its underlying metric space, node usually uses its
actual geographical coordinates as its locator, which is also referred as geo-
graphical routing. The destination’s coordinate is embedded into the packet
header. To forward a packet, a node calculates the distance between the
destination and each of its directly connected neighbors, and selects the one
closest to the destination as the next hop. However, using geographical co-
ordinates cannot guarantee 100% delivery due to the local minimum issue.
In a connected graph, local minimum refers to the situation that a node x
itself is closer to the destination y than any of its neighbors even though y
is not x’s directly connected neighbor. In this case, the node cannot decide
who should be the next hop therefore routing fails. In [127], Cvetkovski et
al. proposed Gravity-Pressure routing to provide optional path when local
minimum occurs.

Using geographical coordinates is equivalent to embedding the network
into Euclidean space. However, Euclidean space is not the only candidate
for greedy routing’s underlying metric space. Instead of real geographical
coordinates in Euclidean space, nodes can use virtual coordinates from any
well-defined metric space. Therefore, another solution to the local minimum
problem is to embed the topology in a “better” metric space. The idea is to
find a greedy embedding for arbitrary topologies. Greedy embedding refers
to the embedding with the property that given any destination y which is
not directly connected to a node x, x can always find a neighbor of him
who is closer to y than himself. Kleinberg gave a proof in [128], showing
that if we use a hyperbolic space as the underlying metric space, then
every connected graph has a greedy embedding. Therefore 100% delivery
is guaranteed. In [127], Cvetkovski et al. extended Kleinberg’s work to
dynamic graphs.

Proposal

As we have seen, the conventional way of routing and name resolution in
CCN is incapable of handling sender mobility issues. We propose a new
routing protocol which can coexist with the standard CCN routing protocol.

There are two routing protocols in MobiCCN, the standard CCN proto-
col and the greedy protocol. MobiCCN neither changes the existing packet
format nor adds any new ones. A greedy packet is just a normal CCN
Interest. We only reserved prefix greedy:/ for greedy protocol, while the
standard one uses ccnx:/. Whenever a router receives a packet with the
name starting with greedy:/, it switches to greedy protocol to forward the
packet. As Figure 5.1 shows, the general format of the name of a greedy
packet is greedy:/vc/operation/parameters/....
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Content Name

Selector

Nonce

Greedy Packet

greedy: / 324532234925526 /    voip    /  ring ...

greedy: / 548865564345699 /  update  /  signature ...

greedy: / 854267864477975 /  publish  /  data / 17 ...

virtual coordinate operation parameter

{
alice @ domain.comhash

Figure 5.1: Greedy packet type. All the greedy packets are normal CCN
Interests, MobiCCN only reserves the prefix greedy:/ to activate the
greedy protocol.

Each router is assigned a vc (virtual coordinate) from the underlying
hyperbolic space H (using MWST algorithm discussed in Section 5.3). Co-
ordinate allocation can be done in many ways, e.g., manually or by the
ISP using the MWST algorithm (or any similar embedding algorithm). As
shown in [127], coordinate allocation can also be done automatically and
dynamically whenever a new node joins or an old node leaves by using the
dynamic embedding algorithm in [127].

Greedy protocol uses vc as the destination address and embeds it into
the content name of a packet. Each router only maintains a small table
of its neighbors’ coordinates. In order to forward a packet, the router first
extracts destination coordinate vc from the packet, then it calculates the
distance between the destination and each of its neighbors. The packet is
forwarded to the neighbor who is closest to the destination.

However, we do not have to calculate distance for every greedy packet
and can reduce the computational overheads by caching previous results.
When a greedy packet arrives, the router checks whether there is an entry
in FIB using the longest prefix matching. If the result is positive, it means
the distance has been calculated before, then packet is forwarded to the
next hop stored in FIB. The router’s performance is independent of the
number of greedy packets passing by.

Each user has a unique ID to identify himself, which can be the same
as his CCN name. Greedy routing then maps the user ID into the same
hyperbolic space H to obtain its virtual coordinate. Mapping can be done
with any well-defined hash function, e.g. SHA-1. Each user has a dedicated
router who is closest to him in H as his host router in the network. The
host router serves as rendezvous point and relays traffic for him. 1

1
There are obvious similarities between MobiCCN and Mobile IP, and the host router
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1: Input: Greedy Interest GI
2: Output: Forward decision
3: dst ← destination coordinate of GI
4: if (dst, face) in FIB then
5: oface ← face
6: else
7: for each directly connected neighbor Ni do
8: di ← distance between dst and Ni

9: end for
10: oface ← Ni with smallest di
11: Update (dst, oface) pair in FIB
12: end if
13: Forward GI to oface

Algorithm 2: Greedy routing protocol - Interest

Whenever a data source moves to a new attachment point, it sends
out an Update packet to its host router. The Update has a name like
greedy:/vc/update/..., indicating it is an update operation. Each router the
Update passes by will update the corresponding entries of that data source
in its FIB accordingly; then Interests towards the source can be forwarded
correctly to the new domain. From receiver’s perspective, it always uses
data source’s original name to communicate. So there is no need to change
content name even after the source’s handoff, because the Interests can
always reach source’s host router (in the worst case).

Algorithms 2 and 3 show how greedy Interest and greedy Update are
processed in a router. It is not necessary for a greedy Interest to arrive
at the rendezvous point in order to reach the mobile user, because the
greedy Interest may pass a router which already cached (dst, face) in
FIB before reaching the rendezvous point. This means that the stretch in
MobiCCN can even be lower than that in normal greedy routing, however
this advantage is highly topology-dependent and not a guaranteed property.

Security

As shown in [1], CCN is built on the notion of content-based security. Each
piece of content can be authenticated by the digital signature embedded in
the packet header. MobiCCN inherently embodies the CCN’s security, and
has the equal strength of CCN in against many kinds of attacks.

is roughly equivalent to a home agent.
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1: Input: Greedy Update GU
2: Output: Update FIB of the routers between a mobile user and its

corresponding rendezvous point
3: iface ← ingress of GU
4: dst ← destination coordinate of GU
5: Update (dst, iface) pair in FIB
6: for each directly connected neighbor Ni do
7: di ← distance between dst and Ni

8: end for
9: oface ← Ni with smallest di

10: d ← destination between dst and current router
11: if d < min(di) then
12: Rendezvous point, stop forwarding
13: else
14: Forward GU to oface
15: end if

Algorithm 3: Greedy routing protocol - Update

To prevent malicious users from exploiting Update packets to disturb
the normal communication, the sender is required to sign every Update

packet. Whenever an Update packet arrives, the router needs to check
whether the sender is the actual owner of the name so that he has the right
to update his corresponding entries in FIB. This can be easily done by
validating the digital signature in the packet, if the key used for signing is
not the same as the one of the actual owner, the packet should be dropped
immediately. Technically, this means signed Interest instead of signed
Content Object. According to CCNx specification, the signature can either
be appended to the content name (as MobiCCN does), or stored in the
additional field in the header.

Validation requires extra operations and network communication. To
reduce the overheads and also prevent work-factor attack, we adopted three
mechanisms in the design. First, router is not obligated to validate every
Update packet as long as sender’s attachment point remains unchanged.
Second, only the edge router (sender’s attachment point) is responsible
for validating sender’s authenticity, the downstream routers are free from
these operations. Third, owner’s key is cached before its expiration so that
a router needs not retrieve it all the time whenever it needs validation.

Instead of mandating a one-size-fits-all approach, CCN adopts a very
flexible contextual trust model. Clients should determine themselves whether
the data is trustworthy. In a similar vein, MobiCCN design allows both tra-
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Figure 5.2: MobiCCN Scenario. Bob’s host router is R and between the left
and right figure Bob changes his attachment point from A to B. Router D
caches Bob’s Update and Alice’s Interest packet on the right-hand figure
does not need to go to R but D is able to forward it directly to B.

ditional hierarchical PKI (public-key infrastructure) and non-hierarchical
model like SDSI [129]. However, discussion over the trust models is beyond
the scope of this chapter and is left as our future work.

VoIP Scenario

We present a VoIP scenario as an example of how MobiCCN handles mo-
bility. Note that MobiCCN is not limited to voice calls, but is a solution
for general publisher mobility in CCN.

Figure 5.2 shows a simple VoIP scenario in MobiCCN with both two
users – Alice (Caller) and Bob (Callee). Both Alice and Bob use their email
addresses as their unique IDs, and their corresponding virtual coordinates
in H are vcalice and vcbob respectively. Now Alice wants to initialize a VoIP
call to Bob. To set up the connection, she first tries the standard CCN way
by using the name like ccnx:/domain/voip/bob. However, if Bob already
starts moving before Alice’s attempts, the connection setup will fail. After
the timeout event is triggered, Alice activates greedy protocol and sends
out a new Interest with the name greedy:/vcbob/voip/ring. The Interest
will pass by Bob’s host router and finally find its way to Bob using greedy
protocol. If both fail, then Bob is considered offline.

The previous two-attempt setup only happens once in the beginning of
the communication, and the overhead can be avoided if greedy protocol is
used as the primary protocol. The standard one is then used as backup
protocol to achieve lower average latency if both counterparts are station-
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ary.
Another way to avoid two-attempt setup is for Alice to send out two

Interests (both standard and greedy one) in parallel in the beginning,
then choose the protocol after Bob replies. The overhead is just one extra
packet.

When Bob is the data source and he moves into a new domain B, he
sends a greedy Update with the name greedy:/vcbob/update after the hand-
off. The Update eventually reaches his host router and all the intermediate
routers update their FIB in order to forward Interests towards Bob cor-
rectly.

However, as we can see from Figure 5.2, Alice’s Interest reaches D
before R, and router D already updated its FIB from Bob’s greedy Update.
Alice’s Interest can then be routed directly towards Bob without passing
the host router.

Features & Limitations

MobiCCN can either be used as a backup solution for mobility issues, or
the primary scheme for mobile content publishing and dissemination. Mo-
biCCN only needs marginal modifications to CCN routers and does not
interfere with the standard protocol. Applications using the standard pro-
tocol are not aware of the greedy protocol.

Greedy protocol might increase stretch in the communication. However,
as we show in Section 5.4, it is still much lower than other popular schemes
and stretch can be further reduced by using a better embedding algorithm.
Furthermore, due to the flexibility of MobiCCN, users can negotiate with
each other to switch to the standard protocol if they stop moving.

5.3 Evaluation in Mobility Scenarios

Prototype & Testbed

We implemented MobiCCN prototype in Python. The prototype works
similarly to CCN defined in [1]. Greedy routing is implemented as an ex-
tension to the standard CCNx routing protocol. We are also implementing
MobiCCN in the CCNx prototype as a plug-in.

We chose four real-world ISPs networks to run our experiments: Exo-
dus, Sprint, AT&T and NTT. The network topology files are from Rocket-
fuel [84] project. For the network with multiple components, we only use
the biggest one. Table 5.1 shows an overview of the networks with their
graph properties.
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Network Routers Links POPs Diameter Avg. Path
Exodus 338 800 23 12 5.824
Sprint 547 1600 43 12 5.182
AT&T 733 2300 108 11 6.043
NTT 1018 2300 121 14 6.203

Table 5.1: Graph properties of the four selected ISP networks

All the experiments are performed on our department cluster consisting
of 240 Dell PowerEdge M610 nodes. Each node is equipped with 2 quad-
core CPUs, 32GB memory, and connected to a 10-Gbit network. All the
nodes run Ubuntu SMP with 2.6.32 kernel. Multiple virtual routers are
multiplexed onto one physical node if the ISPs network is larger than the
cluster network.

Handoff Delay

Handoff delay is one of the most important metrics for evaluating a mobility
solution. We experimented our solution on four topologies, but since the
results are similar in all of them, we only present the results on AT&T
network. We also compared MobiCCN with different mobility schemes.
However, since Interest Forwarding has been shown to be superior to the
others [126], we only compare against it in this section. Note that the
evaluation in [126] is done on a synthetic topology and we now run their
algorithm on a real ISP topology.

In our simulation, the link delay is set to 5 ms. The initial placement of
the sender and receiver is arbitrary. The selection of the next attachment
point of the mobile sender is among the nodes within a 2-hop radius. Layer
2 handoff delay is set to 100 ms, and loss detection timer is also set to
100 ms. Both caller and callee perform a simultaneous handoff at 10 sec.
Caller and callee send out Interests at a rate of 50 pkts/s.

Figure 5.3a shows the sequence number of the content piece the caller
received when simultaneous handoff happened. When the caller finished
layer 2 handoff at 10.1 sec, he started re-requesting the lost data. Be-
cause packet #5005 was already on its way to the caller when the handoff
happened, it was already cached by an intermediate router. That is why
packet #5005 can be quickly re-transmitted at 10.15 sec just after the layer
2 handoff finished. The rest of the re-transmissions are subject to one RTT,
they arrive later at 10.17 sec. The caller’s handoff delay is 173 ms.

Figure 5.3b shows sequence number callee received during the hand-
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Figure 5.3: MobiCCN handoff delay

off. The callee’s handoff delay is 163 ms, which is shorter than the caller’s
173 ms. The reason is that paths between caller and callee are not sym-
metric. Path from callee to caller (6 hops) is shorter than that from caller
to callee (7 hops).

Figure 5.4 shows the handoff delay in Interest forwarding scheme from [126].
The experiments are done with the same setting as that of MobiCCN. The
caller’s and callee’s handoff delays are the same, both are 188 ms. Although
small, this difference to MobiCCN is consistently present and measurable
in all our experiments. The reason of the longer handoff delay is that the
path between caller and callee increased from 6 hops to 8 hops after the
handoff. This is shown in Figure 5.5. If data source moves from A to
B, topology α in Figure 5.5a will not increase the path length. However,
topology β in Figure 5.5b will increase the path length by 1. Triangular
routing cannot be eliminated in Interest Forwarding if user’s home agent A
becomes the next hop in the new path. It is more difficult to prevent this
issue if topology β is closer to the network core.

Even though neither MobiCCN nor Interest Forwarding requires users
to change names after the handoff, Interest Forwarding may be affected by
the network topology.

Scalability

We designed another experiment to see how the network topology affects
the path stretch. In the experiment, callee is fixed and caller movesN times.
Every t sec, caller moves to a new attachment point. (While such mobil-
ity might not happen in many scenarios, it serves to illustrate MobiCCN’s
scalability even under extremely mobility.) We measured the stretch be-
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Figure 5.4: Interest Forwarding [126] handoff delay

B A

...
(a) Topology α

B A

...

...

(b) Topology β

Figure 5.5: Interest Forwarding is subject to topology

tween caller and callee after each handoff. The experiments were repeated
50 times, and Figure 5.6 shows the average stretch.

For Interest Forwarding, despite of some small fluctuations, stretch in-
creases while the caller keeps changing its attachment point. The reason is
that if the previously attached router is the next hop of the newly attached
router, the path will increase after handoff. As the caller moves more, the
probability of this happening varies according to the topology, thus causing
some fluctuation in the results. However stretch shows a steadily increasing
trend. Furthermore, stretch in Interest Forwarding scheme is consistently
higher than in MobiCCN, which is stable at 1.13. MobiCCN’s performance
is independent of moving and topology once the embedding is done.

This experiment implies the network topology can have a significant
impact on the performance of a mobility scheme. An artificial topology is
incapable of reflecting all the characteristics from realistic topologies, thus
evaluations on purely synthetic topologies are likely to yield results that do
not correspond to results in a real network topology.
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Figure 5.6: Average stretch as a function of number of handoffs

Stretch

The host router approach of MobiCCN may increase stretch because traffic
in many cases passes through the host router, but a better embedding
algorithm can help reduce the stretch.

To embed a network into a hyperbolic space, the first step is to derive
a spanning tree from the network, then we embed the tree into the space.
Kleinberg showed in [128] that the greedy embedding of a spanning tree
of a graph is also the graph’s greedy embedding. However we can derive
multiple spanning trees from the same graph, and different trees may lead
to different stretches. When the network is small, the embedding can be
done manually and the stretch can be reduced to as low as 1, like [125].
However, manually assigning coordinates is infeasible for a large network.

In [130], Cvetkovski et al. implemented two heuristics and showed that
they can improve the average hop stretch by about 30%. In this chapter,
we used the Maximum-Weight Spanning Tree (MWST) in [130] to con-
struct the spanning tree on the experiment topology and embedded it into
a Poincaré disk.

For each network, we generated 5000 random minimum spanning trees
and embedded them into the Poincaré disk. We recorded the average and
the minimum value; these are shown in the first and second row in Table 5.2.

We used MWST for the greedy embedding and recorded its stretch
and also calculated the improvement MWST achieved compared with the
average value. The third and fourth row in Table 5.2 show the results.
MWST has about 11% – 13% improvement on realistic network topologies.
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Exodus Sprint AT&T NTT
Avg. Stretch 1.384 1.375 1.271 1.320
Min. Stretch 1.149 1.197 1.110 1.198
MWST 1.212 1.185 1.128 1.150
Improvement 13.06% 13.82% 11.25% 12.88%

Table 5.2: Stretch of four networks with different spanning tree algorithms

Performance Impact

When CCN router forwards a greedy packet, router spends extra CPU
cycles in computing the distances between the destination and its neighbors
to decide the next hop. However, since MobiCCN uses the same longest
prefix matching mechanism as that in standard CCN, it can utilize FIB

to cache the previously calculated results to reduce the overheads. Then
the CPU overheads become independent of the absolute number of greedy
packets passing by, but only a function of the arrival rate of the packets
containing new destinations. The FIB entries are tentative and will be
purged out automatically after predefined expiration time. So even if all
the traffic are greedy packets, the overheads still remain at a low level.

We evaluated how greedy routing impacts router performance in the
worst case without optimization. In our experiment, we first measured the
router’s maximum throughput when all the packets passed by are standard
CCN packets. Then we increased the fraction of greedy packets step by
step, and examined how it degrades CCN router’s throughput. Our results
show that the throughput drops linearly as a function of the fraction of
greedy packets. With up to 10% greedy packets, the drop is negligible, but
if the traffic consists of purely greedy packets and the router has to calculate
the distance for every packet, the throughput drops by about 30%.

5.4 Comparison of Mobility Schemes

In this section, we compare MobiCCN with other mobility schemes pre-
sented in literature. We evaluate the schemes from the following perspec-
tives: handoff delay, average latency, capability of handling simultaneous
handoff, scalability, single point of failure and implementation complexity.
Table 5.3 summarizes the comparison.
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Sender-driven control message is the most straightforward scheme.
In this scheme, the moving user sends out a control message explicitly
to the receiver to inform his new hierarchical name when handoff occurs.
However, this scheme cannot handle well the situation where both sender
and receiver are moving. The communication may completely break down
when simultaneous handoff happens. Another problem is that receiver
must regenerate the new Interest for the lost packet using sender’s new
hierarchical name. The advantages of this scheme are its simplicity and
pure CCN style, and average latency in the communication is low. All the
modifications are in the application layer.

In Rendezvous point scheme, user needs to update their attachment
point to the rendezvous point periodically or when handoff occurs. If the
receiver fails to get response within a predefined time, the receiver will
think the data source has changed its attachment point. Then the receiver
sends the query to rendezvous point to get the update. In this scheme,
the communication will not completely break down if simultaneous handoff
happens, but it is still possible that the receiver gets outdated information
and suffers from a large delay due to second lookup operations. Further-
more, the receiver still needs to regenerate Interest with the new name
for the lost packets. Generally, this scheme suffers from a large handoff
delay. The advantage is that average latency is low and the modification is
on the application layer; lookup only happens when timeout is triggered.
Normal communication is done as in CCN.

Indirection point scheme uses separate server to relay all the traf-
fic. If handoff occurs, the Interests to the user are buffered first at the
indirection point, then forwarded later until the moving user updates the
new name to the Indirection point. Because all the traffic must pass the
indirection point, the obvious disadvantage is the indirection point becomes
the single point of failure and a bottleneck if the traffic load is heavy. Even
though the handoff delay can be improved in this scheme, normal traffic
suffers from a large average latency.

