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ABSTRACT

Motivation: PacBio single molecule real-time sequencing is a third-

generation sequencing technique producing long reads, with com-

paratively lower throughput and higher error rate. Errors include

numerous indels and complicate downstream analysis like mapping

or de novo assembly. A hybrid strategy that takes advantage of the

high accuracy of second-generation short reads has been proposed

for correcting long reads. Mapping of short reads on long reads pro-

vides sufficient coverage to eliminate up to 99% of errors, however,

at the expense of prohibitive running times and considerable amounts

of disk and memory space.

Results: We present LoRDEC, a hybrid error correction method that

builds a succinct de Bruijn graph representing the short reads, and

seeks a corrective sequence for each erroneous region in the long

reads by traversing chosen paths in the graph. In comparison,

LoRDEC is at least six times faster and requires at least 93% less

memory or disk space than available tools, while achieving compar-

able accuracy.

Availability and implementaion: LoRDEC is written in C++, tested

on Linux platforms and freely available at http://atgc.lirmm.fr/lordec.

Contact: lordec@lirmm.fr.

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Sequencing, the determination of DNA or RNA sequences, now

belongs to the basic experiments in life sciences. Compared with
the Sanger method, the so-called next-generation sequencing
technologies (of the second, third or even fourth generations)

have drastically lowered its cost and increased its efficiency,
making genome-wide and transcriptome-wide sequencing feas-
ible. Numerous types of ‘omics’ experiments, beyond de novo

genome sequencing and assembly, have been invented and rely
on high-throughput sequencing.
All currently available technologies produce reads that repre-

sent only a piece of the target molecule sequence. Processing
these reads requires aligning them against other sequences: for
instance, while mapping them against a reference genome, or

when computing overlaps among reads during assembly.
Optimal, and sometimes suboptimal, alignments are retained
for further analysis. The strength of an alignment (and hence

its usefulness) is mostly controlled by two factors: its percentage

of identity and its length. Clearly, errors introduced during

the sequencing process, sequencing errors, blur the signal in an

alignment by introducing mismatches or by breaking it into

shorter ones. Weaker alignments may not pass subsequent filters

and are lost for downward analyses. The finer the analysis, the

higher the necessity to capture the information available in all

alignments: for instance, when trying to bridge a gap in a less

covered region of genome during assembly, or to reconstruct the

sequence of a less expressed RNA. To counteract sequencing

errors, error correction algorithms have been found effective

for de novo assembly (Salzberg et al., 2012), and so they are

often incorporated in assembly pipelines [see e.g. Euler SR

(Chaisson and Pevzner, 2008), ALLPATHS-LG (Gnerre et al.,

2011) and SOAPdenovo2 (Luo et al., 2012)].

1.1 Related works for second-generation sequencing

In the case of long sequences (Sanger or PacBio reads), algo-

rithms compute multiple alignments of the reads and call a con-

sensus sequence to correct erroneous regions. Alignment

computation has the inconvenience of long running time and

parameter dependency (Salmela and Schr€oder, 2011). In the

case of second-generation reads, meaning larger input size and

modest error rates, the key idea is to exploit the coverage of

sequencing. One distinguishes erroneous from error-free sub-

strings by counting their number of occurrences in the read set.

With a sufficient coverage, it is possible to compute a minimal

threshold such that, with high probability, each error-free k-mer

appears at least that number of times in the read set. A k-mer

above/below the threshold is qualified as solid or weak, respect-

ively. This idea is exploited in second-generation assembly

programs based on De Bruijn Graphs (DBG), where only solid

k-mers form the nodes of the DBG (e.g. Zerbino and Birney,

2008), or during mapping against a reference to distinguish

erroneous positions from biological mutations (Philippe et al.,

2013). Many current error correction algorithms for second-

generation sequencing (Illumina, Roche, or Solid) adopt this

counting strategy, also called spectral alignment (Chaisson

et al., 2004; Pevzner et al., 2001): one computes the spectrum

of solid k-mers and corrects each read by updating each weak

k-mer with its closest solid k-mer. Implementation relying on

hash tables is well adapted to k-mers (i.e. to substrings of fixed

length), while approaches based on more flexible indexes of the

reads (e.g. suffix trees or suffix arrays) can correct substrings of

different lengths (Salmela, 2010; Schr€oder et al., 2009). Spectral

alignment-based approaches are more efficient and scalable than*To whom correspondence should be addressed.
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alignment-based ones, and adapted to low error rates. Most

recent work on error correction has concentrated on correcting
Illumina reads where substitutions is the dominant error type,

and so the more challenging problem of correcting insertions

and deletions is addressed only by a few works (Salmela, 2010;

Salmela and Schr€oder, 2011). For a survey on error correction

methods for second-generation sequencing, see Yang et al.

