Bayesian Stochastic Partition Models For
Markovian Dependence Structures

Vaino Jaaskinen

Academic dissertation

To be presented, with the permission of the Faculty of Science of
the University of Helsinki, for public examination in
the Linus Torvalds auditorium (B123), Exactum,
on February 6th, 2015, at 12 o’clock noon.

Department of Mathematics and Statistics
Faculty of Science
University of Helsinki

HELSINKI 2015



ISBN 978-951-51-0486-1 (paperback)
ISBN 978-951-51-0487-8 (PDF)

Unigrafia
http:/ /ethesis.helsinki.fi/

HELSINKI 2015



Supervisor

Pre-examiners

Custos

Opponent

iii

Professor Jukka Corander

Department of Mathematics and Statistics
University of Helsinki

Finland

Assistant Professor Harri Lahdesméki
Department of Information and Computer Science
Aalto University

Finland

Professor Jaakko Nevalainen
School of Health Sciences
University of Tampere
Finland

Professor Jukka Corander

Department of Mathematics and Statistics
University of Helsinki

Finland

Reader Korbinian Strimmer

Department of Epidemiology and Biostatistics
Imperial College London

United Kingdom



iv

Abstract

In various fields of knowledge we can observe that the availabil-
ity of potentially useful data is increasing fast. A prime example is
the DNA sequence data. This increase is both an opportunity and
a challenge as new methods are needed to benefit from the big data
sets. This has sparked a fruitful line of research in statistics and com-
puter science that can be called machine learning. In this thesis, we
develop machine learning methods based on the Bayesian approach
to statistics. We address a fairly general problem called clustering,
i.e. dividing a set of objects to non-overlapping group based on their
similarity, and apply it to models with Markovian dependence struc-
tures. We consider sequence data in a finite alphabet and present a
model class called the Sparse Markov chain (SMC). It is a special case
of a Markov chain (MC) model and offers a parsimonious description
of the data generating mechanism. A Variable length Markov chain
(VLMC) is a popular sparse model presented earlier in the literature
and it has a representation as an SMC model. We develop Bayesian
clustering methodology for learning the SMC and other Markovian
models.

Another problem that we study in this thesis is causal inference.
We present a model and an algorithm for learning causal mechanisms
from data. The model can be considered as a stochastic extension of
the sufficient-component cause model that is popular in epidemiol-
ogy. In our model there are several causal mechanisms each with its
own parameters. A mixture distribution gives a probability that an
outcome variable is associated with a mechanism.

Applications that are considered in this thesis come mainly from
computational biology. We cluster states of Markovian models esti-
mated from DNA sequences. This gives an efficient description of the
sequence data when comparing to methods reported in the literature.
We also cluster DNA sequences with Markov chains, which results in
a method that can be used for example in the estimation of bacterial
community composition in a sample from which DNA is extracted.
The causal model and the related learning algorithm are able to es-
timate mechanisms from fairly challenging data. We have developed
the learning algorithms with big data sets in mind. Still, there is a
need to develop them further to handle ever larger data sets.
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Introduction

One characteristic of the contemporary world is the abundance of potentially
relevant data in various fields. This holds for scientific research, commercial
applications and technology in general. There is a pressing need for new
methods in data analysis. In statistics, prevailing attitude to big data in
all of its forms has been somewhat ambivalent. This is because a given
statistical method usually works for data sets that are large enough but not
too large. In this thesis, the theme of large data sets and how to handle them
is explored. Statistics is not the only discipline that is concerned with large
data sets, as computer science is also intimately involved in these matters.
Indeed, the relatively new field of machine learning combines perspectives
from both statistics and computer science.

In this thesis, we start with the core ideas of Bayesian statistics and
apply them to machine learning in applications including computational
biology, especially analysis of genome sequence variation. This is natural
as the Bayesian approach to statistics has become important for machine
learning (Bishop, 2006). Bayesian statistics has a long and interesting his-
tory starting from Thomas Bayes in the 18th century (Bernardo and Smith,
1994).

A central motivation for this work comes from sequential data as it
enables the use of Markovian models in their rich variety. These models
have a history of over hundred years. The first definition and also application
of Markov chains was by Andrei Markov to model probabilities of vowels
and consonants in Alexander Pushkin’s verse novel Fugene Onegin (Hayes,
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2013). As an example of sequence data we have in Article IT 91 240 DNA
sequences each having after preprocessing an approximate length of 500 base
pairs. Another issue we consider is the study of causal inference, especially
in the context of epidemiology. For example, we can think of a situation
where a disease has two causing mechanisms and the effective mechanism is
chosen randomly for each individual. Then the probability of catching the
disease depends on the chosen mechanism and the covariates, for example
age and sex. One unifying theme in this thesis is the use of classification,
clustering and probabilistic reasoning to make sense of large data sets.

Here, we present some facts about DNA as it is central for applications
described in this thesis. In DNA (deoxyribonucleic acid), there are four types
of nucleobases: adenine (A), guanine (G), thymine (T) and cytosine (C)
(Kimball, 1994). These are nitrogen-containing ring-like structures. Bases
take part in forming polymers of nucleotides. DNA itself is such a polymer of
nucleotides and it has two strands giving it the double helix structure. The
genetic code of the DNA includes information that is used in the synthesis
of proteins and thus it controls development of living organisms together
with environmental factors.

The following chapters provide background to the four articles and high-
light important issues. In Chapter 2, the Bayesian approach to statistics is
presented. Both key equations and modeling principles are covered. In Chap-
ter 3, Markovian models are described. There are several models that each
share a form of Markov property. Chapter 4 includes graphical representa-
tions of the Markovian models. These illustrate the similarity and differ-
ences between Markovian models. In Chapter 5, the framework of Bayesian
clustering is introduced. This chapter includes a variety of concepts that
are needed for modeling as well as description of algorithms. Chapter 6 de-
scribes causal inference from both epidemiological and probabilistic point
of view, showing examples of theories related to causality. Finally, Chapter
7 presents conclusions based on the articles and other material as well as
points directions for future research.

Here, we describe some of the notation used in this thesis. Overall, no-
tation should be clear from the context. Notation in each chapter is chosen
to bring out the subject matter with clarity. This leads to a situation where



there are several symbols for concepts that are similar and on the other
hand multiple uses for a single symbol. This clarification is provided to help
the reader.

Firstly, there are several symbols for data. In Chapter 2, X can be
considered as a random variable. Its dimension is not defined explicitly. In
Chapter 3, X, is a random variable and n is an index variable. A realization
of X, is denoted by j, or x,. In Chapter 5, x denotes a set of observations
with n data objects. The dimension of the data objects varies depending on
the context. x represents the observed data in the context of expectation-
maximization (EM) algorithm.

Generally, 0 represents collectively quantitative parameters. Also its di-
mension varies depending on the context. In the context of Markov chains,
n means the total number of observed transitions. In the context of cluster-
ing, it can also mean the number of data objects to be clustered. .S denotes
a partition variable. In Chapter 2, both H both and A are taken to mean a
hypothesis.

In the description of the classification EM algorithm, M is the num-
ber of mechanisms and N the number of observations. j denotes an index
of a mechanism and ! an index of an observation (subject). 3" denotes
the health status of an observed subject I (ill or not) and z) denotes the
covariate vector of the same subject. Assignment of each observation to
a mechanism is denoted by u. An alternative representation is given by
indicator variables of the form uj(l).






Bayesian Statistics

2.1 The Bayesian Approach

Here, we present some central aspects of Bayesian statistics as a background
for later chapters. Generally, in statistical inference we are concerned with
hypothesis about quantitative parameters 6§ and we want to assess these
hypothesis based on empirical data X. This means using data to draw con-
clusions about unobserved quantities (Gelman et al., 2004).

A fundamental result for Bayesian statistics is the Bayes’ rule.