In all aforementioned schemes, the content must change its name based
on the attached domain. However, updating content name is an expensive
operation in CCN and this makes seamless handoff difficult to implement.
Kim et al. proposed Interest Forwarding in [126]. In their scheme, the
mobile user must send a notification to the current attached router when it
notices a handoff is imminent. The router will start buffering the coming
Interests for the user. Then the user can fetch the buffered Interests

by sending a virtual Interest back to the old attached router. The
virtual Interest also updates the FIB in the intermediate routers so that
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Figure 5.7: Comparison of latencies in different schemes. MC: MobiCCN,
IF: Interest Forwarding, RP: Rendezvous Point, IP: Indirection Point, SD:
Sender-Driven Message

the following Interests can be forwarded correctly. This scheme avoids
changing the content name by using tentative home agent. However, one
problem is the whole scheme may fail if an imminent handoff becomes hard
to predict. Secondly, as we have shown in this chapter, the path may grow
longer while the user is moving, and the following traffic suffers from the
larger latency.

Figure 5.7 shows the handoff delay and average latency in each scheme.
The experiment was repeated 100 times and the average value with stan-
dard deviation is presented. In Figure 5.7a, simultaneous handoff was eval-
uated. Sender-Driven Scheme is missing because it cannot handle simulta-
neous handoff. The performance of Rendezvous Point and Indirection Point
depends on the placement of the Indirection/Rendezvous server. In our ex-
periment, we deployed the server 6 hops away from both two mobile nodes.
MobiCCN has the best performance of all the solutions. Rendezvous Point
is the worst and has the largest variation due to the possibility that user
may receive outdated information.

Figure 5.7b shows the average latency in the communication. We let
the data source have two handoffs before we start the evaluation. The
Rendezvous Point and Sender-Driven Message have the shortest latency
because they always use the shortest path. Indirection Point is the worst
because all the traffic is relayed. MobiCCN is slightly higher than the best
one due to the stretch caused by greedy routing. But the latency can be
further reduced and become closer to the one by using better embedding
algorithm. Interest Forwarding is a little higher than MobiCCN due to the
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issue we discussed in Section 5.3.
In summary, MobiCCN outperforms the other solutions in terms of

delay and (for the most part) latency.

5.5 Conclusion

In this chapter, we present how we extend geographical routing in current
CCNx to solve mobility and mobile content publishing and dissemination
issues in CCN. By embedding network topology into hyperbolic space, we
distribute the rendezvous points and name resolution functionality into
the network. We compared MobiCCN to other proposed CCN mobility
schemes and showed that it outperforms existing schemes both in terms of
handoff delay and communication latency. We are currently implementing
our solution on CCNx as extension, which is fully compatible with the
standard CCN routing protocol.

For the future work, we have three possible directions as follows: first,
looking for better embedding algorithms with lower stretch and better
adaptability to network dynamics; second, reserving CCN naming con-
text under greedy protocol; third, evaluating the overheads in the realistic
network environment.



Chapter 6

Prefix-S Embedding and
Topology-Aware Hashing

In the previous chapter, we focused on mobility of the content source,
using network embeddings as a tool for content addressing and mobility
management. In this chapter, we first show though previously designed
embedding is able to solve the mobility issue, it leads to a highly unbalanced
storage and traffic load: more than 90 % of all stored references are mapped
to one node, which is involved in more than 95% of all queries. Then, we
propose a modified embedding, Prefix-S embedding, and a topology-aware
key assignment, which enable a uniform distribution of the storage load.
The maximum traffic per node is also considerably reduced from more than
95% to 35%.

6.1 Introduction

Compared to the web, most existing ICN proposals typically offer natural
consumer mobility, since the system architectures behind the proposals
are essentially receiver-driven. However, provider mobility, which usually
requires expensive name operations (e.g., propagating updates by flooding
or maintaining large databases) in the network, is extremely difficult to
implement in an efficient and scalable way.

Thus, an ICN network is expected to either implement name resolu-
tion or content-based routing in order to discover and deliver content. The
choice on these two approaches is a trade-off between efficiency and accu-
racy. Name resolution guarantees content discovery but has to maintain two
databases (identifier-to-locator mapping and reachability information) at a
logically centralized point and suffers from query overheads. Content-based
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routing, on the other hand, is more robust and efficient since it bypasses
the query step but only promises probabilistic content discovery (with tun-
able probability) and suffers from high traffic overheads. However, as [25]
showed, this tradeoff can be mediated by using a flat naming scheme with
greedy routing.

In technical terms, [25] uses SHA-1 for content addressing and hyper-
bolic embedding technique to implement a distributed hash table (DHT)
underlay in the network, further transforming every content router into a
rendezvous point. Note that there are multiple ways of addressing content
and hyperbolic embedding with greedy routing is merely one possible re-
alization of compact routing. Though [25] showed that their solution is
superior to existing alternatives in terms of handling mobility, it fails to
take into account the complexity of the embedding. As an extension to the
work in [25], in this chapter we focus on looking for a superior substitute to
hyperbolic embedding, and study how content addressing should take ad-
vantage of the underlying structure of the metric space in a routing scheme.
We show that a poor choice of embedding can cause a highly skewed name
distribution in routing’s metric space, which further may lead to severe
congestion. Our contributions in this chapter are as follows:

1. We study several embedding schemes and propose Prefix-S embedding
as a superior substitute to hyperbolic embedding. Prefix-S embedding
provides guaranteed delivery at lower computational costs.

2. We show that content addressing with naive hashing may cause a
highly unbalanced load distribution, mapping most content on one
node. We propose a topology-aware hashing which takes network
topological properties into account to achieve a uniformly distributed
storage load.

3. We evaluate our solution thoroughly with realistic settings and show it
outperforms the existing ones and achieves good system performance
in terms of low overheads, high scalability and well-balanced load.

The rest of the chapter is organized as follows: Section 6.2 describes our
system model and Section 6.3 presents the Prefix-S and topology-aware
hashing algorithms. Section 6.4 evaluates the proposed algorithms with
different simulation settings and Section 6.5 concludes the chapter.
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6.2 System Model

In our model, we consider an information-centric network using a flat nam-
ing scheme. While our evaluation focuses on a CCN-like network, our use
of hashing of names means that the results and model apply to any ICN
proposal. In the rest of the chapter, we follow CCN’s terminology. The
network topology can be represented as a graph G = (V,E) where node set
V corresponds to the content routers and edge set E corresponds to the
links among the connected routers. Each router vi has a unique ID id(vi)
allocated from a well-defined metric space < M, d > with distance function
d. The assignment id : V → M is called an embedding. In general, we want
id to enable greedy routing, i.e., a path between any two nodes in V can
be found by always choosing the neighbor of the currently contacted node,
whose ID minimizes the distance to the target ID. Note that the distance
of nodes refers to the distance of their IDs, rather than their topological
distance.

Each content piece cj is uniquely identified with a name drawn from a
name space C. We denote the addressing function which maps a content
name into M as g : C → M . A content cj has a designated host vi such
that vi = argmin∀vi∈V d(id(vi), g(cj)). In other words, cj is designated to
the router with the closest ID vi in the metric space M .

Our system operation model is based on the work in [25]. However, since
our concern is how embedding and hashing can influence the ID distribution
in the metric space, which further impact the system performance. We
simplify their model and only focus on the two aforementioned functions
id and g instead of delving into practical protocol designs.

When user requests content ci, the content name is hashed into M by
calling g(ci) and embedded into the Interest packet. The Interest traverses
the network with greedy routing. Each router only maintains a small table
of its neighbors’ coordinates. In order to forward an Interest, the router
extracts destination coordinate (content ID) from its header, then it calcu-
lates the distance between the destination and each of its neighbors. The
Interest is forwarded to the neighbor whose ID is closest to the destination.

The operation model defined in [25] requires that the content owner
continuously registers himself at the host router so that the coming Interests
can trace back. However, in our simplified model, we do not distinguish
between content and content owner, and simply assume the Interest will be
satisfied after arriving at its host router.
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6.3 Embedding and Hashing Algorithms

In this section, we first review existing embeddings used for comparison
in Section 6.4 before detailing our approach. Greedy embeddings are in
general created by embedding a spanning tree into a suitable metric space.
All nodes enumerate their children. The root node of the spanning tree is
assigned an ID, and then each child computes its ID based on the ID of its
parent and the index given by the parent.

Kleinberg’s Embedding

Kleinberg’s embedding into hyperbolic space enables embedding an arbi-
trary finite graph into two-dimensional hyperbolic space. The maximal
degree m in the spanning tree needs to be known beforehand. The span-
ning tree is embedded into the Poincaré Disk by choosing the ID of the root
node as the center of the ideal m-gon whose corners are m-th roots of unity,
i.e. the complex numbers e2πij/m for j = 0, . . . ,m − 1. The ID of a child
is obtained by applying a suitable isometric transformation, parametrized
by the ID of the parent and the index of the child, of the above m-gon
and choosing the center as the child’s ID. Greedy routing, which always
selects the closest neighbor to a desired target ID, is guaranteed to suc-
ceed [128]. Kleinberg did not treat the issue of creating suitable routing
keys for content addressing. The straight-forward solution is to obtain a
two-dimensional coordinate (r(f),φ(f)) of the content f in polar coordi-
nates. More precisely, let h be a hash function with a z bit image. Then
r(f) and φ(f) can be chosen as r(f) = h(f)

2z and φ(f) = 2π h(f+1)
2z .

Prefix Embedding

Prefix Embedding is an adaption of the PIE embedding [131] for unweighted
graphs that has been considered for content addressing in [132]. The idea
is to assign IDs using a custom metric space such that the distance between
node IDs is identical to their hop distance in the spanning tree. The root
is given the empty vector. A child’s ID is the ID of the parent and an
additional coordinate equal to the index of the child. The distance between
two IDs s and t is then given as the sum of the their lengths minus twice
the common prefix length cpl(s, t), so

d(s, t) = |s|+ |t|− 2cpl(s, t). (6.1)

Two solutions for content addressing have been proposed in [132]. We
use virtual tree construction, which is more flexible and was indicated to
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have slightly better load balancing properties. Here, the coordinates are bit
sequences. For any node with c children, consider the maximally balanced
binary tree with c leaves. The node can hence map each child to one
leaf in the binary tree. The ID of the child is then the ID of the parent
concatenated with bit sequence corresponding to the position of the leaf
in the binary tree. Content addressing is done by hashing the content f
with a z-bit hash function. The responsible node is then the node with
the longest common prefix with h(f). However, greedy routing need to be
slightly modified because some internal nodes of the virtual binary tree do
not exists. The distances of nodes represent the distances in the virtual tree
rather than in the actual spanning tree, so that a node can appear closer to
its sibling than its parent. Thus, if a node encounters a query for key and
its ID is not a prefix of the key but it does not have any closer neighbor,
the query has to be forwarded to the parent. The modified greedy routing
algorithm is guaranteed to find the closest node [132].

Prefix-S Embedding

One problem with the above version of the Prefix embedding is that content
is only stored at nodes with at most one child. We hence propose Prefix-S
Embedding, which stores content at all nodes. Here, each node u is given
two IDs, the routing ID IDR(u) and the storage ID IDS(u), a prefix of all
keys stored at u. The embedding works very similarly to the virtual tree
variant of Prefix Embedding. The root node gets assigned the empty vector
as routing ID. When enumerating its children, an internal node u adds an
additional virtual child u�. Routing IDs are assigned to the children by
concatenating IDR(u) and the bit sequence of the corresponding leaf in
the maximally balanced binary tree as described above. The storage ID of
u is then the routing ID of the virtual node u�, IDS(u) = IDR(u�). The
pseudocode of Prefix-S Embedding is given in Algorithm 4, with symbol ||
indicating concatenation operation.

As for Prefix Embedding, greedy routing with the modification of for-
warding to a parent if the current node’s storage ID is closest to the key
but not a prefix is guaranteed to work. Since the storage ID always cor-
responds to a leaf node in the virtual tree, a node is responsible for a key
if and only if its storage ID is a prefix of key (under the assumption that
keys are longer than node IDs). If a node is not responsible for a key, the
responsible node can be found by forwarding to the closest neighbor if said
neighbor is closer, or by contacting the parent. The forwarding decision is
described in Algorithm 5.
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1: {Given: Graph G=(V,E) with spanning tree T}
2: {children(v): children of node v in T , ||: concatenation}
3: Assign IDR(r) = ()
4: Queue q = {r}
5: while q is not empty do
6: u = remove head of q
7: if |children(u)| > 0 then
8: Create balanced binary tree B of size |children(u)|+ 1
9: Create mapping map: children(u) ∪ {u} → leaves(B)

10: for v ∈ children(u) do
11: IDR(v) = IDR(u)||map(v)
12: add v to q
13: end for
14: IDS(u) = IDR(u)||map(u)
15: else
16: IDS(u) = IDR(u)
17: end if

18: end while
Algorithm 4: PrefixSEmbedding()

1: {Given: Graph G=(V,E), assignments IDR, IDS , spanning tree T}
2: {parent(v): parent of node v in T}
3: { N(v): neighbors of node v in G}
4: if IDS(u) is a prefix of key then
5: routing terminated
6: end if
7: next = argmin{d(IDR(v), key) : v ∈ N(u)}
8: if d(IDS(u), key) < d(IDR(next), key) then
9: return next

10: else
11: return parent(u)

12: end if
Algorithm 5: nextHopS(BitSequence key, Node u)
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Topology-Aware Hashing Algorithm

For the above embedding, leaves on the same level of the virtual tree are
responsible for the same fraction of IDs. Hence, for arbitrary unbalanced
trees, the storage load is expected to be unbalanced. In the following,
we discuss how to create topology-aware keys, which achieve a uniform
distribution over of keys over nodes for arbitrary topologies. The principal
idea is that the probability that a key with prefix x has prefix x||0 is
approximately equal to the ratio of the leaves in the left subtree rooted
at node x in the virtual tree and all leaves in the subtree rooted at x.
We thus compute the key of a piece of content f iteratively, as detailed in
Algorithm 6. The key is a bit sequence b1b2...bz, where z is larger than the
depth of the spanning tree. Assume for all possible prefixes di = b1...bi, the
number of nodes v for which di is a prefix of ID(v) is known. In case of
Prefix-S Embedding, we consider the storage ID IDS(v). A hash function
h is chosen with image space 2z for some z ∈ N. The values hi = h(f ⊕ i)
need to be known for i = 0 . . . depth(T ) to locate the responsible node. The
(i+1)-th digit bi+1 of the file ID d is computed on basis of di. The recursion
anchor is given by the empty string d0. Then we have

bi+1 =

�
0, hi+1

2z ≤ |{v∈V :cpl(ID(v),di||0)=i+1}|
|{v∈V :cpl(ID(v),d)=i}|

1, otherwise
(6.2)

with cpl(s, t) denoting the common prefix length. The process continues
until the set |{v ∈ V : cpl(ID(v), d) = i}| is empty, so that the responsible
node is uniquely identified by the key di. In order to distinguish different
pieces of content stored at the same node and have keys of identical length,
we concatenate di with the last z − i bits of h(f).

6.4 Load Balance in Storage and Traffic

We evaluated the approaches proposed in Section 6.3 using 9 different
topologies of autonomous systems (AS) and three metrics as follows.

i) the fraction of stored items each node is responsible for,

ii) the traffic distribution, i.e., fraction of queries processed by each node,

iii) the number of hops needed to discover the destination of the query
using greedy routing.

We evaluate the correlation between i) and ii) to see if a high stor-
age load might be partly compensated by experiencing less traffic and vice
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1: {Given: Graph G=(V,E), assignment ID}
2: {cpl: common prefix length, ||: concatenation}
3: {s[i . . . j]: bits i to j of s}
4: i = 0
5: key =��

6: while length(key) ¡ z do
7: if |{v ∈ V : cpl(ID(v), key) = i}| = 0 then
8: key = key||h(f)[i+ 1, . . . , z]
9: else

10: hash = h(f ⊕ i)/2z

11: if hash ≤ |{v∈V :cpl(ID(v),key||0)=i+1}|
|{v∈V :cpl(ID(v),key)=i}| then

12: key = key||0
13: else
14: key = key||1
15: end if
16: end if
17: end while

18: return key

Algorithm 6: ComputeKey(BitSequence f)

versa. Ranking the nodes by i) and ii) provided an overview of how storage
and traffic is balanced between the nodes. The evaluation was conducted as
follows: We first created a spanning tree of the graph executing a breadth-
first search starting a random node. Then we generated a set of k = 10, 000
random ASCII character strings of length 20, which we used to represent
the queried content. Afterwards, we computed the embedding for all con-
sidered embedding algorithms. For each embedding and each applicable
key generation scheme, we then created the keys from the character strings
and executed a query for each key from a random start node. Hence, a total
of 5 combinations of embedding and key generation were evaluated : The
Kleinberg embedding KB with hashing into the unit disk as well as Prefix
PH/PTA and Prefix-S Embedding PSH/PSTA using both straight-forward
hashing (H) and topology-aware (TA) keys. The relation between the stor-
age and the traffic load on nodes is measured by the Pearson correlation
coefficient. Results were averaged over 20 runs.

The hop count iii) does not necessarily correspond to the stretch, which
is defined as the average ratio of the length of the routing path to the
shortest path for all pairs of nodes. Since iii) considers queries, it is lower
than the stretch if nodes that are easily discovered, e.g., the root, receive
a disproportional high number of queries. The paths actually traversed
during routing are more important for the working system, so that we
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choose this metric rather than the stretch.

Expectations

We expect the Kleinberg embedding to produce a very unbalanced load
distribution. The root node is responsible for the majority of the unit disk
when considering Euclidean space (which the hashing does) regardless of the
structure of the tree. Similarly, the tree for Prefix and Prefix-S Embedding
is bound to have leaves at very different levels, leading to a high storage
load on those on a high level when using straight-forward hashing. The
maximum storage load is likely to be even higher for Prefix-S Embedding
because the virtual nodes corresponding to the storage ID of the internal
nodes on the top levels are always leaves. However, for topology-aware keys
the load is supposed to be uniformly distributed over all nodes (Prefix-S
Embedding) or all leaf nodes (Prefix Embedding). When considering the
traffic a node has to process rather than the storage load, we expect nodes
on the higher levels to experience a higher load. It is not required that
messages between nodes in different branches pass their common ancestor
in the tree, since greedy routing also uses non-tree edges. Nevertheless,
tree edges are more likely to be used, so that we expect an unbalanced
traffic distribution for all spanning-tree based embeddings. Thus, there
should also be a high positive correlation between traffic and storage load
for the Kleinberg and Prefix-S embedding with standard hashing. Both
allocate the majority of the queries and the traffic to the higher levels of the
tree. When using topology-aware keys, the traffic should be uncorrelated to
the uniformly distributed load for Prefix-S embedding. Prefix embedding
allocates all files on leave nodes. These are rarely intermediate nodes for
queries, however they frequently are destinations, so that the sign of the
correlation is not immediately clear.

Previous work on greedy embeddings showed that they exhibit similarly
short routes and a low stretch [127,128,132]. Potentially, the average rout-
ing length is slightly lower for Kleinberg’s embedding due to high fraction
of queries addressed to the root node, which is fast to route to using tree
edges.

Results

We first consider the maximum load per node and the total traffic, for the
9 considered ASs. Afterwards, we analyze the distribution of the load for
one exemplary AS, AS1239. In order to show the general applicability of
our results, Table 6.1 summarizes the maximal storage and traffic load for
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the 9 sample ASs. In addition, the average routing length is given in order
to estimate delays and the overall traffic.

