
 

 

Data- and Value-Driven Software 
Engineering with Deep Customer 
Insight 

PROCEEDINGS OF THE SEMINAR NO. 58314308 

JÜRGEN MÜNCH (ED.) 17.12.2014 

 

 

 

 

 

 

 

Faculty of Science 

Department of Computer Science



 

 

EDITORS  

Jürgen Münch (ed.) 

ABSTRACT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is a need in many software-based companies to evolve their software development practices towards 

continuous integration and continuous deployment. This allows a company to frequently and rapidly integrate and 

deploy their work and in consequence also opens opportunities for getting feedback from customers on a regular 

basis. Ideally, this feedback is used to support design decisions early in the development process, e.g., to 

determine which features should be maintained over time and which features should be skipped. In more general 

terms, the entire R&D system of an organization should be in a state where it is able to respond and act quickly 

based in instant customer feedback and where actual deployment of software functionality is seen as a way of 

fast experimenting and testing what the customer needs. 

Experimentation refers here to fast validation of a business model or more specifically validating a value 

hypothesis. Reaching such a state of continuous experimentation implies a lot of challenges for organizations. 

Selected challenges are how to develop the “right” software while developing software “right”, how to have an 

appropriate tool infrastructure in place, how to measure and evaluate customer value, what are appropriate 

feedback systems, how to improve the velocity of software development, how to increase the business hit rate 

with new products and features, how to integrate such experiments into the development process, how to link 

knowledge about value for users or customers to higher-level goals of an organization. These challenges are 

quite new for many software-based organizations and not sufficiently understood from a software engineering 

perspective. 

These proceedings contain selected seminar papers of the student seminar Data- and Value-Driven Software 

Engineering with Deep Customer Insight that was held at the Department of Computer Science of the University 

of Helsinki. The seminar was held during the fall semester of 2014 from September 1
st
  to December 8

th
. Papers 

in the seminar cover a wide range of topics related to the creation of value in software engineering. An interview 

of startups shows that emerging companies face a number of key decision points that shape their future. Value 

has a different meaning in different contexts. Embedded devices can be used to gather data and provide more 

value to the users through analysis and adaptation to circumstances. In entertainment, metrics can provide 

content creators the chance to react to user behavior and provide a more meaningful user experience. Value 

creation needs an active approach to software development from the companies: software engineering processes 

need to be incorporated with proper mechanisms to find the correct stakeholders, elicit requirements that provide 

the highest value and successfully implement the necessary changes with short development cycles. When the 

right building blocks are in place, companies are able to quickly deliver new software and leverage data from their 

products and services to continuously improve the perceived value of software. 

 

KEYWORDS 

value creation, Internet of Things, agile development, goal-oriented requirements, impact mapping, user stories, 
stakeholder analysis, DevOps 

PAGES LANGUAGE 

49 English 



 

Table of Contents 

Startups Pivoting Towards Value ......................................................................................................................... 1 

By Kasper Hirvikoski 

Business Models for Value Generation in the Internet of Things ........................................................................... 8 

By Christian Blythe 

Using Metrics to Improve Design in Free-to-Play Games ................................................................................... 16 

By Henna-Riikka Ruonala 

On Goal-Oriented Requirements Engineering ................................................................................................... 21 

By Nikolay Vasilev 

User Stories and Business Impact .................................................................................................................... 29 

By Qian Zhou 

Creating Shared Understanding with Lego Serious Play .................................................................................... 36 

By Juuso Hyvönen 

Review: Devops, Value-Driven Principles, Methodologies and Tools .................................................................. 43 

By Tuukka Peuraniemi 
  



Startups Pivoting Towards Value

Kasper Hirvikoski
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2 B)

FI-00014 University of Helsinki
khirviko@cs.helsinki.fi

Abstract—Everything starts from an idea, but it is not always
obvious what the value of that idea is. There comes a point
in time — a turning point — when a company chooses to
proceed a new path. These decisions form into key pivoting
points, when a company changes their strategy on a product
or service or even the whole company. An idea is evolved to
a certain direction, without knowing what the outcome will be.
Sometimes these pivots succeed, sometimes the new strategy ends
up in a failure. These previous successes and failures can provide
something essential that can help new startups to create their path
and learn with an Agile and Lean mindset. Nowadays collecting
valuable data about user behaviour has become more and more
straightforward. This data can then be used as the basis for a
pivot. However, it is not always about data. Intuition — or even
pure luck — plays a significant role in many success stories. An
entrepreneur has a feeling for the right direction. In many cases,
the need for a product or service is created without a necessity.
Users do not most of the time know what they need. Therefore, it
is valuable to have a historical view on how startups have found
their path to value by pivoting and what the process has been
behind it.

I. INTRODUCTION

Most startups start with a raw idea of a product or service.
It is not uncommon that the idea will change quite a bit during
its lifetime. Andy Whitlock, a product strategist, drew a fitting
mental picture about this [1]. You see the road ahead as a clear
and straight path to an objective you have set. What you do
not always realise, is that the path will have its twists and turns
along the way. What you can really only do, is to plan to a
certain point ahead. The rest of your path will be a gloomy
fog in the distance. You need to be ready to make difficult
choices along the way. These choices form into pivots. A pivot
is considered a point in time, when a strategy of a product or
service is altered significantly.

Startups are created from a spur of the moment. A group
of talented people realise a gab in the market, come up with
an idea, and try to capitalise on that. Some have estimated that
the failure rate for startups on the IT-sector is up to 90% [2].
The prevalent mindset is to: “fail fast, fail often.” One in ten
startups succeed. Others estimate that over a half of startups
are shut down in a matter of years after their outset [3]. It
seems most startups fail and many entrepreneurs overestimate
the chance of success and what the costs of failing are [2]. That
does not mean that failing would not be a path to success. It
can lead to something successful.

The amount of startups has increased at a rapid pace. In
2012, the number of seed investment deals had tripled in the
US, from three years earlier [2]. Startups are seen as a new

way to do creative things. In fact, many startups are being sold
for millions without a business model [4]. Larger companies
acquire startups to learn new things, fill their product lines and
to recruit talented people.

Continuous innovation, the ability to renew organisational
structures and develop new ideas and products, has been widely
acknowledged as a key issue for long-term progress. However,
it has proved extremely hard to accomplish in practise [5].
History is full of innovative companies that have struggled to
make changes when needed. They have lost their ability to
innovate and ceased to exist.

Choices can be backed by data. Collecting data about
how the users use your products or services has become less
strenuous. With the likes of continuous integration, continuous
delivery and continuous experimentation, startups can develop
products in fast iterations, with always keeping the features
up to date [6]–[8]. Especially on the web, new versions of
products can be deployed without the need of user interac-
tion [6], [9]. This allows startups to experiment and explore
new paths easily. With prototyping, A/B testing and other
controlled experiments, startups can collect data about the
causality between changes and their influence on observed user
behaviour [6], [9]. This can be used to determine what is the
value between different implementations of a feature.

Sometimes data is not everything. Intuition — or even pure
luck — plays a significant role in many success stories. An
innovative and great entrepreneur has a notable influence on
a success story [10]. In many cases, the need for a product
or service is created without a necessity. That is, users do not
always know what they are looking for a given problem or
even if the problem exists.

Most pivots happen at a moment of desperation. An idea
is not working or the users are not immersed by it. These
moments can create a realisation — an “aha”-moment — that
can make or break a startup. Shifts in market and technologies
force startups to reinvent ideas at a growing pace.

It is therefore valuable to have a historical view on how
startups have found their path to value by pivoting, and how
the process has evolved.

II. HISTORICAL BACKGROUND

There are “classical” examples on how companies have
grown from something else to what we know them as now.

Nokia has a long history of successful changes and innova-
tion. From its humble beginning in 1865 with one paper mill,

1



it has worked among other things on cables, tires, rubber boots
and more lately mobile phones and networks [11]. Recently,
Nokia has been in the spotlight by struggling with the shift in
the mobile phone market.

More current examples are todays leading social networks
Facebook and Twitter.

Mark Zuckerberg launched Facebook as a Harvard sopho-
more in 2004 [12]. He had previously developed a controver-
sial platform for ranking Harvard students by their attractive-
ness. Even though contentious, it had become a success at the
campus.

It has been stated that Zuckerberg used an idea origi-
nally created by three seniors Cameron Winklevoss, Tyler
Winklevoss and Divya Narendra [12]. They had an idea of
creating a social network for Harvard students and alumni.
Zuckerberg was employed as a replacement to continue the
development work for the network. Instead of building the
platform pitched by the seniors, Zuckerberg allegedly delayed
the project and decided that he had an improved idea [12]. He
build a competing platform and friendships were harmed.

Nevertheless, within 24 hours, 1200 Harvard students had
signed up for Facebook. After one month, over half of the
undergraduate population had a profile [13]. The network
expanded promptly to other universities. Eventually in 2006,
Facebook was extended beyond its educational root and it
became available to everyone. What was originally aimed to a
very focused user base, had expanded to a global phenomenon.

Twitter started from the ruins of a podcasting platform
Odeo [14]. Noah Glass had invented a product where a
message dictated to a phone number would be turned into a
MP3-audio file hosted on the Internet. This became the core for
Evan Williams’s startup. Williams who had previously worked
for Google, asked a friend, also a ex-Googler, named Biz Stone
to join the startup. At the same time, Jack Dorsey worked as
web-designer for Odeo.

In 2005, Apple released a podcasting service for iTunes.
This eventually made Odeo obsolete. A product was built, but
never used. They were not emotionally invested in the product
anymore [14].

Odeo started holding “hackathons” to make employees
come up with new ideas. Employees spent a whole day
working on new projects in different groups. Glass, who had
admired Dorsey, joined with him. Dorsey had an idea of
creating a product that revolved around “status” — what people
were doing at a given time. They came up with an idea with
fellow group member Florian Weber. The idea was to send a
text message to one number and it would then be broadcasted
out to all of your friends: Twttr. Williams was skeptical, but
Glass ended up leading the project that eventually ended up
as Twitter.

In August 2006, a small earthquake shook San Fransisco
and word quickly spread through Twitter. This was the first
“aha”-moment. Different minds had joined together to create
a product from the ruins of another. The road was not simple.
Investors were not convinced and Williams ended up buying
Odeo’s stock. Friendships were broken. Twitter had 5000
registered users and the future was a mystery. The rest is

history, they made a risk and it payed off. Pivots require
courage [8].

In more “modern” examples, GitHub was born on an
emergent technology that was not widely used [15]. A friend
and former coworker Dave Fayram, introduced Tom Preston-
Werner in a new version control system called Git. Git was
supposed to be an easy way to work on code in a distributed
way. The Ruby community was quickly adopting Git, but
there was no commercial hosting available for sharing Git-
repositories easily, securely and privately. Other solutions were
not ideal and required manual work. GitHub was then born in
2007. They were creating a service in a market that did not
exist [15]. It would take time, but the platform was ready when
the users started embracing Git.

The Internet has made it possible for many companies
and their business models to exists: Facebook, Twitter, GitHub
and so on. In fact, the Internet has made it possible to also
work remotely. Many startups work this way at the beginning.
Teams work remotely, but get together for planning and
discussion [15], [16]. This is how GitHub worked in its early
days and how Travis CI — a startup focusing in building a
continuous integration platform — works today.

Kickstarter’s idea was launched in 2002, when Perry Chen
hoped of having an artist play at a Jazz-festival in New
Orleans [17]. The show did not happen, but it gave him an idea
of starting a platform where people could crowdfund ideas if
they would hit a set funding goal. In 2009, in the bloom of
the Internet startup-era, Kickstarter was launched to the public.
From there on, it has grown to be one of the leading platforms
for getting funding for your ideas.

There are strikingly similar characteristics behind these
examples. In Facebook’s and Twitter’s cases, the pivot has
formed on a strategical change. For Facebook, the user base has
changed, and for Twitter a single feature has formed the base
for another product [12], [14]. This is key for their successes.
GitHub, Travis CI and Kickstarter have built products to
a market that did not exist before [15]–[17]. This is not
uncommon upon startups.

III. RELATED WORK

Ries has written a comprehensive book about the essence
of a Lean startup [8]. This paper has been structured to evaluate
the ideas and observations presented by the author.

Moreover, not much scientific research has been done
on the subject of how startups pivot to value. Most of the
published work has focused on empirical analysis of case
studies. The literature focused on the subject has been written
outside the research field.

Steiber and Alänge have conducted an interview based
empirical study on how continuous innovation characterises at
Google [5]. They found out that a dynamic and open corporate
is essential in invoking innovations in regular work. This
is established by orienting towards innovation and accepting
change. A innovation-oriented board, management, culture,
competent and committed individuals and leaders have a strong
impact. Leaders who empower, coach and remove obstacles
to innovation make this possible, but individuals need to be
essentially trusted.

2



Trimi and Berbegal-Mirabent researched how business
models affect the competitive edge of startups [18]. Business
models outline broader plans to create value than purely
the core strategy of the company. Startups working in a
technology-intensive sector may face constraints such as large
investments required to develop a product, very short product
life cycles and the emergence of competitors. The emerging
trend in business model design highlights the importance of
not only listening to customers, but also creating new values
or products with customers. It is key that businesses make
faster choices [18].

Davila et al. have researched how venture capital financing
(VC) impacts the growth of startup firms [19]. They conclude
that VC funding events signal about the quality of a startup.
Their findings suggest that the lack of timely funds can delay
the growth of a startup. They also suggest that the growth in
employees, compared to equity valuation, can be seen as a
better proxy for changes in the value of a startup.

IV. RESEARCH METHOD

My research method for this paper was reviewing the
current industry, the new startups and established, and creating
a historical look on pivoting.

I also conducted several interviews with startups and en-
trepreneurs behind them, to get their views and story behind
making changes in their strategy and what came out of
this [20], [21]. My research is a qualitative research based
on these interviews and topics presented by them.

Koen Bok is an entrepreneur and angel investor based in
Amsterdam [20], [22]. He founded Sofa, an indie startup,
building software and interaction design. Sofa was focused
on developing successful products for the Mac-platform and
was then acquired by Facebook in 2011 [23]. He (and part
his team) then worked for Facebook for two years, after he
returned back to Amsterdam and started a new startup called
Podium. Podium focuses on building web-development and
prototyping tools.

Kyle Bragger is an entrepreneur based in Berlin, who
founded and sold Forrst, an online community for designers
and developers [21], [24]. He then has joined to work on
products at Elepath. He is the co-founder and lead-engineer
of a startup called Exposure, a web-platform for creating and
posting photo stories established in 2013.

In addition, the structure of this paper is backed up by
conducting a literately review about the subject from research
papers to blogs.

V. APPROACH

The research question is: what could we learn from these
previous pivots going ahead. What was the motivation behind
pivoting and did the startups have indicators that where con-
sidered useful for making these decisions?

My aim was also to look at these findings based on Ries’s
ten most common types of pivots and trying to find common
factors behind them [8]. The objective was to evaluate what
has been the data and value behind pivoting.

I conducted an interview with startups with the following
questions:

A. Background

1) What was the main reason why your company was
started?

2) What was the main obstacle when you started?
3) When did you face this obstacle?
4) How did it affect your plan for the product or

company?

B. During Your Journey

1) Have you changed your product or company strategy
radically? When did it happen?

2) What was the main reason for this decision?
3) Was the change motivated by intuition or some other

factor, e.g. external indicators or data?
4) Did you have data available to analyse options for

reacting to these findings?
5) When reflecting on the actions that followed, what

was the main learning for the change of strategy?

C. Current Situation

1) How does your company evaluate how the user values
your products?

2) Do you collect automated data on how the user uses
your products? If so, what?

3) Do you analyse that data to make changes?
4) What are the top three metrics that matter?

VI. RIES’S CATEGORISATION OF A PIVOT

A pivot is considered a point in time, when a strategy of
a product or service — or even the the strategy of the whole
company — is changed drastically. A new direction will be
carried on from that point onward.

Ries has categorised ten most common types of pivots in
his book The Lean Startup [8]. These are the following:

1) Zoom-in Pivot. A single feature in a product be-
comes the whole product.

2) Zoom-out Pivot. The reverse, where a single feature
is insufficient to support the whole product. In this
case, the whole product becomes a single feature of
a larger product.

3) Customer Segment Pivot. The product solves a real
problem for real customers, but for a different cus-
tomer base than originally anticipated. The product
hypothesis is partially confirmed by solving a right
problem. The product needs to be optimised.

4) Customer Need Pivot. Customer feedback indicates
that the problem solved is not very important. How-
ever, because of the customers, a new related problem
might be discovered. In many cases, a completely
new product must be developed for this need. The
hypothesis is again partially confirmed, the target
customers have a problem worth solving.

5) Platform Pivot. A change from an application to
a platform or vice versa. Most commonly, startups
create a single application, a so-called killer app, for
their platform. Only later, does the platform emerge
as a way to support third parties creating their own

3



related products. This can also happen the other way
around.

6) Business Architecture Pivot. You can choose to
operate your business architecture as high margin and
low volume (niche market), or low margin and high
volume (mass market). According to Geoffrey Moore,
you cannot do both at the same time [8].

7) Value Capture Pivot. A change in the way the
value created by the company is captured. Usually
referred to how the company creates revenue from
the product. Changes is monetisation can have far-
reaching effects.

8) Engine of Growth Pivot. A change in the growth
engine: the viral (word of mouth), sticky (retain-
ing customers) and paid (buying customers) growth
models. The right model can affect the speed and
profitability of growth.

9) Channel Pivot. Changing the way the product is
delivered to the customer. A different channel can
have greater effectiveness.

10) Technology Pivot. Discovering a completely dif-
ferent technology to implement the same solution.
The new technology can provide a better price or
performance compared to the existing one.

VII. MAKING PIVOTS

Is is difficult to choose when to pivot. These decisions can
be backed by anything from intuition to external indicators
such as user feedback. In any case, making changes requires
courage and determination [8]. There are key lessons to
take into account for pivoting. The following sections are a
combination of my thoughts and the thoughts I have gathered.

A. Start Early

An entrepreneur with a big vision and stubborn deter-
mination can charge through obstacles and make whatever
their ambition is. The passion, energy and vision that people
can bring to new ventures are resources that should not be
disregarded [8].

At the same time, the uncertainty of a product usually
requires many course correction or pivots to find success.
Therefor, it is helpful to start by creating a product with the
smallest set of features and move that to the market as quickly
as possible (minimum viable product) [8], [15]. This makes it
possible to test reactions, learn and iterate. This is often called
as the build-measure-learn cycle or continuous innovation [8].
See figure 1. Through this process, a startup can learn if and
when to make a sharp turn, a pivot. This methodology can also
be used in making decisions about the business model of the
whole company [18].

Often, the first one to the mass market will eventually win.
Creating a product early on emergent technology, provides a
platform to build a product with basically no overhead, no
competition and without time pressures [15].

B. Learn and Adapt

A startup can only afford to make a certain amount of
pivots [8]. In most cases, you need to either achieve lift-off or
fail. Especially when there are investors trying to secure their

Fig. 1. Build-Measure-Learn Cycle

investments back. Sometimes it is just too late to make a pivot.
The build-measure-learn cycle and other Lean-methods sustain
innovation. This is key for long-term economic growth [8].

The fundamental activity of a startup is to turn ideas into
products, measure how the user reacts to these, and then learn
whether to pivot or to keep going. Innovation and speed are
key premises [18].

As startups come to understand their customers better, they
are able to improve the product. The data behind how the
customer interacts with the product is indispensable [6], [8].
According to Preston-Werner, one of the founders of GitHub,
creating a new startup is an intense learning experience [15].
It is a learning experience through mistakes and achievements.

You need to listen and pay attention to your customers,
but with such care, that you do not let them tell you what to
do [15]. In most cases, users do not know what they want,
until you give them what they want. Users will have generic
problems, but they will perceive them as very specific ones.
A savvy entrepreneur needs to see the bigger picture, the
underlying question, behind these problems. This is where
a functional and elegant solution can be found. The more
everyone talks to the customers, the more beneficial it can be in
determining whether you are going in the right direction [16].

C. Make Changes

With continuous integration, continuous delivery and con-
tinuous experimentation, startups can develop products in fast
iterations with always keeping the features up to date [6]–
[8]. Especially on the web, new versions of products can be
deployed without the need of user interaction [6], [9].

In the early days of GitHub, new features where deployed
up to ten times in one afternoon [15]. As a matter of fact,
Amazon deploys new software every 11,6 seconds [25].

Users will forgive a small amount of downtime, if the
features will improve the product. You need to get most out
of your first years though, because if and when a product will
become more popular, you will need to be more careful about
these choices [15]. Once established, downtime and defects
will have a larger role in affecting the reputation of a startup.

D. Evaluate the Data

Making decisions purely based on intuition can be risky.
Learning, adapting and making changes are guided by data [8].

4



Data-driven decisions are good to proof you are on a wrong
path, but not necessary for creating new and innovative
ideas [20].

In most cases even intuition is guided at least subcon-
sciously by data [20]. You realise a solution is not working the
way you intend it to work and therefor you see a new path to
pursue. Tracking key metrics, from simple user interactions,
such as clicks, to revenue or user retention (users sticking
around for a long time), can provide guides for evaluating
your path.

E. Have Trust in Your Product

One key lesson is to have trust in your product. At start it
may be tricky to convince people of your product [14], [20].
Getting positive feedback and support is essential [20], [21].
Making changes is valuable, but you also need to know when
to stick with a decision. Users will not adapt new solutions
immediately.

A startup needs to be concise with its strategy. Many
startups fall in the trap of figuring how to create profit with
their idea. Choosing the right growth engine: viral, sticky or
paid is important [8]. It can be hard to make a change from
a free-model to charging for a service. Make the choice early
on. Users are willing to pay for good services. Also, building
a startup with the intentions to sell to a bigger company, may
result in users being left stranded.

F. Need for Investors

You do not always need funding [15]. Some startups try
to grow faster than necessary. Investors bring you capital, but
also restrict how you proceed with your plan. It is worth to
grow your startup with care and taking your time.

You will eventually prove your value with your prod-
uct [15]. Nevertheless, some findings suggest that the lack
of timely funds can delay the growth of a startup [19]. For
first-time entrepreneurs, there is always some financial risk
involved [20]. With a good track record, this will ease in future
ventures.

G. Have Fun

A dynamic and open corporate is essential in invoking
innovations in regular work. A innovation-oriented board,
management, culture, competent and committed individuals
and leaders have a strong impact. Leaders who empower, coach
and remove obstacles to innovation make this possible, but
individuals need to be essentially trusted [5].

According to Preston-Werner, working on a startup is a
challenging project, but most of the time you are working with
your best friends and having a great time [15]. Maintaining a
playful working environment, will have a positive effect on the
workers health, as well as the startups health.

Personal life comes first [16]. Giving time to disconnect,
will make sure work is done at a normal pace. A happy team
will most likely have happy customers [16].

VIII. INTERVIEW RESULTS

Based on the interviews, I have gathered the following
about facing obstacles and making pivots.

A. Facing Obstacles at Start

One of the main obstacles is to choose what to work
on [20]. Koen Bok says, you want to pick a problem that
a) has a chance on success, or can sustain itself and b) is fun
to work on for a long time.

Apart from those two important ones, Bok feels that it is
also important, if you can easily explain anyone what you are
doing. It is also nice if people you respect can see and use
your work [20].

For first-time entrepreneurs, there is also some social
pressure and financial risk involved. He thinks that it lessens
with every startup you do [20].

Kyle Bragger feels the main obstacles when starting are
convincing folks that a product is better and not like other
products out in the market [21]. These obstacles are ongoing
and will never go away.

He says, it is so important to understand why your product
exists and to build for a specific audience [21]. You need to
always be focusing on clearly communicating what problem
you are solving for people.

B. Pivoting

Bok does not see pivoting as a radical change [20]. A
startup does that every day in the beginning, but because
everything is still so small it is hard to see the “radicalness”.
He feels that you know that these small changes have huge
implications in the future: whether your product will get used
and succeed or not.

Bragger states that they have not needed to change their
strategy radically at Exposure [21]. However, maintaining user
retention is an ongoing project that requires focus.

C. Evaluate the Data

Whether to evaluate data or trust your intuition, Bok feels
you need ideally a combination of both [20]. In his experience,
data-driven decisions are good to proof you are on a wrong
path. They also help to make an optimisation in a (part of) your
product. Bok however states, that they never really help you
invent things in a creative way, which is how big breakthroughs
materialise [20].

On the early days of a startup, data can be pretty mislead-
ing, because the numbers are so small [20]. Bok says, your
conclusions cannot really be significant, but they somehow
feel supported by the data. The data influences how you make
choices, because that is how you get to the conclusions.

At Exposure, on the automated side, they measure traffic
analytics like most web-applications [21]. Bragger also de-
scribes that they also measure a lot of metrics specific to their
product. These include for example how many photos someone
might upload per post and on average, how long users work on
a post before publishing. They also use their intuition based
on user feedback, support requests, and so forth to evaluate
how specific features are working.

5



D. Key Metrics

Bok says the key metrics that he pays attention to are: total
active usage per a variable, total revenue and user retention
over time [20]. Bragger says their key metrics are monthly
recurring revenue, engagement (how many people are using
the product e.g. daily), and retention [21].

IX. EVALUATION

It seems clear that social factors play a big role in successes
and failures. In the case of Twitter, the right minds joined
together to work on an idea [14]. This was a key factor
in the beginning of GitHub and Kickstarter as well [15],
[17]. However, a social pivot seems to be missing from
Ries’s categorisation of the ten most common types of pivots
altogether [8].

Startups — or even established companies — can make
or break on people. A mixture of right people can create a
constructive environment for creativity and innovation. More-
over, a wrong person, in a wrong position, can have a negative
effect on a startup’s path. This is true for established businesses
also [10].

Therefor, I would suggest an addition of a Social Pivot,
where active changes in social factors, such as persons and
environments, change the direction of a company.

