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Discrete Helmholtz Decomposition for Electric

Current Volume Integral Equation Formulation
Johannes Markkanen

Abstract—A volume integral equation formulation for the
equivalent current is investigated by decomposing the L2-
conforming unknown current into orthogonal functions. The de-
composition shows that the solenoidal, irrotational and harmonic
subspaces scale differently with respect to the material parameter.
This has a negative effect on the conditioning of the system, and
thus, the convergence of the iterative solution slows down with
increasing permittivity. We construct discrete decomposition op-
erators, and use them as a preconditioner for the electric current
volume integral equation. The eigenvalues of the resulting system
are almost independent on the permittivity. Numerical examples
show that the proposed preconditioner improves the condition
number and decreases the number of iterations required to
solve the system. However, efficient evaluations of the projection
operators require additional regularization techniques such as
abgebraic multigrid preconditioners.

Index Terms—Basis functions, method of moments, precondi-
tioning, volume integral equations.

I. INTRODUCTION

ELECTROMAGNETIC scattering problems involving

high-contrast inhomogeneous dielectric materials may

arise from many different fields in science and engineering

such as bioelectromagnetics, remote sensing, metamaterials,

communication, etc. Mathematically, scattering problems can

be formulated as boundary value problems for Maxwell’s

equations whose solution can be found through various nu-

merical procedures, for instance the finite-element (FEM), the

finite-difference time-domain (FDTD), or the surface/volume

integral-equation (SIE/VIE) methods. In general, the integral

equation based numerical solvers are more attractive for open-

region scattering problems since the radiation condition is

automatically satisfied, and therefore, the unknowns are local

and restricted inside the scatterer. In the differential equation

methods, the unknowns are global meaning that the space

around the objects needs to be modelled and the region of

interest must be terminated by a proper boundary condition.

VIE methods are commonly used for solving scattering

problems of general inhomogeneous media since material

inhomogeneities can be treated trivially. SIE methods are ap-

plicable for piecewise homogeneous materials but they might

become too complicated when the number of different material

domains increases since each sub domain requires the different
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Green’s function. In the VIEs, only the Green’s function of the

background is needed, and that simplifies the analysis.

To solve the VIEs, the method of moments (MoM) is

usually applied. In the MoM, the original integral equation

is converted into a discrete system of linear equations with

N equations and unknowns. A direct solution of such a

system would require O(N3) operations and O(N2) memory,

and therefore, computationally it is too demanding to be

used for any practical applications. Fortunately, due to the

rapid development of sophisticated fast methods such as the

multilevel fast multipole algorithm (MLFMA), and the FFT-

based adaptive integral method (AIM) or the pre-corrected

FFT method (pFFT) [1]–[5], VIEs have become very attractive

choice for modeling inhomogeneous dielectric materials. In

these techniques, a huge system of linear equations is solved

iteratively, and the matrix-vector multiplication required in

each iteration step is accelerated by the abovementioned algo-

rithms. The computational complexity of all these algorithms

scale roughly as O(NlogN) per iteration, and the memory

consumption as O(N) − O(NlogN). Hence, to obtain an

efficient solver, the number of iterations required to solve the

system should be minimized, and a poor convergence rate can

be a major bottleneck of these algorithms. Especially, it is

important that the number of iterations is independent on the

mesh density.

It is well known that when the VIEs are discretized with

the standard techniques, the iterative solvers tend to converge

very slowly or even stall their convergence as the permittivity

of the object increases [6]. The main reason for this is that

the spectral radius of the volume integral operator grows

with increasing permittivity [7]–[12]. Intuitively, it can be

understood as different scaling of the solenoidal, irrotational

and harmonic parts of the source current with respect to

the permittivity. In addition, the spectrum of the discretized

integral operator might not be the same as the spectrum of

the original integral operator. The spectrum of the discrete

operator also depends on the choice of the basis and testing

functions, and the employed inner product [13].

