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Into this wild Abyss
The womb of Nature, and perhaps her grave–
Of neither sea, nor shore, nor air, nor fire,
But all these in their pregnant causes mixed
Confusedly, and which thus must ever fight...

- John Milton, Paradise Lost
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Abstract

Grounded in the increasingly accurate astronomical observations of the past few decades, the study
of cosmology has produced a comprehensive account of the history of the universe. This account
is contained in the Hot Big Bang cosmological model which describes the expansion of a hot and
dense state to become the universe as we observe it today.
While the Big Bang model has been extremely successful in being able to account for a wide

array of cosmological data, it leaves unexplained the special initial conditions that are required in
order to produce the universe we find ourselves in. Such initial conditions are, however, a natural
consequence of a period of quasi-exponential expansion of the universe known as inflation. Such a
period of expansion can be realized if the universe is dominated by a scalar field–the inflation–which
is slowly rolling down the slope of its potential. Inflation also provides a natural mechanism for
the production of primordial seeds of structure in the universe through the growth of the quantum
fluctuations in the inflaton field to super-horizon scales.
Together, inflation and the subsequent Big Bang evolution form the back bone of modern cos-

mology. However, the transition between the inflationary epoch and the thermal state which charac-
terizes the initial conditions of the Big Bang evolution is not well understood. This process–dubbed
reheating–involves the decay of the inflaton field into the particles of the Standard Model of particle
physics, and may be highly non-trivial, with non-perturbative resonant processes playing a major
role. Spectator fields–light scalar fields which are subdominant during inflation–may also play an
important role during this epoch.
The aim of this thesis is to showcase aspects of non-perturbative decay of scalar fields after

inflation, focusing in particular on the role of spectator fields. This includes the modulation of the
non-perturbative decay of the inflaton by a spectator field, the non-perturbative decay of a spectator
into the Standard Model Higgs, as well as the non-perturbative decay of the Higgs field itself.
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Chapter 1

Introduction

Throughout history, questions about the origin and the nature of the universe have been at the
forefront of the human intellectual endeavor. Gradually attempts at answering such questions tran-
sitioned from the realm of mythology and theology to that of metaphysical speculation and then on
to formal scientific study. But only in the past few decades, with the advent of high-precision astro-
nomical measurements, has the study of cosmology become a quantitative and a rigorous discipline.
While we can only observe the one universe we live in, making the study of cosmology observational
rather than experimental, the ever-increasing accuracy of cosmological observations has allowed for
robust testing of cosmological models.
As a result, a comprehensive account of the history of the universe has emerged describing the

expansion of a hot and dense state to become the universe as we observe it today. This account
is contained in the Big Bang cosmological model according to which the early universe consisted
of a hot soup of relativistic particles which either annihilated or formed bound structures in the
course of the evolution of the universe as it cooled down as a consequence of expansion. Big Bang
cosmology has been able to account for a large number of cosmological observations, most notably
the existence of a Cosmic Microwave Background [4–7], the Hubble expansion [8–10], the abundance
of light elements [11, 12] and the formation of structure out of primordial seeds [13].
Despite its successes, however, the Hot Big Bang model does not explain the initial conditions

of homogeneity and flatness required for the subsequent evolution to produce our universe. It also
does not explain the origin of the primordial perturbations that are needed to seed the formation of
structure. Another piece of the puzzle was required and turned out to be a period of nearly exponential
expansion of the very early universe, dubbed ‘inflation’ [14–18]. In most models, inflation is realized
by a scalar field slowly rolling down the slope of its potential. The inflationary scenario has also
been successful; it has helped explain the flatness and homogeneity of the universe and provided a
mechanism for the origin of structure through amplification of quantum fluctuations in light fields.
On the observational side, it has accounted for the anisotropies in the Cosmic Microwave Background
and for the structure of the distribution of voids and galaxy clusters.
The Hot Big Bang evolution amended by a period of inflation now forms the standard model of

cosmology. However, the transition between the inflationary era and the Hot Big Bang is not yet well

1



2 Introduction

understood. During inflation the field responsible for the quasi-exponential expansion – the inflaton
– stays almost constant. After inflation is over the energy contained in this field must be converted
into the particles of the heat bath that serve as the starting point for the Hot Big Bang evolution.
This decay may be rather complicated with non-perturbative effects involving resonant production
of particles playing a major role.
Also other fields than the inflaton may be important for cosmology. Fields which are light during

inflation and which contribute a small fraction of the energy density of the universe compared to the
inflaton are known as spectator fields. These fields may have important effects on the subsequent
evolution of the universe such as being involved in the breaking of symmetries as in the case of the
Higgs field [19–22], generate cosmological perturbations as in the curvaton [23–27] and the modulated
reheating [28–30] scenarios, or be responsible for dark matter as in the case of the axion [31, 32]. It
is therefore important to understand also the decay of these fields after inflation.
The aim of this thesis is to discuss the details of non-perturbative decay after inflation in the

context of spectator fields. In particular the focus will be on the possible effects of spectators on
the resonant decay of the inflaton as well as their own decay through non-perturbative effects. The
discussion is based on the research papers I-III. The organization of this thesis is as follows. In the
remainder of this chapter I review the standard cosmology confined to the assumption of a classical
homogeneous universe. The discussion is extended to non-homogeneous and quantum mechanical
effects in Chapters 2 and 3 where the basics of cosmological perturbation theory and quantum field
theory respectively are presented. In Chapter 4 I review aspects of quantum fields in the early
universe. Chapters 5 through 7 summarize the research papers I-III forming the core of the thesis.
Finally, I conclude in Chapter 8 with the discussion of the results.

1.1 General Relativity

The theoretical foundation of modern cosmology is the General Theory of Relativity [33] which
describes the dynamics of the metric gµν determining the spacetime interval ds2 = gµν(x)dxµdxν .
The equations of motion are obtained from the Einstein-Hilbert action

S =
∫

d4x
√
−det gµν

(
R

16πG + Lmatter

)
(1.1)

where R is the Ricci curvature scalar, G the Newton’s gravitational constant and Lmatter is the
Lagrangian density of the matter content. This action leads to the Einstein equations

Rµν −
1
2gµνR = 8πGTµν (1.2)

with Rµν being the Ricci tensor and Tµν the stress-energy tensor of matter. The cosmological
constant Λ may be explicitly included in the action or it can be implicitly inside Lmatter as vacuum
energy.
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1.2 Friedman-Robertson-Walker universe

Assuming a homogeneous and an isotropic universe the Einstein equation has a solution in the form
of the Friedmann–Lemaître–Robertson–Walker metric [34–38]

ds2 = −dt2 + a2(t)
[

dr2

1−Kr2 + r2
(
dθ2 + sin2 θdφ2

)]
(1.3)

whereK is related to the spatial curvature on constant time slices, withK = −1, 0 or 1 corresponding
respectively to an open, flat or a closed universe, and a(t) is the scale factor which evolves according
to the Friedmann equations

(
ȧ

a

)2
+ K

a2 = 8πG
3 ρ and ä

a
= −4πG

3 (ρ+ 3p) . (1.4)

The first of these corresponds to the time-time component of the Einstein equation while the second
is a combination of the time-time component and the trace of the spatial part. ρ and p denote
the energy density and the pressure of the matter content of the universe and these quantities
will determine the expansion history. As a consequence of the Bianchi identities for the Einstein
tensor [39], the matter content will obey the continuity equation ∇µTµν = 0, which for a perfect
fluid reduces to

ρ̇+ 3H(ρ+ p) = 0, (1.5)

and, in fact, if the universe is filled with several different non-interacting fluids these will obey the
above continuity equation independently of each other. For fluids which have p = wρ, with w

constant, the continuity equation gives the behavior of the energy density as the universe expands:

ρi ∝ a−3(1+wi). (1.6)

There are three important classes of fluids that are especially relevant in cosmology. These are: dust,
radiation and vacuum energy, with w = 0, 1/3 and −1 respectively.

1) Dust

Non-relativistic particles, whose energy density is dominated by their rest energy, are referred to as
dust. The energy density of dust scales as ρ ∝ a−3, which can be interpreted simply as the dilution
of the particle density by the expansion of the universe. A universe dominated by dust expands as
a ∝ t2/3.

2) Radiation

Relativistic particles, whose momenta dominate over their rest masses, are referred to as radiation
and their energy density scales as ρ ∝ a−4. This can be interpreted as the combined effect of the
dilution of the particle number density and the redshifting of the momenta of the particles by the
expansion of the universe. A radiation dominated universe expands according to a ∝ t1/2.
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3) Vacuum energy/cosmological constant

Vacuum energy in the context of cosmology has an energy density that stays constant in time. A uni-
verse dominated by vacuum energy is described by a de Sitter spacetime and expands exponentially,
a ∝ eHt. The current expansion of the universe appears to be accelerating [40, 41], which could be
caused by a vacuum energy component, dubbed ’dark energy’. However, the nature of dark energy is
not currently understood. The vacuum energy that one would expect from quantum effects is much
too large to be compatible with the current state of the universe [42] and understanding the nature
of dark energy is one of the most important open problems in cosmology. The most popular scenarios
involve either scalar fields [43] or modification of gravity [44, 45], the most simple of which is the
cosmological constant. It has also been proposed that the accelerated expansion is only apparent,
due to, for example, our solar system being located near the center of a large void [46], or a feature
of structure formation backreacting on the average expansion rate [47–49].

1.2.1 Energy contents of the universe

The three components above are the major players determining the expansion history of the universe.
The contribution of these components to the present energy budget of the universe as determined
by cosmological data is Ωm = 0.307 ± 0.019,Ωr ' 5 × 10−5 and Ωvac = 0.693 ± 0.019 [50] for
matter, radiation and dark energy respectively, with Ωi = ρi/ρc being the relative fraction of the
critical energy density ρc ≡

3H2
0

8πG .
A universe filled with matter and radiation would expand at an ever slowing rate as the gravity

of these components would resist the expansion. In contrast, a universe filled with vacuum energy
would expand at an accelerated rate due to the negative pressure of the vacuum energy component.
Since the energy density of matter and radiation goes down as the universe expands while that
of vacuum energy stays constant, a universe initially dominated by the former two will eventually
become dominated by the latter and transition from decelerating to accelerating expansion. For our
universe this transition happened about 9-10 billion years after the Big Bang which is quite close to
the present time. The fact dark energy starts to be significant around the present time for us to be
able to observe it is sometimes referred to as the coincidence problem. In addition there will also be
a transition from radiation domination to matter domination because the energy density of radiation
dilutes faster than that of dust.

1.2.2 Thermodynamics and the thermal history of the universe

Knowing the equation of state of the different components of the universe determines its expansion
history but a more detailed description is needed in order to understand what went on during the
course of its evolution. The early universe had high density allowing particles to interact efficiently
and reach thermal equilibrium. Applying statistical physics and thermodynamics to the early universe
allows for the description of the processes that were important at those early times.
The early universe consisted of a thermal bath of particles obeying the distribution function
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n(k, T, µ) = 1
e(ε−µ)/T ± 1

(1.7)

with plus and minus corresponding to fermions and bosons respectively and where ε =
√
k2/a2 +m2

is the energy of the particles, µ the chemical potential and T the temperature. The energy density
and the pressure of particles in the thermal bath are then

ρ = g

∫ d3k
(2π)3 ε(k,m)n(k, T, µ), p = g

∫ d3k
(2π)3

k2

3ε(k,m)n(k, T, µ), (1.8)

where g is the number of the internal degrees of freedom for the particle. For relativistic particles,
this can be approximated by

ρ = 3p = π2

30g∗T
4, (1.9)

with g∗ = g for bosons and g∗ = 7
8g for fermions. Since all of the relativistic particles behave

essentially in the same way, one can define an effective number of degrees of freedom by counting all
of the particles in the bath, g∗ =

∑
i

(
gi,BE + 7

8gi,FD
)
. When of all of the Standard Model particles

are in thermal equilibrium g∗ = 106.75. As the temperature of the universe goes down, heavy particle
species will annihilate leaving less relativistic degrees of freedom.
The universe also underwent several important transitions, such as the QCD phase transition [51],

electroweak symmetry breaking [52,53], neutrino decoupling [54], Big Bang Nucleosynthesis [55] and
recombination [56]. This thesis is mainly concerned with the transition from the inflationary era to
the subsequent radiation dominated phase characterized by thermal equilibrium so these topics fall
outside of its purview. I refer the interested reader to the references cited above.

1.3 Inflation

While the ΛCDM-model outlined above has been very successful in describing the evolution of the
universe it requires initial conditions that are difficult to motivate. In particular, the universe must
have started out as extremely flat and extremely homogeneous in order to exhibit these properties
today to the observed accuracy. It also does not appear to contain exotic particles one would expect
from high energy models, such as Grand Unification Theories (GUT). These are known as flatness,
horizon and relic problems in cosmology. In order to solve these problems the theory of inflation was
introduced which also provides a mechanism for generating the seeds of structure that are necessary
for the formation of galaxies under the influence of gravity.

Flatness problem

The universe today is very close to being flat, with |Ω− 1| . 10−2 [50]. The deviation from critical
density evolves as
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|Ω(t)− 1| = |K|
ȧ2 , (1.10)

growing over time for a decelerating universe (ä < 0) and decreasing for an accelerating universe
(ä > 0). Thus a universe dominated by matter would need to be more flat in the past. For a
matter dominated universe, this means that the energy density at the time of nucleosynthesis must
have deviated from the critical value by less than 10−16 and at the Planck epoch by less than
10−64 [57]. This constitutes a very specific initial condition which is difficult to motivate within Big
Bang cosmology.

Horizon problem

Another problem relating to the initial conditions of the Big Bang is the horizon or the homogeneity
problem. The universe appears to be homogeneous on much larger scales than the scale of the past
causal horizon. This is most easily seen in the Cosmic Microwave Background which is uniform to the
accuracy of 10−5 and yet the causal horizon at the time when the CMB was formed corresponds to
approximately one degree in the sky. Thus, regions in the sky which are more than one degree apart
have never been in causal contact and so it is puzzling why they would have the same temperature.

Relic problem

Yet another possible problem faced by the pure Big Bang cosmology is the problem of cosmic relics.
High energy extensions of the Standard Model such as Grand Unified Theories and Supersymmetry
predict the formation of various exotic particles and structures, such as magnetic monopoles, strings,
gravitinos etc. at high temperatures. The predicted abundances of these artifacts in the pure Big
Bang model are such that their effects should be detectable. The fact that they are not [58] creates
another difficulty for the Big Bang scenario.