Theorem 2.1. Bayes’ rule. Assume we have defined probability distribu-
tions P(A), P(X|A), and P(X) # 0. Then

P(X|A)P(A)

P(AIX) = =5

(2.1)
P(A) is the prior distribution for hypothesis A. Typically, A is a hypothesis
about some quantitative parameters 6. The prior measures the degree of be-
lief about A being true before we have observed X. P(X|A) is the likelihood

of observing X given A is true. Evidence P(X) is the marginal probability
of X . The rule of total probability yields

P(X) = P(X|A)P(A) + P(X|~A)P(-A).
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P(A|X) is the posterior probability of A given we have observed X. We can
say that the Bayes’ rule updates the degree of the prior belief P(A) yielding
the updated belief as measured by the posterior probability P(A|X).

The Bayes’ rule follows directly from the definition of conditional prob-
ability. A key characteristic of Bayesian inference in contrast with the fre-
quentist paradigm is the use of probability for measuring uncertainty (Bernardo
and Smith, 1994). In Bayesian inference, probabilities are interpreted as de-
grees of belief. In the frequentist interpretation, probabilities are considered
as limits of relative frequencies. Especially, defining the prior distribution
P(A) with limits of relative frequencies can be problematic. Typically, it
can be constructed with hypothetical repetitions under identical conditions
(Gelman et al., 2004). But this can seem artificial, if for example we are
modeling unique or almost unique events. Furthermore, in a strict frequen-
tist interpretation an event that has not occurred would have probability
zero, which can seem unintuitive in many situations (Hajek, 1996). In com-
parison, when P(A) is interpreted as a prior belief about A, we get a coher-
ent system of inference. The Bayesian approach to statistics can be derived
from decision theoretic considerations (Bernardo and Smith, 1994). That
way coherence of the inference system can be demonstrated. Alternatively,
we can adopt the pragmatist view and state that Bayesian statistics has
proven to be useful in the analysis of applied problems in many fields. This
then justifies the use of (2.1) and the Bayesian approach in general.

2.2 Modeling

In practice, Bayesian inference includes but is not limited to specifying the
likelihood and the prior. This is evident in Articles I, IT and III which contain
for example algorithms for learning the model in question. Defining these
type of algorithms can be a central part of the statistical modeling effort.
When modeling real-world phenomena, all the relevant aspects of the
process we are modeling cannot often be included in the model. There exists
a separation between a "theoretical world" and a "real world" (Kass, 2011).
In the "theoretical world" we have mathematics and statistical models while
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in the "real world" exist the actual phenomena to be studied and data.
Statistical modeling can be seen as building a bridge between these two
worlds. As part of the modeling, simplifying assumptions have to be made.
Also, the usefulness of the model is something that has to be considered.
A statistical model can be an adequate description of a phenomenon but
not very useful if it is computationally too burdensome to be used for any
purpose. This is evident for example when high-order Markov chains are
used for analysing sequence data. Increasing the model order easily leads
to models that are not useful because of the huge volume of computations
involved.

One feature of the Bayesian approach is predictive inference. We can
calculate marginal probability distributions for hypothetical and observed
data. Also, predictive power is a useful measure of the suitability of a model
(Bernardo and Smith, 1994). If the model predicts accurately new obser-
vations, then it seems to be an efficient description of the underlying phe-
nomenon. A principle called Occam’s razor states that a simpler hypothesis
should be preferred instead of unnecessarily complicated ones. In Bayesian
statistics, this principle is at work in model comparison (MacKay, 1992).
The idea is to calculate the marginal likelihood of the data for each com-
peting hypothesis with (2.2). The probability distribution defined in (2.2) is
also called the prior predictive distribution. These probabilities can be used
for calculating Bayes factors (Kass and Raftery, 1995).

Definition 2.2. Marginal likelihood of the data and Bayes factor. For hy-
potheses, i.e. models H; and Hs and data X, the marginal likelihood of
data under the model k,k = 1,2 is

P(X|Hy) = /P(X|9k,Hk)7T(9k|Hk)d9k (2.2)

where 6}, denotes collectively parameters of the model k, P(X |0y, Hy) is the
likelihood and 7 (6| Hy) is the prior. Then the Bayes factor is

P(X|H
5, — P

= X (2.3)
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Here, the Bayes factor measures plausibility of H; in comparison to Hs.
If the model has unnecessary parameters, this is penalized in the evidence
(2.2) (MacKay, 1992).

A form of prediction is to calculate the posterior predictive distribution
for future observations X given data X and a model. Following previous
notation, the posterior predictive distribution of X under model k and given
X is

P(X|X, Hy) = /P(X‘HkaHk)ﬂ'(ek‘Xka)ko (2.4)

where P(X |6y, Hy,) is the likelihood of X and (6| X, Hy) is the posterior
distribution of 6.

In machine learning, data is often divided to subsets for learning and
testing the model (Bishop, 2006). This is done to avoid over-fitting. If the
model has a large number of parameters, it might describe well the training
data but still fail to generalize to new data. The marginal likelihood of the
data under a given model is a useful tool of Bayesian statistics that can be

applied to many problems in machine learning. This is done in Articles I,
IT and III.



Markovian Models

Many fields of science and technology depend on the analysis of sequence
data. Two prime examples are DNA sequences in biology and text in the
context of processing natural language. Given empirical sequence data, a
mathematical framework is needed for quantitative modeling (Koski, 2001,
see also Article I). First, we consider a finite alphabet S = {s1,s92,...,8s}
with J symbols. An example of a finite alphabet is the DNA alphabet
X ={A,C,G,T}. We can label the symbols with integers and generally
consider the following alphabet: X = {1,...,J} . Let Xy, X3,...,X,, be a
sequence of random variables that take values in X.

3.1 Markov Chain

A fundamental model for sequence data is the Markov chain.

Definition 3.1. Time homogeneous Markov chain (MC). Let {X,,} >, be
a sequence of random variables. If for all n > 1 and jg, j1,...,jn € &,

P(Xn = jn|Xn71 = jnfla cee 7X0 = ]O) = P(Xn = jn’anl = jnfl)a (31)
then {X,}>° is called a Markov chain.

Elements in X are called states of the Markov chain. A Markov chain has the
Markov property defined by the equation (3.1). In essence, Markov property
states that given the previous state X,,_1 = j,_1, the rest of the history

9
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is irrelevant for predicting the current state X,,. Probabilities of transitions
between states can be represented in a transition matrix with elements
pij = P(Xy = j|Xn—1 =1),4,j € X. These probabilities are assumed to be
independent of n making the Markov chain time homogeneous.

Another important model is a Markov chain of mth order.

Definition 3.2. Time homogeneous Markov chain (MC) of mth order.
Let {X,} 2, be a sequence of random variables. If for all n > m and

jO')jlu"'v.jn € X?

P(X, = jnlXn-1="Jn-1,--., X0 =Jo) = (3.2)
P(Xn = jn|Xn71 = jnfla cee 7anm = jnfm)y

for a positive integer m, then {X,} 7, is called a Markov chain of mth
order.

A Markov chain is called a first-order Markov chain in this context. A
Markov chain {X,} 2, of mth order can be transformed to a first-order
Markov chain {Z,},2 with transition probabilities p;;,i,j € A and an
extended state space with |X'|™ = J* states. Transition matrix of the first-
order Markov chain then has |X|™ rows and each row has exactly J transi-
tion probabilities that can have positive values.

Markov chains are useful for modeling different type of phenomena. Of-
ten, the Markov assumption describes reasonably well the dynamics of a
real-world system. Heuristically, it is plausible to assume that what is close
proximity affects the current state more than what is further apart.

