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Abstract

Clustering is a central task in computational statistics. Its aim is to divide
observed data into groups of items, based on the similarity of their features.
Among various approaches to clustering, Bayesian model-based clustering
has recently gained popularity. Many existing works are based on stochastic
sampling methods.

This work is concerned with exact, exponential-time algorithms for the
Bayesian model-based clustering task. In particular, we consider the exact
computation of two summary statistics: the number of clusters, and pairwise
incidence of items in the same cluster. We present an implemented algorithm
for computing these statistics substantially faster than would be achieved
by direct enumeration of the possible partitions. The method is practically
applicable to data sets of up to approximately 25 items.

We apply a variant of the exact inference method into graphical models
where a given variable may have up to four parent variables. The parent
variables can then have up to 16 value combinations, and the task is to clus-
ter them and find combinations that lead to similar conditional probability
tables.

Further contributions of this work are related to number theory. We show
that a novel combination of addition chains and additive bases provides the
optimal arrangement of multiplications, when the task is to use repeated
multiplication starting from a given number or entity, but only a certain kind
of function of the successive powers is required. This arrangement speeds
up the computation of the posterior distribution for the number of clusters.
The same arrangement method can be applied to other multiplicative tasks,
for example, in matrix multiplication.

We also present new algorithmic results related to finding extremal ad-
ditive bases. Before this work, the extremal additive bases were known up
to length 23. We have computed them up to length 24 in the unrestricted
case, and up to length 41 in the restricted case.
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The purpose of computing is insight, not numbers.

R. W. Hamming: Numerical Methods for Scientists and
Engineers
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Introduction

The main themes of this work are efficient methods for certain computa-
tionally intensive problems: relating to statistical clustering on one hand,
and to number theory on the other.

While statistics and number theory are rather distant fields of study,
we will encounter interesting connections. In particular, an application of
number theory will provide a solution to arranging the clustering computa-
tions in an optimal way. Number theory was one of G. H. Hardy’s examples
of “useless mathematics”, which was to be studied solely for the purpose of
mathematical beauty, yet it has later become an extremely useful tool in
several applied fields [6].

This work is structured as follows. Chapter 2 starts with the basics of
clustering as a statistical technique in general, and then goes on to Bayesian
model-based clustering in particular. In Chapter 3 we proceed to implemen-
tation and application: a computational method of exact posterior inference
in clustering is presented (relating to Article I), and exact clustering is then
applied to graphical probabilistic models (Article IV).

In Chapter 4 we take an excursion to additive number theory. Two pre-
viously established notions are discussed: addition chains and the postage
stamp problem. We see how these two can be combined in a novel way to
solve an optimization problem relating to exact clustering (Article II). Fi-
nally we turn to efficient computation of the postage stamp problem itself
(Article III).
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“I checked it very thoroughly,” said the computer, “and
that quite definitely is the answer. I think the problem,
to be quite honest with you, is that you’ve never actually
known what the question is.”

Douglas Adams: The Hitchhiker’s Guide to the Galaxy

2

Principles of Bayesian clustering

Clustering is the task of dividing a given set of objects into groups, such
that objects within a group are similar or near to each other, while objects
in different groups are dissimilar or far apart. The groups are called clusters.

While the opening paragraph states the general idea, numerous details
must be specified before “clustering” is even a well-defined problem. How are
the objects to be represented? One choice is to define them as points in the
d-dimensional space Rd, but this is not universally adequate, and there are
numerous other alternatives. How is similarity or nearness measured? Eu-
clidean distance is but one possibility. Finally, what additional constraints
or objectives do we desire? Do we set the number of clusters a priori, or
leave it to be selected by the clustering method? Different choices of specifi-
cation lead to a myriad of different “clustering tasks” and methods. We will
not even attempt an overview of them here; for that, the reader is directed
to a comprehensive survey by Jain et al. [20].

In this chapter we set the scene for a particular kind of clustering,
namely Bayesian, model-based clustering, and make some introductory ob-
servations.

2.1 Definitions, notation and terminology

Given that clustering is a large and multidisciplinary field of study, it is
not surprising that its basic concepts have a plethora of alternate names.
For example, the objects to be clustered may be called items, patterns,

3



4 CHAPTER 2. PRINCIPLES OF BAYESIAN CLUSTERING

observations or feature vectors [20] (and probably by other names as well).
These various synonyms do not usually cause any real difficulty, but for ease
of reference we begin by defining our notation and terminology.

We start with a universe U = {1, 2, . . . , n}, containing n items indexed
with integers. A cluster is a nonempty subset of U , and a partition is a
collection of disjoint clusters whose union is U . A partition consisting of
k clusters is a k-partition. A trivial partition has only one cluster, and a
singleton partition has n clusters that are singletons.

Each item i is associated with some features yi, which will form the basis
of clustering. We do not here specify how the features are to be represented,
but examples are d-dimensional real vectors or binary vectors; in that case
we may identify items with points in a vector space.

We make a distinction between ordered and unordered partitions. An
ordered k-partition is a tuple of clusters S = (S1, S2, . . . , Sk). An unordered
partition is a set of clusters with no intrinsic ordering; each cluster is iden-
tified solely by its constituent items. For example, while

({1, 2}, {3, 4}) and ({3, 4}, {1, 2}) (2.1)

are different ordered 2-partitions of 4 items, they correspond to the same
unordered partition

{{1, 2}, {3, 4}}. (2.2)

Note that in both cases the clusters themselves are sets. Clearly, the clusters
of an unordered k-partition could be ordered in k! ways, giving k! different
ordered partitions. The distinction might seem moot, but it is crucial when
counting how many partitions there are, and more importantly, when per-
forming a search within the space of all partitions, or defining a probability
distribution over it.

2.2 The space of all partitions

In a universe of n items, there are 2n − 1 nonempty subsets, or possible
clusters. The number of all unordered k-partitions is the Stirling number of
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Figure 2.1: Numbers of unordered partitions of different sizes (on the left
for n = 20 items; on the right for n = 50).

the second kind, denoted by
{
n
k

}
. Note that

{
n
1

}
=
{
n
n

}
= 1, corresponding

to the trivial and singleton partitions. For the general case 1 < k < n,
consider two possibilities of forming a k-partition: (1) if the first n−1 items
are in k− 1 clusters, the nth item must form the kth cluster on its own; (2)
if the first n − 1 items are in k clusters, then the nth item must be in one
of them. This gives the recurrence relation [43]{

n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
, (2.3)

by which
{
n
k

}
can be computed. Figure 2.1 illustrates it for n = 20 and

n = 50.
The number of unordered partitions of n items is the nth Bell number,

Bn =
∑n

k=1

{
n
k

}
. For example, B20 ≈ 5.2× 1013, and B50 ≈ 1.9× 1047.

We make two observations here. First, as Bn grows very rapidly with n,
direct enumeration of all partitions (whether for searching for the optimum
partition, or for a summation of posterior probabilities) is possible only for
very small values of n. However, in Chapter 3 we will consider a technique
that pushes the limit a little higher.
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Secondly,
{
n
k

}
varies strongly with k. For a given n, most partitions

have a fairly large number of clusters. In fact, the maximum of
{
n
k

}
occurs

roughly at the root of the equation k = en/k [26]. The implications of this
to our probability models will be discussed in Section 2.6.