In this paper, we review the spectral properties of the

volume integral operator by applying an orthogonal decom-

position, i.e., the Helmholtz decomposition. The Helmholtz

decomposition shows that the solenoidal, irrotational, and

harmonic subspaces scale differently with respect to the per-

mittivity. Consequently, the condition of the system matrix is

also affected by the permittivity function. This explains a poor

convergence of the iterative solvers when the permittivity is

large in amplitude. Thus, we propose a preconditioner that

is based on a discrete Helmholtz decomposition. The discrete

decomposition is obtained by constructing projection operators
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that derive from the standard solenoidal and irrotational basis

functions. This technique leads to a well-posed system matrix

whose condition number is independent on the mesh density

and almost independent on the permittivity, which is verified

by various numerical examples. In addition, we discuss how

to compute the projection operators efficiently, and it is shown

that additional regularization techniques, such as algebraic

multigrids, are required.

II. FORMULATIONS

Consider a time-harmonic (exp(−iωt)) electromagnetic

wave scattering by a linear inhomogeneous three-dimensional

object bounded by domain Ω in a background medium with

constants ǫ0 and µ0. The total time-harmonic electric field E

can be expressed via the volume equivalence principle as [5]

E = Einc +
−1

iωǫ0

(

∇∇+ k20
¯̄I
)

·V(J), (1)

where Einc is the incident electric field, and k0 = ω
√
ǫ0µ0 is

the wavenumber in the background medium. The equivalent

electric polarization current is defined as

J(r) = −iωε0(ǫr(r)− 1)E(r), (2)

where ǫr(r) is the relative permittivity function. The volume

potential operator in (1) can be expressed as

V(F )(r) =

∫

Ω

G0(r, r
′)F (r′) dV ′, (3)

where G0 is the Green’s function of the background.

From representation (1) and the definition of the equivalent

current (2), the volume integral equation formulation for the

electric current (JVIE) can be derived:

J inc = J − (ǫr − 1)(∇∇+ k20
¯̄I) ·V(J). (4)

Due to the finite energy assumption, the equivalent current J

must belong to the space L2(Ω)3 [14], i.e., the space of square

integrable vector functions in Ω. The above equation (4) is

well-posed from L2(Ω)3 to L2(Ω)3 assuming the permittivity

function is realistic [11].

III. ORTHOGONAL DECOMPOSITION

Any vector field f ∈ L2(Ω)3 can be decomposed into the

irrotational, solenoidal and harmonic parts as [10]

f = ∇p+∇×w +∇h, (5)

where p ∈ H1
0 (Ω), w ∈ Hcurl

0 (Ω)3, and h ∈ Hharm(Ω) with

H1
0 (Ω) = {p ∈ L2(Ω),∇p ∈ L2(Ω)3, p|∂Ω = 0}, (6)

Hcurl
0 (Ω)3 = {w ∈ L2(Ω)3,∇×w ∈ L2(Ω)3,n×w|∂Ω = 0},

(7)

Hharm(Ω) = {h ∈ H1(Ω),∇2h = 0}, (8)

H1(Ω) = {g ∈ L2(Ω),∇g ∈ L2(Ω)3}, (9)

and L2(Ω) is the space of square integrable functions in Ω. It is

worth noting that gradients of harmonics correspond boundary

values and can be represented as ∇Hharm = ∇H1∩∇×Hcurl

where the spaces H1 and Hcurl are defined in (6) and (7) but

without vanishing boundary values [15].

Properties of the electric current volume integral equation

formulation (4) is studied by decomposing the unknown cur-

rent J as

J = Jsol + J irr + Jharm, (10)

with Jsol = ∇×w, J irr = ∇p, and Jharm = ∇h. For the

solenoidal part (Jsol), the equation (4) reduces to

J inc = Jsol − (ǫr − 1)k20V(Jsol), (11)

since by integrating by parts

∇∇ · V(Jsol) = ∇
∫

Ω

G0∇ · Jsol dV −
∫

∂Ω

G0n · Jsol dS,

(12)

and from the definition of Jsol, we can see that ∇ · Jsol = 0
and n · Jsol = 0, on ∂Ω, hence ∇∇ · V(Jsol) is identically

zero. The operator V(Jsol) is compact from L2(Ω)3 to itself

[11]. If (ǫr − 1) is bounded, the product (ǫr − 1)S(J) is

compact, and the equation (11) is of the form “identity + com-

pact”. This means that the essential spectrum is discrete, and

the eigenvalues of the discretized operator should accumulate

to one on the complex plane.