It also seems evident, that one can make enemies along the
way. In both Facebook’s and Twitter’s case, friendships were
harmed during the course of the startup [12], [14]. People with
same aspirations can become powerful allies or dangerous foes.
It is easier to work with people that have shown relevant past
performance than to project the future [15]. It was only after
Steve Jobs return to Apple, whereof Apple grew to the success
we know it as today [10]. The road was not smooth for him
or Apple.

You need to trust your team to embody the startup’s
vision. Sharing a vision can help motivate the employees in
moving a product forward [16]. This is a founding concept in
Agile development practises. Micromanagement will not work,
instead you need to sustain a culture where teams can move
and innovate with the experimentation system [8].

Ries’s categorisation of pivots can be seen as a good
starting point for evaluating changes [8]. The most obvious
pivots are those that include zooming in or zooming out. In
Twitter’s case a single feature became the starting point for a
completely new product (Zoom-in Pivot) [14]. For Facebook,
the customer segment changed from an internal platform to a
global phenomenon (Customer Segment Pivot) [12]. The other
pivots can also have outer facing effects, but can also be more
internal changes in the strategy of the product or its market.

X. LIMITATIONS

It is worth to note that case studies tend to be tightly related
to their contexts. Making objectional and universal conclusions
from their findings is difficult. Each setting is unique and
cannot directly be compared to another. They do however give
insightful information about the process behind.

Starting a startup can be a leap to the unknown. These
stories have differences, but in their essence they share many

similar characteristics, which can give some thoughtful ideas
and opinions to be considered.

The opinions and ideas in this article are as referenced.
They might not have a universal truth and should be treated
as such. What works with one startup, might not work with
another.

XI. CONCLUSIONS

No startup is the same. No path to success or failure is
the same. A startup’s work is never done [8]. The trial-error
philosophy for validating hypotheses boosts innovation and
encourages the creation of products in a much faster time
span. This helps entrepreneurs to start ventures with a stronger
assurance of success [18].

For startups, pivoting does not appear as drastic changes
in the strategy of a product. In effect, pivoting for startups is
daily decisions that lead to success or failure. Only later, with
reflection, can we see key moments that have influenced in
that path. For many entrepreneurs their whole career consists
of pivoting. One failure leads to a success. Fail often, fail fast
to learn something new. Have the courage to try.

A startup can only afford to make a certain amount of
pivots [8]. In most cases, you need to either achieve lift-off
or fail. One of the main obstacles is to choose what to work
on [20]. Koen Bok says, you want to pick a problem that a)
has a chance on success, or can sustain itself and b) is fun to
work on for a long time.

Making decisions purely based on intuition can be risky.
Learning, adapting and making changes are guided by data [8].
Data-driven decisions are good to proof you are on a wrong
path, but not necessary for creating new and innovative
ideas [20]. The data influences how you make choices, because
that is how you get to the conclusions.

Social factors have a significant role in pivots. Whether
these are caused by changes in persons or environments. Peo-
ple make or break ventures. Most successes are a combination,
a mixture of talented people. This is the last factor that makes
an idea work. Ries’s categorisation of ten most common types
of pivots seems to lack a Social Pivot [8].

An entrepreneur with a big vision and stubborn deter-
mination can charge through obstacles and make whatever
their ambition is. The passion, energy and vision that people
can bring to new ventures are resources that should not be
disregarded [8].

The path to success is more easily achieved by evolving
gradually. Start early with a concept, build a minimum viable
product, observe, learn and adapt.

XII. SUMMARY

Everything starts from an idea, but it is not always obvious
what the value of that idea is. There comes a point in time —
a turning point — when a company chooses to proceed a new
path. These decisions form into key pivoting points, when a
company changes their strategy on a product or service or even
the whole company.

Nowadays collecting valuable data about user behaviour
has become more and more straightforward. This data can be

6



used to make decisions. Data is not everything. Sometimes
it can only tell when you are doing something wrong, but it
cannot tell which direction you should take.

It is interesting to know what we could learn from these
previous pivots going ahead. What was the motivation behind
pivoting and whether the startups have had indicators that
where considered useful for making these decisions.

Each path is unique, but there are clearly best practises that
can be followed. Start early, evolve, adapt and learn. The three
main steps are to build, learn and measure. A startup will pivot
daily. Work is never done. Small decisions clarify the vision.
The rest is what makes you unique.

XIII. FUTURE WORK

My main intention is to incorporate part of these ideas and
findings into my Master’s thesis. In the future, it would be
interesting to create a larger case study on this subject matter
with a broader perspective.

XIV. ACKNOWLEDGEMENTS

I would like to express my gratitude to Hanna Mäenpää
and Arto Vihavainen for reviewing and guiding the research
method for this paper.

REFERENCES

[1] A. Whitlock, Twitter, 2014. [Online]. Available: https://twitter.com/
andywhitlock/status/524545897737494528/

[2] R. Carroll, “Silicon Valley’s culture of failure ... and
“the walking dead” it leaves behind,” The Guardian, 2014.
[Online]. Available: http://theguardian.com/technology/2014/jun/28/
silicon-valley-startup-failure-culture-success-myth/

[3] J. Saarinen, “Yli puolet startupeista ei lähde lentoon: ”Totta
kai se hävetti”,” Helsingin Sanomat, 2014. [Online]. Available:
http://hs.fi/talous/a1414901111091/

[4] D. Aujla, “Why startups sell for millions with no business
model,” Inc., 2014. [Online]. Available: http://inc.com/dev-aujla/
why-startups-sell-for-millions-with-no-business-model.html

[5] A. Steiber and S. Alänge, “A corporate system for continuous
innovation: the case of Google Inc.” European Journal of Innovation
Management, vol. 16, no. 2, pp. 243–264, 2013. [Online]. Available:
http://emeraldinsight.com/doi/abs/10.1108/14601061311324566

[6] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: survey and practical guide,” Data
Mining and Knowledge Discovery, vol. 18, no. 1, pp. 140–181, 2009.
[Online]. Available: http://dx.doi.org/10.1007/s10618-008-0114-1

[7] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, ser. The
Addison-Wesley Signature Series (Fowler). Pearson Education, 2010.

[8] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business,
2011.

[9] K. Hirvikoski, “Streamlining A/B testing on the web and its
relevance to embedded systems,” in Proceedings of the Seminar
No. 58314109, Real-Time Value Delivery in Software Engineering.
University of Helsinki, Department of Computer Science, 2014,
pp. 7–13. [Online]. Available: https://www.cs.helsinki.fi/intranet/group/
smqm/rtvdse14/rtvdse14_proceedings_public.pdf

[10] W. Isaacson, Steve Jobs. Simon & Schuster, 2011.
[11] Nokia, “Our story,” 2014. [Online]. Available: http://company.nokia.

com/en/about-us/our-company/our-story/
[12] N. Carlson, “At last — the full story of how Facebook was founded,”

Business Insider, 2010. [Online]. Available: http://businessinsider.com/
how-facebook-was-founded-2010-3/

[13] S. Phillips, “A brief history of Facebook,” The Guardian,
2007. [Online]. Available: http://theguardian.com/technology/2007/
jul/25/media.newmedia/

[14] N. Carlson, “The real history of Twitter,” Business
Insider, 2011. [Online]. Available: http://businessinsider.com/
how-twitter-was-founded-2011-4/

[15] T. Preston-Werner, “Ten lessons from GitHub’s first year,”
2008/2011. [Online]. Available: http://tom.preston-werner.com/2011/
03/29/ten-lessons-from-githubs-first-year.html

[16] M. Meyer, “How we roll as a team: Our company’s
work values,” 2014. [Online]. Available: http://blog.travis-ci.com/
2014-02-13-how-we-roll-as-a-team/

[17] Kickstarter, “A brief history of Kickstarter,” 2014. [Online]. Available:
https://kickstarter.com/stories/fiveyears/

[18] S. Trimi and J. Berbegal-Mirabent, “Business model innovation in
entrepreneurship,” International Entrepreneurship and Management
Journal, vol. 8, no. 4, pp. 449–465, 2012. [Online]. Available:
http://link.springer.com/article/10.1007/s11365-012-0234-3

[19] A. Davila, G. Foster, and M. Gupta, “Venture capital financing
and the growth of startup firms,” Journal of Business Venturing,
vol. 18, no. 6, pp. 689–708, 2003. [Online]. Available: http:
//sciencedirect.com/science/article/pii/S0883902602001271/

[20] K. Bok, personal correspondence, 2014.
[21] K. Bragger, personal correspondence, 2014.
[22] K. Bok, “Koen Bok,” 2014. [Online]. Available: http://koenbok.com
[23] Sofa, “We were Sofa,” 2014. [Online]. Available: http://madebysofa.com
[24] K. Bragger, “Kyle Bragger,” 2014. [Online]. Available: http:

//kylewritescode.com
[25] O’Reilly, “Velocity 2011: Jon Jenkins, “velocity culture”,” YouTube,

2011. [Online]. Available: https://youtube.com/watch?v=dxk8b9rSKOo

7



Business Models for value generation in the Internet
of Things

Christian Blythe
Department of Computer Science

University of Helsinki
Helsinki, Finland

Email: christian.blythe@helsinki.fi

Abstract—With  the  imminent  explosion  of  the  Internet  of
Things and the expected proliferation of smart connected devices
in  our  everyday  lives  business  will  have  to  change  how  they
approach value generation in this modern age of big data. The
traditional  product  centred  business  models  are  limited  and
restrictive when applied to this new landscape and a new mindset
revolving  around  information  and  services  as  the  key  value
propositions  is  required.  This  paper  examines  the  value  of
information  and  how  the  laws  of  information  relate  to  the
Internet  of  things  paradigm.  We  then  examine  how  those
principles can be used to propose new business models that shift
a  companies  focus  from  value  creation,  a  traditional  product
based  approach,  to  a  value  capture  approach  that  focuses  on
value  created by  information.  To demonstrate  how companies
can employ these value capture principles the example of Nest
Labs  is  considered  with  a  contrast  of  the  traditional  product
based business model and a new information centered business
model approach.

Keywords—Internet of Things, business models, value creation,
Nest Learning Thermostat

 

I. INTRODUCTION

The Internet of Things (IoT) is the phenomenon of digital
technology  being  incorporated  into  previously  non-digital
products such as clothes, everyday household appliances and
food packaging. These intelligent devices form a network of
sensors  and  actuators  which  are  connected  to  the  Internet
providing a huge growth in access to contextual, real time data
and feedback control [1].

Currently businesses have incorporated IoT technology into
a  number  of  areas,  such  as  supply  chain  management,
industrial  process  control  and  environmental  monitoring;
however many of these developments have been limited to cost
reductions  and  improvements  in  operating  efficiencies  of
current  business  processes  rather  than  realising  connected
smart systems and producing new service values [2]

We  are  now  on  the  cusp  of  a  new  revolution  of
interconnected devices in our homes, in the products we buy
and on our persons. The main drivers for this consist of device
miniaturisation,  reduced  production  costs,  lower  power
consumption and pervasive  connectivity through Wi-Fi,  4G-
LTE and radio  frequency identification (RFID)  technologies
such as near-field communication (NFC) [3], [4].

Estimates on the number of devices in the future vary, but
range  between  26  billion  [5] and  50  billion  [6] connected
devices by 2020. Not only are we heading for an explosion of
these internet nodes embedded in things in our everyday lives,
there are high expectations of the benefits that IoT will provide
to  people  in  the  future  [7],  [8].  There  are  a  wide  range  of
domains and applications where IoT has the potential to have a
high  impact  on  every-day  life  (Figure  1),  with  these  new
business  opportunities  providing  huge  potential  for  business
revenue creation.

Fig. 1. Application domains and major scenarios [9]

For companies to be able to engage with, and benefit from
these  new  technologies  they  may  well  need  to  alter  their
approach to what their products or services are and how their
businesses are structured and operate.  With many businesses
(both new and established) employing business modelling to
define  their  offerings,  relationships  with  customers  and  the
business structure,  they are an obvious tool to consider how
organisations might align themselves with an IoT marketplace.

With IoT introducing new volumes of data, at higher levels
of  granularity  and  with  new  potentials  for  integration  and
analysis it  is arguable that data, and the information derived
from it, should take a central role for companies operating in
this  field.  In  order  to  integrate  IoT  dynamics  into  business
models it is advantageous to start examining information as a
key component with its own potential for value generation.

This paper proceeds to outline the need for change within
businesses approaches to IoT and how information can be used
in business modelling as a core value proposition around which

8



the  company  can  be  structured  to  align  it  to  an  IoT
marketplace.  Section III  examines information, its  value and
how  that  can  translate  to  value  generation  for  businesses.
Section IV then reviews business models and describes how
placing information as the central value proposition is the key
aspect to alter business modelling to align with IoT. Finally the
Nest  Thermostat  is  used  as  an  example  to  highlight  the
difference  between  the  two  approaches  (traditional  product
centric and IoT centric) and how business models can be used
to describe those differences.

II. BACKGROUND

The shift in the landscape of ICT has wide implications for
businesses and Hui [10] argues that the use of current business
frameworks  and  the  streamlining  of  established  business
models  will  not  be  enough  in  the  future.  The  traditional
business  model  revolves  around the product  providing main
value proposition  [11] through the sale of the item, post-sale
maintenance and sales of consumables (such ink cartridges for
printers).  These 'old style'  companies  face  the challenge  not
only of converting their products into smart  connected ones,
but moreover of integrating them into a service based business
model which has new and very different value propositions.

The  change  required  for  this  cloud  based  environment
involves a shift in mindset between traditional value creation to
a value capture approach  [10].  Value creation for traditional
companies  means  identifying  customer  needs,  engineering
solutions for those needs and selling a product with the relevant
features.  This  leads  to  feature-vs-feature  competition,  which
when exhausted devolves into price wars reducing profitability
until products become obsolete. The rush is then on to develop
and  sell  the  next  product  to  maintain  a  business,  often
employing a re-examination of existing customer needs in a
reactive manner.

Fig. 2. Traditional and IoT business approaches [10]

Value capture however incorporates the prospect of other
revenue  streams  not  limited  the  sale  of  physical  products.
These  alternative  revenue streams include the sale of  value-
added services, subscriptions and apps to consumers, but also
can  include  the  provision  of  information  services  to  third
parties and multiple collaborators.  Figure 2 demonstrates the

key differences between these two mindsets and demonstrates
the need for the development of business models focusing on
data and service value propositions rather then physical product
sales.
  With  this  new  mindset  comes  the  realisation  of  the
importance  of  the  role  of  information  in  creating  value
propositions. Not only the collection and use of data within a
single company or application scenario, but the convergence of
multiple,  disparate  data  streams  employed  to  create  new
meaning  and  value  which  are  shared  and  used  by  multiple
collaborators  [2]. It is from this foundation that new business
models  can  be  developed  for  use  within  the  interconnected
world of the Internet of things.

III. VALUE GENERATION FOR IOT

Traditionally  the  money  stream  for  businesses  is
exclusively  linked  to  the  product  stream  pricing,  and  any
information  generated  from  products  or  business  activities
tends to not have a specific value attached to it [11]. This tends
to mean costs of information are hidden in the product pricing,
leading to a mindset of reluctance to value, or consider paying
for, information streams.

In the IoT information takes centre stage as a commodity
with intrinsic value, even though every information stream is
linked  in  some  way  to  a  physical  device.  It  is  therefore
important to be able to view information as an asset in its own
right rather than just a by-product of data capture from suitably
enabled devices.

A. Laws of Information

Although it is clear how data and the information it yields
is  of  core  importance  to  IoT  businesses,  it  can  be  difficult
quantify how much of an asset  it  is. Whilst it  is possible to
measure the (increasing) costs of organisational resources spent
on data capture, storage, processing and maintenance; it can be
difficult to assess the value of information to the organisation.

In order to be able to quantify the value of information, to
then  be  able  identify  potential  value  capture  opportunities,
Bucherer & Uckelman [11] cite Moody & Walsh's seven 'Laws
of  Information'  [12] and  explain  their  relevance  to  IoT  as
follows:

First  Law  of  Information:  Information  is  (infinitely)
shareable and can be shared with Others without loss of
value –  Here  the IoT  provides  access  to  data  streams from
products  which  can  be  shared  any  number  of  times  with
multiple  collaborators.  This  data  can  be  monetised  through
paid for access,  and when the income outweighs the cost of
data acquisition it becomes a viable value proposition (which is
also scales with the number of 'information customers')

Second Law of Information: The value of information
increases with use and it does not provide any value it is not
used  at  all –  The  major  cost  factors  related  to  data  are
collection, storage and maintenance of said data, with the cost
of  accessing  being  relatively  small.  The  IoT  provides  a
framework to not only reduce the costs of data acquisition, but
also provides increased opportunities for that data to be used.
One challenge is how to ensure your data is known about by
potential consumers and that it is useful to them so it does get
used (and therefore have its value increase)

9



Third  Law of  Information:  Information  is  perishable
and depreciates over time – The IoT provides the capacity for
real-time data gathering to provide the benefits of contextual
information and life cycle  information access.  In  addition to
this the growing amount of historical data could be integrated
with real time information enabling predictive services which
could maintain the value of older data.

Fourth Law of Information: The value of information
increases  with accuracy – The automatic identification and
individualisation  provided  by  IoT  devices  allows  for  a  fine
grained view of the real world (and individual entities, such as
people, houses or vehicles). This allows for a far greater level
of  accuracy  in  data  gathering  than  historical  method  of
monitoring, therefore providing a greater depth of information
for sale to collaborators.

Fifth  Law  of  Information:  The  value  of  information
increases  when  combined  with  other  information –  For
example  a  SatNav  algorithm  with  just  a  destination  will
adequately propose  a route for  the driver,  but  if  it  included
information about traffic conditions, weather conditions, driver
road preferences and the time of the drivers appointment from
his calender it could arguably do a better job. The IoT provides
access to multiple data streams from different objects, and the
sharing  of  information  between  data  aggregators  and
information service providers will increase the value of other
information it gets analysed with.

Sixth  Law  of  Information:  More  information  is  not
necessarily better – More information is better, and increases
in value, up to a certain point. When there is more information
incoming  than  can  be  processed  it  leads  to  information
overload and a decrease in the usefulness of that information.
The IoT provides an inherent level of filtering due to device
individualisation,  however  personalisation  and  customisation
of information through pre-processing can not only reduce the
chance of information overload, but potentially add to the value
of the incoming information by making it even more usable.

Seventh  Law  of  Information:  Information  is  not
depletable –  Not  only  can  you  not  loose  the  value  of
information  (other  than  any  depreciation  over  time)  but
information  is  self-generating.  This  occurs  through  the
processing,  analysis,  summarising  or  combining  with  other
information, where new information is created from the old.
With the vast array of potential device types, and therefore data
streams available from the IoT this law should be considered
fertile ground for value creation within any business model.

B. Revenue Generation for IoT

With  the  IoT  more  (and  in  particular  more  detailed)
information becomes available, whilst also being more directly
associated with individually identifiable devices.  This higher
level  of  information  granularity  provides  the ability  to  trace
specific device usage, status and location data, which provides
for  new types  of  value  proposition scenarios  not  previously
available to the traditional business approaches.

With  these  new  opportunities,  such  as  linking  product
related data to a consumer (e.g. carbon footprint) or the exact
billing of products and services based on actual use (e.g. rental
car  usage  or  returnable  transport  items),  comes  a  need  to
translate the value of data into value propositions.  Bucherer &
Uckelman  [11] list  the  following  requirements  as  specific

elements that allow the principles described by the Seven Laws
of  Data  to  be  used  for  value  propositions  which  take  the
perspective of fulfilling customer needs:

Providing the right information:

• Linking information to a specific device

… in the right granularity...

• High information granularity, providing new levels of
clarity and insight

… and the right condition …

• High information accuracy

• Aggregation of information from numerous sources,
such as tags, sensors and embedded systems

• Integration and further analysis of other data allowing
for new insights to be derived

• Pre-defined syntax and semantics

… at the right time …

• Timeliness of data

• Access  to  real  time  information  in  addition  to
historical data for analysis

• Real-time analysis and business intelligence providing
high resolution management

• Intelligent real-time decision making capability based
on real-time physical events

… anywhere in the network …

• Online access with possible offline usage

• mobile access

… at an appropriate price

• Transparent pricing

• Low premium for billing services – price should be
for the information not the infrastructure

With this new perspective on informations potential roles in
value  propositions  comes  the  opportunity  for  new  revenue
streams for businesses. The value of information has typically
been  determined  by  the  cost  of  the  infrastructure,  but  now
information can (and should for IoT business models) have its
value calculation decoupled from the cost of the sensor, tags,
networks and hardware used to collect  and store it.  For IoT
businesses the value of information, and the revenues that can
be derived from that, should be based upon information flows
to customers and the benefits derived by those customers, who
may not be the consumers or users of the device.

This  introduces  another  important  aspect,  that  of  new
customer  relationships  which  can  open  up  new  avenues  of
revenue  generation.  Compared  to  the  physical  exchange  of
products, where the actors are generally limited to the value
chain with revenue generation ending at supply to consumer,
information  exchange  can  involve  range  of  involved  parties
outside those traditional  relationships.  The relationships with
these actors can be identified and defined by information flows
which can be unidirectional, bi-directional or multidirectional. 

10



Fig. 3. Information providers and information flows in the IoT [11]

Figure 3 shows the relationships of information producers
and consumers linked by information flows. This model can be
used  to  identify  potential  potential  value  proposition
opportunities  and  consider  new  customer  relationships  not
viable under the traditional product based paradigm.

IV. BUSINESS MODELS FOR IOT

Each business activity can be reduced to a number of core
elements,  which  at  the  simplest  level  consist  of  the  value
proposition, production and distribution, and customers of the
company. These aspects describe how the company produces
and sells a good or service and, although not always explicitly
expressed  as  such,  constitutes  a  business  model  which  can
represent  how  that  business  operates.  Although  'business
model'  is  a  much  used  term  which  varies  in  meaning,  a
commonly cited definition is found in Timmers (1998)  [13].
He  describes  business  models  as  an  architecture  of  the
products,  services  and information flows which includes the
involved actors, their roles, the potential value created for all
participants and the sources of revenue.

The concept of business models as a system of components,
links between components  and their dynamics  [14] is  pretty
universal and there are a wide variety of proposed components
and ways to link them within literature. One approach is the
Business  Model  Canvas by Osterwalder  and Pigneur  (2009)
[15] which  describe  4  main  perspectives,  those  of  value
proposition, the customer, financials and infrastructure (figure
4).

Fig. 4. Business Model Framework – adapted from [15] by [11]

The value proposition defines what is actually provided for
the  customer.  It  identifies  actual  customer  needs  and  the
aspects of the product or service that directly provide for those
needs.  It  also  describes  quantitative  (price,  time of  delivery
etc.)  and qualitative (brand,  design etc.)  elements  which are
integral to the value offered. For the IoT information derived
from  products  and  the  amalgamation  of  information  from
numerous sources form the basis for value propositions rather
than the product related benefits of traditional business models.

The  customer component  describes  the groups  of  people
who are served by the value proposition. It includes the range
of  customer  segments (the  different  groups  of  potential
customers), how those customers are interacted with through
channels and  the  relationships with  those  customers.  With
information as the core value proposition the customers an IoT
company might be engaged with could be very different to a
traditional  product  based  approach.  Although  end  user
consumers may well be one customer segment, new customers
who could derive  benefit  from the information collected,  or
from the integration of multiple information streams to provide
new  types  of  useful  information,  become  viable.  This
broadening  of  potential  customer  types  provides  significant
opportunities for value capture and represents one of the main
advantages  of  applying  IoT  thinking  to  planning  business
strategies.

The financial perspective includes costs as well as revenues
derived  from  the  value  proposition.  The  revenue  structure
describes  the  various  sources  and  methods  of  revenue
generation based on the customers identified in the customer
component.  Here  the  specific  types  of  revenue  stream  are
identified,  such  as  asset  sale,  subscription  fees,  licensing,
renting, brokerage fees or advertising. Again, IoT approaches
provide new possibilities of how information can be charged
for and how those revenue streams are managed, such as a far
finer level of control of specific product usage charging (per
use / per time unit) than has been possible before.

The infrastructure components consist of key partners, key
activities and key resources. These elements describe what the
business needs to do (activities), use (resources) and who they
need to collaborate with (partners) to be able to offer the value
proposition. The  infrastructure component will dictate how a
company needs to structure itself (or re-structure its operation)
to  align  itself  with  IoT  principles.  With  new  types  of
information based value propositions the way a company needs
to  operate  may  be  substantially  different  to  traditional
approaches,  and the range of resources and partners shift, or
expand, significantly.

With information now playing a central role as the value
proposition,  rather  than  traditional  product  centered  value
propositions, we now have a business model which potentially
develops in a very different manner to traditional approaches.
We might see different types of customer, or relationships with
those  customers  along  with  new  partner  relationships  and
different  focusses  for  company  infrastructure  aspects.  More
importantly,  this  approach  can  lead  to  fundamental  shifts  in
how revenue is generated from the value proposition and how
the costs of producing / supporting the value proposition are
assessed.

11



Although we have seen significant examples of companies
successfully  applying  new  business  models  to  the  internet
domain (such as  Amazon,  Google,  eBay and Apple iTunes)
there are many companies who are not actively transitioning
their  businesses  to  encompass  these  new  ways  of  (and
opportunities) of doing business. In 2008 IBM's Global CEO
Report  [16] indicated  that  98% of  CEO's  saw the  need  for
business  model  innovation  in  their  companies,  with  market
factors having the biggest effect on their organisations. In 2012
IBM's report  [17] technology is (for the first time) considered
the largest driver for change in the companies (figure 5), along
with  showing  significant  need  for  a  shift  in  partner
collaboration  approaches.  The  report  also  demonstrates  the
most  successful  companies  are  those  most  able  to  manage
change.

Fig. 5. External forces expected to impact  organisations  over the next 3-5
years [17]

This requirement for change in companies approaches to an
increasingly competitive and dynamic market place, combined
with the rise in importance of technology,  big data and new
collaborations, demonstrates the need for structured approaches
to guide and manage such changes within companies. Business
models with an alignment to IoT principles have the potential
to offer  companies  a holistic  approach  to assessing business
opportunities and how to engage with them in the new business
environments presented with the growth of IoT.