2.3 Clustering: optimization or inference?

Traditionally, clustering is a non-probabilistic optimization problem: among
all possible partitions of given items, find the the best partition, in the sense
of some defined criterion, or objective function J .

If the items have features in a metric space, naturally occurring criteria
are aggregates of the distance function, such as: maximum (or average)
pairwise distance (or squared distance) between two points within the same
cluster (or between a point and its “cluster center”). The criterion is usually
easy enough to compute for a given partition. But finding the optimum, or
a near-optimum partition is generally difficult.

For example, Garey and Johnson define Clustering as the following
problem (in our notation): Given a finite set U , a distance d(x, y) ∈ Z+

0 for
each pair x, y ∈ U , and two positive integers k and B, determine whether
there exists a partition of U into S1, S2, . . . , Sk such that d(x, y) ≤ B for
every pair x, y within each cluster. This problem is NP-complete, along with
some variations, for example, where the upper bound B is for the sum of
intra-cluster pairwise distances [16].

Practical approaches include iterative methods such as the K-means [3,
pp. 424–430]. Its underlying idea is that if a cluster’s items are points in Rd,
they should be near to their centroid. The clustering criterion is defined as

J =
k∑

j=1

∑
i∈Sj

d(yi − µj)2, (2.4)

where µj is the centroid of the points in cluster Sj , and d is Euclidean
distance. Now, given a particular partition S, the cluster centroids are easy
to compute. But it may happen that some points are nearer to some other
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cluster’s centroid than their own. Then J is decreased (improved) if those
points are re-assigned to those better clusters. Repeating this, a sequence
of improving partitions is obtained, leading to a local optimum of J .

Now probability may enter the picture in at least two forms. First, it is
natural to think that a cluster is associated with a probability distribution,
or a process that has generated the features of its items. A partition then
defines a probability model, and it is standard statistical practice to seek the
maximum-likelihood model, that is, the partition under which the probability
(density) for the observed data is maximized. Defined this way, clustering
is still an optimization problem, but in a probabilistic setting.

For example, the distribution may be multivariate Gaussian, with an un-
derlying mean vector (centroid) and a covariance matrix. As these cluster
parameters are usually unknown, they may be estimated from the cluster’s
items, or more generally treated as latent variables. The distribution for the
whole observed data is then a mixture of Gaussians, with mixture compo-
nents arising from the different clusters. A practical method for seeking the
maximum-likelihood partition is the Expectation-Maximization (EM)
algorithm, which has strong resemblance to K-means, but is motivated
from the probabilistic model [3, pp. 430–455].

The second probabilistic aspect is related to the first one. If the data
were generated according to a probability model implied by a particular
partition (the generating or true partition), it quite possible that many other
partitions could have produced exactly the same data. This is typically the
case when the clusters overlap in the feature space. In such cases there is no
particular reason to believe that the maximum-likelihood partition is exactly
correct, though it may be similar to the true partition (see Figure 2.2).
One might argue that based on the observed data, the maximum-likelihood
partition is our best estimate of the true partition, but how much confidence
do we have on it, and how should we express the uncertainty?

At the simplest, perhaps two clusters are mostly separate, but a few
points lie near their boundary, so the classification of those few points is
uncertain. Fuzzy clustering [20, pp. 281–282] addresses this problem by mak-
ing the clusters fuzzy sets, so that an item may belong to several clusters
in varying degrees (expressed as a membership function).
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Figure 2.2: Overlapping clusters. Left: generating model (two bivariate
Gaussians). Right: the partition that divides the points along the y axis
provides much greater likelihood.

More generally, larger-scale properties of the true partition can be un-
certain. Based on the data, we may not even be sure how many clusters
there are; this is quite typical in real world situations. Such uncertainty
cannot be represented by fuzzy clustering. Instead, we would like to express
uncertainty within the whole partition space.

If we can somehow obtain a posterior distribution for partitions, in prin-
ciple this opens up all kinds of possibilities for inference, in a manner that
has sound basis in probability calculus. For example, suppose that k is
uncertain. Adding up the posterior probabilities for all 5-partitions, we ob-
tain the posterior probability for the event that k = 5. Repeating for all
k = 1, . . . , n, we get a genuine posterior distribution for k.

For another example, considering a particular pair of items x, y, we could
infer the posterior probability that they are in the same cluster – whatever
the partition for all other items may be. A related idea is to seek the partition
that minimizes a particular loss function, such as the expected number of
pairs of items that have been wrongly clustered either together or apart [24].
Such an optimum partition is usually different from the maximum-likelihood
partition.

In general, if we are interested in a particular aspect of the true partition,
we could marginalize out all other, uninteresting aspects.
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2.4 Bayesian clustering model

The Bayesian approach provides a natural framework for expressing uncer-
tainty within the space of all partitions [5]. Two ingredients are needed: a
prior p(S) over the partitions, and a likelihood p(Y | S) indicating which
data Y = (y1, . . . , yn) are likely to be generated from each partition. Note
that we use p(·) as a generic notation for probability mass or density.

Bayes’ theorem then states simply that our posterior probability for
partition S, based on the data Y , is

p(S | Y ) = p(S) p(Y | S) / Z, (2.5)

where Z is a normalizing constant, equal to

Z = p(Y ) =
∑
S

p(S) p(Y | S). (2.6)

Of particular interest are product partition models, where both the prior
and the likelihood in (2.5) are defined so that they factorize into products
over the clusters [34]:

p(S) = C
k∏

j=1

c(Sj),

p(Y | S) =
k∏

j=1

p(Yj | Sj),

(2.7)

where C is again a normalizing constant; c is a “cohesion function”; and Yj
represents the data in cluster Sj . The factorization of p(Y | S) entails the
assumption that data in different clusters are independent (conditional on
the partition).

For more freedom in the partition prior, we extend the product partition
model with constant factors that may vary with k, thus we take

p(S) = C wk

k∏
j=1

c(Sj). (2.8)
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Stochastic methods can then be applied either to search for the partition
that has maximum a posteriori probability (MAP) [12], or to estimate the
posterior distribution of S. However, a stochastic search will necessarily
visit only a tiny portion of the vast space of possible partitions, and the
posterior probabilities of partitions will be known only up to the unknown
normalizing constant Z. We may thus gain a good understanding of the
relative merits of those partitions that were visited, but their true posterior
probabilities remain unclear, unless we can ascertain that the search has
covered a large part of the posterior distribution.

To complete the probability model, we must specify both the prior model
for partitions p(S), and the likelihood model for the data p(Y | S). We will
discuss these in the following two sections, starting with the likelihood.

2.5 Marginal likelihood of a cluster

The likelihood of the data in a particular cluster, p(Yj | Sj), could be
defined in various ways. If a parametric model is employed, each cluster Sj
is equipped with some parameters θj .

For example, if the data within a cluster are assumed to be multivariate
Gaussian, θj will represent the cluster location and shape in terms of a mean
vector µj and a covariance matrix Cj . If further the features in different
dimensions are assumed (conditionally) independent, the model takes the
form

(yim | Sj , θj) ∼ N(µjm, σ
2
jm) (2.9)

where θj consists of the means µjm and variances σ2jm for cluster j and
dimensions m = 1, . . . , d.