Maximum Load

For the Kleinberg embedding, the storage load is always above 90%, and
the fraction of traffic the most loaded node has to process is above 95%.
For Prefix and Prefix-S embedding with hashing, the highest storage load
and traffic are between 20% to 40%, and 50% to 85%, respectively. The
maximum load is slightly higher for Prefix-S because internal nodes on
high levels receive a large fraction of queries. For topology-aware keys the
maximum storage load is always less than twice the average load for Prefix-
S embedding, the actual load depending on the size of the AS. For Prefix
embedding, the maximum load is slightly higher, because only a subset of
the nodes participate in storing. The maximum traffic is drastically reduced
by topology-aware keys as well, being at most 35% and 65%. Here, Prefix-S
embedding has no overall advantage over Prefix embedding.

Routing Length

We also analyzed if load balancing increased the overall traffic, i.e., the
number of hops needed to resolve a query. Table 6.1 indicates that indeed
the topology-aware keys exhibit a slightly longer routing length than with
Kleinberg’s embedding, but the difference is mostly around half a hop in
average, and at most 0.76 hops (comparing Kleinberg KB and Prefix-S
PSTA for AS3967). Note that the difference was not only due to an in-
creased stretch, since both the standard hashing and the topology-aware
keys use the same topology. Rather, the reason seems to be the location of
the nodes that are responsible for the queries. Prefix embedding, storing all
content at leaves, in general showed the longest routes, whereas Kleinberg
embedding, storing most of the content at the root, is potentially the least
costly. Due to the tree structured, the shortest path to the route is found,
but non-optimal routes are common for leave nodes.

We now focus on a single AS 1239 for further analysis, but emphasize
that the results applied equally to the other ASes as well, but they have
been excluded due to space limitations.

Storage Load Distribution

The distribution of the storage load is displayed in Figure 6.1a, using a
cumulative distribution function (cdf) to show the fraction of files the k
nodes with the highest load are responsible for. The curve shows a very
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steep initial increase for Kleinberg’s embedding as well as for the two Prefix
embeddings with a standard content addressing. By introducing topology-
aware keys, the storage load is balanced uniformly, so that the increase is
close to linear. The curve for Prefix embedding with topology-aware keys
has a steeper slope because internal nodes with more than one child do not
receive any load, whereas for Prefix-S Embedding, the load is uniformly
distributed between all nodes.

Traffic Distribution

For the fraction of queries a node has to forward, i.e. the traffic per node,
topology-aware keys also lessen the imbalance, but cannot abolish it (see
Figure 6.1b). The nodes with the highest load are involved in more 35
% of all queries, which is however considerably less than for hyperbolic
embeddings, for which the root node is involved in more than 98 % of the
queries.

Correlation

As can be expected from these results, the correlation coefficients of the
storage and the traffic load are high for Kleinberg (0.704) and Prefix-S
embedding (0.629), whereas there is no notable correlation for Prefix-S
embedding with topology-aware keys (0.011). For Prefix Embedding is
correlation coefficient is clearly positive (0.316) for straight-forward hash-
ing and clearly negative (−0.348) for topology-aware keys. The result can
be explained since leaves nodes at a high level are frequent destinations
of queries as well as storing a large number of items for the standard ad-
dressing scheme, leading to a positive correlation. For topology-aware keys,
items are still stored only on leaf nodes, but uniformly distributed between
them. Hence none of them has a disproportionally large amount of traf-
fic, which is reserved for the internal nodes without storage responsibility,
leading to a negative correlation.

Discussion

We have shown that the poor load balance of hyperbolic embeddings can
be improved. Topology-aware keys achieve a uniform storage load and re-
duce the traffic at congested nodes at the price of a marginally increased
overall traffic. The above results indicate that Prefix-S Embedding is the
best choice when combined with topology-aware keys, since it offers a uni-
form storage distribution over all nodes and the lowest maximum traffic.
However, Prefix Embedding offers a negative correlation between storage
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Figure 6.1: Load Distribution: a) CDF of storage by rank, b) fraction of
traffic ranked

and traffic, so that congested nodes only have to forward queries rather
than answer them. Depending on the actual scenario, in particular storage
and time constraints, Prefix embedding can be a better choice.

6.5 Conclusion

In this chapter, we studied the relation between the graph embedding and
content addressing in the context of CCN. We showed that naive combina-
tion of the both is not only a costly solution but also causes highly skewed
ID distribution in routing’s metric space, further leading to storage load
and congestion issues. To get around these issues, we proposed Prefix-S em-
bedding to reduce the overhead and distribute the load among all nodes,
and topology-aware keys to distribute the load uniformly. We evaluated our
solution thoroughly and showed it outperforms others in realistic settings.
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Chapter 7

Effects of Cooperation Policy on
General Topologies

In this chapter we show that there is a tradeoff between two common
caching metrics, byte hit rate and footprint reduction, and show that a
cooperation policy can adjust this tradeoff. We model the cooperation pol-
icy with two parameters – search radius r and number of copies in the
network K. These two parameters represent the range of cooperation and
tolerance of duplicates. We show how cooperation impacts content distri-
bution, and further illustrate the relation between content popularity and
topological properties. Our work leads many implications on how to take
advantage of topological properties in in-network caching strategy design.

7.1 Introduction

Caching is a key component in information-centric networks (ICN) [1–3,9].
In-network caching not only reduces an ISP’s outgoing traffic, but also re-
duces traffic within an ISP network. Byte hit rate (BHR) is a common
metric for evaluating savings in inter-ISP traffic and footprint reduction
(FPR) [111] measures the amount of traffic eliminated by caching (as prod-
uct of traffic volume and distance it travels in the network) and is the metric
we use for intra-ISP traffic savings. We show that BHR by itself is insuf-
ficient in capturing the performance of a network of caches; this is often
overlooked by existing work. This chapter shows that there is a subtle in-
terplay between BHR and FPR and that in some cases these two metrics
oppose each other. We argue that a cooperation policy among routers can
mediate this tradeoff between BHR and FPR and show that two parame-
ters can tune the desired operating region: maximum number of duplicates
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for each content item (K) and the radius for cooperation (r).
To improve BHR, a cooperation policy covering a large radius enhances

network storage utilization by reducing the number of duplicates (cache
diversity in [133]). However, large-scale cooperation causes communication
overheads and increases intra-ISP traffic because requests may be redirected
many times. Despite efforts in designing a cooperation policy [43,74,134], a
proper model for its impact on BHR and FPR is still missing. We character-
ize cooperation policy by its search strength (r) and capability of reducing
duplicates (K). We show how different r and K values lead to different
tradeoffs between BHR and FPR, and discuss their implication.

There is considerable interest in exploiting topological properties in
cache networks. Initial efforts [79, 80] indicate centrality as a promising
metric, but questions like how to measure the topological impact on per-
formance and mechanism of the interplay between topology, and caching
strategy still remain open. We use a cache cooperation policy to couple
content with topology and show that this coupling explains how topolog-
ical properties impact caching performance; the tightness of the coupling
indicates degree of topology’s impact.

Our contributions in this chapter are as follows:

1. We highlight the importance of FPR as a performance metric for in-
network caching, and show how BHR and FPR conflict each other at
the Pareto frontier.

2. We propose a cooperation policy model to show the relationship be-
tween cooperation policy, content, and topology. We also categorize
different cooperation types.

3. We propose a novel way to measure the impact of topology, and per-
form a thorough numerical analysis to show how it influences system
performance.

7.2 System Model

Consider a network of M routers, L of which directly receive user requests
and are edge routers. A router denoted by Ri is equipped with a storage
capacity of Ci bytes. We assume N distinct files, denoted by fi and being si
bytes in size. All files are stored permanently at the Content Provider (CP)
represented as the (M+1)th router (RM+1). Denote the request probability
of fi by this file’s popularity pi, and denote the popularity vector by p = [pi].
When a request for fi arrives to an edge router Rj (j = {1, ..., L}), Rj first
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searches fi in its cache. If Rj possesses it, Rj transmits fi to the user;
this a hit. Otherwise, in case of a miss, Rj contacts routers in its r-hop
neighborhood to see if any of them has fi; this is the cooperation policy.
We call the set of all routers located at most r-hops away from Rj as the
searchable set of Rj , denoted by Sc

j . If fi is stored in Sc
j , it is retrieved to

Rj from the closest router (if multiple routers holding fi) and forwarded
to the user. Let Rj,CP be the set of all routers on the path between a edge
router Rj and the CP (excluding the CP). If no router in Sc

j stores the item,
the request is routed to the next router in Rj,CP and searched there as well
as in the new searchable set; there may be overlap between searchable sets
of two neighboring routers, depending on r. We define the reachable set of
a router denoted by Sr

j as the set of all routers in the searchable sets of
routers in Rj,CP . If no router in Sr

j has fi, it is downloaded from the CP
and routed to the user following the backward path.

7.3 Abstraction of Cooperation

Cooperation Policy Design

Performance of a cooperation policy is determined by contents in the search-
able set which is a function of r. The diversity of contents cached in this set
increases caching efficiency which then calls for a caching scheme avoiding
duplicate copies in the set [75, 134]. However, popular content may better
be cached in multiple routers to be more accessible from all network edge
routers. We model this tradeoff with parameter K which is the maximum
number of content replicas in the network. In reality every file would have
its own maximum number of copies which emerges automatically if r is
fixed; we use a fixed K to illustrate system behavior across the whole pa-
rameter range. Using these two parameters, we name a cooperation policy
with parameters K and r as (K, r)-Cooperation Policy, classified into four
as follows:

1. Type I, small r, small K: Weak cooperation due to limited access
to other caches and limited availability of popular content; the system
is not using all its resources.

2. Type II, small r, large K: This is en-route caching. The most
popular content is pushed to the network edge.

3. Type III, large r, small K: Network storage is effectively a single
cache. Popular content is in network core.
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4. Type IV, large r, large K: Strong cooperation. BHR and FPR
cannot be improved at the same time since caching system is fully-
utilized and reaches its Pareto frontier.

The complexity of cooperation can be calculated via communication
and computation overhead [134]. Initially, all routers exchange their set of
stored contents with routers in their searchable set. Assuming that each
content is unit size and dropping the router index, this initialization step
requires O(MC|Sc|) messages and results in O(M2C) message exchanges
in the worst case. Upon a change in the cache of a router, this router
informs all its r-hop neighbours about the evicted and admitted items.
This per change announcement requires O(|Sc|) message in the worst case.
In terms of computation, the cooperation does not involve any processing
rather than discovering which of the replicas is closest to a specific router.
Therefore, computation overhead is O(|Sc|).

Optimal Caching under (K, r)-Cooperation Policy

Assume a centralized entity knowing the content distribution at time t,
Xt = [xi,j ] where xi,j is 1 if fi is stored at Rj , and zero otherwise. At
time t a user issues a request to Rl for fu which is stored at Rhit. Denote
the set of intermediate routers on the path between Rl and Rhit by S, and
the extended set S ∪ RM+1 by S+. An optimal caching strategy (COPT)
determines whether to cache fu in the routers in S, and if to be cached
which items to evict in case of full cache occupancy.

A requested item can be served from edge router Rj or retrieved from
another router Rk including the CP. Let cj,k denote the cost of downloading
one byte at Rj from Rk. The cost function reflects the distance between the
two entities and can be calculated using shortest path algorithms. For a (K,
r)-Cooperation Policy, as the routers not in Sr

j are not reachable from Rj ,

we set cj,k = ∞ if Rk �∈ Sr
j . Let our decision variables Yt = [yi,j,k] ∈ {0, 1}

be 1 only if Rj downloads fi from Rk. Note that if yi,j,j = 1, then fi
is stored in Rj . COPT aims to minimize the total cost of serving all user
requests arriving to all edge routers in the long run (first term in (7.1)) and
cost of serving fu for which user request is just received and can be cached
in one of the routers in S (second term). COPT exploits its knowledge
of current content distribution Xt, file popularities (p), and file size (si)



7.3 Abstraction of Cooperation 107

information as follows:

min
N�

i=1

L�

j=1

M+1�

k=1

sipicj,kyi,j,k+supu

L�

j=1

�

Rk∈S+

cj,kyu,j,k (7.1)

subject to (7.2)

Cache capacity constraints:

N�

i=1

sixi,jyi,j,j+suyu,j,j(1−xu,j)≤Cj ∀Rj ∈ S (7.3)

N�

i=1

siyi,j,j≤Cj ∀Rj �∈ S (7.4)

Maximum replica constraint:
M�

j=1

yi,j,j ≤ K ∀i (7.5)

Feasibility constraints:

yi,j,k ≤ yi,k,k ∀i, ∀j, ∀k (7.6)

yi,j,j = xi,j ∀i, ∀Rj �∈ S (7.7)

Service constraint: 1 ≤
M+1�

k=1

yi,j,k ∀i, ∀j (7.8)

Availability constraint: yi,M+1,M+1 = 1 ∀i. (7.9)

Our objective (7.1) aims to minimize the serving cost by favoring the
most popular files. Cache capacity constraints in (7.3) and (7.4) ensure
the total size of items to be stored in a router’s cache cannot exceed cache
capacity. Only routers in S can consider putting the requested item fu into
their caches. Maximum replica constraint in (7.5) ensures that an item
can have maximum K replicas in the network. Note that by removing
this constraint, system can figure out optimal K for each neighborhood
automatically. Feasibility constraint in (7.6) reflects fi being retrievable
from Rk only if Rk stores fi whereas (7.7) states that contents cached
by routers not in S do not change. Service constraint (7.8) forces the
requests received at edge routers to be served from some location (i.e., local
cache, another router’s cache, or the CP), while availability constraint in
(7.9) ensures all items are available from the CP. After COPT determines
Yt, we update the new content distribution as Xt+1 = Yt for the next
decision instant. COPT is an integer programming problem which can be
solved with optimization software for small instances of the problem but
requires low-complexity distributed schemes for large scale networks. We
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leave distributed solutions for future work.
Let Fj = {uj,1, uj,2, uj,3...} be the list of user requests arriving at edge

router Rj where uj,i is the ith request for a file with size suj,i
. Rj can

retrieve it only from its reachable set Sr
j which is defined as follow:

Sr
j =

�

Rk∈Rj,CP

Sc
k. (7.10)

A request will be counted as hit if at least one of the routers in Sr
j stores

it. More formally, we define hit function δj,i for request uj,i (assuming uj,i
is a request for fi) as follows:

δj,i =

�
1 if

�
Rk∈Sr

j

yi,k,k ≥ 1

0 o/w.

Next, we calculate BHR as follows:

BHR =

�L
j=1

�
uj,i∈Fj

suj,i
δj,i

�L
j=1

�
uj,i∈Fj

suj,i

. (7.11)

If request uj,i is served from a router that is hj,i hops away from the user,
and the path from Rj to the CP is Hj hops long, we can compute the FPR
as follows:

FPR = 1−
�L

j=1

�
uj,i∈Fj

suj,i
hj,i

�L
j=1Hj

�
uj,i∈Fj

suj,i

. (7.12)

7.4 Interplay on Pareto Frontier

Setup and Metrics

We performed numerical evaluation on realistic and synthetic topologies.
Realistic topologies are from [84], and synthetic topologies are scale-free
networks of 50 nodes. Each node can store 25 objects. We present results
on synthetic networks; realistic topologies produce similar results. Content
popularity is modeled according to [83], and content set contains 5000 ob-
jects. We calculate the betweenness centrality (CB) of each router in order
to analyze its impact on cached content in a specific router under various
(K, r) pairs. We define coupling factor (CPF) as the Pearson correlation
between CB and average popularity per bit in a node’s cache; it measures
topological impact on system performance. The rationale is that optimal
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Figure 7.1: Conflicting BHR and FPR at the Pareto frontier. Type of
cooperation at different points shown on right.

system performance is achieved by placing content at specific locations in a
network according to its popularity and that CB is a good metric to char-
acterize a node’s position in a graph. Strong correlation between the two
indicates that content is tightly “coupled” with topology and topological
properties influence system performance.

In the simulations, 30% of the edge routers are randomly selected and
connected with client, and the server randomly connects to one of the 5
core nodes with highest CB. Experiments were repeated at least 50 times.

Pareto Frontier

Fig. 7.1 shows how K and r impact caching performance. The solution to
COPT provides the optimal cache profiles for given K and r (e.g., point A in
Fig. 7.1), but it does not indicate the best values for these two parameters,
i.e., we can improve performance by tuning K and r, because the system
may be underutilized. However, our optimization model can be used to
find Pareto frontier of the performance (green arc BC in Fig. 7.1). When
we reach the Pareto frontier, we cannot improve BHR or FPR without
hurting the other. The fan-shaped area defined by ABC is the area which
a cooperation policy can explore to find the best tradeoff between K and
r. Point D where we eventually reach the Pareto frontier depends on how
cooperation policy balances BHR and FPR. Lines AB and AC are not
parallel to the x- and y-axis, since changing either of r or K affects both
BHR and FPR, as we show below.
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Figure 7.2: Performance of (K, r)-Cooperation along the boundary defined
by ABC (a), and for all (K, r) pairs (b).

The upper graph in Fig. 7.2a shows how BHR and FPR vary as we move
along the segments AB, BC, and CA, by varying r and K. Starting from
A and moving clockwise (left to right in the figure), we increase the search
radius which improves BHR, but decreases FPR due to additional search
traffic or letting content be cached at routers with higher hj,i in (7.12).
From B to C, along the Pareto frontier, we observe the tradeoff between
BHR and FPR, with FPR reaching its maximum at C. From C to A, r is
0 so the system reduces to en-route caching where larger number of copies
(near C) is beneficial, hence as we move towards A, both BHR and FPR
decrease. Fig. 7.2b shows heatmaps of CPF, BHR, and FPR as function
of K and r. Lighter values indicate higher values. It shows how BHR and
FPR conflict each other, i.e., one achieving the highest performance while
the other has the worst, in regions corresponding to the Pareto frontier.
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(a) Point B in Fig. 7.1. (b) Point D in Fig. 7.1.

(c) Point C in Fig. 7.1.

Figure 7.3: Content placement at pointsB,D, and C. Red color (dark dots)
marks the most popular content. Nodes are grouped in circles according to
CB. Content migrates from core to edge as we move from B to C.

Coupling Content and Topology

The lower plot in Fig. 7.2a shows how CPF evolves along the same path.
Values close to -1 or 1 indicate strong dependence between popularity and
betweenness. A router with a high CB is in or close to the core of the
network whereas a router with low CB is close to the network edge. At B,
where CPF is close to 1, popular content is in nodes with high CB, i.e., the
core, whereas at C, where CPF is close to -1, it is at the edge where CB

is low. Along the Pareto frontier BC, we observe a “migration” of content
from core to edge. At D where CPF is 0, both BHR and FPR are close to
halfway point between their respective minima and maxima at B and C.
We have observed this phenomenon across a wide range of experimental
settings, but its full investigation is left for further study.
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Fig. 7.3 shows cooperation policy’s impact on content placement along
the Pareto frontier BC. Point B (Fig. 7.3a), representing Type III coop-
eration favors BHR and places content in the core. Point D along BC
(Fig. 7.3b) strikes a tradeoff between BHR and FPR and the content is
neither in the core nor on the edge; this is Type IV cooperation. Finally,
point C (Fig. 7.3c) favors FPR and pushes popular content to the edge.

Implications

Our results have profound implications on relationship between cooperation
policies, content popularity, and network topology. They also give us hints
on when and how topological properties should be taken into account in
caching strategy design. We summarize the main implications as follows:

1. Cooperation pushes performance to Pareto frontier and couples con-
tent popularity and topological properties together. How and where
it falls on the frontier depends on how it balances BHR and FPR.

2. Content popularity and topology strongly correlate with each other
only close to the Pareto frontier. Whether the correlation is positive
or negative depends on how the cooperation policy favors one of the
two metrics.

3. The optimization model implies that CB has more influence on per-
formance when we get closer to points A or B in Fig. 7.1; only Type
II and III cooperation policies can fully utilize CB to enhance perfor-
mance.

