
 

 

 

 

Division of Pharmaceutical Chemistry and Technology 

Faculty of Pharmacy 

University of Helsinki 

Finland 

 

 

 

Effect of Surface Chemistry on the Immune Responses 

and Cellular Interactions of Porous Silicon 

Nanoparticles  

by 

 

 

Mohammad-Ali Shahbazi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACADEMIC DISSERTATION 

 

To be presented, with the permission of the Faculty of Pharmacy of the University of Helsinki, 

for public examination in Lecture Hall 2 at B-building (Latokartanonkaari 7, Helsinki),  

on February 13
th

 2015, at 12:00 noon. 

 

Helsinki 2015

 



 

 

 

 

Supervisors Docent Dr. Hélder A. Santos 

Division of Pharmaceutical Chemistry and Technology 

Faculty of Pharmacy 

University of Helsinki 

Finland 

 

Professor and Dean Dr. Jouni Hirvonen 

Division of Pharmaceutical Chemistry and Technology 

Faculty of Pharmacy 

University of Helsinki 

Finland 

 

 

Reviewers Docent Dr. Jessica Rosenholm 

Laboratory for Physical Chemistry 

Åbo Akademi University 

Finland 

 

Professor Dr. Ennio Tasciotti 

Department of Nanomedicine  

Houston Methodist Research Institute 

USA 

 

 

Opponent Professor Dr. Ijeoma Uchegbu 

University College of London 

School of Pharmacy 

UK 

 

 

 

 

 

 

 

 

© Mohammad-Ali Shahbazi 2015 

ISBN 978-951-51-0555-4 (Paperback) 

ISBN 978-951-51-0556-1 (PDF) 

ISSN 

 

Helsinki University Printing House 

Helsinki 2015



 

 

 

i 

Abstract 

Porous silicon nanoparticles (PSi NPs) have recently drawn increasing interest for 

therapeutic applications due to their easily modifiable surface, large pore volumes, high 

surface area, nontoxic nature, and high biocompatibility. Nevertheless, there is no 

comprehensive understanding about the role of the surface chemistry of these NPs on the 

biological interactions and the therapeutic effect of the PSi-based nanosystems. Therefore, 

extensive attempts are still needed for the development of optimal PSi-based therapeutics. 

The first step for evaluating the biological activity of the NPs was to investigate the 

potential toxic effects. Accordingly, the immunotoxicity and hemocompatibility of the PSi 

NPs with different surface chemistries were assessed at different concentrations on the 

immune cells and red blood cells, since these are the first biological cells in contact with 

the NPs after intravenous injection. PSi NPs with positively charged amine functional 

groups showed higher toxicity compared to negatively charged particles. The toxicity of 

the negatively charged particles was also highly dependent on the hydrophobic nature of 

the NPs. Moreover, RBC hemolysis and imaging assay revealed a significant correlation 

between the PSi NP surface chemistry and hemotoxicity. 

To further understand the impact of the surface chemistry on the immunological 

effects of the PSi NPs, the immunostimulatory responses induced by a non-toxic 

concentration of the PSi NPs were evaluated by measuring the maturation of dendritic 

cells, T cell proliferation and cytokine secretion. Overall, the results suggested that all the 

PSi NPs containing higher amounts of nitrogen or oxygen on the outermost surface layer 

have lower immunostimulatory effects than the PSi NPs with higher amounts of C‒H 

structures on the NPs’ surface. 

Combination cancer therapy by the PSi NPs was then studied by evaluating the 

synergistic therapeutic effects of the nanosystems. Sorafenib-loaded PSi NPs were 

biofunctionalized with anti-CD326 monoclonal antibody on their surface. The targeted PSi 

NPs showed a sustained drug release and increased interactions with the breast cancer cells 

expressing the CD326 antigen on their surface. These NPs also showed higher 

antiproliferation effect on the CD326 positive cancer cells compared to the pure drug and 

sorafenib-loaded PSi NPs, suggesting CD326 as an appropriate receptor for the antibody-

mediated drug delivery. In addition, anti-CD326 antibody acted as an immunotherapeutic 

agent by inducing antibody-dependent cellular cytotoxicity and enhancing the interactions 

of immune cells with cancer cells for the subsequent phagocytosis and cytokine secretion. 

Next, the development of a stable PSi NP with low toxicity, high cellular 

internalization, efficient endosomal escape, and optimal drug release profile was tested by 

using a layer-by-layer method to covalently conjugate polyethyleneimine and poly(methyl 

vinyl ether-co-maleic acid) copolymers on the surface of the PSi NPs, forming a 

zwitterionic nanocomposite. The surface smoothness and hydrophilicity of the polymer 

functionalized NPs improved considerably the colloidal and plasma stability of the NPs. 

Moreover, the double layer conjugation sustained the drug release from the PSi NPs and 

improved the cytotoxicity profile of the drug-loaded PSi NPs. 
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In conclusion, this work showed that the surface modification of the PSi NPs with 

different chemical groups, antibodies and polymers can affect the toxicological profiles, 

the cellular interactions and the therapeutic effects of the NPs by modifying the charge, 

stability, hydrophilicity, the drug release kinetics and targeting properties of the PSi NPs. 
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1 Introduction 

It is currently approved that owing to the differences in the surface properties and superior 

surface-to-volume ratio, nanosized particles are chemically more reactive than the 

corresponding bulk materials, leading to changes in many of their biological effects such 

as toxicity and cellular interactions. That is the main reason for the high interest in 

studying the toxicity and biological interactions of the nanoparticles (NPs), along with the 

growing utilization potential of the nanoparticulate systems for medical applications [1-3]. 

These toxicological and biological studies clarify the impact of the NPs at cellular level, 

and also increase the knowledge regarding the cellular interactions of the NPs and their 

effects on the proper function of main organs in the body. Moreover, they can provide 

additional knowledge on the right route of administration to be used, the dose to be 

administered, the clearance rate of the NPs and also aid to predict the possible therapeutic 

potency of the developed nanosystems. 