V. NEST

Nest  Labs  [12] is  a  company that  designs  and  produces
thermostats and smoke-detectors for home automation. Their
products are programmable, sensor-driven, WI-FI enabled and
self-learning devices which can be remotely controlled. Their
main product, and the focus of this section of the paper, is the
Nest Learning Thermostat.

A. The Nest Thermostat

The  Nest  Thermostat  (Figure  6)  is  used  to  control  a
properties  heating and cooling systems.  It is  a round device
mounted on the wall sporting a round LCD display and outer
control ring which the user turns to adjust the temperature. The
device includes sensors for temperature, humidity, proximity,
far-field activity,  near-field activity and ambient light,  along
with Wi-Fi support for 802.11b/g/n and 802.15.4 Wi-Fi (both
at 2.4 Ghz) [13].

Fig. 6. The Nest Learning Thermostat

Although  the  Nest  thermostat  is  programmable  for  set
heating ranges  and schedules  the device is  able to learn the
householder's  preferences  and  patterns  to  generate  its  own
schedule.  Over  the  first  week  the  user  just  adjusts  the
temperature manually to the desired setting (turning it  down
when leaving  the house or  going  to  bed).  The Linux based
software employs a machine learning algorithm to construct a
schedule  of  temperatures  and  times  which  it  will  then
automatically adjust the heating too.

In  addition  to  the  automated  learning  functionality  the
device  uses  its  motion  sensors  to  detect  when  the  house  is
empty. When no motion has been detected for two hours the
thermostat  engages  its  'Auto-Away'  mode  and  automatically
reduces the temperature to avoid heating an empty home.

B. Product Focused Business Model

With  estimated  sales  of  200,000 units  a  month  in  2014
1[20] and  with  estimated  revenues  of  $300M  the  Nest
thermostat is obviously a product that can take centre stage in a
solid  business  model.  Funk  (2014)  [21] examines  the  Nest
Thermometer  business  model  from  a  product  centred
perspective. 

From this  perspective  the Nest  Thermometer  offers  ends
users the  value propositions of reduced energy consumption
(with associated costs savings), ease of use (self-programming
and automated),  remote control (via mobile apps),  aesthetics
and lifestyle symbols. These value propositions are intrinsically
'per  product'  based  and  entirely  focused  on  home  owner
consumers of the product. As such the customer perspective is
mainly focused around homeowners, with any collaborations,
such as with new home construction companies, utility service
providers and government programs, aimed at just getting more
individual units sold and installed.

The value generation is limited to the  revenue stream of
unit sales and control app sales associated with each device.
Estimates  of  revenue  using  this  business  model  range  from
$375M  [21]  to  $412M  [20] by  2015.  This  approach  is  an

12



excellent  example of  the 'one-and-done'  paradigm of  selling
product, where for Nest Labs to continue making money they
have to keep selling new thermostats. This leads to the business
being reliant on developing new models or products that people
will keep on buying (and how often will homeowners want to
replace a heating thermostat?).

In  January 2014 Nest  Labs  was  acquired  by Google  for
$3.2  billion  [22].  To  recoup  this  sort  of  purchase  price  a
significant number of products would need to be sold if just
considering  a  product  centric  business  model.  Now
withstanding  the  fact  that  Nest  have  other  products  in  their
portfolio  (smoke  alarms  and  security  cameras),  and  the
discussion about Google buying their way into a new market
place whilst paying a premium to maintain the old management
structure,  there are commentators who consider Google may
have overpaid for Nest [20].

An alternative perspective is that there is a whole layer of
value  contained  in  the  Nest  company  which  does  not  get
explained  (or  accessed)  by this  product  based  mindset.  It  is
possible that the real value of Nest Labs lies in an IoT oriented
business  model  which  introduced  whole  new  value
propositions, customer relationships and revenue streams.

C. IoT Focused Business Model

Nest Labs have developed a business model that uses the
data collected by their thermostats in homes at its centre rather
than the sale of the product itself.  Nest  sells  information on
energy  usage  patterns  to  electricity  utility  companies  which
allows them to plan their energy production more effectively
[23].

In electricity supply any over production cannot be stored
and  so  goes  to  waste,  however  too  little  production  means
there’s  not  enough  to  go  round  when  needed  and  leads  to
brown-outs  (the  reduction  or  restriction  of  supply  in  a
particular area). Utility companies have to predict future usage
and  plan  their  production  or  purchasing  of  electricity
accordingly.  Their  objective  is  to  have  just  a  slight
overproduction to actual usage to minimise any waste.

In  the  past  energy  producers  have  had  little  more  than
historical data of usage to predict future demand and plan their
production  on.  With  intelligent  products  like  the  Nest
Thermometer it is now possible to get far more immediate and
more detailed information on actual  usage  by its  customers.
Indeed, with the Nest's profiling capability, it is even possible
to  get  detailed  information  on  the  expected  usage  as  every
thermometer has the information of when it expects to turn up
the heat (or air conditioning) depending on its knowledge of
that families activity patterns (i.e. when they get  home from
work).

These  usage  patterns  (both  real-time  usage  and  future
predictions) represent valuable information to utility companies
who can  use  it  to  make  more  accurate  prediction  regarding
production,  reduce  over  production  and  consequently  save
significant amounts of money.  Nest  have built a relationship
with a number of energy providers where they are being paid a
fee for  the supply of usage metrics,  in the order  of $40 per
installation per year.

When we examine the information provided by Nest to the
utility  companies  we  can  see  how  it  aligns  to  revenue
generation (section II B) based on the 7 Laws of Information
discussed  above.  Providing the  right information consists  of
accurate  usage  statistics  linked  to  real  homes  identified
uniquely by their Nest Thermometers ID. This information has
a high level of granularity, especially compared to the regional
usage metrics electricity companies had to rely on previously.
The  right condition of the information is represented by high
accuracy, combined metrics from multiple thermometers in one
building  and  predictive  usage  data.  The  real-time  nature  of
usage data, combined with the access to historical and future
predictions gives utilities access to 'right time' information, and
accessible  from  anywhere through web connectivity.  Finally
the  appropriate pricing is provided by transparent prices per
installation where the cost of information is decoupled from the
cost of the infrastructure.

With  a  clearer  picture  of  the  nature  of  the  value  the
information the company possesses it now can take a core role
as  a  value  proposition  in  an  IoT  focused  business  model.
Figure 7 uses the Business  Model Framework presented above
to construct a business model for the Nest Thermometer using
an IoT centred approach.

In the business model for the Nest Thermometer we can see
the real-time energy usage information and predictive analytics
providing  the  information  based  value  propositions.  The
customer component now consists of utility companies being
the consumer of the service accessing it via web connections
through automated systems. The revenue structure provides for
per installation subscription fees rather than a per product sales
revenue, with costs being associated with data collection and
processing  rather  than  costs  of  unit  production.  Finally  the
infrastructure component, with related key activities, resources
and partners,  acts  as  a  guide  to  how the company needs  to
structure its activities and partner relationships in light of an
information based value proposition. 

Fig. 7. Business Model for the Nest Thermometer

In early 2014 Nest had 12 major utility partners [24] using
this subscription model with an expectation that number would
grow in the future, with Nest's founder Tony Fadell stating he

13



expected this side of the business will in time earn more for the
company  than  the  sale  of  devices  [23].  There  is  also  the
potential for Nest to investigate customer segments other than
utility  companies,  such  as  renewable  energy  companies  like
solar  panel  companies  for  the  monitoring  and  control  of
distributed  energy  technologies  rather  than  just  grid-based
energy supply.

Nest have also recently announced trials where they control
users house temperatures through their Nest Thermostats at the
request  of  utility  companies  to  manage  peak  usage  [25].  In
parts of America,  on hot days,  there can be a problem with
numerous air  conditioners  being turned on at  the same time
(when people return from work for instance) and the demand
outstrips  the  energy  companies  production  capabilities.  This
forces  the  company  to  buy  extra  electricity  on  the  energy
market (along with many other supply companies who are in
the same position) which pushes the price of electricity up a
huge amount, or enforce restrictions in supply (brown-outs).

The principle behind the trial being conducted by Nest and
a number of utility companies is that a small reduction in usage
by a large number of people at those critical times of day can
make a significant difference to peak demand. To achieve this
home owners are offered a scheme, called Rush Hour Rewards,
that they can subscribe too which gives them discount rewards
on their electricity bills if they allow Nest to take control of
their thermostats during peak load.

Nest uses an algorithm combining local weather conditions,
the  actual  temperature  of  the  house,  the  customers  usual
schedules and the preferred temperatures of that customer. This
allows them to micro-manage individual houses temperatures
and  gradually  reduce  them by just  a  degree  or  two  so  the
occupant  does  not  notice  the  shift.  Another  approach  is  to
predict a demand spike and automatically pre-cool the house
(before the owner gets home) using cheaper electricity before
the period of high demand occurs.

The Rush Hour Rewards trial demonstrates how new value
propositions  can  be leveraged  from the  same data  and  how
value can be offered to numerous customers at the same time
(here benefiting homeowners with the opportunity of discounts
and utility companies with the management of peak demand).
It also demonstrates the power IoT enabled devices offer where
multiple  information  streams  are  processed  and  real-time
control  decisions  are  made  to  manage  individual  home's
temperatures for the benefit of another customer.

VI. CONCLUSION

Aligning  business  operations  to  the  new  marketplace
expected with development of IoT devices and infrastructures
patently has importance for the future of companies. With a
structured  approach  of  considering  information  as  value
propositions it is possible to employ business modelling as a
tool to design (or re-design) a companies structure to operate
within,  and  exploit,  the  new types  of  opportunities  the  IoT
offers.

The  Nest  example  clearly  demonstrates  the  principles
presented  in  this  paper  of  attributing  value  to  information
produced by IoT devices and converting those value concepts

to revenue generation principles which can be used as value
propositions in a business model.

The Nest Thermostats IoT business model described above
shows  how  new  customer  segments  can  be  defined  when
information value propositions are used, along with completely
different  revenue  models  from  that  of  the  'one-and-done'
physical product revenue stream. It also demonstrates how the
landscape of business partners can shift and how the operating
costs and infrastructure can change in light of a new business
approach.

As  such,  the  Nest  example  acts  as  a  validation  of  the
approach presented by this paper of using information and its
value aspects as a core foundation for creating business models
which are effective at aligning companies to IoT. 

The author considers that, not only is there potentially great
value for companies to start considering their business model
in  light  of  IoT,  but  also  that  a  framework  focussing  on
information (such as the one presented here) is the key to the
required shift in perspective.

VII. SUMMARY

With the expected drastic increases in IoT enabled devices
there  is  a  need  for  companies  to  prepare  for  business  in  a
market place where information takes on a far larger and more
complex  role  than  ever  before.  It  is  arguable  that  this  will
require  a  shift  in  mindset  from  a  traditional  product  based
approach to one that considers information, and the value of
that information, as a central component of business structure
and operations.

Business Models offer one structured way for companies to
realign  their  offerings  and  operations  with  an  IoT  way  of
thinking  which  places  information  at  its  core.  This  requires
information to be considered and understood as an asset with
intrinsic value which can then be used as value propositions for
an IoT oriented business model.

This paper has  presented a method of ascribing value to
information and a Business Model Framework that can be used
to formulate suitable business models. An example of the Nest
Thermometer  is  used  to  demonstrate  the  principles  of  an
information  centred  business  model  and  how  IoT  focused
approaches can provide new business opportunities.

It is hoped that this examination of business modelling for
IoT can be used as a useful introduction for companies who
might  not  be  aware  of  the  implications  IoT  might  have  on
them, and to act as a guide to how companies might go about
investigating  the  integration  of  IoT  principles  into  their
business planning for the future.

REFERENCES

[1] P. Fan and G. Zhou, “Analysis of the business model innovation of the
technology of internet of things in postal logistics,” 2011 IEEE 18th Int.
Conf. Ind. Eng. Eng. Manag., pp. 532–536, Sep. 2011.

[2] Harbor  Research,  “Smart  Services  and  Internet  of  Things  Business
Model  Innovation,”  2014.  [Online].  Available:

14



http://harborresearch.com/smart-services-and-internet-of-things-
business-model-innovation/. [Accessed: 22-Oct-2014].

[3] J.  Gubbi,  R.  Buyya,  S.  Marusic,  and  M.  Palaniswami,  “Internet  of
Things (IoT): A vision,  architectural elements,  and future directions,”
Futur. Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[4] S.  Leminen,  M.  Westerlund,  M.  Rajahonka,  and  R.  Siuruainen,
“Towards IOT ecosystems and business models,” in  Lecture Notes in
Computer  Science  (including  subseries  Lecture  Notes  in  Artificial
Intelligence  and  Lecture  Notes  in  Bioinformatics),  2012,  vol.  7469
LNCS, pp. 15–26.

[5] J. Rivera and R. van der Meulen, “Gartner Says the Internet of Things
Installed Base Will Grow to 26 Billion Units By 2020,” 2013. [Online].
Available:  http://www.gartner.com/newsroom/id/2636073.  [Accessed:
22-Oct-2014].

[6] O. Kharif, “Cisco CEO Pegs Internet of Things as $19 Trillion Market,”
2014.  [Online].  Available:  http://www.bloomberg.com/news/2014-01-
08/cisco-ceo-pegs-internet-of-things-as-19-trillion-market.html.
[Accessed: 22-Oct-2014].

[7] H.  Lee  and  J.  Kwon,  “Combining  context-awareness  with  wearable
computing for emotion-based contents service,” Int. J. Adv. Sci. …, vol.
22, pp. 13–24, 2010.

[8] V. Lipman, “71% Of 16-To-24-Year-Olds Want ‘Wearable Tech.’ Why
Don’t  I  Even Want  To Wear  A Watch?,”  2014.  [Online].  Available:
http://www.forbes.com/sites/victorlipman/2014/09/22/71-of-16-24s-
want-wearable-tech-why-dont-i-even-want-to-wear-a-watch/. [Accessed:
22-Oct-2014].

[9] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[10] G. Hui, “How the Internet of Things Changes Business Models,” 2014.
[Online].  Available:  http://blogs.hbr.org/2014/07/how-the-internet-of-
things-changes-business-models/. [Accessed: 22-Oct-2014].

[11] E. Bucherer and D. Uckelmann, “Business Models for the Internet of
Things,” in Architecting the Internet of Things SE  - 10, D. Uckelmann,
M. Harrison, and F. Michahelles, Eds. Springer Berlin Heidelberg, 2011,
pp. 253–277.

[12] D. Moody and P. Walsh, “Measuring the value of information: an asset
valuation  approach,”  in  Guidelines  for  Implementing  Data  Resource
Management. 4th edn., 2002.

[13] P. Timmers, “Business models for electronic markets,” Electron. Mark.,
no. 8, pp. 3–8, 1998.

[14] A. Afuah and C. Tucci,  Internet business models and strategies: Text
and cases, 2nd ed. New York: McGraw-Hill, 2002.

[15] A.  Osterwalder  and  Y.  Pigneur,  Business  Model  Generation:  A
Handbook  for  Visionaries,  Game  Changers,  and  Challengers.  New
Jersey: Wiley, 2010.

[16] IBM,  “IBM  2008  Global  CEO  Study,”  2008.  [Online].  Available:
https://www-935.ibm.com/services/uk/gbs/pdf/ibm_ceo_study_2008.pdf
.

[17] IBM, “IBM 2012 Global CEO Study,” 2012. [Online]. Available: www-
935.ibm.com/services/multimedia/anz_ceo_study_2012.pdf . [Accessed:
02-Nov-2014].

[18] “Nest Labs.” [Online].  Available:  https://nest.com/uk/.  [Accessed: 25-
Oct-2014].

[19] “2nd  generation  Nest  Learning  Thermostat  technical  specifications,”
2014.  [Online].  Available:  https://support.nest.com/article/2nd-
generation-Nest-Learning-Thermostat-technical-specifications.
[Accessed: 25-Oct-2014].

[20] Nextmarket.co, “Breaking Down The Valuation For Nest’s $3.2 Billion
Purchase  Price,”  2014.  [Online].  Available:
http://blog.nextmarket.co/post/73320622998/breaking-down-the-
valuation-for-nests-3-2-billion. [Accessed: 01-Nov-2014].

[21] J.  Funk,  “Biz  Model  for  Nest’s  Smart  Thermostat,”  2014.  [Online].
Available:  http://www.slideshare.net/funk97/biz-model-for-nests-smart-
thermostat. [Accessed: 01-Nov-2014].

[22] Google Investor  Relations,  “Google  to Acquire Nest,” 2014. [Online].
Available:  https://investor.google.com/releases/2014/0113.html.
[Accessed: 02-Nov-2014].

[23] M.  Mombrea,  “Google’s  real  plan  behind  the  purchase  of  the  Nest
thermostat,”  2014.  [Online].  Available:
http://www.itworld.com/article/2833423/big-data/google-s-real-plan-
behind-the-purchase-of-the-nest-thermostat.html.  [Accessed:  02-Nov-
2014].

[24] C. Cameron, “The future of Google’s Nest,” 2014. [Online]. Available:
http://www.utilitydive.com/news/the-future-of-googles-nest/257068/.
[Accessed: 02-Nov-2014].

[25] S.  Levy,  “Nest’s  Plan  to  Stop  Brownouts  Before  They Start,”  2014.
[Online].  Available:  http://www.wired.com/2013/04/nest-energy-
services/. [Accessed: 02-Nov-2014]. 

15



Using metrics to improve design in free-to-play
games

Henna-Riikka Ruonala
University of Helsinki

Helsinki, Finland
Email: henna-riikka.ruonala@helsinki.fi

Abstract—A literature review on metrics use in free-to-play
games was undertaken, searching for common metrics in use
for the development, monitoring, and improvement of free-to-
play games. The most significant metrics found were related to
measuring player engagement and player churn. Other gameplay
related metrics tend to be more game specific, related to the game
mechanics and genre.

I. INTRODUCTION

The freemium or free-to-play model has gained ground
in recent years in the games industry. Players are able to
start playing the game without having to pay anything. Often
they can keep playing for free, but there are certain items,
bonuses, or in-game currency that one can buy from within
the game. This might lead to faster progress through the game,
an advantage over other players in a multiplayer setting, or
just an aesthetic change. The majority of the players never
pay anything, but if the number of players is large enough,
there are also enough paying customers. The aim is to get
enough players to try the game out, and then to keep a good
percentage of them coming back as well. As Drachen et al.
[1] point out, free-to-play games need metrics data to keep the
players playing, and consequently also spending money. This
leads to regular monitoring and updating of the game. The
updates need to be spaced so that people keep being engaged
with the game, and the update cycles can also drive players to
come back to the game more often, so that they do not miss
timed content [2].

The themes, genres, and gameplay mechanics of free-
to-play games are quite varied, as free-to-play is only a
description of the economic model of the game. Thus a free-
to-play game can be a casual, social Facebook or mobile
game, an online roleplaying game, a real-time strategy game,
a first-person shooter, a digital trading card game, etc. The
common thing among all these different types of games is
only that they are offered with free entry, more as services
rather than products. Getting the game released for the public
is only the beginning of the development process. This makes
gathering data on the success of the game design even more
important than in games sold as products. Many of these points
and the metrics described in this paper are also applicable to
subscription based persistent games.

In order to provide a steady stream of updates, the game
developers need to know which direction the game design
should take. Quantitative and qualitative feedback can help in
identifying game design flaws or in experimenting with new
features. Qualitative feedback can be gathered through player

surveys, and quantitative gameplay data can be gathered as
players play the game. Both of these complement each other
and help in interpreting the data. This paper will take a look
at quantitative or telemetry data, and how to make use of it in
a free-to-play context. It will however not go into the details
of how the data is gathered or analysed.

There are various types of metrics that can be used to
analyse gameplay and other factors of a game. The choice
of gameplay metrics naturally depends on the type of game in
question. There are however some metrics that can be gathered
regardless of the game’s genre or mechanics. The aim of this
paper is to gather together some existing and known practices
in applying metrics analysis in free-to-play games, and to
give some examples of useful gameplay metrics. First some
related work in free-to-play games and game metrics research
is looked at briefly in section II, followed by a description
of the research method of this paper in section III. Then the
results are presented in section IV and finally some further
issues and implications are discussed in section V.

II. RELATED WORK

So far there has been very little work looking into met-
rics use in free-to-play games specifically. There have been
some studies on other aspects of free-to-play games however,
especially regarding the social aspects of some of them. Some
more data is available on gameplay metrics, but these are
often from the perspective of playtesting first-person shooters
or role-playing games, and detailing the technical aspects
or visualisation of the telemetry data. Some general points
pertaining to gameplay metrics can nevertheless be useful in
a free-to-play scenario as well.

A closely related field of study is game user research,
which is often interested in answering the same type of
questions regarding e.g. player engagement, but deploys a
variety of methodologies. Game metrics analysis is one of
them.

A. Free-to-Play Games

Sotamaa et al. [2] have taken a look at Zynga’s Fron-
tierville, a social free-to-play Facebook game that is free to
play with fast update cycles. They highlight the importance
of rhythms for social games. The rhythms are created by
game mechanics (timers limiting how often the player clicks
on things), session length, weekly updates, and more sparse
seasonal theme updates.

16



A work-in-progress paper by Paavilainen et al. [6] recog-
nised user interface layout, navigation and the help system as
key areas with the most playability issues in free-to-play social
games. If a game has playability issues, it will also affect the
rate at which players will leave the game, switching perhaps to
another free-to-play game. Players who are not satisfied with
the game will not spend money on it either, even if they keep
playing.

B. Game Metrics

As Drachen and Canossa [7] point out, gameplay metrics
analysis is focused on looking at what the player does in
the game. Additionally, hypotheses can be made about why
the player is behaving in a certain manner. To back up the
hypotheses, other methods should be used with the metrics.
Gómez-Maureira et al. [8] did a comparison of methodologies,
combining gameplay metrics, biometrics, and interviews to
inform improvements on level design in a 2D platformer. They
found that data from all three methodologies were needed for
best results. For a level designer, each of the combinations of
two methods offered suggestions for improving level design,
but there were differences in which things were suggested. The
differences were however not as large as suspected initially.
The study nevertheless indicates that it is important to back
the gameplay metrics data with some other source, especially
in determining why players are doing what they are doing. The
advantage of gameplay data is that it is readily available, as
long as there is room to store the data.

Lanzi et al. [9] gathered gameplay data including user
gestures and collisions of game objects from two playtests.
The metrics showed a problem with the pace of the game, so
the game design was updated according to the results.

C. Game Metrics in Free-to-Play Games

Gagné et al. [3] have analysed telemetry data from a free-
to-play real-time strategy game, Pixel Legions. They worked
with the developer to create a system of visualisation for the
gameplay data to help answer the game design questions and
hypotheses the developer had.

Hadiji et al. [4] found that predicting player churn can be
done based on the patterns of player logins and other session
data, which are available for any type of game. Another study
[5] also attempted to predict high-value player churn, as well
as testing incentives for players to return to the game.

III. RESEARCH METHOD

The research method applied is a literature review sum-
marising metrics use in the context of freemium games.
Because of the sparsity of articles on the topic, various search
terms such as game analytics, game data mining, free-to-
play, etc. were used to uncover possible articles of interest
in different article databases. Further articles were found also
by going through the references listed in the found articles.
Some additional non-academic articles and blog posts were
used to gather a more complete view of game analytics as it
is in use in the industry.

IV. RESULTS

Perhaps the most important and used metrics in free-to-
play games are related to player engagement and player churn.
The two are closely related, as to avoid churn, one needs to
engage the players. Game developers are interested in finding
out how engaging the game is during a certain period of time
(for example after an update, or an advertisement campaign),
and in predicting players that are about to churn, i.e. leave
the game. These churning players could then be contacted and
incentivised to stay.

Other metrics related to gameplay can be used to guide
design decisions for updates. These metrics are more varied
across game genres.

A. Player Engagement

The metrics for free-to-play games are by necessity
strongly tied to monetisation, but to be able to monetise, the
game needs to engage players. The critical point in the game
for player engagement is the beginning. Players need to be
guided through the first hurdles of learning the game controls
and gameplay mechanics, so that they will keep playing and
coming back to play. Gathering metrics on the tutorial or the
first levels of a game is especially important for its success.
In the end player engagement is the driving force behind
the use of telemetry data and the metrics derived from it
for improving game design. Metrics for measuring player
engagement include:

• DAU/MAU

• sessions/DAU

The simplest and most important metric for measuring
player engagement is the ratio of daily average users (DAU)
per monthly average users (MAU), i.e. the DAU/MAU ratio.
Game design changes can be reflected in this ratio, and if the
ratio is too low, efforts should be directed into improving the
game design [10]. Some quote 20% as a good percentage [11].

There are some things to take into consideration when
using the DAU/MAU. It is a constantly changing ratio, and
affected by the amount of new users coming in because of
an advertisement campaign, for example [11]. Another thing
to remember is that if the percentage of players who keep
coming back to play is low, it in itself does not tell anything
about why it is low.

A related metric also measuring player engagement is
sessions/DAU, meaning how many times players log in to
the game per day [12]. The exact number varies according
to game genre and how long the average session in the
game is. The sessions/DAU ratio is nevertheless more stable
than DAU/MAU [11]. Thus if sessions/DAU starts declining,
something has gone wrong.

The length and pacing of sessions can also be used to guide
design decisions. Developers may want to favour a certain
style of gameplay, tracking what seems to be the most popular
session length or number of sessions per day [13]. Junebud
for example tracks session length and frequency by recording
login and logout times for each player [14]. Session length and
other data was also tracked in Pixel Legions [3], to find out
aspects of player behaviour such as:

17



• When players stop playing

• How often they lose

• What players care about (the kind of levels they prefer
etc.)

• How they handle difficulty

• Which levels players like

This (session data) combined with the tracking of player
progression will inform developers of update needs, so that
players do not run out of content. Even game mechanics can
be introduced that will take care that players do not progress
too fast through the entire content [2]. This includes the
use of timers or energy bars, which were employed in e.g.
Frontierville to great extent, creating a steady rhythm for the
game. At the same time these can of course be used to entice
players to spend money.