In a Markov chain model, the order of the model controls how much
of the history of the process is used at each step. In principle, it would
be tempting to examine all of the history at once. However, realities of
modeling limit the possibilities. The number of free parameters for a Markov
chain of mth order is |X|™(]X| — 1). A Markovian model that has this
number of free parameters is called a full Markov chain. This number grows
exponentially with the order of the Markov chain. Thus, the number of
observed transitions per state decreases when the order grows. This leads
to difficulties in the estimation of transition probabilities. Also, this means
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that finding an optimal order m for the Markov chain model is far from
trivial.

Due to challenges associated with using mth order Markov chains, sev-
eral alternatives have been presented. They are typically based on the idea
of sparsity, aiming to find parsimonious descriptions of the data generating
process. Starting from the mth order Markov chain model, we can try to find
models that utilize the same information but in a more effective manner.
This leads to the question of data compression. There is a rich literature on
the Variable order Markov models (VOM) starting from Rissanen (1983).
Here we focus on Variable length Markov chains, Sparse Markov chains and
Mixture transition distribution models.

3.2 Variable Length Markov Chain

A realized value for a random variable X; is denoted by xy.

Definition 3.3. Variable length Markov chain (VLMC). Let {X,} , be
a time homogeneous Markov chain of mth order. Denote by cpre : X™ —

UTZOXj a function which maps cpre @ Tn—1,...,Tn—m = Tn—-1,...,Tn_i
where
l= l(xn_l, N ,.f(}n_m) =

min{k € ZEOQ P(Xn = jn’Xn—l =Tn-1y- s Xn—m = «'Un—m) =
P(X, = jn|lXn-1=2n-1,..., Xpn_ = xy_y) for all j,, € X},

such that [ = 0 corresponds to independence. Then [ is a variable length
memory and cpre(+) is the preliminary context function. Final context func-
tion ¢(-) is obtained by lumping together some of the values of ¢pe(-) that
share the second to last symbol. A Markov chain of mth order with a vari-
able length memory [ is called a Variable length Markov chain of order p
where p is the smallest integer such that I(z,—1,...,Zn—m) < p < m for all
Tl Tpem € X,

This definition of Variable length Markov chain is slightly different from
those in Biithlmann and Wyner (1999) and Méichler and Bithlmann (2004)
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as they start from a stationary process in finite alphabet instead of a Markov
chain of mth order as is done here.

3.3 Mixture Transition Distribution

Another parsimonious model for high-order Markov chains is the Mixture
transition distribution model (Raftery, 1985; Le et al., 1996; Berchtold and
Raftery, 2002). It has been extended from modeling of high-order Markov
chains in a finite state space to for example general state spaces. Here, the
focus is on applying MTD models for high-order Markov chains in a finite
state space.

Definition 3.4. Mixture transition distribution (MTD). Let {X,,},~, be a
time homogeneous Markov chain of mth order. In the corresponding MTD
model we have

P(Xn = jn‘Xn—l - jn—lv v 7Xn—m = jn—m) =

Z)‘QP(Xn = jn|ang = jnfg) = (3'3)

g=1
m
: : )\gpjnfgljn
g=1

with constraints

In the MTD model, contributions of the lags (1...m) are combined addi-
tively. This offers a parsimonious model of the Markov chain. The model has
|X[(]X]—1)4(m—1) free parameters which is clearly less than |X|™(|X|—1)
of the full mth order Markov chain.
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VLMC and MTD are complementary models in a sense that they have
different strengths (Berchtold and Raftery, 2002). MTD model of mth order
always deals with m lags while in the VLMC model part of the history is
irrelevant depending on the context. Berchtold and Raftery report a com-
parison of these two models.

3.4 Sparse Markov Chain

Finally, we present the Sparse Markov chain (SMC). Such models are defined
in Article I, and they offer another alternative to mth order Markov chains.

Definition 3.5. Sparse Markov chain (SMC). Let {X,,},~, be a time ho-
mogeneous Markov chain of finite order m transformed to a first-order MC
{Zn};2 o Let S = (s1,...,sk) be a partition of X™ such that the transi-
tion probability vectors satisfy the equality p;. = pj|. for all pairs of states
{i,7} € s¢,e =1,...,k, and P the corresponding set of k transition prob-
ability distributions in X™. If k& < |X™|, the pair (S,P) is called an SMC
(of order m).

The following theorem characterizes connection between SMC and VLMC
models.

Theorem 3.6. Let (S,P) be an SMC. Then, there is an equivalent repre-
sentation based on the set of contexts B of a VLMC model if and only if
there exists a unique context B, with b"), which is a suffiz to all states 1
assigned to the same class sc for allc=1,... k.

The proof is given in Article I. Theorem (3.6) formally states that for
a VLMC model that is not a full Markov chain, there is an equivalent
representation as an SMC model. The reverse is not generally true. There
are SMC models that do not have representation as a VLMC model as is
shown in the proof. For example, in Article I an SMC model is described
for which X,,_1 is irrelevant for predicting X, while X,, s is relevant. This
kind of probability model cannot be described with the context tree of a
VLMC model.
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For estimating Markovian models, there are plenty of methods. For any
Markov chain of order m, maximum likelihood based methods can be used.
For VLMC models, context algorithm can be used (Biithlmann and Wyner,
1999; Rissanen, 1983). For a MTD model, numerical maximization of the
log-likelihood or the expectation-maximization (EM) algorithm can be used
(Berchtold and Raftery, 2002). In Chapter 5, a Bayesian method for learning
Markovian models is presented.



Graphical Representations

Earlier in Chapter 3, the following Markovian models were introduced: MC,
VLMC and SMC. Here, we give a graphical representation of these models
(see Article T). We find a DAG (directed acyclical graph) for the sample
paths of each of the models. In all of them, we have a tree structure that
represents probability distributions for the random variable X,, conditional
on values of X,,_1,..., X;,_m. Generally, a DAG consists of nodes and di-
rected edges between them so that there are no cycles (Koski and Noble,
2009). Here, X,, corresponds to the root node in the graph. Other nodes
in the tree consist of possible values (or a set of them) of X,,_1,..., X, .
Here, m is the order of the Markovian model. Directions of edges are from
Xp—m to X,.

Firstly, we consider a full MC of order m in DNA alphabet. All the
possible histories are represented in a tree. Example is given in Figure
4.1. The number of leaves is |X'|™ while the number of free parameters is
|X|™(]X| —1). Here, leaves are those nodes for which no edges are directed
at.

For a VLMC model of order m, part of the full tree has been pruned.
This corresponds to the situation where for given a set of sample paths
the same probability distribution always holds for the random variable X,,.
In comparison with the SMC model, this set of sample paths has to be
hierarchical, i.e. it has to have one common path to the root node X,.
Nodes can be lumped together in two ways. Firstly, history beyond some
node can be irrelevant. For example, in Figure 4.2 if X,,_1 = T, then all

15
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Figure 4.1: A full Markov chain of order 2 in DNA alphabet

Figure 4.2: A variable length Markov chain of order 2 in DNA alphabet

values of X,,_5 lead to the same probability distribution for X,,. Secondly,
nodes sharing a second to last symbol can result in the same probability
distribution for X,. In Figure 4.2, histories C'C,CG and CT are lumped
together.

Also, for a VLMC model there exists an SMC representation which is
a partition of the sample paths of the full tree of order m. For the VLMC
model in Figure 4.2, there would be 11 clusters corresponding with the
leaves of the pruned tree.

It should be also noted that the VLMC model’s dependence structure
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Figure 4.3: A sparse Markov chain of order 2 in DNA alphabet with 4
clusters

in the space of sample paths corresponds to the theory of context-specific
DAGs, namely labeled DAGs, as presented by Pensar et al. (2014).

For an SMC model, it is possible that there does not exist a correspond-
ing VLMC model. This is illustrated in Figures 4.3 and 4.4. Numbers inside
the nodes denote to which cluster the sample paths belong to.