Inflation: basic idea

Inflation offers a mechanism by which these initial conditions are produced naturally as a result of
fairly simple dynamics. The universe is said to inflate when the expansion is accelerating, though
often the term is used exclusively to describe the accelerated expansion in the early universe and to
exclude the current acceleration of the expansion. In order to achieve inflation one needs negative
pressure since according to the Friedmann equation

ä

a
= −4πG

3
(
ρ+ 3p

)
. (1.11)

Such negative pressure is easily achieved if the universe is dominated by a scalar whose potential
energy exceeds its kinetic energy. For a homogeneous scalar field φ

ρφ = 1
2 φ̇

2 + V, pφ = 1
2 φ̇

2 − V. (1.12)
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The energy continuity equation then gives the equation of motion for the field as

φ̈+ 3Hφ̇+ V ′ = 0. (1.13)

In order to have enough inflation the potential has to be sufficiently flat so that the change in the
scalar field is sufficiently slow. This is achieved when the following slow-roll conditions are satisfied:

|φ̈| � |Hφ̇| and φ̇2 � V (1.14)

If these conditions are satisfied then the following slow-roll parameters

ε ≡
M2

pl
2

(
V ′

V

)2
and η ≡M2

pl
V ′′

V
(1.15)

describing the flatness of the potential are small. Alternatively, one can define slow-roll parameters
in terms of the spacetime geometry instead of the potential as

εH ≡ −
Ḣ

H2 and ηH ≡
ε̇H
HεH

. (1.16)

When the slow-roll parameters are zero expansion is exponential and we are in de Sitter space. During
inflation ȧ ∼ HeHt grows so that deviations from critical density decay according to Equation (1.10)
thus solving the flatness problem. The comoving causal horizon during inflation stays constant
dcp ∼ (aiHi)−1 where the subscript ‘i’ corresponds to the beginning of inflation. In order to solve
the horizon problem the scales corresponding to the observable universe k = (a0H0) must have been
inside the causal patch so that

N ≡ ln aend
ai

> 61− ln 1016 GeV
V

1/4
i

+ ln V
1/4
i

V
1/4

end
− 1

3 ln V
1/4

end

ρ
1/4
reh

(1.17)

where subscripts ‘reh’ and ‘end’ refer respectively to the epochs of reheating and the end of inflation.
For slow-roll inflation and efficient reheating the last two terms are small so that for a scale of 1016

GeV about 60 e-folds of inflation are needed to solve the horizon problem. Finally, inflation solves
the relic problem by diluting the density of unwanted artifacts to be too small to be observable.
While inflation was first introduced in order to solve the initial condition problems of the Big Bang

scenario discussed above, perhaps its biggest success has been to provide a natural mechanism for
generating structure in the universe. It turns out that quantum fluctuations of scalar fields in a
de Sitter background are stretched to macroscopic scales [59–62] to become classical perturbations
in energy density which eventually lead to formation of galaxy clusters and other structures in the
universe. In order to understand this process it is necessary to go beyond the assumption of a
homogeneous and a classical universe and therefore I postpone the discussion of it until Chapter 4.
In the next two chapters I shall review the basics of cosmological perturbation theory and quantum
field theory.
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Chapter 2

Cosmological perturbation theory

While the assumption of homogeneity and isotropy simplifies calculations considerably, the real uni-
verse is not completely homogeneous and isotropic and therefore more sophisticated methods are
required in order to describe it. In fact, the universe today is extremely non-homogeneous with mat-
ter clumped into stars while galaxies are separated by huge expanses of empty space. Fortunately,
the universe is still statistically homogeneous and especially the early universe was almost uniform.
For this reason perturbation theory provides an appropriate tool to describe it at early times, and
even today on very large scales [63, 64].
The metric may be separated into the Robertson-Walker part and a small perturbation around it,

gµν = g
(RW)
µν + δgµν . As a symmetric rank-2 tensor the metric has 10 degrees of freedom which may

be decomposed as

ds2 = −(1 + 2A)dt2 + 2aBidtdxi + a2[(1− 2ψ)δij + 2Eij ]dxidxj . (2.1)

The background metric was taken to be spatially flat. These metric perturbations can be further
decomposed according to their transformation properties under spatial rotations resulting in 4 scalar,
4 vector and 2 tensor degrees of freedom. The matter content of the universe can be similarly
perturbed and the perturbations obey the Einstein equation

δGµν = 8πGδTµν , (2.2)

where δGµν is the perturbation in the Einstein tensor calculated from the metric (2.1) and δTµν
the perturbation in the stress-energy tensor. Focusing on the scalar perturbations, the perturbed
Einstein equations take the form [65, 66]

3H(ψ̇ +HA)− ∇
2

a2 [ψ +H(a2Ė − aB)] = 4πGδT 0
0, (2.3)

(ψ̇ +HA),i = −4πGδT 0
i, (2.4)[

(2Ḣ + 3H2)A+H(Ȧ+ 3ψ̇) + ψ̈ + 1
2∇

2D

]
δij −

1
2D,ij = 4πGδT ij , (2.5)

9
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where D ≡ a−2[(A− ψ)−H(a2Ė − aB)− d
dt(a

2Ė − aB)].
Not all of these degrees of freedom are physical, however, as two of the scalar and two of the

vector perturbations are gauge degrees of freedom corresponding to coordinate reparametrization.
The tensor perturbations are gauge independent. Because of the gauge freedom quantities depend
on the choice of coordinate system. There are two ways of dealing with this ambiguity. One can fix
the gauge by imposing constraints on the perturbations. A variety of different gauges are employed
in the literature as different choices prove useful in different circumstances. Some of the most
frequently used include the Newtonian or the longitudinal gauge (E = B = 0), synchronous gauge
(A = B = 0), the flat gauge (ψ = 0), and the uniform density gauge (δρ = 0) [65, 67].
Another approach is to define combinations of the perturbations which are invariant under gauge

transformations. These include the Bardeen potentials [68]:

Φ = A− d
dt
(
a2Ė − aB

)
, (2.6)

Ψ = ψ +H
(
a2Ė − aB

)
. (2.7)

which correspond to gravitational potential and curvature perturbations in the Newtonian gauge as
well as the perturbation

ζ ≡ −ψ − H

ρ̇
δρ (2.8)

which can be identified with the curvature perturbation in the uniform density gauge. This quantity
is especially useful because in the absence of non-adiabatic pressure perturbations it stays constant
on super-horizon scales [69]. One can also define a corresponding quantity ζi for each non-interacting
fluid separately, corresponding to the curvature perturbation on a hypersurface of uniform density
for that fluid.

2.1 Isocurvature perturbations

So far we have been discussing perturbations which can be traced to the overall fluctuation in energy
density. These are referred to as adiabatic perturbations. It is, however, also possible to have pertur-
bations in the relative densities of different components which leave the overall density unperturbed.
These are referred to as isocurvature or entropy perturbations. An isocurvature perturbation between
two cosmic fluids, labeled by i and j can be defined as

Sij ≡ −3H
(
δρi
ρ̇i
− δρj

ρ̇j

)
= −3(ζi − ζj). (2.9)

The isocurvature perturbations are typically defined with respect to the density perturbation in the
radiation fluid resulting in possible isocurvature perturbations for baryons, cold dark matter and
neutrinos1 [70, 71]. So far, no isocurvature perturbations have been detected and cosmological data

1There is also a possibility that the neutrino fluid has a different velocity from the photon fluid resulting in a neutrino
velocity isocurvature perturbation SVνr ≡ vν − vr.
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are consistent with purely adiabatic perturbations [72–74].

2.2 ∆N formalism

An extremely powerful tool for analyzing the evolution of perturbations is the ∆N -formalism also
known as the separate universe approach [69, 75, 76]. The idea is to treat different regions of
the universe on super-horizon scales as separate FRW-universes which are locally homogeneous and
isotropic. The curvature perturbation is then defined as the difference between different patches
which can be obtained by calculating the difference in integrated expansion. The spatial part of the
metric may be expressed as

gij = ã2(x, t)γijdxidxj (2.10)

where ã(x, t) ≡ a(t)e−ψ(x,t) is the local scale factor and γij =
(
1eh

)
ij

contains the tensor degrees
of freedom. Then the local integrated expansion from some time t∗ to a later time t is given by

N(t, t∗; x) = ψ(x, t∗)− ψ(x, t) + ln a(t)
a(t∗)

. (2.11)

Specifically, by choosing the flat slicing on the initial hypersurface (ψ∗ = 0) and the final slicing to
give the surface of uniform density we obtain the curvature perturbation

ζ(x, t1) = −ψ(x, t)|ρ=ρ(t) = N(t, t∗; x)−N(t) ≡ ∆N (2.12)

where N(t) gives the integrated expansion between two flat hypersurfaces. Essentially the curvature
perturbation is the difference in integrated expansion from a flat hypersurface to one of uniform
density. The curvature perturbation may then be easily connected to inflation since the different
number of e-foldings N of inflation result from superhorizon perturbation in the inflaton so that the
curvature perturbation may be written simply as

ζ = N ′δφ∗ + 1
2N
′′δφ2 + ... (2.13)

The ∆N formula is extremely useful because it describes the curvature perturbation to all orders of
perturbation theory on large scales and therefore lends itself to the calculation of non-Gaussianity
where the required second-order cosmological perturbation theory is cumbersome. However, if the
spatial gradients are large it may no longer be applicable, and in fact, ∆N formalism corresponds to
the first order in gradient expansion [77, 78] so it is still a perturbative result in this sense.

2.3 Spectra of perturbations

Since the seeds of the cosmological perturbations come from random quantum fluctuations during
inflation it is the statistics of the perturbations rather than their actual values that contain the
information about the underlying physics. It is therefore necessary to be able to quantify the statistical
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behavior of the cosmological perturbations. For a Gaussian perturbation ξ the statistics are fully
determined by the power spectrum Pξ defined through

〈ξkξk′〉 ≡ (2π)3Pξ(k)δ(k + k′) ≡ 2π2

k3 Pξ(k)δ(k + k′) (2.14)

where the ξk are the Fourier modes and 〈...〉 denotes the ensamble average. In particular, we are
interested in the power spectrum for the curvature perturbations ζ which can be expressed using the
∆N formula simply as

Pζ(k) =
(
∂N

∂φ

)2
Pδφ = Pδφ

2εHM2
pl

(2.15)

where Pδφ is the power spectrum of the inflaton perturbations which to lowest order in slow-roll is
given by

(
H
2π

)2
evaluated at the moment when a particular scale exits the horizon during inflation as

will be shown in Chapter 4. From the CMB measurements the power spectrum is determined to be
Pζ ≈ 2.4× 10−9 [72]. Inflation produces an almost scale invariant spectrum but the deviation from
scale invariance is an important discriminator between various inflation models and can be quantified
with the spectral index

ns − 1 ≡ d lnPζ
d ln k . (2.16)

The experimentally determined value for the spectral index is ns ≈ 0.96030± 0.0073 [72].

2.4 Non-Gaussianity

The perturbations may also deviate from Gaussianity in which case one can define higher order
spectra in a similar manner. The so called bispectrum can be defined in terms of the three-point
functions as

〈ξk1ξk1ξk3〉 ≡ (2π)3δ(k1 + k2 + k3)Bξ(k1, k2, k3) (2.17)

This is a good quantity to look at because the three-point function, as well as all other odd functions,
vanishes for Gaussian perturbations. The most common type of Non-Gaussianity studied in the
literature is the local type where the curvature perturbation is given by ζ = g + bg2 with g being
a Gaussian perturbation. The deviation from Gaussianity is conventionally parametrized by the
non-linearity parameter

6
5fNL ≡

Bζ(k1, k2, k3)
Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1) (2.18)

Using the ∆N -formalism non-Gaussianity from inflation is readily calculated as

6
5fNL = N ′′

N ′2
. (2.19)
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So far cosmological data are consistent with Gaussian perturbations with deviation from Gaussianity
being constrained to be fNL = 2.7±5.8 [79]. In simplest single-field inflation models, non-Gaussianity
is proportional to the slow-roll parameters and expected to be negligible [80, 81] and so detecting
significant non-Gaussianity would immediately rule out the simplest models. Multi-field models,
especially those where the curvature perturbation is generated after inflation can produce significant
levels of non-Gaussianity as will become apparent in subsequent chapters.
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Chapter 3

Quantum Field Theory

The current understanding of the fundamental building blocks of matter in the universe is expressed in
terms of quantum fields permeating the whole of spacetime. A quantum theory of fields is obtained by
taking a classical field theory, characterized by an action S =

∫
d4xL(φa, ∂µφa) which is a functional

of fields φa and their derivatives, and demanding that the fields obey an equal time commutation
relation [φa(x), πb(y)] = iδabδ(x− y) where πa is a canonical variable conjugate to the field φa.
Quantum excitations of the fields can then be interpreted as corresponding particles. A powerful
alternative method of quantization exists which is known as the path integral formalism [82, 83].
This method employs functional integrals of eiS over all possible field configurations. Nevertheless,
its usefulness is limited in cosmology because of the time dependent background. Therefore I focus
on the canonical quantization procedure in the following.
The Standard Model of particle physics contains 12 fields corresponding to leptons and quarks

— the building blocks of matter. The theory also obeys a number of symmetries which require the
existence of gauge fields corresponding to photons, massive gauge bosons W± and Z, as well as
gluons for U(1)Y , SU(2)L and SU(3)C symmetries respectively. Finally, the theory contains the
Higgs field responsible for generating the masses of gauge bosons, leptons and quarks.
In all likelihood there are more fields beyond the Standard Model because many problems, such

as the existence of dark matter, neutrino masses, inflation and the baryon and lepton asymmetries
in the universe, cannot be addressed within the Standard model.

3.1 Scalar fields

The simplest case in quantum field theory is that of a real scalar field with zero spin. A non-interacting
scalar field φ obeys the Klein-Gordon equation of motion

φ̈+ (−∇2 +m2)φ = 0. (3.1)

A field is quantized by promoting the field to an operator and imposing an equal time commutation
relation between the field and its canonical momentum field so that [φ̂(t,x), π̂(t,y)] = iδ(x− y)

15
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while other commutators vanish. The field may be expanded as

φ(x) =
∫ d3k

(2π)3/2

[
uk(t)âke

ik·x + u∗k(t)â†ke
−ik·x

]
, (3.2)

where uk(t) are the solutions of the classical equation of motion and âk, â
†
k are the annihilation

and creation operators with commutation relations [âk, â
†
k′ ] = δ(k− k′), [âk, âk′ ] = [â†k, â

†
k′ ] = 0.

The commutation relation for the fields then implies a normalization condition uu̇∗ − u∗u̇ = i for
the mode functions. The general solution for the harmonic oscillator equation of motion is uk(t) =
αke

iωkt + βke
−iωkt which is compatible with the commutation relations if |αk|2 − |βk|2 = ~/2ωk.

The preferred mode function in Minkowski space is the positive frequency solution with β = 0 and
α = 1 as will become apparent in the next section.
The solutions can then be used to build a Fock space of quantum states with the vacuum state

given by ak|0〉 = 0 and excited states

|nk〉 =
(a†k)n√
n!
|0〉. (3.3)

Once the free theory has been constructed interactions can be taken into account by perturbative
expansion around the free solutions as long as interaction terms are small compared to the free
Lagrangian.