Although there is currently abundant understanding regarding the biological effects of 

different NPs, little is still known about the biological, toxicological and immunological 

effects of porous silicon (PSi) NPs, nanostructured materials with remarkable advantages, 

including high surface area and stability, tunable pore size, modifiable shape and size, 

effective protection of the therapeutic cargos from undesirable degradation, facile surface 

functionalization, biodegradability and biocompatibility [4]. Since the change in the 

surface chemistry of the PSi NPs can render new properties to these NPs by affecting on 

their hydrophilicity, charge and aggregation profile [5], there is a high probability to 

observe different biological responses, cellular interactions and toxicity for the PSi NPs 

with various surface functional groups. For example, it is not still well understood whether 

the toxicity of the PSi NPs with different surface chemistries is originated from: (1) hole 

formation or instability of ion transport in the cell membranes, (2) direct effect on the 

mitochondria and ATP depletion, (3) induction of reactive oxygen species (ROS) and/or 

reactive nitric oxide species (RNOS) production, (4) induction of pro-inflammatory 

biomolecules release, (5) direct DNA damage, or (6) a combination of all the 

abovementioned mechanisms. 

In addition to possible changes in the toxicological profile of the NPs with different 

surface chemistries, some studies have shown the impact of the physicochemical 

properties of the NPs on their applications for immunostimulatory purposes [6, 7]. A wide 

variety of studies have already reported safe and effective immunotherapeutic nanocarriers 

[8-11] that are able to activate immune responses via inducing the maturation of antigen 

presenting cells (APCs; e.g., dendritic cells, DCs), and then, stimulating T cells to 

stimulate subsequent immunoactivatory responses [12]. To stimulate resting T cells, two 

activation signals are necessary to be provided by the APCs. The first signal is provided 

through the presentation of antigens to the T cell receptors (TCRs) via a major 

histocompatibility complex (MHC)-II molecules on the surface of DCs (antigen-specific). 

The second one is a co-stimulatory signal provided through the binding of the cognate 

ligands (CD80/CD86) of DCs to CD28 receptors on the surface of T cells [13]. In many 

immunotherapeutic studies, the main reason for low immunostimulatory response is the 

lack of the second signal (CD80/CD86) and the low activity of T cells despite the 
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recognition of antigens by DCs [14]. To overcome this shortcoming, nano-based 

immunoadjuvants with the intrinsic ability of co-stimulatory ligand activation are 

proposed for the delivery of antigens or other immunostimulating molecules, or even 

inducing nonspecific immunotherapy without targeting a certain cell or antigen [12]. 

Several factors, such as size, concentration, charge, and hydrophobicity, have been shown 

to have a strong effect on the immunological responses of different NPs [7, 8, 15]. 

However, there is still lack of knowledge about the physicochemical factors affecting the 

immune responses of the PSi NPs, making it crucial to explore the immunological 

responses of these NPs. 

In addition to the impact of the surface functional groups on the toxicity and 

immunological responses, the NP’s surface modification with biomolecules can render 

new benefits, such as targeting, immunostimulation or dual therapy to the NPs for the 

treatment of deadly diseases like cancer. For example, combination therapy by an 

anticancer drug together with biological molecules, such as monoclonal antibodies (Ab), is 

a promising revolutionary approach for the suppression of tumor growth [16]. To date, 

many different types of targeting ligands including carbohydrates, Abs, peptides, and small 

organic molecules have been successfully conjugated to various forms of nanocarriers 

[17]. Nonetheless, the surface modification with Abs has been studied most extensively 

because of their ability to render targeting properties to the NPs, to enhance the cellular 

uptake [18], to improve the site specific drug release and to activate several 

immunological pathways, such as antibody-dependent cell-mediated cytotoxicity (ADCC) 

and complement dependent cytotoxicity (CDC), leading to synergistically increased 

anticancer effects [19]. However, there are some major challenges concerning the ability to 

conjugate targeting moieties to the NPs with high efficiency, low complexity and avoiding 

alterations in their biological activity. In recent years, non-covalent techniques, such as 

adsorption by electrostatic and hydrophobic interactions [20] or strong biotin-avidin 

binding [21], have been mostly reported. Although the adsorption is a very straightforward 

and innocuous process owing to the absence of toxic reagents, the ligand is prone to suffer 

from competitive displacement by endogenic proteins in the bloodstream [22]. Also, there 

is a major concern regarding the clinical use of biotin-avidin complexes due to the 

probable immunogenicity [23]. Accordingly, applying efficient covalent attachment 

techniques remains crucial in the production of stable and efficient biomolecule 

conjugated NPs.  

Besides the surface modification with biomolecules to increase the cellular interactions 

of NPs and enhance the therapeutic effect, polymer surface functionalization has also 

attracted a lot of interest for therapeutic applications by adjusting the colloidal and plasma 

stability, cellular interactions and drug release profiles of the NPs. In addition, polymers 

used on the surface of the NPs can increase the bloodstream circulation time, improve the 

NPs’ stability, enhance endosomal escape, and reduce the toxicity of the NPs [24, 25]. 

Since the PSi NPs still suffer from poor cellular interactions and high localization of the 

internalized NPs in the lysosomal compartments [26], surface polymeric functionalization 

can be an efficient strategy for increasing their uptake into the cells and localization within 

the cytoplasm with the aim to improve the potential use of these NPs for drug delivery. 
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This dissertation focuses on understanding the impact of the surface modification of PSi 

NPs and its effects at the cellular level on the toxicity and immune responses. In addition, 

this work demonstrates how the surface functionalization of the PSi NPs with 

biomolecules and polymers can affect the physicochemical properties of these NPs and 

render them new properties for specific applications, like targeting and cancer therapy. 
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2 Review of the literature 

2.1 Immunotherapy and immunotherapeutic approaches 

Immunotherapy is a therapeutic method that uses the body’s own defence mechanisms to 

fight against the physiological abnormalities by reinforcing or suppressing the immune 

system. Nowadays, this method has attracted a lot of attention for the treatment of various 

diseases [13, 27], for example, by applying different synthetic or natural immunogenic 

materials. 

