
Matrix Factorization for Learning Metagenomic

Pathways and Species

Silja Polvi-Huttunen

December 8, 2014

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33733085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Mathematics and Statistics

Silja Polvi-Huttunen

Matrix Factorization for Learning Metagenomic Pathways and Species

Applied mathematics

Master's thesis December 2014 75 p

Nonnegative Matrix Factorization, metagenomics

Kumpula library

This work considers learning meaningful sets of chemical reactions called pathways and groups of

species called Operational Taxonomical Units (OTUs) from metagenomic data. The methods are

based on Nonnegative Matrix Factorization (NMF).

The rows of our data matrix correspond to metagenomic samples and columns correspond

to chemical reactions present in the samples. In order to learn both pathways and OTUs as well as

relationships between them, we consider ways to factorize the data matrix into three factors instead

of two. Denoting the samples × reactions data matrix by V , our factorization problem setting is

to �nd nonnegative matrices W , H and P so that V ≈ WHP . The matrix W tells what OTUs are

present in each of the samples, P de�nes pathways as combinations of reactions while H describes

what pathways are implemented by which OTUs.

We �rst discuss two standard NMF algorithms based on di�erent objective functions and

four sparsity constrained variants. Sparsity constrained variants are designed to produce output

matrices with few values signi�cantly above zero. We are interested in sparser variants because

metagenomic pathways are short, thus the method should �nd a representation where only a small

set of reactions is present in each pathway.

We describe how using a standard two-factor NMF method twice yields a three-factor repre-

sentation. We brie�y mention an existing method, Nonnegative Matrix Tri-factorization (NMTF),

that learns all three matrices W , H and P simultaneously. However, this method applies hard ort-

hogonality constraints, i.e. it only �nds solutions where the matrices W and P are orthogonal.

Because of this constraint, NMTF is not suitable in our biological problem setting. We introduce

an unconstrained method called NMF3 as well as a sparsity constrained variant SNMF3 based on

Sparse Nonnegative Matrix Factorization (SNMF) and show how both of these algorithms can be

derived.

In order to compare the di�erent algorithms' performance, we have built two synthetic data

sets. Both sets are based on human intestinal species and pathway information available in an

existing biological database. One of the data matrices can be exactly factorized into the underlying

matrices used to generate the data. The other data set is built through simulating a sampling

process that introduces noise and strictly limits the number of observed reactions per sample.

We tested factorization methods discussed in the thesis on both data sets, using 100 to 1500

samples. We compare the methods and show and discuss the results. We found di�erences between

NMF variants that use di�erent objective functions. Many methods perform well on our task,

surprisingly even in the case where the number of pathways is greater than the number of samples.

Varying the number of samples a�ected the results less than we expected. Instead, we found that

all algorithms performed signi�cantly better on the factorizable data than on the simulated set.

We conclude that the number of available metagenomic samples does not dramatically a�ect the

performance of the factorization methods. More important is the quality of the samples.

Tiedekunta/Osasto � Fakultet/Sektion � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � Övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

Contents

1 Introduction 4
1.1 Metagenomics . 5
1.2 Background . 5

2 Notation 7

3 Previously Available NMF Methods 9
3.1 Example . 9
3.2 Cost functions . 9
3.3 Additive and multiplicative update rules 10
3.4 Normalizing constraints . 12
3.5 Standard Nonnegative Matrix Factorization 12

3.5.1 NMF update rules minimizing Euclidean squared error (NMF-se) . 14
3.5.2 NMF update rules minimizing Kullback-Leibler divergence (NMF-kl) 16

3.6 Sparsity constrained variants . 18
3.6.1 Sparse Nonnegative Matrix Factorization (SNMF) 19
3.6.2 Nonnegative Matrix Factorization with sparseness constraints (NMFsc) 19
3.6.3 Nonsmooth Nonnegative Matrix Factorization (nsNMF) 21

4 Factorization into Three Matrices in Two Steps 24

5 Nonnegative Matrix Tri-Factorization (NMTF) 25

6 Native Three-matrix Factorization (NMF3) 26
6.1 Update rules minimizing squared error (NMF3-se) 28
6.2 Update rules minimizing KL divergence (NMF3-kl) 32
6.3 Update rules for 3-matrix Sparse NMF (SNMF3) 37

7 Data Set Construction 38
7.1 Arti�cial data . 39
7.2 Data generative model . 40

8 Results 42
8.1 Implementation . 42

8.1.1 Initialization . 43
8.1.2 Stopping criteria . 44
8.1.3 Parameters . 44

8.2 Evaluation metrics . 44

2

8.3 Experiments on completely arti�cial data 49
8.3.1 OTUs from arti�cial data . 49
8.3.2 Pathways from arti�cial data . 54
8.3.3 OTU-pathway relationships from arti�cial data 60

8.4 Experiments on simulated data . 62
8.4.1 OTUs from simulated data . 62
8.4.2 Pathways from simulated data . 66
8.4.3 OTU-pathway relationships from simulated data 69

9 Conclusion 70

10 Future Work 71

3

1 Introduction

In this work, we aim to learn meaningful knowledge from raw metagenomic samples. A
metagenomic sample contains genetic information from many organisms present in an
environment, such as sea water, soil, or bacteria from human intestine [5, 6, 7]. Some
of this information codes enzymes that catalyze chemical reactions. By comparing the
metagenomic sample data to known enzyme coding sequences in an existing database, it
is possible to predict what reactions might happen in the organisms in the environment.

Our goal is both to group these reactions into meaningful processes, called pathways,
and to �nd out what kind of organisms are responsible for each pathway. An operational
taxonomical unit, OTU, is a group of species that are responsible for similar functions, so
they implement many of the same pathways.

Both identifying species and predicting pathways in metagenomic samples are known
problems. A common approach [17, 19, 21] is to compare [15, 16] the genetic data in
the sample against known organisms' genomes or known pathways in existing databases
[1, 2, 3, 4]. These methods are not well suited for identifying species that lack a reference
genome in the database, such as previously unknown species. Unsupervised machine
learning methods, such as binning [22, 23, 24], use statistical methods to group genetic
data in samples into OTU's.

To the best of our knowledge, this is the �rst attempt to extract both OTUs and
pathways as well as relationships between them.

In this thesis, we tackle the indenti�cation problem with Nonnegative Matrix Factor-
ization (NMF) [33, 34, 35], a popular unsupervised machine learning method capable of
handling thousands of samples at a time, e�ectively using information from di�erent and
also diverse samples. Given a data matrix V , NMF �nds two nonnegative matrices W
and B, whose matrix product approximates the data: V ≈ WB. In other words, the
data is represented as linear combinations of t1 base vectors, rows in B. t1 is called the
inner dimension of the factorization, and the dimension of the data is reduced to t1. The
base vectors represent some latent features of the data, and t1 is chosen according to the
number of the latent features we want to extract.

In order to reach both our goals, we further want to �nd a base for the base vectors,
which means factorizing the base matrix B further into two matrices, B ≈ HP . Together
these factorizations give a factorization of the data matrix into three matrices, V ≈ WHP .

The input data is organized in a matrix so that each row corresponds to a metagenomic
sample and each column to a reaction. Each element (i, j) indicates the amount of evidence
of the reaction j found in sample i. When this sample-reaction matrix V is factorized
into three matrices, V ≈ WHP , each column in the matrix W corresponds to a predicted
OTU and each row in the matrix P to a pathway. Thus, W shows which OTUs are
present in each sample, P de�nes the learned pathways as combinations of reactions, and

4

H indicates what pathways each OTU implements.
We discuss some existing NMF algorithms and show how they can be used to factor-

ize the data matrix into three factors by factorizing twice into two matrices, as shown
above. In addition to standard unconstrained techniques, we investigate some sparsity
constrained variants. We brie�y mention an existing orthogonality constrained technique,
Nonnegative Matrix Tri-Factorization (NMTF) [40], that learns all three factor matrices
simultaneously, and derive our own unconstrained and sparsity constrained variants.

We choose some NMF-based methods and test them on the arti�cial and simulated
data sets introduced in Section 7.

The rest of this thesis is organized as follows. In Section 2, we introduce notation.
In Section 3 we discuss some NMF methods that are currently available, and Section 4
discusses factorizing a matrix into three matrices using these methods. In Sections 5, we
discuss an existing three-matrix factorization technique and in Section 6 we derive our
own variants. Arti�cial and simulated data used to test the algorithms are introduced in
Section 7, and results are shown in Section 8. Source code of all implementations we used
are available on the Internet (github.com/stpolvi/matrix-factorization-algorithms).

1.1 Metagenomics

Traditionally, microbial samples are cultivated in a laboratory. Because most microbial
species cannot be cultivated, traditional methods do not allow studying these species,
and our view of microbial life is skewed [8, 9]. In metagenomics, genome sequences
are extracted from uncultivated samples [10, 11, 12]. Each sequence read is randomly
extracted from any individual organism present in the sample. Many reads come from
dominant species, while some species may not be represented in the data at all, depending
on the sequencing depth [13].

Metagenomics allows discovering new species in very diverse environments and study-
ing evolution, genetic patterns and functional potential of a sample as a community rather
than considering each species individually [14].

The combined amount of genetic information in a sample is vast. Advanced machine
learning techniques are needed in the analysis, and it is computationally demanding.

1.2 Background

Methods such as binning [22, 23, 24] have been used to assign genetic data into groups
that correspond to OTUs. The advantage of some of these methods is that they can
analyze samples that contain OTUs whose reference genomes are not available.

Di�erent de�nitions for pathways, such as extreme pathways [25] and elementary �ux
modes [26] have been suggested, and pathways have been examined using e.g. logic pro-

5

gramming [27], graph-based methods [28, 29], heuristic search on enzymes whose metabo-
lites are known [30] and convex analysis [25]. In this thesis, we simply de�ne pathways
as meaningful groups of enzymes. Our synthetic data sets are based on the MetaCyc
database [3], and all validation is based on pathways available in MetaCyc.

Nonnegative Matrix Factorization has been used to analyze metagenomic data e.g. to �nd
canonical sample types and functional pro�les from marine environments. In 2012, Jiang
et al [20] used 39 samples from 7 di�erent kinds of marine or animal environments. The
data matrix is (558 × 39), and each row corresponds to a pathway assigned to some of
the samples. Their method found that 3 was a good inner dimension for the factorization,
meaning that they only �nd three latent features, canonical sample types, from the data.

In 2012 as well, Jiang et al [21] used NMF to analyze 45 ocean samples from the
Global Ocean Sampling project [5] and associated 8214 Protein Families (Pfams) [4].
They factorized this (8214 × 45) matrix into two matrices using inner dimension 5 to
reveal �ve latent features, functional pro�les.

One di�erence between these studies and ours is that we decompose our data matrix
into three factors instead of one to reveal two sets of latent variables, OTUs and pathways,
as well as connections between them. Another di�erence is the dimensions of the data
matrix and the factorization. In the above-mentioned studies the number of extracted
latent features was as small as 7.7 or 11 per cent of the smaller dimension of the data
matrix. Our synthetic data sets contain 100, 500 or 1500 samples and at most 1234
associated reactions. The inner dimensions are 100 and 422: near the smaller dimension
of the data or even bigger. The third di�erence is the type of the latent features. Whereas
the previous studies found features that each represent one environment or sample type,
we are interested in much more speci�c details, OTUs and pathways.

6

2 Notation

In this thesis, we denote matrices with uppercase letters, scalars with lowercase letters
and vectors with boldface lowercase letters. For example, X would be a matrix, x a scalar
and x a vector.

Notation Meaning

∂
∂x
f the partial derivative of f with respect to x∑

P (i)

ai Sum over scalars ai, where i goes through natural numbers that

have the property P ; for example
∑
i≤n

ai = a1 + a2 + a3 + · · ·+ an.

If there are no natural numbers that have the property P , the sum

is de�ned to be 0.

V ∈ R(n×m)
≥0 V is a matrix of nonnegative real numbers, n rows and m columns

Vij the element on row i and column j of a matrix V

WH matrix product of W and H; only de�ned when the number of

columns in W is the same as the number of rows in H, say t, by

(WH)ij =
∑
k≤t

Wik ·Hkj

Note that we always use the dot (·) to denote scalar product, but

never the matrix product.

W T matrix transpose of W , de�ned by W T
ji = Wij

The identity matrix I is de�ned by Iii = 1 and Iij = 0 when i 6= j. It is always square, and
its size is clear from the context if not explicitly stated. Note that AI = A and IA = A
hold for any matrix A.

7

Notation Meaning

ln(x) natural logarithm of x

|x| absolute value of x

L1(x) L1 norm of a vector x = (x1, x2, ..., xm), de�ned as the sum over

the absolute values of elements in x: L1(x) =
∑
i≤m

|xi|

L2(x) L2 norm of a vector x = (x1, x2, ..., xm), de�ned by

L2(x) =

√∑
i≤m

x2i

b(A|B) Absolute error between A and B. De�ned when both A and B are

(n×m) matrices by b(A|B) =
∑
i≤n

∑
j≤m

|Aij −Bij|.

e(A|B) Euclidean squared error between A and B. De�ned when both A

and B are (n×m) matrices by e(A|B) =
∑
i≤n

∑
j≤m

(Aij −Bij)
2.

d(A|B) The extended Kullback-Leibler divergence from A to B; typically,

B is an estimate of A. De�ned when both A and B are (n × m)

matrices by

d(A|B) =
∑
i≤n

∑
j≤m

(
Aij · ln

Aij
Bij

− Aij +Bij

)
.

It is required that the estimate B may only be zero where the true

distribution A is zero. In case for some i and j, Aij = Bij = 0, we

set the corresponding term Aij · ln Aij

Bij
to equal zero.

8


0.3 0.2 0.2 0 0.2 0.1
0.3 0.1 0 0.2 0.4 0
0.4 0.2 0.2 0 0.1 0.1
0.2 0.2 0.2 0 0.1 0.3

 ≈

0.2 0.7 0.1
0.9 0.1 0
0 1 0
0 0.6 0.4


0.3 0.1 0 0.2 0.4 0
0.4 0.2 0.2 0 0.1 0.1
0 0.1 0.2 0 0.2 0.5


sample × reaction sample × OTU OTU × reaction

Figure 1: Factorization of sample-reaction matrix V into sample-OTU and OTU-reaction
matrices W and H

3 Previously Available NMF Methods

Nonnegative Matrix Factorization (NMF) [33, 34] is a popular dimension reduction and
clustering method that approximately factorizes a given data matrix into two nonnegative
matrices.

3.1 Example

Assume we have n metagenomic samples and genetic evidence of m di�erent chemical
reactions happening in those samples collectively. We arrange the samples in a matrix V ∈
R(n×m)
≥0 , whose rows correspond to the samples and columns correspond to the reactions.