(2013).

1.2 Related works for PacBio reads

PacBio SMRT sequencing is characterized by much longer reads

(up to 20 Kb) and much higher error rates (415% Koren et al.,

2012), and poses a much harder challenge for error correction.

However, sequencing errors seem to be uniformly distributed,

independent of the sequence context and skewed toward inser-

tions, to a lesser extent deletions. For simplicity, we call PacBio
reads, long reads (LR), and other second generation reads, short

reads (SR). To address this challenge, two approaches have been

proposed: self correction using only LR, or hybrid correction of

LR using libraries of SR. Self correction, alike Sanger correction

tools, computes local alignments between LR [with BLASR

(Chaisson and Tesler, 2012)] for building multiple alignments

and then calls a consensus. It has been implemented in a non-

hybrid assembler, HGAP, and experimented on bacterial

genomes (Chin et al., 2013). Hybrid correction exploits the

higher quality and coverage of SR libraries, which give rise to

stronger alignments, to align these on LR and correct the latter

by calling consensus sequence from a multiple alignment. This

strategy, found in assembler AHA (Bashir et al., 2012), and in

correction programs LSC (Au et al., 2012) and PacBioToCA

(Koren et al., 2012; which has been incorporated in the Celera

assembler), achieves similar accuracy on bacterial genomes than

a non-hybrid method, but has also proved able to operate

on eukaryotic genomes and transcriptomes (Au et al., 2012;

Koren et al., 2012).

1.3 Genome finishing, scaffolding and limitations of long

read correction methods

Recently, two proposals [PBJelly (English et al., 2012) and

Cerulean (Deshpande et al., 2013)] have adopted an intermediate

strategy for genome scaffolding or finishing: in addition to LR,

they take as input either a partially assembled genome or an

assembly graph generated with SR data. Contigs are mapped

to LR, which serve as the basis to complete/fill the assembly

gaps or order the contigs into a scaffold. Deshpande et al.

(2013) justify their strategy by the time, memory and disk

requirements of current LR correction programs, ‘which requires

high computational resources and long running time on a super-
computer even for bacterial genome datasets’. Current correction

programs seem not to take full advantage of sequence indexing

data structures to speed up the correction (Navarro and

M€akinen, 2007).

1.4 Contribution

Considering the limitations of LR correction programs and the

high error rates in PacBio reads, we propose here a new hybrid

correction algorithm aiming at more efficiency. It first builds a

DBG of the SR data, and then corrects an erroneous region

within an LR by searching for an optimal path within the

DBG. The sequence of the overlapping k-mers along the path

provides a corrected sequence for that region. Taking advantage

of recent developments in compact representation of DBG

[Fig. 1, Chikhi and Rizk (2012); Salikhov et al. (2013)], we

develop a program, called LoRDEC (Long Read DBG Error

Correction), that allows correcting a dataset of typical size on

common computing hardware. We compare our program

with state-of-the-art methods and find that it provides an equal

accuracy with low memory usage and reasonable running times.

2 METHODS

2.1 Overview

The rationale behind a hybrid correction algorithm is to use a set of high-

quality reads to correct a second set of reads suffering from a higher error

rate. Typically, a reference set of Illumina, 454, or PacBio CCS SR with

low error rate will help correcting long PacBio RS reads. As both sets are

assumed to come from the same library, the goal is to convert the se-

quence of an erroneous region in a long read into the sequence that could

be assembled from the SR in that region of the molecule, while keeping

the length of LR. Our program, called LoRDEC, takes as input the SR,

the LR and an odd integer k. Now, our approach is to find, for each

erroneous region of an LR, an alternative sequence by traversing appro-

priate paths in the DBG of the SR. However, SR also contains errors. To

avoid introducing erroneous bases during the correction, we filter out any

k-long substring, termed a k-mer, that occurs less than s times within the

SR [as done in second-generation assemblers (Chikhi and Rizk, 2012;

Salikhov et al., 2013; Zerbino and Birney, 2008)], where s is set by the

user. With our terminology, we keep only solid k-mers.