The three most popular strategies for the therapeutic immunostimulation include 

application of immunoadjuvant materials for non-specific immunoactivation, application 

of monoclonal antibodies, and vaccination [28-31]. Non-specific immunotherapies can be 

given as a single therapy or at the same time with another treatment, such as chemo- or 

radiation therapy in the case of cancer treatment. Interferons and interleukins (ILs) are the 

most common non-specific immunotherapies capable of activating different 

immunological pathways [32]. Monoclonal antibodies (Ab) are another type of compounds 

used in immunotherapy, produced in the body upon detecting antigens (e.g., viruses, 

bacteria, fungi and parasites) by the immune system [33]. Therapeutic Ab can act through 

a number of mechanisms, such as ADCC effect, blocking the function of the targeted 

molecules, inducing apoptosis in the cells expressing target antigen, and increasing the 

phagocytosis of the target cells by macrophages or by modulating the signalling pathways 

of the target cells [29, 30, 33]. In addition to immunotherapy, monoclonal Ab can be also 

applied for targeted treatment and diagnosis [34, 35]. For example, radioactive molecules 

can be directly conjugated to the monoclonal Ab and deliver low doses of radiation 

specifically to the cancer tissue while leaving the healthy cells unharmed. Ibritumomab 

tiuxetan (Zevalin) and tositumomab (Bexxar) are the main examples of targeted radio-

immunotherapeutic formulations [36] (Figure 1A). Moreover, cancer chemotherapeutic 

molecules can be attached to the monoclonal Ab and specifically kill cancer cells without 

damaging the healthy cells. Brentuximab vedotin (Figure 1B) is one example of such a 

system applied for the treatment of Hodgkin’s and non-Hodgkin’s lymphoma [37]. 

 

 

Figure 1   Antibody mediated radiotherapy (A) and chemotherapy (B) of cancer tissue. 
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Vaccination is another approach to help the body in fighting against diseases [31]. 

Vaccines contain an agent that resembles a disease-causing microorganism and are able to 

improve the immunity against a particular disease. While traditional vaccines are often 

made from dead or weakened forms of the microbe or their toxins, nowadays the 

investigation is more focused on the development of new vaccines made from surface 

proteins and DNA of the immunogenic microorganisms or cells. The immune system can 

recognize the immunogenic molecule, keep a record of it, and more easily recognize and 

destroy any of the microorganisms containing the immunogenic molecule if the body 

encounters with it later on [38].  

In all the abovementioned immunotherapeutic strategies, cytokines, dendritic cells 

(DCs), T cells and B cells play a pivotal role for inducing proper immune responses, 

therefore it is very important to understand the function of all these immunomediators in 

immunotherapy, as it will be discussed below. 

2.1.1 Role of the cytokines in immunoactivation 

Cytokines are a category of small proteins that act as mediators to regulate the homeostasis 

of the immune system and also allow the immune cells to communicate with each other in 

order to generate a response against a target antigen [39, 40]. Although the communication 

of the immune system usually occurs via direct interactions between the immune cells, 

cytokine secretion causes the rapid propagation of immuno–cellular interactions in an 

efficient and multifaceted manner. Accordingly, over the last few decades, the growing 

interest in exploiting the immune system to fight against various diseases has been 

accompanied by the increased efforts for using the vast signalling networks of cytokines to 

improve the therapeutic immune responses [41, 42]. For example, numerous studies have 

already shown the ability of cytokines to directly stimulate the immune effector cells at the 

tumor tissue and to enhance the recognition of tumor cells by cytotoxic effector cells [39]. 

In recent years, a number of cytokines, such as IL-12, IL-15, IL-7, IL-18, IL-21, and 

granulocyte-macrophage colony-stimulating factor (GM-CSF), have entered clinical trials 

for the cancer treatment [39, 43]. In addition, some cytokines, such as IL-2 and interferon 

(IFN)-α have achieved FDA approvals for the treatment of metastatic melanoma and stage 

III melanoma, respectively [39]. Moreover, ongoing pre-clinical studies have shown 

promoted anti-tumor immunity through the neutralization of immuno-suppressive 

cytokines, such as IL-10 and TGF-β [44, 45]. Despite all the abovementioned findings 

regarding the role of various cytokines in the immunotherapeutic applications, the 

extensive pleiotropism (the ability of cytokines to act on different types of immune cells to 

mediate diverse or opposing effects), redundancy of cytokine signalling, the dual immuno- 

activation and suppression function of some cytokines, and the effect of cytokines on each 

other are still big challenges towards the development of proper cytokine based 

formulations for therapeutic applications. For example, one of the primary limitations for 

IL-2 mediated therapy is the dual potent function of IL-2 on the activation of the T effector 

cells and the T regulatory compartments [46-49]. Therefore, it is of paramount importance 

to understand the mechanistic effect of various cytokines for the development of cytokine 
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based non-specific immunotherapeutic formulations. Table 1 presents the general 

properties of some of the most important cytokines. 

 

Table 1. General properties of cytokines [39-42, 50, 51]. 

 

Cytokine Primary Cell Source Target Cells Biological Function 

IL-1 

Macrophages
1
 

B cells 

Monocytes
2
 

DCs 

T cells 

B cells 

NK cells 

Co-stimulation 

Cell activation 

Inflammation 

Maturation 

Proliferation 

IL-2 

T cells 

Natural killer (NK) 

cells
3
 

T cells 

NK cells 

B cells 

Monocytes 

Cell growth/activation 

differentiation of T cell 

response 

IL-4 
T cells 

Macrophages 

T cells 

B cells 

Th2 differentiation 

Cell growth/activation 

IgE isotype switching 

IL-6 

Macrophages 

T cells 

B cells 

T cells 

B cells 

Co-stimulation 

Cell growth/ activation 

Acute phase reactant 

Antibody secretion 

IL-10 

Monocytes 

Th2 cells 

Macrophages 

Macrophages 

T cells 

B cells 

Inhibits antigen 

presenting cells 

Inhibits cytokine 

production 

IL-12 

DCs 

B cells 

T cells 

Macrophages 

T cells 

NK cells 
Th1 differentiation 

1
Macrophages are responsible for the phagocytosis of microbes, foreign substances, cellular debris, and 

cancer cells. 
2
Monocytes are responsible for replenishing resident macrophages under normal states and 

quick moving to the sites of infections to proliferate and differentiate into DCs and macrophages. 
3
NK cells 

are effector lymphocytes that control different types of microbial infections and tumors by limiting their 

spread and subsequent tissue damage. NK cells contain special proteins such as perforin and proteases 

known as granzymes in their cytoplasm. Perforin releases in the close vicinity to a cell slated for killing and 

cause pore formation in the cell membranes, allowing the granzymes to enter inside the cells and induce 

apoptosis. 