In Figure 4.3, we have the previously mentioned example, where X,,_1 is
irrelevant for predicting X,, while X,,_o is relevant. There are four clusters
in the partition of the sample paths of the full three. In Figure 4.4, we have
three clusters and no clear hierarchical structure as generally nodes in one
cluster do not share a path to the root node X,,. In learning a Markovian
model, we can estimate the partition of a SMC model. This enables the
learning of MC and VLMC as well as SMC models.
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Figure 4.4: A sparse Markov chain of order 2 in DNA alphabet with 3
clusters



Bayesian Clustering

Here, we describe a Bayesian approach to clustering. In Articles I, IT and III,
Bayesian clustering is used for learning sequence models from data. However,
there are certain differences between the considered problems. For example,
in Articles I and III states of Markovian models are clustered while in Article
IT the objects to be clustered are sequences modeled with Markov chains of
fixed order. We aim to present the general ideas of Bayesian clustering as
well as to elaborate on some important details.

In Article II, we define a partition S of a set Sy as "a collection of
disjoint, non-empty subsets of Sy, whose union is Sp". The elements of the
partition are called clusters. Clustering means finding a partition following
some criterion. Typically, this is similarity. Then there should be a high
probability that similar objects belong to the same cluster. Clustering is an
example of a task in unsupervised machine learning (Bishop, 2006). The
procedure is unsupervised because in principle no information besides the
set of data objects is used.

5.1 Prior and Likelihood

In Bayesian clustering, the partition S is the variable of main interest. A
central idea is that the partition S with high posterior probability p(S|x)
should be close to an optimal partition. This can be justified with results on
predictive inference and classification theory (Corander et al., 2007, 2013,;
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Hartigan, 1990; Barry and Hartigan, 1992). Here, & denotes a set of observa-
tions with n objects to be clustered. To calculate the posterior distribution
p(S|x), a prior p(S) and a marginal likelihood p(x|S) are needed. Then the
Bayes’ rule (2.1) yields

p(Slz) = p(z[S)p(S) 7 (5.1)
> ses p(@|S)p(S)
where & is the set of all possible partitions of x. In the expression for the
marginal likelihood p(x|S), parameters of the model have been integrated
over their prior distributions. A reasonable approach to identifying a good
partition is to solve the maximum a posteriori (MAP) estimate of the par-
tition parameter S. The MAP estimate is defined as

S = argmax p(S|x)
SeS

= argmax p(x|S)p(S). (5.2)
Ses

Often, the MAP estimate can be solved only approximately. A simple solu-
tion to finding the MAP estimate would be to evaluate p(z|S)p(S) for all
possible values of S. However, this is computationally infeasible with almost
any realistic data set. The number of possible partitions for n objects is the
Bell number B(n) and it increases rapidly as a function of n (Bell, 1934;
Rota, 1964). There are various methods that a stochastic algorithm could
employ to maximize p(x|S)p(S). Markov chain Monte Carlo (MCMC) and
similar stochastic simulation methods give consistent MAP estimates but
they can be too slow in some cases when the number of data objects to be
clustered is large. In Articles I and II, a stochastic greedy algorithm is used.
Search operators like joining two clusters together and splitting one cluster
into two are used in a data-driven manner. In Article III, a deterministic re-
cursive learning algorithm is used. In later sections, algorithms for learning
the MAP partition are presented.

The prior p(S) can take many forms. The simplest form is the uniform
prior p(S) = 1/B(n). Then each partition is equally probable and it is
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enough to maximize p(x|S) when calculating the MAP estimate. Another
possibility is the Dirichlet process prior (DPP)

p(S) o< [T moT(ISel), (5.3)
Se

where 79 is a hyperparameter and |S,| is the number of items in cluster S..
Here, I'(-) denotes the Gamma function. With the Dirichlet process prior,
sizes of individual clusters affect the prior probability of the partition so
that partitions with larger clusters are favoured. This is desirable if we have
a priori information that the number of clusters should be small relative to
n, the number of items to be clustered.

The following description of the Dirichlet process prior is adapted from
Article II. To derive the Dirichlet process prior (5.3) we can consider the
Dirichlet process mixture (DPM) model under certain assumptions (Neal,
2000; Jain and Neal, 2004; Teh et al., 2006; Dahl, 2009). By representing
the Dirichlet process (Ferguson, 1973) with the Polya urn scheme (Blackwell
and MacQueen, 1973), the prior can derived (see, e.g. Dahl, 2009). The stick-
breaking construction of the Dirichlet process (Sethuraman, 1994) provides
an alternative approach. Then we have the following form of the DPM
model: (see, e.g. Teh et al., 2006)

™ [no ~ GEM (o)
zi|m~m (5.4)
o1 | Go ~ Go
Yi | 2i, (r)rz1 ~ Flez,),

where given the cluster membership indicators z; and cluster parameters
0; = ¢, we have conditional independence of observations y;. The prior
distribution for cluster parameters is Gy. We draw indicator variables z;
independently from the stick-breaking distribution 7 which is sometimes
denoted by GEM(n9). GEM stands for Griffiths, Engen, and McCloskey
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(see, e.g. Pitman, 2006). The stick-breaking construction of the Dirichlet
process DP(ng, Gp) induces the random probability measure on the positive
integers m = (m,)52,. We have G = Y ;7| iy, in the construction. The
distribution of G follows DP(ng, Gy) (Sethuraman, 1994). By assuming n
observations from the DPM model above, we get a finite number of clusters
that have more than zero observations. We have a multinomial distribu-
tion with event probabilities defined by 7 and the cluster sizes follow this
distribution. In the stick-breaking construction, there is a beta distributed
variable () associated with each 7 (see, e.g. Teh et al., 2006). We can
use the Bayes’ theorem to get a posterior distribution for the cluster sizes
and the unknown ()72 ;. By integrating out each (3, over its beta prior
distribution we get the Dirichlet process prior as given in (5.3).

Typically, in Bayesian clustering it is assumed that data objects in dif-
ferent clusters are conditionally independent given the partition. Then, we
have a product partition model (Hartigan, 1990; Barry and Hartigan, 1992).
In these models, the likelihood is expressed as a product

p(@|S) = [] f(=s.). (5.5)

S.E€S

where f(xg,) is the marginal likelihood contribution from cluster S., which

can take a variety of forms. Here, the likelihood contribution from a cluster
S, is defined as

f(@s,) = /@ p(6)p(s,10)d6, (5.6)

where 6 denotes collectively the quantitative parameters of the model.

Next, we define the marginal likelihood p(x|S) for Markovian models
excluding MTD. The marginal likelihood for SMC models is a basis for the
learning algorithms. Because a VLMC model has a representation as an
SMC model, the same definition for the marginal likelihood can be used
when learning VLMC and SMC models. Also, the marginal likelihood for a
full MC can be calculated with the same formulations.
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For an MC of given order m, we have data on transitions from |X™|
states to J = |X| symbols. For an SMC model with a partition S and
k clusters, there are {p.|- : ¢ = 1,...,k} probability vectors. For a full
MC, k = |X™|. We denote by 6 € © the quantitative parameters of the
model. When assuming the initial state fixed, the likelihood is a product of
multinomial distributions

|[x™| g k J
|5 2 se TVilj
p((0,8) oc [T [Twyd =TT T T peie"™"" (5.7)
i=1 j=1 e=1j=1

where the number of transitions from the state ¢ to j in @ is denoted by
n;);- For transition probabilities py;,¢ = 1,...,k,j = 1,...,J, we choose
the canonical conjugate multivariate Dirichlet prior (Koski, 2001)

k

J
pblog) = [ | =l s, (5.8)