3.2 Bogolyubov transformation

An important caveat in the quantization of fields is the choice of the basis. For example, a scalar
field may be quantized by introducing the expansion (3.2) where the mode functions uk(t) obey the
equation of motion for the field. However, a linear combination of the mode functions vk = αuk+βu∗k
and its complex conjugate are also solutions to the equation of motion so one may equally well use
the expansion

φ(x) =
∫ d3k

(2π)3/2

[
vk(t)b̂ke

ik·x + v∗k(t)b̂†ke
−ik·x

]
, (3.4)

where b and b† are another pair of creation and annihilation operators which can be used to build a
Fock space of quantum states. If the first set of mode functions is canonically normalized then the
quantization condition imposes the relation |α|2 − |β2| = 1. The relation between the two sets of
operators is known as the Bogolyubov [84] transformation and is then

{
b̂k = αkâk + β∗−kâ

†
−k

b̂†k = α∗kâ
†
k + β−kâ−k

and
{
âk = α∗kb̂k − β∗kb̂

†
−k

â†k = αkb̂
†
k − βkb̂−k

(3.5)

As this transformation mixes creation and annihilation operators the vacuum state of one set of
operators will not be the vacuum of the other and will instead contain particles with the occupation
number nk = |βk|2. In the original basis the Hamiltonian is given by
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Ĥ =
∫

d3x
[1

2
˙̂
φ2 + 1

2(∇φ̂)2 + 1
2 φ̂

2
]

=
∫

d3k
[1

2(u̇2
k + ω2

ku
2
k)âkâ−k + 1

2(u̇∗2k + ω2
ku
∗2
k )â†kâ

†
−k (3.6)

+
(
|u̇k|2 + ω2

k|uk|2
)(

â†kâk + 1
2

)]
.

while in the new basis it is obtained by replacing uk with vk and â with b̂. If the vacuum state |0〉a
defined by operators â is to be an eigenstate of the Hamiltonian we must have u̇∗2k + ω2

ku
∗2
k = 0.

Then a corresponding expression for the new mode functions is v̇∗2k +ω2
kv
∗2
k = 2α∗β∗(|u̇k|2 +ω2

k|uk|2)
and does not vanish for non-zero α and β. Therefore, the vacuum state |0〉b defined by operators b̂
will not be an energy eigenstate.
Thus, there is a preferred basis of mode functions—that which yields the eigenstate of the Hamil-

tonian. The situation changes when one moves into the realm of time dependent backgrounds which
one encounters in cosmology. Then in general the vacuum state that is initially an eigenstate of the
Hamiltonian will not remain so.

3.3 Fermions

Fermions are fields with half-integer spin and they constitute the matter degrees of freedom: quarks,
leptons and neutrinos. The free fermionic action is

SF = −
∫

d4xψ̄†γ0(iγµ∂µ +m)ψ (3.7)

and the corresponding equation of motion is the Dirac equation

(iγµ∂µ +m)ψ = 0 (3.8)

where γµ are Dirac matrices obeying the anticommutation relation {γµ, γν} = −2ηµν and whose
solutions are spinors. Fermionic fields are quantized similarly to scalar fields but instead of imposing
a commutation relation the fields are required to satisfy the anticommutation relation

{
ψa, ψ

†
b

}
=

δabδ(x− y) where a and b refer to the spin degrees of freedom. After that the quantum field theory
may be constructed analogously to the spin-0 case.

3.4 Vector bosons

Another important class of fields are the vector bosons which transform as four-vectors under Lorentz
transformations. The vector fields within the Standard Model arise as a consequence of gauge
symmetries. The action for a gauge boson Aµ is

Sgauge = −
∫

d4x

[1
2 Tr (FµνFµν) + (DµΦ)† (DµΦ) + ψ̄γµDµψ

]
(3.9)
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where the field strength tensor is

Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] (3.10)

and Φ and ψ are respectively scalar and fermion fields charged under the gauge symmetry with the
covariant derivatives being Dµ = ∂µ − igAµ. If the matter fields transforms as Φ → ζΦ, ψ → ζψ

under a local gauge transformation then the vectors will transform according to

Aµ → A′µ = ζ−1Aµζ + i

g
ζ−1 (∂µζ) . (3.11)

The gauge groups present in the Standard Model are U(1), corresponding to the electromagnetic
interaction (in the broken electroweak phase) with the gauge field being the photon, SU(2) describing
weak interactions with W± and Z as the gauge bosons, and SU(3) corresponding to the strong
interactions with eight gluon fields being the gauge bosons. A free gauge field obeys the equation
of motion

∂µF
µν + g [Aµ, Fµν ] = 0 (3.12)

where the ν = 0 component is in fact not a dynamical equation but a constraint known as Gauss’
law. The field strength tensor also obeys the Bianchi identity which can be expressed in terms of the
Jacobi commutator identity

[Dµ, [Dν ,Dλ]] + [Dλ, [Dµ,Dν ]] + [Dν , [Dλ,Dµ]] = 0. (3.13)

Vector fields may be quantized analogously to scalar field quantization by imposing commutation
relations on fields and their canonical conjugates. However, the difficulty in the procedure involves
identifying the relevant degrees of freedom. Out of the four vector components only three are physical
in the case of massive (Proca) fields and two in the case of massless fields. One may first note that
the temporal component A0 does not possess a canonical conjugate due to the antisymmetricity of
the field strength tensor. For a massive vector field, however, A0 may be expressed in terms of the
other components so it is not an independent field. For a massless field gauge invariance entrails
another unphysical degree of freedom which is typically removed by choosing a particular gauge
through requiring some simplifying condition to hold for the fields. A further caveat arises because
this gauge condition or the Gauss’ law may be inconsistent with the canonical commutation relation
though this can be remedied by requiring that these conditions hold for the physical states rather
than operators [85–88].

3.5 Radiative corrections to classical dynamics

Interactions between fields will induce quantum corrections to the dynamics of the fields. For example
the classical trajectory of a scalar field in a potential V (φ) is determined from the equation of motion
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φ′′ −∇2φ+ V ′ = 0. (3.14)

To leading order, the quantum fluctuations δφ around the classical trajectory φcl will obey the
Klein-Gordon equation (3.1) with an effective mass m2

eff ≡ k2 + V ′′(φcl) and can be expanded
using (3.2). Using the Hartree approximation the last term in (3.14) may be expanded as V ′ =
V ′(φcl) + 1

2V
′′′(φcl)〈δφ2〉 where

〈
δφ2

〉
=
∫ d3k

(2π)3ωk

(1
2 + nk

)
. (3.15)

The first term corresponds to the correction coming from the vacuum while the second is due to the
presence of particles.

Vacuum correction

Let us first consider the vacuum contribution, i.e., the nk = 0 case in (3.15). The integral in question
is in fact divergent but can be regularized by introducing a cutoff Λ for the momentum. This gives

1
2V
′′′(φcl)〈δφ2〉vac = 1

8π2
dm2

eff
dφcl

∫ Λ

0

dk k2√
k2 +m2

eff

= d
dφcl

[
1

8π2

∫ Λ

0
dk k2

√
k2 +m2

eff

]
. (3.16)

The expression in the square brackets is then the vacuum contribution to the effective potential.
After calculating the integral this can be written as [89]

V vac
eff = V∞ + m4

eff
64π2 ln m

2
eff
µ2 , (3.17)

where µ is some arbitrarily chosen energy scale and V∞ is the part containing terms which diverge
as Λ→∞. This infinity can be removed through renormalization by a redefinition of the bare mass
and the couplings [90].

Running of the couplings

The potential arising from vacuum corrections depends on an arbitrary renormalization scale µ (see
equation (3.17)). For example for the self-coupling term λ

4φ
4 the resulting effective potential is

Veff = 1
4

[
λ+ 9λ2

16π2 ln
(

3λφ2

µ2

)]
φ4. (3.18)

Since the physics must be independent of this scale the coupling must have corresponding dependence
given by

βλ ≡
∂λ

∂ lnµ = 9λ2

8π2 (3.19)
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known as the running of the coupling. Thus the coupling depends on the energy scale of the process
under consideration. If its value is known at some energy scale, for example from experiment, it must
be run from that scale to the scale of interest in order to obtain the correct effective potential. This
can be continued at higher orders in perturbation theory to obtain higher loop corrections and all of
couplings will run. This produces a set of coupled differential equations known as renormalization
group equations leading to a renormalization group improved potential

V = λ(φ)
4 φ4. (3.20)

Temperature correction

If the field is not in the vacuum state then the effective potential will also receive a contribution from
the presence of particles. This may be estimated once the distribution of particles nk is known. In
particular, for bosons in a thermal bath it is the Bose-Einstein distribution nk = 1/(eωk/T − 1) and
we have

1
2V
′′′(φcl)〈δφ2〉T = 1

4π2
dm2

eff
dφcl

∫ ∞
0

dk k2√
k2 +m2

eff

(
e
√
k2+m2

eff/T − 1
) (3.21)

Ifmeff � T the integral is negligible so that there is no thermal correction for non-relativistic particles.
In the relativistic limit the integral gives π2/6 so that the correction to the effective potential is

V T
eff = 1

24
d2m2

eff
dφ2

cl
T 2φ2 (3.22)

which manifests as a thermal correction to the mass of the field. A more detailed analysis using
finite-temperature field theory reveals also other effects such as dissipative effects of the thermal
bath [91–93]; however, the above approximation will be sufficient for the purposes of this thesis.

3.6 The electroweak sector

The elements discussed above comprise the basic building blocks of quantum field theory and when
applied to the known constituents of matter form the Standard Model of particle physics. As this
thesis will in large part focus on the production and decay of the Higgs field and the weak gauge
bosons after inflation, the electroweak sector of the Standard Model warrants a closer examination.
The action of the EW sector is given by

SEW = −
∫

d4x

1
2 Tr (FµνFµν) + 1

4GµνG
µν + (DµΦ)†DµΦ + λ

(
Φ†Φ− ν2

2

)2
 (3.23)

where Fµν is given by (3.10) with SU(2) fields Aµ, Gµν ≡ ∂µBν − ∂νBµ being the field strength
tensor of a U(1) gauge field Bµ and Φ being the Higgs field. The covariant derivative in this case
is Dµ = ∂µ − igAµ − 1

2 ig
′Bµ.
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Higgs mechanism

The Higgs field is responsible for making the gauge fields massive through the Higgs mechanism [19–
22] when it has a non-zero vacuum expectation value (VEV). Let us choose the unitary gauge by
requiring that the Higgs can be expressed as Φ = 1√

2 (0 h+ δh)T where h is the VEV of the Higgs
field. Then the kinetic term (DµΦ)†DµΦ gives a quadratic interaction contribution for the gauge
fields proportional to h2. This term may be diagonalized to obtain mass and charge eigenstates if
new gauge fields are defined as

W±µ ≡
1√
2

(
A1
µ ± iA2

µ

)
, Zµ ≡ cos θWA3

µ − sin θWBµ, Aµ ≡ sin θWA3
µ + cos θWBµ

with masses

m2
W = g2h2

4 , m2
Z = m2

W

cos2 θW
and m2

A = 0, (3.24)

where Aaµ are the components of Aµ in the basis of SU(2) generators and the weak mixing angle
is defined by tan θW ≡ g′/g. The fields W± and Z are the charged and the neutral weak gauge
bosons respectively and Aµ is the photon.
As can be seen from the action (3.23) at low energies the minimum of the Higgs potential is at

h = ν which has been experimentally determined to be 246 GeV. However, temperature corrections
change the potential so that for sufficiently high temperatures characteristic of the early universe,
the vacuum expectation value is zero making the gauge fields massless and restoring the electroweak
symmetry. If the Standard Model is valid all the way up to inflationary scales then the symmetry
would have been broken also during inflation as the Higgs would have been a light field with a VEV
comparable to the Hubble scale during inflation as we shall see in the next chapter.

Stability of the vacuum

As was discussed in section 3.5 the couplings run with energy because of the quantum vacuum
corrections. The situation is especially interesting in the case of the self-coupling of the Higgs field.
All of the fields the Higgs is coupled to contribute to the running and since bosons and fermions
produce contributions of opposite signs the coupling becomes negative above the energy scale of
µc ∼ 1010...1011 GeV when run from the values measured at the electroweak scale [94–97]. At
energies higher than this scale the potential becomes unstable. However, the value of the instability
scale is sensitive to the SM parameters, especially the mass of the top quark, so it may be pushed
all the way to the Planck scale if the values of the parameters differ sufficiently from best-fit values
from measurements. This is depicted in Figure 3.1.
This feature is important for inflation where energies might easily exceed the instability scale so

that we couldn’t find ourselves in the current electroweak vacuum. Thus, high inflationary energies
suggest either that new physics intervene to stabilize the potential or that the true values of the SM
parameters are somewhat different than the best-fit values obtained from measurement. A related
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Figure 3.1: Running of the Higgs self-coupling. The thick blue line corresponds to the best-fit values [98, 99]
of the SM parameter measurement. The blue regions correspond to 1σ and 2σ deviation for the top mass
while the red dashed and the green dotted lines correspond to 2σ deviations in the Higgs mass and the strong
coupling respectively.

issue is the possibility that the vacuum we occupy may not be the true vacuum state and that the
universe might tunnel into the true vacuum. Our vacuum should nevertheless be at least metastable
meaning that its lifetime should exceed the age of the universe [94].



Chapter 4

Quantum fields in the early universe

Having reviewed cosmological perturbation theory and the theory of quantum fields we are now in
a position to describe the behavior of quantum fields in the early universe. The discussion in this
chapter will be limited to scalar fields and will focus on the generation of perturbations from quantum
fluctuation during inflation as well as post-inflationary decay processes.

4.1 Inflaton perturbations

As I discussed in Chapter 1, a homogeneous field slowly rolling down a potential well will have
negative pressure and therefore if it dominates the energy density of the universe this will result in a
period of inflation. However, the field will also experience quantum fluctuations around the classical
trajectory. The field may be divided into a homogeneous part and a perturbation δφ which in the
flat slicing obeys the equation of motion [100]

δ̈φ+ 3H ˙δφ+ k2

a2 δφ+
[
V ′′ − 8πG

a3
d
dt

(
a3

H
φ̇2
)]

δφ = 0. (4.1)

In conformal time, the equation of motion for the rescaled field u = aδφ is then

u′′ +
[
k2 −H2

(
2 + 5εH − 3η + εHη − 2ε2H + 2 ε̇H

H

)]
u = 0. (4.2)

To leading order in slow-roll the solution can be expressed in terms of Hankel functions as u =
α(−kτ)1/2H

(1)
ν (−kτ) + β(−kτ)1/2H

(2)
ν (−kτ), where ν = 3

2 + 3
2εH −

1
2η. Deep within the horizon

(k � H) the mode simply oscillates analogously to the Minkowskian case so it is natural to choose
the initial condition at τ → −∞ for the mode to be the Minkowski vacuum state u ' 1√

2ke
−ikτ .