The entry Vij of this matrix is the amount of evidence of reaction j in sample i.
We can now present this sample-reaction matrix as a matrix product of two matrices,

sample-OTU matrix W and OTU-reaction matrix H, as shown in Figure 1. This factor-
ization explains the data so that each OTU is responsible for a set of reactions, and the
reactions that happen in each sample is explained by linear combinations of OTUs in that
sample.

This example motivates the nonnegativity constraint. For example, we interpret that
entries of the (sample × OTU) matrix show how much evidence of each OTU there is in
each sample, and the rows in the (OTU × reaction) matrix de�ne distributions of reactions
over each OTU. We do not allow a negative amount of genetic evidence or negative values
to occur in distributions. Negative entries would also allow values to cancel out each other
from the linear combinations when the matrices are multiplied.

3.2 Cost functions

Mathematically, the NMF problem setting is: Given V ∈ R(n×m)
≥0 and t ∈ N, �nd matrices

W ∈ R(n×t)
≥0 and H ∈ R(t×m)

≥0 that minimize the reconstruction cost between the data
V and the product WH. Di�erent applications use di�erent cost functions to measure

9

the reconstruction cost, and Euclidean squared error and extended Kullback-Leibler (KL)
divergence are two of the most popular.

Euclidean squared error between vectors is the square of their Euclidean distance,
regarding the vectors as points in the Euclidean space. For (n ×m) matrices V and V̂ ,
the squared error e(V |V̂) is de�ned as the sum of squared distances between their rows,
or as if they were n ·m-dimensional vectors,

e(V |V̂) =
∑
i≤n

∑
j≤m

(Vij − V̂ij)2.

As a sum of squares, the value of this function is zero when all terms Vij − V̂ij are zero,
which means Vij is equal to V̂ij, and otherwise it is positive.

Standard KL divergence regards two vectors as a probability distribution and its es-
timate, and it measures how much information is lost if instead of the true distribution
the estimate is used. It assumes the sum of entries in both vectors is one, as with distri-
butions. It also assumes that the estimate never has the value zero in an index where the
original distribution is nonzero. For an (n×m) matrix V and its estimate V̂ , whose rows
do not necessarily sum to one, the extended Kullback-Leibler divergence is de�ned as

d(V |V̂) =
∑
i≤n

∑
j≤m

(
Vij · ln

(
Vij

V̂ij

)
− Vij + V̂ij

)
.

In this equation, we set Vij · ln
(
Vij

V̂ij

)
to zero in the case where both Vij and V̂ij are zero.

As with the standard KL divergence, we assume V̂ij is never zero when Vij is nonzero
because the value of the expression would grow to in�nity.

3.3 Additive and multiplicative update rules

The nonnegative matrix factorization problem is in general NP-hard [32]. Exact poly-
nomial time algorithms exist, if additional assumptions on the input matrix hold [31].
However, most NMF implementations do not �nd the global optimum of the cost func-
tion, and algorithms that �nd only a local optimum are widely used and su�cient to
produce interesting results [34].

All NMF implementations discussed in this thesis are based on the general algorithm
described in Algorithm 1. It randomly initializes the matrices W and H and iteratively
updates one of them at a time, keeping the other one �xed. One of the matrices is also
normalized in each iteration.

In update steps of Algorithm 1, W and H are updated with certain update rules that

10

algorithm generalNMF (V ∈ R(n×m)
≥0 , t ∈ N)

randomly initialize W ∈ (0, 1)(n×t) and H ∈ (0, 1)(t×m)

normalize H row-wise
until convergence do

update W
update H
normalize H row-wise

end until
end algorithm

Algorithm 1: General NMF algorithm. Some variants use di�erent normalization steps
instead of normalizing H row-wise.

change each element of the matrices. The gradient descent method gives additive update
rules that move the matrices towards the negative gradient of the cost function c by
adding small numbers to its elements. More precisely, the rules update the elements by

Wab := Wab − αab ·
∂

∂Wab

c(V |WH)

and

Hbc := Hbc − βbc ·
∂

∂Hbc

c(V |WH),

where ∂
∂Wab

c(V |WH) is the partial derivative of the cost function c with respect to the

element Wab,
∂

∂Hbc
c(V |WH) is the partial derivative of the cost function c with respect to

the element Hbc and αab and βbc are carefully chosen, small step sizes. The disadvantage of
additive update rules is that too small step sizes make the algorithm converge very slowly,
while taking too large steps might move the updated matrix past the local optimum and
at worst increase the reconstruction cost.

Multiplicative update rules bypass the step size selection problem and update the
matrix elements by multiplication instead of addition. The multiplicative update rules
that our NMF implementations use result from using a suitable function of the matrices
W and H as the step size of additive rules. They were introduced by Lee and Seung [35]
who characterized the multiplicative algorithms as �diagonally rescaled gradient descent,
where the scaling factor is optimally chosen to ensure convergence�.

11

3.4 Normalizing constraints

Most common NMF implementations add a normalizing constraint to one of the matrices.
If C ∈ Rt×t is an invertible matrix, i.e. there exists a matrix C−1 so that CC−1 is the

identity matrix, it holds that
WH = WCC−1H.

If D is a diagonal matrix whose diagonal elements are dk, its inverse is the diagonal matrix
whose diagonal elements are 1

dk
i.e. the reciprocals of dk. Taking the product WD only

scales each column of W by the corresponding diagonal element of D, and taking the
product D−1H scales each row of H by the corresponding diagonal element of D−1. If we
select each diagonal element of D to be the sum over the corresponding row in H, setting

W := WD and H := D−1H

scales the rows of H to have unit L1 norm without changing the reconstructed matrix
WH. This makes convergence analysis of the algorithms easier compared to the approach
where only H is rescaled and W is not changed.

This shows that while update rules minimize the reconstruction error, the scale of the
matrices is not determined. For basic NMF algorithms whose objective functions only
concern the product WH and not the matrices W and H individually, we can select any
scale for the colunms of W or rows of H.

Most algorithms considered in this thesis set the L1 norm of each row or each column
of a matrix to 1, as shown in the example above. This is convenient for distributions.
An exception to this is Nonnegative Matrix Factorization with sparseness constraints [36]
discussed in Section 3.6.2. Its normalizing constraint sets the L2 norm to unity instead
of L1 norm. This is implemented similarly as above, by selecting each diagonal element
of D to equal the L2 norm of the corresponding row of H.

In total, this thesis considers six previously available NMF variants. The objective func-
tions of three of the algorithms are based on Kullback-Leibler divergence, and the others
minimize Euclidean squared error. Some variants are designed to make one or both of the
resulting matrices sparser.

3.5 Standard Nonnegative Matrix Factorization

In this section, we show how basic nonnegative matrix factorization algorithms can be
derived. We consider two variants with di�erent cost functions, squared error and KL
divergence, and denote these variants by NMF-se and NMF-kl. Additive rules are based
on the gradient descent method. Lee and Seung [35] give convergence proofs for the mul-
tiplicative update rules shown in Tables 1 and 2. We use their remarks on the relationship

12

Hbc := Hbc ·
(
W TV

)
bc

(W TWH)bc

Wab := Wab ·
(V HT)ab

(WHHT)ab

Table 1: NMF-se update rules

Hbc := Hbc ·

∑
i≤n

W T
bi ·

Vic
(WH)ic∑

i≤n

W T
bi

Wab := Wab ·

∑
j≤m

Vaj
(WH)aj

·HT
jb∑

j≤m

HT
jb

Table 2: NMF-kl update rules

13

between additive and multiplicative rules to derive multiplicative rules.
Let V ∈ R(n×m) be a given data matrix, c : R(n×m)×R(n×m) → R a di�erentiable cost

function, and t the desired inner dimension. The goal is to �nd an approximate factoriza-
tion of V into two matrices, V ≈ WH, where W ∈ R(n×t), H ∈ R(t×m), and each element
of both W and H is nonnegative. We want to �nd W and H so that c(V |WH) is locally
minimized. We choose a scale for the base vectors and add a corresponding normalizing
constraint, in this case that the rows in H must sum up to 1. This constrained optimiza-
tion problem is solved by initializing the matrices W and H randomly, and iteratively
updating them, in each step projecting H back to the normalization constraint set as
described in Algorithm 1.

In the following, we assume both matrices W and H are initialized with nonnegative
real values, the data matrix is a nonnegative (n × m) matrix, and the required inner
dimension is t.

3.5.1 NMF update rules minimizing Euclidean squared error (NMF-se)

In this section, we consider the squared error cost function

e(V |WH) =
∑
i≤n

∑
j≤m

(Vij − (WH)ij)
2 .

We �rst show details for the update rule for the matrix W .
To derive the update rule for W , we calculate the derivative of the cost with respect

to Wab. We start by calculating the partial derivative of (WH)ij:

∂

∂Wab

(WH)ij =
∂

∂Wab

∑
k≤t

Wik ·Hkj

=
∑
k<b

∂

∂Wab

Wik ·Hkj +
∑
k=b

∂

∂Wab

Wik ·Hkj +
∑
b<k≤t

∂

∂Wab

Wik ·Hkj

=
∂

∂Wab

Wib ·Hbj

=

{
Hbj if i = a,

0 otherwise.

14

Then, we calculate the derivative of the cost,

∂

∂Wab

e(V |WH) =
∂

∂Wab

∑
i≤n

∑
j≤m

(Vij − (WH)ij)
2

= 2 ·
∑
i≤n

∑
j≤m

(
(Vij − (WH)ij) ·

∂

∂Wab

(Vij − (WH)ij)

)
= 2 ·

∑
i≤n

∑
j≤m

(
(Vij − (WH)ij) · (−1) ·

∂

∂Wab

(WH)ij

)
= 2 ·

∑
i=a

∑
j≤m

((WH − V)ij ·Hbj)

= 2 ·
∑
i=a

∑
j≤m

(
(WH − V)ij ·HT

jb

)
= 2 ·

(
(WH − V)HT

)
ab

and derive the additive rule:

Wab := Wab − αab ·
∂

∂Wab

e(V |WH)

= Wab − 2 · αab ·
(
(WH − V)HT

)
ab
. (1)

To derive a multiplicative update rule, we choose the formula for the step size to be

αab =
Wab

2 · (WHHT)ab
,

so the rule becomes as follows.

Wab := Wab − 2 · Wab

2 · (WHHT)ab
·
(
(WH − V)HT

)
ab

= Wab −Wab ·
(
(WH − V)HT

)
ab

(WHHT)ab

= Wab ·
(
1− (WHHT)ab − (V HT)ab

(WHHT)ab

)
= Wab ·

(V HT)ab
(WHHT)ab

(2)

15

For H, we use the fact that

e(V |WH) = e(V T |HTW T)

that switches the roles of V and V T ,W and HT and H andW T to get the additive update
rule for HT from (1),

HT
cb := HT

cb − 2 · βcb ·
(
(HTW T − V T)W

)
cb
.

This is equivalent to

Hbc := Hbc − 2 · βbc ·
(
(HTW T − V T)W

)T
bc

= Hbc − 2 · βbc ·
(
W T (WH − V)

)
bc
. (3)

Similarly, the multiplicative rule gives

HT
cb := HT

cb ·
(V TW)cb

(HTW TW)cb
,

and �nally the multiplicative update rule for H,

Hbc := Hbc ·
(
W TV

)
bc

(W TWH)bc
. (4)

The NMF-se algorithm alternates between (2) and (4). Note that all elements in the
initial matrices, including the data matrix, are assumed to be nonnegative. This implies
that all three update rules multiply the previous values with nonnegative values, which
means that resulting matrices W and H satisfy the constraint of nonnegativity.

Strictly speaking, the updates (2) and (4) are only de�ned when the denominators in
them are nonzero. This has to be taken into account when implementing the algorithms.
We discuss this in Section 8.1.

3.5.2 NMF update rules minimizing Kullback-Leibler divergence (NMF-kl)

In this section, our cost function is the KL divergence

d(V |WH) =
∑
i≤n

∑
j≤m

(
Vij · ln

Vij
(WH)ij

− Vij + (WH)ij

)
.

16

Derivation of the update rules for W and H follow exactly the same plot, so we only
show details for W .

From Section 3.5.1, we have that the partial derivative of (WH)ij with respect to Wab is

∂

∂Wab

(WH)ij =

{
Hbj if i = a,

0 otherwise.

We calculate the derivative of the cost,

∂

∂Wab

d(V |WH) =
∂

∂Wab

(∑
i≤n

∑
j≤m

(
Vij · ln

(
Vij

(WH)ij

)
− Vij + (WH)ij

))

=
∑
i≤n

∑
j≤m

(
Vij ·

∂

∂Wab

ln

(
Vij

(WH)ij

)
+

∂

∂Wab

(WH)ij

)
=
∑
i≤n

∑
j≤m

(
Vij ·

(WH)ij
Vij

· Vij ·
∂

∂Wab

1

(WH)ij
+

∂

∂Wab

(WH)ij

)
=
∑
i≤n

∑
j≤m

(
Vij · (WH)ij ·

−1
(WH)2ij

· ∂

∂Wab

(WH)ij +
∂

∂Wab

(WH)ij

)
=
∑
i≤n

∑
j≤m

(
1− Vij

(WH)ij

)
· ∂

∂Wab

(WH)ij

=
∑
i=a

∑
j≤m

(
1− Vij

(WH)ij

)
·Hbj

=
∑
j≤m

(
1− Vaj

(WH)aj

)
·Hbj.

Using the step size that Lee and Seung [35] introduced,

αab =
Wab∑

j≤m

Hbj

.

17

gives the standard multiplicative update rule as follows.

Wab := Wab − αab ·
∂

∂Wab

d(V |WH)

= Wab −
Wab∑
j≤mHbj

·
∑
j≤m

(
1− Vaj

(WH)aj

)
·Hbj

= Wab ·

(
1− 1∑

j≤mHbj

·
∑
j≤m

(
Hbj −

Vaj ·Hbj

(WH)aj

))

= Wab ·

(
1− 1∑

j≤mHbj

·

(∑
j≤m

Hbj −
∑
j≤m

Vaj ·Hbj

(WH)aj

))

= Wab ·

(
1− 1 +

∑
j≤m(Vaj ·Hbj)/(WH)aj∑

j≤mHbj

)

= Wab ·
∑

j≤m(Vaj/(WH)aj) ·Hbj∑
j≤mHbj

(5)

The update (5) is not de�ned when (WH)aj is zero, and in Section 8.1 we discuss how
this was taken into account in the implementation we used.