LoRDEC first reads the SR, builds their DBG of order k and then

corrects each long read, independently, one after the other. The DBG is

the graph underlying most second-generation assemblers (e.g. Velvet,

Minia). Each solid k-mer found in the SR makes a node in the DBG,

and a directed arc links a node f to a node g if the k-mer of node f

overlaps that of g by k – 1 positions. Figure 1 shows an example of a

DBG. As usual in the DBG used for assembly, because the strand of

reads are unknown, a node represents a k-mer and its reverse complement

k-mer, and the notion of arc is extended to ensure that two nodes/k-mers

can overlap each other on the same strand. For instance, a k-mer acgta

would be linked to k-mer cgtat by an arc. Clearly, a path, i.e. a series of

arcs, from one node to another represents a nucleotidic sequence, and

between two nodes, say f and g, there may be none, one or several paths.

Typically, assembly programs output the sequence along non-branching

paths as contigs. For storing the DBG, we use the memory-efficient

GATB library (http://gatb-core.gforge.inria.fr), which allows to traverse

ACG

TCG

CGA

CGC

CTG

GAT

GCA

GCT

ATG

CAT

CTT

Fig. 1. An example of short read DBG of order k=3. For simplicity

reverse complement k-mers are ignored
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any path in the graph and to get the sequence of any node. GATB

uses Bloom filters to store the DBG and additionally records those

false-positive k-mers that are adjacent to k-mers in the DBG, which

allows traversing only solid k-mers if the traversal starts at a solid

k-mer. However, we use the DBG to determine whether a k-mer in an

LR is solid and, therefore, GATB can report false positives. We found

that if we additionally require that for a k-mer to be considered solid,

it must also have at least one incoming and at least one outgoing arc,

only a small fraction (e.g. 0.03% in the Escherichia coli dataset) of the

reported solid k-mers are false positives.

Consider the k-mers of a long read starting at position 1,2,3, . . . : some

k-mers belong to the graph and are solid, while others do not and are

weak. Basically, solid k-mers are expected to be correct, while weak ones

suspectedly include sequencing errors and require a correction. Solid

k-mers are entry points in the DBG, and LoRDEC corrects a region

made of weak k-mers by finding the best path in the DBG between the

solid k-mers bordering this region. Sometimes, an LR has no solid k-mer,

in which case, LoRDEC marks it as such in the output and skips it.

Our results show that only short erroneous reads (51500 nucleotides)

completely lack solid k-mers (data not shown). As the goal of PacBio

sequencing is to get long reads and thus our goal is to yield long and

correct sequences, we decided to filter those reads in the present version of

LoRDEC. In the remaining LR, at least one k-mer is solid: consequently,

two alternative situations occur for a weak region: either it is located at

one end of the LR and only one solid k-mer is bordering it, we call these a

head or a tail region, or it is an inner region surrounded by a run of solid

k-mers on each side. Weak regions are shown in Figure 2a. Our algorithm

uses two distinct procedures to correct a head/tail or an inner region

(see below).

The algorithm for correcting one long read is illustrated in Figure 2

and summarized as follows. For each pass over a long read, we apply

the head/tail correction procedure to the left-most (head) and right-

most (tail) weak regions, then we loop over the sequence, select pairs

of solid k-mers and, for each, launch the correction procedure for the

weak region between them. Each call for a correction procedure modifies

the sequence on-the-fly, and thus turns weak into solid k-mers. LoRDEC

performs two passes over the read, one in each direction. First, on-the-fly

correction generates new solid k-mers, which serve as starting nodes in

the next pass; second, because of repeats in the sequence, the search

for a path can proceed to different parts of the graph depending

on which end of the region it is started from. Thus, it is worth trying

two passes.

2.2 Correction of inner weak regions

An inner region is bordered by a run of solid k-mers on each side. The

procedure takes as input the source and target solid k-mers, the region

sequence and a maximal branching limit. Solid k-mers serve as source and

target nodes in the DBG, and any path between these nodes encodes a

sequence that first, can be assembled from the SR, and second, it starts

and ends with the appropriate solid k-mers. Thus, the region sequence

could be corrected with the sequence of any such path. Our criterion to

choose among several such paths is to minimize the edit distance between

the path and the region sequence. Now, several solid k-mers can serve

as source and target for the search. The criterion of solidity with which

we filter erroneous k-mer is not perfect: some solid k-mer may still be

erroneous. With such k-mers the path search may fail or result in a path

sequence that is far from optimal. To avoid being trapped in such local

minima, we consider not only one but several pairs of (source, target)

k-mers around each weak region.