B. Player Retention

The retention rate describes the percentage of players that
stay and play the game again over a certain period of time. It
is calculated per installation of the game, from the installation
date. Day 1 retention gathers up the players who came back the
next day after installing the game, day 7 retention has all the
players who came back (any day) within a week of installation.
A good retention rate for day 1 is thought to be 35-40

C. Churn Prediction

As the retention rate measures how well players are staying
with the game, the opposite is true of the churn rate, which
tells how many users are lost during a period of time. Game
developers are interested in trying to predict this rate, and
to identify the potential churners, the players who leave the
game and do not return. Hadiji et al. [4] have developed a
churn prediction model independent of game design. By using
decision trees, and using a more relaxed definition of churn,
they were able to predict which players were about to leave the
game. Instead of looking at players churning by a fixed point
in time, the study made use of a window, in which the players
that were about to churn were already considered churned. This
allows for time for the developers to motivate the players to
return. The study found that the average time between sessions
was an important predicting feature. This helps towards an
understanding of why players churn.

A contributed article [15] on Gamasutra, a website ded-
icated to game development, details data mining efforts for
churn prediction in the MMO game Aion. Even though a neural
network approach was working well, they preferred decision
trees. They were able to get the prediction rate of decision
trees up and false positives down by refining the model by
choosing activity and game-specific metrics which were listed
as follows:

• Playtime at current level, previous level, and total
during lifetime

• Mobs killed per minute (current/previous/lifetime)

• Quests completed per minute (same)

• Average playtime per play day

• Days of play

• Absenteeism rate (number of days skipped during the
seven day free trial)

Despite the hypotheses in the beginning and managing to
make the prediction more accurate, no specific features were
found to be the reason behind why players were churning in
general. The data for individual players was nevertheless useful
in finding ways to incentivise the player to return. An email
was sent before the predicted churn, giving useful advice on
the particular topics that player might have been interested in
or struggling with.

In both churn predictions, the high rate of people leaving in
the beginning of the game has a negative impact on the ability
to predict churn. In the case of Aion, this was contained into
only the first level of the game by predicting churn rates for
each level separately [15]. Thus even though the beginning
of the game is significant in keeping players interested, it is
difficult to make predictions for it. Interviews and surveys can
perhaps shed more light on why players quit so soon [6].
Gameplay metrics analysing if the players are playing the game
as intended, taking the tutorial, etc. can also help in a more
limited manner.

Another study [5] in churn prediction focused on so called
high-value players specifically. They also found that a neural
network works best for prediction. Included in the study was
an A/B test for determining best ways of getting players back
to the game. It was perceived that incentives like free in-
game currency did not help to re-engage players. Email and
Facebook notifications were however better received before
the churn event rather than after, making the churn prediction
useful. Another question is what the email or notification
should contain. In the case of Aion, customised advice was
given to the players [15], whereas in the case of high-value
players leaving, it might be better to direct them to another
game from the company [5].

The study on high-value players [5] also found that there
are differences between game genres and types and the ability
to predict player churn. Prediction is easier for a game that
requires more interaction and different types of interaction,
and thus more regularly spaced logins.

D. Gameplay Metrics

Whereas the metrics measuring player engagement or non-
engagement are not very helpful in answering why things are
as they are, gameplay metrics can yield more information about
what the players are actually doing. If interpreted correctly,
they can even begin to answer why player engagement is low,
for example.

Playtime, player’s progress through levels, use of items,
etc. are generally good to track in any game [16]. Playtime is
related to user engagement and the previous metrics described
above. Progress through levels lets the developer know if the
game is getting difficult for the players at a steady pace, or if
there are unexpected tough spots. Players could be employing
a wrong strategy or choosing the wrong route for example,
and could perhaps be better guided towards the correct choice.
The use of items has special significance in competitive games,
where the balance between different items is important. If a

18



certain weapon is used much more than others, it might mean
that the weapon is overpowered compared to the rest of the
available weaponry.

The balancing of the game is important in free-to-play
games as well, as players get frustrated if they feel the game
is not fair. It is especially important for user satisfaction to
avoid a complete pay-to-win scenario, where one can buy more
powerful items or bonuses with real money and thus make
better progress in the game than others who do not spend as
much money [17]. There might be cultural differences in to
which extent players are willing to accept paying to win, as in
China the phenomenon is apparently much more widespread
[17].

A good pace of action is important for player engagement.
In mobile games, the gameplay data worth tracking in an action
based game is related to the player’s gestures on the touch
screen, and the collisions between objects. This was studied
by Lanzi et al. [9] by conducting two playtests during public
events. A flaw in the pace of the game was discovered and
corrected. The player’s taps on the screen were too evenly
distributed, making the game boring to play for a longer time.
The solution was to add boss fights to break the monotonicity.
The boss fights lead to an intense period of tapping on the
screen, leading to better engagement.

Game metrics analysis allows monitoring of things such
as over- or underused game world areas, game features used
as intended, and barriers to player progression [16]. This was
done in a case study Hullet et al. [18] where they found several
unpopular features in a console game (Project Gotham Racing
4) by analysing data e.g. on which gameplay modes players
were choosing. While not a free-to-play game, these findings
highlight the importance of pruning the content, especially as
there is a need for regular updates in a free-to-play scenario.
Too much extra content will slow down the update cycle and
bring in new possibilities for bugs.

V. DISCUSSION AND IMPLICATIONS

The type of analytics that are used to analyse free-to-play
games are by necessity often focused on the monetisation
of the game, measuring the percentage of paying players.
Even though monetisation is important, Zynga for example has
realised through experience that it should not drive the changes
in the game [19]. Some of the metrics can nevertheless give
information on how well changes were received. Such metrics
are related to player engagement, such as the DAU/MAU ratio,
and information on play session length and frequency. These
were the metrics perceived to be relevant to this literature
review. Other metrics that are more related to the economics
or monetisation of the game (such as player lifetime value)
were left out as they were generally perceived to offer little
information on the gameplay experience or player satisfaction.

The metrics with clearest information on the success of the
game design are the ones directly related to gameplay, such
as player paths or gestures, or the frequency of taps (as in the
mobile game example by Lanzi et al. [9]). Metrics on player
engagement are more suited for testing out hypotheses, as one
only gets a rough estimate of what people thought of the update
by analysing the player numbers. Churn prediction can offer a
bit more information on the point at which players are leaving

the game, offering time or level based clues on which parts to
improve.

Whereas the data related to the amount of users and
sessions can simply be expressed in numbers, gameplay data
is often more useful and understandable when it is visualised.
This is especially true of spatial and geographical data, like
player paths, or the player’s interaction with the user inter-
face of the game. It is important to remember that the data
mined and the metrics used must be made accessible for the
developers and game designers. This is another important topic
that was left out from this review. An example of a data
visualisation built for the whole team is Data Cracker for the
game Dead Space 2 [20].

It seems most of the research on free-to-play games is
related to the social aspects of many of those games. Some
articles also were found focusing on churn prediction in free-
to-play or persistent games. Research on gameplay metrics is
mostly focused on playtesting or game user research, while
game user research offers a more complete look into game
metrics, adding qualitative data like surveys to help interpret
the quantitative data.

The focus of this review was on free-to-play games, but
persistent games in general share a many of the same attributes
regarding data gathering. Subscription based games are also
interested in churn prediction, for example. Free-to-play games
differ from these in their need for monetisation, and thus they
need to find a balance in the game design by making the
game fun, but not too fun. Free-to-play games are also often
characterised by a need for frequent updates, and regularly
adding new content. It seems there is very little research
focused on this kind of agile or lean game development,
especially regarding metrics use, but it would definitely be
of interest as more and more developers are starting to use a
games-as-service model with fast delivery.

As Sotamaa et al. [21] point out, game metrics and the
vast amounts of data available to the developers through them,
are changing the relationship between the developer and the
player: the feedback from players is automated and there is a
deeper understanding of what the players are doing. Similarly
the game company Junebud is using the instant feedback to
test design hypotheses with each update [14].

There are nevertheless constraints regarding the gathering
of telemetry data from persistent games. Some limitations are
listed by Zoeller [22]. These include:

• game performance issue

• scalability of the storage needed for data collection

• legal and privacy issues

This has an effect on the type and amount of data that can
be gathered. There are limitations to what can be deduced from
the data as well. To overcome the problems of interpretation of
the data, game metrics can be supplemented by other methods,
such as user surveys and biometric data. These methods are
nevertheless more costly and need player involvement. As it
is, metrics cannot predict which steps to take in the design in
the game per se, but they can help in testing out hypotheses.

Despite these concerns, game developers will certainly
want to gather some data on how their design is working and

19



being received. As the game industry is constantly changing, it
will remain to be seen what role free-to-play games and games
as a service will take. It is nevertheless clear that it is a model
that is enticing for both game developers and players as well.

REFERENCES

[1] A. Drachen, C. Thurau, J. Togelius, G. N. Yannakakis, and C. Bauck-
hage, “Game data mining,” in Game Analytics, M. Seif El-Nasr, A.
Drachen, and A. Canossa, Ed. London, UK: Springer-Verlag, 2013,
ch. 12, pp. 205–253.

[2] H. Tyni, O. Sotamaa, and S. Toivonen, “Howdy pardner!: On
free-to-play, sociability and rhythm design in frontierville,” in
Proceedings of the 15th International Academic MindTrek Conference:
Envisioning Future Media Environments, ser. MindTrek ’11. New
York, NY, USA: ACM, 2011, pp. 22–29. [Online]. Available:
http://doi.acm.org/10.1145/2181037.2181042

[3] A. R. Gagné, M. Seif El-Nasr, and C. D. Shaw, “Analysis of
telemetry data from a real-time strategy game: A case study,” Comput.
Entertain., vol. 10, no. 3, pp. 2:1–2:25, Dec. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2381876.2381878

[4] F. Hadiji, R. Sifa, A. Drachen, C. Thurau, K. Kersting, and C. Bauck-
hage, “Predicting player churn in the wild,” in Computational Intelli-
gence and Games (CIG), 2014 IEEE Conference on, Aug 2014, pp.
1–8.

[5] J. Runge, P. Gao, F. Garcin, and B. Faltings, “Churn prediction for high-
value players in casual social games,” in Computational Intelligence and
Games (CIG), 2014 IEEE Conference on, Aug 2014, pp. 1–8.

[6] J. Paavilainen, H. J. Korhonen, and K. Alha, “Common playability
problems in social network games,” in Proceedings of the
Extended Abstracts of the 32Nd Annual ACM Conference on
Human Factors in Computing Systems, ser. CHI EA ’14. New
York, NY, USA: ACM, 2014, pp. 1519–1524. [Online]. Available:
http://doi.acm.org/10.1145/2559206.2581336

[7] A. Drachen and A. Canossa, “Towards gameplay analysis via
gameplay metrics,” in Proceedings of the 13th International MindTrek
Conference: Everyday Life in the Ubiquitous Era, ser. MindTrek ’09.
New York, NY, USA: ACM, 2009, pp. 202–209. [Online]. Available:
http://doi.acm.org/10.1145/1621841.1621878

[8] M. A. Gmez-Maureira, M. Westerlaken, D. P. Janssen,
S. Gualeni, and L. Calvi, “Improving level design through
game user research: A comparison of methodologies,”
Entertainment Computing, no. 0, pp. –, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1875952114000299

[9] P. Lanzi, D. Loiacono, E. Parini, F. Sannicolo, D. Jones, and C. Scam-
porlino, “Tuning mobile game design using data mining,” in Games
Innovation Conference (IGIC), 2013 IEEE International, Sept 2013,
pp. 122–129.

[10] T. Fields, “Game industry metrics terminology and analytics case study,”
in Game Analytics, M. Seif El-Nasr, A. Drachen, and A. Canossa, Ed.
London, UK: Springer-Verlag, 2013, ch. 4, pp. 53–71.

[11] T. McCalmont. (2013) Muddled mobile metrics. Retrieved on November
7th 2014. [Online]. Available: https://nativex.com/blog/muddled-
mobile-metrics/

[12] ——. (2013) How do I know I have a healthy
game? Retrieved on November 5th 2014. [Online]. Available:
http://www.gamasutra.com/blogs/TrevorMcCalmont/20130228/187460/
How Do I Know I Have a Healthy Game.php

[13] C. Thurau. (2013) Game metrics: Their true nature and what
you shouldnt live without. Retrieved on November 8th 2014.
[Online]. Available: http://blogs.unity3d.com/2013/12/05/game-metrics-
their-true-nature-and-what-you-shouldnt-live-without/

[14] A. Canossa, “Interview with Ola Holmdahl and Ivan Garde from
Junebud,” in Game Analytics, M. Seif El-Nasr, A. Drachen, and A.
Canossa, Ed. London, UK: Springer-Verlag, 2013, ch. 30, pp. 689–
693.

[15] D. Nozhnin. (2012) Predicting churn: Data-mining your
game. Retrieved on November 5th 2014. [Online]. Available:
http://www.gamasutra.com/view/feature/170472/
predicting churn datamining your .php

[16] A. Drachen, A. Canossa, and J. R. Møller Sørensen, “Game data
mining,” in Game Analytics, M. Seif El-Nasr, A. Drachen, and A.
Canossa, Ed. London, UK: Springer-Verlag, 2013, ch. 14, pp. 285–319.

[17] C. Onyett. (2012) Separating free-to-play and pay-to-
win. Retrieved on November 7th 2014. [Online]. Avail-
able: http://www.ign.com/articles/2012/08/13/separating-free-to-play-
and-pay-to-win

[18] K. Hullett, N. Nagappan, E. Schuh, and J. Hopson, “Empirical analysis
of user data in game software development,” in Empirical Software
Engineering and Measurement (ESEM), 2012 ACM-IEEE International
Symposium on, Sept 2012, pp. 89–98.

[19] M. Seif El-Nasr, and A. Canossa, “Interview with Jim Baer and Daniel
McCaffrey from Zynga,” in Game Analytics, M. Seif El-Nasr, A.
Drachen, and A. Canossa, Ed. London, UK: Springer-Verlag, 2013,
ch. 5, pp. 73–82.

[20] B. Medler, M. John, and J. Lane, “Data cracker: Developing a visual
game analytic tool for analyzing online gameplay,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’11. New York, NY, USA: ACM, 2011, pp. 2365–2374.
[Online]. Available: http://doi.acm.org/10.1145/1978942.1979288

[21] O. Sotamaa, H. Tyni, S. Toivonen, T. Malinen, and E. Rautio, “Emerging
game cultures,” in New Paradigms for Digital Games: The Finnish
Perspective, Future Play Project, Final Report, ser. TRIM Research
Reports. Tampere, Finland: University of Tampere, 2011, no. 3, ch. 4,
pp. 31–38.

[22] G. Zoeller, “Game development telemetry in production,” in Game
Analytics, M. Seif El-Nasr, A. Drachen, and A. Canossa, Ed. London,
UK: Springer-Verlag, 2013, ch. 7, pp. 111–135.

20



On Goal-Oriented Requirements Engineering

Nikolay Vasilev
Department of Computer Science

University of Helsinki
Helsinki, Finland

Email: nikolay.vasilev@cs.helsinki.fi

Abstract—Goals in software development address the ques-
tions why a software product is being built and what the product’s
ultimate objective is. They can be very useful as a starting point
in the extraction and elaboration of more concrete requirements
to facilitate the software development process.
In this investigation we attempt to define the concept of a goal, its
significance in requirements analysis in particular and software
engineering in general. We further review approaches proposed
in literature for modelling and harnessing goals and compare how
they treat goals as objects of interest. Finally we draw conclusions
about the methods’ pros and cons and ponder how we can exploit
their strengths in one unified method.

Keywords—Goal analysis, Goal modelling, Goal-oriented re-
quirements engineering.

I. INTRODUCTION

The presence of goal orientation in modern Requirements
Engineering (RE) is nowadays tangible [1]. Indeed, attempting
to answer the question why a software system is constructed,
goals naturally lead to more concrete software requirements
[2]. Thus they play an integral part in eliciting, refining,
modifying as well as documenting requirements [3]. As such,
goals also play a crucial part in use cases in object-oriented
approaches.
Over the past twenty years goals have received a lot of
attention by researchers as a key phase in RE. Annie Anton
[4] quotes a survey that reveals 40 to 60 percent of software
defects or failures to be caused by poor software requirements.
Addressing such issues in hindsight may prove to be a costly
operation in practice [5], which is why goals have been hailed
as a possible remedy with multiple goal analysis methods
proposed in the area. In this study we explore KAOS [2],
GBRAM [6] and i* [7] to get a perspective of how different
methods approach goals and what aspects they focus on. We
also review other studies comparing the three methods such
as those presented by Regev and Wegmann [8] to draw con-
clusions about the different methods’ practical applicability.
We also very briefly discuss Evangelia Kavakli’s [1] attempt
to knit together the different approaches in order to obtain a
more rigid RE framework and ask ourselves if such a unified
method may have any downsides.
This articles is organised as follows: In Section II we formally
introduce goals and explore where they sit in the requirements
analysis process. Sections III to V are devoted to examples
of goal-based modelling techniques backed by case studies
where they are applied in practice. We discuss those techniques
in order of formality: from the most formal to the least. In
Section VI we weigh up the different methods’ strengths and
weaknesses and attempt to outline a ”recipe to cook up” a new
method using the old ones as ingredients. Finally in Section

VII we draw conclusions about the felicity of the models
presented and summarise our findings.

II. GOALS AND THEIR ROLE IN RE

Simply put, the goal of a product is the purpose it is
intended to serve, such as execute card payment for a payment
processor. Although we are mainly concerned with goals in
software engineering, goal analysis can be applied much more
widely as we shall soon convince ourselves. Annie Anton
[6] describes goals as high level objectives of the business,
organization or system that capture the reasons why a system
is needed and guide decisions at various levels within the
enterprise. They are also defined as prescriptive statements
of intent whose satisfaction depends upon the co-operation
between agents and the environment of the software-to-be
[3]. What differentiates goals from requirements is that goals
explain what should be achieved and why rather than how.
Axel van Lamsweerde [2], [3] goes on to classify goals
according to different criteria, which we look at a little more
closely later in this section.
Van Lamsweerde [2] further defines a system as the composite
of the software to be produced and its environment. The system
is comprised of components, which are divided into passive
and active ones, the latter being referred to as agents. In a
train transport system we recognise the rails as the passive
components and the software and humans operating the train
system as the active ones. Unlike requirements, a goal may in
general involve the co-operation of multiple agents [2]. In the
train system example the safety goal will typically involve the
close co-operation of the on-board train controllers, train track-
ing software, station system, communication infrastructure,
passengers and so forth [2]. One of the important outcomes of
the RE process is the decision of which parts will be automated
and which will not. Van Lamsweerde stresses that a single
agent in the software under development responsible for a
goal becomes a requirement, whereas a single agent in the
environment becomes an assumption.

A. Goal Classification and Goal Interaction

Goal classification can go a long way towards aiding goal
acquisition, refinement, requirements extraction and consis-
tency verification. There are multiple ways of classifying goals
and with respect to different factors. We continue following
van Lamsweerde [2] to find out how goals can be categorised.
Just as ordinary requirements can be broadly divided into
functional and non-functional (quality), so too can goals be.
A functional goal typically captures some maximal set of
desired scenarios; it can be established in a clear-cut sense
- the concrete services to be provided. A quality goal, on

21



the other hand, illustrates desired behaviour when executing
functional goals such as reliability, security, usability etc.; these
can be less clear. Van Lamsweerde further proposes a detailed
subdivision of goals, e.g. satisfaction vs. information goals
for functional goals to distinguish between goals concerned
with satisfying agent requests and goals that keep agents
informed about object states. Similarly, non-functional goals
can be divided into accuracy, performance and security goals.
Accuracy goals demand the state of the object under scrutiny
must be correctly reflected by the system-to-be - violation of
these goals may have catastrophic consequences. Performance
goals are further grouped into time and space performance
goals, whereas security goals into confidentiality, integrity and
availability goals.
Temporal behaviour provides a further distinction in goal
classification. Achieve (resp. cease) goals stipulate some target
property must eventually be satisfied (resp. negated) in some
future state. Maintain (resp. avoid) goals restrict the behaviour
of the system so that in all states some target property must
be satisfied (resp. avoided). Optimise goals favour behaviours
that best meet some quality goal. Depending on the level
of abstraction, goals can also be high-level (”serve more
passengers” for a train transport system or ”ensure ubiquitous
service” for an ATM network) or low-level (”acceleration
command delivered on time” for the above train transportation
system or ”withhold card after 3 wrong PIN entries” for the
ATM network) [2].
Separate from goal classification are goal attributes that can
be attached to any goal irrespective of its type. The priority
of the goal is one such attribute that describes how exigent
the satisfaction of that particular goal is and what degree of
optionality it can be assigned. These degrees of optionality
are, in turn, used as a basis when reconciling conflicting goals.
Other relevant attributes may include utility, feasibility etc.
A goal, of course, does not exist on its own. We have men-
tioned conflicting goals and indeed, a conflict link between two
goals means that satisfying one goal would lead to the violation
of the other. Goals can also support other goals and to correctly
capture the different links among them, van Lamsweerde uses
AND/OR structures. AND-links associate a goal with a set
of subgoals each of which must be satisfied in order for the
parent goal to hold. Similarly, OR-links require that at least
one subgoal should be satisfied for the parent goal to hold. As
we mentioned earlier, quality goals may sometimes turn out
to be more challenging to express and satisfy in practice. That
is why the term goal satisficing has been introduced, which
eliminates the absoluteness in goal satisfaction and implies
goal achievement within tolerable limits.
Besides inter-goal links, there also exist links between goals
and other elements of the RE model, such as scenarios.
According to van Lamsweerde goals and scenarios have com-
plementary characteristics. The former are general, abstract
and make intended properties explicit, whereas the latter are
concrete, narrative and leave intended properties implicit. That
is why scenarios and goals elegantly complement each other
for requirements elicitation and validation.

B. Role of Goals in RE

We continue working with Axel van Lamsweerde [2] to
discover why goals are actually of the essence. He cites several
reasons, which we discuss below:

• First and foremost goals serve to obtain complete
and concrete requirements. They provide a reliable
criterion for sufficient completeness, which is attained
when the requirements specifications extracted can
achieve the entire set of goals also taking into account
the assumptions made about the environment.

• Pruning irrelevant requirements is also an area goals
are widely used. Goals provide a sufficient criterion
for requirement pertinence.

• Explaining requirements to stakeholders could also
be aided by the use of goals, as goals provide the
rationale behind requirements. A requirement appears
because of some goal that necessitates it. According
to van Lamsweerde [2] a goal refinement tree provides
the traceability links from high-level strategic objec-
tives to low-level technical requirements.

• Goals provide the right level of abstraction for require-
ments elaboration and validation.

• Last but not least conflicting requirements can be
identified and conflicts resolved with the help of goals.

C. Where to Start Looking for Goals...

Goal identification can pose quite a lot of challenges. As
van Lamsweerde [2] writes, they could be directly stated
by stakeholders, but also merely implied so separate goal
elicitation must be conducted.
Van Lamsweerde also stresses the importance of examining the
current (old) system in use the new one is meant to replace.
Pinpointing defects in the old system yields a first list of goals
of the new system. Once that first stage is complete, these goals
must be validated with stakeholders and then refined simply by
asking the questions WHY and HOW about the goals readily
available. There are also goals that come to light only after a
conflict of other goals has been resolved.
Van Lamsweerde rounds off that a goal must be identified and
validated as soon as possible to allow for better requirements
elaboration. Unfortunately there is no right way to go about
obtaining goals and extracting requirements from them, and
in the next sections we will see several approaches that share
some similarities but also exhibit differences.

III. KAOS

KAOS is one of the best-known software engineering ap-
proaches that stresses the importance of explicitly representing
and modelling organisation goals [1]. The method stands for
”Keep All Objectives Satisfied” and throughout this section
we follow Axel van Lamsweerde [5] to get a notion of its
structure and practical application. The case study presented
in the article discusses a safety injection system for a nuclear
power plant and examines the phases from preliminary goal
identification to requirements derivation.

A. Initial Goal Identification from the Source Document

After an initial perusal of the documentation of the desired
safety injection system, a preliminary set of goals has been
extracted. One of those goals is an effective coolant system
at all times. The fulfilment of this goal may be hindered by
an obstacle such as Ineffective Coolant, which is mitigated by

22



the goal SafetyInjectionIffLossOfCoolant. This goal is then refined
into a subgoal SafetyInjectionIffLowPressure and an accuracy
property of the environment SafetyInjectionIffLowWaterPressure.

B. Formalising Goals

KAOS uses a formal language of symbols to ensure cor-
rectness and completeness of goals and to aid the requirements
elaboration process. In addition to the usual logical concepts
and symbols (e.g. ”→” - implication and ”↔” - equivalence)
KAOS introduces several temporal operators explained below:

♦P P holds in some future state
2P P holds in all future states
A⇒ C In every future state A implies C i.e., 2 (A→ C)
A⇔ C In every future state A implies C i.e., 2 (A↔ C)
•P P holds in the previous state
@P P has just become true i.e., • ¬P ∧ P

Here is an example showing the formal definition of the goal
SafetyInjectionIffLowWaterPressure [5]:

Goal: maintain SafetyInjectionIffLowWaterPressure.
Informal definition: a safety injection alert should be
triggered if and only if the water pressure is below some
critical threshold.
Formal definition: TriggerSafetyInjectionAlert ⇔ WaterPressure
< ’Threshold’.

C. Detecting and Resolving Conflicts

Requirements engineers live in a world where conflicts
are the rule rather than the exception [2]. They arise from
diverging viewpoints and concerns. Conflicts must be rooted
out as early as possible and goals can play a vital role in that
process. In the case study under consideration [5] a safety
injection alert must be avoided during normal start-up or
cool-down.

Goal: avoid SafetyInjectionDuringNStartup/CoolDown.
Informal definition: a safety injection alert should not be
triggered during start-up/cool-down even if the water pressure
drops below the critical threshold.
Formal definition: (NStartUp ∨ NCoolDown)⇒
¬ TriggerSafetyInjectionAlert.