 

http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/B_cell
http://en.wikipedia.org/wiki/Monocytes
http://en.wikipedia.org/wiki/Dendritic_cell
http://en.wikipedia.org/wiki/B_cell
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Th2_cell
http://en.wikipedia.org/wiki/B_cell
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Monocyte
http://en.wikipedia.org/wiki/Th2_cell
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Dendritic_cell
http://en.wikipedia.org/wiki/B_cell
http://en.wikipedia.org/wiki/T_cell
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Phagocytosis
http://en.wikipedia.org/wiki/Microbes
http://en.wikipedia.org/wiki/Macrophage
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2.1.2 Role of the DCs in immunoactivation 

DCs are the antigen-presenting cells of the immune system, residing in the peripheral 

tissues and acting as the sentinels of the body through patrolling in search of antigens. 

Before exposure to an antigen, they are in an immature state, characterized by a low 

surface expression of co-stimulatory molecules and major histocompatibility complex 

(MHC) class I and II molecules [52] (Figure 2). The immature DCs can recognize and 

uptake both exogenous and endogenous antigens. While the exogenous antigenic peptides 

can be processed and presented in the form of MHC class II complexes on the surface of 

DCs, endogenous antigens can cleave into peptides by proteosomes and be presented via 

the MHC class I. 

 

 

Figure 2   The induction of immunostimulation via antigen presenting capability of the DCs. 

Antigens are taken-up by immature DCs in the peripheral tissues. During DC maturation, they 

migrate to draining lymph nodes to present the antigen in combination with a co-stimulatory 

signal to the T cells and activate them. Finally, the activated antigen-specific T cells differentiate, 

proliferate, and migrate out of the lymphoid organ to destroy the antigenic cells. 

For DC-based cancer immunotherapy, the DCs should be able to recognize tumor 

antigens, and then undergo a maturation process [52], which is a cascade of biological 

pathways to potentiate the DCs for antigen presentation and initiation of further 

immunological responses. During maturation, DCs migrate to the lymphoid organs and up-

regulated co-stimulatory molecules (e.g., CD80, CD83 CD86, and CD40) on their surface 

in the lymph node. Then, the DCs interact with T cells to activate them for further 

stimulation of the immune system (Figure 2). Generally, two signals are essential for T 

cell activation: (1) the interaction of the MHC–antigen complex with the TCR, and (2) the 

interaction of the activated co-stimulatory signals on the surface of DCs with the CD28 

receptors of the T cells. Next, depending on the type of T cell interacted with the DCs, 

different immune response mechanisms can be activated. For example, the activation of 

CD8
+
 T cells results in the production of cytotoxic T lymphocytes (CTL), while CD4

+
 T 
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cells differentiate into Th1 or Th2 cells depending on the environmental factors that skew 

the cellular differentiation [53]. Finally, the activated T cells circulate through the body 

and destroy the antigen expressing cells through different pathways as shown in the Figure 

2. 

Several studies have shown the importance of DC maturation for the induction of 

immunological responses against cancer cells [52, 54-57]. It has been suggested that the 

superiority of mature DCs in inducing the T cell activation is not only correlated to the 

high expression of co-stimulatory molecules and MHC subclasses, but also owing to the 

higher migratory capacity of the cells to draining lymph nodes compared to the immature 

DCs [58], because most of the DCs interact with the T cells in the peripheral lymphoid 

organs. It has also been recently shown that intradermal injection of immunostimulative 

molecules leads to a higher DC migration into the draining lymph nodes and subsequent T 

cell activation [52]. 

2.1.3 Role of the T cells in immunoactivation 

T cells move through all tissues, scanning for MHC–antigen complexes that, as mentioned 

above, specifically activate their TCRs and lead to the proliferation and differentiation of 

T cells. Currently, one of the greatest challenges in the field of immunotherapy is the 

identification of appropriate antigens, particularly in diseases like cancer, because there are 

self-antigens shared by tumour cells and normal tissues [59]. 

Both activated CD4
+
 and CD8

+
 T cells have separately demonstrated therapeutic 

immunostimulatory effects for different diseases, particularly in cancer; however, their 

combination works much better, as the CD4
+
 T cells are the most important producers of 

cytokines, which provide help for the proper function of CD8
+
 T cells [60]. Nevertheless, 

one of these two pathways, CD4
+
 and CD8

+
 T cells, is activated more than the other in 

different diseases. For example, since the antigens of cancer cells are mostly presented by 

the MHC I subclass, the roles of CD8
+ 

T cells and CTLs in anti-tumour immunity are often 

investigated in much greater detail than the CD4
+
 T cells [61]. However, the available 

MHC II positive APCs can increase the production of cytokines, such as interferon 

gamma, which has an inhibitory effect on tumour vasculature and also promotes the proper 

functionality of CTLs [62] to directly attack and kill cancer cells via apoptosis inductions. 

The main mechanism through which the CTLs induce cell apoptosis is by the calcium-

dependent release of lytic granules upon recognition of antigen on the surfaces of target 

cells [63]. These granules are kind of lysosomes with two distinct classes of cytotoxic 

effector protein, namely perforin and granzyme. Although these proteins are stored in an 

active form in the lytic granules, they do not act before being released from the CTLs. 

Upon perforin is released, it polymerizes to form transmembrane pores in target cell 

membranes, allowing granzymes to move into the target cells and act as digestive enzymes 

to increase the cytotoxicity induction in the target cells. Hence, both perforin and 

granzymes are required for effective cell killing [64, 65]. Finally, the phagocytic cells 

ingest dead cells by recognizing the change in their phosphatidylserine, which is normally 

located only in the inner leaflet of the cell membrane [66]. The mechanism through which 

CTLs destroy target cells is shown in Figure 3. 
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Figure 3   Programmed apoptosis induction process by CTLs. To kill target cells, CTLs should 

recognize peptideMHC complexes on a target cell. CTLs can recycle to kill multiple targets. In 

the first step (A), CTL binds to healthy target cells with a normal nucleus. Then, the release of 

cytotoxic proteins sheds the membrane vesicles and induces DNA fragmentation (B); however, the 

integrity of the cell membrane is still retained. Then, CTL moves to another healthy cell to induce 

the same mechanism (C). In the last stage (D), the nucleus is destroyed and the cell loses most of 

its membrane and cytoplasm through the shedding of vesicles. 