For this, we loop over the inner solid k-mers of the read and consider

each as a source. For each possible source, we consider t downward solid

k-mers as targets (by default t is set to 5), and filter out some exclusive

cases, depending on whether the source and target k-mers

(1) belong to the same run of solid k-mers: the region is assumed to be

correct, and no path is searched for;

(2) overlap: a tandem repeat likely creates this overlap region or a

k-mer is falsely solid, we skip this case;

(3) are too distant from each other in the read: the dynamic

programming (DP) matrix to compute the minimal edit distance

would require too much memory, and the likelihood to find a path

would be low: we necessarily skip this case.

In all other cases, we search for an optimal path between a source and

target solid k-mers. With this manner of selecting source/target pairs,

we ensure that several pairs bordering a weak region will be considered.

If a path between a source and a target is seen as a bridge over a weak

region, then alternative source/target pairs may form distinct bridges that

cross over that region of the read. All bridges found along the read form a

inner
region

head tail

sources targets

(a)

bridge path

s1 t1

path not found

s2 t2

extension path

s3

(b)

Fig. 2. Long read correction method. (a) A long read is partitioned into weak and solid regions (respectively, lines and rectangles) according to the

short read DBG. Weak regions starting or ending the long read are called the head or the tail, respectively, while other weak regions are inner regions.

Circles in solid regions represent k-mers of the DBG. k-mers around a weak region serve as source and target nodes to search paths in the DBG. Several

source/target pairs are used for each weak inner region. (b) On the second inner region, a bridging path between nodes s1 and t1 is found in the DBG

to correct this region. On the third region, the path search fails to find a path between nodes s2 and t2. For the tail, an extension path is sought

and found from node s3 toward the end. Once found, the corrective sequence of the path is aligned to the tail to determine the optimal substring

(thick dotted arrow)
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directed graph: the path graph. The solid k-mers build its nodes, and each

path found is an arc between the source and target k-mers. The arcs are

weighted by the edit distance between the region sequence and the found

path. The path graph construction is thus intermingled with the inner

region correction.

To seek an optimal path in the DBG for a selected source/target pair,

we perform a depth-first search traversal of possible paths between the

source and target, and compute at each step (node wise) its minimal edit

distance with the region sequence in a DP matrix. The exploration of a

path stops when reaching a dead end in the graph, the target k-mer

or whenever the minimal edit distance of any extension of the path

would exceed maximum allowed error rate. The overall search is aborted

whenever the number of paths encountered exceeds the branching limit.

In the end, if at least one path was found, we record the path and its edit

distance as an arc between the two k-mers in the path graph, which

we defined above. Otherwise, if the search has failed at all trials with

the current source k-mer, we add a dummy arc to the path graph: an arc

between the source and the next solid k-mer weighted by an edit distance

equal to the region length. This ensures that a path from the first to the

last solid k-mer always exists.

2.3 Head or tail region correction: searching for

a best extension

Correcting the head or the tail of a read is a symmetrical procedure, so we

describe it for the tail. A tail is a nucleotidic region made of weak k-mers,

preceded by at least one solid k-mer. The procedure takes as input the

solid k-mer node as a source node in the DBG, the tail sequence and a

branching limit. Unlike for an inner region, we lack a target k-mer, and

thus need another criterion to stop visiting a path. The procedure seeks

for any path that allows correcting a prefix of the tail, and optimizes

node-wise the prefix length and the edit distance between the current

path and the current prefix of the tail. It uses a depth-first search

and explores paths until their edit distance becomes too large, or until

reaching either a dead end in the DBG or the end of the tail.

Finally, because the procedure optimizes the prefix length, it tends to

extend the search beyond the prefix that aligns well against the path. For

this reason, the path found is reconsidered to search its prefix that

optimizes an alignment score. This alignment step finds the best extension

sequence starting at the solid k-mer and obtaining the maximal alignment

score. This extension problem is reminiscent of the best extension search

for a local alignment in BLAST (which is solved with a drop-off score

limit; Altschul et al., 1990).

