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Abstract

Supersymmetry is a proposed new symmetry that relates bosons and fermions.
If supersymmetry is realized in nature, it could provide a solution to the hi-
erarchy problem, and one of the new particles it predicts could explain dark
matter. In this thesis, I study supersymmetric models in which the lightest
supersymmetric particle can be responsible for dark matter.

I discuss a scenario in which the supersymmetric partner of the top quark
called stop is the next-to-lightest supersymmetric particle in the constrained
Minimal Supersymmetric Standard Model. Mass limits and various decay
branching fractions are considered when the allowed parameter space for the
scenario is determined. If the mass of stop is close to the mass of the lightest
supersymmetric particle, one can obtain the observed dark matter density. The
scenario leads to a novel experimental signature consisting of high transverse
momentum top jets and large missing energy, which can be used to probe the
model at the LHC.

I also discuss an extended supersymmetric model with spontaneous charge-
parity (CP) violation and a right-handed neutrino. When CP is spontaneously
violated, a light singlet scalar appears in the particle spectrum, which provides
new annihilation channels for the lightest supersymmetric particle. In the
model, a neutralino or a right-handed sneutrino can produce the observed dark
matter density. Dark matter direct detection limits are found to be especially
constraining for right-handed sneutrinos.
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work and interesting discussions, and the pre-examiners of this thesis, Gautam
Bhattacharyya and Kristjan Kannike, for their comments.

Finally, I thank my family for providing support and encouragement.

Helsinki, December 2014
Lasse Leinonen

ii



List of Publications

This thesis is based on the following publications:

I. K. Huitu, L. Leinonen, and J. Laamanen,
Stop as a next-to-lightest supersymmetric particle in constrained MSSM,
Phys.Rev. D84 (2011) 075021.

II. K. Ghosh, K. Huitu, J. Laamanen, L. Leinonen,
Top Quark Jets as a Probe of the Constrained Minimal Supersymmetric
Standard Model with a Degenerate Top Squark and Lightest Supersym-
metric Particle,
Phys.Rev.Lett. 110 (2013) 141801.

III. K. Huitu, J. Laamanen, L. Leinonen, S. K. Rai, and T. Ruppell,
Comparison of neutralino and sneutrino dark matter in a model with
spontaneous CP violation,
JHEP 1211 (2012) 129.

Author’s Contribution

Paper 1: I contributed to the computer code and generated the data sets for
the particle spectra and constraints of the model. The results were interpreted
and the paper was written jointly by all authors.

Paper 2: I wrote an implementation of the Pythia algorithms used in the
analysis of the boosted top jet events. I generated the benchmark points and
checked the experimental constraints for them. The results were interpreted
jointly by all authors.

Paper 3: I implemented the model and developed the related code for mi-
crOMEGAs together with T.R. The results were interpreted and the paper
was written jointly by all authors.

iii



iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

2 Supersymmetry 5
2.1 Supersymmetric Theories . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Chiral Superfields . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Vector Superfields . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . . . 9

3 Minimal Supersymmetric Standard Model 13
3.1 R-Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Soft Supersymmetry Breaking in the MSSM . . . . . . . . . . . 15
3.3 Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . . 16
3.4 Neutralinos and Charginos . . . . . . . . . . . . . . . . . . . . . 21
3.5 Gluinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Squarks and Sleptons . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Minimal Supergravity Model . . . . . . . . . . . . . . . . . . . 25

4 Non-Minimal Supersymmetric Models 27
4.1 NMSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 NMSSM with Right-handed Neutrinos . . . . . . . . . . . . . . 29

5 Constraints on Supersymmetric Models 33
5.1 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Collider Searches of Supersymmetric

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Indirect Searches of Supersymmetric

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Summary of Results 47

7 Conclusions 61

v



vi



Chapter 1

Introduction

The Standard Model is a remarkably successful description of the fundamen-
tal interactions of particle physics. With the discovery of the Higgs boson
at the Large Hadron Collider (LHC) and the resulting confirmation of the
Higgs mechanism as the source of electroweak symmetry breaking, this theory
of strong and electroweak interactions is established to be in very good agree-
ment with the experimental data. There are, however, several phenomena that
are not explained by the Standard Model. For instance, these include neutrino
masses, dark matter, and dark energy. Neutrinos are massless in the Standard
Model, but the observed flavor oscillations point to massive neutrinos and con-
sequently to the existence of right-handed neutrinos. The extensive evidence
of dark matter on astronomical and cosmological scales is another sign that
the Standard Model must be extended because it does not feature a viable
candidate for dark matter. The origin of dark energy, which is responsible for
the accelerating expansion of the universe, is also a mystery. The Standard
Model is regarded as a low energy effective theory of some more fundamental
theory of physics. It is expected that new physics should manifest itself in
particle collisions at an energy scale between the electroweak scale and either
the grand unification scale, where the gauge interactions are thought to unify,
or the Planck scale, where quantum gravitational effects become important.

The observed mass of the Higgs boson is a hint that some new, beyond the
Standard Model physics could appear at the TeV scale, which is probed by the
LHC. As the Higgs boson is a scalar particle, its mass squared parameter is
subject to quadratically divergent quantum corrections proportional to square
of the momentum cut-off. These terms arise, for example, from fermion loops
shown in Fig. 1.1. In contrast, the other particles of the Standard Model have
at most logarithmic divergences. This is because fermions are protected by
the approximate chiral symmetry, and gauge bosons are protected by gauge
invariance. The momentum cut-off is interpreted as the energy scale at which
new physics becomes important and the Standard Model is no longer valid.
If the scale of the cut-off is taken to be the grand unification scale MU∼1016

GeV, the Higgs mass parameter receives enormous quantum corrections that
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Figure 1.1: Quadratically divergent one-loop quantum corrections to the Higgs
boson mass parameter from a fermion loop (left) and from a scalar loop (right).

ought to push the mass to a very large value far above the electroweak scale.
Since the gauge boson and fermion masses are directly connected to the vac-
uum expectation value of the scalar field, which in turn depends on the Higgs
mass and the Higgs potential, the scale of the electroweak symmetry breaking
and interactions seems to be unnaturally low compared with the assumed very
high energy scale of a more fundamental theory. This is called the hierarchy
problem. For the ∼1016 GeV cut-off, the cancellation between the Higgs mass
parameter and the quantum corrections must be fine-tuned with enormous pre-
cision in order to obtain the observed Higgs mass. In the absence of excessive
fine-tuning, the cut-off is required to be at a significantly lower energy scale,
near one TeV. This suggests that some new physics that can stabilize the Higgs
mass will enter at the TeV scale.

Supersymmetry can provide a solution to the hierarchy problem. In su-
persymmetric theories, bosons and fermions are related in such a way that
each fermion field has a bosonic partner. With the relation, cancellation of
quadratic divergences is possible since fermion and boson loops in quantum
correction diagrams are associated with opposite signs. The quadratically di-
vergent contributions to the squared Higgs mass arising from the loop diagrams
in Fig. 1.1 cancel exactly if for each quark and charged lepton there exists two
complex scalar partners and the associated dimensionless couplings of the par-
ticles are related. Supersymmetry guarantees these conditions. Furthermore,
supersymmetry guarantees that all quadratic divergences for squared scalar
masses cancel to all orders in perturbation theory. Although this stabilizes
the electroweak scale from the quadratic quantum corrections, it does not ex-
plain the origin of the scale. However, supersymmetric models can provide an
attractive mechanism for breaking the electroweak symmetry. The breaking
can be induced radiatively by renormalization effects if a Higgs boson squared
mass parameter that is positive at a high energy scale is driven to a negative
value at the electroweak scale. This occurs naturally in many models in which
the scalar mass parameters at the high energy scale are roughly of order one
TeV.

The hierarchy problem indicates that supersymmetry could very well be an
essential feature of TeV scale physics. In addition to the stability of the Higgs
mass, supersymmetry has also other compelling features. One of them is the
apparent unification of the gauge couplings. In the Standard Model, the gauge
couplings evolved to a high energy scale with renormalization group equations
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Figure 1.2: Renormalization group evolution of the inverse gauge couplings
in the Standard Model (dashed lines) and in the Minimal Supersymmetric
Standard Model (solid lines for two different mass scales of supersymmetric
particles near one TeV) [1].

do not unify at any point, as seen in Fig. 1.2, whereas the new particle content
in the minimal supersymmetric extension of the Standard Model alters the
running of the couplings to the extent that the unification can take place at the
scale MU . The unification is compatible with supersymmetric particle masses
that are within a few orders of magnitude of the TeV scale, which intriguingly
is similar to the mass scale suggested by fine-tuning arguments related to the
hierarchy problem. The possible unification of the gauge couplings points to
a supersymmetric grand unification of strong and electroweak interactions.
Remarkably, supersymmetry has also a fundamental connection to gravity.
When supersymmetry is treated as a local symmetry, it is a theory of gravity
encompassing general relativity.

Another interesting aspect of supersymmetry is that it can provide viable
dark matter candidates. The lightest supersymmetric particle is stable if a
discrete symmetry called R-parity is conserved. Stable, massive, and neutral
supersymmetric particles are often good dark matter candidates. Typically,
these dark matter candidates can be produced thermally in the early universe.
As thermal relics with electroweak scale interactions, they could naturally ex-
plain the observed cold dark matter density. Searches for dark matter have
been carried out in both direct and indirect detection experiments. Some of
the experiments claim to have seen a possible signal of dark matter, but these
signals could be due to background noise from other sources. The most recent
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and sensitive direct detection experiments have not observed any new weakly
interacting massive particles. This places stringent limits on the cross sections
and masses of the dark matter candidates in supersymmetric models.

Searches for the new particles predicted by supersymmetry in collider exper-
iments have been so far without success. It is expected that if supersymmetry
is the solution to the hierarchy problem, the mass scale of supersymmetric
particles is within the reach of the LHC. While supersymmetry removes the
quadratic dependence on the cut-off for the Higgs boson squared mass, in su-
persymmetric extensions of the Standard Model the Higgs mass parameters
are sensitive to the squared masses of supersymmetric particles. Since the
Higgs mass parameters determine the scale of the electroweak interactions, the
masses of supersymmetric particles cannot be very large without having to
resort to fine-tuning of the parameters.



Chapter 2

Supersymmetry

Supersymmetry is a symmetry that relates bosons and fermions. Extending
the work of Coleman and Mandula [2] on the possible symmetries of relativistic
field theories, Haag et al. [3] showed that supersymmetry is the most general
extension of the Poincaré algebra. The generator of supersymmetry transfor-
mations Q, which changes bosons into fermions, and vice versa, is a spinor
generator with anticommutation relations. The simplest form for the gener-
ator is a two component Weyl spinor Qα and its Hermitian conjugate. They
satisfy the relations

[Pµ, Qα] = [Pµ, Qα̇] = 0, (2.1)

{Qα, Qβ} = {Qα̇, Qβ̇} = 0, (2.2)

{Qα, Qγ̇} = 2σµαγ̇Pµ, (2.3)

where σµ = (1, σi), Pµ is the momentum operator, and σi are the Pauli ma-
trices. It is possible to extend the Poincaré algebra with multiple distinct
supersymmetry generators, but only the supersymmetric theories with a single
spinor generator allow for chiral fermions.

Irreducible representations of supersymmetry are called supermultiplets,
which contain both bosons and fermions. In each supermultiplet, there is an
equal number of bosonic and fermionic states. Particles in the same super-
multiplet are called superpartners of each other. Since Qα and Qα̇ commute
with Pµ, they also commute with the mass operator P 2, so all particles in a
supermultiplet have the same mass. There are two important types of super-
multiplets in supersymmetric extensions of the Standard Model: chiral super-
multiplets, which consist of a Weyl fermion and a complex scalar, and vector
supermultiplets, which consist of a gauge boson and a Weyl fermion.

2.1 Supersymmetric Theories

Construction of supersymmetric Lagrangians is simplified with the use of su-
perfields. Here, we briefly discuss the main points. A more detailed account can
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be found, for example, in [1, 4, 5]. Unlike ordinary fields, which depend only
on space-time coordinates, superfields depend on coordinates of superspace. A
superfield S(x, θ, θ) is a function of Grassmann variables θα, θα̇, and space-
time coordinates xµ. The anticommuting Grassmann variables transform as
two-component Weyl spinors:

{θα, θβ} = {θα, θβ̇} = {θα̇, θβ̇} = 0. (2.4)

A power series expansion of a function in terms of an anticommuting variable
is finite since the product of the variable with itself is zero. So the expansion
of a superfield S(x, θ, θ) in terms of the two-component Grassmann variables
θα and θα̇ has terms involving up to a square of θ and θ.

In superspace formalism supersymmetry generators act on superfields. Su-
persymmetry algebra and transformations are realized with the generators rep-
resented as differential operators. In the linear representation, the generators
can be defined as

Qα = i
∂

∂θα
− σµαα̇θ α̇∂µ, Qα̇ = −i ∂

∂θ α̇
+ θασµαα̇∂µ. (2.5)

An infinitesimal supersymmetry transformation parametrized by Grassmann
variables ξ and ξ is then given by

δξS(xµ, θ, θ) =− i(ξQ+ ξQ)S =

[
ξα

∂

∂θα
+ ξα̇

∂

∂θα̇
+ i(ξσµθ + ξσµθ)∂µ

]
S

= S(xµ + iξσµθ + ξσµθ, ξ + θ, ξ + θ)− S(xµ, θ, θ), (2.6)

where repeated spinor indices are suppressed. Irreducible representations can
be found by imposing constraints on superfields. Derivatives that are covariant
under supersymmetry transformations can be used as constraints and are useful
for building supersymmetric Lagrangians. One can define covariant derivatives

Dα =
∂

∂θα
− iσµαα̇θ α̇∂µ, D

α̇
= − ∂

∂θα̇
+ iσ̄µα̇αθα∂µ. (2.7)

These operators anticommute with the supersymmetry generators and super-
space Grassmann variables, so they commute with the supersymmetry trans-
formation of (2.6).