J
=1 Hj:l I'(ag;) j=1

where the hyperparameters satisfy the following conditions: a > 0,¢q; > 0,
ijl gj = 1. Using the properties of Dirichlet distribution, the marginal
likelihood p(x|S) can be calculated as

p(x]S) o /9 __ plalt. S)p(ola. )0

o / ﬁ F(Oé) ﬁpaqj_l d pziésc T4 de (5 9)
0€O H;-Izl I'(agj) <l ol

c=1 j=1 j=1
k

~ H ['(«) H}]:1 F(Ziesc nj; + aq;)
o T D(ag) TSy Sies, magy) + @)

Also, predictive probability of future observations can be calculated analyt-
ically, as is demonstrated in Article I.
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One important issue is choosing m, the order of the Markov chain used
in estimation. In Article I, a uniform distribution is assigned over the values
m =20,...,M, where M is an upper bound that has to be chosen and can
be revised if necessary. Then the joint posterior distribution of m and S is

p(S,m|z) o< p(x|S)p(S)p(m) (5.10)

and p(m) = 1/(M + 1). The approximate MAP estimate can be calculated
for both S and m:

(S,M) = argmax {argmaxp(a: ] Sm)p(Sm)}. (5.11)
me{0,....M} U SmESm

5.2 Expectation-Maximization Algorithm

Here, we discuss the expectation-maximization (EM) algorithm. Its first
general formulation is due to Dempster et al. (1977). In Article II the EM-
algorithm is used for learning a partition when the data objects are Markov
chains of fixed order. In the EM-algorithm, we have unknown and latent
variables. For example, a latent variable can be the partition S while the
unknown variables can be the transition probability matrices collectively
denoted by 6. Assume that x represents the observed data, z is a latent
variable and 6 is an unknown parameter. Then consider a posterior p(f|x) =
Y. p(0, z|x). Here, the description of the algorithm is adapted from Article
II. The EM-algorithm for finding a MAP estimate of the posterior is then
defined as follows. Starting with an initial value () for @ and setting k < 0,
the following steps are applied until convergence:

e Expectation step

Calculate
Q(016™) = Eyu , Inp(6, Z|)]
= Inp(6, 2[x) - p(z|6™), z)
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e Maximization step

Set
0+« arg max Q(0]0™)
6

and k < k+ 1.

Convergence is achieved when the difference between 811 and (%) is below
a threshold that has been set beforehand. Also, it can be useful to define
an upper bound for the number of iterations that the algorithm is allowed
to run.

In Article II, the EM-algorithm is used for estimating transition proba-
bility matrices of sequences modeled with Markov chains and for assigning
sequences to the most appropriate clusters. The number of clusters is not
changed by the EM-algorithm.

For iterations k and k + 1 it holds that

P00V [2) > p(6®) o)

Thus, the definition of the EM-algorithm leads to monotonic probabilities
for the unknown parameter 6 given the data x. This property of the algo-
rithm makes the convergence possible. Here, we have marginalized out the
latent variable z.

5.3 Classification EM Algorithm

In Article IV, we have M generating clusters (mechanisms) and N observa-
tions. The aim is then to estimate the prior probability that an observation
is generated by cluster j, denoted by «; for j =1,..., M. Also, we estimate
parameter vectors for mechanisms j = 1,..., M, denoted by %' Finally,

assignment of each observation to a cluster, denoted by u) for i =1,..., N
and j = 1,..., M, has to be estimated. For an alternative representation,
indicator variables of the form uj(l) can be used. In article IV, a version of
classification EM algorithm (CEM) (Celeux and Govaert, 1992; Redner and
Walker, 1984) is used. The following description of the classification EM
algorithm is adapted from Article I'V:
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e Initial step

Choose initial values for o ©) and %j (0),]' =1,..., M. Move to E-step.

e First step

aj(o) and yj (0),j =1,..., M are our current parameters and uj(l),l =
1,..., N are our current assignments.
e E-step

Compute for [ =1,...,N and j =1,..., M using the Bayes’ rule

a¥p(yO . j,2)
> aPpy® 9, 5, 20) '

tj(y") =

Here, tj(y(l)) is the current posterior probability that (y®,2®)) be-
longs to the cluster j.

o C-step

Forl=1,..., N we assign

1 j* = argmax tj(y(l))
all) = 1<<M

0 otherwise
to get a new assignment of (y(l),x(l)). Thus, each observation is as-
signed to a cluster so that the posterior probability is maximized.

e M-step

N (
(1) Zzzlug‘*)

o = ———

J N
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is maximum likelihood estimate of o; from Lo(ar) = Z]]\il njlog(a;j).
We need to find 1/)](-1) for j = 1,..., M by maximization of L1(¢) =
ij‘il L; (gj) Details of this maximum likelihood estimation are given
in Article IV.

e Return to
Now, we have the new estimates

ajﬂ),ggl),uyj j=1,...,M;l=1,...,N.

We aSSign aj(l) - O‘j(o)vg;l) - @‘0), Ugl*) — Ugl)
e Stop

We have In(L) = L1(¢) + La2(a). The algorithm is stopped when

In L(g(l),g(l)) —In L@(O),Q(O)ﬂ <e

where ¢ is a small positive number that has to be specified in imple-
mentation. Also, if a preassigned maximum number of iterations has
been reached, the algorithm stops.

5.4 Stochastic Search

Here, we present a stochastic search algorithm adapted from Article I. This
greedy algorithm is based on algorithms presented in Corander and Martti-
nen (2006) and Marttinen et al. (2006). The idea is to find a good clustering
of the | X|™ states of the Markov chain and thus estimate the Sparse Markov
chain model. For a given value of m we have the following algorithm:

(i) Initialize S;,t = 0 with |X|™ singleton clusters and store for all pairs
of states i,1 € X™ the distances between posterior mean estimates of
their transition probability vectors
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J 2
n;|; + ag; ny|; + og;
=3 (ZJ i Sp—_ ) . (5.12)

T\ tag Y5y t+ag;

(ii) Given the current value of p(x|S;), apply the following operators se-
quentially until no change in S; results in a higher marginal likelihood.

(iii) In a random order, move each state ¢ € X to the class ¢ in S¢, which
results in the Sy associated with a maximal increase in p(x|Sy41). If
p(x|Si+1) < p(x|Sy) for all c=1,...,k, Sit1 = St

(iv) For each pair of classes ¢,/ = 1,...,k, calculate p(x|S*) for the S*
obtained by merging classes ¢, ¢’ in S;. If any S* satisfies p(x|S*) —
p(x|S:) > 0, set Si+1 equal to the S* for which p(x|S*) — p(x|S;) is
maximal, otherwise set Siy1 = S.

(v) For each class ¢ = 1,...,k, use the complete linkage algorithm (e.g
Mardia et al., 1979) with distances (5.12) to split the class into two
non-empty subsets of states and calculate p(x|S*) for the resulting
partition S*. If p(x|S*) — p(x|S:) > 0, set Si+1 equal to S*, otherwise
set Si11 =S¢

This greedy algorithm converges to a local mode when the operators do
not increase marginal likelihood any further. Several restarts from different
initial conditions can be used to find clusterings that are closer to a global
optimum. Also, this algorithm could be generalized to give a consistent
posterior estimator using Markov chain Monte Carlo approach with a non-
reversible Markov chain (Marttinen et al., 2006; Corander et al., 2006, 2008).