4. We conjecture that tight coupling between content popularity and
topology comes similar mathematical structures as both exhibit power-
law properties. Were popularity closer to uniform or topology closer
to a random network, this tight coupling might disappear.

7.5 Conclusion

We modeled cache cooperation by its search radius and tolerance of dupli-
cates. We performed a thorough numerical analysis and showed that coop-
eration policy pushes system performance to its Pareto frontier, and how
it couples content with topology. We proposed a way to measure impact
of topology on system performance. We show when and how topological
information should be taken into account in in-network caching strategy
design.



Chapter 8

Optimal Chunking and Partial
Caching

Traditionally caches store complete objects, but video files and the recent
emergence of information-centric networking have highlighted a need for
understanding how partial caching could be beneficial. In partial caching,
objects are divided into chunks which are cached either independently or
by exploiting common properties of chunks of the same file. In this chap-
ter, we identify why partial caching is beneficial, and propose a way to
quantify the benefit. We develop an optimal n-Chunking algorithm with
complexity O(ns2) for an s-byte file, and compare it with �-optimal homo-
geneous chunking, where � is bounded by O(n−2). Our analytical results
and comparison lead to the surprising conclusion that neither sophisticated
partial caching algorithm nor high complexity optimal chunking are needed
in information-centric networks. Instead, simple utility-based in-network
caching algorithm and low complexity homogeneous chunking are sufficient
to achieve the most benefits of partial caching.

8.1 Introduction

Network caching reduces network traffic by exploiting redundancy in traf-
fic [112] and popularity of content [31]. Different caching strategies have
been proposed for different cases, such as web and media caching. An
important, yet not widely studied question in caching relates to whether
objects should be cached in their entirety (integral caching) or if only parts
of objects should be cached (partial caching). Traditionally, web caching
has favored the integral approach, whereas media caching has also consid-
ered partial caching.

113
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Information-centric networking (ICN) [1–3] uses caching extensively for
content delivery and some ICN approaches by default divide objects into
chunks, leading effectively to partial caching. This is suitable for large video
files, since they are often only partially accessed [34]. Integral caching may
waste cache space by storing parts of objects that are less popular than
the most popular parts of the same objects. It appears intuitive to develop
efficient partial caching algorithms for optimal handling of such differing
popularities inside objects.

However, the reality is somewhat more nuanced, as we show in this
chapter. Our focus is on understanding how different ways of dividing the
object (chunking) reflect on performance of caching and how to optimally
chunk an object. We show that, while partial caching is useful for partially
accessed objects, similar results can be achieved via chunking the object
into enough many chunks and using simple caching algorithms. In other
words, there is only a very small range of system parameters where so-
phisticated partial caching algorithms are needed, even with erratic object
access patterns.

Specifically, the contributions of the chapter are as follows:

• We analyze the effects of chunking and develop the concept of popu-
larity distribution distance to measure the effectiveness of a chunking
scheme. We derive bounds on performance of partial caching and
compare the optimal chunking with naive homogeneous chunking an-
alytically.

• We demonstrate the performance of partial caching algorithms with
different chunking schemes and the experiments confirm our analysis
that after a moderate number of chunks, partial caching yields no
further benefits.

• Both analytical and experimental results show neither sophisticated
partial caching algorithm nor optimal chunking are needed in prac-
tice. Instead, a simple utility-based caching algorithm with naive
homogeneous chunking is sufficient to achieve most benefits of partial
caching.

The rest of the chapter is organized as follows. Section 8.2 describes
our system model and Section 8.3 presents formal analysis on chunking
schemes. Section 8.4 formalizes optimal caching algorithms and evaluates
their performance under different chunking schemes. Section 8.5 introduces
a utility-based heuristic and compares its performance with the optimal
caching algorithms. Section 5.4 reviews related work and Section 9.9 con-
cludes the chapter.
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Table 8.1: Summary of notations.

Notation Meaning

fi, fi,j File i and chunk j of file i

ni Number of chunks in file i

pi, pi,j Popularity of file i and popularity of chunk j of file i

si, si,j Size of file i and size of chunk j of file i

N Number of files

M Number of routers

L Number of routers that are directly connected with
users

Ri Router i

Ci Storage capacity of router i

CP Content Provider

Rhit Router that holds the requested content

S Set of routers between an edge router and Rhit

Xt Content distribution on routers at time t

Xi,j,k,k Decision variable for storing fi,j at Rk

Xi,j,k,k� Decision variable for retrieving fi,j from Rk� by Rk

ck,k� Cost of retrieving one byte from Rk� to Rk

p, p̃ Real and observed popularity vector

M,M̃ Real and observed user request patterns
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8.2 System Model

Consider a network of M routers organized in a general topology. Let Ri

denote the router i with cache storage capacity of Ci bytes. This network
serves the users that generate requests for files in the set I with |I| = N .
We denote a file by fi and its size by si. All files are stored permanently
at the Content Provider (CP) which is represented as the (M+1)th router
(RM+1). Users interact only with the L edge routers – routers connect
to the users – also referred to as leaf nodes1. A file fi is divided into ni

smaller units referred to as chunks, and jth chunk is denoted as fi,j . Denote
the probability of request for a file by this file’s popularity pi, and similarly
denote the popularity of chunk fi,j by pi,j . We refer to the popularity vector
in both cases by p = [pi] (or p = [pi,j ]). If an edge router has the requested
item in its cache, we call this a hit and this item is transmitted to the user
directly from this router. In case of a miss – the case where the router does
not have the item, the request is retrieved from the closest router storing
this item. If the item is not stored in the network, it is retrieved from CP.

8.3 Analysis on Content Chunking

Cutting a file into smaller chunks improves caching performance since more
fine-grained caching decisions can be made, especially when different parts
of the file have different popularities. However, quantifying the effects of
chunking and the resulting benefits in partial caching have largely been
unexplored. We now present the relationship between chunking and per-
formance, then quantify the benefits of partial caching, and outline the
steps of an optimal chunking algorithm.

Chunking Effect: Origin of Partial Caching Benefit

Assume that the smallest indivisible unit of a file is one byte and the small-
est unit requested by the user is a chunk. Fig. 8.1 gives an example where a
six-byte file is divided into two chunks A and B. Users can access individual
bytes in an arbitrary manner and we denote this “real user access pattern”
as M. Because of chunking, the real access pattern has to be translated
into coarser granularity chunk access pattern, from M to M̃ as in Fig. 8.1.
This distorts the popularity distribution of the bytes since unpopular bytes
could be in the same chunk as popular bytes (e.g., bytes 1 and 2 in the
figure), thus inflating their observed popularity. Due to this distortion,

1
We use node, router, and cache interchangeably.
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Real Pattern M = { 1,   3,   1,   5,   1,   1 }

Translated M̃ = { A,   B,   A,   B,   A,   A }

Translated M̃ = { [1, 2], [3, 4, 5, 6], [1, 2], [3, 4, 5, 6], [1, 2], [1, 2] }
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Figure 8.1: Illustration of chunking effect for a chunking scheme with two
chunks A and B.

although the original popularity distribution is p = {2
3 , 0,

1
6 , 0,

1
6 , 0}, the

translated popularity distribution becomes p̃ = {1
4 ,

1
4 ,

1
8 ,

1
8 ,

1
8 ,

1
8}. We call

this distortion from the real p to the translated p̃ chunking effect.
Chunking effect leads to the popularity of the bytes in the same chunk

to be equal which often also means over- or under-estimation of popularity.
Popularity estimate has direct impact on caching performance:

1. Overestimated popularity increases the chance of caching unpopular
content.

2. Underestimated popularity decreases the chance of caching popular
content.

Both cases lead to a failure to use cache efficiently because of wasting cache
space on unpopular content.

The effect can happen anywhere in the network: at the client, at the
server, or at a network cache in a content router. Nonetheless, the effect is
the same since the bytes in the same chunk will be given the same popularity
and we lose the information from the real sequence. Vanichpun et al. [135]
show that for most demand-driven caching algorithms (e.g., LRU, LFU),
it is reasonable to assume that the closer p̃ is to p, the better caching
decision a caching algorithm can make, therefore achieve higher caching
performance.

Popularity Distribution Distance: Quantifying the Benefits

Multiple metrics could be used to measure information loss due to the
chunking effect. However, simple difference of two distributions has very
direct connection to the performance.
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Vanichpun et al. [135] show that probability of an object being cached
is a function of its translated probability. Let F(M̃, C) → x be a caching
algorithm which maps a translated request pattern M̃ and cache capacity
C to a caching decision vector x = {x1, x2, x3...}, where xi specifies the
probability that item fi should be kept in the cache. Let I denote the set
of the whole content items with N elements and IF the items cached by F .
Assuming unit size items, the total size of the items in the cache sums to the
cache capacity:

�N
i=1 xi = C. Let us introduce v = {x1

C , . . . , xi

C , . . . , xN

C },
which is simply normalized version of x.

The performance of F can be evaluated by its (byte) hit rate H which
is simply the joint probability of an incoming request being for a specific
content fi and this item fi being stored in the cache. We calculate H as
follows:

H = P (f ∈ IF ) =
|I|�

i=1

P (fi, fi ∈ IF ). (8.1)

Since the event that next request is fi is independent from the event that
fi is in the cache, Eq. (8.1) can be rewritten as:

H =

|I|�

i=1

P (fi)P (fi ∈ IF ) = CpvT . (8.2)

From Eq. (8.2), hit rate can be viewed as a function of cache size and the
dot product of two distributions. Let Xk denote the set of k most popular
objects, then the optimal caching decision is:

v∗ =

�
1
C if v ∈ XC

0 if v /∈ XC .

Caching decision v is completely determined by a specific caching algo-
rithm. How close and how fast v converges to v∗ is an important metric
to measure the quality of a caching algorithm. Let H∗ be the hit rate if
the caching decision is optimal (v∗). Then, the performance gap between
a non-optimal and the optimal scheme is calculated as follows:

∆H = H∗ − H̃ = Cp(v∗ − v)T . (8.3)

Similarly, Eq. (8.3) can also be used to compare the performance dif-
ference of two caching algorithms or two chunking schemes under a specific
caching algorithm. However, in most cases, F(M̃, C) → v is too compli-
cated to provide any useful information. To get around this, we measure
the “expected performance loss” instead. As argued above, the less infor-
mation we lose in the request series, the better caching decision we can
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Figure 8.2: Benefit of chunking.

make. Then, given the distribution p̃ which is expected by a caching algo-
rithm, what would be the performance loss if the actual content popularity
based on user request is p? Expected performance loss can be calculated
as follows:

∆H = H− H̃ = C(p− p̃)vT ∝ (p− p̃). (8.4)

In a sense, the “expected loss” shows the potential benefit from partial
caching. If we define |p− p̃| as the popularity distribution distance to mea-
sure the difference of two distributions, Eq. (8.4) shows that the potential
performance gain of a partial caching algorithm positively correlates to the
popularity distribution distance.

Performance Bound: Decaying Speed of the Benefit

Let πi(y) denote the probability of accessing the byte at position y of file fi.
In other words, it is the popularity of yth byte in fi. We assume that πi(y)
is a continuous function and has at least second derivative over [0, si]. We
further denote Πi(y) as the popularity observed from a specific chunking.
Since all bytes in a chunk have the same popularity, Πi(y) is a step function.
While πi(y) is the real popularity distribution (as the discrete p), Πi(y) is
the perceived one as p̃.

Fig. 8.2 illustrates why we can benefit from chunking. x-axis is the
offset in a file, and y-axis is the conditional probability of this offset byte
being accessed, i.e., the popularity of the specific byte located at this offset.
The curved boundary of the shaded area in the figure represents the real
popularity πi(y). The solid red bars represent the popularity assigned for
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each chunk in the file. Integral caching can be considered as a special case of
partial caching with only one chunk and Πi(y) = 1 as Fig. 8.2a shows. The
area above the curve πi(y) is the overestimation part. Naturally, chunking
a file into smaller pieces reduces the difference of the two areas.

From Eq. (8.4), we can interpret that quantifying the benefit of chunking
is equivalent to measuring the distance of two models derived from πi(y)
and Πi(y) respectively. We calculate the chunking benefit as follows:

∆πi,Πi
=

1

si

� si

0

��πi(y)−Πi(y)
��dy. (8.5)

∆πi,Πi
is normalized over the file size so that we can compare files of different

sizes. Based on the definition of ∆πi,Πi
, we can further define the upper

bound of benefit from partial caching to integral caching as ∆πi,1, where
1 stands for uniform chunk popularity function Πi(y) = 1 for all y � si.
Obviously, the smaller the ∆πi,Πi

is, the more accurately Πi(y) describes
user’s real access pattern. Then, improving chunking performance boils
down to chunking a file in a way that minimizes the difference ∆πi,Πi

. A
follow-up question is how fast it converges to the actual access pattern, i.e.,
how quickly ∆πi,Πi

converges to 0.

Because πi(y) may be arbitrary distribution, deriving the exact decaying
speed is difficult. However, Πi(y) is a step function, and from Eq. (8.5),
we can see the integration on the second term is actually the Riemann sum
of πi(y) over [0, si], as the area of rectangles shows in Fig. 8.2. Suppose
we use midpoint Riemann sum for obtaining a tighter bound, and let the
middle point represented by ȳk = 1

2(yk−1 + yk). Then Πi(y) can be defined
as follows:

Πi(y) = πi(
yk−1 + yk

2
) = πi(ȳk) ∀y ∈ [yk−1, yk).

Using Taylor series expansion on πi(y), we calculate the bound of the
popularity distribution distance for the kth chunk as follows:

��δi,k
�� =

�����

� yk

yk−1

��πi(y)−Πi(y)
��dy

�����

=

� yk

yk−1

��π�
i(ȳk)(y − ȳk) +

1

2
π��
i (ȳk)(y − ȳk)

2
��dy

≤ 1

24
(yk − yk−1)

3max
[0,si]

|π��
i (y)|.
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Summing over n chunks, we can get the bound for overall popularity dis-
tribution distance as follows:

��∆πi,Πi

�� =
����
1

si

� si

0

��πi(y)−Πi(y)
��dy

����

≤ 1

si
× [

1

24
× (si − 0)3

n2
×max

[0,si]
|π��

i (y)|]

=
max[0,si] |π��

i (y)|
24

× s2i
n2

.

The second term is the square of the average chunk size. If we consider
the chunk popularity and file size as given, we can replace the first term
with constant c. si/n is the average chunk size, denoted as s̄. The formula2

can be rewritten as:

��∆πi,Πi

�� ≤ c× (
si
n
)2 = O(s̄2) = O(n−2). (8.6)

This shows that the popularity distribution distance is bounded by the
square of the average chunk size. For a given file, the convergence speed
of model distance is inversely proportional to n2. In practical terms, this
implies that there is a specific number of chunks for every file after which
additional chunks bring only negligible benefits in performance.

Conclusion:

1. Performance of partial caching strategy positively correlates to the
popularity distribution distance, which decays with the speed bounded
by O(s̄2) and O(n−2).

2. Given a target caching performance, the number of chunks needed
increases linearly as file size grows.

Optimal Chunking and Complexity Analysis

Obviously, smaller chunk size, s̄, reduces popularity distribution distance
∆πi,Πi

and results in ∆πi,Πi
asymptotically approaching 0. On one hand,

this improves caching performance, but on the other hand, too many chunks
increases maintenance overheads and may even degrade router performance
in some cases. Moreover, the minimum chunk size may also be restricted by
hardware, minimum video clip size, and other practical limits. Hence, we
want to use as few chunks as possible to achieve sufficiently small ∆πi,Πi

.

2
If Riemann sum is calculated using alternate methods, e.g., left, right, minimum or

maximum sum, the bound changes to O(s̄) and O(n−1
).
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We now present an optimal chunking algorithm and analyze its complexity.
First, for a given number of chunks n, we divide a file into chunks to achieve
the minimum ∆πi,Πi

. Next, we find the smallest number of chunks to attain
a target ∆πi,Πi

.
Question 1: Given that an s-byte file is to be divided into

n chunks where s � n, how can we find the optimal chunking
that achieves the minimum popularity distribution distance ∆min?
Suppose the smallest unit of operation is one byte and the popularity of each
byte is known. A naive algorithm goes through all the possible partitions
and selects the one achieving ∆min. Since there are

�s−1
n−1

�
ways of dividing

an s-byte file into n chunks, the computational complexity equals to
�s−1
n−1

�
=

(s−1)!
(n−1)!(s−n)! = 1

(n−1)!s
n−1 + o(sn−1) showing the time complexity of naive

algorithm to be O(sn−1), and space complexity to be O(n).
This optimization problem exhibits obvious “optimal substructure”.

Assume we look for a solution which produces n = n1 + n2 chunks, and
the first n1 chunks cover [0, i] bytes, and the remaining n2 chunks cover
[i+1, s− 1] bytes. We can first focus on [0, i] and optimize it, then turn to
optimize [i + 1, s − 1]. By combining the optimal solutions of both parts,
we have the optimal partition of the whole file. Let ∆|n[a,b] be the minimum

popularity distribution distance for the file’s bytes between [a, b] in case of
n chunks. The minimum distance can be recursively found as follows:

∆min = ∆|n[0,s−1] = min
0≤i<s

(∆|1[0,i] +∆|n−1
[i+1,s−1]). (8.7)

The top-down recursive solution Eq. (8.7) also tries all the possible
cutting points. The induced recursive tree has degree O(s), and depth
n − 1 (restricted by the number of chunks n). Although simple analysis
shows that it suffers from the same time complexity O(sn−1) as the naive
algorithm, its optimal substructure property helps us reducing the search
complexity by eliminating redundant calculations.

Algorithm 7 shows our heterogeneous n-Chunking algorithm using bottom-
up dynamic programming. The algorithm first constructs two tables X and
X � of size n × s. Element X[i, j] stores the optimal ∆ over bytes [0, j] by
cutting it into i + 1 chunks. X �[i, j] stores the starting point of the last
chunk in an optimal chunking scheme over [0, j] with i + 1 chunks. Then
the algorithm constructs another table Y of size s2, where Y [i, j] stores
∆|1[i,j]. Filling X[0, j], X[i, 0], and Y [i, j] are trivial. Lines (8 – 17) are for
the general case; the three loops build the table row by row by filling each
cell X[i, j] with optimal ∆|i+1

[0,j] with the given chunk number (i.e. i + 1)

and data range (i.e. [0, j]). There are O(n× s) entries in X, and for each
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1: Input: s-byte file, n chunks
2: Output: chunking scheme
3: Construct three tables X, X � and Y .
4: Set X[i, j] = +∞ ∀i ∈ [1, n− 1], ∀j ∈ [1, s]
5: Set X[i, 0] = ∆|i+1

[0,0] ∀i ∈ [0, n− 1]

6: Set X[0, j] = ∆|1[0,j] ∀j ∈ [0, s− 1]

7: Set Y [i, j] = ∆|1[i,j] ∀i ≤ j ∈ [0, s− 1]
8: for i = 1 → n− 1 do
9: for j = 1 → s− 1 do

10: for j� = 1 → j − 1 do
11: if X[i, j] > X[i− 1, j�] + Y [j� + 1, j] then
12: X[i, j] = X[i− 1, j�] + Y [j� + 1, j]
13: X �[i, j] = j�

14: end if
15: end for
16: end for
17: end for
18: Return X, X �

Algorithm 7: Heterogeneous n-Chunking

entry, we need to consider O(s) cases. Therefore the time complexity of n-
Chunking is O(ns2), and space complexity is O(s2). The optimal chunking
scheme can be easily constructed from X � returned by n-Chunking and the
corresponding ∆min is stored at X[n− 1, s− 1].