2.1.1 Chiral Superfields

Chiral superfields, which can be used to describe chiral supermultiplets, are de-
fined by imposing covariant constraints on superfields. A left-chiral superfield
Φ satisfies the condition

D
α̇

Φ = 0. (2.8)

To solve this, it is useful to define a new variable yµ = xµ − iθσµθ. In terms
of the variables yµ, θ, and θ, the covariant derivative is

D
α̇

= − ∂

∂θα̇
. (2.9)
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The left-chiral constraint is now satisfied for any function of yµ and θ. Φ(y, θ)
expanded in powers of θ is

Φ(yµ, θ) = φ(y) +
√

2 θψ(y) + θθF (y), (2.10)

where the factor
√

2 is chosen by convention. A left-chiral superfield Φ that
describes a chiral supermultiplet consists of a left-handed Weyl spinor field
ψ, and complex scalar fields φ and F . Under an infinitesimal supersymmetry
transformation δξΦ = −i(ξQ+ ξQ)Φ, the component fields transform as

δφ =
√

2 ξψ,

δψα =
√

2 ξαF − i
√

2 σµξ ∂µφ,

δF = i
√

2∂µψ σ
µξ. (2.11)

This indicates that the F -component (coefficient of θθ) of any left-chiral super-
field transforms into a total derivative. The set of component fields φ, ψ, and F
transform into each other. This set cannot be reduced, since the fields left out
would appear again after a supersymmetry transformation. Compared with
the chiral supermultiplet, the left-chiral superfield has an additional complex
scalar field F . It is, however, only an auxiliary field whose purpose is to close
the supersymmetry algebra linearly off-shell. Without it, there would not be
an equal amount of fermionic and bosonic degrees of freedom in the superfield.
For a right-chiral superfield Φ†, the covariant constraint is

DαΦ† = 0. (2.12)

The component fields of a right-chiral superfield Φ† are a right-handed Weyl
spinor field ψ, and complex scalar fields φ† and F †.

2.1.2 Vector Superfields

To construct supersymmetric gauge theories one also needs vector supermulti-
plets, which contain real gauge fields and their fermionic superpartners called
gauginos. A superfield representation of a vector supermultiplet is found by
requiring that a superfield V satisfies the constraint

V (x, θ, θ) = V †(x, θ, θ). (2.13)

Under this constraint the superfield V is real. Real superfields are referred
to as vector superfields. A vector superfield representing a vector multiplet
contains a gaugino field λ, a vector field Aµ, and an auxiliary real scalar field
D. There are also other auxiliary fields in the vector superfield, but they can
be removed by a supersymmetric gauge transformation. The vector superfield
is then in the Wess-Zumino gauge, and is given by

VWZ =θσµθAµ(x) + θθθλ̄(x)− θθθλ(x)− 1

2
θθθθD(x). (2.14)
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The component field D transforms as

δD = iξσµ∂µλ+ iξ σ̄µ∂µλ, (2.15)

which shows that the D-component (coefficient of θθθθ) of any vector superfield
transforms into a total derivative.

2.1.3 Lagrangians

Supersymmetric Lagrangians are constructed from superfields and their prod-
ucts. Since the F -component of a left-chiral superfield and the D-component
of a vector superfield transform into a total derivative under a supersymmetry
transformation, the action S =

∫
d4x of these components is invariant under

supersymmetry transformations. The F - and D-terms constructed from su-
perfields of are therefore candidates for a supersymmetric Lagrangian.

One can see from the form of the left-chiral superfields in eq. (2.10) that
a product of two left-chiral superfields also satisfies the left-chiral condition
(2.8) and therefore is a left-chiral superfield, as is any combination of left-
chiral superfields. In a renormalizable theory, the total mass dimension of
the fields in each term is four or less. Accordingly, the F -term that describes
the non-gauge interactions of chiral supermultiplets can consist of products of
up to three left-chiral superfields because a scalar field φ has mass dimension
one, a fermion field ψ has mass dimension 3/2, and an auxiliary field F has
mass dimension 2. The function of these left-chiral superfields is called the
superpotential. One can write a general superpotential as

W (Φ) = LiΦi +
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk, (2.16)

where the Li parameters have mass dimension 2, and the mass terms mij and
the dimensionless couplings λijk are symmetric. The F -term of the superpo-
tential can be expressed as

[W (Φ)]F =
∂W (φ)

∂φi
Fi −

1

2

∂2W (φ)

∂φi∂φj
ψiψj . (2.17)

Here W (φ) is the superpotential where the left-chiral superfields Φi have been
replaced by their scalar field components φi, and repeated indices are summed
over.

Gauge invariant kinetic terms and gauge interactions of a chiral multiplet in
a general gauge theory are given by the D-term of a composite vector superfield

[Φ†e2gt
aV a

Φ]D = Dµφi∗Dµφi + iψiσ̄µDµψi + F ∗iFi

−
√

2g[(φ∗taψ)λa + λ̄a(ψ taφ)] + gφ∗taDaφ, (2.18)

where ta are the generators of the gauge symmetry group. The covariant
derivatives are

Dµφi = ∂µφi − igAaµ(taφ)i, Dµψi = ∂µψi − igAaµ(taψ)i. (2.19)
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An irreducible representation that consists of the fields F aµν = ∂µA
a
ν−∂νAaµ−

gfabcAbµA
c
ν , λa, λ̄a, and Da can be formed from the components of a vector

superfield. These fields are the components of the field strength superfield
constructed by using covariant derivatives:

Wa = −1

4
Dα̇D

α̇
egt

aV a

Dαe
gtaV a

. (2.20)

The field strength superfield is a left-chiral superfield because it satisfies the
constraint (2.8). The kinetic terms for the gauge fields and the gauginos are
obtained from the gauge invariant F -term

1

4g2
[WaαWaα]F = −1

8
F aµνF aµν −

i

8
F aµν F̃ aµν +

i

2
λ̄aσ̄µDµλa +

1

4
DaDa,

(2.21)

where F̃ aµν = 1
2εµνρσF

aρσ, and the covariant derivative is

Dµλa = ∂µλ
a + gfabcAbµ λ

c. (2.22)

The renormalizable supersymmetric Lagrangian is written as

L =
1

4g2
([WaαWaα]F + h.c.) + [Φ†ie

2gat
aV a

Φi]D + ([W (Φ)]F + h.c.). (2.23)

Now the superpotential must be invariant under the gauge symmetries. The
auxiliary fields F i∗ and Da have no derivatives in the Lagrangian. They are
solved from the equations of motion, which yield

F i∗ = −∂W (φ)

∂φi
, Da = −

∑

i

gφ∗i t
aφi. (2.24)

The tree-level scalar potential is constructed from the auxiliary fields:

V =
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

+
1

2
g2
∑

a

(∑

i

φ∗i t
aφi

)2

, (2.25)

where the first term is referred to as the F -term contribution and the second
one as the D-term contribution to the potential.

2.2 Supersymmetry Breaking

Supersymmetry must be a broken symmetry because otherwise supersymmet-
ric particles would have already been discovered. So if supersymmetry is re-
alized in nature, there must be a mechanism that breaks the symmetry spon-
taneously in a way that is compatible with the experimental mass limits for
supersymmetric particles. It follows from (2.3) that the energy operator can
be written as

H = P 0 =
1

4
(Q1Q1̇ +Q1̇Q1 +Q2Q2̇ +Q2̇Q2). (2.26)
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Because H ≥ 0, the vacuum energy 〈0|H|0〉 is greater or equal to zero. If the
vacuum state is invariant under supersymmetry transformations, then Qα|0〉 =
0 and Qα̇|0〉 = 0, and the vacuum energy vanishes. Conversely, supersymmetry
is spontaneously broken and the vacuum energy is positive if there are some
fields whose variation is non-zero in the vacuum state. The expectation values
of the field variations must not break Lorentz invariance, so the possible terms
are the variation of a left-chiral superfield component 〈0|δψ|0〉 =

√
2ξ〈0|F |0〉

or the variation of a vector superfield component 〈0|δλα|0〉 = −iξα〈0|D|0〉.
Thus the only possibility is that the auxiliary F - or D-terms acquire non-zero
vacuum expectation values. Another way of looking at this is that since the
scalar potential is

V =
∑

i

|Fi|2 +
1

2

∑

a

DaDa, (2.27)

supersymmetry is spontaneously broken if the equations Fi = 0 and Da = 0
cannot be simultaneously satisfied.

A general feature of spontaneously broken global symmetries is that a mass-
less Nambu-Goldstone mode arises for each generator of the broken symmetries.
For spontaneously broken global supersymmetry, the Nambu-Goldstone parti-
cle, called goldstino, is a massless fermion since the supersymmetry generator
is fermionic. A new massless fermion is not allowed in light of experimental
evidence. However, if supersymmetry is a local symmetry, the goldstino is
”eaten” by gravitino, the superpartner of graviton, which then becomes mas-
sive. Locally supersymmetric theories involve gravity, so they are referred to
as supergravity theories.

Even when global supersymmetry is spontaneously broken, the masses of
fermions and bosons at tree-level are still tightly related, which is evident from
the mass sum rule. The supertrace of all mass matrices is defined as a weighted
sum over squared masses of particles with spin J :

STr(M2) =
∑

J

(−1)2J(2J + 1)m2
J . (2.28)

At tree-level, the mass sum rule for scalars, fermions, and vector bosons is

STr(M2) =
∑

a

gaTr(ta)Da. (2.29)

The traces of the generators ta are zero for non-abelian groups, and because
the sum of the U(1) charges of a non-anomalous gauge symmetry are zero, the
trace also vanishes for the group U(1)Y .

It is difficult to give realistic masses to scalar superpartners of quarks and
leptons at tree-level through F -term or D-term supersymmetry breaking. In
the Minimal Supersymmetric Standard Model, there are no gauge singlet su-
perfields, which rules out F -term breaking in the model, and D-term breaking
would introduce vacuum expectation values for some charged scalar fields. Fur-
thermore, the mass sum rule holds for conserved quantities like color charge,
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electric charge, and lepton number separately, so even in models where F -term
breaking is possible, some of the scalar superpartners would too light. One also
cannot give masses to gauginos, since there are no scalar-gaugino-gaugino inter-
actions that could generate mass terms when the scalar field obtains a vacuum
expectation value. Because of these problems, it is commonly assumed that
supersymmetry is spontaneously broken in a hidden sector that does not couple
directly to the visible sector supersymmetric particles. Non-renormalizable or
loop-level messenger interactions between the two sectors are then responsible
for communicating the effects of the breaking to the visible sector.

In fact, there is no definite model of supersymmetry breaking for a real-
istic supersymmetric extension of the Standard Model. Until we have such a
model and know its dynamics, we treat supersymmetric models as effective
models that describe the observable consequences of spontaneous breaking of
supersymmetry. For this, we need to consider the terms that supersymmetry
breaking may induce. The terms should not introduce quadratic divergences
to the scalars, so all the couplings should be dimensionful. The general form
of the these soft supersymmetry breaking terms [6] in the Lagrangian is given
by

Lsoft = −
(1

2
Mλλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi + h.c.

)

− (m2)ijφ
j∗φi −

(1

2
cjki φ

∗iφjφk + h.c.
)
, (2.30)

which includes gaugino masses Mλ for each gauge group, scalar couplings aijk

and cjki , scalar mass terms bij and (m2)ij , and coefficients ti for tadpole terms.
Mass terms for chiral fermions could also be included, but they would be redun-
dant since they can be absorbed into the bilinear terms of the superpotential
with a redefinition of the soft scalar masses and couplings. Not all of the soft
terms listed above are necessarily allowed. They must respect the given sym-
metries of the theory; for example, the tadpole term is forbidden if there are
no gauge singlet superfields. And if there are gauge singlet superfields, the
cjki term can cause quadratic divergences to appear. Because the details of
supersymmetry breaking are not known, the implications of the breaking are
parametrized in effective models by adding all the possible soft terms to the
Lagrangian.

The soft terms are dependent on the interactions that connect the visible
sector to the supersymmetry breaking hidden sector. Several different models
of supersymmetry breaking have been proposed. In the gravity-mediated sce-
nario, there are only gravitational interactions between the sectors. If the F
component of a hidden sector superfield acquires a supersymmetry breaking
vacuum expectation value 〈F 〉, the soft terms in the visible sector should be
of the order of

msoft ∼
〈F 〉
MP

, (2.31)

where 〈F 〉 determines the supersymmetry breaking scale. This scale should
be in the range

√
〈F 〉 ∼ 1010 to 1011 GeV so that we end up with soft terms
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in the TeV scale. The mass sum rule in supergravity models is modified by
a term proportional to the gravitino mass m3/2 ∼ 〈F 〉/MP , which allows us
to avoid the problem of the too light scalar masses. In the gauge-mediated
supersymmetry breaking scenario, there is a third sector of messenger fields
that couple to the hidden sector and have ordinary Standard Model gauge
interactions with the visible sector fields. The supersymmetry breaking is
transmitted to the messenger sector from the hidden sector, and then from the
messenger sector to the visible sector via loop-level gauge interactions, giving
soft terms of the order

msoft ∼
g2i

16π2

〈F 〉
Mmess

, (2.32)

where Mmess are the masses of messenger fields. For TeV scale soft masses,
the scale of the supersymmetry breaking can be as low as

√
〈F 〉 ∼ 104 to 105

GeV. The effects of gravity-mediated breaking should also be present in this
scenario, but they can be insignificant in comparison because of the scale of
the breaking. There is no problem with the mass sum rule, since it applies
only at tree-level.



Chapter 3

Minimal Supersymmetric
Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetric
extension of the Standard Model with the minimal number of fields and cou-
plings such that the model is phenomenologically viable (for reviews, see [1, 7]).
The fields of the MSSM are presented in Table 3.1. The vector supermultiplets
contain the gauge fields and their gaugino superpartners, while the chiral super-
multiplets contain quarks and leptons, and their scalar superpartners, squarks
and sleptons. In addition, there are two chiral supermultiplets where the Higgs
fields and their supersymmetric partners called higgsinos reside. Whereas the
Standard Model has only one Higgs doublet, the MSSM is required to have
two. Without a second doublet there would be a gauge anomaly, and also
it would not be possible to generate masses for both up-type and down-type
quarks since the superpotential is constructed only from left-chiral superfields.

The superpotential of the MSSM is

WMSSM = uyuQHu − dydQHd,−eyeLHd + µHuHd (3.1)

with indices suppressed. For example, the first term with indices restored is
uia(yu) ji Qjaαε

αβ(Hu)β , where i is a generation index, a is a color index, y are
the Yukawa coupling matrices, and the antisymmetric tensor εαβ (with ε12 = 1)
contracts the SU(2)L terms. The three cubic terms in the superpotential give
Yukawa interaction terms to quarks and charged leptons, and to their scalar
partners. The only quadratic term in the superpotential is the supersymmetric
Higgs mass term.