For another example, if the data within a cluster are binary (Bernoulli
variables), and dimensions are conditionally independent (the “Naive Bayes”
assumption), we may model

(yim | Sj , θj) ∼ Bernoulli(µjm), (2.10)

where θj = (µj1, . . . , µjd) is a vector of the probability parameters for clus-
ter j and dimensions m = 1, . . . , d.
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Now these probability models are conditional on the unknown cluster
parameters θj . For (2.7) we need themarginal likelihood of the data observed
in a cluster, that is, we need to integrate over θj . There are two approches. In
a stochastic search the parameters θj may be subject to sampling, along with
the partition S itself. Another possibility is to assume a prior probability
for θj that is conjugate with the likelihood model, such that p(Y | S) can
be readily computed analytically.

For the Gaussian likelihood, this is achieved if the mean parameter has a
Gaussian distribution and the variance has an inverse-gamma distribution.
For the Bernoulli likelihood, the probability parameter is taken to have
a beta distribution. Detailed formulae for the marginal likelihoods can be
found in Article I.

2.6 Prior on partitions

For a complete probability model, we need a prior distribution within the
space of possible partitions. Recall from Section 2.2 that the space is rather
large: Bn partitions, if we work with unordered partitions.

Uniform distribution may be seen as an innocent-looking “ignorance
prior”. If we take the uniform prior over unordered partitions,

p(S) =
1

Bn
(2.11)

then the MAP (maximum a posteriori probability) and ML (maximum
marginal likelihood) partitions coincide, and we may think we have evaded
the whole issue of prior choice. This may be defensible if we do not seek full
posterior inference, but wish to find one reasonably good partition.

However, if we wish to perform posterior inference about k or some other
property of the partition, the choice of the prior may have a large impact.
Uniform prior over partitions implies that the prior probability for k is
proportional to

{
n
k

}
, which is extremely peaked at fairly large values of k,

as we saw in Figure 2.1.
From a subjective Bayesian viewpoint this may be quite unsatisfactory.

Consider for example n = 50. The prior probabilities for k = 2, 3, 4 are
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approximately 3.0 × 10−33, 6.4 × 10−25 and 2.8 × 10−19, respectively. On
the other hand, the prior probability for k = 16 is 0.21. It seems far-fetched
to claim that these probabilities represent our genuine a priori belief of the
number of clusters in some data of 50 items. For larger n the effect is even
more pronounced.

From a more pragmatic viewpoint, these uneven priors may be seen as an
unwanted bias towards a large number of clusters in the posterior inference.
Article I has some brief experimental results on this.

Another choice, which may feel more defensible from a subjective view-
point, is to assume that the number of clusters has uniform distribution over
whatever values we deem plausible; unless we have reason to think other-
wise, we may let k have the discrete uniform distribution over the integers
{1, . . . , n}. If we have no preference between partitions of the same size, our
prior is then

p(S) =
1

n
{
n
k

} (2.12)

since the probability 1/n is spread uniformly over the
{
n
k

}
partitions of

size k.
Perhaps slightly unexpectedly, this simple prior cannot be represented

in the form (2.7) required by the product partition model, since it does not
factorize as a product over clusters, as proven by Quintana and Iglesias [34].
However, conditional on the value of k, the prior (2.12) is constant, so we
can use our extended prior model (2.8).

Yet another, and a very common choice of partition priors is based on a
Dirichlet process. Conceptually, it is based on a potentially infinite number
of classes, out of which a finite number k realizes in a finite sample of
items. This process implies a particular prior on k, as discussed by Quintana
and Iglesias [34]. Dirichlet process has a concentration parameter α, which
affects its tendency to produce more or less clusters. It should also be noted
that the Dirichlet-implied prior distribution divides the prior probability
unevenly between partitions of the same size k; in this it differs from both
versions of uniform distribution described above.



If you don’t know where the strongly peaked regions are,
you might as well . . . quit: It is hopeless to expect an
integration routine to search out unknown pockets of
large contribution in a huge N -dimensional space.

Press et al.: Numerical Recipes in C

3

Exact Bayesian clustering

In the previous chapter we formulated a probability model for Bayesian
model-based clustering. Given a likelihood model and a prior for partitions,
we could in principle compute (2.5) for all Bn unordered partitions, and
from the resulting distribution make any posterior inference we wish.

Since Bn is huge (unless n is small), a common solution is to employ
a stochastic algorithm that samples a large number of partitions of rela-
tively large posterior probability, and either searches for an optimal model
(stochastic optimization), or collects summary statistics such as posterior
probability estimates for some parameters of interest (Monte Carlo integra-
tion). Although these two approaches have different goals, they may employ
similar sampling techniques.

Monte Carlo integration is widely used in Bayesian statistics. In clus-
tering, however, stochastic methods usually aim at optimization: searching
for a partition that has high likelihood or posterior probability [12], or min-
imizes some loss function [24]. As an example of the summary statistic
approach, posterior probabilities for k (the number of clusters) can be es-
timated from the stochastic sample [11]. But producing proper summary
statistics is thought to be difficult, as the set of visited partitions may be
very irregular [24].

Here we take a different approach. We shift the viewpoint from individ-
ual partitions into classes of partitions, defined by some particular statistic.
We focus here on two statistics: (1) the number of clusters, and (2) pairwise
incidence of two particular items, that is, the event that they are assigned

13



14 CHAPTER 3. EXACT BAYESIAN CLUSTERING

into the same cluster. The latter can of course be computed for all item
pairs (i, j), producing a matrix of pairwise incidences (adjacency matrix).

Having chosen a particular statistic, we wish to infer its exact posterior
distribution. For very small n this can be done by enumerating all partitions.
For somewhat larger n it can still be done exactly without resorting to
stochastic methods. The underlying idea is that the posterior probability
is defined as a large sum of products, and this sum-of-products is then
decomposed in a manner reminiscent of computing the distribution for a
sum of random variables through convolution [38, pp. 56–58].

The decomposition method applicable in this context is subset convolu-
tion. Computing the sum still takes time exponential in n, but considerably
less than the full enumeration of Bn partitions.

Subset convolution methods have been studied before by various authors
[4, 15]. Directly relevant to our purposes, Koivisto has described how the
exact posterior distribution for k can be computed via inclusion–exclusion
[23], a method related to subset convolution.

In Article I, we describe an implementation of the computation for the
posterior of k using subset convolution; extend it to computing the posterior
probability for pairwise incidence; and present some empirical results.

3.1 Decomposition of the posterior sum

Let us fix k for the moment, and let us compute the total posterior proba-
bility for all k-partitions – that is, the posterior probability that the number
of clusters is k.

For computational and notational convenience, we take the sum over
ordered k-partitions, whose space we denote by Sk. If we do not want to
change the prior distribution of partitions, we basically have to include an
extra factor of 1/k! in the prior p(S). We write c(Sj)p(Y | Sj) = f(Sj) for
brevity, and for completeness define f(∅) = 0, which ensures that empty
sets do not contribute to the sum.

We assume that f(X) is first computed for all 2n subsets X ⊆ U , and
the results stored as a table of 2n entries. Note that while this is exponential
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in n, in practice 2n is small compared to the number of partitions.
The marginal posterior probability for k clusters is provided by

p(k | Y ) = C wk

∑
S∈Sk

k∏
j=1

f(Sj). (3.1)

The sum over partitions can be written as a (k − 1)-fold sum over clusters∑
S1⊆U

∑
S2⊆R2

· · ·
∑

Sk−1⊆Rk−1

k∏
j=1

f(Sj), (3.2)

where Rj = U \ (S1 ∪ · · · ∪ Sj−1) is the set of items available for the jth
cluster, after the first j − 1 clusters have already been selected; for the last
cluster there is no choice left, so Sk = Rk. This corresponds to an algorithm
that enumerates the unordered partitions via k − 1 nested loops. The sum
has k!