2.1.4 Role of the B cells and antibodies in immunoactivation 

B cells are a type of lymphocytes with the principal functions of producing Abs against 

antigens, performing the role of antigen-presenting, and developing into memory B cells 

after activation by antigen interaction [67, 68]. Although human body makes millions of 

different types of B cells each day, they do not produce Ab until they become activated 

[69, 70]. The B cells possess B cell receptors (BCRs) on their surface that can bind to their 

cognate antigens, and then differentiate into plasma B cells and/or memory B cells upon 

receiving the second signal from the interaction with T helper cells. While plasma B cells 

are able to produce and secrete large amounts of Ab against target cells, memory B cells 

form activated B cells that are specific to the antigen encountered during the primary 

immune response. These cells remain in the body for a long time and can quickly respond 

by Ab secretion following the second exposure to the same antigen [71-73]. 

Abs are immunoglobulins produced to specifically react with the antigens that have 

provoked their production. Abs possess two distinct functional sections, including the 

fragment of antigen binding (Fab) and the constant fragment (Fc). Although Abs have 

been widely used over the last few years for cancer therapy, it is not completely clear how 

the cancer specific Abs work [74, 75]. One of the main proposed mechanisms of a 

monoclonal Ab is the disruption of signalling pathways involved in the maintenance of the 

cancer cells. Other tumor-specific immune responses, such as ADCC and CDC, also play 

an important role in the Ab-based immunity [74-79]. In ADCC, an effector immune cell 

(e.g., natural killer cells, macrophages, neutrophils, and eosinophils) actively lyses the 

target cells, whose membrane-surface antigens are bound by specific antibodies, via the 

release of cytokines such as IFN and cytotoxic granules containing perforin and 

granzymes, inducing apoptosis and cell death [80-82]. In CDC, the C1q binds the Ab and 
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triggers the formation of the membrane attack complex (MAC) at the surface of the target 

cell, which induces the death at the target cells [83, 84]. Figure 4 shows the schematic 

illustration of the abovementioned mechanisms. 

 

 

Figure 4   Antitumor mechanisms mediated by Ab. ADCC (A), CDC (B), and phagocytosis (C) all 

lead to tumor cell death. Adopted from ref. [19]. 

2.2 Nanotechnology and immunotherapy 

The main shortcomings of current immunostimulatory materials are related to the lack of 

DC targeting and short time of immunostimulation, as the concentration of the 

immunogenic molecules decreases in the body over a short period of time. Current 

immunoactivating molecules mainly elicit Immunoglobulin G (IgG) isotype Ab and suffer 

from inducing the secretion of a wide range of Ab isotypes [10]. Therefore, 

immunotherapeutic protections induced by the available immunostimulative biomolecules 

are not long-lasting, and thus, new strategies are required to more efficiently activate the 

immune system against different diseases.  

In general, the ideal properties of a good immunotherapeutic formulation include the 

capability of eliciting the desired immune responses after a single dose, absence of a 

booster dose, high safety, simple and affordable preparation process, easy administration 

and scaling-up process, no premature drug release, and high physicochemical stability of 

the immunogenic agents and excipients throughout the process, storage and administration 

[12]. To combine all these properties in one formulation, NPs have been suggested as 

versatile systems capable of improving the biological effects of the immunostimulatory 

molecules via different mechanisms. The immunostimulative biomolecules can be either 

encapsulated within or conjugated on the surface of the NPs [31, 85]. The former method 

can maximize the exposure time of immunostimulative compounds to the immune system 

by sustaining the release of the encapsulated molecules. However, it causes lower extent of 

immunity compared to the NPs that have immunostimulative molecules adsorbed on their 

surface with the aim to induce rapid and short immune responses. 
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Below, the adjuvanticity of the NPs as well as the current progresses in the 

development of nanovaccines, particularly those with high potential to be used in the 

clinic, are addressed and discussed. 

2.2.1 Adjuvant effect of the NPs on DCs 

Adjuvants are immunogenic compounds with the ability to accelerate and extend the 

response of immunostimulative biomolecules. Currently, alum salts are the most widely 

used immune adjuvants [86], owing to their potential in triggering the so-called 

“inflammasome” mechanism in the cells that leads to the release of danger signals and 

subsequent secretion of proinflammatory biomolecules, resulting in the activation of the 

immune system [87]. Despite the popularity of immunogenic alum salts over the last few 

decades, they suffer from major limitations, such as adverse local reactions, degradation 

during freeze-drying, lack of inducing cellular immune responses, and necessity of multi-

dosing to reach long lasting protection [86]. These limitations have encouraged scientists 

to work on the development of new vaccine delivery systems with the potential of 

attenuating the restrictions of current immunoadjuvants and vaccines.  

Although a wide variety of adjuvants have been recently developed, only few of them 

are used for therapeutic purposes in humans, because of their high toxicity, low stability 

and severe side effects [88]. Hence, the scientific community is trying to replace these 

adjuvants with the new generation of nanomaterials that are able to show intrinsic 

immuno-adjuvanticity and also to act as carriers for the delivery of stabilized vaccine 

antigens and immunotherapeutic biomolecules [89]. This strategy provides an opportunity 

for simultaneous humoral and cell-mediated immunity induction, which can lead to 

improved therapeutic effects [90, 91]. NPs may also assist the interaction of the delivered 

antigens with APCs, enhancing the antigen-based immune responses [89, 92]. Moreover, 

co-encapsulation of anticancer drug molecules or imaging agents with immunostimulative 

biomolecules can be obtained for multifunctional purposes. Accordingly, nanovaccines 

have recently attracted a lot of interest owing to their unique properties to overcome the 

limitations of immuno-therapeutics, including inherent instability of biomacromolecules, 

low interaction with APCs, and lack of cross-presentation to T lymphocytes [89, 92]. 