As can be easily established, in the previous subsection
the goal to maintain SafetyInjectionIffLowWaterPressure is not at
odds with the goal we just defined, unless the power plant
happens to be in a start-up or cool-down state when the water
pressure sinks below the threshold. The conflict resolution
tactics we can employ [5] lead to the weakening of the goal
of maintaining SafetyInjectionIffLowWaterPressure, which, in
turn, becomes:

Goal: maintain
SafetyInjectionIffLowWaterPressureUnlessStartUp/CoolDown
Informal definition: a safety injection alert should be
triggered whenever the water pressure is below some critical
threshold, except during normal start-up and cool-down.
Formal definition:
¬(NStartUp ∨ NCoolDown) ∧ WaterPressure < ’Threshold’ ⇔
TriggerSafetyInjectionAlert

D. Refining Goals and Assigning Agent Responsibilities

As we pointed out in section II, a requirement is a single
agent responsible for one goal. Ultimately, we strive to extract
concrete requirements from the goal analysis, ergo we must
reduce each goal to an objective within the responsibility of
one agent. Such a goal would require the safety injection alert
system to constantly monitor the current operating regime
[5], which is impracticable and therefore the goal to maintain
SafetyInjectionIffLowWaterPressure is unrealisable. To resolve the
situation Letier and van Lamsweerde employ an agent-based
refinement tactic and split the goal into two subgoals, also
introducing a state variable Overridden that monitors the
current operational mode of the power plant. Formally the
two subgoals are defined as follows:

Subgoal: maintain
SafetyInjectionIffLowWaterPressureUnlessOverridden
Formal definition: TriggerSafetyInjectionAlert ⇔
WaterPressure < ’Threshold’ ∧ ¬ Overridden.

Subgoal: maintain Overridden
Informal definition: the state variable Overridden contains
information about the current working regime of the power
plant. It is true if the plant is in a state of normal start-up or
normal cool-down and false otherwise.
Formal definition: Overridden ⇔ (NStartUp ∨ NCoolDown).

Letier and van Lamsweerde go on to claim that a human
Operator agent may be placed in charge of monitoring the
current operating regime of the power plant and thus this
agent can directly control the state variable Overridden. That
is how both subgoals become realisable. The role of the
human agent becomes an environment assumption, whereas
the automated safety injection alert becomes a software
requirement.

E. Predicting and Resolving Obstacles

The first round of goal identification tends to be
overidealistic and to overlook possible unexpected behaviour
[5]. Not anticipating exceptional behaviour may result in
incomplete and unrealistic requirements. An obstacle is such
an exceptional scenario that may hinder goal satisfaction.
Formally an obstacle O is said to obstruct a goal G if and
only if:

{O,Dom} |= ¬G obstruction

Dom 3 ¬O domain consistency,

where Dom denotes the software environment and its
assumptions.
Obstacle analysis adopts a pessimistic view of goals,
requirements and the software environment. It looks for ways
to violate the assumed behaviour of the agents to yield a
more robust and less error-prone system.
In the security injection system example Letier and van
Lamsweerde cite a failure in the activity of the human agent
as a possible obstacle. Under normal circumstances we would
assume that the human Operator agent accurately updates the
value of the state variable Overridden whenever the power
plant switches operational mode between normal start-up and

23



normal operational mode, or between normal start-up and
normal cool-down. More formally, our assumption states the
following:

Assumption: avoid OverriddenWhenNoNStartUp/NCoolDown
Informal definition: outside normal start-up and cool-down
the state variable Overridden should be set to false.
Formal definition: ¬@(NStartUp ∨ NCoolDown) ⇒
¬@Overridden.
ResponsibilityOf: Operator

Let us now imagine the Operator agent accidentally activates
the state variable Overridden after the power plant has exited
its normal start-up mode and entered regular operational
mode. We must stress that we completely rule out any
malicious intention or grievous negligence on the part of
the agent, i.e. that they would deliberately or inadvertently
disable the security injection system at a moment when it
may be needed. This yields the following obstacle:

Obstacle: Operator fails to update Overridden
Informal definition: the Operator inadvertently overrides the
security injection system while the power plant is in regular
operational mode and the water presure is still above the
minimum.
Formal definition: ♦(¬@(NStartUp ∨ NCoolDown) ∧
@Overridden)

Once envisaged, obstacles must be adequately addressed.
Obstacle resolution techniques involve assessing the criticality
and the likelihood of the obstacle, exploring alternatives
and selecting the best one based on a complex of factors
such as cost, practicability, risks, performance, etc [5]. The
workaround suggested by Letier and van Lamsweerde [5]
involves strengthening the responsibility of the automated
security injection system to include monitoring the water
pressure at all times. Thus we obtain another goal for the
automated system:

Goal: maintain Overridden depending on water pressure
Informal definition: the automated safety injection system
should at all times monitor the water pressure and leave true
as the value of the state variable Overridden if and only if it
was already set to true by the human Operator in the previous
state and the water pressure had dropped below the threshold.
Formal definition: @Overridden ⇔ @Overridden ∧
•( WaterPressure < ’Threshold’) ∧ WaterPressure < ’Threshold’
ResponsibilityOf: automated security injection system

Obstacle analysis is an iterative process [5]: the solution of
one obstacle may give rise to others that need addressing.
After strengthening the responsibility of the automated
security injection system one may ask what the purpose of
the human agent is and if it is cost-conscious to employ an
error-prone human only to monitor when the power plant
switches working regimes. Obstacle analysis cycles involve
trade-offs among various non-functional application-specific
goals regarding safety, reliability, cost, performance, etc. It is
a constructive method particularly relevant to high assurance
systems as many deficiencies are known to be caused by
incomplete risk assessment and poor design not properly
appraising the human factors and other sources of failure.

F. Extracting Operational Requirements from System Goals

Having resolved the obstacle in the previous subsection we
can now proceed towards turning that goal into a requirement.
The transition presented here is simple and straightforward
and uses the so called ’Immediate Achieve’ operationalisation
pattern [5]:

Operation: OverrideSafetyInjection
PerformedBy: automated security injection system
Input: Overridden, WaterPressure; Output: Overridden
DomPre: @Overridden, •( WaterPressure < ’Threshold’) ∧
WaterPressure < ’Threshold’;
DomPost: Overridden;
ReqPre/TrigFor: SafetyInjectionIffLowWaterPressureUnlessOver-
ridden

The table above states that the automated security injection
system will execute a check every time the state variable
Overridden has been switched on by the human Operator
agent and will set Overridden back to false, unless the water
pressure was already below the threshold when the Operator
enabled Overridden. The ReqPre/TrigFor keyword indicates
the result of this operation will contribute to achieving the
goal mentioned.
Letier and van Lamsweerde conclude the section by pointing
out that goal-oriented requirements elaboration ends where
most traditional requirements specification techniques should
start. They highlight the difference with use-case driven
modelling, which leaves goal achievement implicit, tends to
focus on too narrow an area thereby ”missing the point”. The
goal-oriented requirements elaboration approach employed
here, in contrast, started at a higher-level, constantly keeping
goal achievement in mind.
Having explored the inner workings of KAOS, we can now
draw some conclusions about the method in general. It is
undoubtedly very formal and one may rightfully suppose it
is most suitable for large critical systems such as the safety
injection one discussed here. We would normally associate
such systems with the waterfall model - a conservative model
that aims to resolve all issues in the current phase before
proceeding to the other.
In the next section we explore a slightly less formal method,
which, despite lacking its own language, also takes a rather
conservative stance on goals.

IV. GBRAM

In this section we turn our attention to another method that
places goals in the centre of RE - the Goal Based Requirements
Analysis Method (GBRAM) due to Annie Anton. Throughout
the section we will be following Anton [6] to gain insights into
the method’s elements and look into a case study conducted
to demonstrate its applicability. GBRAM was put into practice
when analysing the Career Track Training System (CTTS), part
of a business re-engineering project for an Air Force Base
(AFB). This was not a software project per se, but a wider
scheme aimed at promoting career development. Nevertheless
goal analysis proves to be very relevant as we shall convince
ourselves below.
As we have already seen, goals can be very useful in elab-
orating requirements. In general, GBRAM focuses on two
important aspects. The first is a question related to goal

24



analysis and is by nature similar to the goal analysis in
KAOS How are goals identified?. The second aspect is, a little
misleadingly, posed as goal evolution, but in fact it addresses
the change of goals during the goal analysis and refinement
process rather than stakeholders’ intentions making a sudden
U-turn.

A. Goal Analysis

The initial goal deduction is an intricate process of ex-
tracting information from process descriptions such as flow
charts, entity Relationship (ER) diagrams, etc. Furthermore the
practitioner should look for additional sources such as inter-
views with stakeholders. Anton points out that stakeholders
tend to express their requirements as actions and operations
rather than explicit goals. Thus the analyst must look for verbs
and other words expressing action to infer a stakeholder’s
goal. In her investigation of the CTTS Anton distinguishes
between achieve and maintain goals. Achieve goals answer the
questions Is completion of this goal self-contained?, Does this
goal denote a state that has been achieved or a desired state?
and Does achievement of this goal depend on the completion of
another goal?. Maintain goals on the other hand are recognised
by asking Does this goal ensure some condition is held true
throughout all other goal operationalisations and Is continuous
achievement of this goal required?. Such a goal is G2 in table
I, which must be achieved on a continuous basis. Maintain
goals can also be identified by searching for words such as
’supply’, ’provide’ and any other verbs suggesting a continual
state within the system.
After classifying goals into achieve and maintain goals (see
tables I and II), Anton directs her attention to the identification
of agents and stakeholders. She defines the agent as the entity
responsible for achieving a given goal. Stakeholders on the
other hand are the parties directly or indirectly concerned by
the achievement or failure of the goal. Tables I and II below
are an excerpt of the results Anton obtained after a thorough
investigation of the CTTS documentation.

Maintain Goals Agent Stakeholders
G1: Career tracks provided AFB AFB
G2: Tax payers money spent
efficiently

AFB AFB,
employee

G3: Training co-ordinated AFB AFB,
employee

TABLE I: Maintain Goals, Agents and Stakeholders

Achieve Goals Agent Stakeholders
G4: Career portfolio created employee employee, su-

pervisor
G5: Course completed employee employee
G6: Skills improved employee AFB,

employee
G7: Certification granted AFB AFB,

employee

TABLE II: Achieve Goals, Agents and Stakeholders

Let us now briefly comment on some of the goals, agents
and stakeholders identified above. Goal G1 : Career tracks
provided in table I, for example, has been identified as the

sole responsibility of AFB, which is also the goal’s only
stakeholder. The reason for this according to Anton is that
employees are responsible for and interested in their individual
career development rather than the opportunities provided to
all. Moving on to table II we examine G6 : skills improved
and observe that although each employee is in charge of their
own skills, the party interested is also the employer, who can
only benefit from highly-skilled workforce.

B. Goal Evolution

As Anton points out, objectives are very likely to change
in time, for example because stakeholders reconsider their
priorities and re-define their goals. She mentions two types of
goal evolution: elaboration and refinement, although she does
not make the distinction between the two very clear.
Goal elaboration is attained through very useful techniques
such as identifying obstacles and analysing scenarios and
constraints. Just as in KAOS, GBRAM also considers the
question how the execution of a goal may be hindered, in
order to anticipate exception cases. For example, an obstacle
to G7 : Certification granted may be that the employee does
not obtain her certification after all. Scenarios help concretise
ways in which a goal can fail. In our current example this
may be that the employee fails the training course or does not
attend it at all. Another benefit of scenarios is that they help
discover hidden goals. Anton remarks that the question What
happens if...? leads to new relevant goals that may have been
overlooked during the initial analysis.
Goal refinement is realised by reconciling synonymous goals,
eliminating redundancies or establishing precedences among
goals. Anton also considers identifying goal constraints to be
a refinement as well as an elaboration technique. A constraint
is different from an obstacle in that it does not completely
prevent a goal from being achieved, rather imposes further
conditions that must be met to fulfil the goal. For instance
a constraint related to goal G7 : Certification granted may
be that certification should enable employees to advance to
another level.
Another technique that aids goal refinement is establishing a
precedence relation in the set of goals, i.e. which goal needs to
have been completed for another goal to follow. The question
we can ask ourselves is Which goals are prerequisites for
this goal? Examining table II we can see that for instance,
goal G5 : Course completed must be a prerequisite for goal
G7 : Certification granted. This is denoted G5 < G7. Goal
precedence enables us to envisage goal operationalisation and
consider further refinements and elaborations.

C. Goal Operationalisation

Turning goals into requirements is what we would ulti-
mately like to achieve. To that end Anton proposes consoli-
dating goals into goal schemas that specify the relationships
between goals and their agents. Goals and their operationalisa-
tions (actions) are specified as events in terms of preconditions
and postconditions. A precondition must be met for the goal
to be achieved and a postcondition is the state of the system
after the goal is completed. A precondition for certification to
be granted can be, for instance, that the employee has passed
the certification examination. A suitable postcondition after
the certification has been granted may be that the employee

25



progresses to a higher level. A formal goal schema similar to
the one in Anton’s article [6] is presented below:

Goal: Certification granted
Type: Achieve
Description: AFB must award certification to

employees who have success-
fully completed the appropriate
training and passed the exami-
nation.

Action: Confer certification
Agent: AFB
Stakeholders: AFB, employee
Obstacles: Certification not granted
Scenarios: Employee does not attend train-

ing.
Employee does not pass final
examination.

Postcondition: Employee advances to a higher
level.

TABLE III: Goal schema for goal G7

Anton concludes by remarking that the goal schema above
is what translates into a requirement. By elaborating and
refining each goal in the set of goals we can thus arrive at
a set of requirements.

V. THE i∗ FRAMEWORK

The i∗ framework takes a slightly different approach
from what we have seen thus far. While it still stresses the
importance of goals in RE, it delves even more deeply to the
very core of the underlying organisation to find out why the
new system is needed and where it sits in its surrounding
environment. The i∗ framework consists of two modelling
components: Strategic Dependency (SD) used to discover
dependency relationships among various actors in the organisa-
tion; and Strategic Rationale (SR), which describes stakeholder
interests and concerns and how they may be addressed by
various configurations of system environments. Throughout
this section our constant companion will be Eric Yu [7],
whose work on the i∗ framework is illustrated in a case study
focusing on a computer-based meeting scheduler. Yu considers
the fundamental building block of the i∗ framework to be
the intentional actor. Actors are assumed to have intentional
properties such as goals, beliefs, abilities and commitments.
Actors may depend on and collaborate with each other to attain
a goal that may be impossible for one actor to attain single-
handedly.

A. Strategic Dependency

The formal requirements of the computer-based meeting
scheduler we are considering in this section might state that
an initiator invites all participants to enter the times and venues
convenient for them and those that are impossible for them,
and the scheduler should produce a solution suitable for all
parties. Yu points out there have been multiple methodologies
developed to refine such kind of requirements to achieve
more precision, completeness and consistency, but to develop
systems that truly meet an organisation’s demands, one needs

to gain a deeper understanding of how the system fits into
the organisation. The questions that need addressing first
focus on ”why” rather than ”what” and ”how”[7]. These are
questions such as ”Why is it necessary to schedule meetings
ahead of time?”, ”Why does the initiator ask about convenient
and inconvenient timings?” and ”Are some participants more
important than others?”.
Thus the Strategic Dependency model clarifies the intentional
relationships among actors. In the meeting scheduler example
by asking the above mentioned questions and similar we can
deduce that the meeting initiator depends on the participants
to enter the timings convenient for them and subsequently
attend the meeting on the agreed date. Yu also singles out
important participants as constituting a critical dependency
in the meeting scheduling task. Yu stresses that establishing
these dependencies is critical not only for the successful
development of software systems, but also for the collaboration
with other software systems as well as the accommodation of
their ongoing evolution.

B. Strategic Rationale

The Strategic Dependency model provides a framework
for establishing external relationships among actors. Strategic
Rationale goes one step further and probes into the actors
themselves, their tasks, goals and resources and the internal
relationships therein. In the meeting scheduler example the ini-
tiator has one clear goal: to arrange the meeting. However this
goal can be split into tasks, subgoals and obtaining resources.
One such task may be to obtain available dates from the
participants and based on that resource work out a time suitable
to all invited participants. As Yu remarks, a soft subgoal for the
initiator may be that the tasks should be executed quickly or
with low effort, which is where automation and the computer-
based scheduler come in. The initiator can delegate the task of
polling participants’ opinions to the computer-based scheduler.
SR thus provides a way of modelling stakeholders’ interests
and how they can be met.

C. Supporting early-phase RE

Unlike RE, which traditionally aims to identify and elim-
inate incompleteness, goal analysis with i∗ focuses on es-
tablishing user goals, their relationships and the possible
alternative ways in which they can be satisfied. In order to
weigh and compromise between different alternatives, i∗ offers
a number of levels of analysis: ability, workability, viability,
believability.
When an actor is allowed to perform a certain action or
execute a procedure, Yu says that the actor is able. Different
actors may have different permissions to perform different
actions. Ability to achieve a goal requires the satisfaction of
all subgoals and completion of all subtasks associated with
it. In the meeting scheduler example the initiator was able
to organise the meeting if she managed to obtain sufficient
information about availability from the invited participants and
work out a date suitable for all.
An action is workable if and only if there exists a means of
achieving it [7]. The initiator of the meeting could, for ex-
ample, consider the intersection of all the appropriate timings
submitted by the invited participants.
A workable solution may not necessarily be viable. Computing

26



the intersection of all available time slots is laborious and
error-prone. The soft goals that stipulate the action should be
completed quickly and with minimum effort will fail to be
satisficed.
Judging whether a proposed solution is viable and workable
is based on assumptions that fall into the category of be-
lievability. The believability of a rationale can be verified
by considering each of its assumptions. For example the
workability of the solution involving the intersection may be
justified by years of experience employing the method.
Yu concludes that these four criteria can go a long way
towards refining objectives and elaborating goals. Although
requirements extraction from goals is not as evident as in
the previous two methods, i∗ provides the first step towards
reasonable RE.

VI. COMPARISONS AND UNIFYING MODELS

In this section we pause and look back on the methods
we have familiarised ourselves with in the previous sections
and try to find similarities and differences led by Regev and
Wegmann [8]. We also briefly study a model metamethod
due to Evangelia Kavakli [1], that is, a a procedure to splice
approaches together.
We start by discussing the common features of the methods.
Surely, they all try to understand why a new product is being
developed, but i∗ seems to go that extra mile and delve even
more deeply into each and every actor’s priorities to establish
the dependency and precedence relationships among the goals.
Stakeholders are recognised by all three methods as the parties
interested in attaining the goal. And while KAOS aspires to
assign one goal per agent to derive requirements, i∗ is perfectly
happy with actor co-operation and does not try to refine goals
any further.
A significant difference is that KAOS and GBRAM study goals
with a view to extracting requirements - they are intended for
completion before the formal RE begins, whereas i∗ does not
perceive itself as an independent stage of the software life
cycle. Its purpose is just to aid early RE and does not constitute
its own phase. Nor does it directly lead to requirements extrac-
tion. Although KAOS and GBRAM share many similarities, it
is interesting to observe that KAOS does not consider goal
constraints. GBRAM, on the other hand, does not bargain
for conflicting goals. Also, while KAOS introduces a formal
language to define and analyse goals, GBRAM remains more
verbal and abstract and does not formalise its procedures. Table
IV features the main aspects of the methods and is adapted
from a similar table presented in [8]:

Now that we have weighed the pros and cons of the models
we explored so far, it would be interesting to see if there is
a way we can combine their strengths to use them to our
advantage. Evangelia Kavakli [1] proposes a framework of
four knowledge modelling states that could be useful in goal
analysis and subsequent RE:

• The As Is state concerns knowledge about the current
organisational situation.

• The Change state refers to the reasons (the need) for
altering the existing situation.

• The To Be state characterises knowledge about the
future enterprise situation.

KAOS GBRAM i∗

Goal a nonop-
erational
objective to
be achieved
by the
composite
system

targets for
achievement
which
provide a
framework
for the
desired
system

not formally
defined

Achieve
Goal

a property
that holds in
the current or
come future
states

objectives of
an enterprise
or system [...]
satisfied when
the target
condition is
attained

not used

Maintain
Goal

property that
holds in the
current and
all future
states

goals which
are satisfied
while their
target
condition
remains
constant or
true

not used

Softgoal not used not used a qualitative
criterion
that must be
met when
satisfying
other goals

Constraint not used a condition
on the
achievement
of a goal

implicit in the
SD model

Obstacle exceptional
behaviour
that may
result in
incomplete
or unrealistic
requirements

behaviours or
other goals
that block the
achievement
of a given
goal

implicit in the
SD model

TABLE IV: Overview of goal concept definitions in KAOS,
GBRAM and i∗

• The Evaluation state concerns knowledge regarding
the assessment of the current situation, the suitability
of a change plan, or the appropriateness of a future
enterprise model.

It would thus be well-advised to choose the best method that
fits each state from the three we have reviewed in this study.
Based on what we have learnt, the As Is and Change states
are best addressed by i∗, because they are more general.
The Strategic Dependency model of i∗ deals exactly with the
present situation in the organisation and the need for change.
A combination of KAOS and GBRAM with all the aspects
considered would best portray the software to be, also not
forgetting goal validation both methods promote.
A question, of course, arises whether the formality of KAOS
is in fact compatible with the generality of i∗. Indeed the
waterfall-like nature of the former may sometimes appear to

27



be miles away from the almost agile characteristics of the
latter. In the author’s opinion, however KAOS and i∗ really do
complement each other. Recalling the first stage of KAOS, we
can easily convince ourselves that initial goal identification can
only be aided by studying the underlining organisation. We can
thus conclude that those two methods do manage to co-exist
to yield a stronger, more rigid procedure.

VII. SUMMARY AND CONCLUSIONS

In this study we explored the values of goals and investi-
gated where they sit in the software development process. We
also familiarised ourselves with different approaches designed
to analyse and use them for the extraction of requirements.
Finally we drew parallels among the three models and briefly
discussed how we could make the most of all three in one
unified model.

REFERENCES

[1] E. Kavakli, “Goal oriented requirements engineering: a unifying frame-
work,” Requirements Engineering Journal, Springer-Verlag London,
vol. 6, pp. 237–251, 2002.

[2] A. van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering, ser. RE ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 249–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882477.883624

[3] ——, “Goal-oriented requirements enginering: a roundtrip from research
to practice [enginering read engineering],” in Requirements Engineering
Conference, 2004. Proceedings. 12th IEEE International, Sept 2004, pp.
4–7.

[4] A. Anton, “Successful software projects need requirements planning,”
IEEE Software, vol. 20(3), pp. 44,46–47, 2003.

[5] A. van Lamsweerde and E. Letier, “From object orientation to goal
orientation: A paradigm shift for requirements engineering,” in Radical
Innovations of Software & System Engineering, Montery02 Workshop,
Venice(Italy), LNCS. Springer-Verlag, 2003, pp. 4–8.

[6] A. I. Anton, “Goal-based requirements analysis,” in Proceedings of
the 2Nd International Conference on Requirements Engineering
(ICRE ’96), ser. ICRE ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 136–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=850944.853130

[7] E. S. K. Yu, “Towards modeling and reasoning support for early-phase
requirements engineering,” in Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering, ser. RE ’97. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 226–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=827255.827807

[8] G. Regev and A. Wegmann, “A.: Where do goals come from: the
underlying principles of goal-oriented requirements engineering,” in In:
RE 2005. Proceedings of the International Requirements Enginering
Conference (2005, 2005, pp. 253–362.

28



User Stories and Business Impact

Qian Zhou
Department of Computer Science

University of Helsinki
Gustaf Hllstrmin katu 2b, FI-00014

Email: qxzhou@cs.helsinki.fi

Abstract—There are two fundamental roles in any type of
business transaction. One role is a customer who wants or needs
something and the other one is the provider who can offer needs.
However, there is gap between what the provider offers and
what the customer needs. Fast release of a software product
based on marketing demand has more opportunities to conquer
a market without too much competitiveness. How to develop a
product that meets customers’ needs and releases it in time are
essential for software companies. Software development project
is about to develop features which are needed by users. In agile
software development, user stories are used to describe features
and functionality of a product from the perspective of a user. As
a result, user stories identify user needs and stand for units of
business value delivered by the software company. User stories
also need to be continuously revised according to change of user
needs in the development evolution. In order to develop right
product rightly and adjust project requirements based on user
needs, it is worth to research how user stories could affect a
business and how to use user stories correctly and efficiently.

Keywords—Software Engineering, user stories, business value
delivery, impact mapping, agile development.

I. INTRODUCTION

A product can be described by a list of features. It is
the feature that makes the product valuable in marketplace
and motivates customers to purchase a product. One aim of
a software development project is to build features that are
valuable to the customers. However, not all software projects
could delivery business value correctly. Jim Johnson and his
Standish group found that only 20% of the features in a product
is always or often used while 80% of the features is seldom
or never used[10].

The best way to build a software product that meets
users’ needs is to begin with user stories[2], which is an
agile software development methodology.Users stories are
brief statements that describe a product. User stories are also
tokens that stimulate the discussion process , via which the
design solutions could be explored and discovered. Finally
those solutions could be implemented in the later development
process. There are several user story formats and one template
introduced by Mike Cohn is” As a [user], I want [goal],
so that[reason]”[2]. Each user story is expected to make an
contribution to the value of the overall product once it is
implemented. As a result, user stories could help the product
development team to identify user needs and to implement
valuable features. It also helps the team to avoid wasting time
and money on unneeded features.

There is no doubt that how to develop a right product
rightly is a topic worthy to study. In this paper, user story and

its business impact from different aspects will be discussed
and tips to use user stories will also be covered. Section 2
will give an overview of user stories and the content includes
3C components, INVEST Model, alternatives of user stories
as well as benefits and limitations of user stories. Section 3
will discuss business impacts of user stories. Section 4 covers
methods on using user stories. Finally a summary on user
stories will be given.