3.6 Sparsity constrained variants

Intuitively, sparsity means that the mass of a vector is packed to only a few elements
� most elements are close to zero. In our metagenomic matrix factorization problem
setting, the pathway-reaction matrix should be extremely sparse: most reactions only
belong to a few pathways, and the pathways are fairly short. For example, in Section 7
we investigated MetaCyc [3] pathways implemented by human gut species and found that
most pathways were less than 15 reactions long. This implies that most elements in the
pathway-reaction matrix should be zero.

Sparsity constraints are often used to guide the factorization to a local minimum where
the presentation of the data is parts-based. For example, in face picture recognition the
base vectors de�ne intuitive parts of the face such as eyes or nose [37]. In our task, we
suppose that chemical reactions controlled by enzymes belong to small meaningful parts
of organisms' metabolism, pathways. Our de�nition of pathways is based on MetaCyc,
and these pathways are short, not holistic. They are the parts we want the representation
to capture.

Some algorithms have soft constraints, which means that sparsity is implicitly imposed,

18

for example, by including a sparsity term in the objective function or modifying the update
rules. The reconstruction error often increases when matrices are required to be sparser,
and typically the algorithms with soft constraints take parameters that control the trade-
o� between sparsity and reconstruction quality.

Algorithms that apply hard constraints take the required levels of sparsities as param-
eters and �nd a solution in the set of matrices that satisfy this constraint. The objective
function is locally minimized only inside this constraint set even if signi�cantly better
reconstructions exist outside this set. Whereas soft constraints consider trade-o� between
reconstruction quality and sparsity, hard constraints are able to exactly determine the
amount of sparsity no matter how the objective functions behave outside the constraint
set.

Hard constraints �ght identi�ability problems by decreasing the size of the set of
possible solutions. Constraints also create additional dependences between entries in the
matrices, which lowers the number of free parameters.

Di�erent de�nitions and measures for sparsity have been suggested in the literature,
and we discuss some of these in the following sections.

3.6.1 Sparse Nonnegative Matrix Factorization (SNMF)

Liu et al [38] proposed Sparse Nonnegative Matrix Factorization (SNMF) and showed it
yields local base images in the face recognition problem setting. They add a L1 norm-
based penalty term to the objective function, penalizing for the sum over all entries in
H.

The algorithm takes one parameter α controlling trade-o� between sparsity and re-
construction quality. The optimization problem SNMF solves is

min
W,H

{
d(V |WH) + α ·

∑
k≤t

∑
j≤m

Hkj

}
,

given the normalizing constraint that the sum over each column in W is one. Table 3
shows the update rules of SNMF. Note that because no constraints are applied to W , the
update rule for W is the NMF-kl update rule also shown in Table 2.

3.6.2 Nonnegative Matrix Factorization with sparseness constraints (NMFsc)

Hoyer [36] introduced Nonnegative Matrix Factorization with sparseness constraints, or
NMFsc. It is the only variant considered in this thesis that has explicit, hard sparsity
constraints. The algorithm takes two optional parameters, one deciding the amount of
sparsity in W and the other in H. Constraints can specify any desired amount of sparsity

19

Hbc := Hbc ·

∑
i≤n

W T
bi ·

Vic
(WH)ic

1 + α

Wab := Wab ·

∑
j≤m

Vaj
(WH)aj

·HT
jb∑

j≤m

HT
jb

Table 3: SNMF update rules

for both matrices, either one of the matrices, or neither of them. The objective function
is squared error, and if no constraints are given for either matrix, the algorithm updates
that matrix with standard NMF-se update rule (2) or (4).

While other variants' normalizing constraints consider L1 norm, NMFsc sets the L2

norm of the rows of H to one. The de�nition of sparsity considered in NMFsc is based on
the ratio of L1 and L2 norms. For an m-dimensional vector x, the de�nition of sparsity s
is

s(x) =

√
m− L1(x)/L2(x)√

m− 1
. (6)

In the case where sparsity constraints are given for W , the algorithm �rst updates it
with the additive update rule (1). It then projects each column to the nearest vector in the
Euclidean space that is nonnegative and has the L1 norm that produces the desired value
of sparsity. Similarly, when sparsity constraints are given for H, the algorithm updates
H with (3), before projecting each row according to the sparsity constraint and keeping
their L2 norm set to 1.

The projection operation projects any given vector to the closest nonnegative vector
that satis�es given L1 and L2 norm constraints. The L1 constraint set is a hyperplane,
the L2 constraint set is a hypersphere, and the intersection of these sets is a smaller
dimensional hypersphere. The projection operation �rst projects the input vector onto
the hyperplane. It then �nds the closest point of the smaller hypersphere. The L1 and L2

norms of this vector are as desired. In case some entries are negative, these entries are �xed
to zero, and the procedure starts from the beginning, this time with the constraint that
these entries are �xed to zero. Hoyer showed that, in practice, iterating this procedure
quickly converges to a point where all constraints are satis�ed.

20

algorithm NMFsc(V ∈ R(n×m)
≥0 , t ∈ N, sH ∈ (0, 1) ∪ {∅})

randomly initialize W ∈ (0, 1)(n×t) and H ∈ (0, 1)(t×m)

solve L1
desired,H from s(H) = sH given L2(H) = 1

for i = 1 → t do
project (row i of H, L1

desired,H , 1)
end for

until convergence do
H := H − β ·W T (WH − V) // this is the additive NMF-se rule (3)

for i = 1 → t do
project (row i of H, L1

desired,H , 1)
end for
W := W � V HT �WHHT

// this is the multiplicative NMF-se rule (2)

end until
end algorithm

algorithm project(x ∈ Rk, L1
desired, L

2
desired): This algorithm returns the nonnegative

vector with the desired L1 and L2 norm that is closest to x in the Euclidean space.

Algorithm 2: NMFsc algorithm when sparsity constraints only apply for the matrix H.
Symbols � and � denote element-wise product and quotient. β is a step size that the
algorithm adjusts to ensure the step is small enough to decrease the cost.

The NMFsc algorithm is described in Algorithm 2.

3.6.3 Nonsmooth Nonnegative Matrix Factorization (nsNMF)

Pascual-Montano et al [37] proposed a method called Nonsmooth Nonnegative Matrix
Factorization (nsNMF), another NMF variant with soft sparsity constraints. This method
takes one parameter that controls the trade-o� between imposing nonsmoothness and
minimizing the reconstruction error. The goal is to make both W and H sparser than
unconstrained NMF.

They modify basic NMF-kl update rules by introducing a smoothing matrix S between
the two matrices W and H. If the inner dimension is t and the sparsity parameter θ, the
smoothing matrix is a (t× t) symmetric matrix,

Sij =

{
θ
t
+ (1− θ) if i = j,

θ
t

otherwise.

21

Hbc := Hbc ·

∑
i≤n

(WS)Tbi ·
Vic

(WSH)ic∑
i≤n

(WS)Tbi

Wab := Wab ·

∑
j≤m

Vaj
(WSH)aj

· (SH)Tjb∑
j≤m

(SH)Tjb

Table 4: nsNMF-kl update rules

Hbc := Hbc ·
(
(WS)TV

)
bc

((WS)TWSH)bc

Wab := Wab ·
(
V (SH)T

)
ab

(W (SH)(SH)T)ab

Table 5: nsNMF-se update rules

22

The modi�ed update rules are similar to basic NMF-kl update rules, except that in the
update rule forW , the matrix H is substituted by the product SH and in the update rule
for H, the matrix W is substituted by the product WS. This is equivalent to minimizing
the extended KL divergence between the data and the product WSH, and we denote this
nsNMF algorithm by nsNMF-kl.

These rules make the �xed matrix appear smoother to the matrix that is being up-
dated, and the update rule then compensates this smoothness by making the updated
matrix sparser.

We applied their strategy also in the case of Euclidean squared error, and denote the
resulting algorithm by nsNMF-se. Update rules for nsNMF-se result from same substitu-
tions to basic NMF-se update rules. Tables 4 and 5 show update rules for both algorithms.

23


0.3 0.2 0.2 0 0.2 0.1
0.3 0.1 0 0.2 0.4 0
0.4 0.2 0.2 0 0.1 0.1
0.2 0.2 0.2 0 0.1 0.3

 ≈

0.2 0.7 0.1
0.9 0.1 0
0 1 0
0 0.6 0.4


0.3 0.1 0 0.2 0.4 0
0.4 0.2 0.2 0 0.1 0.1
0 0.1 0.2 0 0.2 0.5


︸ ︷︷ ︸

≈︷ ︸︸ ︷[
1 0
1.3 0.7
0 1

] [
0.3 0.1 0 0.2 0.3 0
0 0.1 0.2 0 0.05 0.4

]

left-hand approach: V ≈ W (HP)


0.3 0.2 0.2 0 0.2 0.1
0.3 0.1 0 0.2 0.4 0
0.4 0.2 0.2 0 0.1 0.1
0.2 0.2 0.2 0 0.1 0.3

 ≈

1.1 0.6
1 0.1
1.3 0.7
0.8 0.8


︸ ︷︷ ︸
≈︷ ︸︸ ︷[

0.2 0.7 0.1
0.9 0.1 0
0 1 0
0 0.6 0.4

] [
1 0
1.3 0.7
0 1

]

[
0.3 0.1 0 0.2 0.3 0
0 0.1 0.2 0 0.05 0.4

]

right-hand approach: V ≈ (WH)P

Figure 2: Three-matrix factorizations by factorizing the input twice into two matrices

4 Factorization into Three Matrices in Two Steps

In our problem setting, our goal is to factorize our input sample-reaction matrix into three
matrices: sample-OTU, OTU-pathway and pathway-reaction matrices.

The most straightforward implementation of a Nonnegative Matrix Factorization vari-
ant that factorizes the input into three matrices instead of two is to run NMF twice. In
this approach, the data matrix is �rst factorized into two matrices, and factorizing one of
the resulting matrices again into two gives a factorization into three matrices: V ≈ AP
and A ≈ WH give V ≈ WHP . Note that also factorizations V ≈ WB and B ≈ HP
give V ≈ WHP . We call this latter strategy the left-hand approach because the leftmost
matrix W is learned �rst. Similarly, we call the factorization in the �rst example the

24

Wab := Wab ·

√
(V P THT)ab

(WW TV P THT)ab

Hbc := Hbc ·
(W TV P T)bc

(W TWHPP T)bc

Pcd := Pcd ·
(HTW TV)cd

(HTW TV P TP)cd

Table 6: Update rules of NMTF

right-hand approach. Both strategies are shown in Figure 2.
Some NMF variants are better suited for extracting particular kinds of features from

the data. When factorizing the data in two steps, di�erent variants can be used to perform
each of the factorizations.

The downside is, because both factorizations are approximate, the overall cost between
V andWHP is not necessarily minimized. In our problem setting, the left-hand approach
means we �rst extract OTUs from the data and use the resulting OTU-reaction matrix
to learn pathways. Now, when we take the left-hand approach, it is not possible to take
into account the pathways when predicting OTUs, because we learn and �x the matrix
that de�nes OTUs �rst. Similarly, the right-hand approach cannot exploit any OTU
information when predicting pathways.

This motivates an extension that learns all three matrices simultaneously, as illustrated
in Figure 3. Such algorithms are discussed in Sections 5 and 6.

5 Nonnegative Matrix Tri-Factorization (NMTF)

In 2006, Ding et al [40] proposed a nonnegative matrix factorization method called NMTF
that factorizes the data matrix into three matrices simultaneously. Their algorithm is
designed for document clustering and has hard orthogonality constraints on the �rst and
third matrices of the factorization.

As with standard NMF, V ∈ R(n×m) denotes a given data matrix, t1 and t2 desired
inner dimensions. NMTF is de�ned as the constrained optimization problem of �nding
a minimum of e(V |WHP), so that W ∈ R(n×t1), H ∈ R(t1×t2), P ∈ R(t2×m) and each

25


0.3 0.2 0.2 0 0.2 0.1
0.3 0.1 0 0.2 0.4 0
0.4 0.2 0.2 0 0.1 0.1
0.2 0.2 0.2 0 0.1 0.3

 ≈

0.2 0.7 0.1
0.9 0.1 0
0 1 0
0 0.6 0.4


1 0
1.3 0.7
0 1

[0.3 0.1 0 0.2 0.3 0
0 0.1 0.2 0 0.05 0.4

]

Figure 3: Three-matrix factorization: V ≈ WHP

element of W , H and P is nonnegative. Additionally, W and P are constrained to be
orthogonal, i.e. the products W TW and PP T must equal the identity matrix.

The NMTF algorithm iteratively updates one matrix at a time keeping the other two
matrices �xed. They note that existing update rules for the corresponding orhogonality
constrained 2-matrix algorithm can be applied for updating the �rst and the third matrix
by replacing the �xed matrix in the rule with the matrix product of the two �xed matrices;
for example, in the standard update rule for W , H is replaced with HP . This rule simply
updates the weights in W to optimally represent the data using the given base vectors,
regardless of whether the base vectors are given in one matrix H, or as a product of two
matrices, HP . This idea resembles the idea used in nsNMF, discussed in Section 3.6.3.

Updating the matrix H requires some additional adjustments: the algorithm has to
take into account both of the �xed matrices at the same time. This requires exploiting
information coming from the left side of the matrix as well as from the right side simulta-
neously. Ding et al give an update rule for H and prove the correctness and convergence
of this rule. The cost function they consider is squared error, and the updates rules are
shown in Table 6. We show derivation of this update rule using the gradient descent
method in Section 6.

6 Native Three-matrix Factorization (NMF3)

As before, let V ∈ R(n×m) be a given data matrix and c : R(n×m) × R(n×m) → R a
di�erentiable cost function. Let t1 and t2 be desired inner dimensions. We de�ne three-
matrix factorization as the constrained optimization problem of �nding a local minimum
of c(V |WHP), so that W ∈ R(n×t1), H ∈ R(t1×t2), P ∈ R(t2×m) and each element of W ,
H and P is nonnegative.

We consider the squared error and KL divergence cost functions. We denote these
variants by NMF3-se and NMF3-kl.

Similarly to the NMTF algorithm, we keep two matrices �xed while updating one. In
the following, we assume all three matrices W , H and P are initialized with nonnegative

26

V ≈ WHP W H P
NMF3-se - rows rows
NMF3-kl - rows rows
SNMF3 columns columns -

V ≈ WB W B
NMF-se columns -
NMF-kl columns -

A ≈ WH W H
NMF-se - rows
NMF-kl - rows

V ≈ AP or B ≈ HP A or H P
SNMF columns -
NMFsc - rows, L2

NMF-se - rows
NMF-kl - rows
nsNMF-kl - rows
nsNMF-se - rows

Table 7: Normalization constraints of NMF and NMF3 variants that we used in our
experiments. All algorithms apart from NMFsc have L1-based constraints i.e. the sum
over each column or row is one. The sample-pathway matrix produced in the �rst step of
the two-step algorithms is denoted by A and the OTU-reaction matrix by B.

real values, the data matrix is a nonnegative (n × m) matrix, and the required inner
dimensions are t1 and t2.