The impact of NPs on the maturation of DCs is usually examined by studying the 

expression of co-stimulatory molecules and MHC classes I and II bioreceptor molecules, 

the production of cytokines, and the downstream signalling pathways [13]. For example, 

the effects of poly(lactic-co-glycolic acid) (PLGA) NPs on the maturation of DCs were 

examined in mice spleen [93] and showed a dose-dependent expression of co-stimulatory 

molecules such as CD80, CD86, CD40, and MHC class I, enhancement of the 

inflammatory cytokines and chemokines, such as tumor necrosis factor-α (TNF- α) and 

interleukin-6 (IL-6), as well as increase in the activity of mitogen-activated protein kinase 

and nuclear factor–κB (NF-κB) signalling pathways. The activation of DCs with 

ovalbumin loaded mannosylated dendrimers also showed a distinct increase in CD40, 

CD80, and CD86 expression [94].  
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2.2.2 DC targeting using NPs 

NPs are more favourable than microparticles for DC targeting because of the inverse 

relationship between the efficiency of uptake by DCs and the particle size [92]. In 

addition, positively charged NPs are more desirable as they can highly interact with the 

cells via binding to the negatively charged surface of the cells [95, 96]. After the 

internalization of NPs into the DCs, loaded immunostimulants can be released in 

endosomes, degrade, and eventually bind to the MHC II molecules on the surface of the 

DCs to present the antigenic molecules to the CD4
+
 T cells [97]. If the NPs escape from 

the endosome and release their immunostimulative antigens in the cytoplasm, antigens 

degrade to small peptides by the proteosomes, and finally, form a complex with the MHC I 

in order to be recognized by the CD8
+
 T cells [97, 98]. 

Targeting of DCs can be achieved via passive and active processes. The efficiency of 

the nanovaccines to passively target DCs is strongly dependent on the surface charge, size, 

hydrophilicity, hydrophobicity, and the interactions with the plasma proteins and cell-

surface receptors [99]. It has been shown that NPs with a size higher than 500 nm are 

taken-up less efficiently by the DCs [100], and mainly ingested by macrophages [86, 101]. 

In addition, a pre-clinical study performed in mice suggested that the NP size of 40–50 nm 

was optimal for nanovaccines [8]; however, NPs up to 300 nm have already shown potent 

induction of the CD4
+
 and CD8

+ 
T cell responses [8, 102-105]. Positively charged particles 

are taken-up more efficiently in vitro by the DCs than those with a negative or neutral 

charge [100]. However, some in vivo studies have revealed no significant difference in the 

immunostimulatory effect between the positively and negatively charged particles, 

indicating the dependency of the surface charge effect on the model system used [106]. 

Some studies have also demonstrated that particles with positive surface charge can 

immobilize the nanovaccines in negatively charged components presented in the 

extracellular matrix of the cells through electrostatic interactions [107], and inhibit the 

immunostimulative responses owing to the reduced tissue penetration. Hydrophobicity has 

also been reported as one of the key factors affecting the opsonisation of NPs [108] and 

also DC activation [109]. 

Since the DCs express many cell surface receptors, such as CD11c [110], mannose 

[111, 112], DEC-205 [110], DC-SIGN [113, 114], Langerin [115], clec9A [116], and 

DCIR2 [117], actively targeted cellular endocytosis of the NPs can be also facilitated via 

surface modification of the NPs with ligands that target these receptors on the surface of 

the DCs [118]. It has already been demonstrated that the conjugation of such targeting 

moieties on the surface of NPs enhances their uptake by the DCs and increase DC 

maturation as evidenced by the enhanced secretion of cytokine and up-regulation of CD83 

and CD86 surface maturation markers [119]. For efficient active DC targeting, nonspecific 

interaction by other plasma constituents and other cells in the bloodstream can be reduced 

by introducing a hydrophilic biomaterial consisting of poly(ethyleneglycol) (PEG) onto 

the surface of the particles [108]. The type of the target receptor can have a substantial 

effect on the immunological response of nano-immunotherapeutics. A study by Dudziak 

and coworkers demonstrated that targeting antigens to DEC-205 results mainly in cross-

presentation of antigen to the CD8 T cells, whereas antigens targeted to DCIR2 are 

preferentially presented via MHC class II molecules to the CD4 T cells [117]. This 
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difference is explained by the fact that these CLRs are expressed on distinct DC subsets 

that differ in their functional properties and antigen processing capacity. 

2.2.3 Immunotherapeutic nanovehicles 

Immunotherapy with nanomaterials is a relatively new interdisciplinary field holding great 

promise by combining materials science, chemistry and immunology. It is currently known 

that immunostimulatory products with large hydrophobic structures are more 

immunostimulative than hydrophilic compounds; therefore, it is proposed that microbially 

derived adjuvants can be replaced with hydrophobic nanomaterials. These nanosystems 

can also simultaneously serve as delivery vehicles for the immunostimulative molecules 

[120], with the aim to facilitate single-dose vaccination and eliminate the need for booster 

shots through sustaining the release of immunotherapeutic payload and potentiating its 

effect via the intrinsic adjuvanticity of the particles. In addition, most of the NPs applied in 

immunotherapy possess high safety, and the time and rate of degradation for antigen 

release is controllable [121]. Owing to these benefits, it can be possible to avoid the need 

for surgical removal of cancer tissues and circumvent the disadvantages of conventional 

anticancer formulations by combining chemo- and immuno-therapy approaches using such 

nanostructures. 

One of the common methods for nano-immunotherapy is antigen encapsulation inside 

nanostructures, offering distinct advantages to the therapy, such as reduced dose of 

antigen, efficient uptake and processing by APCs, as well as increased stability during 

storage [122, 123]. Although the entrapment of immunogenic biomolecules within the 

particles is offered as the best possible protective strategy, the main drawback of this 

method is the unavailability of the loaded antigens upon administration because of the 

slow drug release profile [124]. In addition, the loaded bio-immunogenics can physically 

or chemically degrade during the loading process [125]. Accordingly, the absorption or 

conjugation of antigen on the surface of the polymers has been suggested; however, this 

method also suffers from low stability and rapid degradation [9, 126]. 