A note concerning an optimization of the inner region correction.When

the path search between a source k-mer and all its targets has failed, it

means that we cannot find a bridging path. Nevertheless, we can find the

best extension on each side of the weak region and correct a prefix and a

suffix of that region. For this, we use the same extension procedure as the

head/tail correction, and adapt the graph path edge accordingly.

2.4 The graph path optimization

Finally, at the end of one complete pass of correction, all found inner

paths have been recorded in the path graph. Here, an edge between two

solid k-mers records the correction of the region dictated by the path

found between those k-mers. Finally, after all inner solid k-mers have

been considered, the correction of the inner region is optimized by finding

a shortest path between the first and last solid k-mers of the read in the

path graph using Dijkstra’s algorithm (Dijkstra, 1959).

2.5 Trimming and splitting corrected reads

In the end of the correction process, each base in a corrected read can

be classified as solid if it belongs to at least one solid k-mer and weak

otherwise. LoRDEC outputs the solid bases in upper case characters and

weak bases in lower case. We provide two utilities for trimming and

splitting the corrected reads. The first tool trims all weak bases from

the beginning and the end of the reads but leaves intact regions of

weak bases that are bordered by solid bases on both sides. Thus, one

trimmed read is produced for each corrected read. The second tool both

trims and splits the reads by extracting from the corrected reads all runs

of solid bases as separate sequences.

3 RESULTS

3.1 Data and computing environment

We used three datasets of increasing size: one from E.coli, two

eukaryotic ones from yeast and from the parrot. They include,

respectively, 98Mb, 1.5 and 6.8Gb of PacBio reads, with 231,

451Mb, and 35Gb of Illumina reads. All details are given in

Supplementary Table S1.

All experiments were run on servers with 16 cores operating at

2.53GHz and 32GB of memory. The runtimes were recorded

with the Linux/Unix time command, and the memory and disk

usage was recorded by polling the operating system periodically.

Because all the correction tools support parallel execution on

several cores, we report both total CPU time and elapsed

(wall clock) time.

3.2 Evaluation approach

We used two approaches to evaluate the accuracy of correction.

The first approach measures how well the reads align

against the reference genome. The second approach compares

the differences in the alignments of the original and corrected

reads against the reference to evaluate the accuracy of correction.
For the E.coli and yeast datasets, we used BLASR (Chaisson

and Tesler, 2012) to align the original and corrected reads to

the genome and for the parrot dataset, we used BWA-MEM

(Li, 2013). For the smaller datasets, BLASR was used because

it tends to bridge long indels better and thus reports longer align-

ments. For the parrot dataset, we preferred BWA-MEM because

it is faster. For each read, we kept its best alignment against

the genome. We then counted the size of the aligned region of

the reads, the size of the aligned regions in the genome and the

number of identical positions in the alignments. The identity of

the alignments was then calculated as the number of identical

positions divided by the length of the aligned region in the

genome. The reads corrected by an error correction program

were then evaluated based on the size of the region that could

be aligned against the genome, and the identity of the

alignments.

The alignments of the original and corrected reads can be

further analyzed to characterize the accuracy of correction.

Consider a multiple alignment of the original read, the corrected

read and the corresponding genomic region. Each position in this

multiple alignment can be classified as true positive (TP), false

positive (FP), true negative (TN) or false negative (FN). A pos-

ition is TP if the original read has an error and it has been cor-

rected by the error correction tool. Erroneous positions in the

original read that have not been corrected are false negatives.

In a FP position the error correction tool has made a correction,

although there was no error in the original read, and finally,

TN positions are correct in both original and corrected reads.
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The accuracy of correction can then be measured with several

statistics:

� Sensitivity=TP/(TP+FN), how well does the tool

recognize erroneous positions?

� Gain=(TP–FP)/(TP+FN), how well does the tool

remove errors without introducing new ones?

Error Correction Toolkit (Yang et al., 2013) is designed

for comparing error correction results for second-generation

sequencing data. As input, it requires the mapping of the original

reads and of the corrected reads to the genome in SAM format.

We used BLASR for the E.coli and yeast data and BWA-MEM

for the parrot data to produce the alignments. For each pair

of original and corrected read, the toolkit computes the set of

differences with the reference genome, and it compares these

two sets to determine TP, FP and FN positions with regard to

correction. Whereas read mappers geared toward second-gener-

ation sequencing reads report full matches of the reads against

the genome, BLASR and BWA-MEM report best local align-

ments of the reads against the genome. We modified the toolkit

so that differences between original and corrected reads are

counted only within the genomic region of the local alignment

of the original read against the genome.