To analyze the irrotational part (J irr = ∇p), we use the

fact that [16]

(∇∇+ k20
¯̄I) · V(J) = ∇×∇× V(J)− J , (13)

to write the equation (4) as follows

J inc = ǫrJ − (ǫr − 1)∇×∇× V(J). (14)

Integrating by parts and using Stokes theorem, the double curl

operator can be written as

∇×∇× V(J irr) = ∇×
∫

Ω

G0∇× J irr dV

−∇×
∫

∂Ω

n× J irrG0 dS.
(15)

Due to the definition of J irr, ∇× J irr = 0 and n× J irr =
0, on ∂Ω, the operator ∇× ∇ × V(J irr) is identically zero.

Thus, only the permittivity and the identity operators act on

the irrotational part

J inc = ǫrI(J
irr). (16)

The essential spectrum is discrete, and the eigenvalues depend

only on the permittivity function. The accumulation point of

the eigenvalues is at ǫr on the complex plane.

Finally, we need to analyze the harmonic part. Substituting

the gradient of the harmonic function Jharm = ∇h into the

equation (4), integrating by parts, and using the fact that ∇ ·
∇h = 0, the equation (4) can be written as

J inc = Jharm + (ǫr − 1)
(

∇S(γnJ
harm)− k20V(Jharm)

)

,

(17)

where γn denotes the normal trace operator, and S is the single

layer potential:
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S(F )(r) =

∫

∂Ω

G0(r, r
′)F (r′) dS′. (18)

The operator V(Jharm) is a compact mapping from

∇Hharm(Ω) to L2(Ω)3, and the operator ∇S(γnJ
harm) is

bounded from γn∇Hharm(Ω) to L2(Ω)3 [7].

The normal trace operator γn defines the following isomor-

phisms [10]

∇Hharm ∋ h ↔ γnh = n · h|∂Ω ∈ H
−1/2
∗ (∂Ω), (19)

where H
−1/2
∗ (∂Ω) is H−1/2(∂Ω) with zero mean value.

Hence on ∇Hharm we can write

γnJ
harm − γn

(

(ǫr − 1)∇S(γnJ
harm)

)

=
1

2
(ǫr + 1)I(f) + (ǫr − 1)

∫

∂Ω

∂nGf dS,
(20)

with f ∈ H
−1/2
∗ (∂Ω), and ∂nG denotes the normal derivative

of the Green’s function [10]. The operator
∫

∂Ω ∂nGf dS is a

common operator in the surface integral equations [8], and it

is compact in H
−1/2
∗ if ∂Ω is smooth. If the surface is not

smooth, the operator is not compact but it is bounded [9], [10].

The essential spectrum of the complete volume integral

operator (when ∂Ω is smooth) is σe = {1, 1
2
(ǫr + 1), ǫr}.

In addition, the spectrum contains discrete eigenvalues which

are related to the resonances [12]. The accumulation points of

the eigenvalues due to the decomposed spaces on the complex

plane are as follows:

Solenoidal : 1
Irrotational : ǫr
Harmonic : 1

2
(ǫr + 1).

This indicates that the spectral radius is a function of

material parameter, and it may have a negative effect on the

stability of the numerical solution. This explains why iterative

solvers tend to slow down their convergence in the case of

high-contrast materials.

IV. DISCRETIZATION

Consider discretization of the volume integral equation (4).