This choice is known as the Bunch-Davies vacuum [101]. With the correct normalization we get for
the perturbations

uk '
√
π

4ke
iπ2 (ν+ 1

2)(−kτ)1/2H(1)
ν (−kτ). (4.3)

Outside the horizon (k � H) the mode approaches

23
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uk '
1√
2πk

(
−kτ2

)−(ν− 1
2)
ei
π
2 (ν− 1

2)Γ(ν) = ei
π
2 (ν− 1

2)
√

8k

(
−kτ2

)−(ν− 1
2) Γ(ν)

Γ
(

3
2

) . (4.4)

The power spectrum for inflaton perturbations outside the horizon is then

Pδφ '
(
H

2π

)2
Γ

(
3
2 + 3

2εH −
1
2η
)

Γ
(

3
2

)
2 [

2(1− εH)
(
k

aH

)]η−3εH
. (4.5)

Since this changes very slowly we may evaluate it at the time of horizon crossing when k = aH. Thus,
the perturbations become constant with the power spectrum to leading order in slow-roll P =

(
H∗
2π

)2
.

This behavior is depicted in Figure 4.1. The above analysis in fact applies to any light field during
inflation (m2 � H2) so any such field will be left with a spectrum of superhorizon perturbations.
The power spectrum for the resulting curvature perturbation is then given by equation (2.15) as
discussed in Chapter 2.
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Figure 4.1: Freeze-in of inflaton perturbations.

Gravitational waves

The tensor modes of the metric obey the same equation of motion with η = 0, so they too will
acquire a spectrum of superhorizon perturbations given by

PT = 8
M2

pl

(
H∗
2π

)2
. (4.6)

Since the spectrum is given directly by the Hubble rate during inflation, a detection of gravitational
waves would constitute a determination of the energy scale of inflation in a model-independent
way. The ratio of the tensor power spectrum to that of scalar curvature perturbations has been
constrained from CMB measurements by the Planck satellite to be r < 0.11 [72]; however, recently
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a detection corresponding to r ∼ 0.1..0.2 has been claimed [102] though the result may be due to
dust contamination [103,104]. If the result is correct, however, it would correspond to an inflationary
scale of H ∼ 1014 GeV.

4.2 Equilibrium state of light fields

Since super-horizon perturbations in light fields are constantly being generated from random quantum
fluctuations during inflation, the field on superhorizon scales in essence experiences a type of Brownian
motion where the generated perturbations stochastically jolt it from the background trajectory. This
allows for a statistical description of light fields originally due to Starobinsky [105–109]. For simplicity
let’s consider a perfect de Sitter evolution with εH = 0. The field may be decomposed into super-
and subhorizon parts as follows

φ(x, t) = φ̄(x, t) +
∫ d3k

(2π)3/2 θ(k − aH)
[
φkâke

ik·x + φ∗kâ
†
ke
−ik·x

]
(4.7)

where φ̄ is the field averaged on superhorizon scales and φk are the sub-horizon mode functions
discussed in the previous section. From the slow-roll equations it then follows that the smoothed
field φ̄ obeys the Langevin equation

˙̄φ(x, t) = −V
′(φ̄)

3H + f(x, t) (4.8)

with the stochastic noise term given by

f(x, t) = aH2

(2π)3/2

∫
d3k δ(k − aH)

[
φkâke

ik·x + φ∗kâ
†
ke
−ik·x

]
(4.9)

having the two-point correlator 〈f(x, t)f(x, t′)〉 = H3

4π2 δ(t − t′). The quantities of interest are the
averages of functions of φ̄ which may be calculated with the probability distribution function P (φ̄)
which obeys the Focker-Planck equation

∂P

∂t
= −V

′(φ̄)
3H

∂P

∂φ̄
+ H3

8π2
∂2P

∂φ̄2 . (4.10)

If inflation lasts a sufficiently long time we expect this distribution to settle into the equilibrium state
which is solved by

P (φ̄) ∝ exp
[
− 8π2

3H4V (φ̄)
]

(4.11)

which should be normalized to one for each potential. This gives the probability distribution function
for the light field after inflation.
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4.3 Reheating

At the end of inflation the universe is left cold and void of any matter other than the condensate
of the inflaton and other possible scalar fields which were light during inflation. Whatever matter
might have been present before, will have been diluted away by nearly exponential expansion. In
order to facilitate the beginning of the standard Hot Big Bang cosmology the energy stored in the
inflaton field needs to be transferred to the Standard Model degrees of freedom and dark matter.
This process is referred to as ‘reheating’ and it requires that the inflaton be coupled to the SM fields
in some way.
The overall dynamics depend sensitively on the particle physics models and so the details of what

went on during this phase of the universe’s history are poorly understood. Nevertheless, many models
share some basic features and it is the aim of this theses to outline the different processes that go
into the decay of the scalar fields after inflation. After the end of inflation the inflaton starts to
oscillate around the minimum of its potential and the equation of state parameter is [89, 110]

w ≡ p

ρ
' 〈V

′φ〉 − 〈2V 〉
〈V ′φ〉+ 〈2V 〉 , (4.12)

where the brackets denote averaging over the oscillation. For a power law potential V ∝ φn this
gives w = (n − 2)/(n + 2). Thus, the quadratic potential leads to matter-like expansion (w = 0)
while a quartic potential results in a radiation-like evolution (w = 1/3). As the inflaton oscillates it
decays producing particles it is coupled to. This may happen either through perturbative processes
or non-perturbatively through parametric resonance.

Perturbative decay

The transfer of energy may proceed through three-point and four-point interactions. The three
point interactions in the Lagrangian are of the form −gσφχ and −hφψ̄ψ for bosons and fermions
respectively and they correspond to a decay of one inflaton particle into two bosons or fermions with
the respective decay widths [111, 112]

Γχ ≡ Γ(φ→ χχ) = g2σ2

8πm and Γψ ≡ Γ(φ→ ψψ) = h2m

8π . (4.13)

Here m is the mass of the inflaton and σ is a mass scale which ensures the correct dimensions. The
four-point interaction in the Lagrangian is of the form −1

2g
2φ2χ2 and it corresponds to two inflaton

particles annihilating to produce two bosons as well as to the scattering of inflaton particles off of
bosons χ.
The decay may be modeled phenomenologically with equations

ρ̇φ + 3H(1 + w)ρφ = −Γeffρφ (4.14)

ρ̇SM + 4HρSM = Γeffρφ (4.15)
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where w is the equation of state parameter for the inflaton fluid and Γeff is the effective decay rate.
The inflaton transfers its energy to the decay products when H ∼ Γeff . Until this point the density
of the decay products evolves according to

ρSM '
6M2

plH
2
∗

5− 3w

(Γeff
H∗

)(
a

a∗

)−4
[(

a

a∗

) 5−3w
2

e−Γeff(t−t∗) − 1
]

(4.16)

If the decay products thermalize immediately the temperature can be obtained from equation (1.9).
The temperature rises rapidly until it reaches the maximum1 Tmax ∼ (HΓeffM

2
pl)1/4 after which it

decays as T ∝ a−
3(1+w)

8 until the inflaton has decayed at H ∼ Γeff leaving the reheating temperature
TR ∼

√
ΓeffMpl.

4.4 Preheating

The perturbative decay analysis, which was developed shortly after the introduction of inflation
and which has been outlined above, does not take into account the coherent nature of inflaton
oscillations and the resulting time dependence of the particle masses. It was soon realised [117–122]
that this leads to a non-perturbative effect, dubbed ‘preheating’, where particles may be produced
exponentially in a much more efficient manner than the perturbative analysis would suggest (see [113,
123] for recent reviews). Consider the potential

V = 1
2m

2φ2 + λ

4φ
4 + 1

2g
2φ2χ2 , (4.17)

where φ is the inflaton and χ is some bosonic field coupled to it. Due to the large value of the
inflaton, the field χ is heavy during inflation and its vacuum expectation value is zero. However, as
the inflaton field starts to oscillate after the end of inflation the quantum fluctuations in the field χ
are resonantly amplified in a non-perturbative effect known as parametric resonance. Of particular
interest are the two limiting regimes λ = 0 and m = 0, henceforth referred to as the free and the
massless case respectively.
The solution of the equation of motion for the oscillating inflaton is then of the form φ = Φ(t)Π(t),

where Φ(t) is the amplitude and Π(t) is a periodic function. For the two cases of interest these are
Φ(t) = Φ∗a−3/2, Π(t) = sin(mt), for λ = 0

Φ(t) = Φ∗a−1, Π(t) = cn
[√
λ φ∗H∗

(√
2H∗t− 1

)
, 1√

2

]
, for m = 0

where the subscript ’∗’ refers to the onset of oscillations and cn[x, k] is the Jacobi elliptic cosine.
1It should be noted that if the temperature is above the GUT scale of about 1016 GeV there could be a second phase

of production of monopoles [113] putting an upper limit on the possible temperature. In the context of supergravity
the limit can be even lower as gravitinos may be overproduced already at 109 GeV [114–116].
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Production of χ-particles

The equations of motion for the rescaled fields X ≡ a3/2χ can be rewritten as

Ẍ + ω2X = 0 with ω2 =
(
k

a

)2
+ g2φ2 + 3

2wH
2 (4.18)

where w is the effective equation of state parameter of the universe and the term containing it is
small after the onset of oscillation and vanishes identically in a matter-like background so it can
be neglected. As the inflaton oscillates, the solutions grow exponentially within specific bands of
momenta while those outside of these instability bands are oscillatory. The strength of amplification
is characterized by the resonance parameter

q ≡ g2Φ2

4m2
eff

(4.19)

where meff is the effective mass of the inflaton. In particular, two important regimes can be identified
as the narrow resonance, with q � 1, and the broad resonance, with q � 1. The nature of particle
production is quite different in these two regimes: in the broad resonance regime solutions are
amplified within broad bands of momenta k . ameffq

1/4 every time the inflaton crosses zero and
the adiabaticity condition ω̇/ω2 < 1 is violated. Note that modes with momenta much larger than
the inflaton mass can be amplified so that broad resonance can produce particles where perturbative
decay would be kinematically blocked. In the narrow resonance regime, solutions are amplified within
narrow bands of momenta centered around k2

phys ∼ m2
eff(l2−2q) of width ∆k ∼ l−1qlmeff where l is

a positive integer. For the massless case the physical momentum kphys should be replaced with the
comoving momentum. Since the bands get progressively narrower the dominant contribution comes
from the first band with l = 1.
For the massive non-interactive case, equation (4.18) corresponds to the time dependent Mathieu

equation and for the massless self-interacting case to the Lamé equation [124]. The structure of
resonance for the Mathieu equation is depicted in Figure 4.2; the Lamé equation shares a similar
structure which can be seen from Figure 1 of reference [3] (note the slightly different parametrization).
In an expanding universe the crucial difference between the two limiting cases is that the massless
case is conformal to a corresponding Minkowski case so the momenta which are within resonance
bands remain so indefinitely. In the massive case, both momenta and the resonance parameter q
change with the expansion of the universe so that momenta which are initially within a resonance
band will exit it eventually. As we shall see, this will produce a pattern of stochastic resonance.

Broad resonance

For q � 1, the evolution in the regions between zero-crossings is adiabatic (ω′/ω2 � 1) and the
solutions are well described by the WKB approximation:

Xκ(t) ' α√
2ωκ

e−i
∫
ωκdt + β√

2ωκ
ei
∫
ωκdt. (4.20)
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Figure 4.2: The structure of resonance for the Mathieu equation. The solutions are amplified exponentially
within the blue bands with the shade indicating the strength of the amplification.

Near the jth zero-crossings the inflaton may be linearized φ ' φ̇j(t − tj) so that the equation of
motion becomes

X ′′ +
(
κ2
j + x2

)
X = 0 (4.21)

where x ≡
√
g|φ̇j |(t− tj) and κ2

j ≡ k2/ga2
j |φ̇j | and is analogous to the Schrödinger equation with a

parabolic potential. The problem can then be treated as a scattering between two WKB modes with
some coefficients αj and βj before the zero-crossing and αj+1 and βj+1 after. The general solution
to the above equation can be obtained in terms of parabolic cylinder functions which leads to the
following relation between the coefficients before and after the zero-crossing [121]

(
αj+1
κ

βj+1
κ

)
=
( √

1 +W j
κeiϕκ i

√
W j
κe2iθjκ

−i
√
W j
κe−2iθjκ

√
1 +W j

κe−iϕκ

)(
αjκ
βjκ

)
(4.22)

whereW j
κ ≡ e

−πκ2
j , ϕκ = arg Γ

(
1+iκ2

j

2

)
+ κ2

j

2

(
1 + ln 2

κ2
j

)
and θj ≡

∫ tj+1
tj ωkdt is the phase accrued

between zero-crossings. After j zero crossings the solution can be interpreted as a Bogolyubov
transformation from an initial positive frequency solution (α0 = 1, β0 = 0), and so the number of
particles in the new vacuum is simply njκ = |βjκ|2 and particles are produced each time the inflaton
crosses zero according to
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Figure 4.3: Number of created particles for mode k = 0.01meff for quartic (red) and quadratic (blue) inflaton
potential. In the latter case the pattern of stochastic resonance can be seen where particles are sometimes
destroyed due to destructive interference caused by the expansion of the universe. In the quartic case particles
continue to be produced as it is conformal to resonance in Minkowski space.

nj+1
κ = W j

κ +
(
1 + 2W j

κ

)
njκ − 2 sin θtotj

√
W j
κ(1 +W j

κ)
√
njκ(1 + njκ). (4.23)

In the limit nκ � 1 this reduces to nj+1
κ ' e2πµjκnjκ with the Floquet index

µjκ ≡
1

2π ln
[
1 + 2W j

κ − 2 sin θtotj
√
W j
κ(1 +W j

κ)
]
. (4.24)

The Floquet index can take values in the range ln(3 − 2
√

2) ≤ 2πµ ≤ ln(3 + 2
√

2) depending on
the value of θtot and thus production of particles will only occur within certain resonance bands of
momenta where µ > 0. In the massless case the parameters do not depend on time and so the
modes which are initially within these bands will be produced with each zero-crossing of the inflaton.
In contrast, in the free case the parameters evolve in time and modes which are inside a resonance
band at one zero-crossing may be outside of it at the next. In fact, in the broad resonance regime
the phase accrued between two consecutive zero-crossings is very large so that θtot � π. Thus,
this phase behaves essentially as a random variable leading to the pattern of stochastic resonance
where particles may be either created or destroyed as the modes go through resonance bands. This
is depicted in Figure 4.3.
Note that particles will be produced efficiently only for πκ2

j < 1. Since φ̇ ∼ meffΦ this leads to a
cutoff scale k2

cut ∼ 2π−1a2
j
√
qjm

2
eff . The total number of χ-particles can be obtained by counting all

of zero crossings and integrating over all momenta. With the use of the saddle-point approximation
this can be estimated to be

nχ = 1
(2πa)3

∫
d3 knk '

(gΦ0m
eff
0 )3/2

16π3√2µmefft
e2µmefft (4.25)

where µ is the maximum value of the average of Floquet index µav
k ≡ π(mefft)−1∑

j µ
j
k.
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Backreaction

As more and more χ-particles are produced they will eventually reach high enough densities to affect
the dynamics of the oscillating inflaton field. This effect can be estimated in Hartree approximation
by adding a term

g2〈χ2〉φ2 = g2φ2

(2πa)3

∫
d3k |X|2 ∼ gnχ

Φ φ2 (4.26)

to the inflaton equation of motion. This is essentially an induced mass and backreaction becomes
important when it becomes of the same order as the initial effective mass of the inflaton, g2〈χ2〉 ∼
m2

eff . From equation (4.25) this happens at

mefft '
1

4µ ln
[
5× 105m

2
efftµ

g5Φ

]
. (4.27)

This time can be considered as the end of preheating as it terminates shortly after backreaction
becomes important [121].