{
n
k

}
terms since we work with ordered partitions.

Many terms in (3.2) have common factors. For a concrete illustration, let
k = 4. Taking common f factors out of inner sums, the sum (3.2) becomes∑

S1⊆U

f(S1)
(∑
S2⊆R2

f(S2)
(∑
S3⊆R3

f(S3)f(

S4︷ ︸︸ ︷
R3 \ S3 )

)
︸ ︷︷ ︸

(∗)

)
. (3.3)

Observe that the innermost sum (∗) depends on R3, that is, on what items
are left for clusters S3 and S4, but it has absolutely no dependence on how
the other items were divided between clusters S1 and S2.

For even more concreteness, let n = 12. If now S1 ∪ S2 = {1, 2, 3, 4, 5},
then R3 = {6, 7, 8, 9, 10, 11, 12}, and the innermost sum represents the pos-
sibilities of dividing R3 into two clusters S3 and S4; it does not depend on
how the items {1, 2, 3, 4, 5} are divided between S1 and S2. Since the inner
sum has the same value for every S1, S2 that have the same union, it needs
to be computed only once (for each choice of that union).
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Let us now define a set function that formalizes the above observations.
LetX ⊆ U , and let g, h be two real-valued functions defined over the subsets
of U . Then subset convolution g ∗ h is defined as

(g ∗ h)(X) =
∑
A⊆X

g(A) h(X \A), (3.4)

or equivalently, in a more symmetric fashion

(g ∗ h)(X) =
∑

A,B⊆X
A+B=X

g(A) h(B), (3.5)

where A+B represents disjoint union. In essence, subset convolution repre-
sents the enumeration of all divisions of X into two subsets. For any given
X ⊆ U , this sum has 2|X| terms, and can be computed in O(2|X|) time by
direct summation, if the values of g(A) and h(B) are already available.

With this notation, the inner sum (∗) is simply (f ∗ f)(R3), and the
whole sum (3.3) can be rearranged as∑

A+B=U

∑
S1+S2=A

(
f(S1)f(S2)

)
(f ∗ f)(B)

=
∑

A+B=U

(f ∗ f)(A) (f ∗ f)(B)

= ((f ∗ f) ∗ (f ∗ f)) (U).

(3.6)

Having precomputed f(X) for all X ⊆ U , we can compute (3.6) as follows:
First, compute a table of (f∗f)(A) for all A ⊆ U . Then, take g = h = (f∗f),
and compute (g ∗ h)(U). This provides the exact value for (3.2).

For a particular subset X, computing (f ∗ f)(X) by (3.4) involves the
summation of 2|X| terms. Since U has

(
n
s

)
subsets of size s, computing the

full table of f ∗ f for all X ⊆ U involves
n∑

s=0

(
n

s

)
2s = 3n (3.7)

terms by the binomial theorem, and can be done in O(3n) time.
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3.2 Posterior number of clusters

The method illustrated for k = 4 in the previous section can be generalized
to arbitrary k as follows. From the definition (3.5), it follows that subset
convolution is an associative operation over set functions, that is, (f∗g)∗h =
f ∗ (g ∗ h). We may thus define k-fold subset convolution as

f1(X) = f(X),

fk(X) = (fk−1 ∗ f)(X) = ( f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
k copies

)(X). (3.8)

It also follows that the sum (3.2) over ordered k-partitions of U can be
expressed as

fk(U). (3.9)

By associativity, fk(X) can be computed as (f i ∗ f j)(X) for any positive
integers i + j = k. The underlying idea is as follows. When computing a
sum over ordered k-partitions of X, we can first consider all 2n ways of
dividing X into two disjoint subsets A and B. Then, for any given division
A + B = X, we consider separately the possibilities of dividing A into i
subsets, and the possibilities of dividing B into j subsets.

The exact posterior distribution for k can now be computed as follows.

Step 1. Precompute f(X) for all subsets X ⊆ U . As a special case, set
f(∅) = 0 since a cluster cannot be empty.

Step 2. For k = 2, . . . , n, compute the full table fk(X) = (fk−1 ∗ f)(X) for
all X ⊆ U .

Step 3. Compute p(k | Y ) = C wk f
k(X) for k = 1, . . . , n. The normalizing

constant C is determined by
∑n

k=1 p(k | Y ) = 1.

Since each subset convolution in Step 2 takes O(3n) time, and there are
n − 1 convolutions to perform, the whole step takes O(n 3n) time. The
computations are illustrated in Figure 3.1.
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Figure 3.1: Computing the posterior distribution for k via subset convolu-
tions. Each vertical column represents the table for fk(X) for all subsets
X ⊆ U . Black horizontal arrows represent subset convolution fk = fk−1∗f .
Red vertical arrows represent the table lookup for fk(U).

The author has implemented this algorithm, nicknamed Xpost for exact
posterior clustering inference, in MATLAB and partly in C (for enhanced
speed in some innermost loops). Some illustrations and experimental results
are shown in Article I.

We compared the exact posterior distribution for k against the distri-
bution estimated with an MCMC method, and observed that MCMC did
slightly underestimate the number of clusters. In future research, it is worth
studying whether such deviation is systematic, what causes this behavior in
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MCMC, and whether it can be removed. This perhaps illustrates the useful-
ness of having an exact posterior distribution available as a “gold standard”,
for evaluating the accuracy of other clustering methods.

Concerning computational speed, the current implementation of Xpost
takes approximately 2.5 hours of processor time to compute the exact pos-
teriors for a data set of n = 20 items. In comparison, we estimate that a
straightforward computation by full enumeration of the B20 ≈ 5.2 × 1013

unordered partitions would take about 200 days.
Since the time requirement of Xpost is O(n 3n), we can further estimate

that the exact clustering posteriors for n = 25 items could be computed
in about 30 days of processor time, which is quite feasible with parallel
computing. For larger numbers of items the current method is obviously
not practical.

We note that there exists a method called fast subset convolution [4],
which computes the subset convolution (g∗h)(X) simultaneously for allX ⊆
U with the help of a cleverly constructed transformation of the set functions
g and h. The method has better asymptotic performance than the direct
method: instead of O(3n), it has a time requirement of O(n2 2n). The author
implemented also this method, but despite the large asymptotic difference,
in practice fast subset convolution did not offer much improvement in speed,
considering that the feasible values of n are relatively small.

3.3 Posterior pairwise incidence

Aside from the number of clusters, we can define other summary statistics
to characterize a partition of U . A particularly simple statistic is pairwise
incidence of two given items i and j, or the event Iij that the two items are
in the same cluster. This statistic is also known as “pairwise co-occurrence”
or “coincidence”. We could also think of it as a binary random variable (the
indicator variable for the incidence event).

As Iij is a property of a partition, a posterior distribution for partitions
implies a posterior probability for Iij . The probability p(Iij | Y ) indicates
our a posteriori belief that items i and j belong in the same cluster.
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We may also compute p(Iij | Y ) for each pair i, j ∈ U . This gives us
a matrix of pairwise incidence probabilities, easy to visualize as a grayscale
image with, say, black indicating high posterior incidence. From such an
image one may obtain a summary view of which clusters are particularly
well discernible from the data, and which are more uncertain. Note that
such a matrix represents the marginal posterior probabilities of incidences,
and does not reflect their mutual dependence.