Question 2: Given a target popularity distribution distance
∆, what is the minimum number of chunks nmin that achieves the
desired ∆? This problem can be considered as an extension of the previous
one, and can be solved by slightly adopting n-Chunking algorithm. We can
replace the first deterministic n-round loop with a while loop, where we
keep comparing ∆ with X[n�, s − 1] (n� is the current round), and break
the loop when ∆ > X[n�, s−1]. Then nmin = n� is the minimum number of
chunks to achieve ∆, and X � contains the corresponding chunking scheme.
TablesX andX � grow during the calculation. The complexity then depends
on the number of iterations nmin, and our analysis in Section 8.3 shows

nmin ≤ c
1
2 s
��∆

��− 1
2 . O(nmins2) and O(s2) are time and space complexities

for solving Question 2, respectively.
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Homogeneous Chunking: Low-Complexity Alternative

Figure 8.2b and 8.2c show examples of homogeneous and heterogeneous
chunking schemes. n-Chunking is an example of heterogeneous chunking
and it requires file internal popularity distribution; its complexity is also
considerably high. On the contrary, a homogeneous chunking does not re-
quire any information about popularity, as it simply divides the object into
equal-sized chunks. It can be easily extrapolated from the conclusions in
Section 8.3, that the performance difference of n-Chunking and a homoge-
neous chunking is bounded by O(s̄2) and O(n−2). In other words, as the
number of chunks increases, the difference between the schemes diminishes.

Even though there are concerns that the increased number of chunks
may bring up management overheads, [136, 137] actually showed the fea-
sibility of caching many small chunks without degrading the performance
in reality. Practically, it indicates there is no need to incorporate compli-
cated optimal chunking scheme in the system. As our results show, after a
moderate number of chunks, there is essentially no difference between the
optimal and the homogeneous chunking.

Conclusion: Homogeneous chunking is �-optimal where � =
cs2

i

n2 . In
other words, the difference between homogeneous chunking and n-Chunking
is bounded by O(n−2).

8.4 Analysis on Caching Systems

To verify our analysis in Section 8.3 and obtain performance bounds, we
now evaluate different chunking schemes on a caching system. Please refer
to Table 8.1 for the notation.

Caching System Model

Assume that there is a centralized entity aware of the network conditions.
In particular, the content distribution at time t denoted by Xt = [xti,j,k] is

available to this entity. If chunk fi,j is stored at node Rk, then xti,j,k is 1
and zero otherwise. We devise a strategy called dynamic partial caching
(PDyPa) that gives a decision at each time instant when a user requests
a chunk fu,v, i.e., it dynamically adapts the cached contents. Suppose at
time t chunk fu,v is stored at node Rhit and a user requests via a leaf node
Rl. Rl will retrieve this item from Rhit, and each router on the path from
Rhit to Rl must decide: cache this object or not. In case the item is cached
in any of the nodes, some items stored in the cache may need to be evicted
from the cache. We refer the set of all these intermediate nodes as S.
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An optimal caching strategy minimizes the cost of serving the whole
user requests by storing the items at the most appropriate routers and
by favoring the most popular chunks of the most popular files. Let ck,k�
denote the cost function for fetching one byte from Rk� to Rk. It reflects the
distance between the two entities which can be calculated using shortest
path algorithms, e.g., Dijkstra. The optimal strategy decides if chunk fi,j
is to be stored at Rk and if not, from which router Rk� to be fetched.
Since this decision determines the new content distribution at time t + 1,
we define our decision variables as Xt+1. Let our binary decision variable
xt+1
i,j,k be 1 if chunk fi,j is to be stored at Rk. Similarly, let xt+1

i,j,k,k� be 1
if Rk downloads fi,j from Rk� . For harmony of notation, we re-define the
content distribution by Xt = [xti,j,k,k]. Given Xt, the number of chunks in a
file i (ni), file popularity (pi), chunk popularity (pi,j), and chunk size (si,j)
information, using the approach provided in [138], we can formulate PDyPa

as follows:

PDyPa : min
� L�

k=1

N�

i=1

ni�

j=1

M+1�

k�=1

si,jpipi,jck,k�x
t+1
i,j,k,k�x

t+1
i,j,k�,k�

+ su,vpupu,v(
L�

k=1

�

∀R
k�∈S∪RM+1

ck,k�x
t+1
u,v,k,k�)

�
(8.8)

subject to:

N�

i=1

ni�

j=1

si,jx
t
i,j,k,kx

t+1
i,j,k,k+su,vx

t+1
u,v,k,k(1−xtu,v,k,k)≤Ck, ∀Rk (8.9)

xt+1
i,j,k,k� ≤ xt+1

i,j,k�,k� ∀i, ∀j, ∀k, ∀k� (8.10)

1 ≤
M+1�

k�=1

xt+1
i,j,k,k� ∀i, ∀j, ∀k (8.11)

xt+1
i,j,M+1,M+1 = 1 ∀i, ∀j (8.12)

xt+1
i,j,k,k� ∈ {0, 1} ∀i, ∀j, ∀k, ∀k�. (8.13)

Our objective (8.8) includes the cost of serving the request from the
edge router’s cache as well as the cost of serving from any other content
router in the ISP network and CP (i.e., RM+1). The first term in (8.8)
represents the cost of serving the requests for the contents already existing
in the system whereas the second term is for serving the current request
for item fu,v. Please note that if xi,j,k,k = 1, then fi,j is stored in Rk.
Const. (8.9) ensures the total size of items to be stored in a cache cannot
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exceed cache capacity. Const. (8.10) reflects the fact that fi,j can be fetched
from Rk� only if Rk� stores fi,j . Const. (8.11) forces the content item to be
served from some location (i.e., local cache, another router’s cache, or the
CP) while Const. (8.12) states that all items are permanently stored in the
CP. Const. (8.13) defines the type of variables. The problem in (8.8-8.13)
is an integer linear programming problem (ILP) which can be solved by an
optimization software once ck,k� values are computed.

If we assume that file and chunk popularities already contain sufficient
information to describe user behavior, we can further simplify the optimal
caching problem into a static content placement problem, i.e., the set of
items to be stored at each cache is decided once and no changes are done. In
this approach, content distribution is time-invariant leading to Xt+1 = Xt

for allÂ t. Hence, we can simplify PDyPa using this equality to derive PStPa

as follows:

PStPa : min
L�

k=1

N�

i=1

ni�

j=1

M+1�

k�=1

si,jpipi,jck,k�xi,j,k,k� . (8.14)

The constraints would need to be similarly modified. Since integral
caching is a special case of partial caching with ni = 1 in Eq.(8.14), we skip
the formulation for dynamic integral caching (DyIn).

Compared with the dynamic model, the static model does not take cur-
rent content distribution into account and is unaware of the specific user
request sequence. The static model aims to achieve the long-term opti-
mality in content placement while the dynamic model attempts to find
the best next caching decision based on the current content distribution
in the network. Besides both problems being hard to solve as ILP prob-
lems [139], they require centralized global knowledge which is infeasible in
real networks. We use these models as benchmarks for our lower-complexity
heuristic in Section 8.5.

Metrics and Setup

• Byte hit rate (BHR): Byte hit rate is the percent of requested
data that can be served by the cache within the network. It measures
savings in outgoing traffic.

• Footprint reduction (FPR): Footprint reduction is the product of
traffic volume and the distance it travels in the network. It measures
traffic reduction inside the network compared to retrieving the content
from the CP.
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• Cache-level similarity (γc) measures how much the same content
is stored at the caches of two caching strategies subject to analysis.
Hence, cache-level similarity measures the average similarity over all
routers in the network under two caching strategies. We use Jaccard
similarity [140] for evaluating the similarity of two routers.

• Network-level similarity (γn) considers the whole caches as a sin-
gle huge cache and compares the similarity of the caches of the two
networks under comparison. Network-level similarity calculated us-
ing Jaccard similarity ignores the exact storage location and focuses
on if an item is stored in the network or not.

Cheng et al. [141] show that Youtube videos’ popularity follows Weibull
distribution with shape parameter k = 0.513; we use this setting in the eval-
uation. We also use Weibull distribution to model chunk popularity with
different shape parameters. Because there is no evidence showing that
file size correlates with its popularity, we select file sizes from (5, 15) MB
uniformly. Each video is chunked with the heterogeneous n-Chunking al-
gorithm and user request pattern follows Independent Reference Model
(IRM). Due to the space limitations, we only present the results on the
4-level 2-tree topology with model parameters set to M = 5, N = 100 and
C = 50 MB. We verified various parameter settings on different topologies
and results agree with those shown here.

Partial Caching vs. Integral Caching

Fig. 8.3a shows three Weibull distributions with different shape param-
eters (0.4, 0.6 and 0.8 for π1, π2 and π3 respectively) to model the in-
ternal popularity. The partial caching benefit for these distributions are
∆π1,1 = 0.896, ∆π2,1 = 0.648 and ∆π3,1 = 0.457. The calculation implies
distribution π1 has the largest benefit and π3 has the smallest. Results in
Fig. 8.3b and 8.3c match the analysis quite well, e.g., Fig. 8.3b shows that
BHR increases by 21% for π1 and 11% for π3, respectively. Eq. (8.4) sug-
gests given the same cache model and caching algorithm, the improvement
ratio for these distributions should equal to their partial caching benefit
ratio. The result shows these two values are indeed very close to each other
(∆π1,1 : ∆π2,1 : ∆π3,1 ≈ 2 : 1.4 : 1). Compared with integral caching,
chunking also helps FPR improve from -4% to 6%. The reason for a nega-
tive FPR is that the model searches for content in the whole network which
may lead to fetching content from somewhere further than CP. The results
show that the closer the chunk popularity is to a uniform distribution (π3),
the less benefits partial caching brings.
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Figure 8.3: Effect of chunk popularity on BHR and FPR in dynamic model.

Although ∆π,1 can accurately predict the potential benefit, it does not
measure how fast it vanishes. Fig. 8.3d plots the popularity distance ∆πi,Πi

as a function of number of chunks and shows that a few chunks can signif-
icantly reduce popularity distance ∆πi,Πi

. This is also visible in Figs. 8.3b
and 8.3c which show that the metric in question improves fastest when the
number of chunks is small. Adding chunks beyond 10 yields negligible ad-
ditional benefits. The slower the convergence (π1), the larger the benefits
from partial caching.

n-Chunking vs. Homogeneous Chunking

As mentioned in Section 8.3, the differences between chunking schemes di-
minish as the number of chunks increases. Fig. 8.4a shows the performance
of our n-Chunking scheme and a homogeneous chunking scheme, and illus-
trate that the difference disappears when there are 20 chunks. Fig. 8.4b
shows how BHR changes as a function of number of chunks for different
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Figure 8.4: Comparison of n-Chunking and homogeneous chunking. Simi-
larity metrics between dynamic and static caching.

file sizes. The three black circles on each line mark the number of chunks
needed by n-Chunking algorithm to achieve ∆π,Π = 0.1. Note that this
number increases linearly as file size grows, i.e., ∆π,Π = 0.1 is achieved
at exactly same chunk size (0.8 MB). It verifies our analysis in Section
8.3, showing that average chunk size is a key factor of performance gain.
The results also indicate that the speed at which partial caching benefit
decays will decrease as file grows because we need more chunks to achieve
the same gain. Increasing file size also increases the number of chunks and
even though they follow the same popularity distribution, the tail becomes
heavier and degrades caching performance.

We also compared the number of chunks a scheme will generate to
achieve the target ∆π,Π. In the experiment, we use Weibull distribution
with different parameters to model the internal popularity of a 10 MB file
(λ ∈ [1, 5], k ∈ [0.5, 5]). Fig. 8.4c shows that for a small ∆π,Π, n-Chunking
always uses less chunks, with about 40%–50% improvement compared with
homogeneous chunking. However, as ∆π,Π increases, two schemes eventu-
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ally become the same since one or two chunks are sufficient to achieve the
goal.

In Section 8.4 we defined both a dynamic (DyPa) and a static (StPa)
caching strategy. Intuitively, DyPa should be more effective and our results
confirm this. For space reasons, we present only the cache- and network-
level similarities between these two approaches. Fig. 8.4d measures what
ratio of the content in DyPa is the same as that in StPa in each step. Ini-
tially the similarity is low, but as the simulation runs longer, network-level
similarity increases, indicating that they store similar content. A partial
explanation is that we do not consider changes to content popularity, thus
this result is to be expected. However, the cache-level similarity remains
very low indicating that content placement is very different in the two cases.
Fig. 8.4d also shows that n-Chunking increases the similarity at both net-
work and cache level.

8.5 Low-Complexity Partial Caching

We now propose a low-complexity heuristic caching strategy combined with
naive homogeneous chunking at the server and evaluate its performance by
comparing against the optimal solution on tree topologies. We then com-
pare against other solutions in the literature on the realistic ISP topologies.
The results are from the emulation experiments on our testbed.

HECTIC: HighEst CosT Item Caching

HECTIC is a low-complexity caching strategy devised to achieve the ob-
jectives in Section 8.4. To illustrate the design rationale of HECTIC, we
consider three components – admission policy, eviction policy and cooper-
ation policy.

Admission policy determines which objects are to be cached and which
not. But in a network of caches, caches far from clients only receive a fil-
tered version of the actual user request pattern because of the hits in the
caches closer to the client. This so-called filtering effect [77,78] may signifi-
cantly impact the effectiveness of a hierarchical caching network. In [72] we
proposed Cachedbit which spreads content probabilistically in the caches
along a path. The caching probability at Rk is the reciprocal of its distance
from the client: pk = 1

dc,Rk

. As we showed in [72], Cachedbit is easy to im-

plement, has low overheads, and provides some immunity against filtering
effect.

For eviction policy, we propose a utility-based replacement algorithm.
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Figure 8.5: Performance of HECTIC, StPa and DyPa on tree topology.

Let chunk utility of chunk fi,j at router Rk be:

uki,j = si,jpipi,jck,M+1 ∀fi,j ∈ Ck (8.15)

where ck,M+1 represents the cost of retrieving this chunk from CP. Util-
ity function (8.15) considers chunk size, its popularity, and the efforts of
retrieving it. A cache will evict the chunk with the smallest utility first.

Cooperation between caches can reduce duplicate copies and allow for
more efficient use of storage, but at the cost of communication overheads.
To reduce these overheads, we reserve one bit in the header to indicate if
an object is cached in an upstream cache [72]. This ensures that on a path
from the CP to one client, at most one copy of a chunk exists, but paths to
other clients may contain additional copies; this improves both BHR and
FPR.

HECTIC vs. Optimal Strategies on a Tree Topology

We first compared HECTIC against the dynamic and static optimal caching
strategies from Section 8.4 on a 4-level 2-tree topology with parameters
as in Section 8.4. Because HECTIC is an en-route caching scheme, we
restricted the optimal strategies in being able to retrieve data only from
one hop away. Fig. 8.5 depicts BHR and FPR, and shows that HECTIC
outperforms static StPa and reaches about 90% of the performance of the
dynamic DyPa.

Evaluation with Realistic Settings

We verified HECTIC’s performance in more realistic settings by comparing
it on a testbed against several other caching strategies from literature. We
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Figure 8.6: Performance evaluation of different in-network and partial
caching strategies on Sprint network.
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used four ISP router-level topologies from Rocketfuel [84] project: Exodus,
Sprint, AT&T and NTT. We only present results on Sprint network due
to space limitations; other networks yielded similar results. All the ex-
periments are performed on our department cluster consisting of 240 Dell
PowerEdge M610 nodes equipped with 2 quad-core CPUs, 32GB memory,
and connected to a 10-Gbit network. All nodes run Ubuntu SMP with
2.6.32 kernel.

We connected the server to the router with the highest degree and
randomly connected clients at 30% of the routers. Each router is equipped
with cache size of 3GB. Link cost and latency between two routers were set
according to the topology traces, which reflects the realistic values.

We used the gravity model for generating the traffic patterns. In the
gravity model, we first map a client to the city according to its access
router and traffic from the client is proportional to the city’s population.
The client in the city with the smallest population sends out 1 million
requests and traffic from other clients is scaled up proportionally based on
the city population.

For content, we used the real trace from Cha et al. [83]. We selected
Youtube Entertainment Category trace which contains 1,687,506 objects.
The trace contains video id, length, views, rating and etc. For other con-
tent parameters, we set based on investigations on YouTube by [141, 142].
The aggregated video size is 12.87 TB. Work in [83] showed that videos’
encoding rates are similar, thereby it is reasonable to assume the file size
is proportional to the video length. In [141], Cheng et al. showed that the
average file size is 8.4 MB. Based on these results, we set the video size
proportional to their length.

Since Heatmap data [34] is not public, we use a Weibull distribution
to model file internal popularity. We assume user behavior on different
videos differs. To model a heterogeneous access pattern, λ and k are drawn
uniformly from [1, 5] and [0.5, 5] respectively, which models the various sit-
uations of how popularity varies within a file. All the results are calculated
as the arithmetic average of 50 experiments. In each experiment, the client
access routers are randomly re-selected to guarantee the results are robust
and representative.

We chose another three caching algorithms to compare against HEC-
TIC. LRU is a simple caching strategy with no special admission policy and
LRU as replacement policy. Cachedbit is the algorithm presented in [72]
and it uses the simple admission policy described in Section 8.5 and LRU
as replacement. FlexSeg is a partial caching algorithm presented in [143]
where it was also shown to have better performance than other partial
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caching algorithms.
Fig. 8.6a and 8.6b show how the performance of three caching strategies

change as the cache size increases from 1 GB to 10 GB. Fig. 8.6c and
8.6d show performance change with the increasing number of chunks and
keeping the per-cache storage at 3 GB. FlexSeg performs rather poorly,
barely beating the simple LRU-based solution, whereas HECTIC shows
very good performance. Compared with LRU, FlexSeg has a fine-grained
policy to capture the user request pattern. Hence, it performs slightly
better, especially in the case of a single cache. However, FlexSeg is designed
for edge caches instead of a cache network. Like LRU, it suffers from
very low utilization of the aggregate cache storage along the path, which
accounts for its poor performance.

Conclusion: Naive chunking at the server and simple caching in the
network outperform complex partial caching algorithms running in the net-
work.

8.6 Conclusion

Most of the partial caching work concerns video streaming services [143–
148]. In [144], Sen et al. proposed prefix caching for multimedia streams,
which caches the initial frames to reduce the start-up latency at client end,
and smooth delivery rate variability. Jin et al. [145] take more factors into
account like video bit rate, available bandwidth and etc., instead of solely
relying on object popularity. However, they did not optimize byte hit rate
and footprint reduction, neither take user access pattern into account.

In [146] Yu et al. studied the internal popularity of videos on a stream-
ing website, showing the decline in popularity as the file offset increases.
Therefore, they associate videos with a popularity function, indicating the
probability of a segment being viewed as inversely proportional to its dis-
tance to the beginning. Some algorithms [144,147] are also developed based
on the assumption that the earlier segments are more popular than the later
ones. However, this assumption does not always hold as [34] clearly shows
that internal popularity can be arbitrary mix of non-continuous portions.

All of [32, 143, 147, 149] use (byte) hit rate as one metric to evaluate
caching strategies. Proportional Partial Caching (PPC) [32] is designed for
P2P video and it tries to infer the content popularity from the request se-
quence. Under PPC, the cache space allocated for a video grows over time
as the number of accesses to that file increases. However, PPC maintains a
single variable segment for one file, which reduces the algorithmic complex-
ity but fails to capture the heterogeneous internal popularity. In a similar
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vein, algorithm proposed in [149] also allocates cache space proportional to
object’s popularity, but the popularity is obtained by tracking the bytes
played back by all the clients in a time slot.

Similar to our work, [147] uses a priori segmentation and presents two
chunking algorithms pyramid and skyscraper, and an approach of using
two caches with different caching policies. Lazy segmentation [150] initially
caches the whole object, then determines the segment length at run time.
Each object is associated with a function of number of accesses and average
time of each access, which also determines the segment length. Similarly
to [150], [143] proposes flexible segmentation policy (FlexSeg), which also
allows segment size to be adapted at run-time. The difference is that the
function which determines the segment size is a function of both frequency
and recency of accesses, and FlexSeg is more conservative in allocating
space for new objects.