4.5 Generating the curvature perturbation after inflation

In the beginning of this chapter we saw how curvature perturbations may arise from quantum fluctu-
ations in the inflaton field during inflation. However, there are mechanisms which can generate the
curvature perturbation after inflation from isocurvature perturbations in spectator fields. These are
fields that are light during inflation and therefore also acquire a spectrum of perturbations but these
fields give a negligible contribution to the energy density of the universe during inflation. The two
most prominent examples of such mechanisms are the modulated reheating [28–30] and the curvaton
scenarios [23–27].

Modulated reheating scenario

The idea behind the modulated reheating scenario is that the decay rate of the inflaton Γ depends on
some spectator field σ. As was discussed earlier in this chapter the inflaton decays into radiation when
H = Γ. Since Γ now depends on the spectator field which has slightly different values in different
parts of the universe due to perturbations from inflation this transition will happen inhomogeneously
in space. If the inflaton is assumed to oscillate in a harmonic potential after inflation then the
evolution is locally matter-like prior to H = Γ(σ) and radiation-like subsequently to it. Due to
the inhomogeneity of the transition some parts of the universe will spend more time in the matter-
like stage than others thus losing less of their energy, which results in density, or correspondingly,
curvature perturbations.
Since H ∝ a−3(1+w)/2 for constant equation of state parameter w the number of e-folds from the

end of inflation to some time after reheating is
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N ≡ ln
(

a

aend

)
= −2

3 ln
( Γ
Hend

)
− 1

2 ln
(
H

Γ

)
. (4.28)

so that with the use of ∆N -formalism the curvature perturbation on uniform energy hypersurfaces
is

ζMR = −1
6

Γ′

Γ δσ∗ = − g
′

3g δσ∗, (4.29)

where δσ∗ refers to field perturbations at the time of horizon crossing, and the last equality comes
from assuming Γ ∝ g2 with g = g(σ) a coupling constant. The power spectrum and non-Gaussianity
in this model are

PMR
ζ =

( Γ′

6Γ

)2 (H∗
2π

)2
, fMR

NL = 5
(

1− Γ′′Γ
Γ′2

)
. (4.30)

Curvaton scenario

In the curvaton scenario the curvature perturbation also originates from the quantum fluctuations of
a spectator – the curvaton – and is generated after inflation. The central point of this mechanism is
that a light spectator σ starts to oscillate in a harmonic potential at some time tosc during radiation
domination. Since the energy density of the field decreases slower than that of radiation its relative
contribution to the overall density grows until it decays at some later time tdec. As its contribution to
the energy density increases so does its contribution to the curvature perturbation to the point where
it can account for the entire primordial perturbation if it decays after having become the dominant
component. The number of e-folds from the onset of oscillation to the time of the decay of the
curvaton is

N = ln
(
ρσ,dec
ρσ,osc

)1/3

= ln
(
ρr,dec
ρr,osc

)1/4

(4.31)

Since ρr = ρtot − ρσ and we are interested in hypersurfaces of uniform total density the derivatives
at tosc and tdec can be related by

∂ρσ,dec
∂σ∗

' (1− rdec)
(
ρr,dec
ρr,osc

)3/4
∂ρσ,osc
∂σ∗

(4.32)

where rdec ≡ 3ρ̄σ
3ρ̄σ+4ρ̄r

∣∣∣
dec

. During slow-roll evolution the field value changes very little so that
ρσ,osc ' 1

2m
2
σσ

2
∗ leading to

Pcurvaton
ζ = 4rdec

9σ2
∗

(
H∗
2π

)2
, f curvaton

NL = 5
3 + 5

6rdec −
5

4rdec
(4.33)

As we have seen quantum fields can play an important role in the very early universe and many
different aspects of their dynamics can be relevant in the post-inflationary epoch, including the gen-
eration of super-horizon perturbations from light fields as well as perturbative and non-perturbative
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particle production. So far we have looked at these effects in isolation but in more realistic models
such effects are likely to be present concurrently and the interactions of these effects may change
the dynamics or produce wholly new effects. In the following chapters I shall discuss how non-
perturbative decay of scalar fields is affected when modulation of couplings, perturbative decay and
radiative corrections to the potential are taken into account.
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Chapter 5

Cosmological perturbations from
modulation of resonant decay

As was discussed in the previous chapter, the modulated reheating scenario [28–30] provides a
mechanism for generating the curvature perturbation after inflation from isocurvature perturbations
in a spectator field which modulates the decay rate of the inflaton. This setup assumes perturbative
decay of the inflaton, but it is natural to extend this scenario to non-perturbative decay through
parametric resonance. Analogously to the modulated reheating case the coupling of the inflaton to
its decay products may be modulated by another field σ which was light during inflation and therefore
acquired a spectrum of super-horizon perturbations [1,125–127]. This would lead to slightly different
initial conditions for the resonant production of particles in different parts of the universe leading to
the generation of curvature perturbations in analogy with the modulated reheating scenario. Let the
potential be

V = 1
2m

2φ2 + 1
2g

2φ2χ2 (5.1)

where φ is the inflation, χ is the preheat field, and their coupling depends on the spectator field σ,
g = g(σ). As we saw in the previous chapter, this model gives rise to preheating through resonant
production of χ-particles. However, preheating will last longer in some parts of the universe than
in others because of the modulation of the coupling by super-horizon perturbations in the spectator
field σ. During preheating the evolution of the universe is matter-like and after it is over the effective
pressure rises quickly to a value wf somewhat below that of radiation [128–131]. Then the number
of e-folds after inflation is given by

N = 2
3

wf
1 + wf

ln t1
t0

+ 2
3

1
1 + wf

ln t

t0
(5.2)

where t0 is the end of inflation and t1 the end of preheating, and with the use of the ∆N -formalism
the resulting curvature perturbation from modulation of the duration of preheating is

35
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ζMP = 2
3

wf
1 + wf

∂ ln t1
∂ ln g

g′

g
δσ∗. (5.3)

If preheating terminates before backreaction becomes important, t1 ∝ g and so the curvature
perturbation is of the same magnitude but opposite sign as in the modulated reheating scenario,
ζMP ' 2

3
wf

1+wf
g′

g δσ∗. The reason for the difference in sign is that, unlike perturbative decay, the
duration of preheating is directly proportional to the strength of the coupling. Without backreaction,
preheating terminates because the resonance parameter q ∝ g2 decreases as the universe expands,
eventually becoming too small for the decay to be efficient. For larger couplings the initial value of
the resonance parameter is greater, allowing for a longer period of preheating. In contrast, the time
until perturbative decay is inversely proportional to the strength of coupling, t ∝ Γ−1 ∝ g−2.

5.1 Termination by backreaction

A more interesting case to consider is if the parametric resonance is terminated by the decay products
backreacting on the inflaton dynamics. In this case preheating ends when the effective inflaton mass
induced by the produced particles becomes comparable to its bare mass, g2〈χ2〉 ∼ m2 which occurs
when the number density of produced particles reaches nχ ∼ g−1m2Φ. From the equation (4.27)
this gives a curvature perturbation

ζMP = −2
3

wf
1 + wf

4µmt1 − 1
4µmt1 − 3

[ 5
4µmt1 − 1 + ∂ lnµ

∂ ln g

]
g′

g
δσ∗, (5.4)

where µ is the effective Floquet exponent characterizing the efficiency of production. Typically
preheating lasts for mt1 ∼ 102 and µ ∼ O(0.1). Numerical analysis shows that the variation of the
Floquet exponent with respect to the coupling can be as high as ∂ lnµ/∂ ln g ∼ O(10) [1], resulting
in much higher curvature perturbations than what perturbative modulated reheating can produce,
PMP
ζ > 102PMR

ζ .
However, µ is not a monotonic function of g. As the resonance parameter q is changed, the

location of the resonance band also changes and at some point there will be a transition from one
band to the next (see Figure 4.2). The situation is further complicated by the stochastic nature of
the resonance. The location of the resonance bands is different for each consecutive zero-crossing
of the inflaton in a manner which depends very sensitively on the initial conditions. As a result the
produced curvature perturbation also is very sensitive to the initial conditions.

5.2 Contribution from the inflaton

Modulated preheating can produce curvature perturbations on super-horizon scales but whether the
observed primordial curvature perturbation can be due to this process depends on the magnitude of
the produced perturbations compared to those generated by the inflaton which are always present.
The contribution from the inflaton can be obtained in the usual manner by considering the amount
e-folds of inflation so that
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P inf
ζ = 1

2εHM2
pl

(
H∗
2π

)2
(5.5)

where εH is the slow-roll parameter describing deviation from de Sitter dynamics, evaluated at
the time of horizon crossing. The combined spectrum of curvature perturbations is then Pζ =
(1 + ξλ2)Pinf where

λ ≡ 1
2Nσσ∗ = wf

1 + wf

g′σ∗
3g

∂ ln t1
∂ ln g , ξ ≡ 8ε∗

(
Mpl
σ∗

)2
. (5.6)

Here λ parametrizes the dynamics of preheating while ξ characterizes the initial conditions at horizon
crossing. Modulated preheating produces the dominant contribution when ξλ2 � 1. As discussed
above, t1 changes non-monotonically with g and is sensitive to the initial conditions, but according
to numerical estimates in [1], λ < O(1), so in order for modulated preheating to give the dominant
contribution to the primordial curvature perturbation requires the amplitude of the spectator field to
be much smaller than Planck mass (ξ � 1).

5.3 Constraints from non-Gaussianity

As the dependence of the resonance on the coupling is highly non-linear modulated preheating also
has the potential to produce large non-Gaussianity with the fNL parameter given by

6
5f

MP
NL '

1
2

ξ2λ4

(1 + ξλ2)2

[(
g′′σ∗
g′
− g′σ∗

g

) 1
λ
− 1

2

(
g′σ∗
g

) 1
λ2

∂2 lnµ
∂(ln g)2

]
. (5.7)

Numerical analysis shows that non-Gaussianity is typically much larger than that produced in the
modulated reheating scenario [1]. Since the bounds on non-Gaussianity are moderately tight, this
implies constraints on the modulated preheating scenario. While it is possible for non-Gaussianity to
be small in this framework because of the non-monotonic nature of µ(g) this would require tuning
of the parameters.
On the other hand, since many models exhibit the feature of parametric resonance the fact that

modulated preheating very easily produces too large non-Gaussianities can also constrain the frame-
work of modulated reheating. Taking non-perturbative decay into account in considering modulated
reheating models can result in much more stringent constraints from non-Gaussianity.

5.4 Constraints from gravitational waves

Additional constraints on the model may be obtained from the background of gravitational waves
generated by inflation. As was discussed in the previous chapter, tensor modes generated from
quantum fluctuations in the metric by the quasi-de Sitter expansion have the same spectrum as a
massless scalar field. The tensor-to-scalar ratio at horizon crossing is then r∗ = 16ε∗. If curvature
perturbations are generated after inflation from isocurvature perturbations in a spectator field, the
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scalar contribution grows while that from the tensors stays constant so that the final tensor to scalar
ratio is suppressed:

r = 16ε
1 + ξλ2 . (5.8)

Thus, if a sizable tensor-to-scalar ratio is detected then the contribution from the modulated reheating
cannot dominate the curvature perturbation (ξλ2 � 1).

5.5 Constraints from residual isocurvature

It is also possible that the field σ will not decay into radiation but instead forms dark matter. In this
case a residual isocurvature perturbation between radiation and the dark matter fluids will remain
which could be used to constrain the model further. Let us consider a simple quadratic potential
Vσ = 1

2m
2
σσ

2. As discussed in the previous chapter, while the field is in slow-roll the ratio δσ∗/σ∗
remains constant leading to isocurvature perturbation

Sσ ≡ 3(ζσ − ζr) = δρσ
ρσ

= 2δσ
σ
. (5.9)

Eventually the field starts to oscillate and forms dark matter leading to CDM isocurvature perturba-
tions with the isocurvature fraction and correlation

α ≡ PS
Pζ + PS

= ξ

1 + ξ (1 + λ2) , cos2 ∆ ≡
C2
ζS
PζPS

= ξλ2

1 + ξλ2 . (5.10)

Since cosmological observations are consistent with adiabatic perturbations, isocurvature constraints
provide further limits for this model. The combined constraints from non-Gaussianity and isocur-
vature for a particular realization are shown in Figures 4 and 5 of [1]. In particular in the regime
where modulated preheating dominates the curvature perturbation the isocurvature perturbations
are fully correlated or anticorrelated with the curvature perturbation and the isocurvature fraction
α < 1/(1 + λ2). In this case tight isocurvature constraints require λ to be larger than what nu-
merical estimates suggest. Thus we conclude that the curvature perturbation coming entirely from
modulated preheating is ruled out. The opposite limit, where the contribution of the modulated
preheating is small, produces uncorrelated isocurvature with isocurvature fraction α = ξ/(1 + ξ)
leading to constraint from σ∗ &

√
εMpl.