Ding et al [40] claim that the three factor NMF is �only interesting when it can not be
transformed into two-factor NMF�, referring to a situation when WH in the three-factor
setting can be directly mapped to W in the two-factor setting. For example, in the case
the inner dimensions are the same, t1 = t2, the unconstrained three-matrix NMF problem
can actually be solved with a corresponding two-matrix variant by adding the t1 × t1
identity matrix between the resulting two matrices. To avoid this, Ding et al apply hard
orthogonality constraints on two of the matrices. However, we implemented unconstrained
three-factor algorithms NMF3-se and NMF3-kl and tested them on our data to succesfully
recover features of our interest. Results are shown in Section 8.

In theory, three-matrix variants are more susceptible to identi�ability di�culties than
two-matrix variants. We apply similar normalization constraints to the ones used in

27

Wab := Wab ·
(V P THT)ab

(WHPP THT)ab

Hbc := Hbc ·
(W TV P T)bc

(W TWHPP T)bc

Pcd := Pcd ·
(HTW TV)cd

(HTW TWHP)cd

Table 8: Update rules for the unconstrained 3-matrix extension of NMF minimizing
squared error, NMF3-se. The update rule for H is the same as in NMTF, shown in
Table 6.

corresponding two-matrix variants. We scale the rows of P and either the rows of H or
columns of W by exploiting the fact that

WHP = W (D1D
−1
1)H(D2D

−1
2)P

holds for any diagonal matrices D1 and D2, similarly as discussed in Section 3.4 in the
case of two-matrix variants.

All normalization constraints we used are shown in Table 7. Note that the constraints
can be changed by taking the transpose of the data matrix and the resulting matrices.
For example, the row-wise normalization of H and P in NMF3-se changes to column-wise
normalization of W and H. Note that NMF3-se and NMF3-kl can easily be modi�ed
to normalize columns of W instead of rows of H, which results in a variant where no
constraints are applied to H.

6.1 Update rules minimizing squared error (NMF3-se)

We derive multiplicative update rules for our 3-matrix NMF extension. They are shown in
Table 8. The goal is to approximately factorize given data matrix V into three matrices,
V ≈ WHP . In this subsection, we consider the squared error cost function e(V |WHP) =∑

i≤n
∑

j≤m (Vij − (WHP)ij)
2. Derivation of the update rules for all three matrices follow

the same pattern, and we �rst show details for the second matrix H.
First, we note that by the de�nition of matrix product the product of three matrices

28

is de�ned by

(WHP)ij =
∑
l≤t2

(WH)il · Plj =
∑
l≤t2

(∑
k≤t1

Wik ·Hkl

)
· Plj =

∑
l≤t2

∑
k≤t1

Wik ·Hkl · Plj.

In the following, we need partial derivatives of elements of the product WHP , so we
calculate

∂

∂Hbc

(WHP)ij =
∑
l≤t2

∑
k≤t1

∂

∂Hbc

(Wik ·Hkl · Plj)

=
∑
l≤t2

(∑
k<b

∂

∂Hbc

(Wik ·Hkl · Plj) +
∑
k=b

∂

∂Hbc

(Wik ·Hkl · Plj)

+
∑

b<k≤t1

∂

∂Hbc

(Wik ·Hkl · Plj)
)
.

Now, because the derivative of (Wik ·Hkl ·Plj) with respect to Hbc is zero when k 6= b, we
can simplify the above formula to

∂

∂Hbc

(WHP)ij =
∑
l≤t2

∑
k=b

∂

∂Hbc

(Wik ·Hkl · Plj)

=
∑
l<c

∂

∂Hbc

(Wib ·Hbl · Plj) +
∑
l=c

∂

∂Hbc

(Wib ·Hbl · Plj)

+
∑
c<l≤t2

∂

∂Hbc

(Wib ·Hbl · Plj) ,

and similarly, with respect to Hbc, the derivative of (Wib · Hbl · Plj) is zero when l 6= c,
which gives

∂

∂Hbc

(WHP)ij =
∂

∂Hbc

(Wib ·Hbc · Pcj) = Wib · Pcj.

29

Next, we calculate the derivative of the cost function with respect to Hbc,

∂

∂Hbc

e(V |WHP) =
∑
i≤n

∑
j≤m

∂

∂Hbc

(Vij − (WHP)ij)
2

= 2 ·
∑
i≤n

∑
j≤m

(
(Vij − (WHP)ij) ·

∂

∂Hbc

(Vij − (WHP)ij)

)
= 2 ·

∑
i≤n

∑
j≤m

(
(Vij − (WHP)ij) · (−1) ·

∂

∂Hbc

(WHP)ij

)
= 2 ·

∑
i≤n

∑
j≤m

((WHP − V)ij ·Wib · Pcj)

= 2 ·
∑
i≤n

∑
j≤m

(
W T
bi · (WHP − V)ij · P T

jc

)
= 2 · (W T (WHP − V)P T)bc.

Finally, setting the step size βbc in the gradient descent rule to equal

βbc =
Hbc

2 · (W TWHPP T)bc
,

gives us the multiplicative update rule

Hbc := Hbc − βbc ·
∂

∂Hbc

e(V |WHP)

= Hbc −
Hbc

2 · (W TWHPP T)bc
· 2 · (W T (WHP − V)P T)bc

= Hbc −
Hbc · ((W TWHPP T)bc − (W TV P T)bc)

(W TWHPP T)bc

= Hbc ·
(W TV P T)bc

(W TWHPP T)bc
. (7)

To derive the update rule for W , we calculate the derivative of the cost with respect
to Wab. Following similar steps as before, we start by calculating the partial derivative of

30

(WHP)ij.

∂

∂Wab

(WHP)ij =
∂

∂Wab

Wib · (HP)bj =

{
(HP)bj if i=a,

0 otherwise

Then, we calculate the derivative of the cost.

∂

∂Wab

e(V |WHP) = 2 ·
∑
i=a

∑
j≤m

((WHP − V)ij · (HP)bj)

= 2 · ((WHP − V)(HP)T)ab

In order to derive a multiplicative update rule from the additive rule, we choose the step
size

αab =
Wab

2 · (WHPP THT)ab
,

so the multiplicative rule is as follows.

Wab := Wab − αab ·
∂

∂Wab

e(V |WHP)

= Wab ·
(V P THT)ab

(WHPP THT)ab
. (8)

The above rule is the same update rule that is obtained by replacing the matrix H
with the matrix product HP in the standard NMF multiplicative update rule. To �nd
the update rule for P , we note that taking the transpose of WHP switches the roles of
W and P T , and the update rule for W gives a similar update for P when the transpose
is translated back. Because we have already derived the update rule for the �rst matrix
(8), we can use the symmetric nature of the factorization, and the fact that

e(V |WHP) = e(V T |(WHP)T) = e(V T |P THTW T),

to reason that the multiplicative update rule for P T is

P T
dc := P T

dc ·
(V TWH)dc

(P THTW TWH)dc
.

31

This means the update rule for P is

Pcd := Pcd ·
(V TWH)Tcd

(P THTW TWH)Tcd
= Pcd ·

(HTW TV)cd
(HTW TWHP)cd

. (9)

Again, the above rule is the same that is attained by replacing W with the product
WH in the standard NMF update rule.

Our three-matrix NMF algorithm NMF3-se alternates between (7), (8) and (9). Note
that all elements in initial matrices, including the data matrix, are assumed to be non-
negative. This implies that all three update rules multiply the previous values with non-
negative values, which means that resulting matrices W , H and P satisfy the constraint
of nonnegativity.

As mentioned in Section 3.5.1, also the updates (7-9) are only de�ned when the de-
nominators in them are nonzero. Details of the implementation are discussed in Section
8.1.

6.2 Update rules minimizing KL divergence (NMF3-kl)

In this section, we derive multiplicative update rules for NMF3-kl, our NMF extension that
approximately factorizes given data matrix V into three matrices, V ≈ WHP , minimizing
Kullback-Leibler divergence from the data matrix V to the reconstructed matrix WHP .
The update rules are shown in Table 9 We now assume all three matrices W , H and P
are initialized with positive values, the data matrix is (n ×m) matrix, and the required
inner dimensions are t1 and t2. We �rst derive the update rule for the second matrix H.
From the previous section, we have the partial derivatives

∂

∂Hbc

(WHP)ij = Wib · Pcj.

32

Wab := Wab ·

∑
j≤m

Vaj
(WHP)aj

· (HP)Tjb∑
j≤m

(HP)Tjb

Hbc := Hbc ·

∑
i≤n

∑
j≤m

W T
bi ·

Vij
(WHP)ij

· P T
jc∑

i≤n

W T
bi ·
∑
j≤m

P T
jc

Pcd := Pcd ·

∑
i≤n

(WH)Tci ·
Vid

(WHP)id∑
i≤n

(WH)Tci

Table 9: Update rules for the 3-matrix extension of NMF minimizing KL divergence,
NMF3-kl

33

We use this to calculate the derivative of the cost function with respect to Hbc,

∂

∂Hbc

d(V |WHP) =
∂

∂Hbc

∑
i≤n

∑
j≤m

(
Vij · ln

(
Vij

(WHP)ij

)
− Vij + (WHP)ij

)
=
∑
i≤n

∑
j≤m

Vij ·
∂

∂Hbc

ln

(
Vij

(WHP)ij

)
+

∂

∂Hbc

(WHP)ij

=
∑
i≤n

∑
j≤m

Vij ·
(WHP)ij

Vij
· Vij ·

∂

∂Hbc

1

(WHP)ij
+

∂

∂Hbc

(WHP)ij

=
∑
i≤n

∑
j≤m

− Vij
(WHP)ij

· ∂

∂Hbc

(WHP)ij +
∂

∂Hbc

(WHP)ij

=
∑
i≤n

∑
j≤m

(
1− Vij

(WHP)ij

)
· ∂

∂Hbc

(WHP)ij

=
∑
i≤n

∑
j≤m

(
1− Vij

(WHP)ij

)
·Wib · Pcj.

Now, setting the step size βbc in the additive rule to equal

βbc =
Hbc∑

i≤n

∑
j≤m

Wib · Pcj
,

gives us the multiplicative update rule

Hbc := Hbc − βbc ·
∂

∂Hbc

d(V |WHP)

= Hbc −
Hbc∑

i≤n

∑
j≤m

Wib · Pcj
·
∑
i≤n

∑
j≤m

(
1− Vij

(WHP)ij

)
·Wib · Pcj

= Hbc ·

1− 1 +

∑
i≤n
∑

j≤mWib · Vij
(WHP)ij

· Pcj∑
i≤n

∑
j≤m

Wib · Pcj


= Hbc ·

∑
i≤n
∑

j≤mW
T
bi · (Vij/(WHP)ij) · P T

jc∑
i≤n

∑
j≤m

W T
bi · P T

jc

. (10)

34

To derive the rule for updating W , we calculate the derivative of the cost with respect
to Wab. From section 6.1, we have that the partial derivative of (WHP)ij is

∂

∂Wab

(WHP)ij =

{
(HP)bj if i = a,

0 otherwise,

and we calculate the derivative of the cost,

∂

∂Wab

d(V |WHP) =
∂

∂Wab

(∑
i≤n

∑
j≤m

(
Vij · ln

(
Vij

(WHP)ij

)
− Vij + (WHP)ij

))

=
∑
i≤n

∑
j≤m

(
1− Vij

(WHP)ij

)
· ∂

∂Wab

(WHP)ij

=
∑
i=a

∑
j≤m

(
1− Vij

(WHP)ij

)
· (HP)bj

=
∑
j≤m

(
1− Vaj

(WHP)aj

)
· (HP)bj.

We use the step size introduced in [35], but replace H with HP ,

αab =
Wab∑

j≤m

(HP)bj
.

This again gives a multiplicative update rule:

Wab := Wab − αab ·
∂

∂Wab

d(V |WHP)

= Wab −
Wab∑

j≤m(HP)bj
·
∑
j≤m

(
1− Vaj

(WHP)aj

)
· (HP)bj

= Wab ·

(
1− 1 +

∑
j≤m(Vaj · (HP)bj)/(WHP)aj∑

j≤m(HP)bj

)

= Wab ·
∑

j≤m(Vaj/(WHP)aj) · (HP)Tjb∑
j≤m(HP)

T
jb

. (11)

35

This rule is the same update rule that is obtained by replacing the matrix H with the
matrix product HP in the standard NMF multiplicative update rule suggested in [37].
Derivation of the update rule for P follows exactly the same pattern that was shown for
W and H - calculating partial derivatives of the cost function and then setting the step
size for Pcd to equal Pcd/

∑
i≤n(WH)ic. Without showing details, we mention that the

end result is the same that results from substituting W by WH in the standard rule for
NMF-kl,

Pcd := Pcd ·
∑

i≤n(WH)Tci · Vid/(WHP)id∑
i≤n(WH)Tci

. (12)

In the beginning of this section we assumed that elements of the estimation WHP
are initially positive. The extended KL divergence is not de�ned if it happens that for
some i and j, (WHP)ij = 0 but Vij > 0. In this case, we interpret that the estimate is
in�nitely far from representing the data. As all values are nonnegative in every iteration
of the algorithm, the elements of WHP are linear combinations where both bases and
coe�cients are nonnegative. This means that zeros in the product can only be produced
by zeros in the matrices W , H and P . Because our update rules are multiplicative,
updating has no e�ect on zeros, which means that the �ini�nitely bad� estimate cannot
be updated so that the cost would decrease to a �nite value.

Like mentioned in Section 3.5.2, also the updates (10-12) are only de�ned when the
denominators in them are nonzero. Details of the implementation are again discussed in
Section 8.1.

36

Wab := Wab ·

∑
j≤m

Vaj
(WHP)aj

· (HP)Tjb∑
j≤m

(HP)bj

Hbc := Hbc ·

∑
i≤n

∑
j≤m

W T
bi

Vij
(WHP)ij

· P T
jc∑

i≤n

Wib ·
∑
j≤m

Pcj

Pcd := Pcd ·

∑
i≤n

(WH)Tci ·
Vid

(WHP)id

1 + α

Table 10: Update rules for the 3-matrix extension of SNMF

6.3 Update rules for 3-matrix Sparse NMF (SNMF3)

In SNMF, the �rst matrix W is updated by standard NMF-kl update rule (5), and H
is updated with a rule that incorporates the sparsity constraint speci�ed by parameter
α, as shown in Table 3 on page 20. The three-matrix variant of this algorithm should
impose sparsity on the third matrix P , and we can use the NMF3-kl update rules derived
in Section 6.2 to update the other matrices.