In this chapter, we studied the partial caching by first identifying the
origin of the partial caching benefit. Next, we proposed a way to quantify
the benefit of chunking and illustrated its relation to the actual performance
changes. Based on this analysis, we presented the optimal n-Chunking
algorithm and compared it with homogeneous chunking. To evaluate the
partial caching, we also developed an optimization model which can be
used to calculate the upper bound of in-network caching performance. We
devised a low-complexity heuristic, HECTIC, which performs close to the
optimal solutions on simple topologies and outperforms existing caching
solutions on realistic topologies. Our analytical and experimental results
showed that complex partial caching algorithms did not perform as well
as a naive homogeneous chunking at the server combined with a simple
utility-based caching strategy.
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Chapter 9

Fair Collaborative Games

Information-centric networking extensively uses universal in-network caching.
However, developing an efficient and fair collaborative caching algorithm
for selfish caches is still an open question. In addition, the communica-
tion overhead induced by collaboration is especially poorly understood in
a general network setting such as realistic ISP and Autonomous System
networks. In this chapter, we address these two problems by modeling the
in-network caching problem as a Nash bargaining game. We show that the
game is a convex optimization problem and further derive the corresponding
distributed algorithm. We analytically investigate the collaboration over-
head on general graph topologies, and theoretically show that collaboration
has to be constrained within a small neighborhood due to its cost growing
exponentially. Our proposed algorithm achieves at least 16% performance
gain over its competitors on different network topologies in the evaluation,
and guarantees provable convergence, Pareto efficiency and proportional
fairness.

9.1 Introduction

Due to the shift to content-oriented Internet, Information-Centric Network-
ing (ICN) [1–3] was proposed to ameliorate the pressure on current network
infrastructure. ICN architecture extensively uses in-network caching to re-
duce network traffic and improve content delivery efficiency. Compared to
the conventional edge caching, which is usually designed to maximize the
local (byte) hitrate, in-network caching is fundamentally different because
network topology and cache collaboration play an important role in both
algorithm design and system evaluation [46,151–153]. In other words, sim-
ply optimizing local performance in a cache network does not necessarily

137
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drive the whole system to its optimal state.

As an active research field, there is abundant analytical work in ICN [64,
154–158] which significantly improved the understanding on the functional
relation among system performance, traffic flow and network topology.
Moving to collaborative caching, similarly, many practical caching algo-
rithms were proposed and analyzed [46,73,153,159–161] in various settings.
Nonetheless, two important aspects of future cache networks have long been
overlooked.

Firstly, considering that caching is universal and content is pervasive
in an ICN context, it is reasonable to assume that multiple Autonomous
Systems (AS) with different interest participate in a cache network. Mean-
while, some big content providers like Google and Facebook, along with
Akamai, also actively build up a wide range of content distribution net-
works by connecting to or even directly deploying storage in ISP networks.
It is foreseeable that in the near future our core network will transform into
a complex content network consisting of heterogeneous caches [162, 163].
The motivation for collaboration is to get additional benefits from others,
but caches might be unwilling to sacrifice their own performance for purely
altruistic reasons. Even within a single ISP network, where we can reason-
ably assume all the nodes are obedient, sacrificing certain caches in order
to pursue the “global welfare” is not always acceptable or even not safe.
Because it may cause severe regional performance problem, especially if
the cache is installed at a critical position in the system. The immediate
cascading effects can spread fast and wide in the network, further causes
much larger damage than anticipated [164, 165]. However, most previous
work simply maximizes the aggregated utility under the strong assumption
of all others being fully obedient. Consequently, global optimum usually
results in performance degradation on certain nodes and might not be ac-
ceptable to all nodes. In this chapter, we argue that collaboration should be
based on fairness. While global optimum is attractive, it is more important
to guarantee that every node will be better off collaborating together than
working alone so each part of the network will be improved at the same
time and function properly. Rather than simply optimizing the aggregated
benefits, we find it more preferable to maximize the additional benefit from
collaboration. In other words, we study how to improve the overall system
performance without downgrading any individual, as the following example
shows.

Example. We use the mini caching system described in Fig.9.1 as a
simple example to illustrate our problem space.

Case 1: Greedy strategy lets each cache optimize its own performance
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Figure 9.1: A mini caching system consists of two caches, and each can store
only two objects. The demand matrix is the same for both caches. The
utility is calculated as the amount of demands satisfied. UTotal represents
the aggregated demands satisfied by the whole caching system. Similarly,
U1 and U2 represent the demands satisfied by cache 1 and cache 2 respec-
tively. T represents the outgoing traffic due to uncached content. Three
caching strategies (Greedy, Global and Fair) are presented.

locally. Because B and C have the same demands, each will be cached
with 1

2 chance, giving an average utility U1 = U2 = 5 for each cache. The
outgoing traffic from each cache is T1 = T2 = 3. For the whole caching
system, the possible content in two caches are {A,B;A,B}, {A,B;A,C},
{A,C;A,B} and {A,C;A,C}, each has a probability 1

4 . Therefore, we
have the average utility UTotal = 10× 1

4 + 14× 1
4 + 14× 1

4 + 10× 1
4 = 12.

Case 2: Global strategy tries to maximize the aggregated utility of the
whole system. By caching all the objects, the overall cache utilization
is improved due to no duplicates in the system, leading to the highest
UTotal = 2 × (3 + 2 + 2 + 1) = 16. However, the performance of cache 2
drops from U2 = 5 to U2 = 3 comparing to the greedy strategy. Meanwhile,
the outgoing traffic from cache 2 also increases by 2, which might cause
potential congestion problem in the network.

Case 3: Fair strategy emphasizes the basis of collaboration. Comparing
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to the previous two strategies, the overall utility UTotal = 14 is between the
greedy one and global one. Though UTotal of a fair strategy is not as high
as the global one, we can see the overall system performance is improved
and nobody gets worse off because of collaboration.

Secondly, collaboration is mostly achieved by explicitly or implicitly ex-
changing messages, which inevitably introduces communication overhead.
The knowledge of how the collaboration overhead grow on a network is ex-
tremely valuable for network researchers and engineers in evaluating com-
munication systems and designing protocols [17]. Nonetheless, the collab-
oration overhead is either overlooked or overly-simplified in the previous
work, and is especially poorly understood on general topologies. In order
to simplify the analysis, most previous work introduce a strong assumption
on the topological regularity and often use structured networks (e.g. line,
tree, grid and etc.) in the cost analysis. Despite of being closed-form, these
analytical results in general can hardly be applied to more realistic network
settings. Because the topologies in real-life are far from being structured
and regular, e.g. ISP networks, ASes topologies and Internet [84]. These re-
alistic networks are usually characterized by their degree distribution and
other graph properties such as diameter, centrality, clustering coefficient
and etc. Both the wide deployment and the active research of content net-
works urge us to deepen our understanding on the cost of collaboration and
its relation with aforementioned network topological properties.

With an increased interest on collaborative caching and with continuous
efforts in deploying various content networks, in this chapter, we investigate
above two questions: (1) how to design a collaborative caching strategy
which embraces both efficiency and fairness; (2) how much the collaboration
overhead costs on general topologies. Specifically, our contributions are as
follows

• We formulate the in-network caching problem as a Nash bargaining
game. Our solution guarantees provable Pareto efficiency and pro-
portional fairness.

• We derive the functional relation of collaboration overhead on general
topologies, and theoretically show the collaboration is practically con-
strained within a small neighborhood due to its exponential growth
in cost.

• We experimentally show the collaboration is highly localized on real-
istic ISP topologies. The optimal neighborhood is usually less than
three hops, and can be further reduced if larger cache is used.
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Figure 9.2: A figure illustration of the system model. The grayscale in-
dicates the amount of content retrieved from the neighbors of various dis-
tance, which is also an indicator of the intensity of collaboration. Further
discussion is in Section 9.8.

• Our results show that while collaborative caching can be beneficial,
the benefits only apply when collaborating with a small neighborhood.

9.2 System Model

We assume a content network whose topology can be represented as a
graph G = (V, p), where V is the set of nodes characterized with their
degree distribution p. pk denotes the probability that a node has exactly
degree k. For each node vi ∈ V , it is equipped with cache of size Ci. We
denote O as the set of content objects. For each ok ∈ O, we associate two
parameters: sk and wi,k. sk is the object size and wi,k is its aggregated
demand (e.g., requests per second) observed from all the clients connected
to vi.

We do not assume that any node has global knowledge of the whole
network. Instead, a node is only aware of the information within its neigh-
borhood by collaborating with its neighbors (not necessarily directly con-
nected). Collaboration is characterized by the scope that a node can collab-
orate with others, namely by its search strength, and we use ri to represent
vi’s search radius measured in hops. ri uniquely defines a neighborhood
for each vi, which we denote as Ni = {vj |l∗i,j ≤ ri, ∀vj ∈ V, vi �= vj},
where l∗i,j measures the length of the shortest path between vi and vj . Let’s
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further define N+
i = {vj |vi ∈ Nj , ∀vj ∈ V }, which represents the set of

nodes who have vi in their neighborhoods. Apparently, with homogeneous
search radius, we have ∀vi, vj ∈ V, ri = rj ⇐⇒ ∀vi ∈ V,Ni = N+

i . Allow-
ing heterogeneous search radius indicates the neighborhood relation is not
symmetric, so Ni and N+

i may not be the same in most cases.
Assume that there is a distributed/centralized caching algorithm to

manage these networked caches. Such an algorithm is also referred as a
caching strategy which can be decomposed into “caching decision” and
“retrieving decision”. These two parts solve “what to cache” and “where
to fetch” respectively. To model such caching strategy, we use two vector
decision variables: x and y. xi,k ∈ {0, 1} denotes whether vi caches ok,
and yi,j,k ∈ {0, 1} denotes whether vi retrieves the object ok from vj . In
the model, we relax the integer constraints on x and y to allow both to be
real values. Due to the nature of one-dimension Bin Packing Problem, the
relaxation renders only one fractional object per cache [166]. Considering
the total number of cached objects is big, the induced impact on a cache
from one partial object is almost negligible, especially when the object is
not the most popular one. Therefore, such relaxation provides a tight and
optimistic bound of the original 0-1 integer programming problem and also
significantly simplifies our analysis. Besides, it leads to a even better intu-
itive explanation since a content file is usually divided into many smaller
pieces (i.e. chunks) in practice to improve the transmission efficiency. Al-
lowing real values makes it possible to represent that only a fraction of the
file is cached or retrieved therefore the model is more realistic. For a par-
tial object, the beginning of a fraction is always at the zero offset in a file,
further discussion on this can be found in Section 9.8. Because a caching
strategy is essentially a mapping which by definition can be viewed as a
function of its subscript, we have the following definition.

Definition 1. A caching strategy for a network G is a tuple of functions
(x,y) where x : V × O → [0, 1] and y : V × V × O → [0, 1]. The family
of all such tuples is denoted as Ψ, which represents the whole space of all
caching strategies.

Definition 2. A caching strategy for a node vi is defined as (xi,yi), where
xi : {vi}×O → [0, 1] and yi : {vi}×V ×O → [0, 1] are the partial functions
of x and y with domains restricted to {vi}×O and {vi}×V ×O respectively.

Note “×” above represents Cartesian product when applying to sets.
For the content that a node cannot store due to its capacity limit, it may
try to fetch them from nearby neighbors. Therefore a node can always get
some extra benefit by collaborating, and it would be beneficial if such utility
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is maximized. From a practical perspective, an optimal caching strategy is
considered a good strategy if we have

1. Pareto efficiency is achieved in the collaboration.

2. Well-defined fairness is achieved among the nodes.

These two requirements are proposed based on the following consider-
ations. First, as system resources are scarce and valuable, being Pareto
efficient guarantees no system resource is wasted. However, Pareto efficient
solution may not be unique in vector optimization. From an individual
node’s perspective, one important motivation to collaborate is obtaining
extra benefit. As we have argued, it is hard to justify that a node is al-
truistic and willing to sacrifice his own performance for a global optimum.
Second requirement emphasizes that maximizing the utility from collab-
oration should not hurt individual performance, so a certain well-defined
fairness must be achieved.

9.3 Formulation in Bargaining Framework

Bargaining game is a game theoretical model for analyzing how players
collaborate to allocate certain shared resource. The process of collaboration
is called bargaining. If the agreement cannot be reached during bargaining,
the situation is referred as negotiation breakdown. The original bargaining
game is a two-player game, but it can be easily extended to multiple players.

In a bargaining game, there can be multiple Pareto efficient solutions.
Nash proved [167] that there is only one unique solution which satisfies all
the four axioms as follows: (1) Pareto optimality; (2) Scale invariance; (3)
Symmetry; (4) Independence of the irrelevant alternatives. Such a solution
is called Nash bargaining solution (NBS). NBS is an axiomatic solution
and is agnostic about the actual mechanism through which the agreement
is reached. Instead, it only concerns the eventual outcome of a bargaining
process by solving the following optimization problem.

max
�

vi∈V
(Ui − u0i ) (9.1)

Eq.(9.1) is called Nash product. u0i is the initial disagreement value for the
player i. The disagreement value is defined as the worst payoff a player
would accept, any value lower than that will break down the negotiation.
Please refer to [168] for more details on bargaining games.
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A node serves client requests by storing popular content in local cache.
Due to its storage capacity limit, the local cache needs to be used wisely.
However, a node’s utility can be improved with neighbors’ help. From net-
work perspective, the aggregated capacity in a cache network is a resource
shared by all the nodes. Collaboration thus indicates a node should also
take others’ needs into account while optimizing its own utility. Practically,
this means local caching decision should be made via negotiation. In the
following, we give the formal definition of in-network caching game and its
solution.

Definition 3. An in-network caching game is a tuple (Ω, u0), where Ω ⊂
R
|V | contains all the utility values obtainable via collaboration, u0 ⊂ R

|V |

contains all the disagreement values leading to a negotiation breakdown.

In in-network caching context, a node only stops collaborating with
others if it cannot be better-off than simply using its own cache. So dis-
agreement value u0 is easy to estimate. Let Ωe ⊂ Ω be the Pareto frontier
of set Ω, which is a concave function with closed compact convex domain.
A game is considered fair iff its outcome is fair. Therefore,

Definition 4. A fair collaborative game is a game (Ω, u0) with Nash bar-
gaining solution, namely a function f : Ωe → Ψ such that f(Ω, u0) = (x,y)
uniquely maximizes

�
vi∈V (Ui − u0i ).

By definition, the solution satisfies the aforementioned four axioms.
Besides, NBS is the only solution that provides proportional gains with
respect to the nadir point of the bargaining set [168]; we will discuss this
again in Section 9.7.

To solve the problem more efficiently, especially when multiple players
get involved, the product of terms is usually translated into its equivalent
summation form. By taking logarithm of the objective function (9.1), we
have ln(max

�
vi∈V (Ui − u0i )) = max ln(

�
vi∈V (Ui − u0i )). Therefore NBS

can also be obtained by solving the following equivalent problem

max
�

vi∈V
ln(Ui − u0i ) (9.2)

9.4 Structure of Collaboration

We first derive the centralized solution to expose the structure of collabora-
tion, from which we show neighborhood plays a key role in the optimization
process. Then we carry on the analysis on communication overhead due to
collaboration.
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Given node vi, its utility can be defined as eq.(9.3). But note that the
utility is not confined to the following specific form as long as the similar
ideas below are described in an affine function.

Ui =
�

ok∈O
skwi,kxi,k +

�

ok∈O

�

vj∈Ni

skwi,k

l∗i,j + 1
yi,j,k (9.3)

First term represents the utility gained by locally cached content and the
second one represents the utility gained by neighbors’ help. The second
term also indicates that the gain of retrieving remote content decreases as
the distance increases. From a practical perspective, it indicates that a node
prefers fetching from the closest source to avoid long delay or extra traffic.
Note that any form of eq. (9.3) which is affine is possible, the form above is
not the only possibility. Without loss of generality, we assume unit object
size sk = 1, also let li,j � l∗i,j + 1 for simplicity of expression. Plugging in
eq.(9.3), then the optimization problem based on the bargaining framework
is

max
�

vi∈V
ln(

�

ok∈O
wi,kxi,k +

�

ok∈O

�

vj∈Ni

wi,k

li,j
yi,j,k − u0i ) (9.4)

Subject to
�

ok∈O
xi,k ≤ Ci, ∀vi ∈ V (9.5)

�

vj∈Ni

yi,j,k ≤ 1, ∀vi ∈ V, ∀ok ∈ O (9.6)

yi,j,k ≤ xj,k, ∀vi, vj ∈ V, ok ∈ O (9.7)

xi,k ∈ [0, 1], ∀vi ∈ V, ok ∈ O (9.8)

yi,j,k ∈ [0, 1], ∀vi, vj ∈ V, ok ∈ O (9.9)

Constraint (9.5) means the content stored at a node cannot exceed its cache
capacity. Constraint (9.7) says vi can retrieve ok from vj only if vj cached
it; it also says vi cannot get more than vj can offer. Constraint (9.6) sim-
plifies the data scheduling by constraining a node to retrieve maximum one
complete object in a cache period. Constraints (9.8) and (9.9) impose the
domain of decision variables. One technical detail needs special caution is
the concavity of the object function (9.4). Generally speaking, the compos-
ite of a logarithmic function and an arbitrary function does not necessarily
preserve concavity. However, Lemma 1 shows the object function under
our investigation is indeed concave.
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Lemma 1. The problem (9.4) is a convex optimization problem.

Proof. The proof is trivial. Since Ui in eq. (9.3) is affine and positive,
non-negative weighted sum of Ui is still affine and positive. All the affine
functions are log-concave. So the objective function (9.4) is concave.

In addition, all the constraints (9.5)(9.6)(9.7)(9.8) and (9.9) are affine.
Therefore, problem (9.4) is a convex optimization problem.

Theorem 1. In a fair collaborative game, for the optimal caching strategy
(x∗

i ,y
∗
i ) of node vi, there exist non-negative vectors α � 0, β � 0, γ � 0,

δ � 0 and λ � 0, such that

x∗i,k =
1

αi + γi,k −
�

vj∈N+
i

λj,i,k
− τi,k

wi,k
(9.10)

y∗i,j,k =
1

λi,j,k + βi,k − δi,k
−

li,jτ �i,k
wi,j

(9.11)

where τi,k = Ui − u0i − wi,kxi,k and τ �i,k = Ui − u0i −
wi,k

li,j
yi,j,k.

Proof. Obviously caching decision space [0, 1] ⊂ R+ is a nonempty, com-
pact and convex set. Since the objective function (9.4) is a continuously
differentiable concave function, and all the constraints on the variables are
affine, Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient
for the existence of an optimal solution.