One of the benefits of nanovaccines is that the morphology, size distribution, 

entrapment efficiency, release kinetics and other physicochemical properties that affect the 

obtained immune responses can be controllable, leading to the successful development of 

promising vaccines [127]. In addition, the systemic severe side effects of high dose 

administration of the immunostimulants, such as toll-like receptor ligands [128], can be 

minimized using NPs. NPs can also reduce the needed dose and limit the non-specific 

immune responses [129]. Nevertheless, several hurdles, such as reproducibility, stability 

during production, and method for non-thermal sterilization, are needed to be taken into 

account [130, 131]. For example, the reproducibility of the formulation can be affected by 

the variation in the size of the NPs that in turn can modify the immunogenic property of 

the final product [8]. 

Polysaccharides [132], poly(lactic acid) [133], polyanhydrides [134], PLGA [135] and 

polyphosphazene [136], are among the most widely studied nanomaterials prepared for 

immunostimulative purposes. Different techniques have been employed to prepare nano-

immunotherapeutics using the abovementioned polymers, including spray drying, 
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emulsification/solvent evaporation, and coacervation [9, 12]. All of these methods can 

produce polymeric NPs with a large surface area that improve the interaction between 

immune cells and immunostimulative payload [99], leading to the enhanced uptake of 

antigens by DCs and improved immune responses [137].  

The main reason for the great interest in immunostimulatory potential of the above-

mentioned NPs is the superior biocompatibility, versatile chemistry, high protection of the 

loaded biomolecules, high loading efficiency, efficient endocytosis and high presentation 

of the immunogenic molecules [132-136, 138]. For example, some of these nanocarriers 

have shown endosomal escape properties, potentiating the proteosome-dependent 

processing of the immunogenic payload and cross-presentation through MHC class I [137, 

139]. Another benefit of these NPs is the ability to control the release pattern of the loaded 

immunostimulative compound and to act as an adjuvant and increase the therapeutic effect 

of the formulation [11, 12, 140]. For example, Gómez et al. [141] have demonstrated the 

ability of poly(methyl vinyl ether-alt-maleic anhydrate) (PMVE-MAh) nanocarriers for 

vaccination using OVA as a model antigen. The results showed higher humoral immunity 

(IgG titers) in response to the OVA-loaded NPs compared to the alum, showing the 

potential of PMVE-MAh for antigen delivery and improving immune responses. In 

addition, N-trimethyl chitosan has been proposed as a proper nano-immunoadjuvant for 

the delivery of influenza subunit antigen [142]. All these examples show high potential of 

NPs to act synergistically for improving the immunostimulative effect of antigens and 

other immunogenic molecules. However, using NPs as immunoadjuvants for the delivery 

of immunostimulative biomolecules still suffers from several major drawbacks, including 

the problems for scaling-up the system, expensive preparation processes, and limitations 

for producing sterile products [143]. Accordingly, despite the great versatility and 

promising features observed for the potential of such therapeutic systems, intensive 

research studies are still needed in order to develop nano-formulations that can be 

produced in large scale and applied in the clinic. 

 

 

2.3 Interactions between cells and NPs 

One of the main hallmarks of the cell membranes is the ability to selectively control the 

transport of ions and molecules into and out of the intracellular structure, and to also 

protect the cell compartments from the extracellular environment. Accordingly, to be 

internalized inside the cells, NPs have to surmount the cell membrane. Generally, large 

molecules, such as proteins, viruses and also NPs can transport into and out of the cell 

membrane by endocytosis and exocytosis. Depending on the property of the transported 

particle, such as size, shape, surface charge and surface chemistry [144], different types of 

endocytosis pathways, which vary in the involved internalization machinery, cargo 

properties and the size of the transport vesicle (Figure 5), may mediate the cellular uptake. 

For example, it is currently approved that while large particles penetrate into the cells via 

phagocytosis, the cellular uptake of small particles occurs via different non-phagocytic 

mechanisms (Figure 5) [145]. Owing to the importance of the NPsʼ physicochemical 

properties on their interaction with the cells, some of these characteristics are discussed in 

the next subsections. 
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Figure 5   The cellular internalization pathways of NPs and respective size limitations. (A) Larger 

NPs are internalized via phagocytosis. (B) Smaller particles can interact with the cells and be 

internalized through several mechanisms, such as clathrin-mediated endocytosis (a), caveolar-

mediated endocytosis (b), macropinocytosis (c), and clathrin-independent and caveolin-

independent endocytosis (d). Adopted from Ref.[145]. 

2.3.1 The impact of the NP size on the cellular interactions  

The size of NPs plays an important role in their cellular distribution, phagocytosis, and 

circulation half-life [145-147]. One of the benefits of the NPs is their ability to enter into 

the cells via endocytosis because of their similarity to many biomolecules in terms of size 

[148]. This internalization can be via the engagement of caveolin or clathrin pits, or other 

pathways independent of these proteins. For example, Hökstra et al. [149] studied the 

effect of the NP size on the internalization mechanism in nonphagocytic B16 cells and 

showed that while the internalization of NPs smaller than 200 nm was mediated through 

active clathrin-coated pits, caveolae-mediated pathway became dominant for NPs with a 

size of 500 nm. It has been currently accepted that NP size can also affect the uptake 

efficiency, and the subcellular distribution of the particles. For example, a size-dependent 

uptake has been observed for iron oxide [150], mesoporous silica [151], and gold [152] 

NPs. 

NPs may also internalize into cells via passive uptake. For the cells lacking the 

endocytosis machinery (e.g., red blood cells; RBCs), passive transport is the only pathway 

for particle internalization. Hence, a quantitative understanding of the NP-membrane 

interaction is an important prerequisite for designing NPs with intentionally improved or 

suppressed cellular uptake. Table 2 shows some examples of studies that have revealed the 

paramount importance of the NPs’ size on their biological behavior. 
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Table 2. Examples of studies performed to clarify the role of the NPs’ size in the cellular 

uptake. 

 

Active cellular uptake 

 

NP 

 

Size 

(nm) 

 

Cell line 

 

Techniques 

 

Main conclusion 

 

Ref. 