Let us divide the volume of the dielectric object Ω with linear

tetrahedral elements k. We define piecewise constant basis bik
and testing tik functions on the tetrahedral mesh where the

superindex i denotes the x-, y-, or z-component. The current

is approximated as a linear combination of basis functions with

coefficients aik as

J ≈
∑

k,i

aikb
i
k =

∑

k

(axkêx + aykêy + azkêz) /
√

Vk, (21)

where êx, êy, êz are the unit vectors, and Vk is the volume

of tetrahedron k. To obtain well-behaving discrete identity

operator, i.e., the identity matrix, independently on the mesh

density, the basis and testing functions are scaled by 1/
√
Vk .

The continuous integral equation is converted into a discrete

set of equations by a projection method with the L2-inner

product defined as

〈F ,G〉
Ω
=

∫

Ω

F ·G dr. (22)

To guarantee the convergence of the projection method, basis

functions should span the domain of the operator, and testing

functions the L2-dual space of the range of the operator [14].

In this case, both the domain and L2-dual of range are L2(Ω)3,

therefore the Galerkin’s technique with piecewise constant

functions works. This can be seen by applying the Helmholtz

decomposition

< ∇p+∇×w +∇h,J >= − < p,∇ · J >
− < w,∇× J > + < h, n̂ · J >,

(23)

hence the divergence, curl, and boundary values are well-

tested. If, for example, a point matching technique is used

rather than the Galerkin, there would be no guarantee that

∇ · J (charge) converges.

Taking the inner product and using integration by parts, the

integral operator can be discretized as

Aij
mn =

∫

Vm

tim · bjm dV

+

∫

∂Vm

n · (τ tim) ·
∫

∂Vn

Gn′ · bjn dS′ dS

−
∫

Vm

tim · τk20
∫

Vn

Gbjn dV ′dV,

(24)

where τ = (ǫr − 1). The elements of the force vector read as

bim =

∫

Vm

tim · J inc dV. (25)

Fig. 1 shows the eigenvalues of the discretized integral

equation (24) at low frequency with ǫr = 10 + 2i. Clearly,

the eigenvalue distribution of the discretized operator follows

the theory. There are accumulation points at 1 and at ǫr due

to the solenoidal and irrotational subspaces, and the harmonic

subspace creates the continuous spectrum whose center is at

(ǫr+1)/2 since the operator that contains the normal derivative

of the Green’s function in (20) is not compact but bounded on

non-smooth surfaces.

A. Discrete decomposition

To perform a discrete Helmholtz decomposition, we use

similar basis-free decomposition, which was introduced by

Andriulli et. al in [17], [18] to cure the low frequency

breakdown in the SIE method. This approach gives rise to

the basis-related dense-discretization breakdown free decom-

position which is essential in the volume discretization. In the

VIEs, the standard discrete Helmholtz decomposition leads to

the ill-posed system matrix, since the condition number of the

discrete solenoidal Gram matrix depends strongly on the mesh

density [19].

First, we define transformation matrices from solenoidal,

irrotational and harmonic functions to piecewise constant func-

tions. Let us denote a transformation matrix from solenoidal to

piecewise constant functions by ¯̄S. Columns of the matrix ¯̄S
are the coefficients of the solenoidal loop functions expressed

as linear combinations of the piecewise constant functions.
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Fig. 1. The eigenvalue distribution of the discretized volume integral equation
at low frequency. The spectrum contains accumulation points at 1 and at
ǫr = 10 + 2i due to the solenoidal and irrotational subspaces as well as the
continuous part (center at (ǫr + 1)/2) due to the harmonic subspace.

The elements of the transformation matrix can be expressed

as

Si
kl =< bik,∇× f l >, (26)

where bik are piecewise constant functions defined in (21), and

f l are the lowest order Nédélec’s edge elements [20]. Since

the solenoidal current lives in ∇ × Hcurl
0 (Ω) the functions

belonging to the boundary edges should be removed.