To derive the optimum of a function with constraints, we first derive
the Lagrangian L(·) of eq. (9.4). Let α � 0, β � 0, γ � 0, δ � 0 and λ � 0
be the KKT multipliers associated with constraints. Their subscripts are
self-explained by the corresponding constraints associated with. Then we
have

L(x,λ,α,β,γ, δ) =
�

vi∈V
ln(Ui − u0i )−

�

vi∈V

�

vj∈Ni

�

ok∈O
λi,j,k(yi,j,k − xj,k)

−
�

vi∈V
αi(

�

ok∈O
xi,k − Ci)−

�

vi∈V

�

ok∈O
βi,k(

�

vj∈Ni

yi,j,k − 1)

−
�

vi∈V

�

ok∈O
γi,k(xi,k − 1) +

�

vi∈V

�

vj∈Ni

�

ok∈O
δi,j,kyi,j,k

Note we dropped constraints xi,j ≥ 0 and yi,j,k ≤ 1 in making the La-
grangian because constraints (9.6) and (9.7) make them redundant. In the
following derivation, we let τi,k = Ui − u0i − wi,kxi,k and τ �i,k = Ui − u0i −
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wi,k

li,j
yi,j,k for the simplicity of representation. For the objective function to

reach its optimum, first order necessary and sufficient conditions are

∇L(x,λ,α,β,γ, δ) = 0

⇐⇒ ∂L
∂xi,k

= 0, ∀vi, vj ∈ V, ∀ok ∈ O

⇐⇒ wi,k

Ui − u0i
+

�

vj∈N+
i

λj,i,k − αi − γi,k = 0

⇐⇒ x∗i,k =
1

αi + γi,k −
�

vj∈N+
i

λj,i,k
− τi,k

wi,k

with complementary slackness






λi,j,k(yi,j,k − xj,k) = 0, ∀vi, vj ∈ V, ∀ok ∈ O

αi(
�

ok∈O xi,k − Ci) = 0, ∀vi ∈ V, ∀ok ∈ O

βi,k(
�

vj∈Ni
yi,j,k − 1) = 0, ∀vi ∈ V, ∀ok ∈ O

γi,k(xi,k − 1) = 0, ∀vi ∈ V, ∀ok ∈ O

δi,j,kyi,j,k = 0, ∀vi, vj ∈ V, ∀ok ∈ O

(9.12)

Similarly, we can derive the optimal y∗i,j,k as x∗i,k. The optimal caching
strategy (x∗,y∗) of the network can be derived by solving the equation
system (9.12) for all the nodes.

Theorem 1 exposes the internal structure of collaborations, even though
its proof is rather straightforward as above. Calculating (x∗

i ,y
∗
i ) for node

vi requires the information from Ni ∪ N+
i , e.g. λ, the KKT multiplier

associated with constraint (9.7). Actually, the first equation in eq.(9.12)
indicates λ is the only multiplier shared in neighborhood, others are local
variables. λi,j,k can be viewed as the “shadow price” of transferring ok
from vj to vi, which is a “cost” for vi but an “income” for vj . Thus term�

vj∈N+
i

λj,i,k is vi’s total income from serving ok to those in N+
i . Eq. (9.10)

indicates that if total income due to ok increases, vi tends to cache it.
Meanwhile, eq. (9.11) suggests that if the cost λi,j,k increases, vi tends to
stop retrieving ok from vj . As we can see, the explanation of the results
matches our intuition very well.

The whole equation system has 3|O| × |V |2 + 2|O| × |V | + |V | vari-
ables and same number of equations. The computation overhead can be
considerably high if the content set and network are big, which motivates
us to look for a more scalable distributed algorithm in Section 9.5. Note
though a distributed solution can significantly accelerate the calculations
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by parallelism, it will not reduce the overall computation complexity and
the performance gain is at the price of increased traffic by exchanging in-
formation. The amount of exchanged information will not be less than that
in a centralized solution and the collaboration structure are very similar.
The growth of such communication overhead of a distributed solution will
be thoroughly analyzed on various networks in Section 9.6.

9.5 Distributed Fair In-Network Caching Solution

A centralized solution has several obvious drawbacks in its actual use. First,
it suffers from high computation complexity even with moderate problem
size. Second, it is not robust enough due to its single point failure. Third,
it is not adaptive enough under network dynamics. Hence we need to
translate the centralized solution into a distributed one by decomposition
techniques. In this section, we show how to derive the distributed solution
from the equivalent dual problem and present our Fair In-Network Caching
(FIN) algorithm.

To solve an equation system, each node can be viewed as a subsystem.
If they simply optimize locally, all the calculations in each subsystem are
independent from those in other subsystems. However, variables and con-
straints due to collaboration make such calculations dependent, therefore
they couple a subsystem with others. Such variables and constraints are
referred as complicating variables and constraints [169].

As discussed in Section 9.4, constraint (9.7) is the only complicating
constraint coupling a node with its neighbors. To decompose the objective
function, we first rewrite original problem (9.2) into its equivalent convex
form.

min−
�

vi∈V
ln(Ui − u0i ) (9.13)

Then we apply Lagrangian dual relaxation. Lagrangian dual relaxation
provides a non-trivial lower-bound of primal; the difference between the
dual and the primal is called duality gap. In some cases, duality gap can
be zero if certain conditions are met as we show below. The Lagrangian
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L(·) : R2|O||V |2 → R associated with objective (9.13) is defined as follows

L(x,y,λ) (9.14)

= −
�

vi∈V
ln(Ui − u0i ) +

�

vi∈V

�

vj∈Ni

�

ok∈O
λi,j,k(yi,j,k − xj,k)

=
�

vi∈V
[− ln(Ui − u0i ) +

�

vj∈Ni

�

ok∈O
λi,j,k(yi,j,k − xj,k)]

λ � 0 is the dual variable associated with eq.(9.13). Then the Lagrangian
dual function d(·) : R|O||V |2 → R is as follows

d(λ) = inf
x∈X,y∈Y

L(x,y,λ) (9.15)

Given λ, let x∗ and y∗ be the unique minimizers for the Lagrangian (9.14)
over all x and y. Then the dual function (9.15) can be rewritten as d(λ) =
L(x∗,y∗,λ). By maximizing the dual function, we can reduce the duality
gap. The Lagrangian dual problem of the primal (9.13) is defined as follows

max
λ∈R|O||V |2

d(λ) = L(x∗,y∗,λ) (9.16)

The constraints for the dual problem are the same as those of the pri-
mal except constraint (9.7) which is already included in the dual objective
function. Obviously there must exist a solution (x,y) ∈ relint(D) which
satisfies all the constraints. Also because the objective function (9.13) is
convex and all the constraints (9.5)(9.6)(9.8) and (9.9) are affine, Slater’s
condition holds, and the duality gap is zero. Thus when the dual problem
(9.16) reaches its maximum, the primal problem also reaches its minimum.
The optimal solution for primal problem (9.13) can be derived from the
optimal solution for dual problem (9.16).

As we have shown, a node subsystem can be successfully decoupled from
the others in the same neighborhood with Lagrangian dual decomposition.
Each node vi now only needs to optimize its utility locally for a given λ by
calculating

minLi(x,y,λ)

= − ln(Ui − u0i ) +
�

vj∈Ni

�

ok∈O
λi,j,k(yi,j,k − xj,k)

To help dual problem converge to its optimum, we can use standard pro-
jected subgradient method [170] to derive the distributed collaborative
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1: Input:
2: Demand matrix w
3: Dual variables λ
4: Output:
5: Caching decision xi

6: Collaboration decision yi

7: while k < kstop do
8: xi, yi = argminx,y Li(x,y,λ)
9: h = yi − xi

10: for vj ∈ Ni do
11: Retrieve hj from vj
12: h = h+ hj

13: end for
14: λ = (λ+ ξh)+
15: k++
16: end while
Algorithm 8: Fair in-network caching (FIN) algorithm on vi

caching algorithm. Let h(λ) and ∂d(λ) denote the subgradient and sub-
differential of dual function d(·) at point λ respectively. Then for every
hi,j,k ∈ h(λ) we have

hi,j,k = y∗i,j,k − x∗j,k =⇒ h(λ) ∈ ∂d(λ)

Vector h = h(λ) points to the direction where d(·) increases fastest. In
each iteration, node vi needs to solve the subsystem (9.17) to update dual
variable λ. k represents the kth iteration. ξk is the step-size in the kth itera-
tion which can be determined by several standard methods [170]. Projected
subgradient method projects λ on its constraint (λ � 0) in each iteration,
and we use (·)+ as a shorthand for the Euclidean projection of a point on

R
|O||V |2
+ . Eventually λ(k) → λ∗ when k → ∞. The primal solution can

be constructed from optimum λ∗. Note that feasibility is not necessarily
needed in every iteration.






x(k)
i ,y(k)

i = argminx,y Li(x,y,λ
(k))

h(k) = −(x(k)
i − y(k)

i )

λ(k+1) = (λ(k) + ξk
�

vj∈Ni∪{vi} hj)+

(9.17)

Theorem 2. Algorithm 8 converges to its optimum as the sequence {λ(1),λ(2)

... λ(k)} converges, if a diminishing step size is used such that limi→∞ ξi =
0 and

�∞
i=1 ξi = ∞.
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Proof. To prove convergence, we first prove the gradient of the dual function
is bounded by a constant K, namely the dual function d(λ) is K-Lipschitz
continuous. Second, we show that given the diminishing step size, the
Euclidean distance between the optimum d(λ∗) and the best value d(λ◦)
achieved in all previous iterations converges to zero in limit.

Since the primal (9.13) is strictly convex and all constraints are linear,
dual d(λ) is strictly concave and differentiable.

∂d(λ)

∂λi,j,k
= yi,j,k − xi,k =⇒

����
∂d(λ)

∂λi,j,k

���� ≤ 1 (9.18)

By Mean value theorem, there exists c ∈ (λ,λ�) such that

d(λ)− d(λ�) = ∇d(c)T (λ− λ�) (9.19)

By Cauchy–Schwarz inequality, let n = |O|× |V |2, we have

�d(λ)− d(λ�)�2 = �∇d(c)T (λ− λ�)�2 (9.20)

≤ �∇d(c)�2�λ− λ��2 (9.21)

≤
√
n�λ− λ��2 (9.22)

� · �2 above denotes the Euclidean norm. Therefore, d(λ) is K-Lipschitz
continuous and Lipschitz constant K =

√
n. Let λ∗ denote the maximizer

of dual function d(λ), then

�λ(k+1) − λ∗�22 = �(λ(k) + ξkh
(k))+ − λ∗�22 (9.23)

≤ �λ(k) + ξkh
(k) − λ∗�22 (9.24)

= �λ(k) − λ∗�22 + 2ξkh
(k)T (λ(k) − λ∗) + ξ2k�h(k)�22 (9.25)

≤ �λ(k) − λ∗�22 + 2ξk(d(λ
(k))− d(λ∗)) + ξ2k�h(k)�22 (9.26)

Inequality (9.24) comes from the fact that projection of a point onto R|O||V |2
+

makes it closer to the optimal point in R
|O||V |2
+ . Apply inequality (9.26)

recursively, we have

�λ(k+1) − λ∗�22 ≤

�λ(1) − λ∗�22 + 2
k�

i=1

ξi(d(λ
(i))− d(λ∗)) +

k�

i=1

ξ2i �h(i)�22
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Because �λ(k+1)−λ∗�22 ≥ 0 and
�k

i=1 ξi > 0, and let d(λ◦) = max0≤i<k d(λ
(i)),

then

2
k�

i=1

ξi(d(λ
∗)− d(λ◦)) ≤ �λ(1) − λ∗�22 +

k�

i=1

ξ2i �h(i)�22

=⇒ d(λ∗)− d(λ◦) ≤ �λ(1) − λ∗�22 +
�k

i=1 ξ
2
i �h(i)�22

2
�k

i=1 ξi

=⇒ d(λ∗)− d(λ◦) ≤ �λ(1) − λ∗�22 +K2�k
i=1 ξ

2
i

2
�k

i=1 ξi

d(λ∗)−d(λ◦) → 0 if we choose a diminishing step size which lets ξi → 0 and
�∞

1 ξi = ∞, then
�∞

1 ξ2
i�∞

1 ξi
= 0. (e.g. we can let ξi =

ξ0
i , then

�∞
1 ξi = ∞ and

�∞
1 ξ2i = π2

6 .) Since the duality gap is zero, eventually the primal problem
will converge to its optimum when its dual problem converges.

With Theorem 2, We can easily show the validity of the proposed algo-
rithm 8 by showing FIN converges to the optimum with a decreasing step
size. The proof is fairly standard but gives a theoretical guarantee on the
convergence of FIN algorithm.

9.6 Complexity Analysis on General Topologies

Collaboration is meant to improve a node’s knowledge on the content dis-
tribution within its neighborhood, which further helps the nodes make
better caching decisions together. However, as there is no free lunch for
optimization, the improvement on caching performance is at the price of
extra network traffic. The collaboration inevitably introduces communi-
cation overhead. However, in the prior research, such overhead are either
overlooked or overly simplified by using highly regular structures such as
lines and trees. Though the cost analysis can be significantly simplified,
the strong assumption on topological regularity is rather disturbing since it
prevents us from applying any conclusion to a more general network setting
where the topology can be very flexible. So far, the cost of collaboration is
especially poorly understood on general network topologies. In this section,
we present how we derive the functional relation between the collaboration
overhead and the underlying topological structures only using a general
graph model G = (V, p) presented in Section 9.2.

Note that even though FIN is used as an example, the analysis in the
following generally applies to any collaborative caching algorithm with few
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modifications. By investigating the FIN algorithm presented in Section 9.5,
we can see that the communication overhead due to calculating λ originate
from two parts. The first part is induced by replying the queries from
the nodes having vi in their neighborhood, namely N+

i . The second part is
induced by collecting information from the nodes in vi’s own neighborhood,
namely Ni. Given the communication overhead is measured by the number
of exchanged messages, and the overhead φi of node vi can be calculated
as

φi = c× |O|× (|N+
i |+ |Ni|) (9.27)

Scalar c in eq. (9.27) represents a constant factor for communication over-
head, and can be understood as message size or other protocol-dependent
factors. For system level overhead, we have the following theorem.

Theorem 3. In a network G = (V, p) where node vi has a neighborhood
Ni uniquely determined by its search radius ri, the system communication
overhead Φ due to collaboration for calculating optimal caching strategy
equals

Φ = 2c× |O|×
�

vi∈V
|Ni| (9.28)

Proof. System level communication overhead is the aggregation of individ-
ual overheads from all the nodes, therefore

Φ =
�

vi∈V
φi = c× |O|×

�

vi∈V
(|N+

i |+ |Ni|) (9.29)

Given vj ∈ Ni, neighborhood relation can be written as a tuple (vi, vj).
Calculating

�
vi∈V |Ni| is equivalent to counting how many tuples there

are in the whole system. Obviously, vi ∈ Nj ⇔ vj ∈ N+
i , ∀vi, vj ∈ V , i.e.,

as long as there is a tuple (vi, vj) for Ni, there must be a tuple (vj , vi) for
some N+

j , and vice versa. Using double counting technique, we can show�
vi∈V |Ni| =

�
vi∈V |N+

i |. Therefore, eq. (9.29) can be rewritten as

Φ = c× |O|× (
�

vi∈V
|N+

i |+
�

vi∈V
|Ni|)

= 2c× |O|×
�

vi∈V
|Ni|

Eliminating N+
i will greatly facilitate following proofs.
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Clearly, the system level communication overhead is Φ = Θ(|V |× |N |×
|O|). Theorem 3 shows it is a function of the aggregated neighborhood size,
so we do not need to consider N+

i in the calculation even when search radius
is heterogeneous. To focus on the functional relation between overhead and
neighborhood, we fix the network size |V | and content set size |O|, and let
θ � 2c× |O| for the purpose of simplicity.

Lemma 2. In a network G = (V, p) where a node’s average neighborhood
size equals |N |, system communication overhead equals Φ = θ × |V |× |N |.

Proof. It is trivial by noticing |V |× |N | =
�

vi∈V |Ni|.

For a node vi, we can organize its neighborhood Ni into ri concentric
circles according to the neighbor’s distance to vi. We denote zr as the
average number of r-hop neighbors on the rth circle. Obviously, |N | =
z1 + z2 + ...+ zr.

Theorem 4. In a random network G = (V, p) where nodes have aver-
age search radius r, the induced system overhead ∆r+1

r Φ by increasing the
average search radius by 1 equals

∆r+1
r Φ = θ × |V |×

�
z2
z1

�r
× z1 (9.30)

Proof. Lemma 2 shows system overhead is a function of average neighbor-
hood size. Knowing how neighborhood grows as a function of search radius
is the first step for the following proof. Calculating z1, namely its directly
connected neighbors, is trivial and equals a node’s average degree. Let �k�
denote the mean of a given degree variable k. Then we have

z1 = �k� =
∞�

k=0

kpk

However, calculating zr (r ≥ 2) is not as straightforward as z1 since degree
distribution for a node’s neighbor is not the same as general degree distri-
bution for the whole network. Let vj be one of vi’s next-hop neighbors.
Actually, vj ’s degree distribution qk is proportional to both vi’s degree and
general degree distribution [171]. Since we should not count the link which
leads back to vi, then we have

qk = Pr[deg(vj) = k|deg(vi) = k + 1] =
(k + 1)pk+1�

mmpm
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Therefore, vj ’s average degree, or in other words, the average number of
emerging links from vj equals

∞�

k=0

kqk =

�∞
k=0 k(k + 1)pk+1�

mmpm
=

�∞
k=0 k(k − 1)pk�

mmpm

=
�k2� − �k�

�k�

Because we did not assume vj is on any specific concentric circle except r ≥
2, we can use the same logic above to calculate arbitrary r-hop neighbors
as follows

zr = zr−1

∞�

k=0

kqk =
�k2� − �k�

�k� zr−1 (9.31)

From eq. (9.31), we can further calculate z2 = �k2� − �k�. As we al-
ready know z1 = �k�, by applying replacement recursively, we can rewrite
eq. (9.31) as

zr =

�
z2
z1

�r−1

× z1 (9.32)

When system increases the average search radius from r to r+1, the system
overhead increases from Φ� to Φ��. With lemma 2, we can calculate the
difference ∆r+1

r Φ by

∆r+1
r Φ = Φ

�� − Φ
�
= θ × |V |× (|N �� |− |N � |) (9.33)

= θ × |V |× zr+1 (9.34)

From eq. (9.32) and (9.34), we get eq. (9.30). We do not intend to give a
detailed proof due to the space limitations, please refer to [171] which has
more thorough discussions on graph topological properties.

Given a search radius, Theorem 4 shows that the increase in overhead
depends on the ratio between the number of two-hop and one-hop neigh-
bors, and it applies to any general network with arbitrary degree distri-
bution. The overhead only converges if there are less two-hop neighbors
than first-hop ones, i.e., z2

z1
< 1, which actually implies the graph is not

connected and has multiple components [171].

Corollary 1. In Erdős-Rényi random network G = (V, p), z is the average
node degree. The induced system overhead ∆r+1

r Φ by increasing average
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search radius by 1 and the overall system overhead Φ are calculated as

∆r+1
r Φ = θ × |V |× zr+1 (9.35)

Φ = θ × |V |× z(1− zr)

1− z
(9.36)

Proof. In Erdős-Rényi random network, the degree distribution pk is given
by the following formula

pk =

�
|V |− 1

k

�
pk(1− p)|V |−k−1

If |V | � kz, the binomial distribution above converges to the Poisson
distribution in its limit.

lim
|V |→∞

pk =
zke−z

k!

With Dobiński’s Formula, the nth moment of a variable with Poisson distri-
bution can be calculated as eq. (9.37) shows.

�n
k

�
denotes Stirling numbers

of the second kind [171] which represents the number of ways to partition
a set of n objects into k non-empty subsets, and is known for calculating
�kn�.

�kn� = e−z
∞�

k=0

zkkn

k!
=

n�

k=1

�
n

k

�
zk (9.37)

From eq. (9.37) and eq. (9.32), we have

z2 =

�
2

2

�
z21 +

�
2

1

�
z1 − z1 = z21 =⇒ zr = zr (9.38)

From Theorem 4 and eq. (9.38), we have eq. (9.35) proved. Eq. (9.38) shows
that z1, z2, z3 ... form a geometric series, thus the system overhead Φ can
be easily derived by calculating the summation of this series.