3.1 R-Parity

The terms in the superpotential are chosen such that they are consistent with
experimentally observed interactions, but they are not all the possible terms
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spin 0 spin 1/2 spin 1 SU(3)C SU(2)L U(1)Y

Li (ν̃, ẽL)i (ν, eL)i 1 2 − 1
2

ei ẽ∗Ri e†Ri 1 1 + 1

Qi (ũL, d̃L)i (uL, dL)i 3 2 + 1
6

ui ũ∗Ri u†Ri 3 1 − 2
3

di d̃∗Ri d†Ri 3 1 + 1
3

Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) 1 2 + 1

2

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) 1 2 − 1

2

B B̃0 B0 1 1 0

W W̃±, W̃ 0 W±,W 0 1 3 0

g g̃ g 8 1 0

Table 3.1: Supermultiplets in the MSSM.

that could be included. In the Standard Model, gauge invariance and renormal-
izability prohibit couplings that do not conserve lepton and baryon numbers.
In supersymmetric models, however, it is possible to have interactions that
violate baryon or lepton number yet respect gauge invariance and renormaliz-
ability, because one could also include the terms

WL−violation =
1

2
λijkLiLj ēk + λ′ijkLiQj d̄k + µ′iLiHu, (3.2)

WB−violation =
1

2
λ′′ijkūid̄j d̄k (3.3)

in the superpotential. As chiral supermultiplets have the same lepton or baryon
number as their constituent particles, the terms in (3.2) violate lepton number
by one unit, and the term in (3.3) violates baryon number by one unit. Clearly,
these terms can be dangerous since baryon or lepton number violating processes
are strongly constrained by experiments. For example, proton decay has not
yet been seen, which places very strong limits on the magnitude of either λ′ or
λ′′ coupling.

One can remove the unwanted terms in the superpotential by proposing
that there is a new symmetry called R-Parity. R-parity is carried by each
particle, and it is defined as

PR = (−1)3(B−L)+2s, (3.4)

where s is the spin of the particle. The Standard Model particles including
the Higgs bosons have PR = +1, while the new supersymmetric particles have
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PR = −1. As a result, if R-parity is conserved in interactions, only the terms in
(3.1) are allowed. However, R-parity conservation does not necessarily imply B
and L conservation in other, non-minimal supersymmetric models. If R-parity
is conserved, supersymmetric particles can be created only in even numbers,
and sparticles can decay only to an odd number of lighter sparticles. This has
an important consequence: the lightest supersymmetric particle is stable.

3.2 Soft Supersymmetry Breaking in the MSSM

The soft supersymmetry breaking terms in the MSSM are

LMSSM
soft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + h.c

)

− Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + h.c.), (3.5)

with indices suppressed. M1, M2, and M3 are the complex bino, wino, and
gluino mass terms. The trilinear scalar couplings au, ad, and ae are complex
3 × 3 matrices. Since the Lagrangian is real, the 3 × 3 matrices for m2

Q, m2
u,

m2
d
, m2

L, m2
e must be Hermitian. The soft Higgs mass parameters m2

Hu
and

m2
Hd

are real, and the b-term can be fixed to be real by redefining the phases
of the Higgs fields.

The soft terms can lead to large flavor-changing and CP-violating effects
[8, 9]. If the squark and slepton soft squared-mass matrices have off-diagonal
components in the same basis as the quark and lepton mass matrices, mixing
occurs between different flavors of squarks and and between different flavors
of sleptons. In the Standard Model, flavor-changing neutral current (FCNC)
processes involving quarks are forbidden at tree-level and are suppressed at
loop-level because of the unitarity of the CKM matrix. For example, neutral

kaon K0–K
0

mixing arises from FCNC processes. In the MSSM, there are con-
tributions to kaon mixing from loops involving squarks and gauginos. Squark
flavor mixing between the first two generations is strongly constrained by the
experimental limit on the kaon KL −KS mass difference, which requires that
the corresponding off-diagonal terms in the squark soft mass matrices are very
small. There are also further restrictions on the squark mass matrices from
various particle decays such as b→ sγ and other processes. The soft trilinear
squark couplings can similarly cause flavor mixing, so their off-diagonal entries
are also constrained. In the slepton sector, mixing between different genera-
tions leads to violation of lepton number from loop-level processes involving
sleptons and gauginos. Lepton number violating decays such as µ→ eγ, which
are forbidden in the Standard Model, are possible in the MSSM. Experimental
limits on lepton number violating decays lead to constraints that require that
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the off-diagonal components of the slepton soft mass matrices and the slepton
trilinear couplings are small.

In addition to flavor problems with squarks and sleptons, there are also
problems with CP-violating effects arising from complex phases of the soft
terms, which are constrained by the electric dipole moments of the neutron
and the electron. One possible solution for these problems is that the masses
of the superpartners are so heavy that their contributions to the FCNC and
CP-violating processes are suppressed [10]. Another solution is to assume that
the supersymmetry breaking mechanism enforces universality of the soft mass
terms,

m2
Q = m2

Q1, m2
u = m2

u1, m2
d

= m2
d
1, m2

L = m2
L1, m2

e = m2
e1, (3.6)

and that the soft a-terms are proportional to the Yukawa matrices,

au = Auyu, ad = Adyd, ae = Aeye, (3.7)

and additionally that the soft terms are real. Then the FCNC and CP-violating
processes are naturally suppressed. This soft breaking universality is often
assumed for convenience in the MSSM because it greatly limits the number of
free parameters in the theory.

3.3 Electroweak Symmetry Breaking

In the Standard Model, the Higgs mechanism breaks the SU(3)C × SU(2)L ×
U(1)Y gauge symmetry to SU(3)C ×U(1)EM . In order to have realistic model
with massive W± and Z gauge bosons, the minimum of the MSSM scalar
potential must also spontaneously break the electroweak gauge symmetry. The
full scalar potential also includes squark and slepton fields, but we must avoid
vacuum expectation values (vevs) for those fields. Vevs for the charged scalar
fields would lead to a charge or color breaking minimum, and a vev for a
sneutrino field would break R-parity and violate lepton number conservation.
This puts constraints on the parameters of the model, though usually the
positive mass squared terms for squarks and sleptons can be chosen to be large
enough to prevent charge and color breaking from happening. Therefore we can
concentrate only on the scalar Higgs potential to study electroweak symmetry
breaking.

There are three sources for scalar Higgs field terms in the potential. They
are the F -term, D-term, and the soft supersymmetry breaking term contribu-
tions

VF = |µ|2|Hu|2 + |µ|2|Hd|2, (3.8)

VD =
1

2
g′2(H†uY Hu +H†dY Hd)

2 +
1

2
g2
∑

a

(H†ut
aHu +H†dt

aHd)
2, (3.9)

Vsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 − (bHuHd + h.c.). (3.10)
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Putting the terms together, the full Higgs scalar potential can be written as

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + |m2
Hd
|)(|H0

d |2 + |H−d |2)

+ [b(H+
u H

−
d −H0

uH
0
d) + h.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2. (3.11)

Only the neutral Higgs fields should have vevs. As with charged sleptons
and squarks, a vev for a charged Higgs field would break electromagnetism.
The vev of one of the Higgs doublets can be rotated with a SU(2)L gauge
transformation to its neutral component, so one can set H+

u = 0 at the mini-
mum. When 〈H+

u 〉 = 0, stability requires

∂V

∂H+
u

= bH−d +
1

2
g2H0

dH
0∗
u H

−
d = 0, (3.12)

which is non-zero unless 〈H−d 〉 = 0. Since the charged Higgs fields cannot get
vevs, the Higgs scalar potential is safe from electric charge breaking vevs, and
we can focus on the potential of neutral scalars.

The neutral scalar potential is

V =(|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + h.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (3.13)

The b parameter and the Higgs fields H0
u and H0

d can have complex phases.
Any phase b may possess can be absorbed by a redefinition of the phase of H0

u

or H0
d , so b can be defined to be real and positive. In addition, since H0

u and
H0
d have opposite weak hypercharges, their phases can be set to zero with a

U(1)Y gauge transformation. Thus both the b parameter and H0
uH

0
d can be

made real and positive at the same time. Without loss of generality, b and the
vevs can be chosen to be real. This means that it is not possible to have a
spontaneous violation of CP in the MSSM from complex vevs at tree-level.

There are two conditions the potential must satisfy. First, the potential
should have a stable minimum, that is, it is bounded from below. This condi-
tion is met for most of the scalar field values since the positive quartic terms
dominate the negative b-term. However, there is a direction of field space
where the quartic terms disappear. When H0

u = H0
d , the potential can have

arbitrarily negative value unless

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (3.14)

The second condition is that the origin of potential is not a stable minimum,
so the determinant of the matrix of second derivatives with respect to H0

u and
H0
d should be negative. This is true if

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (3.15)
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If these two conditions are met, the potential has a stable minimum and the
electroweak gauge symmetry is spontaneously broken by the vacuum expecta-
tion values of the neutral Higgs fields denoted by 〈H0

u〉 = vu and 〈H0
d〉 = vd.

After the symmetry breaking, the W± and Z bosons obtain masses. The
Higgs gauge kinetic terms yield the gauge boson masses

M2
Z =

1

2
(g2 + g′2)v2, (3.16)

M2
W =

1

2
g2v2, (3.17)

where v =
√
v2u + v2d. We define the ratio of the vevs as

tanβ =
vu
vd
. (3.18)

Then, at the minimum of the potential

∂V

∂H0
u

=|µ|2 +m2
Hu
− b cotβ − (M2

Z/2) cos(2β) = 0, (3.19)

∂V

∂H0
d

=|µ|2 +m2
Hd
− b tanβ + (M2

Z/2) cos(2β) = 0. (3.20)

These minimization conditions can be solved for

b =
(m2

Hu
+m2

Hd
+ 2|µ|2) sin 2β

2
, (3.21)

|µ|2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− 1

2
m2
Z . (3.22)

With the first of these two equations, the parameter b can be expressed in
terms of the Higgs mass parameters and the ratio of the vevs. Effectively, b
can be traded for tanβ as a parameter in the Lagrangian. The second equation
connects the value of |µ|2 to the mass of the Z boson and the soft symmetry
breaking masses of the Higgs fields. Similarly to b, |µ|2 can be eliminated in
favor of tanβ in the Lagrangian, but since only the magnitude of µ2 is fixed, the
phase of µ (or sign in the case of real valued parameter) remains undetermined.

Even though µ is not a supersymmetry breaking term, equation (3.22)
implies that it should be approximately of the same order as the soft mass
parameters. This presents a problem since it is natural to assume that its
value as a parameter that respects the symmetries would be associated with
the energy scale of some more fundamental theory, and would not be related to
the supersymmetry breaking parameters. It may be that the effective value of µ
is generated by supersymmetry breaking or that MSSM needs to be extended
in some way. For the phenomenology of MSSM this does not really change
things, the equation (3.22) can be used to set the magnitude of µ, even if one
cannot completely justify the mass scale of the parameter.
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Each of the four scalar Higgs fields is complex valued. In total, there are
then eight real degrees of freedom. After the electroweak symmetry is broken,
five of those form the mass eigenstates for the neutral h, H, and A, and the
charged H+ and H− Higgs bosons. The three remaining degrees of freedom
become the longitudinal modes for the massive W± and Z bosons. Since
particles with the same quantum numbers mix, there is mixing in the Higgs
sector. Conservation of electric charge forbids mixing between charged and
neutral fields, and CP invariance of the Higgs scalar potential does not allow
the real and imaginary components of the neutral fields to mix, so there are in
total three different mass matrices for the Higgs bosons.

Mass terms for the charged Higgs fields in the Lagrangian are

L 3
(
H+∗
u H−d

)
m2
H±


H+

u

H−∗d


 , (3.23)

where the mass matrix is

m2
H± =




∂2V
∂H+∗

u ∂H+
u

∂2V
∂H+∗

u ∂H−∗d

∂2V
∂H−d ∂H

+
u

∂2V
∂H−d ∂H

−∗
d


 =


b cotβ +M2

W c
2
β b+M2

W cβsβ

b+M2
W cβsβ b tanβ +M2

W s
2
β


 ,

(3.24)

when the Higgs fields are set to their expectation values after the partial
derivatives have been calculated. The angles are defined as cosβ = vd/v and
sinβ = vu/v. To get the particle masses, we solve the eigenvalues of the mass
matrix. They are

m2
H± = b(

vu
vd

+
vd
vu

) +m2
W = m2

A0 +m2
W , mG± = 0, (3.25)

where an identity for the pseudoscalar Higgs mass squared m2
A was used, which

will come up shortly. The two massless would-be Nambu-Goldstone bosons are
eaten by the W± bosons. The mixing matrix for G+ and H+ is given by


G

+

H+


 =


sinβ − cosβ

cosβ sinβ




H+

u

H−∗d


 . (3.26)

For the neutral Higgs fields, let us first consider the imaginary parts. They
have the mass terms

L 3 1

2

(
ImH0

u ImH0
d

)
m2
H0

i


ImH0

u

ImH0
d


 , (3.27)

with

1

2
M2

H0
i

=


b cotβ b

b b tanβ


 . (3.28)
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Its eigenvalues are the pseudoscalar Higgs and the would-be Nambu-Goldstone
boson masses

m2
A = b(

vu
vd

+
vd
vu

) =
2b

sin 2β
= m2

Hu
+m2

Hd
+ 2|µ|2, mG0 = 0, (3.29)

where equation (3.21) was used. The would-be Nambu-Goldstone boson G0 is
eaten by the Z boson. The mass eigenstates are given by


G

0

A


 =

√
2


sinβ − cosβ

cosβ sinβ




ImH0

u

ImH0
d


 . (3.30)

The mass terms of the real components of neutral Higgs fields are

L 3 1

2

(
ReH0

u ReH0
d

)
m2
H0

r


ReH0

u

ReH0
d


 , (3.31)

and the mass matrix is

1

2
M2

H0
r

=


b cotβ +M2

Zs
2
β −b−M2

Zcβsβ

−b−M2
Zcβsβ b tanβ +M2

Zc
2
β


 , (3.32)

whose eigenvalues are the masses of two neutral Higgs bosons h and H

m2
h,H =

1

2

[
(m2

A +M2
Z ±

√
(m2

A +M2
Z)2 − 4m2

AM
2
Z cos2 2β)

]
, (3.33)

where h is the lighter one by convention. Their mass eigenstates are given by

h

H


 =

√
2


cosα − sinα

sinα cosα




ReH0

u

ReH0
d


 . (3.34)

The mixing angles α and β are related with

sin 2α

sin 2β
= −m

2
H0 +m2

h0

m2
H0 −m2

h0

,
tan 2α

tan 2β
=− m2

A0 +m2
Z

m2
A0 −m2

Z

. (3.35)

At tree-level, the lightest Higgs boson h mass has an upper limit

mh < mZ | cos 2β |. (3.36)

Radiative corrections to the mass of h are then necessary to reach the observed
125 GeV Higgs boson mass. At one-loop level, the most significant contribu-
tions come from top quarks and their supersymmetric partners called stops.
In this approximation [11], the mass of the lightest Higgs boson is

m2
h = m2,tree

h + ∆m2,1-loop

= m2
Z cos2(2β) +

3m4
t

4π2v2

(
ln
m2
S

m2
t

+
X2
t

M2
S

(
1− X2

t

12M2
S

))
, (3.37)
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where MS is the average of the stop masses, and

Xt = At − µ cotβ (3.38)

is the stop mixing parameter, as we will see later. Clearly, in (3.37), there
exists a value of Xt which maximizes the expression. The absolute value of
the mixing term in that case is Xt =

√
6MS . This is called the Higgs maximal

mixing scenario.