A transformation matrix from irrotational functions to piece-

wise constant functions is denoted by ¯̄I whose columns are

the coefficients of the irrotational functions of the form ∇Nl

(Nl are standard linear nodal functions) expressed in terms of

piecewise constant functions. Elements of the matrix ¯̄I are

Iikl =< bik,∇Nl > . (27)

The nodal functions on the boundary are set to zero due to

the definition of the J irr. We also note that the solenoidal and

irrotational coefficient matrices are orthogonal ¯̄ST ¯̄I = ¯̄0 since

the elements can be written as

( ¯̄ST ¯̄I)lb =
∑

i,j,k,a

=< ∇× f l, b
i
k >< bja,∇Nb >

=< ∇× f l,∇Nb >= 0,
(28)

with bikb
j
a = 1/Va, when a = k, i = j, and zero otherwise.

Let us denote a transformation matrix from harmonic to

piecewise constant coefficients by ¯̄H . The transformation

matrix ¯̄H only contains boundary elements (removed form
¯̄S and ¯̄I), and it is orthogonal to ¯̄S and ¯̄I . We do not have

to compute ¯̄H since later we construct the complementary

operator that finds the remaining components for gradients of

harmonics.

Next, we define projection operators in the coefficient space.

The coefficients of any piecewise constant function f̄ can be

represented as

f̄ = ¯̄S s̄+ ¯̄I ī+ ¯̄H h̄, (29)

where s̄, ī, and h̄ are the coefficients of the solenoidal,

irrotational, and harmonic basis functions, respectively. Due

to the orthogonality of the decomposition ¯̄ST ¯̄I = ¯̄0 and
¯̄ST ¯̄H = ¯̄0, for any f̄

¯̄ST f̄ = ¯̄ST ¯̄S s̄+ ¯̄ST ¯̄I ī+ ¯̄ST ¯̄H h̄ = ¯̄ST ¯̄S s̄, (30)

is valid, and thus

s̄ = ( ¯̄ST ¯̄S)+ ¯̄ST f̄ , (31)

in which ( ¯̄ST ¯̄S)+ is the Moore-Penrose pseudoinverse of

( ¯̄ST ¯̄S). The solenoidal components f̄s of f̄ in terms of the

components of the piecewise constant functions are obtained

by

f̄s =
¯̄S s̄ = ¯̄S( ¯̄ST ¯̄S)+ ¯̄ST f̄ = ¯̄Ps f̄ , (32)

with the projection operator defined as

¯̄Ps =
¯̄S( ¯̄ST ¯̄S)+ ¯̄ST . (33)

Analogously, the projection operator from the piecewise con-

stant to the irrotational components can be written as

¯̄Pi =
¯̄I( ¯̄IT ¯̄I)+ ¯̄IT , (34)

and from the piecewise constant to the gradients of harmonic

as
¯̄Ph = ¯̄H( ¯̄HT ¯̄H)+ ¯̄HT . (35)

The tranformation matrices ¯̄S and ¯̄I are well-known matrices

and easy to compute, but ¯̄H is more complicated, especially for

multiply connected objects. Hence, we define a complemen-

tary projector that finds the remaining harmonic components

by subtracting the solenoidal and the irrotational parts from

the identity ¯̄I operator as

¯̄Ph = ¯̄I − ¯̄Ps − ¯̄Pi. (36)

This means that the discrete functions obtained by using the

projector ¯̄Ph are gradients of harmonics in a weak sense,

i.e., they are discrete L2 functions that are not solenoidal nor

irrotational expressed as

gm ∈ Ψ, < ∇Ni, gm >= 0, and < ∇×fk, gm >= 0, (37)

in which functions Ni and fk on the boundaries are removed,

and Ψ is a space spanned by piecewise constant functions.

B. Preconditioner

Finally, we can construct a preconditioner for high-contrast

objects by scaling the volume integral equation in the irro-

tational subspace by ǫ−1, and in the harmonic subspace by

χ = 2(ǫ + 1)−1. Inhomogeneous objects are considered as

piecewise homogeneous objects, i.e., all functions in (26) and

(27) related to edges and nodes laying on material interfaces

as well as the outer boundary should be removed. This allows

us to write the scaled equation as

( ¯̄PT
s + ¯̄PT

i ǫ−1 + ¯̄PT
h χ) b̄ =

( ¯̄PT
s + ¯̄PT

i ǫ−1 + ¯̄PT
h χ) ¯̄A( ¯̄Ps +

¯̄Pi +
¯̄Ph)x̄,

(38)