In Article I we show that p(Iij | Y ) can be computed from the subset
convolution tables f1, f2, . . . , fn. To arrive at this solution we need a few
observations. First, we break Iij into n disjoint events (k, Iij), meaning that
“there are k clusters, and items i, j are both in one of them”. We compute
the probabilities of these events separately for k = 1, . . . , n.

The second observation is that the event (k, Iij) may be further broken
into k equiprobable events: the items i, j could be together in cluster S1,
or any of the other k − 1 clusters. By symmetry of the prior and likelihood
models, these are equiprobable, so it suffices to compute the probability for
i, j ∈ S1, and then multiply by k.

The third, and crucial observation is that the probability for i, j ∈ S1,
with k clusters, can be written as a sum over ordered k-partitions such
that for S1, we sum over the 2n−2 clusters that do contain both i and j;
then, if the first cluster is S1, for the remaining items U \ S1 we allow any
(k − 1)-partition, so in effect we simply look up fk−1(U \ S1).

If the n full subset convolution tables f1, f2, . . . , fn are already available,
then (as shown in Article I) the posterior incidence probability for two given
items i, j can be computed in O(n 2n) time. Repeating this for all pairs
i, j gives the matrix of posterior incidence probabilities in O(n3 2n) time.
Detailed formulae, and two visual examples of posterior incidence matrices
are shown in Article I.

We note here that the same method could be applied to any particular
group of items, not just pairs. For example, a straighforward modification
would give the posterior probability for a given triple of items to be incident
in the same cluster.
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3.4 An application to graphical models

Probabilistic graphical models are widely used in Bayesian statistics to rep-
resent the joint distribution of a collection of variables. They are based on
a graph where the variables are represented by nodes (vertices). Each node
may be connected to some other nodes with arcs or edges, and has a spe-
cific probability distribution conditional on the values of those neighbouring
nodes [3, 30].

We focus here in the variant called Bayesian networks or directed graphi-
cal models, where the graphical structure is a directed acyclic graph (DAG);
further we assume that the variables are binary. If a node X has m incom-
ing arcs, then the variable X has a conditional probability table (CPT) that
contains 2m conditional probabilities

p(X = 1 | Y1 = y1, . . . , Ym = ym) (3.10)

where Y1, . . . , Ym are the parent variables of X, and (y1, . . . , ym) take all
the 2m possible values of the parents. Various methods exist for estimating
these parameters and the structure of the graph from observed data [30].

For example, if X has 4 parents A,B,C,D, the model incorporates 24 =
16 probability parameters, which we will denote by p0000, p0001, . . . , p1111.
In general these 16 parameters are free, or independent parameters, so such
a model accommodates a great amount of freedom.

If one wishes a simpler model (in the sense of number of parameters),
one could simply reduce the number of parents. If X has only one parent
A, this entails that if A is known, the values of B,C,D are irrelevant for
predicting X.

However, one may wish to leave the possibility that for some values
of A, the values of B,C,D are still relevant for X. Such models have been
proposed under the name of labeled DAGs (LDAGs) [33]. In effect, a la-
beled DAG imposes a restriction that some of the conditional probabilities
must have equal values. For example, the model may specify that X has
four parents A,B,C,D such that if A = 0, then the probability of X does
not depend on the other parents, but if A = 1 then it can depend on
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them. This means that within the CPT of 16 entries, the first eight en-
tries p0000, p0001, . . . , p0111 are constrained to have the same value, while the
remaining eight entries can be all different.

In Article IV we propose a generalization of LDAGs. Given a node that
has m parents (thus 2m entries in the CPT), we allow an arbitrary partition
of the CPT entries such that within a cluster, the entries have the same
value. For at most 4 parents, this implies a clustering problem of at most 16
items, which can be solved relatively efficiently with a variant of the Xpost
algorithm.

We applied this proposed model (called partition DAG or PDAG) to
a data set containing 6 binary variables indicating different risk factors
for coronary heart disease, and found an interesting, nontrivial association
within the CPT for the binary variable indicating high systolic blood pres-
sure. According to our findings, this variable could be linked to a specific
combination of three other variables. Of course, such findings should not be
taken too seriously before further studies perhaps support them, but this
example illustrates that partition DAGs may reveal potential associations
that are not visible with ordinary DAG models.



If the theory of numbers could be employed for any
practical and obviously honourable purpose . . . surely
neither Gauss nor any other mathematician would have
been so foolish as to decry or regret such applications.

G. H. Hardy: A Mathematician’s Apology

4

An excursion to number theory

The Springer Encyclopedia of Mathematics defines number theory as “the
science of integers” [31]. For most people this probably conjures up ideas like
primality, factorization and modular arithmetic: concepts involving multi-
plication and division. But now we take an excursion into additive number
theory, which studies the addition of (sets of) integers.

Our interest in additive number theory stems from the well-known algo-
rithm of evaluating powers via repeated multiplication, such as computing
x8 from x by three successive squarings yielding x2, x4 and x8. When powers
are multiplied, exponents are added, so the task is essentially additive. The
optimal choice of multiplications to perform is provided by addition chains
[21, p. 402].

Similarly we can reduce the number of laborious subset convolutions
performed by the Xpost algorithm. Recall that it computes the posterior
distribution of the number of clusters via repeated subset convolutions;
and that subset convolution is associative. The same convolution could be
computed in different ways – for example, f10 = f5 ∗ f5, or f7 ∗ f3. This
leads to the problem of choosing which convolutions to perform, so as to
minimize the computational work.

Our actual computational problem is slightly more involved, and its
solution, published in Article II, is based on a novel combination of addition
chains and the postage stamp problem. For ease of exposition we will first
revisit the basic task of repeated multiplication.

23
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4.1 Addition chains and repeated multiplication

Suppose that given a number x, we must compute xn with as few multipli-
cations as possible. At each step we may multiply any two numbers (powers
of x) so far obtained. More generally, x may be an element of any semi-
group, i.e., a set with an associative operation: for example, real matrices
with matrix multiplication.

If n = 2r, then the optimal way is to perform r squarings:

x→ x2 → x4 → . . .→ xn. (4.1)

To see that this is indeed optimal, observe that each multiplication can
at most double the highest exponent attained so far, thus fewer than r
multiplications cannot reach the exponent 2r.

If n is not a power of two, the optimal solution may not be obvious.
Consider x15. The binary method [21, p. 399] computes it in six multiplica-
tions

x→ x2 → x3 → x6 → x7 → x14 → x15, (4.2)

where each step takes the highest power computed so far, and either squares
it or multiplies it by x. But the factor method [21, p. 401] computes y = x3

in two multiplications, then y5 in three more, for a total of five:

x→ x2 → (x3 = y)→ y2 → y4 → (y5 = x15). (4.3)

When powers of x are multiplied, the exponents are added (xaxb =
xa+b), so the problem reduces into an additive one: starting from 1, add
successively any two integers so far computed, finally reaching the target n.
A sequence of integers thus obtained is an addition chain, formally,

(1=a0, a1, . . . , ar=n) (4.4)

such that for any k > 0, we have ak = ai + aj for some i, j < k. Note that
i and j need not be distinct.