3.4 Neutralinos and Charginos

After the electroweak symmetry has been broken, higgsinos and electroweak
gauginos with the same quantum numbers mix with each other. Neutral gaug-
ino and higgsino fields B̃, W̃ 0, H̃0

d , and H̃0
u mix to form four mass eigenstates

called neutralinos, whereas the charged gaugino fields W̃+ and W̃− mix with
the charged higgsino fields H̃+

u and H̃−u forming two mass eigenstates called
charginos, both having charges ±1.

The gaugino-higgsino mixing terms arise from

L 3 −
√

2g (φ∗taψ)λa + h.c., (3.39)

when the neutral Higgs fields acquire vevs. The gaugino fields λa are identified
as λ0 = B̃, λ3 = W̃ 0, (λ1 − iλ2)/

√
2 = W̃−, and (λ1 + iλ2)/

√
2 = W̃+. The

mass terms for the electroweak gauginos in the soft supersymmetry breaking
Lagrangian are

L 3= −1

2
M1B̃B̃ −

1

2
M2W̃W̃ + h.c., (3.40)

and the superpotential contributions to the higgsino masses are

L 3 −µ(H̃+
u H̃

−
d − H̃0

uH̃
0
d) + h.c. (3.41)

First, let us examine the neutralino sector. In the gauge eigenstate basis

ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), (3.42)

the neutral gaugino and higgsino mass terms can be written as

Lneutralino = −1

2
(ψ0)TMχ̃0ψ0 + h.c., (3.43)

with

Mχ̃0 =




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0



. (3.44)
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The mass matrix can be diagonalized by using a unitary matrix N :

N∗Mχ̃0N−1 = MD
χ̃0 , (3.45)

where (MD
χ̃0)ii = mχ̃0

i
. Then, the neutralino mass eigenstates are

χ̃0
i = Nijψ

0
j = Ni1B̃ + Ni2W̃

0 + Ni3H̃
0
d + Ni4H̃

0
u, (3.46)

which, by convention, are labeled i = 1, 2, 3, 4 from lightest to heaviest. The
composition of the neutralino states depends mostly on the parameters M1,
M2, and µ. If |µ| � |M1,2|,MZ , the two lightest neutralinos are a bino-like

χ̃0
1 ' B̃ and a wino-like χ̃0

2 ' W̃ 0 with masses of about |M1| and |M2|, while the

two heaviest mass eigenstates are higgsino-like ' (H̃0
u ± H̃0

d)/
√

2 with masses
of about |µ|. If |µ| � |M1|, the two lightest neutralinos are higgsino-like.

Now we consider the charged gaugino and higgsino fields. In the gauge
eigenstate basis

ψ± = (W̃+, H̃+
u , W̃

−, H̃−d ), (3.47)

the chargino mass terms are

Lchargino mass = −1

2
(ψ±)TMχ̃±ψ

± + h.c., (3.48)

with

Mχ̃± =


 0 XT

X 0


 , (3.49)

where

X =


M2 gvu

gvd µ


 =


 M2

√
2sβMW

√
2cβMW µ


 . (3.50)

The chargino mass matrix can be diagonalized by a singular value decomposi-
tion

U∗XV−1 =


mχ̃±1

0

0 mχ̃±2


 . (3.51)

The positively and negatively charged chargino mass eigenstates are deter-
mined with two different mixing matrices


χ̃

+
1

χ̃+
2


 = V


W̃

+

H̃+
u


 ,


χ̃
−
1

χ̃−2


 = U


W̃

−

H̃−d


 . (3.52)
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The masses of the charginos are given by

m2
χ̃±1
,m2

χ̃±2
=

1

2

[
|M2|2 + |µ|2 + 2M2

W

∓
√

(|M2|2 + |µ|2 + 2M2
W )2 − 4|µM2 −M2

W sin 2β|2
]
. (3.53)

If |µ| � |M2|,MW , the chargino mass eigenstates are wino-like and higgsino-
like with masses approximately equal to |M2| and |µ|.

3.5 Gluinos

The gluino is the superpartner of the gluon. Since the SU(3)C symmetry is
unbroken and the gluino is the only color octet fermion, it does not mix with
any other particle in the MSSM. The gluino mass term arises from the soft
supersymmetry breaking Lagrangian:

L 3 −1

2
M3g̃g̃ + h.c. (3.54)

At tree-level, the gluino mass is therefore mg̃ = |M3|.

3.6 Squarks and Sleptons

Similarly to neutralinos and charginos, scalar fermions that share quantum
numbers can mix with each other. Mixing in the squark and charged slepton
sectors can get complicated because there are in general 6 × 6 mixing matri-
ces that have to be diagonalized. However, constraints from FCNC processes
limit the magnitude of flavor mixing between different generations, so we can
simplify the analysis by considering mixing only within each flavor.

There are three sources for the mass terms for squarks and sleptons. We
can start by considering the mass terms of the top squarks. Then, because
similar analysis applies to other squarks and sleptons, we also understand how
to write the mass terms of those particles.

Let us begin with the mass terms arising from the superpotential. The
relevant part for stop quarks is

W 3 uyuQHu + µHuHd 3 tyttH
0
u − µH0

uH
0
d , (3.55)

which leads to the F -term contributions

L 3 −m2
t t̃
∗
Rt̃R −m2

t t̃
∗
Lt̃L + vµyt cosβt̃∗Lt̃R + vµ∗yt sinβt̃∗Rt̃L. (3.56)

As before, mass terms are evaluated at the minimum of the potential, so the
Higgs fields are set to their vevs. The latter two terms mix the top squark
fields t̃L and t̃R. The mass terms for top squarks from the soft supersymmetry-
breaking Lagrangian are

LMSSM
soft 3 − Q̃†m2

Q Q̃− ũm2
u ũ
† − (ũau Q̃Hu + h.c.)

3 −m2
Q3
t̃∗Lt̃L −m2

u3
t̃∗Rt̃R − vat sinβ t̃∗Rt̃L − va∗t sinβ t̃∗Lt̃R. (3.57)
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Here we have bilinear terms as well as mixing terms arising from squark-Higgs
couplings when the Higgs fields are replaced by their vevs. Finally, the D-term
contributions

L 3 1

2
g2
∑

a

(∑

i

φ∗i t
aφi
)2

(3.58)

for top squark masses arise from SU(2)L D-terms involving the fields Q̃3 Hu,
and Hd, and from U(1)Y D-terms involving the fields t̃L and t̃R. The weak
hypercharge of a field φ is related to the electric charge and the third component
of weak isospin by

Yφ = Qφ − T3φ. (3.59)

Using the identity for the hypercharge terms, the D-term contributions for top
squarks are written as

L 3 −M2
Z cos 2β(T3φ −Qφ sin2 θW )(t̃∗Lt̃L + t̃Rt̃

∗
R). (3.60)

Note that T3φ is zero for superpartners of right-handed fermions. The D-term
contributions can be generalized for all squarks and sleptons by

∆φ = M2
Z cos 2β(T3φ −Qφ sin2 θW ). (3.61)

We have now found all the parts of the top squark mass matrix. In the gauge
eigenstate basis, the top squark mass terms in the Lagrangian are

Lstop masses = −
(
t̃∗L t̃∗R

)
m2

t̃


 t̃L

t̃R


 , (3.62)

where the mass matrix is given by

m2
t̃

=


 m2

Q3
+m2

t + ∆ũL
v(a∗t sinβ − µyt cosβ)

v(at sinβ − µ∗yt cosβ) m2
u3

+m2
t + ∆ũR


 . (3.63)

The mass eigenstates of the matrix are t̃1 and t̃2, which are called stops. By
convention, the latter is the heavier one. With at = ytAt, the off-diagonal
entries can be written as mt(At − µ cotβ) if the parameters are real. These
terms can induce significant stop mixing when the A-term is large. Large
mixing terms reduce the masses of the lighter mass eigenstates.

The mass terms for other squarks and sleptons can be obtained similarly.
In the basis (̃bL, b̃R) and (τ̃L, τ̃R), the mass matrices for bottom squarks and
tau sleptons are

m2
b̃

=


 m2

Q3
+m2

b + ∆d̃L
v(a∗b cosβ − µyb sinβ)

v(ab cosβ − µ∗yb sinβ) m2
d3

+m2
b + ∆d̃R


 , (3.64)



3.7 Minimal Supergravity Model 25

m2
τ̃ =


 m2

L3
+m2

τ + ∆ẽL v(a∗τ cosβ − µyτ sinβ)

v(aτ cosβ − µ∗yτ sinβ) m2
e3

+m2
τ + ∆ẽR


 . (3.65)

The mass eigenstates of the matrices are sbottoms b̃1 and b̃2, and staus τ̃1 and
τ̃2. The off-diagonal terms can be written as mb(Ab − µ tanβ) and mτ (Aτ −
µ tanβ). Since the bottom and tau masses are considerably smaller than the
top quark mass, the extent of the mixing is largely determined by tanβ.

For the first and second generation squarks and sleptons the mixing is
negligible, so the mass eigenstates correspond closely to the gauge eigenstates
with masses given by the diagonal entries in their mass matrices.

3.7 Minimal Supergravity Model

A commonly used model to study the MSSM is the Minimal Supergravity
Model (mSUGRA), which is also referred to as the constrained MSSM (cMSSM).
The model is parametrized by assuming that the soft supersymmetry breaking
universality given by

m2
Q = m2

u = m2
d

= m2
L = m2

e = m2
01, m2

Hu
= m2

Hd
= m2

0, (3.66)

M1 = M2 = M3 = m1/2, (3.67)

au = A0yu, ad = A0yd, ae = A0ye, (3.68)

b = B0µ (3.69)

holds at the gauge coupling unification scale MU∼1016 GeV. These bound-

ary conditions can be obtained from the low energy effective Lagrangian of
gravity-mediated supersymmetry breaking scenario by assuming a certain min-
imal form for the non-renormalizable interactions, albeit at the scale MP∼1018

GeV. If the MSSM is the correct description of physics between the weak and
the unification scales, which is supported by the apparent gauge coupling uni-
fication, parameters defined at the unification scale can be evolved to the ob-
servable energy scale using renormalization group (RG) equations. Since we
understand less about the physics between the unification scale and the Planck
scale, the boundary conditions are set at the unification scale. Corrections to
this approximation should be absorbed into redefinitions of the soft terms.

The soft supersymmetry breaking terms related to the Higgs fields are con-
strained by the electroweak symmetry breaking. With the RG evolution, m2

Hu

can be driven to a negative value, which generally induces spontaneous break-
ing of the symmetry. This mechanism is called radiative electroweak symmetry
breaking (REWSB). There is an interesting link between REWSB and the large
top quark mass since REWSB occurs naturally with large top quark Yukawa
couplings.
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With the RESWB condition, one can replace b with tanβ in the boundary
conditions by using the scalar potential minimization conditions, which also
allow one to determine the value of |µ|2. The parameters of the cMSSM are
then

m0, m1/2, A0, sign(µ), tanβ. (3.70)



Chapter 4

Non-Minimal
Supersymmetric Models

4.1 NMSSM

We saw earlier how the electroweak symmetry breaking conditions in the
MSSM demand that the value of the µ parameter should be roughly of the
same order as the soft supersymmetry breaking terms. Since µ is not a super-
symmetry breaking parameter, it is challenging to explain why it is associated
with a low energy scale without resorting to fine-tuning. In gravity-mediated
supersymmetry breaking models, the problem can be solved by the Giudice-
Masiero mechanism [12], which can generate an effective µ term of the right
order from non-renormalizable interactions if the actual µ term is forbidden
at tree-level by some symmetry. There is another solution for the problem in
supersymmetric models with a non-minimal field content. An effective µ-like
mass term arises from the coupling of a new gauge singlet superfield S to the
Higgs superfields Hu and Hd in the superpotential when the scalar field of S
acquires a vev induced by the soft breaking terms.

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) [13] has
the field content of the MSSM with an additional gauge singlet left-chiral su-
perfield S corresponding to a chiral supermultiplet called S, which contains a
scalar component S and a fermion component S̃. With the new superfield, we
have new terms in the superpotential as well as new soft supersymmetry break-
ing terms. The R-parity conserving superpotential for the general NMSSM is

WNMSSM = WMSSM + λSHuHd +
1

2
µ′S2 +

κ

3
S3. (4.1)

The couplings λ and κ are dimensionless, and µ′ is a supersymmetric mass
term.
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The soft supersymmetry breaking Lagrangian is then

LNMSSM
soft = LMSSM

soft −
(
λAλSHuHd −

1

3
κAκS

3 +
1

2
m2
S′S

2 + ξ3S + c.c.