II. OVERVIEW OF USER STORIES

This section will cover user stories details such as 3C
components and INVEST model as well as its benefits and
limitations.

User story was firstly mentioned by Kent Beck in the Ex-
treme programming development method. Originally Extreme
Programming described a user story as a small amount of
text written on an index card to function as a reminder for
a conversation between the developers and the customers[1].
There are different templates for the user story, one example
proposed by Dan North is ”As a X, I want Y, so that Z”[22].
X here is the role form the point view of a user, Y is goal
or achievement and Z could be the benefit that users get or
business value delivered by the team. A detailed example could
be ”As a registered user, I want to log in, so i can access
content that is only accessible for subscribers.” Mike Cohn
suggests that the value is optional, which means that for a story
template such as As a [type of user], I want [some goal], so that
[some reason], the ”so that” clause is optional[21]. However,
other people suggest the opposite format which focuses on
value. The suggested format is ”In order to [achieve some
value], as a [type of user], I want [some functionality]”[7].
In general, as long as the user story acts as a reminder for
discussion, those form are usable.

A. Ron Jeffries’ 3C

Card, Conversation and Confirmation[3] are three compo-
nents proposed by Ron Jeffries for a user story. User stories
are written in physical form : an index card or a sticky note.

Cards are tokens that identify requirements and briefly
remind what value of the story is going to be delivered[3]. The
card has story title and brief description which summarizes the
story content. The card could be used for project planning via
initially estimating effort such as time and technical skills to
implement a story. The card also plays an important role in
reminding future conversations between the develop team and
users.

29



Conversation covers all the details of a story via exchanging
ideas or opinions between the customers and the develop
team[3]. The conversation is mainly done by verbal but could
also be handled with documentation or recording videos for the
conversations. It is recommended to focus verbal conversation,
as documentation costs long time than verbal communication
and also puts burden on the single person who documents.
When a bunch of documents replies on that person to handle,
a bottleneck of the development process could be caused[5].
During the conversation phase, detailed user requirements
can be clarified and solutions can be framed for the story
implementation in the development process.

Confirmation of user stories is done by acceptance test from
users with the purpose to show whether the user stories could
be implemented correctly[3]. Acceptance test also could be
called customer test or functional test, which tells the develop
team whether the system acts in the way the customer expects.
Except confirmation from the users side, developer team also
needs to confirm that the acceptance test can pass or run
successfully to show the story is successful. This lets developer
to know they have satisfied the user needs to build the”right”
software.

B. INVEST Model

Bill Wake proposed the INVEST(Independent Negotiable
Valuable Estimable Small Testable) model to cover character-
istics of a good story[4].

Good stories should be independent to each other so that
they can be implemented and scheduled with any order. This is
because dependencies among stories could limit flexibility of
moving the stories around when the product owner prioritize
the user stories in backlog.

A good story should be negotiable for its details and
changes. As the story card just briefly describe the story
without details. The details come out from the conversation
phase between develop team and users. User needs may change
during the process of development or there is a need to change
the user stories. Negotiability enables teams to discuss story
details, discover new options and make changes for the stories
when needed.

The first principle[15] of the Agile Manifesto points out
to deliver valuable software to the customers. Each story is a
small and independent behavior that presents some value to the
user. A good story should be valuable to the users since users
are the ones who will pay money for features of the product.
This characteristic requires the team to develop needed features
and delivery right business value. Value of the stories can be
used to decide the prioritized order in the backlog and success
of a business depends on the value of the team can deliver.

A good story can be estimable, this means that the skills
and time to be spent for implementing the user stories can
be roughly estimate. This not only helps the customers to
prioritize the story’s implementation order but also requires
the develop team to understand the stories correctly and what
skills need are needed to implement the desired features.

The size of the user story should be small, so the develop-
ment team could know the story scope and get more accurate

estimates. A story with big scope is hard to understand and
estimate.

A good story should be testable. This requires the team
know what they are going to implement and could write the
test for the story. Confirmation of the tests also helps the team
to know whether their is met or not.[4]

C. User stories and requirements

A requirement is a capability that a product outcome
should conform. The requirements of a product should be
documented, tested and measured to identify business needs
or opportunities. Use stories are kind of requirements but they
are also different from requirements.

User stories can be updated when needed while require-
ments documentations are usually out of date. User stories en-
courage face-to-face conversation and based on latest leanings.
While requirements encourage guesswork or assumption and
the team members have little updated learning. User stories
require participation of end users while there is no such need
in the documented requirements. In addition, user stories are
written in non-technical and understandable way so the users
can write the user stories. However, requirements are usually
documented in technical and complex way.

User stories enables real-time and quick feedback, which
are disabled in requirements. User stories allow team work
while requirements discourage open collaboration. User stories
are relatively easy to estimate effort to implement, so they
simplify the planning while requirements make the plan more
complex. Overall, it is easy, fast and cheap to create user stories
while it is hard, slow and expensive to write the documents.

D. User stories and use cases

Use cases consist of a list of steps which define how a
role interact with the system. While user stories are short
description of features.

There are some common points between use case and user
stories. They both are techniques that used to capture require-
ments. They both put users at the center of the development
effort and both need to be verified by test cases.

However, there are differences between use case and user
stories. Use cases include different structured scenarios such
as main success scenario, alternative scenarios and failure
scenarios. Use cases describe how the users interacts with the
product by using one or more scenarios. While user stories
describe how the user employs the product.

Both use cases and user stories are sized to deliver business
value but they have different scope. User stories have smaller
scope as the size of story is constrained to schedule work.
However, use cases covers larger scope than the story. User
stories can be used for planning as difficulty and time to
implement the story can be estimated in user story. While use
cases are too large to offer useful estimate. Use cases and
user stories differ in their longevity. Use cases exist along the
product development process while user stories only exist each
iteration in which they are added to the software.[20]

30



E. Benefits and Limitation of User Stories

When compared with use cases and traditional require-
ments, user stories have the following advantages.

Firstly, user stories are more precise due to emphasis of ver-
bal communication[20]. Compared with written requirements,
face-to-face communication between development team and
users could overcome inaccuracies in written language and
also improve close relationship with users. In return, close
relationship also results more effective knowledge transfer
among team and users, who could actively participate in
designing of the system[9].

Secondly, user stories can be used for project planning as
each user story has estimation on level of difficulty and time
consumed to implement it[20]. User stories could also be used
for scheduling, this means that user stories can be assigned
with priority order.

Thirdly, user stories allows team to defer details. A story
could be replaced with more detailed story when needed[20].
This also means that user stories are suitable for iterative
development that allows stories to be written and revised
when needed[9]. User stories are flexible and agile as they
allow team to add, modify and delete user stories during the
development process. In addition, user stories help the team
to know what is going to build and make goals more clear. It
also helps to reduce upfront planning time.

Despite the advantages of user stories, there are also some
limitations. One limitation of user stories is that different
people could have different interpretations for a user story due
to its simplicity. As a result, conversation is needed to clear any
doubts in face-to-face communication. In addition, simplicity
of user stories also causes to ignore requirements in details.
It is known that when creating user stories, user stories focus
on roles. However, William Hudson argued that roles could
not express needs and behaviors of users in a full picture. A
user story describes activities the user may take but have no
clue about when and how a task should be performed[8]. He
suggested to use persona stories.

III. USER STORIES AND BUSINESS IMPACTS

This section will discuss user stories’ affect towards dif-
ferent aspects that involve with business.

A. User stories could clarify aim

A business aim is what the a business wants to achieve.
A primary aim for all business companies is to add value to
their product which could make a profit. However, at the early
stage of business, it is hard to identify what kind of product
features should be delivered to the customers. Without a clear
picture on what is going to be built, it is hard to align business
aims and development actions or effort.

User stories can help the development team to find their
aim and then clarify the aim. User stories are good and easy
start to explore possible features to be built with participation
of the users.

User stories act as reminder for conversation between the
development team and the users. During the conversation, user
needs can be discussed in details and aim on meeting those

needs can be more clear. Solutions and design ideas can be
also framed in the conversation phase, techniques needed for
those solutions can be carefully chosen to meet the aims.
Continuously applying and refining user stories as routine and
getting user feedback during the development process help the
team to better adjust and target the direction of aim and then
build product that is valuable in the marketplace.

In addition, as user stories must be verified by the users. By
obtaining the agreement from users and successful pass from
the acceptance test, the development team can ensure their aim
on building needed product is right.

With a good and clear aim of building what valuable
product to the customers, software company could have more
chance to be successful.

B. User stories could reduce risk

User stories can yield value by describing valuable features
that users are going to buy for the product. But user stories’
value can be more than on the side of the end users.

User stories could reduce risks. There are many types
of risks in a business, for example, financial risks, strategic
risks and technical risks. Financial risks involves with amount
of money and time to be spent on developing the product.
Strategic risks could be highly tight with the business plan
on when to release a product with less competitors. Technical
risks could be skills and resources needed to implement a story.

As user stories can be used to estimate time and effort to
implement a story, this could also help the team to have a
rough idea on when they can release a product.

Technical risks can be discovered during the early stage
of product development by applying user stories. User stories
need to be discussed, during the conversation, detailed tech-
nical skills to implement the story can be specified. Technical
risks can be also discovered when compared the needed skills
and what skills the development team has. Then solutions
on avoiding risks and approaches on solving those technical
problems could be further discussed and found.

In addition, during a group discussion, every participate is
a ”risk detector”. When one member proposes a solution, the
others could evaluate that idea and detect possible risks within
it. Then a quick respond towards this possible risk could be
exposed for team discussion. This reduces the chances to risks
and ensure quality of the product in some degree.

What is more, it is also easier to fix problems caused by
some technical risks in the earlier stage than the later phase.

As user stories must be verified and agreed by the users
before implementation. The acceptance criteria phase also
reduces the chances of delivering unneeded features to the
marketplace.

C. User stories can help to reduce cost

One benefit of user stories is that they can reduce cost
caused by changes. Changes during a product development
process are unavoidable. With iterative development, modifi-
cations of user stories are allowed at each sprint. The earlier
the changes are made and the less cost paid for the change

31



will be needed. User stories are allowed to be modified based
on user feedback and development needs. Quick user feedback
could let developers implement the latest user needs and update
features in early stage before more complex features are im-
plemented on the top of old version feature. User participation
and quick respond not only save implementation time but also
reduce complexity for developers to refine features.

D. User stories can stimulate innovation

Innovation is one thing that not only adds value for a
business but also make that business less competitive in a
marketplace. User stories can bring innovation for a business
due to following reasons.

As known, user stories are short descriptions of product
features. Some people argue that user stories’ brief causes
uncertainty and ambiguity, which could lead different versions
of understanding for the same stories. However, this could be
positively viewed as a good thing[23]. When different team
members interpret the stories differently, it also means different
prospective and ideas. What the ambiguity causes is that the
team takes relatively longer time to discuss each different
interpretations and reasons. The teams always need to discuss,
it is more likely to be worth on spending longer time to find a
potential innovative idea rather than follow normal ideas with
less time.

When apply user stories, conversation also means exchange
ideas among the team. This also means that everyone is learner
but also knowledge spreader. People could learn from each
other during the conversation and their knowledge could also
be updated at the same time. Updated learning in turn could
stimulate innovative ideas when combine specific previous
background. Group discussion among different groups such as
developers and customers also means combination of different
perspectives, which flourishes innovation.

IV. TIPS ON USING USER STORIES

In agile manifesto, a user plays an important role in making
decisions on what is going to be built [15]. XP (Extreme
Programming) encourages customers to write user stories and
then discuss details with the team members directly[1]. This
section will cover tips on improving user stories based on a
book called 50 Quick Ideas to Improve Your User Stories[5].
User stories creation, discussion, planning and prioritization
will be covered.

A. Stories creation

User stories are assumptions of business value, creating
valuable stories is the very first step to be successful in
business. There are following tips for creating stories based
on.

Firstly when creating user stories, it is suggested to avoid-
ing documenting details of the user stories[5]. Documenting
detailed stories costs time and causes bottleneck or failure to
rapid change due to single person documentation[5]. There
are cases that need to write down the details of stories. For
example, it is good to write details of stories that needs
specialist knowledge from a person who does not participate
the discussion.

Secondly, when creating user stories, Gojko suggests to not
to pay too much attention to the story format as long as the
key elements are included. One function of the story card is
a reminder for discussion. Once a story format stimulates a
good discussion and it will serve the purpose. Any format of
the story is good to start the discussion when the information
on the card is true. When the information on the card is wrong,
no matter what kind of format are written, there is no sense
to discuss. In addition, there is not clear proof showing one
format is better than the other one in terms of improving team
performance[5]. Gojko also mentions to try different formats of
a user story. For example, replacing words with a picture, using
questions that spark people to discuss and to find solutions[5].
There are possible benefits of trying different story formats:
some hidden creativity in the team might be woken up and a
different perspective during the discussion could be discovered.

Thirdly, when write the stories, the short summary on the
card should focus on user things rather than implementation
and solutions. Clear and accurate descriptions of user roles
can help the delivery team to identify needs and remove
unnecessary complexity. It helps team to understand who will
use the product they are building. As a result, it is important
to identify the target user who will use the target system and
investigate how work should be divided between them. User
personae is recommended. A generic user role(”As a user...”)
should be avoided. In addition, roles such as ”As a tester”
should also also be prevented.

B. Stories Discussing

User stories are reminders for discussion. There are fol-
lowing tips on user story discussion.

In terms of tools for the user story discussion, it is
recommended to use whiteboard and flip-chart rather then
using digital media. Discussions around the whiteboard are
faster and more productive than with technical tools. Because
using whiteboard does not need to worry about the text
alignment issues and formatting as well as distractions. Big
rooms with big boardroom tables are not recommended for
discussion. This is because big tables with bigger room space
prevents people from moving around and limits their physical
interaction.

Talking about techniques on discussion, diverge and merge
methods are encouraged to use in a large team. To make
discussion efficiently, size of the group discussion should not
be too big. It is suggested to divide the big team into smaller
groups and let groups discuss their understand of a story first
and then gather all groups together to compare results.

There are some benefits from splitting the teams. Splitting
a large team into smaller groups minimizes a fake consensus.
People with a similar background tend to work towards a
consensus even the direction wrong[18]. It is faster to find mul-
tiple ideas for a story in a smaller size team as each member
has time to contribute their ideas. In addition, everyone needs
to compare their understanding with the others in the team.
As a result, spotting sources of confusion is much easier. It
also reduces risks on proposing unnecessary stories features.
When comparing discussion results from different groups in
the merging phase, it is easy to identify common sources of

32



misunderstanding. Comparing different solutions with different
perspectives from the subgroups also enables innovations.

Experiencing of several times of splitting and grouping, all
team members could have better understand of the content and
scope of a story. Dividing and merging also makes the team
work in parallel and explore alternative solutions in a faster
way. When applying this method to story discussion, the team
could realize and discover the correct solution faster and with
relatively higher probability. Diverge and merge methods also
help the team to avoid the heavily reliance on single source of
all knowledge. One person who dominates the discussion in a
single group is easy to happen.

In the diverging process, subgroups should use concrete
examples to capture their understanding towards story. Be-
cause concrete examples are easy to compare and also easy
to identify misunderstanding among different groups. When
comparing the discussion results from different groups, the
team should focus on below three differences:

• differences in the format or structure of information

• differences in outcomes of similar examples

• things scratched out and question marks. . .

The first one reflects mental models and the team needs to
align different fromats and structures. The second one could
show potential misunderstanding and they need to be discussed
into further. The third one points out things that are might not
clear to the other groups and needed to be discussed within
the whole team.

A facilitator should be selected to keep track of the
time and lead the discussion during the mering process. The
facilitator should have the ability to compare results from
different groups. That person should be obviously much more
experienced and active in the business domain than the others
so he or she also could easily spot misunderstanding and keep
groups in the right direction.

Except tools and techniques for the discussion, discussion
roles should also be taken into consideration when there is
no need to gather all team members to look at a story. In
such case, a smaller discussion with all relevant roles that
representing each development, testing and analysis or other
related field is necessary. This kind of smaller discussions are
faster and require less effort on organizing people. Having all
roles included ensures that all perspectives are covered and
therefore ensures the quality and efficiency. It also enables
other team members to contribute for the implementation,
which makes the delivery more faster.

C. Stories planning

A good plan of user stories allows the team release product
in time to obtain market opportunities with less competitors
as well as saving cost. Releasing a product in a scheduled
time plays an essential role in business success. This is
because time, advertisement and business strategies are tightly
associated with the release.

It is recommend to put a ’best before’ date on stories.
This is to avoid the team to leave stories to be implemented
in the fire-fighting mode. When a team is reacting to an

emergency, other work suffered and the quality of product
might be degraded. To avoid emergencies, one method is to
check if there is an expiry data when new user stories are
proposed. The other approach is to write the best before data
on stories and make them visually obvious. A clear expiry
date allows teams to handle time-constrained stories before
they become urgent. This not only reduces emergencies but
also risks on developing lower quality product. It also help
the team to work more effectively with normal pace. To make
it work, it is important to ask about the potential deadlines
and clearly specify the dates. Marking the item visually also
helps the team to identify them quickly. Separating out fixed-
date items by using different shaped or colourful cards is also
recommended.

Similarly, except putting dates on the stories, it is also
important to set explicit deadlines for addressing major risks
among stories. Proper information on scheduling decisions
also mitigates risks by avoiding hard and risky task from
being post-phoned and replaced with small short-term wins.
Alistair Cockburn[5] suggested that deliver team should focus
on addressing risks rather then building value at the earlier
stage, when risks are down, the team can focus on developing
business value. Based on stages of growth model, the deliver
team can decide when to deliver values and when to address
risks as well as which tasks to address when product moves
through different stages.

D. Stories prioritization

A collection of ordered stories for a software product
is called product backlog. Prioritizing stories during the de-
velopment process aligns decisions to business strategy and
also associates user story implementation with business value
delivery. This section will discuss methods on prioritize user
stories.

Story card hell problem is a situation that a team has
a bunch of user stories to be implemented but team does
not have a big picture of what is going to do next. Using
hierarchical backlog could keep things in a hierarchy which
enables monitoring, discussing and reporting on big picture
items. Arranging the backlog into tiers offers a big-picture
view of the project and also reduces overall number of items.
By using hierarchical backlog, the delivery team can spend
less time on managing items and spend more time on building
valuable product. In addition, the hierarchical backlog also
allows the team to react quickly to market opportunities based
on changes. For example, prioritizes could be changed at any
level and a whole hierarchy of stories could be discarded when
they are inapplicable. The visual connections among different
levels also helps to show omitted features or unnecessary
stories.

To implement the hierarchical backlog, a visual board with
several horizontal swim lanes could be used to stand for
different layers. It is also good to use a physical planning
board with different card sizes and colors for different levels.
User story map and impact are also good alternatives to help
the team to present a hierarchical and multiple-level backlog.

Impact map is suggested to manage a group of stories.
Figure 1 shows a structure of the impact map. It helps with
prioritisation and eliminating unnecessary scope, which in turn

33



Fig. 1. Impact map structure[5]

speeds up delivery. An impact map is a strategic planning
technique that helps teams align their activities with overall
business objectives and make better road-map decisions[16].
Organizing stories based on impact map helps the team
to make decisions and discuss prioritisation. With a single
central node on the map, the stakeholder could choose one
big business goal to delivery first. This not only helps with
prioritization and removing unnecessary scope but also speeds
up delivery. As information held in the card format is visually
presented in the impact maps, user stories that do not fit the
current release cycle could be easily spot and discarded. User
story maps connect software deliver-ables (I want) to customer
journeys and business work-flows. As a result, it shows how
individual stories contribute to the bigger picture and offer a
great visual representation of release plans. Story maps helps
teams to have a better picture on what they are going to build
and why they build that way. As visual tool, story maps help
to spot missing or unnecessary user stories and create new
product ideas. Story maps also helps with prioritizing and story
splitting as well as release planning. There are several steps to
make it work. Firstly, identify the backbone of the story map
which is the horizontal axis. Then break down activities into
high-level steps which should not imply a particular technology
or a solution. After identify the backbone, identify options for
stories and move items vertically to plan releases.

It is also suggested to prioritise user stories based on stages
of growth. There are five stages of a growth model for success
products[17]:

• Empathy: Figuring out how to solve a real problem in
a way that people will pay for

• Stickiness: Building the right product to keep users
around

• Virality: Growing user base organically and artificially

• Revenue: Establishing a sustainable, scalable business
model with the right margins in a healthy ecosystem

• Scale: Growing the business. . .

At each stage, the delivery team should focus on addressing
a particular set of risks. Making all the stakeholders to agree

on the current stage is the most important thing to do when
using this growth model. Then select objectives for current
objects and identify quantifiable target metric that shows the
team that the product is in the current stage or ready to enter
another stage.

A standard method on prioritising a large group of work
items is to use the MoSCow[5], which splits features into
categories Must, Should, Could and Won’t. However, majority
of the work items will be put in the Must category. This is
because the more the teams ask the stockholders to narrow
down number of items in the prioritisation, the more the
stakeholders are afraid to to leave those items out side of
the backlog. To avoid this paradox, the Purpose Alignment
Model is introduced[19]. Classifying items based on the Pur-
pose alignment helps the team refocus efforts. The Purpose
Alignment Model provides useful ideas on how to deal with
category and avoid putting unnecessary items into Must Have
category which causes complexity.

V. SUMMARY AND CONCLUSIONS

User stories are commonly used in agile software develop-
ment and they stand for units of business value to be delivered.
They emphasize on discussions to capture user needs and
explore design solutions as well as spot misunderstandings.
User stories must be verified by acceptance test before imple-
mentation. This requires the development team to build things
that meet user needs and avoids creating unnecessary features
in the upfront.

In this paper, overview of user stories is covered. Based on
the background and history, Card, Conversation and Confirma-
tion define the key elements of a story. The INVEST model
shows some attributes of a good story. User stories alternatives
such as requirements and use cases are also discussed to distin-
guish with user stories. User stories impacts on clarifying aim,
reducing risks and costs, stimulating innovation are analyzed.
Finally, tips on using user stories for business success are
described based on referencing Gojko Adzic’s book. In details,
how to create, discuss, planning and prioritizing user stories
are mentioned.

Talking about limitation of the paper, the paper lack of
practical case study on user stories’ impact towards a company.
In the future, it would also be interesting to improve the paper
on studying what kind of metrics are used to measure business
value of user stories. Methods on evaluating user stories are
also worth to research.

REFERENCES

[1] Beck, Kent, Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, 2nd Edition, 2004.

[2] Cohn, Mike, User Stories Applied: For Agile Software Development.
Addison Wesley Longman Publishing Co., Inc. Redwood City, CA,
USA.2004.

[3] Jeffries.Ron. Essential XP: Card, Conversation, Confirmation. Available:
http://xprogramming.com/articles/expcardconversationconfirmation/

[4] Wake, Bill,INVEST in Good Stories, and SMART Tasks. Retrieved Octo-
ber, 2014 Available: http://xp123.com/articles/invest-in-good-stories-and-
smart-tasks/

[5] A. Gojko and E. David, Fifty Quick Ideas to Improve your User Stories.
Leanpub, Kindle Edition. 2014.

[6] J. Patton. User story mapping.O’Reilly Media. 2014.

34



[7] Sims,C. (2008). New User Story Format Emphasizes Business Value.
[online] InfoQ. Available at: http://www.infoq.com/news/2008/06/new-
user-story-format [Accessed 26 Nov. 2014].

[8] William Hudson.User stories don’t help users: introducing persona sto-
ries. interactions 20, 6 (November 2013), p.50-53.

[9] I. Stamelos and P Sfetsos. (2007). Agile software development quality
assurance. Hershey, PA: Information Science Reference, p.85-86.

[10] P.H.Deborah.(2006). Interview:Jim Johnson of the Standish Group.
Available at: http://www.infoq.com/articles/Interview-Johnson-Standish-
CHAOS [Accessed Oct. 2014].

[11] Lahanas. S.(2013). Aligning User Stories, Use Cases and Require-
ments - Dice News. Available at: http://news.dice.com/2013/01/15/how-
to-align-user-stories-and-use-cases-for-your-requirements/

[12] Agilemanifesto.org. Principles behind the Agile Manifesto. [online]
Available at: http://agilemanifesto.org/principles.html.

[13] L. Cao and B. Ramesh, ”Agile Requirements Engineering Prac-
tices: An Empirical Study,” IEEE SOFTWARE, Vol. 25, 01, pp. 60-
67,JANUARY/FEBRUARY.

[14] Wells, D. (1999). User Stories. [online] Extremeprogramming.org.
Available at: http://www.extremeprogramming.org/rules/userstories.html
[Accessed 26 Nov. 2014].

[15] Agilemanifesto.org (2014). Principles behind the Agile Manifesto. [on-
line] Available at: http://agilemanifesto.org/iso/en/principles.html [Ac-
cessed Nov. 2014].

[16] Adzic, G. (2012). Impact Mapping. [online] Impactmapping.org. Avail-
able at: http://impactmapping.org/about.php

[17] Croll, A. and Yoskovitz, B. (2013). Lean analytics. Sebastopol, CA:
O’Reilly

[18] Surowiecki, James. (2004). The wisdom of crowds. New York: Dou-
bleday.

[19] Nickolaisen, Niel. USING THE PURPOSE-BASED ALIGNMENT
MODEL TOIMPROVE BUSINESS AND IT AGILITY.Available at:
http://aamngt.com/files/purposebasedalignment.pdf

[20] M.Cohn.(2004). Advantages of User Stories for Requirements.
Available at: http://www.mountaingoatsoftware.com/articles/advantages-
of-user-stories-for-requirements

[21] M.Cohn.(2008). User Story Template Advantages. Available at:
http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-
i-want-user-story-template.

[22] N.Dan(2003).Extreme Programming group.Groups.yahoo.com. Avail-
able at: https://groups.yahoo.com/neo/groups/extremeprogramming /con-
versations/topics/83897

[23] K. Conboyand C. OhEocha. The Role of the User Story Agile Practice
in Innovation.