The comparison of the differences in alignments is not

straightforward with large amounts of indels, as even the same

differences can often produce different alignments with the

same alignment score. Therefore, especially in partially corrected

regions, more differences might be reported than is actually the

case, and so this approach might report more FPs or FNs than

are actually present in the datasets.

3.3 Effect of parameters on our approach

We investigated the effect of parameters on our method on the

E.coli dataset. We varied one parameter at a time and recorded

the runtime and evaluated the accuracy of the method by com-

puting gain. Figure 3 shows the results for this experiment when

varying five parameters: the k, the threshold for a k-mer to

be solid in the Illumina dataset, the maximum error rate of

corrected regions, the branching limit and the number of target

k-mers for path finding from a source k-mer. We see that k=19

gives the best results for this dataset, and further experiments

with the yeast data confirmed k=19 to be optimal also

for that dataset (data not shown). The solid k-mer threshold

had only a modest effect on the accuracy of correction, a smaller

threshold giving slightly better results. The accuracy of correc-

tion was improved by setting a higher maximum error rate

of the corrected region with a slight increase in the runtime.

Increasing the number of explored branches or the number

of target k-mers had only a small effect on the gain, whereas

runtime was increased considerably. Based on these observa-

tions, we ran our method on the E.coli and yeast data with

the following parameters: k, 19; threshold for solid k-mers, 3;

maximum error rate, 0.4; branching limit, 200; and number

of target k-mers, 5. For the parrot data, we found k=23 to

give better results both in terms of runtime and accuracy.

Supplementary Table S2 provides an explanation for each

parameter and its default value.

3.4 Comparison against LSC and PacBioToCA

We compared LoRDEC against LSC (Au et al., 2012) and

PacBioToCA (Koren et al., 2012). LSC was run with default

parameters except that we set short read covered depth to the

estimated coverage of the dataset, i.e. 50 for the E.coli dataset

and 38 for the yeast dataset. PacBioToCA was run with default

parameters except for tuning the parameters for parallelization

to be suitable for our platform. The parameters for LoRDEC

were set as explained above.

3.4.1 Escherichia Coli The runtime and memory and disk usage
of the error correction tools are shown in Table 1 (top).

LoRDEC is 17 times faster and requires 88% less memory and

95% less memory than LSC, which is the more resource efficient

of the two previous tools on this dataset. The right side of

Table 1 shows the correction statistics as reported by Error

Correction Toolkit for LSC and LoRDEC, and we see that

LoRDEC outperforms LSC.
The statistics of aligning the reads against the reference

genome are shown in Table 2 (top). For LSC, we report the

statistics both for the full corrected read set as reported by the

tool and for the trimmed set. We note that LSC leaves out from

the full read set any reads that it was not able to correct at all.

Similarly, we report for LoRDEC statistics for full reads, reads

trimmed at the ends and trimmed and split reads (see Section

2.5). LSC clearly performs worst of the three tools, whereas

PacBioToCA and LoRDEC have similar statistics. Once cor-

rected, trimmed and split by LoRDEC, the reads have slightly

more bases, and a slightly smaller proportion of them align

against the reference, but the identity of aligned regions is

higher than for the reads corrected by PacBioToCA.

3.4.2 Yeast Both LSC and PacBioToCA failed to complete the
correction of this dataset on a single server. We split the PacBio

data and run LSC on three servers and PacBioToCA on six

servers. Whereas PacBioToCA is designed to run distributed

on several servers, LSC does not support distributed execution.

Therefore, we chose to use as few servers as possible with LSC to

minimize the effect of the distributed execution on the correction

accuracy.
Table 1 (middle) shows the runtime, memory and disk usage

statistics for the yeast dataset. Also for this dataset, LoRDEC

uses at least one order of magnitude less time or memory and

two orders less disk than PacBioToCA and LSC. For instance,

LoRDEC is six times faster and uses 93% less memory and

99% less disk space than PacBioToCA. The gain and sensitivity

of LSC remain 532%, while they stay 480% for LoRDEC.

Table 2 (middle) compares the alignment statistics of the three

tools: LSC (full or trim) aligns less bases with less identities

than LoRDEC. PacBioToCA compared with LoRDEC

(trim+split) yields slightly better alignments at a higher com-

putational cost.