5.5 Recursive Search

In Article III, a heuristic deterministic algorithm is defined for searching the
optimal SMC model (S, P) for a given sequence {X;}; ;. Here, we present an
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adapted description of the algorithm. The general idea is to apply Delaunay
triangulation on X™ so that each transition state i € A becomes a node
in the triangulation graph. Then we recursively merge nodes to maximize
the posterior probability. Bayes factor is used as the local criterion when
choosing which nodes should be merged.

e Initial step

Obtain the transition counts of {X;};" ; for MC of order m. Estimate
the transition probability distribution 6 of the model by posterior
mean estimation from the transition counts. Form Delaunay triangu-
lation G of X™ by using values of free parameters in 8 as coordinates.
Calculate the log Bayes factor log BF,, for each edge u,v in G. Find
the edge (u*,v*) that gives maximal log Bayes factor value w. Set

U=u*VY=ov"and W=w.
e While W > 0 do
Merge V to U by the following steps:

a) add the sufficient statistics counts of V to U

b) for each node r in G which has a connection with V| if edge (U, )
does not exist, redirect the edge (V,r) to (U,r)

c) delete V from G. Update the Bayes factors for all the edges (include
the edges added by merging) connected to . Find the edge (u*,v*)
with a maximal log Bayes factor value w’. Set U = u*, V = v* and

W =uw'.






Causal Inference

Causal inference is a challenging issue for both scientific inquiry and philoso-
phy of science (Rothman et al., 2008). In this chapter, we present two models
of causality. The first one is Rothman’s pie model, also called the sufficient-
component cause model (Rothman, 1976; Rothman et al., 2008; Rothman,
2012). The second one is Pearl’s Do-Calculus which gives a probabilistic
account of causality (Pearl, 1995, 2000). In Article IV, a model that is a
stochastic extension of the sufficient-component cause model is presented. In
the article, we have a fixed number of causal mechanisms. The effect of the
covariates on the probability distribution of the outcome variable depends
on the mechanism-specific parameters. These are estimated from the data
so that mechanisms can be identified. We can consider mechanisms anal-
ogous to sufficient causes in the sufficient-component cause model. When
simulating data from the model, we first draw randomly a sufficient cause
and then based on that we draw the value of the outcome variable. In this
model, the individual component causes are modeled with parameters of
the mechanisms.

There is a connection between the model in Article IV and Pearl’s Do-
Calculus. Also, Do-Calculus is described here as an example of a probabilis-
tic framework for causality. Because the model in Article IV is essentially a
Bayesian network, we can apply do-conditioning. The covariates do not have
parents in the graph so forcing a subset of covariates to have certain value
leads to a equivalent conditional probability distribution as see-conditioning,
i.e. observing those values.

31
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Traditionally, statistical inference has been concerned with associations
and correlations instead of causality. In scientific inquiry, causal relations
are important and often results of statistical methods are used for causal
inference, with mixed success (Freedman, 1999). However, in statistics there
are several important and relatively successful approaches to causal infer-
ence. Firstly, there is contrafactual causality (see, e.g. Rubin, 1974). For
example, in a typical medical study each subject either gets the treatment
or does not. We are then interested in the causal effect, i.e. the difference in
outcome between a situation where the subject gets the treatment and the
alternative situation where the subject does not get the treatment. Here,
contrafactuality comes from the fact that the subject cannot both get the
treatment and not get it. Randomization makes it possible to asses the
causal effect when there are several trials. Rubin also discusses how an ob-
servational, non-randomized study can provide information on the causal
effect. The contrafactual or potential outcomes approach has been extended
for example with the use of structural equations and instrumental variables
(Angrist et al., 1996). Another approach is the use of graphical models for
causal inference (see, e.g. Pearl, 2000). Often, relations between variables
are described with directed acyclic graphs (DAGs) and parents of a node are
considered to be its direct causes. There has been symbiotic development
between the contrafactual and graphical models approaches (Greenland and
Brumback, 2002; Pearl, 2009). Finally, there is the predictive causality ap-
proach which takes explicitly into account the time between the cause and
the effect (see, e.g. Arjas and Eerola, 1993; Arjas and Parner, 2004).

6.1 Sufficient-Component Cause Model

In epidemiology, causation is often modeled with the sufficient-component
cause model. Here, we state the basic principles of the model (see e.g. Roth-
man et al., 2008). We define cause as a condition or event that precedes
the disease and had the cause not been present the disease would not have
occurred. By sufficient cause we mean a set of component causes that is
minimal and complete and which is sufficient for the disease to appear.
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)

Figure 6.1: Four sufficient causes. Adapted from Rothman et al. (2008).

Minimality means that if one of the component causes is not present than
the disease does not appear. Completeness means that if all the component
causes are present than the disease occurs. There are typically several dif-
ferent sufficient causes for a disease. If a component cause is present in all
sufficient causes, we can consider it to be necessary.

These principles are illustrated in Figure 6.1. There we have component
causes A, F, B and D. These are assumed to be binary so that the condition
of the component cause either is present (value 1) or not (value 0). Typically,
in epidemiology there are always component causes that have not been
identified. This is taken into consideration by having an unknown cause U;
as a part of each sufficient cause. We notice from the figure that the value
B = 0 is part of the first sufficient cause while the value B = 1 is part of the
third sufficient cause. This could be the situation for example if presence
of some chemical substance would in one case be causing a disease and in
another case preventing it. This depends on the other component causes of
the sufficient cause. They are called collectively causal complement. Thus,
the effect of chemical substance being present or not depends on its causal
complement.

One insight that the sufficient-component cause framework gives is that
the proportion of disease due to specific causes can add to over 100%. This
is because there are multiple sufficient causes that have at least partially
different component causes.

The sufficient-component cause model is deterministic but the method-
ology of epidemiology includes a variety of mathematical tools (Rothman
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et al., 2008; Rothman, 2012). For example, the risk of contracting a disease
for an individual can be modeled with probabilistic methods. This model-
ing can benefit from the sufficient-component cause model when different
causes are assessed systematically. Also, a stochastic generalization of the
sufficient-component cause model can be useful for epidemiological study.

It seems that for causal inference, a logical, qualitative foundation is
needed. The sufficient-component cause model provides this. Then causal
inference can proceed with either a model that includes causality or with
more heuristic methods, perhaps comparing information from many sources
or experiments. Article IV is an example of work that develops a probabilis-
tic model of causality.

6.2 Do-Calculus

A notable framework for probabilistic causal inference is Pearl’s Do-Calculus
(Pearl, 1995, 2000). We present basic definitions and some properties of Do-
Calculus following Koski and Noble (2009) as well as lecture notes by Koski
and Noble and lecture slides from Koski’s presentation from the Bayesian
network course at KTH, year 2013.

Firstly, we define a Bayesian network as the following structure.

Definition 6.1. Bayesian Network. Let G be a directed acyclic graph (DAG)
with nodes V' = {1,...,n}, (X,),cy a set of finite discrete random vari-
ables and {P(Xy, = %, | Xy (y) = Tr(v)) Juev a set of conditional probability
distributions with

n

P(Xy =), Xp =2,) = [[ P(Xo = 20, | Xn() = Tr(w)):

v=1
where 7(v) is the set of parent nodes of v and P(X,|Xrq)) = P(X,) if
m(v) = 2.

We consider the parents X, as the direct causes of X, and P(X,|Xr(,))
measures our belief about the strength of the causality. Often, in statistical
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inference we observe a random variable having some value. In controlled
experiments, a variable is forced to have some value (maybe after random-
ization). A central part of Do-Calculus is the intervention formula. It de-
scribes the joint probability distribution of the Bayesian network after a
subset of variables has been forced some values. Observing a value is called
see-conditioning and forcing a value is called do-conditioning.