The alternative computations (4.2) and (4.3) are represented by the ad-
dition chains (1, 2, 3, 6, 7, 14, 15) and (1, 2, 3, 6, 12, 15). The trivial method,



4.2. COMPUTING SEVERAL POWERS 25

which multiplies by x successively, is represented by (1, 2, 3, . . . , 13, 14, 15).
Evidently, for a given target n there can exist many addition chains. Usually
one wishes to find the shortest ones.

For a bibliography on addition chains see, e.g., Guy [18, pp. 169–171].
The Online Encyclopedia of Integer Sequences has several entries about
them, including A003313, “Length of shortest addition chain for n” [32].

The term addition chain is somewhat of a misnomer, since an element
need not be computed from the immediately previous element (as in a
“chain”) but from any two earlier elements. In fact the additions form a
directed, acyclic multigraph. Clift has used graph-theoretic methods to de-
termine the shortest addition chains for targets n ≤ 232 [10].

By minimizing the number of multiplications we are in essence assuming
that each multiplication has unit cost. For many applications this may be
true, or a reasonable approximation, but as a counterexample note matrix-
chain multiplication of matrices of different dimensions [13, pp. 302–309].

4.2 Computing several powers

Let us expand the previous section’s task by requiring all consecutive powers
x2, . . . , xn by multiplication from x. Is there now any room for optimization?

It only takes a moment of thought to realize that n− 1 multiplications
are both necessary and sufficient. Since we need n−1 different results, surely
we must perform at least that many operations. A straightforward solution
is to multiply by x repeatedly.

Although optimizing the computation of all consecutive powers is trivial
(assuming unit cost of multiplication), there is an interesting generaliza-
tion where one requires the computation of a given set of powers such as
{x4, x10, x20}. This leads to a nontrivial optimization problem [14].

4.3 The postage stamp problem

Before continuing to our task of optimizing convolutions, let us embrace
another problem concerning addition of integers.
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Suppose that an envelope may carry at most two stamps. Stamps are
available in k different positive integer values A = {a1 < a2 < . . . < ak}.
The local postage stamp problem is: Find maximal integer n such that any
integer postage fare between 1 and n can be paid, as a sum of one or two
stamps. Possible sums are said to be generated by A. The integer n is called
the range of the stamps, and denoted by n2(A).

The global postage stamp problem is: Given k, choose k stamp values
A = {a1, . . . , ak} so as to maximize n2(A). The set A is then extremal, and
the range thus attained is n2(k). The extremal set need not be unique. For
example, n2(7) = 26 with three solutions:

A1 = {1, 2, 5, 8, 11, 12, 13},
A2 = {1, 3, 4, 9, 10, 12, 13},
A3 = {1, 3, 5, 7, 8, 17, 18}.

(4.5)

Note that n2(A) is not necessarily the largest sum generated. It is the largest
of the consecutive generated sums. Although A3 generates 18+ 18 = 36, its
range is only 26, since the consecutive integers 1, . . . , 26 are generated, but
27 is not.

Instead of at most two stamps, we can quite equivalently require that
the postage is paid with exactly two stamps, if we include a zero stamp
a0 = 0; then with any stamp ai we can pay ai = 0 + ai. The zero stamp is
usually not counted in the length of the stamp set.

The history of the postage stamp problem is difficult to trace, as it seems
to have been reinvented many times. Alter and Barnett [2] credit its initial
mathematical statement to Rohrbach’s 1937 article [37]. The allusion to
postage stamps probably started in recreational mathematics. In number
theory, the set of postage stamps is usually called an additive 2-basis, or
eine Basis zweiter Ordnung [37, 40]. For bibliography see Selmer [39] and
Guy [18, pp. 123–127].

Extremal solutions are known only for k ≤ 24, the largest ones giving
n2(24) = 212. They have been found by several authors with variations of
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k year author method, other notes
5 1955 Stöhr [40, p. 48] “Durch systematisches Probieren”
7 1960 Riddell [35] “A few days of hand labor” [36]
11 — Victor; Varol Unpublished, cited in [42, p. 307]
12 1969 Lunnon [25] Backtracking algorithm
13 1977 Alter & Barnett [1]

}
Priority unclear13 1978 Riddell & Chan [36]

16 1981 Mossige [27]
19 1993 Challis [7] Combinatorial pruning
22 2010 Challis & Robinson [8]
23 2013 Challis & Robinson [9]
24 2014 Kohonen & Corander [22]

Table 4.1: History of n2(k) by year of publication.

exhaustive search, as summarized in Table 4.1.1 We will discuss some of
these computational methods in Section 4.5.

Currently known solutions are listed at the end of Article II. For up-
to-date results see the OEIS sequence A001212, “Solution to the postage
stamp problem with n denominations and 2 stamps” [32].

Since n2(k) is difficult to compute exactly, much attention has been paid
to asymptotic lower and upper bounds of the form

Lk2 +O(k) ≤ n2(k) ≤ Uk2 +O(k). (4.6)

The tightest known bounds are given by

L =
2

7
≈ 0.28571, U = 0.46906. (4.7)

The lower bound is due to Mrose [28] and has not been improved since. The
upper bound has seen a series of incremental improvements, the latest by
Habsieger [19], who also gives an account of earlier results.

1It is unclear whether Alter & Barnett or Riddell & Chan were the first to compute
n2(13). The references to Riddell’s master’s thesis in 1960, and Victor’s and Varol’s
unpublished results are from Riddell & Chan [36] and Wagstaff [42].
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Here we describe only the most elementary bounds. A lower bound on
n2(k) can be proven by constructing an additive 2-basis, such as

A = {1, 2, 3, . . . ,m, 2m, 3m, . . . ,m2}, (4.8)

where m is a positive integer, and k = |A| = 2m−1. Then n2(A) = m2+m,
and we have

n2(k) ≥ n2(A) =
k2

4
+O(k). (4.9)

An easy upper bound is obtained from a counting argument. From k + 1
stamp values (including the zero stamp), one can choose

(
k+2
2

)
unordered

pairs (note that using the same stamp value twice is allowed); thus at most
that many different sums can be formed, and we get

n2(k) ≤
k2

2
+O(k). (4.10)

It is interesting that these elementary arguments already provide bounds
with coefficients 0.25 and 0.5, which are remarkably close to the state-of-
the-art coefficients (4.7).

We will encounter the counting argument again in Section 4.5 as an
algorithmic technique, and yet again in Section 4.6.

4.4 Postage stamps and multiplication

Let us now return to our clustering task: in particular, to determining the
posterior distribution for the number of clusters. We denote it here by c, so
as not to be confused with k, the number of stamps.

For this we need f c(U) for all c = 1, . . . , n. In light of Section 4.2 it would
seem that the best we can do is to compute sequentially f2, f3, . . . , fn,
requiring n− 1 subset convolutions.

Not so! We do not need the full convolution tables f c. From each table we
only need the single value f c(U). Computing this one value is substantially
less work than computing f c(X) for all sets X ⊆ U . If the full subset
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convolution tables are available for some suitable smaller integers a and b,
such that a+ b = c, then

f c(U) =
∑
X⊆U

fa(X) f b(U \X), (4.11)

where the sum contains 2|U | terms. Each term requires just two table lookups
and one scalar multiplication.

Direct evaluation of this sum takes O(2|U |) time. Since it gives the con-
volution only for a single set U , we will call it single subset convolution.
Although this is still exponential, in practice it can be vastly faster than
full subset convolution, which takes O(3|U |) or O(2|U | |U |2) depending on
the method used.