3.5 Experiments on the parrot data

We investigated the scalability of LoRDEC on a much larger

eukaryotic dataset: the parrot data. As the parrot genome is

a vertebrate, hence complex, genome, that is about one-third

of the Human genome in length (Supplementary Table S1),
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it represents a real test for addressing both scalability and issues

regarding the impact of genome organization. Given the running

times of LSC and PacBioToCA on the smaller yeast data, these

were not included in this experiment. The data contain three

PacBio libraries, and we ran the correction of each on its own

server. Table 1 (bottom) shows the runtime, memory and disk

usage and statistics produced by Error Correction Toolkit. Based

on these results, we can conclude that LoRDEC scales
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Fig. 3. Effect of parameters on the runtime and gain of our method. We varied k, solid k-mer threshold, branching limit, maximum error rate and

number of target k-mers one at a time, while other parameters were kept constant

Table 1. Runtime, memory, disk usage and accuracy statistics as reported by Error Correction Toolkit for the error correction tools on the E.coli (top),

yeast (middle) and parrot (bottom) datasets

Data Method CPU time Elapsed time Memory Disk FP TP FN Sensitivity Gain

E.coli PacBioToCA 45h 18min 3h 12min 9.91 13.59 NA NA NA NA NA

LSC 39h 48min 2h 56min 8.21 8.51 695773 3149629 7845597 0.2865 0.2232

LoRDEC 2h 16min 10min 0.96 0.41 102427 9994561 1000665 0.9090 0.8997

Yeast PacBioToCAa 792h 41min 21h 57min 13.88 214 NA NA NA NA NA

LSCb 1200h 46min 130h 16min 24.04 517 7766700 38741658 80597251 0.3246 0.2596

LoRDEC 56h 8min 3h 37min 0.97 1.63 2784685 100568850 18770059 0.8427 0.8194

Parrot LoRDECb 568h 48min 29h 7min 4.61 74.85 10591097 226996640 26296446 0.8962 0.8544

Note. Memory and disk usage are in gigabytes. The statistics could not be computed for reads corrected by PacBioToCA because PacBioToCA only reports trimmed and split

reads.
aRun parallel on six servers. Memory usage is for one server.
bRun parallel on three servers. Memory usage is for one server.
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sufficiently to correct reads of large eukaryotic genomes on

common computing hardware. The Error Correction Toolkit

in Table 1 (bottom) and alignment statistics in Table 2

(bottom) show that the correction accuracy is comparable with

the yeast dataset, although the reference is a draft genome con-

taining more errors, and the alignment statistics also suffer from

reads aligning to the end of scaffolds having only partial

alignments.

Table 2. Alignment statistics of the reads corrected by different tools on the E.coli (top), yeast (middle) and parrot (bottom)

datasets

Data Method Size Aligned Identity Genome coverage

Expected Observed

E.coli Original 1.0000 0.8800 0.9486 1.0000 0.9768

PacBioToCA 0.7759 0.9965 0.9988 1.0000 0.9936

LSC (full) 0.8946 0.9269 0.9579 1.0000 1.0000

LSC (trim) 0.6824 0.9611 0.9725 1.0000 1.0000

LoRDEC (full) 0.9318 0.8934 0.9952 1.0000 1.0000

LoRDEC (trim) 0.8692 0.9419 0.9968 1.0000 1.0000

LoRDEC (trim+split) 0.8184 0.9950 0.9997 1.0000 0.9979

Yeast Original 1.0000 0.7900 0.9276 1.0000 0.9834

PacBioToCA 0.7620 0.9887 0.9934 1.0000 0.9986

LSC (full) 0.8760 0.8570 0.9420 1.0000 0.9988

LSC (trim) 0.7020 0.9277 0.9544 1.0000 0.9992

LoRDEC (full) 0.9771 0.8138 0.9741 1.0000 0.9995

LoRDEC (trim) 0.9270 0.8492 0.9758 1.0000 0.9996

LoRDEC (trim+split) 0.7412 0.9790 0.9928 1.0000 0.9984

Original 1.0000 0.5060 0.9258 0.9235 0.8406

Parrot LoRDEC (full) 0.9719 0.7633 0.9826 0.9769 0.9103

LoRDEC (trim) 0.8423 0.8678 0.9838 0.9756 0.9085

LoRDEC (trim+split) 0.7453 0.9782 0.9884 0.9773 0.9042

Note. The first column shows the ratio between the size of the read set and the original read set, the second column shows the ratio between

the size of the aligned region of the reads and the size of the read set and the third column shows the alignment identity of the aligned regions.