As we have seen, spectator fields may have very non-trivial effects on the resonant decay of
the inflaton by means of modulation of the coupling strength resulting from perturbations in the
spectator field. This may result in the generation of curvature perturbations from inhomogeneous
end of preheating in analogy with the modulated reheating scenario. The duration of preheating
when it is terminated by backreaction depends non-trivially on the coupling resulting in sensitivity
to initial conditions and production of large non-Gaussianities. Further constraints may be obtained
from gravitational waves, and in the case of the spectator producing dark matter, isocurvature
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perturbations. While small non-Gaussianity is achievable in this model it requires fine-tuning so in
light of tight limits on non-Gaussianity from the data the model should be viewed as a constraining
process when considering preheating rather than a viable model. While spectators may affect the
non-perturbative decay of the inflaton they themselves may experience parametric resonance as they
start to oscillate after the end of slow-roll. The next two chapters will cover such processes.
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Chapter 6

Resonant decay of spectators during
slow reheating

We have seen that spectator fields can play a significant role in the non-perturbative decay of the
inflaton. However, spectator fields themselves can decay non-perturbatively through the same process
of parametric resonance. It is then prudent to ask how the decay of the inflaton can affect the non-
perturbative decay of spectators. In this chapter we focus on this issue, studying non-perturbative
decay of a spectator σ in the thermal bath produced by the continuous perturbative decay of the
inflaton. Let the spectator be coupled to the Standard Model Higgs Φ with the potential

V = 1
2m

2
σσ

2 + g2σ2Φ†Φ. (6.1)

As was discussed in Chapter 3, radiative corrections both from the vacuum and from the interaction
with the thermal bath will induce corrections to the effective potential for the spectator. The thermal
corrections can be considered as thermal contributions to the effective mass m2

eff = m2 + g̃2
TT

2. The
correction to the Higgs mass comes from the loop contributions of all of the SM degrees of freedom
and is known to be g2

T = 0.1 [132]. The correction to the spectator mass comes from the Higgs loops
and is gT ∼ g. The vacuum radiative contribution to the potential in the limit g2σ2 � m2 + g2T 2

where it is non-negligible is

Vvac '
g4σ4

64π2

[
ln
(
g2σ2

m2

)
− 3

2

]
. (6.2)

There are thus three different regimes where the dynamics of the spectator are dominated by: 1)
the thermal mass gT , 2) the bare mass mσ and 3) the vacuum contribution Vvac. The regions of
the parameter space corresponding to these regimes are depicted in Figure 1 of Reference [2].

6.1 Inflaton decay

The decay of the inflaton into SM particles proceeds perturbatively with some effective decay rate
Γ. Efficient reheating occurs when H ∼ Γ. Before this point we assume that the evolution of
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the universe is matter-like corresponding to inflaton oscillating in a harmonic potential. We also
assume that the decay products thermalize instantly so that according to the results of Section 4.3
the temperature shortly after the end of inflation and before reheating evolves as

T =
(

36M2
plHΓ
π2

)1/4

a−3/8 ≡ T∗a−3/8, (6.3)

where H∗ denotes the Hubble rate at the end of inflation and g∗ = 106.75 is the number of SM
degrees of freedom. The temperature decreases rather slowly because of the competing effects of
the expansion of the universe and the production of particles by inflaton decay.

6.2 Spectator evolution

The evolution of the spectator field condensate is determined by the equation of motion

σ̈ + 3Hσ̇ +m2
eff(σ)σ = 0 (6.4)

where m2
eff(σ) = m2

σ + g2T 2 + λσ2 and we take λ ' g4

16π2 since the logarithm term in the vacuum
contribution changes slowly. Once the Hubble rate becomes smaller than the effective mass the
spectator starts to oscillate about the minimum of the potential. The frequency and the amplitude
of the oscillation depend on which of the three contributions to the effective mass dominates.

Thermal mass dominant

When the Higgs particles are relativistic the spectator obtains a thermal mass gT . The effective mass
of the Higgs is given by m2

h ' g2
TT

2 + g2σ2 so the spectator receives a thermal mass for gσ � T .
If this contribution dominates over the bare mass mσ the evolution of the spectator can be solved
to be

σ(t) = 22/3Γ(5/3)σ∗
A2/3a3/4 J 2

3

(
Aa9/8

)
(6.5)

where A ≡
(

47g4M2
plΓ

36g∗π2H2
∗

)1/4
and Jν(z) is the Bessel function of the fist kind.

Bare mass dominant

If the bare mass of the spectator mσ gives the dominant contribution the situation is analogous to
the massive preheating case discussed in Chapter 4. The solution is then given by

σ ≈ 3H∗σ∗
2mσ a3/2 sin

(
mσt+ 2mσ

3H∗

)
(6.6)

and the field crosses zero at tj ' jπ/mσ with j = 1, 2, 3, .... This regime is relevant when m2
σ �

g2T 2, g4σ2/(16π2).
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Vacuum correction dominant

When the vacuum correction dominates the spectator is effectively in the quartic potential. The
vacuum contribution is important if the Higgs is non-relativistic and the bare mass of the spectator
is small compared to gσ. The situation is similar to massless preheating discussed in Chapter 4;
however, now the background evolution is matter-like rather than radiation-like. This manifests as
a delay of oscillation for the spectator because the term −a′′/a in the equation of motion keeps the
field in slow-roll. This term decays, however, and once it becomes small the oscillations proceed as
in the massless preheating case. The spectator field evolution in this case is

σ '

 σ∗ for a < aosc

σ∗
(

a
aosc

)−1
cn
[
11(
√

a
aosc
− 1), 1√

2

]
for a > aosc

(6.7)

where cn(z, 1√
2) is the Jacobi elliptic cosine and the subscript ‘osc’ denotes the onset of oscillations.

6.3 Resonant decay in the presence of a thermal bath

In all three cases the spectator oscillates around zero and so produces Higgs particles through para-
metric resonance. The equation of motion for the normalized Higgs degrees of freedom X = a3/2φ

is

Ẍ +
[
k2

a2 + g2
TT

2 + g2σ2
]
X = 0. (6.8)

The resonance parameter characterizing the strength of the resonance is now q ≡ g2Σ2

4m2
eff

where Σ
is the amplitude of the spectator and meff its effective mass. Note that if the thermal mass of
the spectator dominates then q � g−2 so the resonance is always broad. Likewise, in the vacuum
dominated case m2

eff '
g4σ2

16π2 so that q = 4π2g−2 and there is no narrow resonance. In contrast, both
broad and narrow resonance can occur when the spectator evolution is dominated by the bare mass.

Broad resonance

The situation is analogous to preheating with the substitution k2 → k2 +a2g2
TT

2. The condition for
being inside the resonance band at the jth zero-crossing now becomes

k2 <
a2
jg|σ̇j |
π

(
1−

πg2
TT

2
j

g|σ̇j |

)
. (6.9)

If the second term in the parentheses is larger than one then no modes are inside the resonance
band and no particles are produced. Thus the thermal mass of the Higgs can block the resonance
completely if the temperature is sufficiently high. If the spectator starts to oscillate after the inflaton
has completely decayed then the resonance may be blocked from the beginning although it may
eventually become unblocked as the temperature falls down [133].
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If the onset of oscillations happens before inflaton has decayed, however, then the resonance
which is initially unblocked may become blocked as the thermal bath is generated by the decay of
the inflaton. Since σ̇ ∼ meffσ and T ∝ a−3/8 the thermal blocking term in (6.9) grows as ∼ a3/8,
∼ a9/8 and ∼ a13/8 for the cases where the thermal, bare and vacuum contributions to the effective
spectator mass dominate respectively.
The question then arises whether the spectator field can decay by parametric resonance before it

becomes blocked. This is an important issue for example in the curvaton scenario where the field
has to be sufficiently long lived in order to come to dominate the energy density of the universe
and to generate the curvature perturbation. Thermal blocking of the non-perturbative decay can
facilitate this but only if the resonance is blocked sufficiently early for the field to survive into
radiation domination era. The estimate for the time when the field will have decayed is when the
energy of produced particles reaches the energy in the spectator field, ρσ ∼ ρh. Broad resonance
can be terminated either by becoming thermally blocked as discussed above or by transitioning into
the narrow resonance regime as the resonance parameter decreases. Therefore the field will have
decayed by broad resonance if at the end of it the energy in decay products is greater than that of
the spectator field.

Thermal mass dominant

When the thermal mass dominates the resonance is blocked after jth
block zero-crossings where

jth
block =

[
g∗Γ(5/3)3

π5g6
T 23/2

] 2
5

g2
(
σ∗
Mpl

) 6
5 (Mpl

Γ

) 2
5
. (6.10)

We have found that this is always smaller than one in the region of the parameter space where the
thermal mass gives the dominant contribution [2]. Thus, in this case the resonance is always blocked
and the field cannot decay before radiation domination.

Bare mass dominant

When the dynamics of the spectator are determined by the bare mass contribution the resonance is
blocked after

jbare
block = g∗

24πg4
T

g2
(
σ∗
Mpl

)2(mσ

Γ

)
(6.11)

oscillations. In this case the resonance is initially unblocked in part of the parameter space, specifically
for large mass and coupling and for slow inflaton decay rate [2]. In this region the resonance is
sufficiently strong to efficiently transfer the energy from the spectator to the decay products or the
buildup of the thermal bath due to inflaton decay is sufficiently slow to allow for efficient decay of
the spectator.
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Vacuum correction dominant

In the case of the vacuum radiative correction dominating the spectator evolution the resonance is
blocked after

jvac
block = 11

Kτosc

(√
q̃H2
∗

πg2
TT

2
∗

)2/5

− 1
2

(11
K
− 1

)
(6.12)

oscillations. Also in this case the resonance is unblocked in part of the parameter space and the
field can decay efficiently before the onset of radiation domination for strong couplings and slow
reheating. The region of efficient decay in this case is depicted in Figure 4 of [2].

Narrow resonance

So far we have been discussing the regime of broad resonance with g2σ2
∗/4m2

eff � 1. However,
narrow resonance can also occur for certain values of the parameters though only in the case where
the bare mass of the spectator is dominant. The system can either be initially in the narrow resonance
or it can transition into it from the broad resonance regime. Thus, even if the spectator field doesn’t
efficiently decay during broad resonance it can continue to produce particles through narrow resonance
and eventually decay.
Again the situation is analogous to the preheating case, discussed in Chapter 4, with the substi-

tution k2 → k2 + g2
TT

2. Now the condition for being inside the resonance band is

k2 ∼ a2m2
σ

[
1 + 2q ± q − g2

TT
2

mσ2

]
(6.13)

and no modes are within the band for g2
TT

2 > (1 + 3q)m2
σ. Thus, the heat bath also blocks the

narrow resonance when the temperature is sufficiently high. In contrast to the broad resonance, the
thermal blocking decreases whenever temperature does and so if the resonance is blocked initially it
will inevitably become unblocked as the temperature goes down. Thus narrow resonance begins either
by becoming thermally unblocked or by transitioning from broad resonance if the thermal unblocking
condition is already satisfied during it. We find that the spectator field can then efficiently decay
by narrow resonance in the regions where broad resonance is inefficient or blocked though regions
of efficient decay are still confined to the strong coupling and weak inflaton decay region of the
parameter space [2].

6.4 Perturbative decay due to the thermal bath

The presence of the thermal bath also means that additional perturbative decay processes for the
spectator can be relevant, such as scatterings with the thermal background. For cases where either
thermal or bare mass dominate the spectator potential the total decay rate is [2]

Γth = 1
576π

g4T 2

mσ(T ) , (6.14)
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which is non-negligible when mσ(T ) � T and mh ' gΣ(t) � T . When the vacuum correction
dominates, the decay rate may be estimated as

Γth = 6.6× 10−8 g8T 2

mσ(T ) , (6.15)

which is also only valid for mσ(T )� T . The spectator will decay by these processes when H ∼ Γth.
We find that this can happen before the inflaton has decayed for sufficiently large couplings and
small masses of the spectator (see Figure 5 in [2]).
As we have seen, the decay of the inflaton has significant consequences for the decay of spectators

following inflation. The slow buildup of a thermal bath generated by the inflaton decay may allow
for efficient decay through non-perturbative resonant particle production but whether this will be
possible will depend on how fast thermal effects block the resonance. This depends in part on the
evolution of the spectator which is governed by its effective mass which in turn may be due to the
bare, thermal or radiative contribution. Also perturbative decay in the presence of the thermal bath
may be relevant for certain parameter values.
The issue of when and how the spectators decay are especially important for the curvaton scenario

which requires the spectator to survive well into the radiation domination era but may also be relevant
for other spectators which should decay early in order to preserve the predictions of established physics
such as Big Bang Nucleosynthesis. The effects studied in this chapter also do not exhaust all of the
physics relevant for resonant particle production. We have studied the decay of a spectator into the
Standard Model Higgs but the Higgs itself is also a light field during inflation and is expected to have
a non-zero vacuum expectation value and to start oscillating some time after inflation. Parametric
resonance is therefore expected to occur also for the Higgs field. We have also neglected the effects
of non-linear terms of the decay products. In the next chapter, I shall discuss the non-perturbative
decay of the Higgs condensate into weak gauge bosons and the effect of their non-Abelian terms on
the resonance.



Chapter 7

Non-Abelian corrections in the resonant
decay of the Higgs

In the previous chapter the decay of a spectator into the Standard Model Higgs was considered.
However, if the Standard Model is valid all the way up to the inflationary scale then also the Higgs
is a light spectator during inflation. As the Higgs starts to oscillate after inflation it should also
experience parametric resonance and would non-perturbatively produce all of the particle species it
is coupled to. This is perhaps the most concrete and realistic model of non-perturbative decay as
all of the couplings of the Higgs and their runnings are known. The only unknown quantity is the
initial amplitude of the Higgs field which determines the energy scale to which the couplings need to
be run to. If inflation lasts a sufficiently long time this amplitude can be expected to be of the order
of the Hubble parameter during inflation, as discussed in section 4.2. Thus, if the energy scale of
inflation can be fixed, for example by a detection of primordial gravitational waves, then this model
would in principle be fully determined.
The dominant channel is the production of weak gauge bosonsW± and Z [134]. However, previous

studies of resonant production of gauge bosons from the Higgs condensate have neglected the effects
of the non-Abelian interactions between them. The aim of this chapter is to focus on the effects of
the non-Abelian corrections on the resonance and the time scales when these become important.

7.1 Higgs dynamics

At high energies the dominant part of the Higgs potential is the quartic term

V ' λ(h)
4 h4, (7.1)

where λ is the Higgs self-coupling at energy scale h. As was discussed in Section 4.2, the probability
distribution for the field will reach an equilibrium value P (h) ∝ exp

(
−2π2λh4

3H4

)
. With the correct

normalization this gives for the variance of the field
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〈h2〉 =

√
3H4
∗

2π2λ∗

Γ
(

3
4

)
Γ
(

1
4

) . (7.2)

Thus, the field value after inflation in our observable patch is expected to be of the order of inflationary
scale, h ∼ H∗. This is also the scale the couplings need to be run to in order to give the correct
dynamics.
As was discussed in Section 3.6, the self-coupling of the Higgs actually becomes negative for energy

scales higher than E ∼ 1011 GeV making the electroweak vacuum unstable. In order to consider
inflationary scales higher than this, either new physics has to intervene to stabilize the potential or
the values of the Standard Model parameters must be somewhat different than the best fit to the
experiments. In particular lowering the top mass has the effect of shifting the instability scale to
higher energies. Increasing the Higgs pole mass and the strong coupling will also improve the stability
but less drastically than changing the top mass which has greatest uncertainty.
After inflation the Higgs condensate starts to oscillate once the Hubble rate becomes smaller than

its effective mass m2
0 ' λh2. The situation is the same as that considered in the previous chapter in

the context of the radiative correction to the potential which was approximated by a quartic term.
If the inflaton oscillates in a harmonic potential then the effective matter domination will delay the
onset of resonance but once it has started the solution can be obtained in terms of the Jacobi elliptic
cosine:

χ = χosc cn
[√

λχ2
osc(τ − τosc),

1√
2

]
, (7.3)

where χ ≡ a−1h, τ is the conformal time and the subscript ‘osc’ refers to the onset of oscillation.