where b̄, ¯̄A, and x̄ are the L2-discretized incident vector

(25), the system matrix (24), and the unknown coefficients,

respectively. Since ( ¯̄Ps + ¯̄Pi +
¯̄Ph) = ¯̄I the equation (38)

simplifies as
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( ¯̄PT
s + ¯̄PT

i ǫ−1 + ¯̄PT
h χ) b̄ = ( ¯̄PT

s + ¯̄PT
i ǫ−1 + ¯̄PT

h χ) ¯̄Ax̄, (39)

and using (36) we can write the system as

¯̄PT b̄ = ¯̄PT ¯̄Ax̄, (40)

where
¯̄P = ¯̄Ps(1− χ) + ¯̄Pi(ǫ

−1
r − χ) + ¯̄Iχ, (41)

The eigenvalues of the above matrix are almost independent

on the permittivity at low frequencies, and therefore, is more

suitable for iterative solvers. In addition, the projectors used

in the preconditioner lead to a stable system matrix in a sense

that the eigenvalues are independent on the mesh density. The

eigenvalues of the matrix ¯̄PT ¯̄A at very low frequency are

plotted in Fig. 2 when the permittivity is ǫr = 10 + 2i. The

spectrum for ¯̄A in the same case can be seen in Fig. 1.
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Fig. 2. The eigenvalue distribution of the discretized volume integral
equation with the proposed preconditioner at low frequency. Fig. 1 shows
the eigenvalues of the original operator for the same problem.

C. Computational considerations

In this chapter, we consider computational issues of the

proposed preconditioner. For any practical application the

preconditioner should be efficiently computed, i.e., complex-

ity should be linear or almost linear for the computational

time and memory requirement. Almost all practical problems

require fast methods, e.g., the MLFMA or FFT-based accel-

eration techniques which have computational complexity of

O(NlogN) per iteration.

The transformation matrices ¯̄S and ¯̄I are highly sparse,

and should be stored in the memory. To build the projection

operators, pseudo-inverses of ¯̄ST ¯̄S and ¯̄IT ¯̄I should be com-

puted iteratively. Unfortunately, condition numbers of ¯̄ST ¯̄S
and ¯̄IT ¯̄I matrices depend on the mesh density, and the iterative

solutions do not converge quickly when the mesh contains

small and large or badly-shaped elements.

As an example Fig. 3 shows computational times for the

FFT-accelerated matrix-vector multiplication y = Ax (one

iteration step in FFT-JVIE solver), projections ¯̄Psy and ¯̄Piy

10
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Fig. 3. Wall-times for GMRES iterations in the FFT-accelerated JVIE
algorithm, and for the solenoidal and irrotational projection steps required
in the preconditioner. The pseudo-inverses are computed iteratively with the
CG-solver.

when the pseudo-inverses ¯̄ST ¯̄S and ¯̄IT ¯̄I are computed by the

conjugate-gradient (CG) algorithm (tol = 10−6). Computa-

tional times of the pseudo-inverses do not scale when a simple

iterative solver is used. The number of iterations increases with

the number of unknowns. Hence, preconditioners for ¯̄ST ¯̄S and
¯̄IT ¯̄I are needed.

Elements of the matrix ¯̄IT ¯̄I can be represented as

( ¯̄IT ¯̄I)ij =

∫

V

∇Ni · ∇Nj dV, (42)

where Ni are linear nodal basis functions. The above matrix is

a well-known matrix arising from the finite-element discretiza-

tion of the Poisson equation with Dirichlet boundary condition,

and can be preconditioned with the standard algebraic multi-

grid (AMG) method [21]. In what follows, the inversion can

be done nearly linearly, and the total inversion time is almost

negligible.