When variables X 4, A C V are forced to have values x 4* the resulting
joint distribution is defined as

. P(Xy =uay)
P(Xo = zul X ) —
v =av XA e = B, = o Koy = ) A~ A
= [I P(Xo=2i,|Xn() = 2rw)lza = 24"
veV\A

In the notation, the arrow <— and the double bar || indicate conditioning by
doing. In other words, X < x means that we intervene to force the value of
the random variable X to be x. In the intervention formula, conditioning by
T4 = x4" is equivalent to a substitution. Applying the intervention formula
means that edges from parents of nodes in A to nodes in A are removed. This
"local surgery’ yields a mutilated graph and the joint distribution factorizes
along it. Note that we can also define an alternative formulation P(X, =
Ty|Xa  24")=P(Xy\a = my\4l|Xa = 14¥) as variables in X4 have
known values after the intervention.
A property of Do-Calculus is that if node v has no parents then

P<XV = :UV‘XU A .%'U*) - P(XV = -TV’XU = x’u*)~

In this case, forcing a value results in same conditional probabilities as
observing it. In other words, see and do probabilities are the same. Another
property is the exogeneity:

P(Xo| Xrw) ¢ ) = P(Xy| Xz = 2).
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It means that forcing values to parents of a node v results in same con-
ditional probability for v as observing those values in the parent variables
Xr(v)- Finally, we have the invariance property. For all v = 1,...,n and
S C V such that SN {v,7(v)} = &, we have

P(XU|X7r(U) — :E,XS — S) = P(XU|XW(U) — ."L‘)

This means that once we control parents of v, no further interventions will
affect the probability of X,,.

Here, we give an example of how an intervention affects a Bayesian net-
work. The example is adapted from Pearl (2000) and Koski’s lecture slides
from the Bayesian network course at KTH, year 2013. We are modeling
slipperiness of a pavement and we assume that the slipperiness is a bi-
nary random variable denoted by Xs. So the pavement either is slippery
or not. Slipperiness is affected by several environmental attributes which
we model as random variables. These include the wetness of the pavement
(X4), sprinkler being possibly on (X3), the possible rain (X3), and the sea-
son (X7) which is assumed to have four possible values. All the other random
variables in this example are binary. Relations between these variables are
described by the DAG of the Bayesian network. For example, given informa-
tion about the wetness of the pavement, the slipperiness is independent of
the random variables associated with the season, the rain and the sprinkler.
The joint distribution of the random variables factorizes along the DAG:

P(X1 =1, X0 = 19, X3 = 23, X4 = 24, X5 = 75)
= P(X) =21)P(X2 = 22| X7 = 21)P(X3 = 23| X1 = 21)-
P(X4 = $4‘X2 = 1’2,X3 = LL’3)P(X5 = .T5|X4 = .1:4).

The situation is illustrated in Figure 6.2.

Now we consider an intervention where the sprinkler is set on, i.e. we set
X3 equal to 1. We apply the intervention formula to get the do-conditioned
probability:



6.2. DO-CALCULUS 37

Season (4 states)

Figure 6.2: Wet pavement DAG before intervention. Adapted from Pearl
(2000) and Koski’s lecture slides.

P(X1=m1, Xy =29, X3 =23, Xy = 14, X5 = 25| X3 < 1)
PX1=x1,Xo=129,X3=1,Xy =24, X5 =2x5)
P(X5=1X; =)
=P(X1 = 21)P(X2 = 22| X1 = 21)P(X4 = 24| X2 = 22, X3 = 1) P(X5 = x5| X4 = x4)

The DAG in Figure 6.3 illustrates the situation. The edge from X; to X3
has been removed. This is because after the intervention, i.e. setting the
sprinkler on, the season has no effect on the sprinkler.

There are connections between Rothman’s sufficient-component cause
model and Pearl’s Do-Calculus. As a part of probabilistic assessment of
causal relations in the sufficient-component cause model, Do-Calculus could
be used. We could describe a sufficient cause, i.e. a pie in the model, with
a Bayesian network. Component causes would be parental nodes for the
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Season (4 states)

Sprinkler on, i.e. X3 < 1

@ Slippery pavement yes/no

Figure 6.3: Wet pavement DAG after the sprinkler has been set on. Adapted
from Pearl (2000) and Koski’s lecture slides.

outcome variable, i.e. state of an individual. Then do-conditioning would
correspond to having an experiment where values of putative component
causes are controlled. More complicated modeling would be needed to con-
sider several sufficient causes. Also, component causes themselves could have
causes behind them as represented by parental nodes. Generally, the idea of
intervention in Do-Calculus is potentially useful for inference that relies on
controlling values of some variables, i.e. conducting controlled experiments.



Discussion

In this thesis, we have presented methods for sequence analysis and causal
inference. In Article I, model class of Sparse Markov chains is defined and
its properties are investigated. In Article II, a stochastic partition model of
DNA sequences is considered so that the sequences are modeled as Markov
chains of fixed order. Article III develops inference for SMC models fur-
ther by introducing a recursive deterministic algorithm that uses Delaunay
triangulation and Bayes factors. Finally, in Article IV causal inference is
addressed and an algorithm for estimating interactions of multiple causes
for a disease is given.

One underlying theme in this thesis is the use of the Bayesian approach
for problems in machine learning. Especially, clustering is a task that we
have addressed several times. A Bayesian approach to clustering is used in
Articles I, IT and III. Developing further the framework of Bayesian cluster-
ing could lead to improvements in the particular solutions we have presented
in the articles. One possible direction is to use different prior distributions
for partitions as now we have concentrated on the uniform prior and the
Dirichlet process prior. For example, an uniform prior on the number of clus-
ters could be used (Kohonen and Corander, 2014; Knorr-Held and Rafer,
2000; Quintana and Iglesias, 2003).

A second theme is the adaptation to the reality of large data sets. Our
choice of learning algorithms reflects this. In Article I, a greedy stochastic
algorithm is used instead of an MCMC approach that could provide consis-
tent estimates (Marttinen et al., 2006; Corander et al., 2006, 2008). Even
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the stochastic greedy algorithm proves to be relatively slow with very large
data sets. In Article III, a heuristic deterministic recursive algorithm for
the SMC models is presented. In future research, further approximations
could be developed to deal with even larger data sets. In the articles, the
use of point-estimation to obtain for example a MAP estimate has been
a favoured method because estimating the posterior distribution would be
computationally challenging. But for some future applications, estimating
the posterior distribution with MCMC techniques could be valuable.

The data we have considered has been mostly sequence data. The use
of Markovian models for sequence data is already a prominent tool for the
scientist studying a variety of phenomena. As the data sets are growing,
the need for sparse models will likely increase. The SMC model presented
in Article I is a promising foundation for algorithms that process sequence
data in a sparse manner. Article III provides a faster algorithm for learning
an SMC model. Together these could be used in a variety of applications.
For example, they could be combined with the clustering of Markov chains
as presented in Article II.

Article IV presents a model for learning causal mechanisms from data.
Although the Bayes’ rule is used as a part of the learning algorithm, we can
say that overall the solution is not Bayesian. This shows a pragmatic atti-
tude to probabilistic modeling. Generally, we use Bayesian methods because
they work in practice but we are at the same time interested in non-Bayesian
methodology as well. Also, using greedy and heuristic algorithms when fac-
ing big data sets can be considered as pragmatic.

There are some attractive areas of application for SMC models that
however seem to be computationally too burdensome. For example, pro-
cessing of natural language with any Markov model is challenging because
of the memory required for software implementation. For the analysis of
DNA data, there is an abundant literature of methods. Our approaches be-
long to the category of alignment free methods. For more on aligning DNA
sequences, see Cheng et al. (2012).

For all the four articles, there has been a need to implement the algo-
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rithms by developing software. For Article I, BAPS! software was used as
a part of the implementation. Based on Article II, a software package that
is freely available was developed 2. In future, software from Articles III and
IV could also be made available for the public.

"http:/ /www.helsinki.fi/bsg/software/BAPS/
http://www.helsinki.fi/bsg/software/BACDNAS/






Bibliography

Joshua D Angrist, Guido W Imbens, and Donald B Rubin. Identification
of causal effects using instrumental variables. Journal of the American
Statistical Association, 91(434):444-455, 1996.