In the factorization V ≈ WHP = (WH)P we again think of the matrix product of
the �rst two matrices WH as one matrix, and the update rule for P results from SNMF
rule for H by susbtituting the matrix H with P and then W with the matrix product
WH. The SNMF3 update rules are shown in Table 10.

SNMF has the normalization constraint that the sum over each column of W is one,
and in SNMF3, we correspondingly normalize columns of both W and H.

37

7 Data Set Construction

Validation methods based on knowing the underlying structure of the data cannot be
applied when we use real-life data that are not fully understood. We studied di�erent
algorithms' behaviour on arti�cial data to be able to apply validation methods. These data
should both resemble real data and contain latent variables of interest. Most importantly,
we have to ensure we know the ground truth in order to evaluate the algorithms' results.

Figure 4: Pathway sizes in selected 100
OTUs

We used the Human Microbiome
Project's [7] knowledge of gut species to-
gether with MetaCyc's [3] pathway and en-
zyme information to make our data realis-
tic. This serves our purpose of develop-
ing methods that are compatible with the
characteristics of real metagenomic data.
Control of the generating process gives us
a means of systematic evaluation.

We started with all microbial species
from Human Microbiome Project that were
assigned to the body site `gastrointestinal
tract' and discarded all but one strain of
each species. We then used MetaCyc to
collect lists of pathways implemented by
each species, discarding all species that
were not found in MetaCyc or were not as-
signed any pathways. We grouped species
that were assigned exactly the same sets of pathways into Operational Taxonomical Units
(OTUs). This level of taxonomy corresponds to the lowest level where each OTU imple-
ments a unique set of pathways. The result is a list of 218 OTUs from which we took a
random subset of t1 = 100 OTUs.

We again used MetaCyc to collect lists of Enzyme Commission (EC) numbers of
enzymes that are present in each pathway. Because each pathway should be de�ned by a
unique set of enzymes, we only kept one pathway for each distinct enzyme set. The total
number of pathways that the 100 OTUs implement was 710. To avoid uninterestingly
short pathways, or including exceptionally long super pathways, we discarded pathways
that were less than three or more than 14 enzymes long. The upper threshold of 14
enzymes is based on Figure 4 that shows longer pathways were rare in the original set.
The result is a set of t2 = 422 pathways and a total of 1234 enzymes.

38

7.1 Arti�cial data

Our arti�cial data is based on the OTU-pathway and pathway-reaction information de-
scribed above. We represent the lists of pathways that each of the 100 OTUs implement
with a binary 100 × 422 matrix whose element (k, l) indicates whether pathway l is as-
signed to OTU k. By dividing each element (k, l) of this matrix by the sum over row
k, the rows are normalized and become distributions. Correspondingly, all 422 pathways
are de�ned as sets of reactions in a binary 422 × 1234 matrix. Similarly, this matrix is
normalized row-wise, which results in a row-matrix of distributions where each row de�nes
one pathway.

We constructed n = 1500 samples. For each sample i ≤ n, an OTU distribution θi
is drawn from a Dirichlet distribution. These distributions are collected in a 1500 × 100
matrix so that each row i gives the distribution of OTUs over sample i. The set of OTUs
is the same set of 100 OTUs in all samples in a given data set, but their proportions
vary. We use the parameter vector α = (α1, α2, ..., αt1) = (0.1, 0.1, ..., 0.1), i.e. αk = 0.1
for all k. This gives very peaked distributions with a few dominant OTUs per sample.
For example, the average number of OTUs in a sample that have probabilities lower than
0.001 is 66, and for probabilities greater than 0.02 the number is 12.45, which means that
on average around 66 out of the 100 OTUs have very low abundances while only around
a dozen OTUs are dominant.

Now, we take the matrix product of the above mentioned sample-OTU, OTU-pathway
and pathway-reaction matrices. Each entry (i, j) is a linear combination of pathways
with coe�cients in the OTU-pathway matrix, weighed by the sample-OTU distribution
of sample i. Thus, the entry (i, j) is a real number that represents a relationship between
the sample i and reaction j. We say that this relationship depicts the amount of evidence
of the reaction j that the sample i includes, and the rows of this matrix product are our
arti�cial metagenomic samples. Hence, we call this 1500× 1234 matrix our arti�cial data
matrix. We normalize each row of the matrix, because it is a standard procedure with
real metagenomic samples [21, 20].

Each subset S ⊂ {1, 2, ..., 1500} of rows of the arti�cial data matrix de�nes a smaller
data set D with fewer samples. If we instead take the corresponding subset of the sample-
OTU distributions, and multiply the resulting sample-OTU submatrix with the same
OTU-pathway and pathway-reaction matrices as before, the result is exactly the same
matrix D. We randomly took such subsets of sizes 500 and 100 to produce two additional
data matrices, 500× 1234 and 100× 1234, so we can compare the methods' performance
in cases where di�erent amount of samples is available.

Note that in the constructing process of the data matrix, the distributions of pathways
over OTUs as well as reactions over pathways result from normalizing binary matrices,
in contrast to the distributions of OTUs over samples which were drawn from a Dirichlet

39

θα

o

pδ

t1

rβ

t2 d

n

θ ∼ Dir(α)

o ∼Mult(θ)

p ∼Mult(δo)

r ∼Mult(βp)

α Dirichlet parameter vector
θ de�nes the sample-OTU distribution
δ de�nes OTU-pathway distributions
t1 total number of available OTUs
β de�nes pathway-reaction distributions
t2 total number of available pathways
o observed OTU
p observed pathway
r observed reaction
d sampling depth
n number of samples

Figure 5: Data generative model

distribution. Hence, the nature of the data in the �rst matrix is di�erent from the sec-
ond and third matrices. This was taken into account when we chose suitable validation
methods, discussed in Section 8.2.

7.2 Data generative model

We de�ned a generative model that is able to capture the parameters we want to extract
from metagenomic data and used the model to simulate synthetic data. The model is
shown in Figure 5, and the sampling process based on the model is described in Algorithm
3.

As with arti�cial data, n = 1500 samples in total were generated from the model and
the resulting (1500×1234) sample-reaction matrix are the input data for our experiments
on simulated data � our simulated data matrix.

In the sampling process, we used the same sample-OTU, OTU-pathway and pathway-
reaction distribution matrices as with arti�cial data described in Subsection 7.1. We set
the number of observations, or sampling depth, d to 1000, which means the total count of
reaction observations is 1000 per sample. This means we cannot observe more than 1000

40

algorithm GenerateDataset(n, δ, β)
initialize sample-reaction matrix V with zeros
for i = 1 → n do

sample-otu distribution θ ∼ Dir(0.1) // Pick the distribution according to a Dirichlet

repeat 1000 times
OTU o ∼ Mult(θ) // Pick according to the sample-otu distribution

pathway p ∼ Mult(δo) // Pick according to the otu-speci�c pathway distribution

reaction r ∼ Mult(βp) // Pick according to the pathway-speci�c reaction distribution

Vir ← Vir + 1 // Observe the selected reaction

end repeat
end for
return V

end algorithm

Algorithm 3: Generative process based on the model in Figure 5

di�erent reactions per sample, despite that all 1234 reactions have a probability greater
than zero to be picked for each row. On average, less than 500 di�erent reactions were
observed, because many reactions were observed more than once. The simulated data
matrix is not normalized, but the sum over each row is 1000.

Limited sampling depth makes the simulated data set very di�erent from the arti�cial
set. For example, because the sample-OTU distributions are peaked, for each sample
the dominant OTUs are observed often and possibly some less abundant OTUs are not
observed at all. In arti�cial data, each sample has at least some evidence of every single
reaction: every element of the arti�cial data matrix is positive, whereas 62% of the ele-
ments of the simulated data matrix are zeros. In this sense, the sampling depth of the
arti�cial data set is in�nite, and this allows us to study the algorithms' performance in a
hypothetical situation where sampling depths of metagenomic data are arbitrarily large.

41

8 Results

We test the NMF algorithms' performance in two di�erent settings. The �rst task is to
factorize a known matrix product and study di�erent algorithms' behaviour in a setting
where an exact factorization exists. This completely arti�cial, noise-free data can be
accurately factorized, unlike actual data. We select a few methods for the second task
based on their performance on arti�cial data.

Our second task is to infer the species and pathways from the data that was generated
using the sampling process described in Section 7. In this setup, there is some noise
due to sampling, and we assume the factorization to be approximate. We use the initial
distributions to validate the results from this task.

To study the impact of the data set size, we test all algorithms on sets of 1500, 500
and 100 samples, i.e., rows of the data matrix. Currently, no metagenomic data sets
of as many as 1500 samples are available. This largest set represents the optimal case
where both inner dimensions of the factorization are smaller than the dimensions of the
data. With 500 samples, the number of pathways is only 15.6% smaller than the smaller
dimension of the data.

Theoretically, the factorization is not expected to behave well when the inner dimen-
sion of the factorization is the same or even smaller than dimensions of the data. We use
the set of 100 samples to study how the algorithms behave in this very di�cult task.

8.1 Implementation

We �rst studied how standard, unconstrained NMF algorithms behave in our task. We
have used Matlab code provided in Hoyer's software package nmfpack [36] with slight
modi�cations1. We consider NMF variants using two popular choices of cost function,
Euclidean squared error and KL divergence, and denote these variants by NMF-se and
NMF-kl. We further modi�ed the software into NMF3-se and NMF3-kl, described in
Sections 6.1 and 6.2. These algorithms factorize the input matrix into three matrices.

For sparsity constrained variants, we modi�ed implementations of Sparse Nonnegative
Matrix Factorization (SNMF), [38], and Nonnegative Matrix Factorization with sparseness
constraints (NMFsc) found in nmfpack. We further modi�ed this source code into SNMF3
described in Section 6.3. We implemented nsNMF-se [37] and nsNMF-kl, described in
Section 3.6.3, by adding the smoothing matrix to the update rules of NMF-se and NMF-
kl.

As mentioned in the previous chapters, many updates are only de�ned when denomi-
nators in them are nonzero. Our implementation is based on nmfpack, so we mostly use

1We only use iteration count as a stopping criterion instead of manually monitoring the convergence.

We modify the term Vij/(WH)ij to avoid unde�ned expressions in the update rules of some algorithms.

42

their strategy and add a small constant 10−9 to the problematic denominators. We found
that SNMF and SNMF3 were sometimes unable to process input matrices that had too
many zeros. To avoid this problem, we substitute the value of Vij/WHPij with 1 when
Vij = WHPij = 0, because the value of this quotient is 1 also whenever Vij = WHPij 6= 0.
This strategy di�ers from the above mentioned one where only a small constant is added
to all denominators, because when the numerator is zero, the quotient evaluates to 0. This
makes values in the updated matrices decrease very steeply when the input V contains
many zeros.

For the factorization schemes where the data matrix is factorized by running two-matrix
NMF variants twice, we �rst run all the algorithms for the �rst step. In the left-hand ap-
proach, we then have all the factorizations into sample-OTU and OTU-reaction matrices.
We evaluate the sample-OTU matrices and select the factorization instance where this
matrix is qualitatively best i.e. the instance that learned most agreed OTUs as de�ned
in Section 8.2. In cases where there were more than one such factorization, we selected
the one with most learned OTUs according to KL divergence. The corresponding OTU-
reaction matrix then serves as an input for all algorithms' second step, where pathways
are extracted from this OTU-reaction matrix.

Similarly, in the right-hand approach we evaluate the resulting pathway-reaction ma-
trices and select the sample-pathway matrix that corresponds to the qualitatively best
one i.e. the one with most agreed learned pathways, also de�ned in Section 8.2. If there
is more than one such factorization, we choose the one with more learned pathways when
measured using only the absolute error.

Because the input matrix is the same for all algorithms, we are able to accurately com-
pare the algorithms' performance in the following step. Although selecting qualitatively
best factorizations might not be possible when real-life data is used, this best serves our
purpose of comparing the methods.

8.1.1 Initialization

As discussed in Section 3, the algorithms only �nd local optima of the objective. Starting
from some initial point, they iteratively update the matrices. The choice of this initial
point has an e�ect on which local minimum is found. For simplicity, we initialized all
matrices with pseudorandom values drawn uniformly from the open interval (0, 1). Ran-
domness helps to avoid the possible problem of starting the factorization from the most
unfavorable points of the space.

Because the matrices to which the update rules are applied are already scaled in every
other iteration of the algorithms, we also normalize rows or columns of the initial matrices
in accordance with the normalization constraints of the algorithm in question. Table 7
shows the normalization constraints of each of the algorithms.

43

We ran every setup of the algorithms ten times, on di�erent initial matrices each time.
In Sections 8.3 and 8.4 we report the results that show that initialization causes some
variation on most algorithms' performance.

8.1.2 Stopping criteria

We decided to set a number of iterations for each algorithm as the only stopping crite-
rion. We do not monitor convergence, but the numbers that we used are based on our
observations on how many iterations the algorithms usually took to converge on our data.
These observations are based on visual interpretations of the convergence curve, i.e., how
the values of the objective function change through iterations of the algorithm.

We found that all of the two-matrix variants converged in at most 500 iterations. To
make sure they would converge properly, we set the number of iterations to 600. On our
data, the three-matrix variants converged slower, and the number of iterations was set to
5000 to ensure convergence.

8.1.3 Parameters

Parameter selection for all algorithms that use soft constraints usually has to be done
empirically. Some algorithms' parameters can only take values in a given set, such as the
open interval (0, 1). Other algorithms make parameter selection even more inconvenient
as the parameters can take, for example, any positive real value.

We chose the sparsity parameters 10, 50, 100 and 200 for SNMF and SNMF3. Ac-
cording to the original paper [38], the parameter 100 should make the resulting matrix H
100 times sparser than unconstrained NMF. For both nonsmooth variants nsNMF-se and
nsNMF-kl, we chose the sparsity parameters 0.2, 0.4, 0.6 and 0.8.

The hard constraint of NMFsc lets us explicitly select how sparse the matrix P be-
comes. The sparsity of the underlying matrix was 0.962, and based on this we used
sparsity parameters 0.9, 0.95 and 0.962.

8.2 Evaluation metrics

In this section, we describe the metrics and measures we considered when evaluating the
methods' performances, and explain how we visualize the results. Our goal is to �nd
methods that best suit metagenomic type data.