7.2 Gauge field evolution

Because of conformal invariance of the kinetic term for the vector fields the weak gauge bosons
only experience the expansion of the universe during inflation through the time dependence of their
masses which are due to the Higgs field. Thus, after inflation their expectation values are zero. Once
the Higgs field starts to oscillate, vacuum fluctuations in these fields can be resonantly amplified in
the same way as for scalar fields discussed in the previous chapters. However, previously we had not
considered the interactions between the decay products. Weak gauge bosons, on the other hand,
interact with each other in a manner dictated by the structure of the SU(2)×U(1) symmetry group.

Linear stage of the resonance

At the start of the resonance the non-linear terms due to interactions are still much smaller than
the linear terms and this stage of the resonance can be studied as before. The only difference in
this respect is the vector nature of the fields. If the vectors are decomposed into longitudinal and
transversal components then it turns out that only the transversal degrees of freedom are amplified
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by resonance. As the modes are amplified by parametric resonance the non-linear terms grow until
they start to affect the dynamics of the resonance. We would like to find out when this will occur.

Non-linear stage of the resonance

With the use of the Hartree approximation the non-Abelian interaction terms coming into the equa-
tions of motion for the gauge field component Aai is obtained to be

− g2ηµν
∑
b 6=a

[〈
AbµA

b
ν

〉
Aai −

〈
AbiA

b
µ

〉
Aaν

]
(7.4)

which in turn induces effective masses for the transversal modes of the gauge fields which are given
by

m2
W = 2g2λχ2

osc
3π2

∫ ∞
0

dκκ2
(
|XW |2 + cos θ2

W |XZ |2
)
, (7.5)

m2
Z = 4g2λχ2

osc cos θW
3π2

∫ ∞
0

dκκ2|XW |2. (7.6)

Here X ≡ (λχ2
osc)1/4A and the integrals depend only on qW,Z , that is, where resonance band lies

for a given renormalization scale.

7.3 Backreaction on the Higgs

The produced gauge bosons will also alter the dynamics of the Higgs field. The Higgs will likewise
acquire an effective mass induced by amplified gauge fields which is

m2
χ = g2

4
[
2〈W+

µ W
µ−〉+ (cos θW )−2〈ZµZµ〉

]
. (7.7)

Thus, the mass induced for the gauge fields is m2
W,Z ∼ qm2

χ. Therefore in the broad resonance
regime (q � 1) the produced particles will alter the dynamics of the Higgs condensate before the
non-Abelian terms become comparable to the linear ones. For SM couplings the resonance is always
broad as a consequence of rather strong coupling of the Higgs to the gauge bosons. However, unless
the energy is very close to the instability scale the resonance is not extremely broad (q ∼ 1..100) so
those two time scales are close to each other.
In the narrow resonance regime (q � 1) non-Abelian terms become important before the onset of

backreaction so that the Abelian approximation breaks down already in the linear regime and lattice
simulations are needed in order to investigate the details of the resonance. While narrow resonance
does not occur for the pure Standard Model it may be relevant if new physics change the runnings of
the couplings. It is also relevant for a generic model of a spectator other than the Higgs decaying into
gauge bosons. In that case the couplings are free parameters and narrow resonance is a possibility.



50

We conclude that non-Abelian interactions may play an important role in the resonant production
of gauge fields in the decay of the Higgs condensate. While in the broad resonance regime, typical of
the Standard Model couplings, the non-Abelian corrections do not grow to the size of the linear terms
before the produced particles backreact on the Higgs condensate, these two timescales are rather
close for generic SM couplings suggesting that more detailed analysis using lattice simulations is
warranted. In the narrow resonance regime especially the non-linear terms become important before
the onset of backreaction calling for investigation on the lattice.



Chapter 8

Conclusions

While both the ΛCDM cosmological model and inflation have been extremely successful in accounting
for the cosmological data, the transition between inflation and the thermal state necessary for the
initial condition of the Big Bang cosmology remains poorly understood. The inflaton field and
possible spectator fields must have transferred their energy to the particles of the Standard Model
as well as dark matter in the reheating era but the underlying physics are highly model dependent.
In particular, non-perturbative decay through parametric resonance is a feature of many models.
In this thesis I have discussed non-perturbative resonant decay of scalar fields after inflation in

the context of spectator fields. Even though spectator fields are not important during inflation, they
can have crucial consequences after inflation is over. Important examples of such effects are the
modulated reheating and the curvaton scenarios where the curvature perturbation is generated from
perturbations in the spectator fields. The manner in which scalar fields decay is of crucial significance
in such circumstances and it is important to understand how the interplay between various effects
will affect the dynamics.
In Chapter 5 the modulation of the resonant decay of the inflaton by a spectator field was discussed,

where it was assumed that the coupling of the inflaton to the decay products depends on the value
of the spectator field. As spectator fields acquire a spectrum of super-horizon perturbations during
inflation, the strength of the coupling exhibits spatial variation resulting in modulation of the duration
of the resonance. As a result, curvature perturbations are generated. The model is prone to producing
large non-Gaussianity suggesting that considerable fine tuning is needed to reconcile it with the non-
Gaussianity constraints from Planck. However, the situation may be viewed from the opposite angle
in that a generic dependence of couplings on a spectator field easily produces large non-Gaussianity
possibly ruling out models that otherwise seem viable.
An opposite scenario was considered in Chapter 6 where the inflaton was assumed to decay per-

turbatively while a spectator experienced parametric resonance producing Standard Model Higgs
particles in the thermal background arising from the decay products of the inflaton. Also radiative
corrections from the vacuum were considered. While it had previously been shown that interactions
with the thermal bath can block the resonance [133], instantaneous reheating had been assumed. We
have shown that prolonged reheating gives rise to a regime where the resonance may become blocked
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gradually as the thermal bath builds up allowing for efficient decay for sufficiently slow reheating.
It was shown that the timescales of the thermal blocking was determined by whether the spectator
effective potential was dominated by bare mass, thermal mass or radiative corrections. Specifically,
the resonance was found to always be blocked for the regime where thermal mass dominates. The
other two regimes allow for resonance to occur and for the spectator to decay efficiently for slow
reheating and sufficiently large couplings. Also perturbative decay due to the thermal bath was found
to allow for efficient decay of spectator.
In Chapter 7 the resonant decay of the Higgs field iteself was considered in the context of non-

perturbative production of weak gauge bosons. The focus was specifically on the role of non-Abelian
terms and the time scales of when these become important, as previous studies had neglected
them [134–136]. It was found that the non-Abelian terms induce effective masses for the gauge
fields which grow exponentially as particles are being produced. For the pure Standard Model the
broad resonance is the appropriate regime and in this case the non-Abelian interactions do not grow
to be very large before the onset of backreaction. Nevertheless, for generic SM couplings these
events are not far apart so that the effect of non-Abelian corrections may still be relevant. For
the narrow resonance regime the non-Abelian terms grow to be large already before the onset of
backreaction and shut down the resonance. This analysis motivates a detailed investigation using
lattice simulations to reveal the nuances of the resonance.



53



54 Bibliography



Bibliography

[1] Enqvist K. and Rusak S. Modulated preheating and isocurvature perturbations. JCAP. 1303,
017, 2013. 1210.2192

[2] Enqvist K., Lerner R. N., and Rusak S. Reheating dynamics affects non-perturbative decay of
spectator fields. JCAP. 1311, 034, 2013. 1308.3321

[3] Enqvist K., Nurmi S., and Rusak S. Non-Abelian dynamics in the resonant decay of the Higgs
after inflation. 2014. 1404.3631

[4] Dicke R., Peebles P., Roll P., and Wilkinson D. Cosmic Black-Body Radiation. Astrophys.J.
142, 414–419, 1965.

[5] Penzias A. A. and Wilson R. W. A Measurement of excess antenna temperature at 4080-Mc/s.
Astrophys.J. 142, 419–421, 1965.

[6] Smoot G. F., Bennett C., Kogut A., Wright E., Aymon J., et al. Structure in the COBE
differential microwave radiometer first year maps. Astrophys.J. 396, L1–L5, 1992.

[7] Mather J. C., Cheng E., Cottingham D., Eplee R., Fixsen D., et al. Measurement of the
Cosmic Microwave Background spectrum by the COBE FIRAS instrument. Astrophys.J. 420,
439–444, 1994.

[8] Lemaître G. Un univers homogène de masse constante et de rayon croissant rendant compte
de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Societe Scietifique de
Bruxelles. 47, 49–59, 1927.

[9] Lemaître A. G. A homogeneous universe of constant mass and increasing radius accounting for
the radial velocity of extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society.
91(5), 483–490, 1931. http://mnras.oxfordjournals.org/content/91/5/483.full.pdf+html

[10] Hubble E. A relation between distance and radial velocity among extra-galactic neb-
ulae. Proceedings of the National Academy of Sciences. 15(3), 168–173, 1929.
http://www.pnas.org/content/15/3/168.full.pdf+html

[11] Alpher R., Bethe H., and Gamow G. The origin of chemical elements. Phys.Rev. 73, 803–804,
1948.

[12] Steigman G. Primordial Nucleosynthesis: The Predicted and Observed Abundances and Their
Consequences. PoS. NICXI, 001, 2010. 1008.4765

[13] Bertschinger E. SIMULATIONS OF STRUCTURE FORMATION IN THE UNI-

55



56 Bibliography

VERSE. Annual Review of Astronomy and Astrophysics. 36(1), 599–654, 1998.
http://dx.doi.org/10.1146/annurev.astro.36.1.599

[14] Guth A. H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems. Phys.Rev. D23, 347–356, 1981.

[15] Linde A. D. CHAOTIC INFLATING UNIVERSE. JETP Lett. 38, 176–179, 1983.

[16] Linde A. D. Chaotic Inflation. Phys.Lett. B129, 177–181, 1983.

[17] Starobinsky A. A. Spectrum of relict gravitational radiation and the early state of the universe.
JETP Lett. 30, 682–685, 1979.

[18] Starobinsky A. A. A New Type of Isotropic Cosmological Models Without Singularity.
Phys.Lett. B91, 99–102, 1980.

[19] Englert F. and Brout R. Broken Symmetry and the Mass of Gauge Vector Mesons.
Phys.Rev.Lett. 13, 321–323, 1964.

[20] Higgs P. W. Broken symmetries, massless particles and gauge fields. Phys.Lett. 12, 132–133,
1964.

[21] Higgs P. W. Broken Symmetries and the Masses of Gauge Bosons. Phys.Rev.Lett. 13, 508–509,
1964.

[22] Guralnik G., Hagen C., and Kibble T. Global Conservation Laws and Massless Particles.
Phys.Rev.Lett. 13, 585–587, 1964.

[23] Mollerach S. ISOCURVATURE BARYON PERTURBATIONS AND INFLATION. Phys.Rev.
D42, 313–325, 1990.

[24] Linde A. D. and Mukhanov V. F. Nongaussian isocurvature perturbations from inflation.
Phys.Rev. D56, 535–539, 1997. astro-ph/9610219

[25] Enqvist K. and Sloth M. S. Adiabatic CMB perturbations in pre - big bang string cosmology.
Nucl.Phys. B626, 395–409, 2002. hep-ph/0109214

[26] Lyth D. H. and Wands D. Generating the curvature perturbation without an inflaton. Phys.Lett.
B524, 5–14, 2002. hep-ph/0110002

[27] Moroi T. and Takahashi T. Effects of cosmological moduli fields on cosmic microwave back-
ground. Phys.Lett. B522, 215–221, 2001. hep-ph/0110096

[28] Dvali G., Gruzinov A., and Zaldarriaga M. A new mechanism for generating density perturba-
tions from inflation. Phys.Rev. D69, 023505, 2004. astro-ph/0303591

[29] Dvali G., Gruzinov A., and Zaldarriaga M. Cosmological perturbations from inhomogeneous
reheating, freezeout, and mass domination. Phys.Rev. D69, 083505, 2004. astro-ph/0305548

[30] Zaldarriaga M. Non-Gaussianities in models with a varying inflaton decay rate. Phys.Rev.
D69, 043508, 2004. astro-ph/0306006

[31] Kim J. E. Light Pseudoscalars, Particle Physics and Cosmology. Phys.Rept. 150, 1–177, 1987.

[32] Sikivie P. Axion Cosmology. Lect.Notes Phys. 741, 19–50, 2008. astro-ph/0610440



Bibliography 57

[33] Einstein A. The Foundation of the General Theory of Relativity. Annalen Phys. 49, 769–822,
1916.

[34] Friedman A. Über die krümmung des raumes. Zeitschrift für Physik. 10(1), 377–386, 1922.

[35] Lemaître G. L’univers en expansion. Annales de la Societe Scietifique de Bruxelles. 53, 51,
1933.

[36] Lemaître A. The expanding universe. General Relativity and Gravitation. 29(5), 641–680,
1997.

[37] Robertson H. P. Relativistic cosmology. Rev. Mod. Phys. 5, 62–90, Jan 1933.

[38] Walker A. G. On milne’s theory of world-structure. Proceedings of the London Math-
ematical Society. s2-42(1), 90–127, 1937. http://plms.oxfordjournals.org/content/s2-
42/1/90.full.pdf+html

[39] Carroll S. M. Spacetime and geometry: An introduction to general relativity. 2004.

[40] Riess A. G. et al. Observational evidence from supernovae for an accelerating universe and a
cosmological constant. Astron.J. 116, 1009–1038, 1998. astro-ph/9805201

[41] Perlmutter S. et al. Measurements of Omega and Lambda from 42 high redshift supernovae.
Astrophys.J. 517, 565–586, 1999. astro-ph/9812133

[42] Weinberg S. The Cosmological Constant Problem. Rev.Mod.Phys. 61, 1–23, 1989.

[43] Copeland E. J., Sami M., and Tsujikawa S. Dynamics of dark energy. Int.J.Mod.Phys. D15,
1753–1936, 2006. hep-th/0603057

[44] Ellis G., Nicolai H., Durrer R., and Maartens R. Editorial on the GRG special issue on dark
energy. Gen.Rel.Grav. 40, 219–220, 2008.