Summary: Theorem 4 conveys an important message on collaborative
caching, and shows that the collaboration overhead grows exponentially
on general connected topologies. Because most natural graphs like Internet
and ISP networks have z2

z1
> 1 [84,171], Theorem 4 means collaboration has

to be restricted to a very small neighborhood to keep overhead reasonable.
It is also worth noting the conclusion does not depend on a specific utility
function but applies to any general optimization process on the graph which
requires coordination with neighbors [170].
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9.7 Fairness in In-Network Caching Games

Pareto efficiency does not indicate fairness. In this section, we study the
fairness in caching games. We consider three well-defined and justified
fairness metrics [168,172,173]. As the most important one, the proportional
fairness is properly modified to fit into our scenario, and the corresponding
proof is provided. Let ui and uwi denote the achieved utility and the worst
utility of vi respectively, then we have the following

Definition 5. Egalitarian Fairness (EF ): Egalitarian fairness is achieved
iff ∀vi, vj ∈ V , we have ui − uwi = uj − uwj .

Definition 6. Max-Min Fairness (MF ): Given a performance metric
g(vi), max-min fairness is achieved iff (x∗,y∗) = argmaxminx,yg(vi), ∀vi ∈
V .

Definition 7. Proportional Fairness (PF ): (x∗,y∗) is proportionally fair

iff ∀(x,y) �= (x∗,y∗) ⇒
�

vi∈V
ui−u∗

i

u∗
i
−u0

i

< 0.

EF pursues the absolutely same amount of improvement on each node,
and usually leads to a Pareto inefficient solution. PF and MF are widely
used in traffic engineering. MF pursues the fairness which maximizes
the node with the worst utility, while PF is a generalization of Kalai–
Smorodinsky solution which pursues both proportional improvement on all
nodes and maximizing the utility from collaboration [172,173].

Theorem 5. In a fair collaborative game (Ω, u0), the optimal caching strat-
egy (x∗,y∗) achieves PF .

Proof. Because (x∗,y∗) is the optimal caching solution, namely (x∗,y∗) =
argmaxx,y

�
vi∈V ln(ui − u0i ). Let f(u) =

�
vi∈V ln(ui − u0i ). For f(u)

to reach its maximum, the necessary and sufficient first order condition is
∇f∗ = 0. ∀(x,y) �= (x∗,y∗) ⇒ ∃λ � 0 such that λ−1

i = ui − u0i > 0. Then
∀vi ∈ V we have

∇f∗ − λ ≺ 0 =⇒ ∂f∗

∂u∗i
− λi < 0

=⇒ 1

u∗i − u0i
− λi < 0

=⇒ λ−1
i

u∗i − u0i
− u∗i − u0i

u∗i − u0i
< 0
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Sum over all the vi ∈ V , we have

�

vi∈V

(ui − u0i )− (u∗i − u0i )

u∗i − u0i
< 0 =⇒

�

vi∈V

ui − u∗i
u∗i − u0i

< 0

By definition 7, strategy (x∗,y∗) is proportionally fair.

The original form of PF is very similar to that in our definition 7 except
u0i is dropped in the formula, therefore can be viewed as a special case of
definition 7 with u0i = 0. Instead of copying the exact form, we adapted the
definition of PF in our scenario. We argue that the original definition of
PF used in traffic engineering (e.g. [172]) is improper in in-network caching
context. The reason is due to the key difference between in-network caching
and traffic engineering. In traffic engineering, the bandwidth of a flow can
reduce to zero. Nonetheless in in-network caching, the worst case would be
“stopping collaboration with neighbors but using a node’s own local cache”,
so the utility value shall never reach zero. With the original definition of
PF , a NBS only achieves PF when the disagreement point is placed exactly
at zero, which indicates “fully obedient” therefore fails to reflect a node’s
bargaining power (e.g. due to its cache capacity and topological position)
and its intrinsic selfishness. The adapted version says, that any change
in a proportionally fair caching strategy will be detrimental and cause a
decrease in the overall benefit from collaboration.

Theorem 6. In a fair collaborative game (Ω, u0) with optimal strategy
(x∗,y∗), EF is sufficient for MF , i.e. EF ⇒ MF .

Proof. We prove the theorem by contradiction. Let’s assume solution
(x∗,y∗) is egalitarian fair, but not max-min fair. u∗ is the correspond-
ing utility value.

Let’s further assume another solution (x�,y�) �= (x∗,y∗) which achieves
max-min fair, and u� is its utility value. In a fair collaborative game, based
on the nature of Nash bargaining framework, both (x�,y�) and (x∗,y∗) are
Pareto optimal.

By definition, max-min fair solution indicates that

min{u�i − uwi , ...} > min{u∗i − uwi , ...}, ∀vi ∈ V (9.39)

By definition, egalitarian fair solution indicates that

min{u∗i − uwi , ...} = u∗i − uwi = u∗j − uwj , ∀vi, vj ∈ V (9.40)
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(9.39), (9.40) =⇒

u�i − uwi ≥ u∗i − uwi , ∀vi ∈ V (9.41)

u�i − uwi > u∗i − uwi , ∃vi ∈ V (9.42)

Inequality (9.42) contradicts with the fact that (x∗,y∗) is Pareto optimal.
So the assumption does not hold. (x∗,y∗) must be both egalitarian fair
and max-min fair. I.e. EF ⇒ MF .

Theorem 5 guarantees the optimal caching strategy to achieve PF of
a broader sense. Though EF is seldom used due to Pareto inefficiency,
Theorem 6 guarantees that as long as EF is achieved in a fair game (Ω, u0),
MF is also achieved at the same time.

9.8 Numerical Results

We experimented with three ISP topologies (Sprint, AT&T and NTT), and
two graph generative models with different parameters: Barabási-Albert
(BA) model and Erdős-Rényi (ER) model. The configurations are {BA1 :
m = 2}, {BA2 : m = 4}, {ER1 : p = 1.1 × log(n)/n} and {ER2 : p =
1.5× log(n)/n} [171]. For content objects, [83] shows that Youtube videos’
popularity follows Weibull distribution with shape parameter k = 0.513,
and the average file size is 8.4 MB. We use these values in our evaluation
to capture the characteristics of realistic settings.

Neighborhood Defined by Search Radius

Fig.9.3a plots the cumulative distribution function (CDF) of optimal neigh-
borhood. Surprisingly, though each node’s search radius is preset to the
network diameter, the actual neighborhood shrinks significantly after con-
vergence. In all ISP networks, over 80% of nodes have a neighborhood of
no more than 3 hops. Fig. 9.3b shows the CDF of the distance of retrieving
a content measured in number of hops; note the content served by local
cache is also included (i.e. x = 0). More impressively, at least 60% of the
non-local content is served by the directly-connect neighbors in both 2 GB
and 4 GB cases; only minuscule amount is retrieved from those neighbors
further than 2 hops. The result also indicates the optimal neighborhood
gets even smaller with larger caches.

Fig. 9.4 plots a heatmap of the percent of served content as a function
of both search radius and cache size on Sprint network. x-axis is the cache
size and y-axis is the search radius, numbers on the grid represent the frac-
tion of the content served. Given a cache size configuration, the fraction
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Figure 9.3: Given the initial search radius preset to the network diameter,
the neighborhood shrinks to its optimum after convergence. In practice,
the optimal neighborhood is small and most content is retrieved from the
neighbors within 2 hops.

Figure 9.4: Heatmap of content distance and cache size.
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ISP network Sprint AT&T NTT
(# of nodes, # of edges) (604,2279) (631,2078) (972,2839)
Overhead growth ∆r+1

r Φ Θ(5.32r) Θ(4.12r) Θ(4.51r)
Avg. optimal r∗ (2GB) 1.83 2.01 2.00
Avg. optimal r∗ (4GB) 1.50 1.71 1.65

Table 9.1: Growth rate of collaboration overhead ∆r+1
r Φ and average opti-

mal search radius r∗ on different ISP networks.

of served content drops quickly as distance increases. However, increasing
cache size also increases the fraction of locally served content (at y = 0),
but reduces the need of collaboration. Further investigation strongly indi-
cates the collaboration is highly localized in a small neighborhood due to the
highly skewed content popularity distribution. In other words, if non-local
content is popular enough to be worth fetching remotely, it is highly likely
to discover it in the nearby neighbors. Inspired by the observation above,
instead of letting the neighborhood shrink to its optimum in optimization
process, we let the neighborhood grow step by step in the actual FIN algo-
rithm implementation. The neighborhood growth stops when there is no
further benefits. This mechanism can save us from the traffic burst due to
exchanging messages in the beginning phase of the algorithm. Table 9.1
summarizes the results on three ISP networks. Though interesting, thor-
ough study on the relation between content and topology is beyond the
scope of this thesis and is reserved as future study.

Content overlapping calculates the percent of same content in two differ-
ent caches, it is an indicator of content diversity in cache networks. We also
examined the average content overlapping among the caches and noticed
another interesting phenomenon – content overlapping positively correlates
to the cache size configuration. E.g., the average overlapping is 37.8% for
2 GB cache size configuration, and 62.3% for 4 GB. Namely, there is less
content overlapping with small cache size configuration since the nodes need
more collaboration from each other to improve their performance. There-
fore there is a high degree of content diversity in the neighborhood. With
big caches, every node can practically store most of the popular content
hence requires less help from the neighbors, which further renders a high
degree of content overlapping. In essence, this phenomenon is consistent
with our understanding from the experiments in Fig. 9.4.
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Figure 9.5: Convergence rate of FIN algorithm on both realistic and syn-
thetic networks.

Convergence Rate

Fig. 9.5a shows that the aggregated utility converges as the number of it-
erations increases on Sprint network. For ease of comparison, the utility
has been normalized by its maximum. Larger caches lead to slower conver-
gence rate, because more cached items implies a longer negotiation process
among nodes. Given a cache configuration, the convergence rate is influ-
enced by the speed at which information can spread in the network. Upper
and lower part in Fig. 9.5b show the convergence rate on both ISP and
synthetic networks. As expected, larger ISP networks lead to longer con-
vergence time, but the increase is slower than linear. Similar results were
also observed in synthetic ones. Though subgradient method is known for
its sensitivity to step size, actually both constant and diminishing step size
behaved rather stably in our experiments due to the algorithmic choice on
small neighborhoods. Other more robust methods like [169] will be studied
in future work.

Caching Performance

To measure caching performance, we use two well-defined metrics byte hi-
trate (BHR) and footprint reduction (FPR). BHR is a conventional metric
to measure saving on inter-domain traffic, while FPR is the reduction on the
product of traffic volume and distance which measures saving on network
traffic. For comparison, we choose LRU as the baseline, also implement
another simple en-route caching heuristic called Nearby Search (NS). NS
has a tunable search radius, thus a node can communicate and retrieve
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Figure 9.6: Performance evaluation of four caching strategies on three re-
alistic ISP networks.

content from other nodes in a neighborhood defined by the radius. NS
makes its caching decision independently by optimizing locally instead of
via negotiation. We use 1-hop and 4-hop search radius configuration in our
experiments, and denote them as NS1 and NS4 respectively.

Fig. 9.6a shows LRU has the worst BHR, whereas our Fair In-Network
caching algorithm (FIN; Algorithm 1) has the best. By increasing the
search radius, NS4 achieves better BHR, but FIN consistently remains at
least 16% better than NS4 over all the networks. Fig. 9.6b shows NS4 has
worse FPR (less than 40%) than NS1 and FIN, indicating the gain in BHR
is achieved at the price of sacrificing FPR due to increased traffic. NS is
still far away from Pareto efficiency despite of being significantly better
than LRU. FIN can easily achieve 16% improvement on BHR and 47% on
FPR in all the cases. The results indicate FIN reduced much more traffic
than other caching strategies and is able to achieve better performance with
lower cost.

Further Discussion

Though we explicitly considered the fairness in the modeling part, we im-
plicitly assumed all the participants would run the same prescribed algo-
rithm. In reality, the situation can be different from this assumption. There
might be deviant nodes who simply do not run FIN algorithm. In this case,
those nodes can be safely excluded from the collaboration without causing
any harm to the system since their resources are unavailable. A more trou-
blesome case is that the deviant nodes free-ride their neighbors by being
dishonest or refusing to serve. The counterpart can certainly choose to
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stop the collaboration if it finds out that no extra benefits can be obtained.
Eventually the system will retreat back to the non-collaborative mode if
everyone does so. This cascading effect apparently leads to another equi-
librium where the whole system suffers from Pareto inefficiency. We do
not intend to cover all the possible cases in this short discussion. Design-
ing a sound and complete strategyproof scheme to enforce the obedience is
already out of the scope of this thesis and is reserved for the future work.

The linear relaxation in the model is mainly for reducing the complex-
ity in computation and analysis, and it only brings marginal impact on
both optimal caching solution and its actual performance. Meanwhile, it
leads to an interesting discussion on the partial caching problem on cache
networks which heavily relies on the chunk-level modeling. For a partially
cached object, assuming that a fraction always starts from the offset zero
is equivalent to implicitly assuming that the beginning of a file is more
popular than the end. This assumption may hold for certain type of media
files like videos [146] but is problematic in general and cannot be applied to
arbitrary context without serious justification [174]. Furthermore, if chunk-
level popularity is taken into account, how the collaborative caching copes
with partial caching is another big question. However, according to our
knowledge, the research on chunk-level analysis is severely lacking in the
current literature.

9.9 Conclusion

Prior work [154–158] focused on studying the functional relation between
system performance and traffic flows to characterize a cache network. Though
admission control and replacement policy were explicitly studied on differ-
ent topologies, collaboration and its related protocol design were mostly
overlooked. Recent work indicates two diametrically opposed viewpoints
on collaborative caching. On one hand, [4] held a sceptical stance on the
general in-network caching approach, [81] further presents the negative re-
sult by showing non-collaborative edge caches are sufficient for most of
the gains. On the other hand, evidence in [51, 69, 70, 79, 152, 175–177]
shows collaboration can indeed improve cache performance. The oppos-
ing viewpoints are likely due to the different assumptions in modeling; [81]
assumed a strict k-ary tree structure with a single data source at the root,
whereas [84] showed assumption of such regular topological structure does
not hold in ISP networks. Besides, content is universal and may be re-
trieved from multiple sources in ICN context [178]. Following this line of
research, the recent work [64, 79, 179] focused more on certain system and
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design parameters (e.g. topological and routing properties) and investi-
gated their impacts on the effectiveness of collaborative caching in order to
gain a holistic understanding.

[46,64,73,79,151,153,159–161,179,180] explicitly or implicitly studied
the collaborative caching. [73,151,160,161,180] studied in-network caching
in game theory framework by modeling the problem as pure strategic games
and analyzed the equilibrium. However, in all these formulations, there
is a clear social optimum (i.e., the aggregated utility of all nodes) which
measures cache system efficiency. The work above also showed this so-
cial optimum is seldom reached due to lack of coordination and nodes’
inherent selfishness, and the induced inefficiency is quantified with Price of
Anarchy. Fairness is unfortunately overlooked. Even though fairness has
been studied in other context like wireless network and traffic engineer-
ing [172, 173], based on our knowledge, there is no prior work studied how
fairness should be properly defined on a cache network and how such fair-
ness can be achieved via protocol design. Furthermore, the impact from
the network topological properties on algorithm design and caching per-
formance attracts more and more attention in ICN community. Recent
work [47, 64, 79, 80, 179] realized the severe limitation of regular topologies
and started moving to more general network topological settings. However,
the work on the cost analysis of collaborative caching is severely lacking in
the new context.

Comparing to the prior work, our work is fundamentally different in
three aspects. First, in-network caching problem is modeled as a bargaining
game and solved with convex optimization. Second, well-defined fairness is
explicitly taken into account in the protocol design. Third, collaboration
is carefully defined and the induced overhead is thoroughly analyzed on
general topologies.

To summarize, we explicitly defined and studied the fair collaborative
games on cache networks. We solved the problem in Nash bargaining frame-
work via convex optimization. Our analysis on collaboration showed its cost
grows exponentially whereas the benefit vanishes quickly, therefore collab-
oration should be constrained to a limited neighborhood. Our proposed
FIN algorithm achieved good performance with guaranteed convergence,
Pareto efficiency and proportional fairness, on both synthetic and realistic
networks. Our results show that while collaborative caching is beneficial,
the benefits only apply when collaborating with a small neighborhood.
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Chapter 10

Conclusion

10.1 Summary

ICN as a broad research subject covers many topics ranging from content
naming, package routing, congestion control, security, energy efficiency and
etc. This thesis focused on the in-networking caching, an indispensable
core component in the architecture, thoroughly investigated its measure-
ment and design principles, and discussed its connections with content and
topology.

We started the thesis with a discussion over miscellaneous metrics which
have been or can be potentially introduced into measuring and evaluating
an ICN design, with our specific emphasis on the three most important
ones pertaining to caching: hit rate, footprint reduction and coupling factor
(ordered by the amount of information they contain). Hit rate being the
simplest one represents the savings on inter-domain traffic, while footprint
reduction represents the savings on intra-domain traffic. Last but not least,
coupling factor, as the most complicated metric containing both popularity
and topological information, depicts how popular content is distributed in
a network, leading another possible categorization of cooperative caching
algorithms. Choosing proper and representative metrics, as the initial step
for a sound evaluation, is only the beginning of our story. The broad and
increasing interest in future network architectures urges our community to
develop more thorough measurement methodology with a comprehensive
set of metrics.

We then extensively investigated the effects of different cooperative
caching heuristics in various settings, showing simple cooperation can al-
ready boost caching performance. What’s more, we can further enhance
content delivery performance by combining proper compacting routing schemes.
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With two metrics concerning the network traffic from two different perspec-
tives, namely hit rate and footprint reduction for intra- and inter-domain
traffic respectively, we showed there are potentially infinite optimal caching
strategies on the Pareto frontier of system caching performance, where co-
operation policy determines the final outcomes based on the tradeoff be-
tween the two metrics. The process of pushing system performance from
under-utilization to Pareto optimum is the process from none/limited co-
operation to global cooperation. Bearing the Pareto frontier in mind, we
raised the design question that aims at finding a unique caching solution
which further incorporates fairness in the design goals, and answered it by
modeling in-network caching as a bargaining game. In addition, a careful
study on the cooperation overhead was also provided in the thesis.

We consider the work on measurement, evaluation and design of coop-
erative in-network caching strategies as our major contribution. However,
as in-network caching is heavily context-dependent, we are conservative in
jumping to any hasty and arbitrary conclusions on the effectiveness of coop-
eration before a compressive understanding of the future Internet context
is achieved and agreed on in the community. As we discussed in the the-
sis, the actual system performance depends on all three factors: content,
topology and cooperation, and no claims solely based on any individual one
should be made with confidence.

10.2 Future Direction

Though ICN design brings many advantages in content distribution com-
paring to the current network architecture, Internet per se is a fast changing
ecosystem where current understanding on demands, trends and technolo-
gies may be invalidated frequently. Hence whether ICN is going be the
solution for the future Internet remains open and needs time to attest.
Many research challenges are still awaiting the solutions. Based on the
work in this thesis, we list some possible directions in the below:

We proposed in Chapter 5 that greedy routing with hyperbolic em-
bedding can be used to solve mobility and its related issues. We further
improved the load balancing on traffic and storage with Prefix-S embedding
and topology-aware hashing in Chapter 6. However, being only two possible
options for compact routing, other embeddings are also worth investigation.

The metrics used in this thesis are far from complete. As already sug-
gested in Chapter 3, other more complicated ones should also be well ex-
amined. E.g. time, as one important dimension to measure system adap-
tivity, can represent content aging, network evolution, traffic dynamics and
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other important information after being integrated into the existing met-
rics. However, time is seldom taken into account in the existing evaluation
work. Another example is energy efficiency, which is attracting more and
more interest in ICN research lately. The impacts from incorporating en-
ergy metric into the system measurement and design is definitely worth
further study.

Last but not least, despite of its resemblance to the pub/sub system,
ICN does not use tags to identify a content object. One obvious disadvan-
tage is ICN loses at least one possibility to provide extra information on the
content. We believe the future content delivery (including routing, caching
and etc.), should better take advantage of the similarities in the content,
and even further exploit the semantic structure of the content names. This
direction and its related topics surely deserve more research and engineer-
ing efforts. ICN may also be qualified as a possible candidate for future
semantic web.
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