)

−m2
S |S2|. (4.2)

The dimensionful terms in the superpotential and the new soft supersymmetry
breaking terms should be of the same scale as the MSSM soft terms so that the
vev of the singlet scalar determined by the potential minimization condition
is not too large and the effective µ term λ〈S〉 = λs is of the sought scale.
However, there are still supersymmetric terms in the superpotential, including
the actual µ term, and if the soft terms arise from a hidden sector of a su-
pergravity model, the tadpole coupling ξ3 can become quadratically divergent.
The unwanted dimensionful terms can be removed by demanding that the full
Lagrangian respects Z3 discrete symmetry, which multiplies the fields in the
chiral supermultiplets by e2πi/3. Under the symmetry, the dimensionful terms
µ, b, ξ3 µ′ and m2

S′ are not allowed. The name NMSSM often refers to the Z3

invariant model. If it is an exact symmetry, it is spontaneously broken by the
Higgs vevs.

After the electroweak symmetry is broken, a spontaneously broken discrete
symmetry leads to creation of domain walls [14], which separate degenerate
vacua with regions of higher potential. Domain walls are cosmologically dis-
astrous because they can disturb nucleosynthesis and produce large cosmic
microwave background anisotropies. There are a number of ways to avoid do-
main walls. One approach to do this is to assume that the discrete symmetry
is explicitly broken at a high energy scale. If the Z3 breaking terms in the po-
tential are sufficiently large, domain walls disappear before causing problems.
This can be dangerous since the tadpole terms can destabilize the hierarchy
between the electroweak scale and the Planck scale by inducing a large singlet
vev. If we impose additional symmetries on the non-renormalizable terms such
that only a harmless tadpole term is generated radiatively, we can avoid the
domain wall problem without destabilizing the hierarchy [15].

The particle spectrum of the NMSSM is different from the MSSM because of
the singlet superfield. In the Higgs sector, the real part of the singlet scalar field
mixes with the real parts of the two neutral Higgs fields, and the imaginary
components mix similarly, so there is a new Higgs scalar and a new Higgs
pseudoscalar particle. The singlet scalar field modifies the MSSM tree-level
upper bound for the Standard Model like Higgs boson to

m2
h < m2

Z cos2(2β) + λ2v2 sin2(2β). (4.3)

This is one of the attractive features of the NMSSM. While the MSSM pa-
rameter space is very constrained because of the discovery of 125 GeV mass
for the Higgs boson, the singlet superfield contribution to the scalar potential
in the NMSSM helps to lift the mass of the particle, making the experimental
bound easier to reach. The coupling λ has an upper bound of ∼ 0.8 because
otherwise it could have a Landau pole in the renormalization group running of
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the coupling below the unification scale. Since the singlet scalar field does not
couple to the gauge bosons, a neutral Higgs boson with a large singlet compo-
nent could be much lighter than the Standard Model-like Higgs boson and still
be consistent with constraints from accelerator searches of Higgs bosons. In
the neutralino sector, there is an extra particle since the singlet fermion field,
which is called the singlino, mixes with the neutral gauginos and higgsinos. In
the basis

ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u, S̃) (4.4)

the neutralino mass matrix is

Mχ̃0 =




M1 0 −g′vd/
√

2 g′vu/
√

2 0

0 M2 gvd/
√

2 −gvu/
√

2 0

−g′vd/
√

2 gvd/
√

2 0 −λs −λvu
g′vu/

√
2 −gvu/

√
2 −λs 0 −λvd

0 0 −λvu −λvd 2κs




. (4.5)

The singlino field has no gauge couplings, so the neutralinos with a significant
singlino component have much smaller couplings to the Standard Model parti-
cles than the MSSM neutralinos. For small values of λv and large values of κs,
the singlino-like neutralino decouples from the rest of the neutralinos, and the
neutralino sector of the NMSSM becomes very similar to that of the MSSM.

Spontaneous breaking of CP symmetry is not possible in the MSSM at
tree-level because of the structure of the scalar potential. The same is true
in the Z3 invariant NMSSM. However, if the singlet tadpole term exists and
κ is non-zero, spontaneous breaking of CP in the Higgs sector is possible at
tree-level. Spontaneous CP violation occurs if the neutral Higgs fields and the
singlet scalar field acquire complex vevs. Only two of these phases are physical
since one of them can be absorbed by field redefinitions. The vevs are then

〈H0
u〉 = vu, 〈H0

d〉 = vde
iφ2 , 〈S〉 = seiφS , (4.6)

The neutral Higgs mass matrix is now a 6×6 matrix that mixes the scalar and
pseudoscalar Higgs fields.

4.2 NMSSM with Right-handed Neutrinos

Neutrino oscillations have been observed in solar, atmospheric, reactor and
accelerator neutrino experiments [16]. Data from the experiments strongly im-
ply that neutrinos mix and have masses, although the absolute values of the
masses are not known. The sum of the active neutrino masses is constrained
by the Planck and other cosmological observations [17] to be less than one
electronvolt. In the Standard Model, neutrinos are massless since there are
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no right-handed neutrinos nor interactions that could generate neutrino mass
terms from the vev of the Higgs field. In order to include neutrino masses in
supersymmetric models, we need to extend the MSSM. Dirac masses for neu-
trinos are introduced by adding right-handed neutrino superfields with Yukawa
couplings in the superpotential. Right-handed neutrinos can additionally have
lepton number violating Majorana mass terms. If the Dirac masses are much
smaller than the Majorana masses, the smallness of the left-handed neutrino
masses can be explained via a seesaw mechanism [18]. Neutrino and sneutrino
mass eigenstates are then mixtures of left- and right-handed fields, but the
mixing angles are usually small. Since the right-handed neutrino superfields
have only Yukawa couplings, neutrino and sneutrino states that consist mostly
of the right-handed fields have diminutive couplings to the Z boson. These
right-handed neutrinos are called sterile neutrinos.

Right-handed sneutrinos are interesting in the context of the NMSSM. Ma-
jorana mass terms for neutrinos can be generated dynamically from the cou-
plings of the right-handed neutrino superfields N to the singlet superfield S in
the superpotential when the scalar singlet field obtains a vev. The R-parity
conserving but lepton number violating superpotential of the NMSSM with
right-handed neutrino superfields is given by

W = WNMSSM + yNLHuN + λNSNN. (4.7)

In addition to generating the Majorana mass terms, the last term in the super-
potential allows right-handed sneutrinos to couple to the scalar singlet field,
which leads to right-handed sneutrinos having electroweak scale interactions.

In the neutrino sector, the seesaw mechanism generates two different scales
for neutrino masses from the Dirac and Majorana mass terms. The neutrino
mass matrix is

Mν =


 0 mD

mT
D MN


 , (4.8)

where the Dirac masses mD are proportional to the neutrino Yukawa couplings
yN and the Higgs vev vu after the electroweak symmetry is broken, and the
Majorana mass terms are MN = 2λN 〈S〉 (with indices suppressed). Since 〈S〉
is roughly of order of the electroweak scale in order to solve the µ problem,
the Majorana mass terms are also approximately of the same order if λN is of
order one. If the Dirac masses are much smaller than the Majorana masses,
the left-handed neutrinos are light with masses

mνL ≈
y2Nv

2
u

MN
, (4.9)

and the right-handed neutrinos have masses very close to MN . The neutrino
Yukawa couplings are then O(. 10−6) to satisfy the cosmological bounds on
the sum of the active neutrino masses. The mixing angles between the left- and
right-handed fields are proportional to the Yukawa couplings, so the mixing is
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very small, which causes the neutrino mass eigenstates split into left-handed
active neutrinos and right-handed sterile neutrinos.

Similarly, mixing between the left- and right-handed sneutrino fields is
suppressed because of the small neutrino Yukawa couplings, so the physical
sneutrino states consist almost purely of either left- or right-handed sneutrino
fields. These left- and right-handed sneutrinos have substantial differences in
how they interact with other fields.
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Chapter 5

Constraints on
Supersymmetric Models

5.1 Dark Matter

Astronomical and cosmological evidence strongly implies that most of the mat-
ter in the universe does not emit or absorb light at any wavelength. Even
though the exact nature of this dark matter is not yet understood, as no dis-
covered particle is able to account for it, convincing evidence of dark matter
can be seen at multiple scales from small galaxies to largest structures in the
universe [19, 20].

The influence of dark matter is directly observed in the rotation curves of
spiral galaxies. Rotation curves describe the radial velocities of visible stars
and gas as a function of their distance to the galactic center. If the matter in
spiral galaxies consisted predominantly of visible matter, the radial velocities
should drop with increasing radius, but the observed rotation curves are quite
flat even at large distances from the galactic center. This implies that the
luminous form of matter is only a small part of the total galactic mass and
that there is a halo of dark matter that extends far beyond the edges of the
galaxy, which provides the unseen mass. It is difficult to determine how far
the halo extends, therefore one cannot place an upper limit on the amount of
dark matter in the galaxy. Nevertheless, rotation curves offer very compelling
evidence for dark matter.

On a larger scale, existence of dark matter can be established from clusters
of galaxies. Methods for determining the mass of a cluster include measur-
ing the radial velocities of the galaxies and applying virial theorem, mapping
the distribution of X-ray emissions, and using gravitational lensing. One of
the earliest indications of dark matter was found in the velocity dispersion of
galaxies in the Coma cluster, which was observed by Zwicky in 1933. Zwicky
inferred from the observations that the visible matter alone in the cluster could
not explain the motion of the galaxies, and that most of the mass was, in fact,
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unseen. As indicated by general relativity, the space around massive galaxy
clusters is curved, which causes the light from background objects to lens
around the clusters. Thus the magnitude of the gravitational lensing reveals
how mass is distributed in the cluster. Mass estimates of galaxy clusters by
these independent methods provide strong evidence that the density of dark
matter in the clusters is much larger than the density of luminous matter.

Differing characteristics of luminous and dark matter can be seen in the
bullet cluster, which is actually a system of two colliding clusters. Bulk of
the luminous matter is in two hot X-ray emitting gas clouds instead of the
individual galaxies, and gravitational lensing reveals that most of the total
mass in the cluster is dark matter [21]. The gas clouds are interacting in the
collision with each other and have created shock waves in the process, while
the dark matter is only affected by gravity. This implies that dark matter has
quite small interactions with both itself and the ordinary luminous matter.

Big Bang nucleosynthesis places a limit on the baryon density in the uni-
verse and therefore also on the density of ordinary matter, which is mostly
baryonic by mass and is for that reason referred to as baryonic matter. The
total baryon density obtained from nucleosynthesis is only a fraction of the
total mass density observed from large-scale structure [22, 23], so the possibil-
ity that most of dark matter is just dim, difficult to observe baryonic matter
is ruled out. Non-baryonic nature of dark matter is also implied by structure
formation in the universe. During the early universe, when the temperatures
and densities of particles were very high and baryonic matter was in the form
of ionized plasma, the radiation pressure of photons pushed against the gravi-
tational pull of mass and kept primordial baryonic matter density fluctuations
from growing denser. Dark matter, in contrast, does not couple to photons, so
its density fluctuations could grow denser without resistance from radiation.
N-body simulations of large-scale structure show that for the initial density
fluctuations of luminous matter to evolve into the form of the observed struc-
ture of galaxies and clusters, there had to be a significant amount of dark
matter to seed the structure formation. In addition, structure formation tells
us that the majority of dark matter must be cold, or non-relativistic, since
hot, or relativistic dark matter would damp out small scale density fluctua-
tions and cause largest structures to form first. This top-down scenario is in
disagreement with the observation that the most distant and earliest objects
in the universe are small structures like galaxies.

The standard cosmological model to describe the universe is the ΛCDM
model [24], where Λ signifies the cosmological constant and CDM is abbrevi-
ation of cold dark matter. This simple yet successful concordance cosmology
model, which is named after two of its dominant constituents, seeks to explain
the observed large-scale structure, nucleosynthesis of light elements, the accel-
erating expansion of the universe, and the structure of the cosmic microwave
background (CMB) radiation. The model-dependent cosmological parameters
are most precisely determined from the observations of the CMB. Anisotropies
of the CMB represent the primordial density fluctuations that eventually de-
veloped into the large-scale structure we see today. These have been measured
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by the Wilkinson microwave anisotropy probe (WMAP) [25] and more recently
by the Planck satellite [17], and the data they have gathered confirm that dark
matter is indeed non-baryonic. The Planck measurements combined with data
from various other observations indicate that the universe is spatially flat and
that the total matter density is Ωm = ρm/ρc = 0.315± 0.017, where ρc is the
critical energy density required for the flat geometry. This leaves the remaining
energy density to dark energy, which acts like a cosmological constant. While
dark energy is not really understood, it is needed to explain the accelerating
expansion of the universe indicated by the redshifts of distant supernovae. Ac-
cording to the results, approximately 18 percent of the total matter is baryonic
matter, the rest being dark matter. The physical density is often used when the
dark matter density is discussed, and the Planck result with 68% confidence
level is

Ωch
2 = 0.1187± 0.017, (5.1)

where h is the reduced Hubble constant (H0 = 100h km/s/Mpc).

Despite the success of the Standard Model, it cannot explain dark matter.
In the Standard Model, neutrinos fit the description of non-baryonic particles
that interact weakly. Furthermore, the observed flavor oscillations demonstrate
that they are massive. Neutrinos, however, are too light to be cold dark matter
or to contribute to dark matter density sufficiently. On the other hand, massive
neutrinos hint that right-handed sterile neutrinos could exist. If they do, it
is possible that they are heavy enough to be warm, or nearly relativistic dark
matter, a form of dark matter that is also compatible with structure formation,
and to provide the observed non-baryonic matter density. Sterile neutrino dark
matter can be produced by different mechanisms, and in some scenarios even
relatively cold dark matter can be created [26].

Dark Matter in Supersymmetric Models

One of the appealing features of supersymmetry is that it can provide a num-
ber of viable dark matter candidates. If R-parity is conserved, the lightest
supersymmetric particle (LSP) is stable. This implies that an abundance of
LSPs remaining from the early universe could account for the dark matter
density. Even if supersymmetry is realized in nature, dark matter could have a
non-supersymmetric origin, so if a supersymmetric model fails to saturate the
density with relic LSPs, it does not necessarily mean that the model is ruled
out. While this is the case, it would certainly be nice to be able to explain
dark matter in the context of supersymmetry. The upper limit on the cold
dark matter density severely constraints the parameter spaces of supersym-
metric models such as the MSSM and the NMSSM. The relic density in these
models often ends up too high unless the LSPs can annihilate efficiently into
Standard Model particles.