[45] Durrer R. and Maartens R. Dark Energy and Modified Gravity. pages 48 – 91, 2008. 0811.4132

[46] Enqvist K. Lemaitre-Tolman-Bondi model and accelerating expansion. Gen.Rel.Grav. 40,
451–466, 2008. 0709.2044

[47] Buchert T. Dark Energy from Structure: A Status Report. Gen.Rel.Grav. 40, 467–527, 2008.
0707.2153

[48] Rasanen S. The effect of structure formation on the expansion of the universe. Int.J.Mod.Phys.
D17, 2543–2548, 2009. 0805.2670

[49] Buchert T. and Räsänen S. Backreaction in late-time cosmology. Ann.Rev.Nucl.Part.Sci. 62,
57–79, 2012. 1112.5335

[50] Ade P. et al. Planck 2013 results. XVI. Cosmological parameters. 2013. 1303.5076

[51] Schwarz D. J. The first second of the universe. Annalen Phys. 12, 220–270, 2003. astro-
ph/0303574

[52] Kajantie K., Laine M., Rummukainen K., and Shaposhnikov M. E. The Electroweak phase
transition: A Nonperturbative analysis. Nucl.Phys. B466, 189–258, 1996. hep-lat/9510020

[53] Kajantie K., Laine M., Rummukainen K., and Shaposhnikov M. E. Is there a hot electroweak



58 Bibliography

phase transition at m(H) larger or equal to m(W)? Phys.Rev.Lett. 77, 2887–2890, 1996.
hep-ph/9605288

[54] Hannestad S. Primordial neutrinos. Ann.Rev.Nucl.Part.Sci. 56, 137–161, 2006. hep-
ph/0602058

[55] Olive K. A., Steigman G., and Walker T. P. Primordial nucleosynthesis: Theory and observa-
tions. Phys.Rept. 333, 389–407, 2000. astro-ph/9905320

[56] Seager S., Sasselov D. D., and Scott D. How exactly did the universe become neutral?
Astrophys.J.Suppl. 128, 407–430, 2000. astro-ph/9912182

[57] Liddle A. and Lyth D. Cosmological Inflation and Large-Scale Structure. Cambridge University
Press, 2000.

[58] Ade P. et al. Planck 2013 results. XXV. Searches for cosmic strings and other topological
defects. 2013. 1303.5085

[59] Mukhanov V. F. and Chibisov G. V. Quantum Fluctuation and Nonsingular Universe. (In
Russian). JETP Lett. 33, 532–535, 1981.

[60] Vilenkin A. and Ford L. Gravitational Effects upon Cosmological Phase Transitions. Phys.Rev.
D26, 1231, 1982.

[61] Linde A. D. Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe
Scenario. Phys.Lett. B116, 335, 1982.

[62] Starobinsky A. A. Dynamics of Phase Transition in the New Inflationary Universe Scenario
and Generation of Perturbations. Phys.Lett. B117, 175–178, 1982.

[63] Cole S. et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and
cosmological implications. Mon.Not.Roy.Astron.Soc. 362, 505–534, 2005. astro-ph/0501174

[64] Tegmark M. et al. Cosmological Constraints from the SDSS Luminous Red Galaxies. Phys.Rev.
D74, 123507, 2006. astro-ph/0608632

[65] Mukhanov V. F., Feldman H., and Brandenberger R. H. Theory of cosmological perturbations.
Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions.
Phys.Rept. 215, 203–333, 1992.

[66] Kurki-Suonio H. Cosmological Perturbation Theory (lecture notes). 2010.

[67] Ma C.-P. and Bertschinger E. Cosmological perturbation theory in the synchronous and con-
formal Newtonian gauges. Astrophys.J. 455, 7–25, 1995. astro-ph/9506072

[68] Bardeen J. M. Gauge Invariant Cosmological Perturbations. Phys.Rev. D22, 1882–1905, 1980.

[69] Wands D., Malik K. A., Lyth D. H., and Liddle A. R. A New approach to the evolution of
cosmological perturbations on large scales. Phys.Rev. D62, 043527, 2000. astro-ph/0003278

[70] Bucher M., Moodley K., and Turok N. The General primordial cosmic perturbation. Phys.Rev.
D62, 083508, 2000. astro-ph/9904231

[71] Bucher M., Moodley K., and Turok N. Characterizing the primordial cosmic perturbations



Bibliography 59

using map and Planck. Phys.Rev. D66, 023528, 2002. astro-ph/0007360

[72] Ade P. et al. Planck 2013 results. XXII. Constraints on inflation. 2013. 1303.5082

[73] Savelainen M., Valiviita J., Walia P., Rusak S., and Kurki-Suonio H. Constraints on neutrino
density and velocity isocurvature modes from WMAP-9 data. Phys.Rev. D88, 063010, 2013.
1307.4398

[74] Valiviita J., Savelainen M., Talvitie M., Kurki-Suonio H., and Rusak S. Constraints on scalar
and tensor perturbations in phenomenological and two-field inflation models: Bayesian evi-
dences for primordial isocurvature and tensor modes. Astrophys.J. 753, 151, 2012. 1202.2852

[75] Lyth D. H., Malik K. A., and Sasaki M. A General proof of the conservation of the curvature
perturbation. JCAP. 0505, 004, 2005. astro-ph/0411220

[76] Lyth D. H. and Rodriguez Y. The Inflationary prediction for primordial non-Gaussianity.
Phys.Rev.Lett. 95, 121302, 2005. astro-ph/0504045

[77] Salopek D. and Bond J. Nonlinear evolution of long wavelength metric fluctuations in infla-
tionary models. Phys.Rev. D42, 3936–3962, 1990.

[78] Sasaki M. and Stewart E. D. A General analytic formula for the spectral index of the density
perturbations produced during inflation. Prog.Theor.Phys. 95, 71–78, 1996. astro-ph/9507001

[79] Ade P. et al. Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity. 2013.
1303.5084

[80] Creminelli P. and Zaldarriaga M. Single field consistency relation for the 3-point function.
JCAP. 0410, 006, 2004. astro-ph/0407059

[81] Cheung C., Fitzpatrick A. L., Kaplan J., and Senatore L. On the consistency relation of the
3-point function in single field inflation. JCAP. 0802, 021, 2008. 0709.0295

[82] Feynman R. and Hibbs A. Quantum mechanics and path integrals. International series in pure
and applied physics. McGraw-Hill, 1965.

[83] Peskin M. and Schroeder D. An Introduction to Quantum Field Theory. Advanced book
classics. Addison-Wesley Publishing Company, 1995.

[84] Bogoliubov N. N. On the Theory of Superfluidity. Jour.Phys. 11, (1), 1947.

[85] Gupta S. N. Theory of longitudinal photons in quantum electrodynamics. Proc.Phys.Soc. A63,
681–691, 1950.

[86] Bleuler K. A New method of treatment of the longitudinal and scalar photons. Helv.Phys.Acta.
23, 567–586, 1950.

[87] Bjorken J. ELEMENTS OF QUANTUM CHROMODYNAMICS. page 219, 1979.

[88] Jackiw R. Introduction to the Yang-Mills Quantum Theory. Rev.Mod.Phys. 52, 661–673,
1980.

[89] Mukhanov V. Physical foundations of cosmology. Cambridge University Press, 2005.

[90] Coleman S. R. and Weinberg E. J. Radiative Corrections as the Origin of Spontaneous Sym-



60 Bibliography

metry Breaking. Phys.Rev. D7, 1888–1910, 1973.

[91] Yokoyama J. Can oscillating scalar fields decay into particles with a large thermal mass?
Phys.Lett. B635, 66–71, 2006. hep-ph/0510091

[92] Drewes M. On the Role of Quasiparticles and thermal Masses in Nonequilibrium Processes in
a Plasma. 2010. 1012.5380

[93] Mukaida K. and Nakayama K. Dissipative Effects on Reheating after Inflation. JCAP. 1303,
002, 2013. 1212.4985

[94] Degrassi G., Di Vita S., Elias-Miro J., Espinosa J. R., Giudice G. F., et al. Higgs mass and
vacuum stability in the Standard Model at NNLO. JHEP. 1208, 098, 2012. 1205.6497

[95] Chetyrkin K. and Zoller M. Three-loop β-functions for top-Yukawa and the Higgs self-
interaction in the Standard Model. JHEP. 1206, 033, 2012. 1205.2892

[96] Bezrukov F., Kalmykov M. Y., Kniehl B. A., and Shaposhnikov M. Higgs Boson Mass and
New Physics. JHEP. 1210, 140, 2012. 1205.2893

[97] Buttazzo D., Degrassi G., Giardino P. P., Giudice G. F., Sala F., et al. Investigating the
near-criticality of the Higgs boson. JHEP. 1312, 089, 2013. 1307.3536

[98] Aad G. et al. Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp
collision data at

√
s = 7 TeV with the ATLAS detector at the LHC. Phys.Lett. B710, 49–66,

2012. 1202.1408

[99] Chatrchyan S. et al. Combined results of searches for the standard model Higgs boson in pp
collisions at

√
s = 7 TeV. Phys.Lett. B710, 26–48, 2012. 1202.1488

[100] Taruya A. and Nambu Y. Cosmological perturbation with two scalar fields in reheating after
inflation. Phys.Lett. B428, 37–43, 1998. gr-qc/9709035

[101] Bunch T. and Davies P. Quantum Field Theory in de Sitter Space: Renormalization by Point
Splitting. Proc.Roy.Soc.Lond. A360, 117–134, 1978.

[102] Ade P. et al. Detection of B-Mode Polarization at Degree Angular Scales by BICEP2.
Phys.Rev.Lett. 112, 241101, 2014. 1403.3985

[103] Flauger R., Hill J. C., and Spergel D. N. Toward an Understanding of Foreground Emission in
the BICEP2 Region. JCAP. 1408, 039, 2014. 1405.7351

[104] Adam R. et al. Planck intermediate results. XXX. The angular power spectrum of polarized
dust emission at intermediate and high Galactic latitudes. 2014. 1409.5738

[105] Starobinsky A. Dynamics of phase transition in the new inflationary universe scenario and
generation of perturbations. Physics Letters B. 117(3–4), 175 – 178, 1982.

[106] Starobinsky A. A. in Fundamental interactions, page 55. MGPI Press, Moscow, 1984.

[107] Starobinsky A. A. in Field Theory, Quantum Gravity and Strings, volume 246, pages 107–126.
Springer-Verlag, Berlin, 1986.

[108] Sasaki M., Nambu Y., and Nakao K.-i. Classical Behavior of a Scalar Field in the Inflationary



Bibliography 61

Universe. Nucl.Phys. B308, 868, 1988.

[109] Starobinsky A. A. and Yokoyama J. Equilibrium state of a selfinteracting scalar field in the De
Sitter background. Phys.Rev. D50, 6357–6368, 1994. astro-ph/9407016

[110] Turner M. S. Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D. 28,
1243–1247, Sep 1983.

[111] Dolgov A. and Linde A. D. Baryon Asymmetry in Inflationary Universe. Phys.Lett. B116, 329,
1982.

[112] Linde A. Particle Physics: Inflationary Cosmology. Harwood, 1990.

[113] Bassett B. A., Tsujikawa S., and Wands D. Inflation dynamics and reheating. Rev.Mod.Phys.
78, 537–589, 2006. astro-ph/0507632

[114] Ellis J. R., Hagelin J., Nanopoulos D. V., Olive K. A., and Srednicki M. Supersymmetric Relics
from the Big Bang. Nucl.Phys. B238, 453–476, 1984.

[115] Kawasaki M. and Moroi T. Gravitino production in the inflationary universe and the effects
on big bang nucleosynthesis. Prog.Theor.Phys. 93, 879–900, 1995. hep-ph/9403364

[116] Ellis J., Nanopoulos D. V., Olive K. A., and Rey S.-J. On the thermal regeneration rate for
light gravitinos in the early universe. Astropart.Phys. 4, 371–386, 1996. hep-ph/9505438

[117] Dolgov A. and Kirilova D. ON PARTICLE CREATION BY A TIME DEPENDENT SCALAR
FIELD. Sov.J.Nucl.Phys. 51, 172–177, 1990.

[118] Traschen J. H. and Brandenberger R. H. PARTICLE PRODUCTION DURING OUT-OF-
EQUILIBRIUM PHASE TRANSITIONS. Phys.Rev. D42, 2491–2504, 1990.

[119] Kofman L., Linde A. D., and Starobinsky A. A. Reheating after inflation. Phys. Rev. Lett. 73,
3195–3198, 1994. hep-th/9405187

[120] Kofman L., Linde A. D., and Starobinsky A. A. Nonthermal phase transitions after inflation.
Phys.Rev.Lett. 76, 1011–1014, 1996. hep-th/9510119

[121] Kofman L., Linde A. D., and Starobinsky A. A. Towards the theory of reheating after inflation.
Phys.Rev. D56, 3258–3295, 1997. hep-ph/9704452

[122] Greene P. B., Kofman L., Linde A. D., and Starobinsky A. A. Structure of resonance in
preheating after inflation. Phys.Rev. D56, 6175–6192, 1997. hep-ph/9705347

[123] Allahverdi R., Brandenberger R., Cyr-Racine F.-Y., and Mazumdar A. Reheating in Inflationary
Cosmology: Theory and Applications. Ann.Rev.Nucl.Part.Sci. 60, 27–51, 2010. 1001.2600

[124] Arscott F. Periodic differential equations: an introduction to Mathieu, Lamé, and allied
functions. International series of monographs in pure and applied mathematics. Macmillan,
1964.

[125] Kofman L. Probing string theory with modulated cosmological fluctuations. 2003. astro-
ph/0303614

[126] Kohri K., Lyth D. H., and Valenzuela-Toledo C. A. Preheating and the non-gaussianity of the



62 Bibliography

curvature perturbation. JCAP. 1002, 023, 2010. 0904.0793

[127] Erratum-ibid. 1009, E01, 2011

[128] Podolsky D. I., Felder G. N., Kofman L., and Peloso M. Equation of state and beginning of
thermalization after preheating. Phys. Rev. D73, 023501, 2006. hep-ph/0507096

[129] Frolov A. V. DEFROST: A New Code for Simulating Preheating after Inflation. JCAP. 0811,
009, 2008. 0809.4904

[130] Sainio J. CUDAEASY - a GPU Accelerated Cosmological Lattice Program. Com-
put.Phys.Commun. 181, 906–912, 2010. 0911.5692

[131] Easther R., Finkel H., and Roth N. PSpectRe: A Pseudo-Spectral Code for (P)reheating.
JCAP. 1010, 025, 2010. 1005.1921

[132] Anderson G. W. and Hall L. J. The Electroweak phase transition and baryogenesis. Phys.Rev.
D45, 2685–2698, 1992.

[133] Enqvist K., Figueroa D. G., and Lerner R. N. Curvaton Decay by Resonant Production of the
Standard Model Higgs. JCAP. 1301, 040, 2013. 1211.5028

[134] Enqvist K., Meriniemi T., and Nurmi S. Generation of the Higgs Condensate and Its Decay
after Inflation. JCAP. 1310, 057, 2013. 1306.4511

[135] Bezrukov F., Gorbunov D., and Shaposhnikov M. On initial conditions for the Hot Big Bang.
JCAP. 0906, 029, 2009. 0812.3622

[136] Garcia-Bellido J., Figueroa D. G., and Rubio J. Preheating in the Standard Model with the
Higgs-Inflaton coupled to gravity. Phys.Rev. D79, 063531, 2009. 0812.4624