Elja Arjas and Mervi Eerola. On predictive causality in longitudinal studies.
Journal of Statistical Planning and Inference, 34(3):361-386, 1993.

Elja Arjas and Jan Parner. Causal reasoning from longitudinal data. Scan-
dinavian Journal of Statistics, 31(2):171-187, 2004.

Daniel Barry and John A Hartigan. Product partition models for change
point problems. The Annals of Statistics, 20(1):260-279, 1992.

Eric T Bell. Exponential polynomials. Annals of Mathematics, 35(2):258—
277, 1934.

André Berchtold and Adrian Raftery. The mixture transition distribution
model for high-order Markov chains and non-Gaussian time series. Sta-
tistical Science, 17(3):328-356, 2002.

Jose M Bernardo and Adrian FM Smith. Bayesian theory. John Wiley &
Sons, 1994.

Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.

43



44 BIBLIOGRAPHY

David Blackwell and James B MacQueen. Ferguson distributions via Polya
urn schemes. The Annals of Statistics, 1(2):353-355, 1973.

Peter Biihlmann and Abraham J Wyner. Variable length Markov chains.
The Annals of Statistics, 27(2):480-513, 1999.

Gilles Celeux and Gérard Govaert. A classification EM algorithm for clus-
tering and two stochastic versions. Computational Statistics & Data Anal-
ysis, 14(3):315-332, 1992.

Lu Cheng, Alan W Walker, and Jukka Corander. Bayesian estimation
of bacterial community composition from 454 sequencing data. Nucleic
Acids Research, 40(12):5240-5249, 2012.

Jukka Corander and Pekka Marttinen. Bayesian identification of admixture
events using multilocus molecular markers. Molecular Ecology, 15(10):
2833-2843, 2006.

Jukka Corander, Mats Gyllenberg, and Timo Koski. Bayesian model learn-
ing based on a parallel MCMC strategy. Statistics and Computing, 16(4):
355-362, 2006.

Jukka Corander, Mats Gyllenberg, and Timo Koski. Random partition mod-
els and exchangeability for Bayesian identification of population struc-
ture. Bulletin of Mathematical Biology, 69(3):797-815, 2007.

Jukka Corander, Magnus Ekdahl, and Timo Koski. Parallell interacting
MCMC for learning of topologies of graphical models. Data Mining and
Knowledge Discovery, 17(3):431-456, 2008.

Jukka Corander, Yaqiong Cui, Timo Koski, and Jukka Sirén. Have I seen you
before? Principles of Bayesian predictive classification revisited. Statistics
and Computing, 23(1):59-73, 2013.

David B Dahl. Modal clustering in a class of product partition models.
Bayesian Analysis, 4(2):243-264, 2009.



BIBLIOGRAPHY 45

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likeli-
hood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 39(1):1-38, 1977.

Thomas S Ferguson. A Bayesian analysis of some nonparametric problems.
The Annals of Statistics, 1(2):209-230, 1973.

David Freedman. From association to causation: some remarks on the his-
tory of statistics. Statistical Science, 14(3):243-258, 1999.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian
data analysis: second edition. CRC Press, 2004.

Sander Greenland and Babette Brumback. An overview of relations among
causal modelling methods. International Journal of Epidemiology, 31(5):
1030-1037, 2002.

Alan Hajek. "Mises redux’-redux: Fifteen arguments against finite frequen-
tism. Erkenntnis, 45(2-3):209-227, 1996.

John A Hartigan. Partition models. Communications in Statistics - Theory
and Methods, 19(8):2745-2756, 1990.

Brian Hayes. First links in the Markov chain. American Scientist, 101(2):
92-97, 2013.

Sonia Jain and Radford M Neal. A split-merge Markov chain Monte Carlo
procedure for the Dirichlet process mixture model. Journal of Computa-
tional and Graphical Statistics, 13(1):158-182, 2004.

Robert E Kass. Statistical inference: the big picture. Statistical Science, 26
(1):1-9, 2011.

Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the Amer-
ican Statistical Association, 90(430):773-795, 1995.

John W Kimball. Biology: 6th edition. Wm. C. Brown Publishers, 1994.



46 BIBLIOGRAPHY

Leonhard Knorr-Held and Giinter Rafer. Bayesian detection of clusters and
discontinuities in disease maps. Biometrics, 56(1):13-21, 2000.

Jukka Kohonen and Jukka Corander. Computing exact clustering posteri-
ors with subset convolution. Communications in Statistics: Theory and
Methods, 2014. doi: 10.1080/03610926.2014.894070.

Timo Koski. Hidden Markov models for bioinformatics. Springer, 2001.

Timo Koski and John Noble. Bayesian networks: an introduction. John
Wiley & Sons, 2009.

Nhu D Le, R Douglas Martin, and Adrian E Raftery. Modeling flat stretches,
bursts outliers in time series using mixture transition distribution models.
Journal of the American Statistical Association, 91(436):1504-1515, 1996.

Martin Méchler and Peter Biihlmann. Variable length Markov chains:
methodology, computing, and software. Journal of Computational and
Graphical Statistics, 13(2):435-455, 2004.

David JC MacKay. Bayesian interpolation. Neural Computation, 4(3):415—
447, 1992.

Kantilal Varichand Mardia, John T Kent, and John M Bibby. Multivariate

analysis. Academic press, 1979.

Pekka Marttinen, Jukka Corander, Petri T6ronen, and Liisa Holm. Bayesian
search of functionally divergent protein subgroups and their function spe-
cific residues. Bioinformatics, 22(20):2466-2474, 2006.

Radford M Neal. Markov chain sampling methods for Dirichlet process
mixture models. Journal of Computational and Graphical Statistics, 9
(2):249-265, 2000.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):
669-688, 1995.



BIBLIOGRAPHY 47

Judea Pearl. Causality: models, reasoning and inference. Cambridge Uni-
versity Press, 2000.

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys,
3:96-146, 2009.

Johan Pensar, Henrik Nyman, Timo Koski, and Jukka Corander. La-
beled directed acyclic graphs: a generalization of context-specific inde-
pendence in directed graphical models. Data Mining and Knowledge
Discovery, pages 1-31, 2014. doi: 10.1007/s10618-014-0355-0. URL
http://dx.doi.org/10.1007/s10618-014-0355-0.

Jim Pitman. Combinatorial stochastic processes. Springer, 2006.

Fernando A. Quintana and Pilar L. Iglesias. Bayesian clustering and prod-
uct partition models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 65(2):557-574, 2003.

Adrian E Raftery. A model for high-order Markov chains. Journal of the
Royal Statistical Society. Series B (Methodological), 47(3):528-539, 1985.

Richard A Redner and Homer F Walker. Mixture densities, maximum like-
lihood and the EM algorithm. SIAM Review, 26(2):195-239, 1984.

Jorma Rissanen. A universal data compression system. IEEFE Transactions
on Information Theory, 29(5):656-664, 1983.

Gian-Carlo Rota. The number of partitions of a set. American Mathematical
Monthly, 71(5):498-504, 1964.

Kenneth J Rothman. Causes. American Journal of Epidemiology, 104(6):
587-592, 1976.

Kenneth J Rothman. Epidemiology: an introduction. Oxford University
Press, 2012.

Kenneth J Rothman, Sander Greenland, and Timothy L Lash. Modern
epidemiology: third edition. Lippincott Williams & Wilkins, 2008.



48 BIBLIOGRAPHY

Donald B Rubin. Estimating causal effects of treatments in randomized
and nonrandomized studies. Journal of Educational Psychology, 66(5):
688-701, 1974.

J Sethuraman. A constructive definition of Dirichlet measures. Statistica
Sinica, 4(2):639-650, 1994.

Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei.
Hierarchical Dirichlet processes. Journal of the American Statistical As-
soctation, 101(476):1566-1581, 2006.