35



Creating shared understanding with
Lego Serious Play

Juuso Hyvönen
Department of Computer Science

University of Helsinki
Email: juuso.hyvonen@cs.helsinki.fi

Abstract—Lego Serious play is a consultant service that uti-
lizes the power of Lego bricks to create shared understanding and
valuable goals for an organization. The method has been used by
many large companies such as Nokia, Orange and Lego itself. Due
to the metaphorical nature of the method, it also has a potential
to be a cost effective way to create value for small and medium
software organizations. This paper describes Lego Serious Play
and its possibilities for creating shared understanding. The focus
is on how the method supports stakeholder analysis and how the
method could potentially help value creation and waste reduction
in a lean software development framework.

Keywords—Lean Software Development, Lego Serious Play,
Stakeholder Analysis, Shared Understanding.

I. INTRODUCTION

A typical agile software project consists of a product
backlog, sprint backlog and sprints to develop the backlog
items from the sprint backlog. The development model for
the sprints is usually well documented and the best practices
for each task during development have been defined. If they
have not been defined, there exists a great deal of literature
to support each phase of development, except to one very
important part of the process, the black box called ”product
backlog”. If the development items do not create value, all
the great efforts to improve the development process are
worthless. Finding the valuable tasks is usually left outside
of the development process and the items are chosen by the
managers and customer.

In my previous paper [1], I studied the use of Lean Canvas
[2] and Impact Mapping [3] as tools for aligning product devel-
opment to business goals. Lean Canvas was found to provide
a great way of defining and clarifying a business model and
Impact mapping was helpful in finding software development
actions that make an impact to the user, and therefore help in
reaching the business goals. One question was not answered,
how are those business goals found and selected? One way
could be increasing shared understanding. Schulz and Geithner
[4] argue that to be able to collaborate effectively, individuals
should have a collective shared understanding of the domain
area they are working on.

This paper approaches the problem of finding meaningful
business goals by offering a technique to improve shared
understanding. A special emphasis is given for the viewpoint of
stakeholders, the groups that share any interest to the project,
product, or business in question. A technique for creating
understanding is given in a form of Lego Serious Play (LSP)
[5], a way of using Lego bricks to create real value for an

organization by utilizing the knowledge of all the employees
working for the the company. Focus of this paper is on how a
small to medium lean software organization, such as a start-up,
an intrapreneurial project or small business area of a company
could potentially benefit from the use of Lego Serious Play.
Bigger and more high-profile organizations might have to
concider if the method discussed is thorough enough.

The outline of this paper is the following: Chapter two
introduces Lego Serious Play, chapter three explains stake-
holder analysis and introduces several techniques of analyzing
stakeholders. Chapter four discusses if stakeholder analysis
with Lego Serious Play is reasonable and gives an example of
a real LSP workshop. Chapter five introduces lean software de-
velopment methodology and connects LSP to lean principles.
Chapter six covers the results and chapter seven concludes the
paper.

II. LEGO SERIOUS PLAY

Lego Serious Play was developed at the The Lego Group
in the late 1990s to help the middle and top managers of
the company in strategic planning. The method was first used
only internally at Lego but it was later developed into a full
commercial consultant product. A deep description of how the
method was born can be found in [6]. In 2010, part of the
LSP method was made open-source. This paper uses the open-
source part of the method as a starting point for study.

Lego Serious Play consist of three different kinds of
resources [5]:

1) The Lego Serious Play basic principles and philoso-
phy, upon which everything else is built

2) The Lego Serious Play materials - sets of specially
selected Lego bricks and pieces

3) Lego Serious Play ”applications”- detailed roadmaps
of different workshops which make use of the prin-
ciples and philosophy and the materials.

The first two of these are the parts that were released to
public in 2010.

LSP bases on an assumption that ”the answers are already
in the room” [5]. It means that external experts are not
necessarily needed and that the team participating in to a
workshop is probably already capable of solving the problems
in hand. The participants are asked to ”think with their hands”,
meaning that they should build the ideas they possess. This
helps in clarifying the concepts and demonstrating them to
other participants and this way sharing understanding more

36



effectively than they could by just telling a story or drawing
diagrams.

Lego bricks make it easy for the participants to build three
dimensional structures to metaphorically resemble ideas in
their minds. People, at least in western countries, are also
typically already familiar with the bricks, and even if they
were not, building Lego bricks is fast to learn because no high
level of skill is required to be able to build structures out of
the bricks.

The benefit of building things, according to Lego and
[4], is that making something with hands makes the brain
work a different way which can open new perspectives. An
emphasis is also on the idea that leaders do not have all the
answers and they need to hear the whole team and allow each
member to contribute and speak out. There is a presumption
that people naturally want to contribute and to be a part of
something bigger and also take ownership. LSP gives everyone
an opportunity to express their views of the problem and
this way build a shared understanding of the problem. People
might have very diversified views concerning the matter, and,
especially, how to solve these issues. Often team members are
not heard and the managers make decisions on their own, thus
making the team work suboptimally.

There are a many different problems Lego Serious Play
can be utilized to solve. Originally it was used to improve
strategic work at the Lego Group [6]. Other documented use
cases include using to elucidate project plan and different work
roles in a long-term research project [4] and facilitating and
pursuing on organizational interventions [7]. LSP has also been
used in product development by capturing user stories and
envisioning possibilities for service improvements [8].

Lego Serious Play is a consultant product which has the
benefit that he facilitator is usually someone who does not
permanently work in the company. LSP workshop always has
an external facilitator. They takes care of all the arrangements
required for the workshop and they also designs the workshop
with a help of the customer company representative, for
example, a product owner or project manager.

Lego Serious Play is practiced in a form of workshops.
These workshops can be anything between three hours to mul-
tiple days in duration. The workshop consists of three phases
that are repeated for the whole duration of the workshop. Phase
1 is called The Challenge. During that phase the facilitator
gives a challenge for the participants. Phase 2 is Building.
During that phase the participants build a Lego model that, they
think, represents an answer to the challenge. The answer can
be a concrete answer or it can be a metaphor that represents the
answer. In phase 3, Sharing, everyone shares the meaning of
their model. Explaining the answer can include telling a story
by moving Lego parts around the structure (playing seriously)
to visualize their thoughts. After part 3, the facilitator poses the
next challenge and the whole process repeats. The workshop
starts with simple challenges like ”Build a tower” to make
everyone familiar with the bricks and proceeds towards more
challenging tasks. In the end, cooperative challenges can be
presented.

III. STAKEHOLDER ANALYSIS

Stakeholders are persons, groups and organizations that
have to be taken into account when business decisions are
made [9]. Other common definitions according to Bryson [9]
include:

• ”Any person group or organization that can place a
claim on the organization’s attention, resources, or
output, or is affected by that output” [10]

• ”People or small groups with the power to respond to,
negotiate with, and change the strategic future of the
organization” [11]

• ”Those individuals or groups who depend on the
organization to fulfill their own goals and on whom,
in turn, the organization depends” [12]

The definitions above share a similar meaning that stake-
holders are groups that count when decisions about any busi-
ness activities are made. Software business being a business
like any other, the stakeholders are as important to software
business as they are to any business. Stakeholders are some-
thing that can create or reduce the value of the software system.
This makes stakeholder analysis a necessary tool for value
creation.

Stakeholder analysis can be expensive and time consuming
process because of the high amount of people and time it
can require. Performing excessive stakeholder analysis can
be seen as waste of time and money. LSP could potentially
be a method that supports understanding stakeholders while
getting other kinds of shared understanding simultaneously.
Finding the proper level of stakeholder analysis and the proper
techniques to do it are essential.

Bryson hypothesizes in [9] that ”strategic management
processes that employ a reasonable number of competently
done stakeholder analyses are more likely to be successful –
that is, meet mandates, fulfill missions and create public value
– than those that do not”. He also states that what constitutes
to ”reasonable” amount of stakeholder analysis is not clear,
yet. The idea is similar to a lean principal of reducing waste
which will be introduced later in this paper.

Making excessive stakeholder analysis is waste and the
biggest benefit can be achieved when a right, not too much,
nor too little, amount of planning is executed, as bryson just
stated . Sometimes it might be enough to make project team
aware that there are multiple stakeholders and the other times a
deep and systematical stakeholder analysis could be beneficial.
The systematic approach is especially important for high value
public service projects as they often directly affect people’s
lives and get a lot of public coverage.

Bryson analyses mapping techniques from the point of
view of a public organization but this paper focuses on the
ability to provide value for lean software development. Public
organizations usually map the effects of their actions far
more systematically than small and medium private compa-
nies. To create enough context for stakeholder analysis, this
systematical and deep, public organization -level of analysis
is introduced first. All the techniques introduced require no
equipment outside typical office facilitation materials, such as,

37



flip charts and post-it notes. The biggest costs for executing
these methods comes from the personnel fees.

It is important to understand that systematical analysis
of stakeholders using formal methods can give better results
compared to less vague methods such as Lego Serious Play.
But because the cost of implementing a multi stage analysis
of stakeholders and their issues is quite high, the value gained
from the analyses might not cover the expenses.

Bryson groups stakeholder analysis techniques into four
different groups [9]:

1) Organizing participation
2) Creating ideas for strategic interventions
3) Building a winning coalition around proposal devel-

opment, review and adoption
4) Implementing, monitoring and evaluating strategic

interventions

Bryson uses a directed graph to visualize how different
stakeholder analysis methods support each other and how they
support strategic management. Original visualization used the
term ”public value” but in our visualization a more abstract
definition of just plain ”value” is used because value can be
interpreted in numerous different ways [13][14].

Fig. 1. How stakeholder analysis methods support value creation [9]

Next, stakeholder analysis method groups mentioned above
and some of the methods are given a brief overview. After that,
they are compared to Lego Serious Play.

1) Organizing participation focuses on finding out who
should be involved in the different stages of the analysis
process. The first group also includes techniques to find the
actual stakeholders. The rule of the thumb is that a people
should be invited if they have information that can not be
gained without their participation.

The basic stakeholder analysis technique is brainstorming,
with analysis added to complement the findings. A list of
stakeholders is created and a separate flip chart sheet for each
stakeholder is prepared. For each stakeholder, their expecta-
tions for the organization (or a software system) are listed

and the stakeholders judgement of the organization is decided:
good (green), fair (yellow), poor (red). What can be done to
satisfy the stakeholder and the possible long-term issues that
the stakeholders could face with the business are identified.
Additional interesting information such as specifying how
each stakeholder group influences the organization and what
the organization needs from each stakeholder is listed. The
stakeholders can also be ranked according to their importance
for the success of the business.

Power versus interest grid supplements the basic stake-
holder analysis technique. It is used to visualize and determine
what stakeholder groups’ interests should be taken into ac-
count, what kinds of interest coalitions might be present in the
stakeholder groups and what kinds of actions the organization
should prepare for to satisfy the stakeholder needs.

Fig. 2. Power versus interest grid [9]

Executing the technique is not complicated as it only
requires a grid drawn to any surface, for example on to a
whiteboard and post-it notes to resemble the stakeholders.
The vertical axis resembles interest and the horizontal axis
resembles power of the stakeholder. Each stakeholder is then
placed to an appropriate place in the grid and the labels are
moved until everyone is satisfied with the placements. After
the process is ready, a discussion about the implications of the
results is held.

Stakeholder influence diagram visualizes how stakeholder
groups influence one another. This analysis can be done by
placing the stakeholder groups as post-it notes on a whiteboard
and drawing arrows that indicate the influence and it’s direction
between the entities. The arrows can be named to clarify the
type of influence.

2) Creating ideas for strategic interventions focuses
on understanding the stakeholders and formulating potential
problems and searching for solutions. Bryson also mentions
the focus on political feasibility which can be an important
focus point when the analyzer is a public organization or if
the software system could potentially have issues with legal
regulations or ethical rules.

Stakeholder-issue interrelationship diagram builds on top
of Power versus interest grid, Stakeholder influence diagrams

38



and Basic stakeholder analysis technique. Stakeholder influ-
ence diagram helps to understand which stakeholders have
interest in which issues and which groups share the same
interests. The result can help, for example, in finding the
potential areas for cooperation and conflicts.

Fig. 3. Stakeholder-issue interrelationship diagram [9]

The method starts with writing down the issues found ear-
lier on post-it notes. Then the issues are placed on whiteboard
or similar. After that, stakeholders are placed around the issues.
One stakeholder can have connection to many issues. After the
stakeholders and issues are set properly, arrows are drawn to
indicate how issues and stakeholders are connected. After the
map is complete, a discussion about the results should be held.

3) Building a winning coalition around proposal devel-
opment, review and adoption focuses on additional analysis
of the issues found at the previous stages of analysis.

The most straightforward way Bryson proposes for pro-
posal development and review is stakeholder roleplay: Each
participant reviews the previously created analyses. After that,
for each member, a role is given and each participant reviews
the issues for their role. The participant’s task is to answer
the questions ”How would I react to this option?” and ”What
would be done that would increase my support or decrease my
opposition?”. The answers should be written to sheets and the
exercise should be done multiple times with randomly drawn
roles to increase the quality and diversity of the answers.

4) Implementing, monitoring and evaluating strategic
interventions focuses on making sure that the decisions made
earlier are kept and the solutions found implemented.

Policy Implementation Strategy Development Grid is used
to create an actionable table of actions that should be done
to satisfy stakeholders. All the material from the stakeholder
analysis should be used to populate the grid.

Fig. 4. Policy Implementation Strategy Development Grid [9]

Bryson also introduces several other analysis techniques
but they are left out of this discussion because of their focus
on issues that are more vital to bigger companies and public
organizations.

IV. STAKEHOLDER ANALYSIS WITH LEGO SERIOUS PLAY

Stakeholder analysis with Lego Serious Play utilizes the
potential of all the participants of the workshop for building
a shared understanding. Schulz and Geithner studied LSP as
a tool for building shared understanding for a researcher team
[4]. They found out that the combination of a brick model
and story telling added value compared to traditional forms of
group meetings. This was partly due that that all the parts of the
brick model are named and explained and that the participants
can ask questions about the model to avoid misunderstandings.
Schulz and Geithner also found out that building a physical
model helped in reifying and reflecting the builder’s own
understanding. They also argue that even though it could be
said that the Lego model is too static, the model is only an
anchor for a metaphor and it can be used to connect a story
to the model to provide meaning.

Schulz and Geithner also claim that the first part of the
workshop, the individual challenge solving, is about expression
of personal understandings, the individual awareness of them
and making their understanding explicit to the others. The
cooperative part of the workshop, building a shared model, can
be seen as building a shared understanding. Building a shared
model forces the participants to modify their views to make
them fit together. The final solution will then represent all the
different views on the same issue and that way it provides a
shared understanding which can be utilized for innovation.

It is possible to create many connections from Lego Serious
Play to different stakeholder analysis methods. The focus of

39



the LSP workshop can be set to finding stakeholders but as
noted earlier, LSP is not specifically designed to systematically
map stakeholders. The potential of stakeholder analysis lies
in utilizing the knowledge of all the participants and creating
revealing metaphors of the business area. The focus of the
workshop can also be wider subject such as building an unified
vision of a product. Even when stakeholder are not the main
focus point, many aspects of them get analysed.

To find simple and concrete links to the previously intro-
duced ways of analysing stakeholders, following connections
can be seen:

Organizing participation can happen during any time of the
workshop. For example participants could refer to different
stakeholders during their sharing turn. In the final unified
model, different stakeholder groups and their relation to the
business get presented. What seems to happen is that the
stakeholder’s power gets represented with easily understood
metaphors. For example, customers could be sheeps and CEO
could be a skeleton with a whip standing on a pile of coins.

LSP powerfully visualizes stakeholder-issue interrelation-
ships and therefore is helpful in creating ideas for strategic
interventions. Lego even sells a separate LSP Connection Kit
to aid in networking different parts of the Lego structures.

When participants share their metaphors, they often role-
play some important role related to the business and therefore
participate in building a winning coalition around proposal
development, review and adoption. LSP does not directly
give tools to help implementing, monitoring and evaluating
strategic interventions but during a workshop, ideas how to
implement, monitor and evaluate can come up. For example
new (or existing) ways to communicate to customers can be
present in the final cooperative model.

To give an insight, what a real LSP workshop is like, rest
of this chapter describes a real LSP workshop that took place
in a medium-sized Finnish software company.

The session was facilitated by two researchers who special-
ize in service design. They had self learned the LSP method
and were not LSP certified professionals. The participants of
the workshop included the product owner, a team leader, three
developers, one salesperson and one product support person.
The duration of the workshop was 6 hours. There was a lunch
break and two short coffee breaks during the session. The goal
of the workshop was ”To create a shared vision of the Product”.

The workshop consisted of the following challenges:

1) Build a tower
2) Build your ideal neighbour
3) Build your typical Monday
4) Build a representation of a user of the Product.
5) Build an important challenge of your user
6) Build a solution to that challenge.
7) Build your vision of the future ’Product’ in an ideal

world.
8) Now, as a team... build an answer to the previous

challenge

All the models build during the workshop were pho-
tographed with a description note next to the model. After

the workshop, the facilitators produced a booklet which sum-
marized the workshop from their point of view. The booklet
was distributed to all the participants of the workshop.

Fig. 5. A typical Monday

Participants were mostly excited about the new method.
Only one participant of LSP stated after the workshop that he
did not like the idea of using Lego at all. All the others gave
very positive feedback. The Lego bricks also gathered a lot of
interest inside the company. An another workshop for another
product development team was ordered immediately after the
first workshop.

Fig. 6. The shared vision of the future

Multiple problems in the product and in the development
process were found. The emphasis of the workshop was not
on finding the stakeholders but different stakeholder groups
became very clear during the last challenge. Even one new
stakeholder group was found. Also some thoughts of how this
group could be taken into account during product development
were expressed. The findings from the workshop were utilized
when deciding where the focus of the product development
should be in future. A prototype project was launched to test

40



if the new direction is feasible.

V. LEGO SERIOUS PLAY AND LEAN SOFTWARE
DEVELOPMENT

Lean software development [15] is a software development
method adapted by Mary and Tom Poppendieck from Toyota
Automobile Production System [16]. It does not compete with
agile development methods but is rather a complementary
philosophy to support producing value and reducing waste.
Lean software development consists of seven principles which
one should always be considered when making decisions. The
principles according to Poppendiecks are:

1) Eliminate Waste: All actions that do not create value
are considered waste. This could be seen as the main Lean
Principle as the rest of the principles could be derived from
eliminating waste. Eliminating waste means, for example,
avoiding extra software features, avoiding partially done work
and avoiding waiting.

One major problem in finding the waste is that different
interest groups inside the company might have completely
different value expectations for the same product [13]. Soft-
ware developers merely want to make a product that works
and is of high technical quality. Product and project managers
often have more high level vision, and sales department might
expect value to be something that can be clearly communicated
to potential customers. High level of shared understanding
provided by Lego Serious Play could help in eliminating waste.

2) Amplify Learning: Amlifying learning means that the
team tries to constantly improve their understanding of their
area of business and their product. This can mean building
feedback loops as short as possible. which includes fast testing
cycles and short iterations, as well as fast customer feedback.
While those methods to amplify learning are merely tools to
steer the development, a LSP workshop is method to improve
and share the domain knowledge of the whole product team.

3) Decide as Late as Possible: If decisions are made too
early, there might not be enough data to enable wise decision
making and waste could be created. If decisions are made
too late, waiting happens and waste is generated again. For
software developers, this can be described as Just-In-Time
decisions comparable to Just-In-Time compilation. A shared
understanding and a good understanding of stakeholders create
by LSP could mean better decisions but it’s difficult to argue
that they would make it possible to delay decisions even more.

4) Deliver as Fast as Possible: When decisions are made
as late as possible, software delivery needs to be fast. Rapid
delivery simply makes it possible to make important decisions
later than with less rapid delivery. Rapid delivery is achieved
by utilizing the time spent at work as effectively as possible.
It is debatable if an understanding of the business area has
a straight correlation to reduced time spent coding a feature
but if the point of view of speed of delivery is changed from
features to goals, improvement might happen. Understanding
the domain area better, should make it easier to choose the
right features to reach the goal and this way reduce waste
as fewer iterations are needed to reach a goal. Likewise,
Understanding the business area could potentially correlate
with better maintained code base which could reduce the actual

time spent implementing the features. The principle of building
integrity in will explain this more.

5) Empower the Team: Traditionally managers tell employ-
ees what to do and how to do their work. Lean software
development sees this relation in a completely different way.
Workers are seen as experts in their own field and managers
job is more about making it possible for the team to use their
expertise the best way possible. LSP takes this idea a step
further and call is ”The Answer is in the system”. Besides
being experts on their field, LSP acknowledges that in a highly
educated organization full of specialists, the people understand
a lot of things outside their own field of expertise. LSP is
aiming to harness that expertise to be used in decision making.

6) Build Integrity in: Customer’s perceived integrity is
about the whole experience with the product. The customer
should feel that all features are relevant and that they work as
they are expected. Conceptual integrity is all about understand-
ing the business domain and creating components that work
well together. The key for integrity is understanding the whole
system. LSP seems to support this principle as it effectively
helps in creating a shared understanding. When the business
area is understood well, the integrity of the product increases
and the customer should also be able to feel it. Integrity can
also be effectively build into code base which can reduce
development times and that way reduce waste.

7) See the Whole: “A system is not just the sum of its
parts - it is the product of their interactions.” [15] Optimizing
one part does not mean that it will improve the system. The
whole system should be understood, and only in that way
the interaction between all the components of the system
can be optimized to create the best system possible. Like
with the previous principles, LSP is a way to create shared
understanding and to understand the domain area.

As the analysis shows, Lego Serious Play fits well into lean
software development framework. The method is also quite
lightweight and fun to use which makes makes it very ap-
proachable. LSP is not best choice when systematical analysis
must be made but it works great when an overview of some
domain should be created. Example use case could be project
kick-offs to create a mutual understanding. It could also be
used to improve the unified vision of a product for example
once or twice a year.

VI. RESULTS

Lego model and storytelling can potentially create more
shared value compared to many other forms of planning. Lego
Serious play bases on the presumption that a participant builds
the idea he or she has and this way makes his or her idea
concrete. This gives them opportunity to explain themselves
with more than just words. The concept and environment of the
workshop is very playful which also makes participants very
open to discussion. Even opinions that participants would not
dare to say elsewhere can be spoken out. This helps in sharing
the understanding of the products, the issues, the stakeholders
and the business in overall.

The external facilitator seems to make the atmosphere of
the workshop better as the leader is now not someone every
participant should try please. Compared to for example draw-
ing or clay, Lego bricks have the advantage of the participant

41



not needing to be skillful in those more traditional handcraft
methods. Also compared to clay, Lego bricks are quite easy
to clean after the workshop ends.

Limitations of the method are that there is a risk of
moving away from the original task to focus too much on
the Lego model, not the challenge in hand. Participants would
easily start focusing on finding certain special Lego bricks
instead of focusing on the metaphor. Having a documented
way to document describe the findings of a workshop would
be helpful. Now it if left for managers to choose what findings
are important. The lack of documentation on documenting the
process results could potentially lead to a situation where no
concrete actions or results can be derived from the workshop.
The workshop at the case company verified these shortcom-
ings.

VII. CONCLUSIONS

This study introduced Lego Serious Play which seemed to
be potentially an effective way to create shared understanding.
LSP, as a tool to create shared understanding, seems to nicely
fit into a lean enterprise to support value creation. The concrete
measurable value of LSP was not studied. LSP is useful for
analyzing the business area and finding unmapped parts of the
domain. LSP has a direct connection to stakeholder mapping
but is not well fit for systematical analysis. Instead, it is
better used to create overviews and visions for the product
team. Lego Serious Play can help in creating more sound and
valuable software systems.

REFERENCES

[1] J. Hyvönen, “Lean canvas and impact mapping as tools for linking
product development to business goals – a case study,” in Real-Time
Value Delivery in Software Engineering, J. Münch, Ed., 2014, pp. 20–
27.

[2] A. Maurya. (2012) Why Lean Canvas vs Business Model Canvas?
[Online]. Available: http://practicetrumpstheory.com/2012/02/why-lean-
canvas/

[3] G. Adzic and M. Bisset, Impact Mapping: Making a Big Impact with
Software Products and Projects. Provoking Thoughts, 2012.

[4] K.-P. Schulz and S. Geithner, “The development of shared understand-
ings and innovation through metaphorical methods such as lego serious
playTM,” 2011.

[5] LEGO, Introduction to LEGO Serious Play, 2010.
[6] J. Roos, B. Victor, and M. Statler, “Playing seriously with strategy,”

Long Range Planning, vol. 37, no. 6, pp. 549–568, 2004.
[7] M. Statler and D. Oliver, “Facilitating serious play,” The Oxford Hand-

book on Organizational Decision-Making (Oxford University Press,
Oxford), pp. 475–494, 2008.

[8] D. Swann, “Nhs at home: Using lego serious play to capture service
narratives and envision future healthcare products.” INCLUDE 2011
Proceedings, 2011.

[9] J. M. Bryson, “What to do when stakeholders matter: stakeholder
identification and analysis techniques,” Public management review,
vol. 6, no. 1, pp. 21–53, 2004.

[10] ——, Strategic Planning for Public and Nonprofit Organizations: A
Guide to Strengthening and Sustaining Organizational Achievement, ser.
Jossey-Bass nonprofit sector series. Jossey-Bass Publishers, 1995.

[11] C. Eden and F. Ackermann, Making Strategy: The Journey of Strategic
Management. SAGE Publications, 1998.

[12] G. Johnson and K. Scholes, Exploring Corporate Strategy: Text and
Cases. Financial Times Prentice Hall, 2002.

[13] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Eds.,
Value-Based Software Engineering. Berlin: Springer, 2006.

[14] J. Heidenberg, M. Weijola, K. Mikkonen, and I. Porres, “A model for
business value in large-scale agile and lean software development,” in
Systems, Software and Services Process Improvement, ser. Communica-
tions in Computer and Information Science, D. Winkler, R. O’Connor,
and R. Messnarz, Eds. Springer Berlin Heidelberg, 2012, vol. 301,
pp. 49–60.