The last two columns give the expected and observed genome coverage by aligned reads, i.e. the proportion of the reference sequence covered

by at least one read.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20

P
er

ce
nt

ag
e 

of
 G

en
om

e

Cumulative read depth

Uncorrected
Uncorrected (randomized)
LoRDEC
LoRDEC (randomized)

Fig. 4. Percentage of the parrot genome covered by raw and corrected reads in function of read depth. The percentages (y-axis in log scale) are plotted
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bias related to genomic location is already present in the raw reads
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3.6 Impact of the genome organization

The evaluation of the correction delivered by LoRDEC indicates

that it is accurate globally on all datasets. However, the genome

organization, and especially the presence of repeats, could impact

the quality of the correction. One could argue that in repeated

regions, the solid k-mers and paths found in the DBG of SR may

come from a different or from several copies of the repeat and

mislead the correction process. In other words, the accuracy

of the correction may vary along the genome. If this is the

case, the distribution of reads with respect to the observed

genome coverage should differ between raw and corrected

reads. To assess this possibility, we computed the expected and

observed genome coverages of the aligned raw and corrected

reads (Last columns of Table 2). The coverage is computed as

the number of genome positions covered by at least one align-

ment divided by the genome length. For the E.coli and Yeast

case, the PacBio sequencing depth is in theory high enough to

cover the whole genome (the expected coverage is one), and the

effect of correction is to improve the observed coverage beyond

99%. Hence, no bias is visible in terms of coverage for these two

cases. The case of the parrot data differs. First, the PacBio

sequencing depth is only 5.5�, and thus about eight points

separate the expected and observed coverages for both raw and

corrected aligned reads (0.92 versus 0.84; 0.98 versus 0.90). To

assess a possible bias, we plotted the percentage of the genome

covered by aligned reads as a function of read depth for raw

and corrected reads (black squares and circles in Fig. 4).

We also plotted the same function but after randomizing the

read positions, that is, as if the aligned reads where uniformly

distributed over the whole genome (white squares and circles).

First, both curves for real alignments depart from their rando-

mized counterparts, showing that some bias exist in the genomic

distribution of raw reads, but the same bias remains after cor-

rection. Various reasons may explain this bias including the low

sequencing depth, locally wrong assembly or mapping bias.

Second, the black curves have a similar shape, suggesting that

the distribution in function of read depth is not affected by

LoRDEC. Note that the curve of corrected reads remains

above that of raw reads showing the improvement brought by

LoRDEC at all read depths. Hence, even on a vertebrate

genome, we conclude that LoRDEC can accurately correct

PacBio reads with a small bias due to the genome organization.

4 CONCLUSION

Owing to their length, PacBio reads provide interesting informa-

tion to connect other sequences, but this task is made consider-

ably harder by their high error rate, which hinders alignment and

similarity detection, both in terms of sensitivity and running

time. As seen in our experiments, error correction with

LoRDEC makes most of the sequence alignable with percentage

of identity497%. Previous correction programs achieve compar-

able accuracy, but with prohibitive computational resources.

LoRDEC provides a significant improvement in this respect, to

such a point that any genomics project can afford PacBio error

correction, even with eukaryotic species. Moreover, hybrid error

correction shall remain useful because it is powerful to combine

distinct types of sequencing in a project.

Compared with other correction algorithms, LoRDEC offers

a novel graph-based approach. Path searching in a DBG allows

handling higher error rates. However, this search can fail if either

no path or too many paths exist between the source and target

k-mers. Some improvements seem reachable. When a path is

missing, we plan to use the extension path search iteratively on

each side of the inner region. A missing path may indicate a

remaining adapter, and the local DBG structure could help iden-

tifying and removing it. In the case of too many paths, alterna-

tive values of k may help: a smaller k can introduce solid k-mers

in the region and makes it shorter to solve. An algorithm

to dynamically update the order (i.e. the parameter k) of the

DBG would be useful in this respect (Cazaux et al., 2014).
Additional experiments on PacBio RNA-seq reads show that

LoRDEC could also improve the sequence of maize transcripts,

which eased their alignment to a reference transcript database

(see Supplementary data). LoRDEC is simple to use, scalable,

can easily be incorporated in a pipeline and should adapt to

other types of reads.
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