Absolute error between n-dimensional vectors x and y is de�ned as the sum over the

44

O
T
U
to
p
ic
s

tr
u
e
O
T
U
s

a) absolute error

O
T
U
to
p
ic
s

tr
u
e
O
T
U
s

b) KL divergence

O
T
U
to
p
ic
s

tr
u
e
O
T
U
s

c) these metrics agree

Figure 6: Learned OTUs. Arrows show what true OTUs are represented by the learned
OTU topics. In a and b, each arrow points to the true OTU from which the absolute
error or KL divergence to a given OTU topic is minimal. Graph c shows true OTUs that
absolute error and KL divergence match to the same OTU topic. In this example, the
number of learned OTUs is 4 if measured by absolute error (a) and 5 if KL divergence is
used (b) and the number of agreed learned OTUs is 3 (c).

absolute values of the di�erences of their elements,∑
i≤n

|xi − yi|.

Number of learned pathways and OTUs. We call rows in the initial pathway-
reaction distribution matrix true pathways, and by pathway topics we mean normalized
rows in the third matrix that the algorithms produce. For each pathway topic p′, we
interpret that p′ represents the true pathway p for which a chosen cost function from p
to p′ is smallest. For a factorization V ≈ WHP , the number of learned pathways is the
number of di�erent true pathways that were represented by pathway topics in P .

We apply the same idea to evaluate how many true OTUs are represented by OTU
topics in the columns of the �rst matrix of the factorization. In this case, we �rst nor-
malize the columns in the initial sample-OTU distribution matrix to obtain true OTUs.
Results discussed in more detail in Subsection 8.3.1 show that neither KL divergence nor
absolute error alone was able to distinguish randomly generated sample-OTU matrices
from matrices that we learn with NMF techniques. We observed similar behaviour for the
number of learned pathways, discussed in Section 8.3.2.

However, when we only take into account OTU topics that represent the same true
OTU in terms of both KL divergence and absolute error, i.e., both measures assign the
OTU topic to the same true OTU, we get another number: the number of agreed learned
OTUs. Figure 6 shows an example. Mathematically, if we denote the set of OTU topics

45

by S and the set of true OTUs by O the number is the size of the set

{o|∃s ∈ S so that o = arg min
ok∈O

d(ok|s) = arg min
ok∈O

b(ok|s)}.

This measure both requires the true OTU to be point-wise the nearest true OTU and
that as distributions the divergence from this true OTU is smallest among all true OTUs.
It is more strict than absolute error or KL divergence alone. We use the same strategy to
calculate the number of agreed pathways.

This evaluation metric is not designed to measure the accuracy with which each path-
way or OTU was learned, but re�ects qualitative features of the learned topics in one
number. If the algorithm separates all true pathways or OTUs from each other, the num-
ber of learned pathways or OTUs equals the number of the true ones. Similarly, if the
algorithm has extracted some other features from the data than the ones in which we
are interested, we expect this number to be low. To examine this more closely, we have
conducted tests with random matrices described below.

The order of the topics in NMF methods does not carry any meaning: any permutation
of them gives exactly the same reconstruction of the data. The order is mostly de�ned by
the initialization of the matrices, which in our case is random. Importantly, this metric
is able to evaluate matrices where the learned topics are in an arbitrary order.

Finding the closest matches also allows us to align learned topics to true features
and correspondingly arrange the result matrices. This further allows us to apply more
general evaluation methods such as receiver operating characteristics, described below, for
pathway data. Importantly, the quality of the second matrix can only be evaluated after
aligning OTU and pathway topics. Each row of this matrix corresponds to one OTU topic,
and each column to a pathway topic, and entries describe their relationships predicted by
our learning method. We must evaluate the sample-OTU and pathway-reaction matrices
and align the learned topics to true OTUs and pathways in order to examine how well
their relationships were predicted.

Random matrices. It is not clear how the chosen evaluation metrics, number of learned
pathways and OTUs, behave with random guesses. We do not know what the expected
numbers are if we analyze randomly generated matrices. To investigate this, we draw
ten matrices of 1500 species distributions of 100 species each from a Dirichlet distribution
using parameter α = 0.1. This gives us ten sample-species distribution matrices generated
exactly the same way than the original ground truth matrixW . We include these matrices
in the analysis as if they were learned matrices.

Note that the generating process of the random matrices includes the knowledge of the
Dirichlet parameter that was used to generate underlying species features of the data, and
that we do not use this information when learning these features from the sample-reaction

46

matrix with NMF techniques.
The generative process for random pathway matrices is as follows. In Section 7, we

mention the distribution of pathway lengths in the initial pathway-reaction matrix. We
draw lengths of at least 3 and at most 14 for 422 random pathways from this distribution,
and uniformly sample a corresponding number of reactions for each pathway. To be able
to calculate KL divergences, we add a small constant 10−9 to all elements of this binary
matrix. For comparison to learned pathway matrices, we generate ten matrices using this
procedure and evaluate them similarly.

Receiver Operating Characteristics (ROC), and the Area Under the Curve
(AUC). The nature of our pathways is binary: a given enzyme either belongs to a
given MetaCyc pathway or does not. We evaluate the quality of the learned pathways by
calculating the ROC curves and the area under them � standard methods for evaluating
binary classi�ers. The advantage of this is that the AUC sums up the quality of the
learned matrix in one number; the downside is that binarizing discards some information.

We have a binary pathway-reaction matrix Ptrue and its estimate Pestim whose entries
are real values between zero and one. We �x a threshold α and binarize the estimate
Pestim by substituting all values smaller than α by zero, and larger values by 1. From this
binary estimate matrix, we can count what values were predicted correctly.

True Positive Rate (TPR) is the number of ones that were predicted correctly by Pestim
divided by the total number of ones in Ptrue. False Positive Rate (FPR) is the number
of zeros that were erroneously predicted to be ones divided by the total number of zeros
in Ptrue. ROC curve shows the TPR as a function of FPR when the threshold α goes
through values from one to zero.

With a large threshold α, most values in the binarized estimate are zeros, and both
TPR and FPR are near zero. As the threshold is decreased, the number of ones in the
estimate increases. If the estimate is perfect i.e. there exists a threshold that binarizes
the estimate to exactly Ptrue, FPR stays at zero as TPR goes to one. When α reaches
zero, all values in the estimate are ones, and both TPR and FPR are 1. The more area
there is between the ROC curve and the x-axis, the better the estimate is considered to
be.

Box plot. We use the Matlab box plot with default values to show the number of learned
OTUs and pathways. Mathworks website [42] explains the box plot: �On each box, the
central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers are
plotted individually.�

47

Chessboard plot. To visually investigate the quality of our result matrices, we show
chessboard plots of cost matrices between learned topics and true features. In each such
chessboard plot, the rows correspond to learned topics and the columns corerspond to true
OTUs or true pathways. The color of the element (i, j) shows the KL divergence from
true OTU j to OTU topic i, or the squared error between true pathway j and pathway
topic i.

We align the learned topics with true OTUs or pathways by permuting both the rows
and columns of the cost matrix. The �rst row and �rst column are selected so that the
smallest dissimilarity in the matrix goes in the upper left corner. This means we align the
most accurately learned feature �rst. After this �rst permutation, we �x the �rst row and
column, �nd the smallest element of the remaining matrix, and permute the remaining
matrix so that this smallest value goes to element (2,2). We continue similarly until we
have ordered the whole matrix.

This greedy alignment is well suited for investigating how many features were extracted
and how accurately they were learned. In cases where two or more learned topics represent
the same underlying feature, the most accurate one is aligned to that feature and the other
topics are aligned to some other features, possibly ones that are not well represented by
any learned topic. Features that are combined in one topic, or split into di�erent topics
are not taken into account as only the pairwise similarities between one topic and one
feature are considered at a time.

48

1500 samples 500 samples 100 samples

Figure 7: Number of agreed OTUs each of the algorithms learned from 1500, 500 and 100
arti�cial samples

8.3 Experiments on completely arti�cial data

In this section, we study the performance of our methods on arti�cial data described in
Section 7.1. During our experiments, no algorithm factorized the data exactly into the
initial matrices. This highlights the fact that the algorithms typically converge to local
minima of the objective.

We �rst ran a series of experiments on unconstrained algorithms. We found that KL
divergence-based variants were able to extract OTU features from the data. However,
the pathway-reaction matrix that we used to build arti�cial data was extremely sparse.
None of the matrices we produced with NMF-kl, NMF-se or the corresponding three-
matrix variants NMF3-kl and NMF3-se were as sparse, so we used the sparsity constrained
variants introduced in Sections 3.6.1 - 3.6.3 and 6.3 to impose sparsity on the pathway-
reaction matrix. The sparsity of the matrix P produced with di�erent algorithms is shown
in Figure 12 and is discussed in Section 8.3.2.

8.3.1 OTUs from arti�cial data

The highest agreed number of OTUs that the algorithms recovered was very high, 90
out of the total 100, and the mean of the numbers of OTUs both NMF3-kl and SNMF3
recovered from 1500 and 500 samples was around 85. On 100 samples, the numbers are
lower and the results vary more. This suggests that the factorization is less stable when
the inner dimension, i.e. the number of OTU topics, is the same as the number of samples.
Still, we were able to recover many OTUs also in the case where only this small number

49

KL divergence

1500 samples 500 samples 100 samples

Absolute error
1500 samples 500 samples 100 samples

Figure 8: Number of OTUs each of the algorithms learned from 1500, 500 and 100 arti�cial
samples when only one of the measures is considered

of samples is available.
Figures 7 and 8 show the number of learned OTUs from three arti�cial data sets of

di�erent sizes, using three di�erent measures. Especially the agreed number of learned
OTUs shows clear di�erence between randomly generated matrices and all the NMF
techniques shown in Figure 7. Apart from the right-hand factorization, the results from
all algorithms are along similar lines on 500 samples as they are on 1500 samples. It
is interesting that the relations between di�erent algorithms remained roughly the same
even when a very low number of samples, 100, was used.

The KL divergence-based variants NMF-kl, NMF3-kl and SNMF3 were able to re-
cover more OTUs than NMF-se and NMF3-se in all other settings except the right-hand
approach on 1500 and 500 samples. Regardless of what measure is used � KL diver-
gence, absolute error or the agreed number � the number of OTUs KL divergence-based
algorithms extracted is higher than the corresponding number for randomly generated
matrices. We expect the di�erence between the variants that minimize di�erent objective
functions due to the nature of the underlying features. KL divergence is better suited for
comparing distributions, and the underlying OTUs are de�ned by Dirichlet distributions.
The L1 norm-based sparsity constraint that SNMF3 has on the matrix P does not a�ect
the number of learned OTUs compared to unconstrained NMF-kl.

Native three-matrix factorization algorithms performed better than their two-matrix
counterparts. This shows that the native method is able to bene�t from extracting both
features at the same time.

50

We chose one individual factorization per data set size for further analysis. On 1500
samples, the highest number of agreed learned OTUs was 89, by NMF3-kl. However,
the number of learned pathways was low as shown in Section 8.3.2. As a compromise,
we chose the factorization where the sum of agreed learned OTUs and agreed learned
pathways was highest. On 1500, 500, as well as 100 samples this was achieved with left-
hand factorization approach by NMF-kl for the �rst step. The input data for the next step
of the left-hand factorization are the OTU-reaction matrices resulting from these same
individual factorizations. For these chosen factorizations, the number of agreed learned
OTUs was 80 on 1500 samples, 79 on 500 samples and 69 on 100 samples.

For the chosen three individual factorizations, Figure 9 shows KL divergence from
each true OTU to each OTU topic. Rows and columns are permuted as described in
Section 8.2. If the factorization was perfect, all elements on the diagonal would be black,
indicating zeros, and all other elements would be orange or yellow.

Figure 9 (a) shows that when all 1500 samples were used, we learned around 60 OTUs
very well. The values on the diagonal are visibly higher in the lower right corner between
OTUs 80 and 100, which shows the connection between the number of learned OTUs and
the chessboard plot as the number of agreed learned OTUs was 80. Figure 9 (d) shows a
sub-matrix of the KL divergence cost matrix with only the rows and columns where KL
divergence and absolute error align the row with the same column. The plot shows that
by considering only these agreed alignments we can discard less accurately learned OTUs.

From all three data sets, the most accurately learned true OTU is the same. This
OTU implements 154 pathways. Only 13 OTUs out of the total 100 OTUs implement
more pathways. There are 6 pathways that are unique to this OTU, out of 53 pathways
that are unique to one OTU.

We aligned the learned OTUs of all three factorizations using three di�erent measures:
in addition to KL divergence and Euclidean squared error, we have aligned cost matrices
that consider the absolute error. There were three true OTUs that were among the 20
last columns in all cases. We interpret that none of the three factorization instances in
question learned these OTUs accurately. All pathways that any of these three OTUs
implement are also implemented by some other OTU. They implement 95, 127 and 135
pathways, while for comparison only 21 out of all 100 OTUs implement less than 95
pathways.

51

(a) 1500 samples (b) 500 samples

(c) 100 samples (d) 100 samples agreed

Figure 9: Chessboard plot from qualitatively good sample-OTU matrices after aligning
the learned topics with true OTUs. The colour of element (i, j) shows the KL divergence
from true OTU j to OTU topic i. Higher divergences than 10 are displayed using white
colour.

52

Absolute error

1500 samples 500 samples 100 samples

KL divergence

1500 samples 500 samples 100 samples

Figure 10: Number of pathways each of the algorithms learned from 1500, 500 and 100
samples measured using only one of the metrics at a time

53

1500 samples 500 samples 100 samples

Figure 11: Number of agreed pathways each of the algorithms learned from 1500, 500 and
100 samples. These are the numbers of pathway topics that KL divergence and absolute
error align to the same real pathways.

8.3.2 Pathways from arti�cial data

Figure 10 shows that both absolute error and KL divergence assign high numbers of
learned pathways to randomly generated control matrices. However, Figure 11 reveals that
when both measures are taken into account at the same time, most of our factorization
techniques extracted more pathways than what was found in the control matrices.

Figures 10-11 show that the performance of each algorithm in recovering pathways is
very similar regardless of which data set size was used. Whereas KL divergence-based
algorithms were better suited for extracting OTU information, squared error-based algo-
rithms NMF-se and NMFsc with parameter 0.9 in general recover more pathways than
KL divergence-based algorithms in the left-hand setup, and nsNMF-se in the right-hand
setup. We expect this due to the nature of the underlying data discussed in Section 7.

Most algorithms perform better in the left-hand setup in which pathways are learned
from the OTU-reaction matrix produced in the �rst factorization. This is very interesting
because the input OTU-reaction matrix is very small: the number of OTUs is only 100,
less than one quarter of the number of pathways. Still, many algorithms were able to
recover more than 140 pathways.

Surprisingly, the performance of all three-matrix variants is better when fewer samples
is used but not as good as many of the two-matrix algorithms'. The performance of both
SNMF and SNMF3 is not very di�erent from the corresponding unconstrained variant

54

NMF-kl or NMF3-kl. We interpret that the L1 norm-based sparsity constraint of SNMF3
is not useful for extracting pathway features.