The solenoidal projection ¯̄Ps requires inverting the matrix
¯̄ST ¯̄S with elements described as

( ¯̄ST ¯̄S)ij =

∫

V

∇× f i · ∇ × f j dV, (43)

where f i are the lowest order Nédélec’s edge elements. This

matrix appears in the magnetostatic problems when discretized

with the finite-elements. The standard multigrid approach does

not work in this case due to the large null-space of the curl

operator. However, an efficient preconditioner can be obtained

by so-called auxiliary space AMG [22], [23].

Implementing AMG preconditioners for the projection op-

erators, one may expect significant improvements for the

solution times compared with the conjugate gradient solver.

In particular, the solution time should scale nearly linearly

with respect to the number of unknowns. Implementing the

AMG preconditioners, however, is out of scope of this paper.

V. NUMERICAL EXAMPLES

In this section, we study numerically how well the proposed

preconditioner works in the case of high contrast dielectric
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materials. All results are calculated by the method develop

in this paper, and compared with the standard J-formulation

discretized with piecewise constant functions [24]. The main

purpose of these examples is to demonstrate that the idea

behind the preconditioner works, but we do not consider total

computational times since the projectors are not efficiently

computed in our implementation.

First, we investigate a small scatterer in which case the

spectrum consist purely of the essential part. Consider a

dielectric cone of size r = 1m and height h = 2m at

the frequency f = 1Hz (See Fig. 4). Hence, the cone is

significantly smaller than the wavelength. The cone is chosen

as an example because it is not a smooth object and contains

elements of different sizes. Especially on top, the elements

are very small compared to the ones on the bottom. The

volume ratio between the largest and the smallest tetrahedron

is 5.5 · 107
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Fig. 4. Discretized cone with tetrahedral elements. The volume ratio between
the largest and the smallest tetrahedron is 5.5 · 107 .
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Fig. 5. Condition numbers for different permittivity values. The scatterer is
a dielectric cone plotted in Fig. 4, and the frequency is 1 Hz.

Fig. 5 shows the condition numbers of the discretized ma-

trices with respect to the permittivity arising from the standard

discretization of the J-formulation and the preconditioned one.

Clearly, the condition number of the standard J-formulation

increases linearly with the permittivity. This is because the

spectral radius of the operator increases linearly as a function

of permittivity as discussed in Section III. By scaling the

irrotational and harmonic parts, the spreading of the spectral

radius can be prevented, and the condition number seems to

be bounded. It is also worth noting that the size distribution

of the elements do not affect the condition number at all

neither in the standard discretization of the J-formulation nor

the preconditioned one. This is the main reason why we have

used the projection operators rather than the standard discrete

Helmholtz decomposition in which case the condition number

would depend on the underlying mesh.

Let us next consider a larger dielectric sphere. The size

parameter of the sphere is k0a = 0.5, and the sphere is meshed

with 2696 linear tetrahedra. The average element size is

h = 0.2 m or in freespace wavelengths h ≈ 0.016λ0. However,

the effective wavelength in material is shorter (λe = λ0/
√
ǫr),

and at ǫr = 60, the element size is about h ≈ 0.12λe. The

condition numbers for different permittivities are plotted in

Fig. 6. Since the size of the object is around wavelength,

the spectrum contains both the essential and discrete parts.

When the permittivity is around ǫr = 40, the condition number

peaks. This is because one discrete eigenvalue is located close

to zero on the complex plane. This eigenvalue is related to the

resonance solution, i.e., the diameter of the sphere equals the

effective wavelength in the material λe = 2a.
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Fig. 6. Condition number as a function of permittivity. The size of the sphere
is k0a = 0.5. The sphere has a physical resonance around ǫr ≈ 40.

Fig. 7 shows the radar cross section as a function of per-

mittivity, and Fig. 8 presents the number of GMRES iteration

required to solve the system. Both methods give almost the

same solution, but less GMRES iterations are needed to solve

the system when the preconditioner is applied.