Dark matter particles produced thermally in the hot early universe are re-
ferred to as thermal relics. Supersymmetric dark matter candidates usually fall
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into this category. Initially, in the hot particle soup, a thermal relic is in ther-
mal equilibrium. The equilibrium is maintained as long as the rate of creation
and annihilation of the relics is faster than the expansion rate of the universe.
When the temperature in the expanding and cooling universe drops below the
thermal relic mass, the equilibrium density of the relic becomes suppressed
by a Boltzmann factor e−m/T . The relic abundance diminishes exponentially
until the expansion rate of the universe is faster than the annihilation rate of
the diluted particles. At that point, the relic density is low enough that the
particles are unlikely to annihilate each other, so from then on the relic density
is no longer determined by the equilibrium density. As the annihilations have
mostly ceased, the relic abundance is essentially ”frozen out”. Their number
density is then diluted only by the expansion of the universe.

In a simplified picture, the evolution of the thermal relic number density is
described by the Boltzmann equation

dn

dt
= −3Hn− 〈σv〉 (n2 − n2eq), (5.2)

where H is the Hubble expansion rate, 〈σv〉 is the thermally averaged cross
section of the thermal relic annihilation into other particles multiplied by the
relative velocity of the relics, and neq is the number density in thermal equi-
librium. On the right-hand side of the equation, the first term represents the
change in the density due to the expansion of the universe and the second term
accounts for the creation and annihilation of the relics. Roughly, the equation
gives a relic density

Ωrh
2 ≈ 3× 10−27 cm3 s−1〈σv〉−1 (5.3)

at present time. The annihilation cross section and the relic density are in-
versely related. This is because larger cross sections lead to the freeze out tak-
ing place later, so the dark matter particle remains longer in the equilibrium,
and the density is consequently suppressed further by a smaller Boltzmann
factor. It turns out that stable massive particles with weak scale interactions,
whose cross section can be estimated as 〈σv〉 ∼ α2/(100 GeV)2 ∼ 10−25cm3s−1,
have naturally relic density close to the right order of magnitude. Whether this
is coincidence or not, it lends credence to the idea that a weakly interacting
thermal relic could be the most plausible candidate for dark matter. For de-
termining the resulting relic density more accurately, the Boltzmann equation
should additionally account for the effect of coannihilations [27]. Coannihila-
tions in supersymmetric models are annihilations between the LSP and other
sparticles close to its mass. These can be quite effective in reducing the relic
density that otherwise would be too large. To obtain precise results, the cal-
culation of the relic density is usually done numerically.

In the models considered here, the neutral and stable supersymmetric dark
matter candidates are the lightest neutralino, the lightest sneutrino, and the
gravitino. A bino-like neutralino is often the LSP in the constrained MSSM
[28]. Neutralino dark matter tends to be overproduced in supersymmetric
models unless the particle spectrum allows an efficient way to annihilate the
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particles in the early universe. This is possible to realize, for example, with
coannihilations between neutralinos and other sparticles, with a large annihila-
tion cross section through a Higgs resonance (if the neutralino LSP happens to
have a mass close to a half of the resonance mass), or with a significant Higgsino
mixture in the neutralino allowing it to have an enhanced annihilation rate to
the charged gauge bosons. Superpartners of the left-handed neutrinos as the
dark matter are excluded by direct detection experiments and collider searches
because of their large coupling to the Z boson. Right-handed sneutrinos in the
extended models, however, could account for the dark matter. Although grav-
itino LSP could be the dark matter, the particle would be nearly impossible to
detect in experiments. The gravitino mass in gravity-mediated supersymme-
try breaking models is similar to the soft breaking masses of other sparticles,
whereas the gravitino mass in gauge-mediated models is typically much smaller
than the soft breaking scale and, as a result, the gravitino is often the LSP.

Detection of Dark Matter

Earth is continuously moving through the halo of dark matter in our galaxy.
Given the implied energy density of dark matter, dark matter particles should
be present in large quantities. If this is the case, some of them are bound to
interact with ordinary nuclei even if their scattering cross section with baryonic
matter is small. Direct detection experiments aim to observe the interactions
of dark matter particles with the target material in the detector. This is done
by measuring the recoil energies in elastic scattering events of dark matter with
the protons and neutrons in the target material. The event rate is expected
to be small, which necessitates a large volume of detector material to capture
the signal. It is a challenge to separate signal events from background events,
which arise from cosmic rays and radioactivity. This requires careful detector
design and analysis of the results in order to avoid false positive signals. Weakly
interacting thermal relics with masses from GeV to TeV scale are the prime
targets for these searches.

The rate of recoil events depends on the dark matter-nucleon cross section,
and the local density and velocity distributions of dark matter. Some halo
model, such as the isothermal sphere model, which is simple and is often used
in direct detection simulations and analysis, is assumed for the density. For the
isothermal model, the corresponding velocity distribution is Maxwellian with
an estimated local dark matter density ρ = 0.3 GeV/cm3 and a mean velocity
v0 = 220 km/s. One of the expected experimental signals of a direct detection
of dark matter is an annual modulation of the event rate. The modulation
should occur because the Earth’s motion around the Sun has a seasonal effect
on Earth’s velocity through dark matter. In addition, the direction of the
nucleon recoils should modulate as Earth rotates around its axis.

Results of direct detection experiments are summarized in Figure 5.1. The
observations of the DAMA/LIBRA [30], CRESST-II [31], CDMS II [32], and
CoGeNT [33, 34] experiments are consistent with a signal of ∼10 GeV weakly
interacting dark matter particle. DAMA/LIBRA and CoGeNT independently
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Figure 5.1: Results of direct detections experiments. Exclusion limits and
possible signal regions for the spin-independent elastic scattering cross sections
and masses of weakly interacting massive particles (WIMPs) [29].

report seeing annual modulation in the event rate, although the statistical
significance of the CoGeNT result is only a 2.2σ. The observations of the
phase and period of the modulation in the two experiments are compatible with
each other and also with halo simulations. The amplitude of the modulation
seen by CoGeNT, however, is larger than what is expected for a dark matter
halo with a Maxwellian velocity distribution. If the modulation is real, the
discrepancy could be due to non-Maxwellian properties of the actual velocity
distribution. In contrast to the DAMA/LIBRA and COGeNT results, the
CDMS-II experiment, which employs the same target material as CoGeNT,
does not find any evidence of annual modulation [35]. The apparent signal
of light dark matter in some of the experiments is in disagreement with the
results of the xenon-based experiments XENON100 [36] and LUX [37]. These
observations put the most stringent limits yet on the spin-independent elastic
scattering cross-sections of dark matter particles. It is not known for certain
at this point, though, whether the conflict between the experiments is due
to background and detector effects erroneously interpreted as signals of dark
matter or a possibly lower than assumed sensitivity to low mass dark matter
particles in LUX and XENON100.
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Indirect detection experiments attempt to detect the annihilation products
of dark matter particles. If the dark matter particles are thermal relics with
weak interactions, they are predicted to annihilate into particles that include
gamma rays, cosmic rays of energetic positrons and electrons, and neutrinos.

Gamma rays from the galactic center are a particularly interesting probe
of dark matter annihilations. The dense galactic center is the most promising
location to look for the photons because the annihilation rate and consequently
the flux of the resulting particles is proportional to the square of the dark mat-
ter density. As photons are not charged, they are not deflected by magnetic
fields and, as a result, can propagate relatively freely. Consequently, the an-
gular distribution of the observed gamma rays can be used to infer whether
their source is consistent with the expected distribution of dark matter. The
signature of dark matter annihilating into photons are gamma rays with a spe-
cific energy, whereas gamma rays from conventional astrophysical sources are
expected to have a continuous spectrum. Searches of excess gamma rays over
the galactic background have been carried out by the Fermi Gamma Ray Space
Telescope. An independent analysis of the Fermi data points to a signature
of dark matter annihilating into ∼130 GeV photons [38]. This tentative sig-
nal was also found by the Fermi-LAT collaboration using a larger set of data,
albeit at a lower statistical significance [39]. Another recent analysis of the
Fermi data indicates gamma-ray excess from annihilations of ∼30 GeV dark
matter particles [40]. The astrophysical background, however, is not perfectly
understood. If the background is not estimated properly, gamma rays from
ordinary astrophysical sources can be easily misinterpreted as a sign of dark
matter.

Annihilation of dark matter in the galactic halo could also lead to an ob-
servable excess of positrons. Positrons of astrophysical origin are thought to
be created mainly in secondary production from collisions of cosmic ray nu-
clei with interstellar matter. The flux of positrons measured as a fraction to
the rate of incoming cosmic ray electrons is expected to fall with increasing
energy. If the dark matter particles annihilate into positrons and electrons
either directly or through heavier particles such as the W bosons, the positron
fraction should increase at higher energies below the mass of the dark matter
particle. The PAMELA experiment has observed a rise in the positron fraction
[41], and the Fermi [42] and AMS-02 [43] experiments have later confirmed the
results. Even though the rise is intriguing, it does not necessarily mean that
dark matter is behind the excess. For one thing, the cross section of the dark
matter annihilation required to explain the signal seems to be too large for
a thermal relic. A conventional source for the excess positrons could be the
magnetospheres of pulsars [44].

High-energy neutrinos from the Sun is another possible signature to look
for in indirect detection searches since thermal relic dark matter can accumu-
late inside massive objects. The accumulation of dark matter inside the Sun
relies on small but non-vanishing interactions between dark matter and ordi-
nary matter. A dark matter particle traveling through a celestial body has a
small chance of elastically scattering with the nuclei in the matter, and if the
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velocity of the particle after scattering is less than it would take it to escape
the local gravitational well, the particle becomes trapped and is likely to have
further interactions with the body. This causes dark matter particles to lose
kinetic energy and sink into the core, where they can annihilate into Standard
Model particles. Their decays then give rise to high-energy neutrinos, which
are distinctive from the background that mostly consists of atmospheric neutri-
nos. Dark matter induced neutrinos coming from the sun have been searched
in many experiments, including the ANTARES [45], IceCube [46, 47], and
Super-Kamiokande [48] neutrino telescopes, but no significant excess above
the expected background has been found. These experiments are not as sensi-
tive as the direct detection searches to spin-independent dark matter-nucleon
cross sections, but the limits they give on spin-dependent cross sections are
more constraining if the main annihilation channel of dark matter particles is
to W+W− or τ+τ−.

5.2 Collider Searches of Supersymmetric
Particles

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at
CERN reached one of their primary goals in 2012 with the discovery of the
Higgs boson [49, 50]. While the first run of the LHC concluded successfully in
2013, there was unfortunately no sign of supersymmetric particles or conclusive
evidence of other new, beyond the Standard Model physics. Nevertheless, the
collected data can be used to determine whether a supersymmetric model is
still consistent with all the experimental evidence or is ruled out. In searches
of new physics it is crucial to understand what are the expected signals of
a model with new particles and interactions, and how the signals could be
identified from the collider data.

If the mass scale of supersymmetric particles is not too far beyond one TeV,
at least some of them should be produced copiously at the LHC. The produc-
tion of squarks and gluinos, which are strongly interacting, is expected to be
dominant over the production of electroweak neutralinos and charginos [51].
The production cross sections, however, are highly dependent on the masses of
the sparticles, so the model dependent mass spectrum is a considerable factor
in the relative production rate of different sparticles. One important aspect
of the colored scalars in the collider phenomenology is that the production
rate of the third generation squarks, stops and sbottoms, is smaller than the
rate of the first generation of similar masses. The reason for this is that the
contributions of the quark scattering processes to the pair production of third
generation squarks is negligible because there are virtually no top or bottom
quarks in the colliding proton beams.

Supersymmetric particles created in the collisions are expected to decay in
cascades, producing a lighter sparticle and Standard Model particles at each
step of the decay. If R-parity is conserved, the decay chain continues until
there is a final state that contains the stable LSP. Since squarks and gluinos
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have color charges, their decays produce strongly interacting Standard Model
particles, which undergo hadronization and produce jets of observable particles.
Neutralinos and charginos, which are generally expected to be lighter than the
colored sparticles, typically produce leptons and jets in their decay chains.
The possible decay channels of a supersymmetric particle are determined by
the mass spectrum, so the specific experimental signature is dependent on the
parameters of the model. But there are some features that are thought to be
common in many decays. For squarks and gluinos, the signature of the decay
is expected to include one or more high transverse momentum pT jets from the
hadronizations in the cascade and missing energy /ET from the neutral LSP
that escapes the detector. In addition, if there are neutralinos or charginos in
the cascade, they can give rise to a signature containing multiple leptons.

In searches of supersymmetry at the LHC, it is often challenging to distin-
guish the signal from the background produced by ordinary Standard Model
processes. Because of this, search strategies have to employ cuts in the event
selection to control the background. The cuts determine whether a collision
event is considered as a possible signal based on, for example, the amount of
missing energy, the number of jets and their transverse momenta in the event.
In addition, the cuts can require the events to have a certain number of leptons,
and jets originating from the hadronization of top and bottom quarks. Top
and bottom jets are usually tagged with jet algorithms that try to identify the
origin of the particles in a jet. The LSP is not the only source of missing en-
ergy, because neutrinos are also invisible to the detector and carry away energy
with them. Furthermore, missing energy also arises from the mismeasurement
of jet energies in the detector calorimeters.

In Fig. 5.2 the results of search with the ATLAS detector for pair produced
stop squarks are presented for three decay channels. The analysis is carried out
with the assumption that stop decays exclusively into one of the decay channels
with 100% branching fraction. The mass hierarchy of the supersymmetric
particles determines which of the decays are possible. Results of a search for
squarks and gluinos with the ATLAS detector detailed in [52] are interpreted
in term of the cMSSM in Fig. 5.3. Summaries of the results of searches for
supersymmetry at CMS and ATLAS are found in [53, 54]. The results indicate
that gluinos and the first two generation squarks are heavier than one TeV. The
masses of third generation squarks, charginos, neutralinos, and sleptons can be
significantly smaller because they have smaller production cross sections.