For a concrete example, suppose that n = 10, we are given f as in-
put, and we need the values f c(U) for c = 1, . . . , n. Only three full subset
convolutions are required if we proceed as follows (see Figure 4.1).

Step 1. Compute f ∗ f = f2, then f2 ∗ f2 = f4, and then f4 ∗ f = f5.

Step 2. Extract f(U), f2(U), f4(U) and f5(U) from the tables.

Step 3. Compute the remaining values of f c(U) according to (4.11).

For more generality, let n be arbitrary, and again require f c(U) for
c = 1, . . . , n. For simplicity assume unit cost for a full convolution, and zero
cost for a single convolution. We aim to perform as few full convolutions as
possible. How many, and which ones should we perform?

Let A be the set of indices a for which fa is computed in full. It is
convenient to include the value 1, corresponding to the input f1. In the
previous example we thus had A = {1, 2, 4, 5}.

There are two crucial requirements that A must satisfy. First, when
computing the full convolution f c, where c ∈ A \ {1}, we must already
have the full convolutions fa and f b for some smaller indices a, b such that
a+ b = c. In other words, A must be an addition chain.

Secondly, after the full convolutions have been computed, we must be
able to obtain f c(U) for all indices c = 1, . . . , n. For every such index c, we
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Figure 4.1: Reducing the number of subset convolutions. Only f2, f4 and f5

are computed in full (black horizontal arrows), and f c(U) is then extracted
(red vertical arrows). For other indices f c(U) is obtained by single subset
convolution (blue slanted arrows). Compare to Figure 3.1 on page 18.

must either have the full f c, so we can simply extract f c(U); or there must
exist smaller indices a, b such that a+b = c, and that we have fa and f b, so
we can use a single subset convolution. In short, A must be a set of postage
stamps with range at least n.

Thus A must be both an addition chain and a postage stamp solution. In
Article II, where we introduce this problem, we call such sets stamp chains.
It is not immediately clear how one might find such sets.

Fortunately there is a direct connection between stamp chains and or-
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dinary postage stamp solutions. If A is an extremal postage stamp solution
with range n, then

{1} ∪ (A+ 1) (4.12)

is an extremal stamp chain with range n + 2 (Theorem 21 in Article II).
Simply take a known postage stamp solution, increase each stamp value
by 1, and adjoin a new stamp of value 1. The result is not just another
postage stamp solution: it is an addition chain as well.

For example, the unique extremal stamp set of length 5 is {1, 3, 4, 7, 8},
with range 16. It is not an addition chain. From (4.12) we get {1, 2, 4, 5, 8, 9}.
This is a stamp chain with range 18.

Furthermore the construction (4.12) produces all extremal stamp chains
(Theorem 23 in Article II). In other words, the problem of finding stamp
chains completely reduces to the well-known postage stamp problem, for
which extremal solutions are known up to length 24 (Article II), and good
solutions are known for much larger lengths [8].

Although our task in this section was stated in terms of subset con-
volution, it can be generalized to other multiplicative tasks. Suppose for
example that X is a square matrix of large dimensions m × m; and that
from consecutive powers X1, X2, . . . , Xn we need just a particular element,
for example the lower right-hand corner (Xi)mm. Now, if for two exponents
a, b we have computed the full matrix powers Xa and Xb, then for exponent
a+ b the desired element is easily obtained as

(Xa+b)mm =

m∑
j=1

(Xa)mj(X
b)jm (4.13)

without needing to compute the matrix Xa+b in full. The minimal number
of full matrix multiplications to perform is provided by a stamp chain.

4.5 Searching for extremal additive bases

We now depart from multiplicative tasks, and study the postage stamp
problem in its own right: in particular, the search for extremal solutions.
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4.5.1 Lunnon’s algorithm

Computational approaches to the postage stamp problem start in 1969, with
Lunnon describing a backtracking search algorithm [25]. We examine it in
some detail as it forms a foundation for more sophisticated algorithms.

An additive basis Ak = {a1 < . . . < ak} is admissible if n2(Ak) ≥ ak.
Any basis that is not admissible cannot be extremal. When seeking extremal
bases, we may as well confine our search within admissible bases.

Lunnon’s algorithm constructs admissible bases incrementally. We must
have a1 = 1, otherwise the sum 1 would not be generated. Suppose we have
selected the first j stamps, or the j-prefix Aj = {a1 < . . . < aj}. The next
stamp cannot be greater than n2(Aj)+ 1, otherwise we would leave a “gap”
and the resulting basis would not be admissible.

Thus aj+1 must be chosen within {aj +1, aj +2, . . . , n2(Aj)+1}. These
values are tried in turn; for each (j +1)-prefix thus formed, continue recur-
sively. This depth-first search enumerates all admissible bases of length k, as
illustrated in Table 4.2. Their ranges are computed, and the record holders
are the extremal bases.

The range distribution among admissible bases is striking (see Fig-
ure 4.2). Most bases visited by the search are far short of the maximum
range. The search time is proportional to the number of admissible bases,
which grows roughly exponentially with k. There are 305 226 admissible
bases of length 10; over two million bases of length 11; almost 16 million
bases of length 12; for more, see the OEIS sequence A167809 [32].

4.5.2 Challis’s algorithm

Much effort is saved if parts of the search tree can be pruned by proving
that those parts cannot contain extremal bases. Challis’s algorithm does so
through a combinatorial counting argument [7].

Recall from Section 4.3 that from a basis of k stamps, and the zero
stamp, we get

(
k+2
2

)
unordered pairs with repetition allowed. By the same

token, from a j-prefix we get
(
j+2
2

)
pairs. Thus when a j-prefix is extended
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 range
1 2 3 4 5 6 7 8 9 10 11 22
1 2 3 4 5 6 7 8 9 10 12 22
1 2 3 4 5 6 7 8 9 10 13 23
1 2 3 4 5 6 7 8 9 10 14 24
...

...
...

...
1 2 3 7 11 15 19 23 25 26 27 30
1 2 3 7 11 15 19 23 25 26 28 54 ← extremal
1 2 3 7 11 15 19 23 25 26 29 34
...

...
...

...
1 3 5 7 9 11 13 15 17 18 37 38
1 3 5 7 9 11 13 15 17 19 20 40
1 3 5 7 9 11 13 15 17 19 21 22

Table 4.2: Lunnon’s algorithm searches through all admissible bases in lex-
icographic order (shown: partial listing of the 2 122 983 bases for k = 11).

with k − j more stamps into a basis of length k, we get

pjk =

(
k + 2

2

)
−
(
j + 2

2

)
(4.14)

more pairs, and consequently at most that many new sums.
Suppose we know that n2(k) ≥ T , perhaps because during the search

we have already found a basis with range T . Then any extremal basis must
generate at least the integers {1, 2, . . . , T}, which we call the target set.

Consider the search at a phase when a j-prefix has been constructed,
such that it generates v different sums within the target set. We still have
g = T − v values not generated, or “gaps”. If now g > pjk, it is not possible
for the remaining k−j stamps to generate enough new sums to fill the gaps,
and we can skip this branch of the search tree.