Instead, we have further investigated the a�ect of L2 norm-based sparsity de�ned by
Equation (6), and Figure 12 shows how sparse the result matrices of di�erent variants are
when ran on 1500 samples. Corresponding box plots on 500 and 100 samples (�gures not
included) show very similar behaviour than Figure 12.

Overall, left-hand approach results in sparser matrices than right-hand approach. This
o�ers another explanation why the left-hand approach yielded better results. The right-
hand factorizations factorize the 1500 × 1234, 500 × 1234 or 100 × 1234 sample-reaction
data matrix whereas the input matrix in the left-hand factorization is the 100×1234 OTU-
reaction matrix. The size of the input matrix is not solely responsible for the sparsity of
the output matrices which can be seen from the results on 100 samples where the input
is the same size on both approaches.

Due to the di�erent de�nition of sparsity, there is no visible di�erence between the
L2 norm-based sparsity of SNMF or SNMF3 and the corresponding unconstrained NMF-
kl or NMF3-kl. Based on the number of learned pathways measured using any of the
three measures, the L1 norm-based sparsity constraints of SNMF and SNMF3 do not
signi�cantly a�ect the method's qualitative performance compared to NMF-kl or NMF3-
kl, respectively.

Figure 11 shows that NMFsc with sparsity parameter 0.9 recovered more pathways
than any other variant. Because of hard sparsity constraints on P , NMFsc also produces
the sparsest pathway matrices. Although with parameter value 0.962 the sparsity of the
matrix is almost the same as the sparsity of the ground truth matrix, the number of
agreed learned pathways is smaller than with the parameter 0.9. This might be because
extreme parameters strongly restrict the constraint set, and the �t of the reconstruction
to the data is compromised.

55

Figure 12: Sparsity of the pathway-reaction matrix P learned from 1500 arti�cial samples

56

(a) 1500 samples (b) 1500 samples submatrix

Figure 13: Chessboard plots from one of the chosen factorizations' pathway-reaction ma-
trix after aligning the learned topics with true pathways. The colour of the element (i, j)
shows the squared error between pathway topic i and true pathway j.

We have further investigated the pathway-reaction matrix resulting from one individual
factorization per data set size. For 1500 and 500 samples, we chose factorizations that
had most agreed learned pathways. Both of these factorizations resulted from the NMFsc
algorithm with sparsity parameter 0.9. On 100 samples, the maximum number of agreed
learned pathways, 147, was achieved with NMF-kl. However, we chose the factorization
with second most agreed learned pathways, 145, because it was a result from NMFsc
with sparsity parameter 0.9, and it only learned two pathways less than the overall best
factorization by NMF-kl.

Figure 13 shows chessboard plots of the factorization on 1500 samples and one high-
quality submatrix. The plots from 500 and 100 samples look qualitatively similar to
Figure 13 (a).

In the chessboard plot, white columns that have a single dark element correspond to
true pathways that have low similarity to most pathway topics, but are similar to one.
The method has extracted these pathways well. Columns that only have large values
correspond to true pathways that we were not able to accurately recover. None of the
learned pathway topics is very similar to these true pathways. Fairly dark, evenly coloured
columns correspond to true pathways that have high similarity to many pathway topics,
and white columns to those that have low similarity to all pathway topics. The method

57

has not learned these pathways accurately.
Figure 13 (b) shows a submatrix of the matrix in 13 (a). It includes only row-column

pairs that are constantly aligned to each other when the cost matrices considering Eu-
clidean squared error, KL divergence and absolute error are permuted as described in
Section 8.2. There were 113 such pairs, and the 84 shown in Figure 13 (b) make the left
upper corner of that matrix.

Measured with absolute error, there were two pathways that were among the ten most
accurately learned pathways on all three pathway matrices selected for further analysis.
One of them is called creatinine degradation I. It is related to a breakdown product of
creatine, which according to MetaCyc is `used to store and supply energy to muscle cells
in vertebrates' but not reabsorbed. The pathway contains 6 enzymes, which is close to
the average length in our pathway matrix: 5.6 enzymes. In our arti�cial data, creatinine
degradation I is implemented by 16 di�erent OTUs.

The other well-learned pathway's name is chorismate biosynthesis I, which, e.g., leads
to biosynthesis of vitamins E and K. It is 8 enzymes long. Implemented by 89 OTUs, this
is a very common pathway in our OTU set, as only 22 pathways are more common, and
the average number of implementing OTUs per pathway is 29.

We also examined what pathways the method did not seem to extract. There were �ve
pathways that were among the 40 last true pathways to be aligned by absolute error in all
three matrices. This suggests that neither of the three factorizations that were performed
on di�erent sizes of data learned these pathways accurately. Four of these pathways are
shorter than average, three to �ve enzymes each, although one of them is a 9 enzymes
long superpathway. More importantly, one of these �ve pathways is only implemented by
two OTUs, and the four remaining pathways by only one OTU. This suggests that the
method is able to learn more accurately pathways that are implemented by many OTUs.
The fact that a high number of OTUs that implement a pathway increases the amount
of evidence of that pathway in the samples supports this belief.

In the right-hand approach, the pathways were extracted �rst as described in Section
4. The resulting sample-pathway matrix was the input for the OTU learning step. The
quality of the �rst factorization strongly a�ects how well OTUs are predicted. Using only
100 samples, we were not able to recover as many pathways as with higher number of
samples, and the number of learned OTUs is also smaller.

Figure 14 shows ROC curves of the matrix P , again from the same factorizations that were
previously analyzed in this section and in Section 8.3.1. In addition to the whole matrix
P , the �gures show ROC curves for two submatrices. The bigger submatrices consist
of the intersection of row-column pairs in reordered Euclidean squared error cost matrix
and absolute error cost matrix. In the case of the smaller submatrix, the intersection is

58

1500 samples 500 samples 100 samples

Figure 14: Pathway ROC of the chosen factorization instances on arti�cial data. AUC
value for each curve is shown in the legend.

additionally taken with the KL divergence cost matrix alignments.
Although the number of learned pathways discussed before suggests that many path-

ways were not recovered well, the ROC curves in Figure 14 show that the learned matrix
P estimates all pathways well with AUC higher than 0.8 on all three data sets. The
decrease in the AUC values as the number of samples goes down from 1500 to 500 and
100 is in line with the decrease in the number of learned pathways discussed above.

The FPR stays very low while the TPR grows, despite that we know that the under-
lying pathway matrix is extremely sparse and thus most of the entries are zeros. This
means that even though a randomly placed 1 is very likely to be a false positive, in the
binarized learned matrix most of the ones are true positives � vast majority of big values
in the learned matrix align with ones in the underlying binary matrix.

For comparison, the ROC curve of one of the randomly generated matrices after similar
aligning of the cost matrix is shown in Figure 15. The TPR �rst grows to approximately
0.13. After this, the false positives start to dominate, which means that mainly elements
that should be 0 are predicted to be ones when the binarizing threshold α is further
decreased. The AUC is only 0.461. This shows that the alignment procedure alone could
not make our randomly generated matrices look like good estimators.

In Figure 14, the smallest submatrices cover around one quarter of all pathways. The
method learned these over 100 pathways very accurately. Their TPR reaches almost
the value 1 with only a low FPR. This means that with some threshold, the learned
matrix is binarized so that almost every 1 of the underlying matrix is found while only
a small amount of zeros are predicted to be ones. This means that these submatrices
have correctly predicted almost all reactions that are present in the pathways in question,
while including few reactions that are not present in the underlying pathway.

59

Figure 15: ROC curve of one of the randomly generated pathway-reaction matrices

Note that the individual factorizations that we chose for closer investigation were
selected as a compromise between the performance on extracting OTUs and pathways.
These matrices do not represent the overall best result of extracting pathways.

8.3.3 OTU-pathway relationships from arti�cial data

Only knowing what underlying OTUs the rows of H and what underlying pathways the
columns of H correspond to allows investigating the OTU-pathway matrix H closely. For
this reason, we validate the learned matrixH from the same three individual factorizations
that are analyzed in Sections 8.3.1 and 8.3.2. They were chosen to represent our results
well, but a compromise between the learned OTUs and pathways was made.

OTU topics of the matrix W and pathway topics of the matrix P are already aligned
before examining how OTUs and pathways were predicted. In the matrix H, we permute
the rows and columns to the corresponding order: each column k of W correspongs to
row k of H, and similarly each row l of P corresponds to column l of H. Now that
also H is permuted like this, the matrix product WHP has exactly the same value as
before any of the matrices was permuted. Hence, the permuted OTU-pathway matrix H
tells how our NMF method predicted the relationships between the OTU and pathway
topics. When validating H, we compare the predicted OTU-pathway distributions with
the OTU-pathway distributions of the same underlying OTUs and pathways to which the
topics were aligned in Sections 8.3.1 and 8.3.2.

Figure 16 shows ROC curves for the OTU-pathway matrix of the selected factorizations
after normalizing the matrices row-wise. All curves show that the relationships between
OTUs and pathways were predicted better than what a random guess would give. This
suggests that it was not by chance that the method extracted OTU-like and pathway-like
features, but that it was able to learn the latent variables of the data.

60

1500 samples 500 samples 100 samples

Figure 16: ROC curves of an OTU-pathway matrix and selected submatrices

When only subsets of OTUs and pathways that were most accurately learned are
considered, the AUC is higher. When the OTUs and pathways were accurately learned,
their relationships were well-predicted as well.

When all 422 pathways are taken into account, we also consider the pathway topics
that do not correspond to any real pathway, as discussed in the previous subsection.
Hence, the errouneously predicted pathways a�ect the OTU-pathway matrix, and the
resulting AUC values are not as high as when only the accurately learned pathways are
considered.

When only the around 100 pathways that all three measures align similarly are taken
into account, we see that the FPR stays very low as the TPR grows to 0.3 or 0.4. The
biggest values of these submatrices are in the same indices than ones in the underlying
binary matrix. This phenomenon is not as strong on all 422 pathways.

Considering 50 of the most accurately learned OTUs raises the ROC curves in all
cases, especially when also the less well learned pathways are ignored.

As the number of samples is decreased from 1500 to 500, the AUC values stay about
the same. With only 100 samples, the values drop more. These results are in line with
how well OTUs and pathways were extracted from these di�erent sizes of data sets.

61

1500 samples 500 samples 100 samples

Figure 17: Number of agreed OTUs learned from 1500, 500 and 100 simulated samples

8.4 Experiments on simulated data

Based on the results from Task 1, we chose a few algorithms for the second task. As some
of the Euclidean squared error-based methods were able to extract more pathways than
any KL divergence-based variant, we only used Euclidean squared error-based ones for
learning pathways from the simulated data.

The sampling process described in Section 7 introduces noise and we do not expect
an exact factorization with the inner dimensions that we used to exist for our simulated
data. Still, the initial distributions de�ne the latent features we hope to recover with our
methods. Therefore, we use similar evaluation methods as in the �rst task, treating the
initial distributions as ground truth.

8.4.1 OTUs from simulated data

We found that on simulated data some of the algorithms learn too sparse sample-OTU
matrices. On 100 samples they become almost like scaled identity matrices. Most rows
and columns only have one or two relatively extremely large elements. Other elements are
zero or almost zero. When the columns are normalized to attain OTU topics, the small
elements under�ow and become zeros. The learned mapping from samples to OTUs being
nearly a one-to-one mapping means these learned sample-OTU matrices only assign one
or a few OTUs to each sample.

62

KL divergence

1500 samples 500 samples 100 samples

Absolute error
1500 samples 500 samples 100 samples

Figure 18: Number of OTUs learned from 1500, 500 and 100 simulated samples measured
using one metric at a time

Figures 17 and 18 show that the number of learned OTUs from simulated data is
constantly below 70, which is lower than from arti�cial data. Interestingly, the numbers
increase as the data set size decreases. Every underlying sample distribution contains
every OTU, so, the true OTUs do not have any zero elements. Unfortunately, that means
the KL divergence to an OTU topic that contains at least one zero is unde�ned. This
shows in Figures 17 and 18 where the number of learned OTUs is 1 or even missing when
KL divergence is used.

Similarly as with arti�cial data, we chose one individual factorization per data set size
for further analysis. For easier comparison, we chose the left-hand factorization as with
arti�cial data. The chosen matrices serve as the input data for the second step of the
left-hand factorization, i.e. the ones with most agreed learned OTUs. These matrices
were produced by the NMF-kl algorithm.

Figure 19 shows chessboard plots corresponding to Figure 9 on Page 52, apart from that
the submatrix is di�erent. The contrast between the diagonal and o�-diagonal elements
of the submatrix tells that as with arti�cial data, selecting the agreed alignings results
in subsets where the OTUs are visibly better distinguished from each other. The scale
shows that the divergences of the results on simulated data are greater in all factorizations
compared to arti�cial data.

63

Whereas the contrast grows between the elements of matrices shown in Figure 9 when
the number of samples decreases, in Figure 19 the matrices become smoother. This
means the similarity between a given learned topic and all the true OTUs is more at the
same level, while on arti�cial data the OTU topics were very similar to only a few true
OTUs and di�erent from the others. We interpret that the method has not been able to
distinguish the underlying OTUs as well as on arti�cial data. The low numbers of learned
OTUs discussed above supports this.

64

(a) 1500 samples (b) 1500 samples submatrix

(c) 500 samples (d) 100 samples

Figure 19: Chessboard plot from selected sample-otu matrices after aligning the learned
topics with true OTUs. The colour of element (i, j) shows the KL divergence from true
OTU j to OTU topic i. Higher divergences than 10 are displayed using white colour.

65

1500 samples 500 samples 100 samples

Figure 20: Number of agreed pathways each of the algorithms learned from 1500, 500 and
100 simulated samples

8.4.2 Pathways from simulated data

The methods were not able to learn as many pathways as on arti�cial data, which is
seen by comparison of Figures 20 and 11. The drop is especially visible in the number
of agreed learned pathways, and when KL divergence alone is used. In general, left-hand
factorizations performed visibly better on the arti�cial data, but this trend cannot be seen
in Figures 20 or 21. On the contrary, on simulated data most pathways were extracted
by NMF-se in the right-hand setup.

As on arti�cial data, most methods' performance was better on higher numbers of
samples. The decrease that happens when the data set size is dropped from 1500 to 500
is more dramatic in the case of NMF-se and nsNMF-se in both the left-hand and the
right-hand factorizations.