5.3 Indirect Searches of Supersymmetric
Particles

The B → τν Decay

The decay of B± mesons to the purely leptonic final states τ± ντ are of interest
in testing the Standard Model and probing the effects of beyond the Standard
Model physics. In the Standard Model, the decay is mediated by a virtual W
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boson, and the branching fraction at tree-level is given by

B(B+ → τ+ντ ) =
G2
FmBm

2
τ

8π

[
1− m2

τ

m2
B

]
f2B |Vub|2τB+ , (5.4)

where GF is the Fermi constant, fB is the B meson decay constant, |Vub| is
the absolute value of the CKM matrix element, and τB+ is the B+ lifetime.
Most of the uncertainty in the prediction lies in the determination of the CKM
matrix element. Using the measurement of |Vub| from charmless semileptonic
B exclusive decays by the BABAR experiment and the lattice QCD calculation
of the decay constant fB = 189± 4 MeV, the value is predicted to be [55]

B(B+ → τ+ντ )SM = (1.18± 0.16)× 10−4. (5.5)

The branching fraction has been measured in the BABAR [55] and Belle [56]
experiments. The BABAR result is

B(B+ → τ+ντ )exp = (1.79± 0.48)× 10−4, (5.6)
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while the Belle measurement gives

B(B− → τ−ντ )exp = (0.96± 0.26)× 10−4. (5.7)

There is a small discrepancy between these results. Whereas the branching
fraction reported by BABAR exceeds the Standard Model expectation slightly,
the Belle result is consistent with the expectation. The branching fraction is
sensitive to models with an extended Higgs sector because the decay of B±

at tree-level can also be mediated by annihilation into a virtual charged Higgs
boson H±. The supersymmetric branching fraction [57] is given by

B(B+ → τ+ντ ) = B(B+ → τ+ντ )SM × rH , (5.8)

in which rH that scales the Standard Model rate is

rH =

(
1− tan2 β

1 + ε̃0 tanβ

m2
B

M2
H±

)2

. (5.9)

The charged Higgs bosons typically interfere with the W bosons destructively.
Higher order corrections to the couplings of charged Higgses to quarks are
expressed in rH by the factor 1/(1 + ε̃0 tanβ), which can be important for
large tanβ. Since the branching fraction depends strongly on the tanβ and
MH± , it can be used as a constraint on those parameters. In supersymmetric
models, the constraint typically favors a low tanβ or a high MH± in order not
to decrease the branching fraction too much below the Standard Model value.
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The B → Xsγ Decay

In the Standard Model, the hadronic process B → Xsγ of the underlying
decay b → sγ is a loop-level process, where the most significant lowest order
contribution comes from a top-W boson loop. The prediction of the branching
fraction at NNLO (next-to-next leading order) is [58]

B(B → Xsγ)SM = (3.15± 0.23)× 10−4. (5.10)

The present experimental value by the Heavy Flavor Averaging Group [59]
together with the BABAR measurement [60] gives the world average of the
experimental values [61]

B(B → Xsγ)exp = (3.43± 0.22)× 10−4, (5.11)

which is consistent with the predicted value. The branching fraction is sensitive
to supersymmetric particles and can be used as a constraint for supersymmet-
ric models. Supersymmetric contributions to the decay amplitude come from
charged Higgs-top, neutral Higgs-bottom, squark-higgsino, and squark-gaugino
loops. In the MSSM and NMSSM, the b → sγ constraint is sensitive to the
parameters tanβ and At [62]. At high tanβ, large values of At increase or de-
crease the branching fraction significantly depending on the sign of the trilinear
term. For a heavy charged Higgs and degenerate squark masses, the parameter
space is not really constrained beyond experimental squark mass bounds [61].
If the third generation squarks are light compared with the first two genera-
tions of squarks and At is negative, the constraint can become relevant even
for heavy squark masses. For positive values of At, the experimental bound is
less constraining because the gluino and Higgsino loops partially cancel.

The Bs → µ+µ− branching fraction

The Bs → µ+µ− decay is a flavor changing neutral current process, so it can
only occur at loop-level. As the decay is also helicity suppressed by the small
muon mass, the predicted Standard Model rate is very small. The Bs → µ+µ−

decay is a good constraint for new physics since the new physics contributions
may not be helicity suppressed to the same extent. In the Standard Model,
the decay proceeds via penguin and box diagrams, but because of the B0

s–
B̄0
s oscillations, the theoretical branching fraction calculation is not directly

comparable with the experimental measurements. Taking into account the
different widths between the Bs mass eigenstates, the adjusted prediction is
[63]

B(Bs → µ+µ−)SM = 3.56± 0.18× 10−9, (5.12)

which can be compared with the experimental results. Recently, the CMS [64]
and LHCb [65] experiments have observed the decay, and the combined result
[66] for the branching fraction is

B(Bs → µ+µ−)exp = (2.9± 0.7)× 10−9. (5.13)
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This value is in good agreement with the prediction, and does not leave very
much room for new physics. In supersymmetric models, the decay amplitude
is dominated by Higgs pseudoscalar and heavy Higgs scalar penguin diagrams.
The branching fraction receives large enhancement from tanβ, which strongly
constrains the parameter space at large values of tanβ [67]. For large pseu-
doscalar masses or small values of tanβ, the supersymmetric contributions
are suppressed, and the branching fraction approaches the Standard Model
prediction.
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Chapter 6

Summary of Results

In Paper 1 and Paper 2, we study stop squark as a next-to-lightest supersym-
metric particle (NLSP) in the constrained MSSM. The stop NLSP scenario is
phenomenologically motivated. In the cMSSM, the neutralino LSP is typically
bino-like, which in large parts of the parameter space results in an exces-
sive dark matter density because the annihilation cross section to fermions is
suppressed. However, coannihilations between the lightest neutralino and the
NLSP can bring the relic density down by enhancing the dilution of super-
symmetric particles. This requires that the NLSP mass is close to the mass of
the lightest neutralino. When stop is nearly degenerate with the LSP, a bino-
like neutralino can explain the observed dark matter density. There is also an
interesting connection between a light stop mass and the Higgs boson in the
cMSSM. To obtain the ∼125 GeV mass for the Higgs boson without large stop
masses, the stop mixing terms that appear in the one-loop correction for the
Higgs mass are required provide a nearly maximal contribution. This maximal
mixing scenario implies significant stop mixing and a light stop.

The effects of the renormalization group equations in the cMSSM are im-
portant in determining the NLSP since the RGEs are used to determine the low
energy scale values of the soft supersymmetry breaking terms from the high
energy scale input parameters of the model. Stop can be the NLSP when the
off-diagonal mixing term M2

LR = mt(At−µ cotβ) of the left- and right-handed
top squark fields is large. A large At parameter can cause one of the stop soft
mass parameters to be driven to a small value, and a large mixing term reduces
the mass of the lighter stop mass eigenstate t̃1. In the squark and slepton soft
mass term RGEs, the squared soft trilinear terms and the terms proportional
to the Yukawa couplings (and scalar masses) decrease the soft mass parame-
ters, while the terms proportional to the gauge couplings (and gaugino masses)
have an opposite effect. The large top Yukawa coupling suggests that stop is
lighter than the other squarks, but because the coupling constant of strong
interactions is large, the stop mass parameters tend to increase faster than
the slepton mass parameters as the gaugino mass scale increases. Therefore, a
small gaugino mass parameter m1/2 as compared to the scalar mass parameter
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Figure 6.1: The potential stop NLSP area in the m1/2 − A0 plane. The red
points are the stop NLSP points with relic density below the WMAP upper
limit, and the white subset of the points also obey the other constraints. The
yellow area denoted by rge shows the parameter space where a viable solution
for the particle spectrum does not exist. From Paper 1.

m0 is favored.

To find the parameter points where stop is the NLSP and the experimental
constraints are satisfied, we scanned the 4-dimensional parameter space of the
cMSSM (m0,m1/2, A0, and tanβ) with the sign of µ chosen to be positive and
calculated the low energy particle spectrum and the constraints for each point
with the SOFTSUSY [68] and micrOMEGAs [69] software packages. For the
Higgs mass constraint, we used the LEP2 mass limit mh > 114 GeV, which at
the time was the experimental mass limit. The other constraints we used are
the WMAP relic density bounds, the branching fractions of b→ sγ, B → τν,
and Bs → µ+µ−. The results of the parameter scan for the interesting negative
values of A0 are presented in Fig. 6.1 as a projection in the m1/2 −A0 plane.

In the scan, the scalar mass parameter is varied in the range 1000 GeV
≤ m0 ≤ 2848 GeV in steps of 66 GeV, and the ratio of the Higgs vevs is varied
in the range 2.5 ≤ tanβ ≤ 55 in steps of 0.5 up to the value 20, and in steps of
5 starting from the value 25. For the plot, we have weakened the relic density
bound to include only the upper limit. In the red points, it is possible to
choose m0 and tanβ in such a way that stop is the NLSP and the relic density
is below the WMAP upper limit. The white points are a subset of these points
where the rest of the constraints are not violated. The areas labeled by the
sparticles names indicate the possible identity of the NLSP in the order of
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preference starting from stop and continuing to the sparticles listed below it.
For example, in the τ̃1 denoted points at least one stau NLSP point (but not
a single stop NLSP point) was found by varying the m0 and tanβ parameters.
The black area corresponds to parameter points where the lightest neutralino
is not the LSP.

We find that there is a large area of potential stop NLSP points in the
cMSSM for both positive and negative values of A0. With a positive sign for
µ, the stop mixing term is larger for the negative A0. The potential stop NLSP
area is therefore larger for the negative trilinear soft term with our choice of
positive µ. If |A0| is much larger than m0, there is a possibility that a color-
and charge-breaking (CCB) minimum forms in the scalar potential that is
deeper than the electroweak minimum [70]. However, quantum tunneling from
the false vacuum, where only the neutral Higgs fields have vevs, to the true
minimum may take a very long time [71]. For this reason, the existence of
a CCB minimum does not automatically exclude the point in the parameter
space. For all of the points we checked, the lifetime of the electroweak vacuum
is longer than the age of the universe even if a CCB minimum develops. In
the plot, the constraint that separates the white points from the red points is
in most cases the Higgs mass limit. The Higgs maximal mixing area coincides
well with the white subset, which implies that in many of these points the
Higgs mass could easily be larger than the LEP2 bound we use.

In the area of potential stop NLSP points where the decay constraints and
the Higgs mass limit are satisfied, it is possible to find points where the relic
density agrees with the WMAP observations. These good points are a subset
of the white points in Fig. 6.1. A typical mass spectrum of the points that can
explain dark matter and satisfy our other constraints is shown in Fig. 6.2 as a
function of stop mass. Stop is nearly degenerate with the lightest neutralino
because efficient coannihilations require a small mass difference between the
bino-like neutralino LSP and the stop NLSP. The relation between the mass
difference and the relic density in our allowed stop NLSP points is plotted in
Fig. 6.3. For stop masses smaller than 800 GeV, the mass difference is less
than ∼50 GeV. This heavily restricts the possible decay modes of stop. The
rest of the colored scalars are much heavier than the NLSP, and the lightest
charginos and the second lightest neutralino are relatively light compared with
squarks and sleptons. There is a clear correlation between the gluino and stop
masses because the gaugino masses are related at the observable energy scale.
The RGE evolution predicts that there is a mass relation M3 : M1 ∼ 6, which
corresponds to the ratio of gluino and bino-like neutralino masses, and the relic
density constraint demands that stop is only slightly heavier than the LSP.

At the LHC, the direct stop production for a typical particle spectrum
in our stop NLSP scenario is dominant over the stop production mechanisms
that arise from cascade decays of other sparticles. This is because the direct
production cross sections of gluinos and other squarks, which are much heavier
than stop, are a lot smaller in comparison. When stop is the NLSP and
mt̃1
− mχ̃0

1
< mW , the only kinematically possible stop decay channels are

t̃1 → uχ̃0
1, t̃1 → cχ̃0

1, and t̃1 → bf f̄ ′χ̃0
1. The first two of these are loop-induced
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Figure 6.2: Mass spectrum of a set of good stop NLSP points as a function of
the stop mass. In the key, particles are listed in descending mass order found
at mt̃1

= 800 GeV. Relic density satisfies the WMAP constraint. From Paper
1.

decays, whereas the four-body decays occur at tree-level. The decay channel
t̃1 → cχ̃0

1 is likely dominant over the four-body decay since it receives a large
logarithmic enhancement from renormalization group evolution [72]. Although
the other loop decay is similarly enhanced, it is suppressed by a small quark
mixing matrix element. In Fig. 6.4, we have plotted the branching fractions
of the largest decay channels, which we computed with SUSY-HIT [73], as a
function of stop mass for the points in Fig. 6.2. The four-body decay becomes
more important as the mass difference between stop and neutralino grows. We
conclude Paper 1 with discussion about the possible collider signals of the stop
NLSP scenario at the LHC. The production of stops and associated particles
from decays of heavy gluinos suffer from small production cross sections, while
direct production of stops followed by the dominant decay to charm quarks and
neutralinos leads to a challenging signature consisting of two jets and missing
energy. The small mass difference of the two lightest supersymmetric particles
results in that the c jets are soft, so the signal of the light stops can easily
be lost in the background because soft jets are also produced in abundance in
ordinary QCD processes.

In Paper 2, we propose an interesting signature of the stop NLSP scenario
in the cMSSM. Signatures of light stops with a dominant decay channel to a
charm quark and the lightest neutralino have been studied, for example, in the
case of direct stop production in association with b jets [74], single photon [75],
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or a single jet [76], and in the case of stop production from gluino decays leading
to a pair of same-sign top quarks and stops [77]. The ATLAS experiment has
searched for stops in the decay channel t̃1 → cχ̃0

1 at center of mass energy√
s = 8 TeV with 20.3 inverse femtobarns of collision data [78]. The ATLAS

results exclude stop masses up to about 250 GeV.