[15] M. Poppendieck and T. Poppendieck, Lean Software Development:
An Agile Toolkit. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[16] T. Ohno, Toyota Production System: Beyond Large-Scale Production.
Cambridge, MA: Productivity, 1988.

42



Review: DevOps, value-driven principles, 

methodologies and tools 
 

Tuukka Peuraniemi 

Department of Computer Science, 

University of Helsinki 

Helsinki, Finland 

tuukka.peuraniemi@gmail.com 

 

 
Abstract—This review aims to clarify definition of the term 

DevOps and what are its value-driven principles, methodologies 

and tools. DevOps combines operations and development while 

extending agile methodologies and principles outside 

development [3]. It adds a more value-driven and customer 

centric approach on agile software development while they share 

many principles and methodologies. Four main principles 

adopted from agile are: respect for one another, commitment to 

shared goals, collective ownership and shared values [1].  DevOps 

emphasizes heavily on continuous delivery, amplified feedback, 

more-stable infrastructure and monitoring and metrics. 

Continuous delivery consists of building, testing, deploying and 

version management. This makes deployment less risky and 

faster. More-stable and reproducible infrastructure makes 

continuous delivery possible and makes use of DevOps tools of 

virtualization and cloud computation. DevOps has brought forth 

new kinds of tools e.g. New Relic for monitoring and real-time 

data analytics, Vagrant lightweight and portable virtual 

machines, Puppet and Chef configuration management for 

development environments and finally Docker for application 

containerization without the need of creating new VM for 

different platforms. DevOps approach is value-driven as it 

enables faster feature delivery and shortens the lead time and 

time to market. Also more stable operating environments have 

direct impact on service availability. Enabling developers to 

spend more time developing new features and less time on fixing 

and resolving problems. More time can be spent on adding value 

to the product. These previously mentioned factors enable bigger 

market shares and competitive advantage. Both large and small 

companies benefit from DevOps approach. 

Keywords—DevOps, methodologies, principles, tools, value-

driven, customer satisfaction 

I.  INTRODUCTION  

 

DevOps is an ambiguous term used in many different contexts 

and with different definitions. Many sources define DevOps as 

a combination of development and system operations. DevOps 

can be viewed as a way of managing software's lifecycle. It 

also extends agile methodologies from development to system 

operations. Combination of both fields leads to face the 

conflicts of operations "fear of change" and developments 

"need for change" [1]. DevOps shares many principles with 

agile methodologies and is often referred as "agile on 

steroids" but it also includes some Lean principles. Before 

processes can be automatic it should be compact and review 

according to Lean principles. Figure 1 depicts on DevOps 

relation to software development and operations and how it 

indirectly has impact on business performance. 

 

 
Figure 1. DevOps relation to operations and software 

development and how it indirectly relates to business [1]. 

 

   Usually DevOps is involved in web services and cloud based 

services including infrastructures, platforms and software as a 

service (IaaS, PaaS and SaaS). DevOps has four different 

aspects: culture, automation, measurement and sharing [1]. 

Culture meaning people over processes and tools, automation 

for quick feedback, measurement for quality control and 

finally sharing tools and processes with others. According to 

DevOps lifecycle of the software should be as automatic as 

possible from test to deployment. Hence replacing agile 

methodologies' continuous integration with continuous 

delivery and aiming for continuous development. Continuous 

delivery consists of automatic build, deploy, test and release. 

Difference between continuous delivery and continuous 

deployment is that in the first before deploying the product has 

to pass manually done acceptance tests whereas the latter does 

automatic acceptance testing. Continuous deployment is 

typical for small companies and startups and continuous 

delivery is usually done in larger companies. DevOps has 

already brought forth many different lightweight tools with 

strong emphasis on cloud based tools for managing different 

states of software life cycle. E. g. Capistrano for easy and 

rapid deployment or New Relic as a SaaS for monitoring 

performance [11]. 

 

43



   DevOps creates value from customer satisfaction by reacting 

quickly to customers requests shortening feature lead time and 

faster time to market. This also enables getting rapid feedback 

from the customer and helps with recognizing customers 

needs. Customer satisfaction with services can be related to 

three different elements: core service quality, relational 

service quality (delivery) and perceived quality [4]. 

Concerning web and cloud services DevOps has effect on all 

three areas linked with services customer satisfaction. 

Customization and fast delivery is essential for customer 

satisfaction especially in fast-growing and client-focused 

companies [5].  

 

   This article aims to clarify the definition of DevOps and 

briefly reviewing its principles, methodologies and tools from 

value-driven perspective. What are the characteristics of these 

areas which give value to the customer and how it delivers it. 

Also this article aims to specify on which of the three areas of 

services customer satisfaction its principles and methodologies 

apply. 

 

   In the second section DevOps definition is given with 

contrast to other definitions. Third section concerns DevOps 

principles and of which can be seen as value-driven principles. 

In the fourth section DevOps methodologies are briefly 

summarized. Fifth section concerns on different tools which 

are used by DevOps with strong emphasis on value-driven 

aspects which are analyzed further in discussion. In the sixth 

section a case study on applying DevOps principles in a large 

company such as IBM [2]. Seventh sections concerns 

discussion with comments and in the final section is for the 

conclusions. 

 

II. DEVOPS - DEFINITION 

 

DevOps extends agile principles and methodologies to system 

operations [1,3]. It tries to break down silos and barriers of 

separate IT teams. This is done by extending developers 

workflow from development to service delivery. From a 

system operations perspective workflow extends from 

operations to development. Depending on which roles 

workflow is extended one can have more weight on either end 

of the workflow. But the main goal is to have a clear picture of 

the whole life cycle of the software thus making it easier to 

define what is needed in the next steps (fig. 2) [15]. 

 

 
Figure 2. DevOps way of managing lifecycle and rapid 

releasing [15]. 

 

 

   DevOps lifecycle extends developers and system 

administrators responsibility scope and view to include 

everything from development to delivery and monitoring [15]. 

Typical lifecycle is as follows. After new feature or bug fix 

has been developed it is tested automatically and if the tests 

pass and the build is successful it is automatically deployed. 

When it is deployed data is collected from the deployment and 

for the whole product giving DevOps lifecycle also a data-

driven view. Useless features, bottlenecks and other problems 

can be identified from the product or the infrastructure and 

from this information new design decisions and other changes 

can be made. This together with customers feedback enables 

good adaptability and increases customers satisfaction thus 

adding more value to the product.     

 

   When mixing development and operations conflicts arise 

e.g. stability vs. features [3]. DevOps tries to minimize 

developments and operations incentives by unifying them. It 

also helps resolving certain conflicts by making it easier to 

prioritize problems and possibly solving it in another state of 

the softwares life cycle. E. g. connecting new components to 

application with deployment tools. DevOps helps with 

softwares  architecture and design solutions by making it 

easier to identify possible problem scenarios in development 

and deployment thus avoiding risky deployments [1]. 

 

III. PRINCIPLES 

 

DevOps shares many of its principles with agile software 

development extending it from software to more general 

aspects of software delivery and customer satisfaction [3]. It 

delivers value to the customer with faster delivery and better 

modifiability. One of most common principle associated with 

DevOps is infrastructure as code. Hütterman has listed four 

general principles of collaboration which is the main focus of 

DevOps [1]: 

 

 

44



 

1. Respect for one another 

2. Commitment to shared goals 

3. Collective ownership 

4. Shared values 

 

   Respect for your team members and colleagues values 

individuals and interactions over processes or tools. The last 

three of the collaborational aspects are more value-driven than 

the first one. Commitment to shared goals makes helps with 

team dynamics and making sure that everybody does his part 

for the project with all states of software life cycles in mind. 

Collective ownership makes sure that everybody uses the most 

suitable solutions when developing software enhancing the 

perceived quality of the software. E.g. it enforces service 

stability which increases the services availability. Also the 

whole team performs quality assurance including both 

development and operations. Aspects of quality assurance are 

included in continuous integration and delivery e. g. build has 

to pass and no failing tests. When all of the team members are 

familiar with the software they can make customizations or 

bug fixes independently and deploying them. Shared values 

and commitment to it helps with prioritizing fast delivery, 

working system and customer satisfaction over contract 

negotiations or formal plans. This increases services 

modifiability which in turn delivers value to the customer. E.g. 

increased modifiability speeds up adapting to new business 

and technology challenges making it possible to gain 

advantage over competing services and businesses. Last three 

principles have effect on all three areas of services customer 

satisfaction. All of these principles aim to give developers a 

more holistic view of their doings [1,8].  

 

   While DevOps principles are similar to agile software 

development it mixes in Lean aspects and emphasizes on 

different areas and scope than agile [7]. DevOps has Lean 

aspects as it concentrates on delivering continuously more 

value for the customer and also by making deployment easier 

and testing automatic it frees developers time for developing 

features [14]. Main principle is communication and 

collaboration of development and operations. Trying to find 

balance on infrastructure and development results in better 

stability without the expense of development. Extending agile 

principles outside development towards operations makes 

managing value streams enabled by IT easier. Finally DevOps 

implements culture of continual experimentation and learning 

applies all of its principles and reviews what succeeded and 

what didn't. In the next iteration goal is to resolve previous 

iterations problems and improve in weaker areas. This kind of 

continuous improvement and amplified feedback enforces 

value-driven development. 

 

A. Infrastructure as code 

Infrastructure as code (IaC) refers to automated configuration 

management. This can be achieved using suitable 

programming language in making the configurations in behalf 

of the developer [1]. Managing configurations automatically 

makes the process more efficient, repeatable and faster. 

Coding the configuration also helps understanding the flow of 

the dependencies and at the same time "documenting" it. This 

also helps with making changes to the infrastructure easier. 

Typical tools for infrastructure as code are Puppet, Chef and 

Vagrant which are explained in the fifth section, tools.   

 

   This also creates new problems. There are many restrictions 

concerning Windows environments whereas Linux is much 

more flexible. Some tools are only available on linux 

platforms e. g. Docker. When designing infrastructure one has 

to take in account different tools available for the platform in 

question and many of the tools have a certain learning curve 

and their own syntax. 

 

   IaC makes configuration of environments faster thus 

delivering services faster for the customer. Stabile 

infrastructure makes deploying less risky lowering failure 

rates. Infrastructure that enables better feature flow lead time 

is shortened. If something does go wrong recovery is from it is 

faster. Fixed or rollback to previous stable version is easier 

with DevOps tools. This brings value as both perceived and 

core service quality. Infrastructure is in the core of the 

software making its development and deployment easier. 

 

IV. METHODOLOGIES 

 

Many of the methods and processes involved in DevOps are 

the same as in agile software development e.g. Scrum, Kanban 

[1,3]. DevOps methodologies add value to the customer in the 

same way as in agile development. Difference is in the nature 

of tasks in the Kanban board or in the backlog which differ 

from development to operations. Also the definition of done 

can be extended from tested and integrated to delivered. This 

emphasizes the nature of fast delivery and customization when 

all of the tasks can be seen directly in customer satisfaction. 

DevOps also enforces the methodology of small and frequent 

releasing (fig. 3) [1]. This makes feature delivery more  stable 

not creating large gaps on functionality between versions. 

Customer can see where the service is heading and if he thinks 

that it is developed in the right direction.  

 

 
Figure 3. DevOps methodology of release often, release small 

compared to traditional release control [1]. 

45



 

   DevOps methodologies though indirectly are value-driven 

(fig. 1). Faster development cycles adds new features faster 

and making the operating environments more stable adding 

perceived and relative quality to the product. Also when 

operating environments are more stable it saves time from 

maintaining and fixing the environment to concentrate on 

adding value to the product.  These business side benefits are 

tightly bound with technological side. This requires technical 

side to implement rapid continuous software delivery and 

resolve problems faster. 

 

   DevOps has also sprung new methodologies e. g. visible 

ops, which is based on observational data from hundreds of IT 

organizations [6]. Visible ops aims to distinguish high-

performing organizations and benchmarks its progress. 

Process is distinguished in four phases. First phase called 

"Stabilize the Patient" concentrates on problem management 

applying the changes to the software in a scheduled manor 

minimizing the number of outages. Second phase is "Catch & 

Release" and "Find Fragile Artifacts" as it emphasizes 

configuration and change management and introduces IaC 

tools and fragile artifacts are identified and handled 

accordingly. Phase three concentrates on release management 

processes as it aims to create repeatable builds. After this step 

it is easier to rebuild the software than trying to repair it. 

Fourth and final phase emphasizes on iterating the previous 

steps for continuous improvement and implements monitoring 

tools for measuring its success. Relying on the principle "You 

cannot manage what you can't measure". 

 

  Visible ops helps with continuous delivery and success rate 

of customizations as the continuous monitoring keeps record 

of the performance. Each step is designed to create value in 

improving old processes and creating new more suitable ones. 

Thus visible ops can be seen as a value-driven methodology. 

When contrasting the visible ops with services customer 

satisfaction it concentrates on relational service quality and 

from that viewpoint aims to improve the overall quality. 

     

V. TOOLS 

 

DevOps draws many of its advantages from virtualization and 

cloud technologies. Tools can be roughly divided into two 

groups: metrics, improved feature flow and delivery [1]. 

Measurement and metrics are important in recognizing 

bottlenecks, ensuring service and feature quality and it can 

also be a driving factor in feature development. Recognizing 

problems and areas that need development delivers value to 

the customer in better service quality and new features. One 

tool for service monitoring is New Relic [11]. Chef and 

Puppet are configuration management and infrastructure 

provisioning tools. Vagrant can be used to set up virtual 

machine (VM) environments for development and testing 

[10]. Docker automatizes deploying of applications inside 

software containers [9]. All these tools can be used together 

creating a measurable and easy-to-configure platform for 

services. 

 

   New Relic is a SaaS and it is also involved in software 

analytics [11]. It can be used in most of the databases and web 

service frameworks e.g. Django and Ruby on Rails and it is 

easy to install. Instrumentation to the service itself is relatively 

lightweight not throttling the performance of it. One can 

monitor code level performance of the service giving insight 

on possible bottlenecks ensuring future service quality. Many 

services have a large infrastructure of other services and 

servers and it can be difficult to get the whole picture of the 

infrastructure let alone monitoring it. New Relic can be used 

for the whole infrastructure and in making so one can find 

problems and new optimizations for it. Knowing services and 

databases response time increases service availability and 

perceived quality. 

 

   Chef and Puppet are two different approaches to manage 

configuration [12,13]. Configuration management makes 

controlling environments easier and deploying automatically 

possible. They differ both in syntax and approach where 

Puppet is model-driven concentrating on dependencies and 

Chef is procedural involving install scripting with Ruby based 

DSL (Domain Specific Language). Puppet uses its own JSON-

like language. From operations perspective Puppet seems 

more familiar to use than Chef and vice versa for developers.   

   

   Docker is a lightweight open platform which acts as a 

container where processes run in isolation [9]. At the moment 

Docker supports only linux environments. Normally VMs are 

used as a platform for virtualized applications to run on. This 

however causes a large overhead just for running the 

application. One has to install all the dependencies, drivers 

and libraries for the whole operating system. Docker unifies 

the virtual platform with Docker Engine. It offers an high-

level API (Application Programming Interface) and enables 

applications to be run without the operating system layer. This 

makes makes Docker more portable and efficient than 

traditional VMs.  

 

   Vagrant is a VM manager making its configuration easier 

[10]. Where Docker creates a unified platform for applications 

Vagrant creates a full VM. Versus traditional VM 

configuration Vagrant makes creating and configuration of 

VM reproducible enabling source control through one 

configuration file. Depending on the environment needs one 

can choose from Docker which is linux-only and more 

universal Vagrant. One can also combine the versatility of 

both platforms where Docker is run inside Vagrant 

configurated VM. Dockers dependencies and configurations 

can be made with Puppet or Chef. 

 

 

 

46



VI. IBM CASE STUDY 

 

In this case study we first review the situation in the 

beginning, what changes caused this and how they were 

resolved and how successful the solution was. IBM used 

DevOps based automation and implementation processes to 

optimize development processes [2]. DevOps approach was 

used in RFE (Requirement for Enhancement) community 

website where software users could submit improvement 

requests for software they purchased. RFE offers a way for 

users to take part in software development cycle thus 

facilitating user satisfaction and adding more value to the 

software in users perspective. 

 

   After RFE submission it is automatically synchronized to 

internal database where it is visible to suitable development 

teams [2]. Development teams are required to respond to new 

RFEs within 30 days. These are monitored with defined 

metrics used to calculate RFEs service level agreement (SLA). 

Formula used to calculate SLA is as follows: 

 

  
 

When SLA of a certain product is over 85% it is considered to 

be in good standing. Case study was analyzed using these two 

data types: number of RFEs missed in 30 day period and 

development team's RFE SLA percentage. 

 

   Development teams struggled to give timely responses [2]. 

Two of the main reasons were not notifying project managers 

on RFE made against their product and burying opened RFEs 

to a large pool mixed with other requests. RFEs were hard to 

manage in pools with other requests and also their priority was 

hard to determine. Reports concerning RFEs were semi-

manually generated by release manager. The report had to be 

requested from release manager and it took at least a half day 

to generate it. Report only provided SLA calculations and 

RFE status no further details concerning RFEs were provided. 

 

   Goal was to design a tool for automated and scalable 

reporting tool informing the development team through email 

[2]. Reporting tool process flow is depicted in figure 4. RFE 

data was pulled from the database with IBM Rational 

Software ClearQuest on a VM. The data was then analyzed by 

a java program generating the report. Report was then send 

through email server to different stakeholders including 

development and release management teams. Report process 

is timed to happen every regular business day mornings.  

 

 
Figure 4. Reporting tool process flow designed in the IBM 

case study [2]. 

 

   Before deployment the mean of RFEs missed 30 days 

threshold was 27,89 RFEs [2]. After deployment the mean 

dropped to 15,7 RFEs. Development teams average RFE SLA 

was before deployment 68% and after deployment it improved 

to 85%. 

 

   As it was analyzed in the case study paper this approach 

concerned only on one aspect of DevOps: improving delivery 

and feature flow [2]. Whereas monitoring and metrics were 

not taken into consideration. DevOps approach was only 

partially used. Based on the results of the case study the partial 

DevOps approach was deemed useful and it improved the 

development teams efficiency on RFEs. It was also stated in 

the case study paper that B2B (Business-to-business) is more 

competitive and the key to success is to manage development 

and delivery in an agile and continuous way. Thus closing the 

gap between customer expectation and product delivery is a 

key factor for large and small companies to stay competitive. 

Customer expectations being in line with customer 

satisfaction. 

 

   Future designs were determined from the case study [2]. 

Continuous interaction and feedback from all stakeholders is a 

key factor in allowing rapid delivery. Feedback has to be 

informative and there is a clear need for real-time monitoring 

on current processes. System transparency allows continuous 

verification and optimization. 

 

VII. DISCUSSION AND COMMENTS 

 

Using the DevOps approach improves product delivery and 

management thus creating value to the customer by extending 

agile software development principles and methodologies 

scope outside development to operations.  

 

   DevOps definition of development and operations combined 

from delivery and infrastructure perspective. It also mixes 

agile software development with Lean principles taking also 

47



the business side into consideration [14]. Extending agile 

principles scope from development to whole system is 

beneficial to the business side. While DevOps is also very tool 

centered they should also be included in the definition. It is 

not clear whether this definition is targets a new group of  IT-

specialists or extends old IT job roles [3]. Still DevOps 

principles encourage the use of cross-functional teams and 

giving team members a more holistic view of the product. It 

also encourages developers to increase their skill sets across 

operations. 

 

   DevOps value-driven characteristics can be encapsulated to 

three statements: continuous delivery, more-stable 

infrastructure and amplified feedback [7]. Continuous delivery 

and amplified feedback enforces customer-driven 

development. Thus creating more value from customers 

perspective. This depends on how aware the customer is on 

market situation. 

 

   Continuous delivery depends on DevOps principles, 

methodologies and tools for making delivery process 

automatic [15]. DevOps itself is not the sole factor in the 

process chain but it tries to create a clear connection between 

them. Automatic processes deal with building, testing, 

deploying and version management. Testing prevents broken 

builds and sets a certain standard on what features and fixes 

end up in production. New features and fixes can be delivered 

more often to the customer thus adding more value to the 

product. Possibly enabling greater market share and new 

business ventures. 

 

   For continuous delivery to work in practice it requires more-

stable infrastructure [1]. More time has to be spent in 

developing new features than fixing and maintaining 

deployment. Using DevOps tools and IaC principles delivery 

process can be made more stable and automatic. Aside 

technological needs continuous delivery also poses 

requirements on organizational structure. Teams should have 

clear goals and responsibilities which are more difficult to 

determine when dealing with cross-functional teams. 

 

   DevOps tools are centered on linux-based systems. Tools are 

not as universal as one would hope for but they are slowly 

extending their portability on windows-based systems. Of 

course one can use VM to run suitable operating systems but it 

can have some negative effects on performance. Cloud-based 

services are rather new technologies thus longevity and 

scalability are not always known making large company or 

enterprise level decisions harder.    

 

   IBM case study on partial DevOps approach gives some 

sample on how DevOps effects on development and 

communications. It also makes clear that even large 

companies can benefit from DevOps approach [2]. This 

however was only partial implementation and it is hard to 

determine whether results would be as good when all DevOps  

principles were to be implemented. It is true that smaller 

companies depend on rapid feedback and delivery however 

extending same ideas to a larger company is challenging. Also 

when viewed from a large organizations perspective the case 

study is on a small scale not giving a clear picture on how 

DevOps principles would affect the organization. 

Coordinating between many departments arises new problems 

to resolve. Careful analyzation should be made on limiting 

DevOps influence on organizational structures. 

 

   DevOps has clear advantages when compared with agile 

software development and emphasizes heavily on rapid and 

increased value delivery. Agile software development is 

required for DevOps to be implemented correctly. Extending 

agile principles outside development makes both development 

and operations more value-driven and customer centered [3]. 

DevOps has clearly sprung from the need of agile delivery 

management. Thus it is hard to distinct DevOps from agile 

principles and methodologies. It is easier to imagine DevOps 

as an additional layer on top of agile.  

 

VIII. CONCLUSION 

 

DevOps emphasizes on value-driven development and 

operations. Managing customer requests and value-streams it 

adds value to the product and makes value creation easier by 

changing developers time allocation from fixing and 

maintaining to development.  

 

   DevOps approach has technical and business benefits. 

Technical requirements concentrate on automatization and 

infrastructure. IaC is one of the main principles of DevOps. 

Automatic processes enable continuous software delivery. 

This approach also makes resolving problems faster and it also 

narrows down the scope of problems. Developers spend less 

time on fixing thus changing time allocation to emphasize 

development. All of these factors increase value delivery to 

the customer and making it faster. DevOps enforces 

competitive aspects and makes development and operations 

more value-driven and customer centric for both large and 

small companies.  

 

DevOps combines development and operations by extending 

agile methodologies to include operations and systems. It 

delivers value by deploying new features and bug fixes more 

rapidly and improving infrastructure stability thus improving 

availability. Continuous delivery also amplifies the feedback 

loop between software provider and customer. DevOps 

methodologies are similar to agile methodologies but it has 

also introduced new methodologies such as VisibleOps which 

helps making processes more efficient and monitoring 

processes for identifying possible bottlenecks. DevOps tools 

help making infrastructure, monitoring and testing automatic. 

DevOps extends agile principles and methodologies making 

them more value-driven and customer centric. 

 

48



Acknowledgment 

No acknowledgments. 

 

References 

 
[1] M. Hütterman, DevOps for Developers, Springer science+Business 

Media, New York, USA, 2012. 

[2] Y. Liu, C. Li, W. Liu, Integrated Solution for Timely Delivery of 
Customer Change Request: A Case Study of Using DevOps Approach, 
International Journal of U- and E-Service Science and Technology, vol. 
7, No. 2, pp. 41-50, 2014. 

[3] E. Mueller, J. Wickett, K. Gaekwad, P. Karayanev, What is DevOps?, 
http://theagileadmin.com/what-is-DevOps/, 26.10.2014. 

[4] G. H. G. McDougall, T. Levesque, Customer satisfaction with services: 
putting perceived value into equation, Journal of Services Marketing, 
vol. 14, issue 5, pp. 392-410, 2000. 

[5] J. Heikkilä, From supply to demand chain management: efficiency and 
customer satisfaction, Journal of Operations Management, vol. 20, pp. 
747-767, 2002. 

[6] K. Behr, G. Kim, G. Spafford, The Visible Ops Handbook: Starting ITIL 
in 4 Practical Steps, Information Technology Process Institute, 2005. 

[7] G. Kim, The Three Ways: The Principles Underpinning DevOps, 
http://itrevolution.com/the-three-ways-principles-underpinning-
DevOps/, 9.11.2014. 

[8] P. Duvall, Breaking down barriers and reducing cycle times with 
DevOps and continuous delivery, 
(http://try.newrelic.com/rs/newrelic/images/GigaOm-Pro-Report-
Breaking-down-barriers-and-reducing-cycle-times-with-DevOps-and-
continuous-delivery.pdf) Gigaom Pro, 2012. 

[9] Docker, What is Docker?. (https://www.docker.com/whatisdocker/, 
7.12.2014) 

[10] Vagrant, Why Vagrant?. (https://docs.vagrantup.com/, 7.12.2014) 

[11] New Relic, Real-Time Analytics. (http://newrelic.com/solutions/real-
time-analytics, 7.12.2014) 

[12] Chef, How it works. (https://www.chef.io/chef/, 7.12.2014) 

[13] Puppet, What is Puppet?. (http://puppetlabs.com/puppet/what-is-puppet, 
7.12.2014) 

[14] S. Sharma, Applying Lean and DevOps for better business outcomes, 
IBM: Invisible Thread, 23.5.2014. 
(https://www.ibm.com/developerworks/community/blogs/invisiblethread
/entry/lean_assessment?lang=en) 

[15] New Relic, The DevOps Lifecycle: Keep C.A.L.M. and Carry On. 
(http://newrelic.com/devops/lifecycle, 8.12.2014) 

 

 

49



 

 
 

 