Next, we consider an inhomogeneous case. The scatterer is a

cube of size kl = 0.5 located at the origin with permittivities

ǫ1 (x < 0) and ǫ2 (x > 0). The cube is discretized with

2433 tetrahedral elements, and the incident field is an x-

polarized planewave propagating along z-axis. Fig. 9 presents

the number of iterations as a function of permittivity ǫ2 while
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MIE

Fig. 7. Radar cross section of a dielectric sphere of size ka = 0.5 as a
function of permittivity.
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Fig. 8. Number of iterations required to solve the system as a function
of permittivity. The GMRES solver without restart is applied with stopping
criterion 10−5. The problem is the same as in Figs. 6 and 7.

ǫ1 = 10. We do not observe any significant differences in the

performance of the preconditioner in case of inhomogeneous

cubes and homogeneous spheres as can be seen by comparing

Figs. 8 and 9.

The discrete Helmholtz decompotition used in this paper

does not suffer from the dense-discretization breakdown as

opposed to the standard discrete decomposition. To demon-

strate this, we consider an inhomogeneous lossy cube with

ǫ1 = 10+ 20i and ǫ2 = 40+ 10i. The edgelength of the cube

is l = 1 m, and the wavelength λ0 = 2π m. The geometry

is otherwise the same as in the previous example. Fig. 10

shows the number of iterations as a function of the number of

unknows. Clearly, the convergence is independent of the mesh

density as predicted. Also we can see that the preconditioner

works for inhomogeneous as well as lossy dielectrics too.

Finally, we study a lossy dielectric cube. The size parameter

of the cube is kl = 2, and the real part of the permittivity

ǫr = 4. The number of GMRES iterations is plotted as a
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ǫ2ǫ1

Fig. 9. Iteration count with respect to the permittivity ǫ2 (x > 0). The
scatterer is an inhomogeneous cube of size kl = 0.5 located at the origin
with ǫ1 = 10 (x < 0).
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Fig. 10. Iteration count with respect to the number of unknowns. The scatterer
is a lossy inhomogeneous cube of size kl = 1 located at the origin with
ǫ1 = 10 + 20i (x < 0) and ǫ2 = 40 + 10i (x > 0).

function of the imaginary part of the permittivity in Fig. 11.

We can observe that also in the lossy case, the preconditioner

decreases the iteration count.

VI. CONCLUSIONS

Spectral properties of the volume integral operator have

been reviewed by performing an orthogonal decomposition in

L2(Ω)3. The L2(Ω)3 vector space is decomposed into three

orthogonal subspaces, solenoidal, irrotational, and gradients of

harmonic subspaces. It has been shown that these orthogonal

subspaces scale differently with respect to the permittivity, and

it has a negative effect on the conditioning of the system. This

explains why iterative solvers tend to converge very slowly

when the contrast in the permittivity function is large.

We have proposed a preconditioner for the VIE that is based

on the discrete Helmholtz decomposition. The discrete decom-

position is implemented by applying projection operators that

derive from the standard transformation matrix representation

of solenoidal and irrotational basis functions. This technique

leads to a well-posed system matrix whose condition number is

independent on the mesh density and almost independent on

the permittivity. The preconditioner is purely multiplicative,

and therefore, relatively easy to implement for existing VIE

solvers. In addition, this technique can be applied to other
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Fig. 11. Number of iterations required to solve the system as a function of
the imaginary part of the permittivity. The scatterer is a cube of size kl = 2
and the real part of the permittivity is 4. The GMRES solver without restart
is applied with stopping criterion 10−5.

VIE formulations as long as the proper discrete Helmholtz or

quasi-Helmholtz decomposition is known.

Numerical examples show that the proposed preconditioner

improves the conditioning of the system as well as decreases

the number of iterations required to solve the problem. How-

ever, the pseudo-inverses required in construction of the pro-

jection operators cannot be computed in advance and stored.

They must be computed iteratively in each iteration step, and

preconditioners based on (auxiliary space) algebraic multigrids

should be applied for efficient computations.
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integral equation formulations for scattering by high-contrast penetrable
objects”, IEEE Trans. Antennas and Propagation, vol. 60, no. 5, pp.
2367–2374, May 2012.

[7] M. Costabel, E. Darrigrand, and E.H. Koné, “Volume and surface
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