66

Absolute error

1500 samples 500 samples 100 samples

KL divergence

1500 samples 500 samples 100 samples

Figure 21: Number of pathways each of the algorithms learned from 1500, 500 and 100
simulated samples measured using either KL divergence or absolute error

67

(a) 1500 samples (b) 1500 samples submatrix

Figure 22: Chessboard plot from the chosen pathway-reaction matrix on 1500 samples
and a high-quality submatrix after aligning the learned topics with true pathways. The
colour of the element (i, j) shows the Euclidean squared error between true pathway j
and pathway topic i.

We again chose three individual factorizations for further analysis. For each data set
size, we selected the factorization with most agreed learned pathways. These were achieved
with the nsNMF-se algorithm. On 1500 and 100 samples, the sparsity parameter was 0.4,
and on 500 samples it was 0.2. Note that the algorithm is di�erent from the one that
resulted in the matrices we analyzed on arti�cial data.

Figure 22 (a) shows the chessboard plot of the Euclidean squared errors between
pathway topics and real pathways. Corresponding plots for both 500 and 100 samples are
qualitatively similar. On arti�cial data, the chessboard plots shown in Figure 13 on page
57, show a visible contrast between di�erent columns. Instead, in the matrix in Figure
22, the values are almost symmetrically spread.

The submatrix shown in Figure 22 (b) contains elements that KL divergence, absolute
error and Euclidean squared error align similarly. It shows that considering this kind
of agreed alignment selects pathways that the algorithm has been able to separate more
clearly than on average. Note that there were 113 such pathways extracted from the
arti�cial data, while the number is only 15 on simulated data. This suggests that the
method was able to learn pathways more accurately from arti�cial data, although the
results cannot be directly compared because a di�erent variant of the algorithm was used.

68

1500 samples 500 samples 100 samples

Figure 23: Pathway ROC of the chosen factorization instances

Figure 23 shows ROC curves for the three selected matrices. The submatrices were chosen
similarly as on arti�cial data. Note that the submatrices are smaller than on arti�cial
data.

The ROC curves produced from arti�cial data shown in Figure 14 show that all path-
ways were learned well, and more than 100 pathways very accurately. Figure 23 suggests
that the matrix did not estimate all pathways as well. The AUC values are not as high as
on arti�cial data. The size of the bigger submatrix is smaller than the size of the smallest
submatrix in Figure 14, but the AUC is much lower.

On arti�cial data, the number of false positives increased very slowly as the threshold
was moved down from 1. When the estimate put a large weight on the element (l, j), the
reaction j did in fact belong to pathway l. On simulated data, the large values of the
learned matrices are not as well aligned with the ones in the underlying binary matrix. On
the whole matrix and the bigger submatrix, the FPR starts growing signi�cantly earlier
than on arti�cial data. Only a few pathways that the smaller submatrices consist of were
estimated well.

8.4.3 OTU-pathway relationships from simulated data

Figure 24 shows ROC curves for the OTU-pathway matrix of the selected factorizations.
When all pathways are included, the results follow the diagonal which shows that the
prediction resembles a random guess. On 1500 and 100 samples, taking the submatri-
ces improves the estimate. On 500 samples, the estimate unfortunately goes below the
diagonal.

69

1500 samples 500 samples 100 samples

Figure 24: ROC curves of an OTU-pathway matrix and selected submatrices

9 Conclusion

We found that the NMF methods were able to extract most OTUs from the arti�cial data.
The ROC curves in Figure 14 show that the method was able to predict most pathways
well, and almost one half of the pathways very accurately. The relationships between
around 100 most accurately learned pathways and all OTUs are well predicted with AUC
around 0.8 when 1500 or 500 samples were used. The AUC grows to nearly 0.9 when we
further discard one half of the OTUs.

On arti�cial data, the quality of all three learned matrices was highest on 1500 samples
but in most cases almost as high on 500 samples. With only 100 samples available, the
results were still surprisingly good despite that it is very di�cult to predict many features
from this few samples.

In general, KL divergence-based algorithms extracted more OTUs than Euclidean
squared error-based ones. In contrast, the performance of se-variants on predicting path-
ways was better than KL divergence-based methods. We expect this due to the fact that
the OTUs were de�ned by sampling from Dirichlet distribution while the nature of our
pathway data is binary.

Our novel three-matrix variants NMF3-kl and SNMF3 extracted more OTUs than any
other variants. Surprisingly, the highest numbers of pathways was extracted by left-hand
factorizations in which the OTUs are extracted �rst. Many algorithms were able to bene�t
from their sparsity constraints although the soft constrained algorithms were not able to
produce as extremely sparse matrices as our underlying pathway-reaction matrix.

All NMF methods were able to recover more features of our interest from the arti�cial
data than from simulated data. Especially the quality of the OTU-pathway matrix was

70

very di�erent on these two kinds of data. Changing the number of samples between 100
and 1500 did not a�ect the results of the factorization as much as changing from the
arti�cial to simulated data.

The most fundamental di�erence between arti�cial and simulated data is the sampling
depth. An arti�cial sample contains exactly the right amount of evidence from all reactions
present in the sample. Besides of this data being noise-free, no information of the reactions
is lost. We conclude that the sampling depth of 1000 was not su�cient for any of the
methods to extract the OTU-pathway relationships.

10 Future Work

It would be interesting to study how the results change as the sampling depth is in-
creased from 1000 to other �nite numbers. Varying the number of latent variables and
the dimensions of the input data could also be worth studying.

As with many gradient descent-based methods, initialization can strongly a�ect which
local minimum is found. In addition, starting near an optimum may speed up the con-
vergence. Using other existing techniques as a preprocessing phase and initializing one
or more of the matrices W , H and P with OTU and pathway predictions resulting from
these other methods would be interesting.

The sparsity constrained NMF variants we investigated were based on L1 or L2 norms,
or relied on the intuitive meaning of sparsity. Because the pathway information has a
binary nature, we are interested in a variant that could explicitly control the number of
zeros in the matrix P .

Other interesting methods may include matrix factorization techniques with binary
output matrices. Especially a method that could factorize a real-valued matrix into a
real-valued OTU matrix and a binary pathway matrix would conveniently �t the problem
setting. An idea of this kind of factorization method was suggested by Slawski et al [41].

71

References

[1] Minoru Kanehisa and Susumu Goto. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic acids research 28.1 pp 27-30, 2000.

[2] UniProt Consortium. The Universal Protein Resource (UniProt). Nucleic acids re-
search 36 suppl 1 pp D190-D195, 2008.

[3] Caspi et al . The MetaCyc Database of Metabolic Pathways and Enzymes and the
BioCyc Collection of Pathway/Genome Databases. Nucleic Acids Research, 2012.

[4] R.D. Finn, A. Bateman, J. Clements, P. Coggill, R.Y. Eberhardt, S.R. Eddy, A.
Heger, K. Hetherington, L. Holm, J. Mistry, E.L.L. Sonnhammer, J. Tate, M. Punta.
The Pfam Protein Families Database. Nucleic Acids Research Database Issue 42 pp
D222-D230, 2014.

[5] Douglas B. Rusch et al . The Sorcerer II Global Ocean Sampling Expedition: North-
west Atlantic Through Eastern Tropical Paci�c. PLoS biology 5.3: e77, 2007.

[6] Jack A. Gilbert et al . Meeting report: The Terabase Metagenomics Workshop and the
Vision of an Earth Microbiome Project. Standards in genomic sciences 3.3, 243.2010

[7] Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Lu Wang, Je�ery A.
Schloss, Vivien Bonazzi et al . The NIH Human Microbiome Project. Genome research
19, no. 12 pp 2317-2323, 2009.

[8] Philip Hugenholtz, Brett M. Goebel, Norman R. Pace. Impact of Culture-independent
Studies on the Emerging Phylogenetic View of Bacterial Diversity. Journal of bacte-
riology 180.18 pp 4765-4774, 1998.

[9] Rudolf I. Amann, Wolfgang Ludwig, Karl-Heinz Schleifer. Phylogenetic Identi�cation
and in Situ Detection of Individual Microbial Cells Without Cultivation. Microbio-
logical reviews 59.1 pp 143-169, 1995.

[10] Michelle R. Rondon et al . Cloning the Soil Metagenome: a Strategy for Accessing
the Genetic and Functional Diversity of Uncultured Microorganisms. Applied and
environmental microbiology 66.6 pp 2541-2547, 2000.

[11] Venter, J. Craig, et al . Environmental Genome Shotgun Sequencing of the Sargasso
Sea. Science 304.5667 pp 66-74, 2004.

[12] Qin, Junjie, et al . A Human Gut Microbial Gene Catalogue Established by Metage-
nomic Sequencing. Nature 464.7285 pp 59-65, 2010.

72

[13] Jiajia Ni, Qingyun Yan, Yuhe Yu. How Much Metagenomic Sequencing is Enough to
Achieve a Given Goal?. Scienti�c reports 3, 2013.

[14] Philip Hugenholtz1, Gene W. Tyson. News and Views Q&A Microbiology: Metage-
nomics. Nature 455 pp 481-483, 2008.

[15] William R. Pearson and David J. Lipman. Improved Tools for Biological Sequence
Comparison. Proceedings of the National Academy of Sciences 85.8 pp 2444-2448,
1988.

[16] Stephen F. Altschul et al . Basic Local Alignment Search Tool. Journal of molecular
biology 215.3 pp 403-410, 1990.

[17] Daniel H. Huson et al . MEGAN Analysis of Metagenomic Data. Genome research
17.3 pp 377-386, 2007.

[18] Xingpeng Jiang, Joshua S. Weitz, Jonathan Dusho�. A Non-Negative Matrix Factor-
ization Framework for Identifying Modular Patterns in Metagenomic Pro�le Data.
Journal of Mathematical Biology, vol. 64, no. 4 pp 697-711, 2012.

[19] Arumugam, Manimozhiyan, et al . Enterotypes of the Human Gut Microbiome. Nature
473.7346 pp 174-180, 2011.

[20] Xingpeng Jiang, Joshua S. Weitz and Jonathan Dusho�. A Non-negative Matrix
Factorization Framework for Identifying Modular Patterns in Metagenomic Pro�le
Data. Journal of Mathematical Biology 64.4 pp 697-711, 2012.

[21] Xingpeng Jiang, Morgan G. I. Langille, Russell Y. Neches, Marie Elliot, Simon A.
Levin, Jonathan A. Eisen, Joshua S. Weitz, Jonathan Dusho�. Functional Biogeog-
raphy of Ocean Microbes Revealed through Non-Negative Matrix Factorization. PLoS
ONE 7(9): e43866, 2012.

[22] Teeling, Hanno, et al . TETRA: a Web-service and a Stand-alone Program for the
Analysis and Comparison of Tetranucleotide Usage Patterns in DNA Sequences.
BMC bioinformatics 5.1 pp 163, 2004.

[23] Hao Zheng and Hongwei Wu. Short Prokaryotic DNA Fragment Binning Using a
Hierarchical Classi�er Based on Linear Discriminant Analysis and Principal Com-
ponent Analysis. Journal of Bioinformatics and Computational Biology 8.06 pp 995-
1011, 2010.

[24] Mohammed, Monzoorul Haque, et al . SPHINX � an Algorithm for Taxonomic Bin-
ning of Metagenomic Sequences. Bioinformatics 27.1 pp 22-30, 2011.

73

[25] Christophe H. Schilling, David Letscher and Bernhard Ø. Palsson. Theory for the
Systemic De�nition of Metabolic Pathways and Their Use in Interpreting Metabolic
Function from a Pathway-oriented Perspective. Journal of theoretical biology 203.3
pp 229-248, 2000.

[26] Stefan Schuster, Thomas Dandekar and David A. Fell. Detection of Elementary
Flux Modes in Biochemical Networks: a Promising Tool for Pathway Analysis and
Metabolic Engineering. Trends in Biotechnology 17.2 pp 53-60, 1999.

[27] Darvas, Ferenc. Predicting Metabolic Pathways by Logic Programming. Journal of
Molecular Graphics 6.2 pp 80-86, 1988.

[28] Hong-Wu Ma et al . Decomposition of Metabolic Network into Functional Modules
Based on the Global Connectivity Structure of Reaction Graph. Bioinformatics 20.12
pp 1870-1876, 2004.

[29] Jason A. Papin et al . Metabolic Pathways in the Post-genome Era. Trends in Bio-
chemical Sciences 28.5 pp 250-258, 2003.

[30] Daniel C. McShan, S. Rao and Imran Shah. PathMiner: Predicting Metabolic Path-
ways by Heuristic Search. Bioinformatics 19.13 pp 1692-1698, 2003.

[31] Sanjeev Arora, Rong Ge, Ravi Kannan, Ankur Moitra. Computing a nonnegative ma-
trix factorization � provably. Proceedings of the forty-fourth annual ACM symposium
on Theory of computing pp 145-162, 2012.

[32] Stephen A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM
Journal on Optimization, 20.3 pp 1364-1377, 2009.

[33] P. Paatero, U. Tapper. Positive Matrix Factorization: A Non-negative Factor Model
with Optimal Utilization of Error Estimates of Data Values. Environmetrics pp 111-
126, 1994.

[34] Daniel D. Lee, H. Sebastian Seung. Learning the Parts of Objects by Non-Negative
Matrix Factorization. Nature 401 pp 788-791, 1999.

[35] Daniel D. Lee, H. Sebastian Seung. Algorithms for Non-Negative Matrix Factoriza-
tion. Advances in Neural Information Processing 13. Proc. NIPS 2000, MIT Press,
2001.

[36] Patrik O. Hoyer. Non-Negative Matrix Factorization with Sparseness Constraints.
The Journal of Machine Learning Research, vol. 5 pp 1457-1469, December 2004.

74

[37] Alberto Pascual-Montano, J.M. Carazo, Kieko Kochi, Dietrich Lehmann, Roberto
D. Pascual-Marqui. Nonsmooth Nonnegative Matrix Factorization (nsNMF). IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 3, March
2006.

[38] Weixiang Liu, Nanning Zheng, Xiaofeng Lu. Non-negative Matrix Factorization
for Visual Coding. Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP'03). 2003 IEEE International Conference on, vol. 3 pp III-293, April 2003.

[39] Stan Z. Li, XinWen Hou, HongJiang Zhang, QianSheng Cheng. Learning Spatially
Localized, Parts-based Representation. Computer Vision and Pattern Recognition,
2001. (CVPR 2001). Proceedings of the 2001 IEEE Computer Society Conference
on, vol. 1 pp I-207,I-212, 2001.

[40] Chris Ding et al . Orthogonal nonnegative matrix t-factorizations for clustering. Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2006.

[41] Martin Slawski, Matthias Hein, Pavlo Lutsik. Matrix factorization with binary com-
ponents. Advances in Neural Information Processing Systems, 2013.

[42] http://www.mathworks.se/help/stats/boxplot.html, visited June 18, 2014.

75