The computational savings are substantial. Consider the search for ex-
tremal bases of length 16, if we already know that n2(16) ≥ 104. The
unpruned search tree contains about 9.3 × 1010 nodes. With pruning the
search visits only about 2.9×108 of them, or 0.3%. For a concrete example,
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Figure 4.2: Distribution of the ranges of admissible bases of length 11. Very
few bases come even close to the extremal range n2(11) = 54.

the search visits among others the 14-prefix

{1, 2, 3, 6, 9, 10, 11, 12, 13, 21, 28, 34, 42, 46}, (4.15)

which generates only 69 sums within the target set {1, 2, . . . , 104}, with 35
still missing. By equation (4.14) the remaining two stamps can generate at
most 33 new sums, so the prefix cannot lead to an extremal basis.

The counting argument is appealing in its simplicity. Rohrbach used it
to prove an upper bound on n2(k) in general [37]. Here within a search,
it provides an upper bound on n2(Ak) for bases Ak with a given j-prefix.
Perhaps the more sophisticated upper bounds might be used similarly.

Our result n2(24) = 212, published in Article II, was computed with a
streamlined implementation of this algorithm. As a note of implementation,
the search is straightforward to parallelize. We enumerated all 47 098 ad-
missible bases of length 9, then started the search separately from each of
these prefixes. The search was conducted on 200 processors over a weekend,
taking 606 days of processor time.
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4.5.3 Restricted and symmetric bases

Certain families of additive 2-bases have proven interesting. We have already
observed that extremal bases are necessarily admissible. We now turn our
attention to restricted and symmetric bases.

For convenience we now explicitly include a0 = 0 in a basis, so we write
Ak = {0=a0 < a1 < . . . < ak}. We also use the following number-theoretic
notation when A is a set and a, b are integers.

Interval of integers [a, b] = {a, a+ 1, . . . , b}
Sumset 2A = {a+ a′ : a, a′ ∈ A}
Mirror image b−A = {b− a : a ∈ A}

A symmetric basis is its own mirror image from the largest element:

Ak = ak −Ak. (4.16)

In a restricted basis, every element (and the largest one in particular) is at
most half the range: ak ≤ 1

2n2(Ak). Then in fact we have exactly

n2(Ak) = 2ak, (4.17)

since for any basis n2(Ak) ≤ 2ak.
The sumset 2A corresponds to our earlier notion of “sums generated

from postage stamps A”. Sumsets have interesting affine-like properties. In
particular, if Ak is mirrored, the sumset is similarly mirrored:

2 (ak −Ak) = 2ak − 2Ak. (4.18)

Mirroring leads to the following observation [37, p. 4]. If Ak is symmetric
and admissible, then by admissibility 2Ak ⊇ [0, ak], and by (4.18) 2Ak ⊇
2ak − [0, ak] = [ak, 2ak]. Combining these we see that Ak is restricted.

This is a strong connection between symmetric and restricted bases. If a
symmetric basis is at least admissible (n2(Ak) ≥ ak), then it is automatically
restricted as well (n2(Ak) = 2ak). Because of this “efficiency”, it is not
surprising that many extremal 2-bases are symmetric as noted by several
authors [36, 42, 7].
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The converse is not true. A restricted basis need not be symmetric. But
if Ak is a restricted basis, then by (4.18) its mirror image Bk = ak − Ak is
also a restricted basis (possibly different). For example, since the following
basis A is restricted, with range 2 × 22 = 44, then so is its mirror image
B = 22−A (shown in reverse order):

A = 0 1 2 3 7 11 15 17 20 21 22
22 21 20 19 15 11 7 5 2 1 0 = B

Let Ak be a restricted basis with range n (thus ak = n/2). Since any
prefix must be admissible, we have upper bounds for basis elements:

aj ≤ n2(Aj−1) + 1 ≤ n2(j − 1) + 1. (4.19)

But since the mirror image Bk = ak − Ak is also a restricted basis, and
thus admissible, we have likewise bj ≤ n2(j − 1) + 1. Combining with the
mirroring identity bk−j = ak − aj we obtain lower bounds

aj ≥ (n/2)− n2(k − j − 1)− 1. (4.20)

These bounds are illustrated in Figure 4.3. They are rather tight near the
middle of the basis (j ≈ k/2). When searching for restricted bases of length
k and range n, these bounds reduce the search space considerably.

A restricted basis can be composed of a prefix Aj = {a0 < . . . < aj}
and a suffix R = {aj+1 < . . . < ak}. The prefix must be an admissible basis.
Possible prefixes can be enumerated with Challis’s algorithm, but most of
them can be rejected because of the lower bound (4.20). The suffix is a
mirror image of a prefix of the mirrored basis Bk = ak − Ak, so we can
likewise enumerate the possible suffixes.

We can then try each possible prefix-suffix pair in turn, checking whether
their union is indeed a restricted basis. With this search algorithm, described
in detail in Article III, we enumerated all restricted bases of maximum range
for lengths k = 25, . . . , 41. Previously they were known only for k ≤ 24.
In 1981 Mossige listed all symmetric bases of maximum range for lengths
k ≤ 30 [27], but it was not known whether there are asymmetric restricted
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Figure 4.3: Search for restricted bases of length k = 30, range n = 316.
Most admissible prefixes fail early by crossing the lower bound.

solutions as well. In fact our search discovered two such asymmetric solutions
for k = 30. For length k = 41 our search took five days of processor time;
compare to the 606 processor days we used for nonrestricted bases of the
much smaller length k = 24.

Finally we must note that in Article III we used the lower bound only
at the midpoint of the basis. As seen in Figure 4.3, a prefix may be rejected
even earlier, if we check for the lower bound at each stamp. With this (un-
published) enhancement the search for k = 41 takes less than five minutes
of processor time. Combinatorial searches like this can be tremendously
affected by small changes in the pruning technique.

4.6 Large and small sumsets

We close this chapter with a brief glimpse into additive number theory in
general, trying to see where postage stamps fit in that picture.
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A central question in additive number theory is when the number of
elements in the sumset 2A is large and when it is small, related to A itself.
The upper bound is

|2A| ≤
(
|A|+ 1

2

)
=
|A|2 + |A|

2
, (4.21)

due to the counting argument already familiar to us: from |A| elements one
can form

(|A|+1
2

)
unordered pairs, allowing pairs of the form {a, a}. Equality

is reached when all pairs have distinct sums, and A is then a Sidon set. An
example is the geometric progression {1, p, . . . , pk} [41, p. 74].

The lower bound is
|2A| ≥ 2|A| − 1, (4.22)

with equality when A is an arithmetic progression [29, p. 6]. In particular,
if A = [a, b], then 2A = [2a, 2b], and |2A| = 2b− 2a+ 1 = 2|A| − 1.

Much of current additive number theory concerns situations where the
sumset is small, typically |2A| < c|A| with some small constant c. Sets with
large sumsets are less well understood: it has even been written that “the
study of sets with close to maximal doubling appears to be hopeless at
present” [41, p. 58]. “Doubling” refers here to the quotient |2A||A| .

The postage stamp problem is concerned with sets whose sumset con-
tains a large consecutive part {1, 2, . . . , n}. Recalling (4.6) and (4.7), ex-
tremal bases have ranges roughly between 1

4 |A|
2 and 1

2 |A|
2, and their sum-

sets are at least this large, remarkably close to the maximum (4.21).
Perhaps it is not too facetious to hope that studies of the postage stamp

problem will, for their part, contribute to the understanding of large sum-
sets. Towards that end, research on various generalizations may be needed,
such as allowing negative stamp values. This and other generalizations have
been suggested [17, pp. 246–247], but little is known about them.
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