The signature we present is based on gluino-mediated production of stops.
Gluinos will decay dominantly to a stop and a top quark, g̃ → t̄t̃1 or g̃ → tt̃∗1,
and stops will subsequently decay in the dominant channel t̃1 → cχ̃0

1, so the
pair production of gluinos results in two top quarks, two charm quarks, and two
lightest neutralinos. Even though the gluino production cross section is small
in comparison with the stop production cross section due to gluinos being ∼5
times more massive than stops in the model, the mass difference in combination
with the two top quarks as decay products gives rise to a signature that allows
to reject the background without sapping the signal strength. Since gluino
is much heavier than stop, stops and top quarks from the gluino decays will
be boosted. The lightest neutralino from the stop decay carries most of the
boosted stop’s momentum, while the c jet from the hadronization of the light
charm quark is soft. Top quarks decay dominantly to a bottom quark and a W
boson. One way to identify the decay is by finding the resulting b jet. But in
this case b-tagging is difficult, since the boosted top quarks decay to produce
sets of collimated particles that appear as single jets. Another issue is that
when the top decays are searched in the dominant hadronic decay channel of
the W boson, the signal is susceptible to a large background. The background
can be reduced by selecting only events where at least one of the W boson
decays results in an isolated lepton. However, the branching fraction for the
semileptonic top decay is smaller than for the hadronic decay, and a highly
boosted top often leads to a non-isolated lepton [79]. To find boosted tops,
instead of searching for bottom quarks and isolated leptons, it is more efficient
to use top tagging algorithms that identify the hadronically decaying boosted
top quarks by analyzing the substructure of the jets and the energy distribution
in the events. In the analysis of the signature, we use the Johns Hopkins top
tagger algorithm [80].

We study two high transverse momentum top jets plus large missing energy
as a signature of the stop NLSP scenario in the cMSSM. The gluino-gluino,
squark-gluino and squark-squark production cross sections at the LHC with√
s = 14 TeV were calculated with Prospino 2.1 [81], and the event generation

was done with Pythia 6.4, whereas FastJet 3 [82] handled the jet analysis. The
largest Standard Model backgrounds for the signature arise from tt̄ and QCD
multijet production. In addition, tt̄ production processes associated with a
vector boson, tt̄Z and tt̄W , can contribute to the background. All of these
SM backgrounds also give rise to missing energy because of detector resolution
effects, which we have simulated by smearing the jet energies. The tt̄ and
multijet backgrounds were simulated with Pythia, while the tt̄ with a vector
boson processes were simulated with ALPGEN [83] and Pythia. In the analysis
of the signal, we select events that contain at least two top tagged jets with
pT ≥ 500 GeV and pseudorapidity |η| ≤ 2.5, and reject events with one or
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1
∼ 35 GeV when possible. The white dots correspond to the points

resulting in a mh ∼ 125±2 GeV. Constant signal cross-section contours in the
m0 −m1/2 plane after acceptance cuts + /ET ≥ 500 GeV at the 14 TeV LHC
are also shown in the plot. From Paper 2.

more isolated electrons or muons with pT ≥ 20 GeV and |η| ≤ 2.5. These are
our event acceptance cuts. We find that the acceptance cuts together with
a large missing energy requirement efficiently reject the background without
destroying the signal cross section. The predicted number of background events
for /ET ≥ 500 GeV with 100 inverse femtobarns of integrated luminosity is less
than one.

In Fig. 6.5, stop NLSP points are plotted for tanβ = 15 and µ > 0. For
each point, the particle spectrum was calculated with SuSpect [84], and the
constraints were checked with micrOMEGAs [69]. In the three benchmark
points, the relic density agrees with the WMAP limits and the experimental
decay constraints are fulfilled. The gluino and stop masses in the BP3 are
mg̃ = 1227 GeV and mt̃1

= 250 GeV. With a missing energy cut /ET ≥ 500
GeV, the signal cross section for BP3 is 0.57 fb. If we require 5(10) signal
events for discovery, this point will be probed at the 14 TeV LHC with 9(18)
fb−1 of collision data. Constant signal cross section contours are displayed for
0.7, 0.3, and 0.15 fb in the m0 −m1/2 plane corresponding to gluino masses
mg̃∼1.1, 1.5, and 1.7 TeV at high m0. These will be probed with 7(13), 17(33),
and 33(67) fb−1 of data for 5(10) signal events.

The two high pT top jets and missing energy signature can be used to
extract the signal of the stop NLSP scenario even when stop is not nearly
degenerate with the lightest neutralino. In Fig. 6.6, the signal cross sections
for the acceptance cuts with /ET ≥ 500 GeV are plotted as a function of stop
mass. To obtain different stop masses, we have varied the A0 parameter while
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keeping m0 and m1/2 fixed. Initially, the signal cross section decreases as
the stop mass increases, because a smaller mass splitting between the gluino
and stop means less boosted top quarks. For m1/2 = 700 GeV, the lightest
neutralino mass is ∼300 GeV. When the stop mass is above ∼475 GeV, an
additional decay channel t̃1 → tχ̃0

1 opens up. This increases the possibility of
obtaining more boosted top jets, which results in a larger signal cross section.
The signal cross section stays fairly constant as long as stop is the NLSP, so the
signature is applicable to the whole parameter space where stop is the NLSP
in the cMSSM. The signature allows to probe stops with masses up to 550 GeV
in the presence of a gluino with mass below 1.7 TeV at the 14 TeV LHC with
33 fb−1 of integrated luminosity.

In Paper 3, we investigate right-handed sneutrino and neutralino dark mat-
ter in the NMSSM with a right-handed neutrino and spontaneous violation of
CP symmetry. The cosmological baryon asymmetry suggests that an addi-
tional source of CP violation beyond what the Standard Model provides is
needed. The soft supersymmetry breaking terms can have complex phases
and consequently introduce CP violating effects, but the phases are severely
constrained by experiments such as the measurement of the electric dipole
moment (EDM) of the electron. Another way to introduce CP violation is
by demanding that the Lagrangian is CP conserving and then breaking the
symmetry spontaneously by complex expectation values of the Higgs fields. In
this case, there are far fewer CP-violating parameters in the model. In the
MSSM, however, spontaneous violation of CP is not possible at tree-level be-
cause the minimum of the scalar potential is real. This leads us to consider
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extended supersymmetric models. The lightest right-handed sneutrino in the
NMSSM is an interesting candidate for dark matter. The singlet Higgs su-
perfield in the model allows right-handed sneutrinos to have electroweak scale
interactions. This means right-handed sneutrinos can be thermally produced
in the early universe, and since they have a reduced coupling to the Z boson,
they can produce the correct relic density. In contrast, left-handed sneutrinos
self-annihilate too efficiently to explain dark matter. Right-handed sneutrino
dark matter in the NMSSM has been studied in [85, 86], and neutralino dark
matter in the NMSSM in, for example, [87, 88].

For the numerical analysis, we implemented the model with LanHEP [89]
and analyzed it with micrOMEGAs [69]. The EDM constraint was checked
with a dedicated Mathematica code. To satisfy the EDM constraint, the CP-
violating Higgs vev phases are generally restricted to small values. The B-
physics constraints BR(B → Xsγ), BR(B+ → τ+ντ ), and BR(Bs → µ+µ−)
were calculated using NMSSMtools [90]. Even though the NMSSMtools model
does not feature CP violation or right-handed neutrinos, we argue that they do
not have much of an effect on the results of the calculation in the case of small
phases. Other constraints we use include the PDG limits [91] on the sparticle
masses, and the coupling strengths of the Higgs bosons to the Z bosons. We
also require that a Standard Model-like Higgs boson with a mass between 123-
128 GeV is in the spectrum. For our analysis of the effects of the CP-violating
phases, we generated two data sets: one with CP-conserving phases, and one
where the phases were randomly varied and limited to small values (modulo
π). In both sets the parameters that affect the Higgs and sneutrino spectra
as well as the interactions of the dark matter candidate were randomly varied.
The gaugino masses were kept fixed to see the effect of the bino dominance
in the neutralino LSP, and the squark mass parameters were chosen in such a
way that the squark masses were above the experimental limits.

If the CP-violating phases are small, a light Higgs boson hS appears in
the spectrum [92]. This Higgs state is singlet dominated, so it can be much
lighter than the observed Standard Model-like Higgs boson while still being
consistent with experimental constraints because of its reduced coupling to
the Z bosons. The change in the Higgs spectrum occurs discontinuously when
CP is spontaneously violated by small phases. The small phases also cause the
masses of the supersymmetric particles to change, but since this change occurs
continuously, the mass spectrum is very close to the CP-conserving spectrum.
We find that the light singlet dominated Higgs has very little effect on the B-
physics constraints because it first appears in the calculations of the branching
fractions at two-loop order. In the case of relic density, a light hS can open
new annihilation channels depending on the type and composition of the LSP
and thus increase the annihilation rate of dark matter.

The lightest neutralino can have a significant singlino admixture. The
annihilation channels unsuppressed by the singlino component into a pair of
fermions are available only if the right-handed neutrino νR is lighter than the
LSP. However, both the annihilation cross sections and mνR depend on the
λN coupling, so a small mνR can lead to a suppression of the annihilation rate
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Figure 6.7: Top: The relic density against the trilinear coupling κ for neu-
tralino LSPs. Bottom: The relic density against the singlino component of the
neutralino LSP. Points with (blue circles) and without (orange triangles) signif-
icant singlino component. Green boxes depict points from the CP-conserving
data set. The grey band indicates the current WMAP limits on the relic den-
sity. From Paper 3.
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in this channel. If hS is light, the most important annihilation channels in
reducing the relic density of a singlino-like LSP are the ones with a hShS final
state. These channels are dependent on the square of the trilinear coupling
κ. We denote the singlino component of the neutralino LSP as εχs, and in
Fig. 6.7 we show the effect of κ and εχs on the relic density. For neutralino
LSPs with a considerable singlino component (blue circles), the small values
of κ . 0.05 correspond to large relic density. This is because the neutralino
mixing is controlled by the κ parameter, and the small values of κ result in
the LSP being highly singlino dominated. The relic density increases as κ gets
smaller, since the annihilation channels into hShS become less effective. We see
the effect of the light hS on the relic density of neutralinos in the bottom plot.
A growing singlino component decreases the relic density when the light hS
final state annihilation channels are available. As a result, the relic density is
generally lower than in the CP-conserving case, which is depicted by the green
boxes, beginning from εχs & 0.001. For highly singlino dominated neutralinos,
the annihilation channels are again suppressed by small κ2.

We find that the relic density of right-handed sneutrinos in the CP-violating
case is generally lower than in the CP-conserving case. This is also a result
of the new final state hS in the annihilations. These annihilation channels are
sensitive to λN . In Fig. 6.8, we plot the relic density of neutralino and sneutrino
dark matter. In the top plot, the fixed gaugino mass parameter M1 = 300 GeV
leads to a bino-like neutralino and large relic density at mχ0

1
= M1. At lower

masses, the doublet dominated LSP is more higgsino-like, which decreases the
relic density. For the doublet dominated lightest neutralinos, the relic density
is generally smaller in the CP-violating case than in the CP-conserving case,
as previously noted. Only the singlino dominated LSPs can saturate the relic
density limits at lower masses. In the bottom plot, we see that the right-handed
sneutrino is able to produce the observed relic density, whereas the left-handed
sneutrino is a poor dark matter candidate. There are only a few points in both
of the plots where all the experimental constraints are satisfied. We find that
the electron EDM is the most restrictive constraint.

Fig. 6.9 shows the LSP mass versus the spin independent cross section for
a set of CP-violating points and the XENON100 and LUX dark matter direct
detection limits. The LUX direct detection limit is a strong constraint since
it rules out a large portion of the parameter points. Most of the right-handed
sneutrino points allowed by the direct detection limit are forbidden by the
WMAP constraint, but some viable points still remain. A large number of
neutralino LSP points are allowed by both constraints.
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Figure 6.8: The relic density against the LSP mass. Top: for neutralino LSPs
in the CP-conserving (light green triangle), CP-violating doublet dominated
(orange triangle) and CP-violating significant singlino admixture, i.e. εχs >
0.1, (yellow dot) cases. Bottom: for sneutrino LSPs in the CP-violating left-
handed (orange dot) and CP-violating right-handed (yellow triangle) case. The
CP-conserving left-handed (light green dot) set overlaps completely with the
CP-violating counterpart. In both plots all points satisfy PDG constraints
on the mass spectrum and vacuum stability, large brown triangles or circles
indicate points that pass all of the other experimental constraints we impose.
The grey band indicates the current WMAP limits on the relic density. From
Paper 3.
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Chapter 7

Conclusions

Supersymmetry is a promising theory for new physics at the TeV scale. The
main motivation for supersymmetry is that it can stabilize the electroweak scale
and therefore provide a solution to the hierarchy problem. Supersymmetric
models have also other compelling features such as gauge coupling unification,
and the fact that they can offer viable dark matter candidates if R-parity is
conserved.

Searches of supersymmetric particles at the LHC have so far come up empty.
The implication is that gluinos and first and second generation squarks are
expected to have masses above one TeV, while neutralinos, charginos, sleptons,
and third generation squarks are still allowed to be significantly lighter. A light
stop is particularly interesting when it is the next-to-lightest supersymmetric
particle in the cMSSM. In this scenario, which is explored in Paper 1, stop
coannihilations can dilute the relic density to such an extent that the lightest
neutralino can explain dark matter. The stop NLSP scenario leads to an
interesting signature consisting of large missing energy and boosted top jets
from gluino decays at the LHC, as shown in Paper 2. This allows to significantly
reduce the Standard Model background.

One of the attractive features of extended supersymmetric models with a
singlet Higgs superfield is that they can solve the µ problem. The MSSM can
also be extended further to include right-handed neutrino superfields, which
can give rise to the neutrino masses. Moreover, a right-handed sneutrino as
a thermal relic can provide the observed dark matter density. When sponta-
neous CP violation is introduced in the NMSSM with a right-handed neutrino
by small complex phases, a light singlet scalar appears in the spectrum, which
provides new annihilation channels for neutralinos and right-handed sneutri-
nos. Neutralino and sneutrino dark matter in this model is investigated in
Paper 3.

The LHC will begin its second run in 2015 with an increased collision energy.
By the end of the run, squarks and gluinos with multi-TeV masses are expected
to be within reach, so if supersymmetry has a role in TeV scale physics, the
experiments should have a good chance of finding supersymmetric particles.
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If supersymmetric particles are discovered, the measurement of their proper-
ties could illuminate deeper structures such as the pattern of supersymmetry
breaking and the origin of the suppression of flavor changing and CP-violating
effects, and thus reveal aspects of more fundamental physics at energy scales
far beyond what can be directly probed.
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