Au 2‒100 SK-BR-3 CLSM
1
 40‒50 nm: highest effect [153] 

TiO2 5‒80 A549 

TEM
2
, Light 

scattering μ-

Raman 

Uptake depends on 

overall size with hard 

corona 

[154] 

Iron oxide 8‒65 RAW 264.7 ICP-AES
3
 37 nm: greatest uptake [150] 

Porous 

silica 

(PSiO2) 

30‒280 HeLa 
ICP-MS

4
, 

CLSM  

50 nm: maximum 

cellular uptake 
[151] 

SiO2 32‒83 Caco-2 CLSM 
32 nm: enter nucleus and 

migrate faster 
[155] 

Polymer 

50‒300 

 

150‒500 

 

 

Caco-2, HT-29 

 

SMMC-7221 

 

 

CLSM 

 

Fluorimetry 

 

 

100 nm: maximum 

uptake 

Large NPs with high net 

charge uptake more 

efficient 

[156] 

 

[157] 

 

 

Passive cellular uptake 

PSiO2 100‒300 RBCs TEM 

Silanol groups affecting 

the hemolytic properties 

of MSNs 

[158] 

PSiO2 100‒600 RBCs CLSM, TEM 

Surface chemistry and 

particle size affect 

cellular uptake  

[159] 

1
CLSM: Confocal laser scanning microscopy. 

2
TEM: transmission electron microscopy. 

3
ICP-AES: 

Inductively coupled plasma atomic emission spectroscopy. 
4
ICP-MS: Inductively coupled plasma mass 

spectrometry. 

2.3.2 The impact of the NP’s surface charge on the cellular interactions 

The surface charge of the NPs is one of the main properties that can significantly affect 

opsonization, phagocytosis, NPs’ stability, cellular interactions, bloodstream circulation 

time and biodistribution of the NPs [108, 145]. The NP uptake by cells can be explained as 

a two-step process that starts by the NP binding to the cell membrane, and then, the 

internalization of the NPs via several mechanisms like pinocytosis, non-specific or 

receptor-mediated endocytosis [145, 160]. The attachment of the NPs to the cell 

membrane is highly affected by the surface charge of the NPs, as demonstrated and 

highlighted by a high number of in vitro and in vivo studies [157, 161, 162], showing 

different effects of the NPs’ surface charge (e.g., positive, neutral or negative) on the 

cellular interactions of various NPs. For example, it has been demonstrated that the NPs 

such as silica nanotubes [163], quantum dots [164], iron oxide [165], and hydroxyapatite 
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[166] with positive zeta-potentials can be uptaken more compared to their counterparts 

with negative zeta-potential. This is possibly due to the stronger and higher contact of the 

positively charged NPs with the negatively charged cell membrane via electrostatic 

interactions, leading to a concentration- and time-dependent internalization of the NPs. 

Moreover, the screening of the intracellular distribution has indicated that some positively 

charged NPs possess endosomal escape ability after being internalized into cells, whereas 

neutrally and negatively charged NPs prefer the lysosomal co-localization [145]. A 

plausible explanation for this phenomenon is that the abundant positive charge of the NPs 

can cause the concurrent influx of chloride ions into the lysosome for the maintenance of 

neutral charge, leading to the physical rupture of the lysosomal membrane because of the 

osmotic swelling  a phenomenon known as the ‘proton-sponge’ effect. This behavior can 

increase the perinuclear localization of the positively charged NPs and enhance the drug 

concentration around the nucleus [167]. In contrast, some other studies have shown that 

the surface negatively charged NPs have more affinity for the cell membrane and can 

attach to the cationic sites of the cell membrane in the form of clusters because of their 

repulsion from the large negatively charged domains of the cell surface; thereby, there is a 

high capture of these particles by the cells compared to the ones with positive zeta-

potentials [168, 169]. As a result of the different results reported in the abovementioned 

studies, there is a high probability that such findings may be due to the differences on the 

properties of the tested NPs, such as surface hydrophobicity, particle size, composition, or 

the cell type used, and not only owing to the surface charge of the respective NPs.  

2.3.3 The impact of NP hydrophobicity and surface chemistry on the cellular 

interactions 

Since the NPsʼ surface is in direct contact with the cells, the chemical composition at the 

surface of the NPs is very important in terms of the amount and the route of the NP uptake 

[170]. In addition, the surface properties of the NPs are the main factor affecting the type 

and number of biomacromolecules (e.g., proteins) adsorbed onto the surface of the NPs 

through hydrophobic/hydrophilic and/or electrostatic interactions. The surface 

composition of the NPs can also determine the thickness of the adsorbed bio-layer [171]. It 

has been reported that the hydrophobic NPs have a high affinity for the lipid bilayer of the 

cells, therefore their uptake is more facilitated compared to the hydrophilic particles [145]. 

Accordingly, the surface of the NPs can be modified with the aim to favor cellular 

interactions and improve internalization. For example, the surface conjugation of meso-

2,3- dimercaptosuccinic acid of gold nanoshells has been shown to increase the cellular 

uptake in comparison to unmodified gold nanoshells [172]. It has also been found that the 

cellular uptake of PLGA coated with Vitamin E D-α-tocopheryl polyethylene glycol 1000 

succinate is 1.4-fold higher than the PLGA NPs coated with polyvinyl acetate [173]. The 

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (POPG)-coated gold NPs 

have also demonstrated faster and greater uptake than PEGylated gold NPs in MCF-7 

cells, mainly owing to the structural similarities between the cell membrane and POPG, 

which has led to strong interactions between the NPs and the cell surface [174]. In 

addition, it has been shown that the surface modification of the NPs with targeting 
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polymers can increase the interaction of NPs with the cells overexpressing the target 

receptors with high affinity. For example, Almeida et al. [175] have reported the covalent 

conjugation of an amide-modified hyaluronic acid (HA+) derived polymer on the surface 

of undecylenic acid functionalized thermally hydrocarbonized PSi (UnTHCPSi) NPs for 

improving the cellular interactions and internalization due to the capability of the 

conjugated HA+ NPs to bind to the CD44 receptors expressed on the surface membrane of 

the breast cancer cells. These NPs also showed very low polydispersibility, improved 

colloidal stability and high biocompatibility. 

2.3.4 Correlation of the NPs’ properties and the cellular cytotoxicity 

Nanomaterials possess distinctive properties relative to bulk materials (e.g., high surface 

area-to-volume ratio) that can endow them with special mechanisms of toxicity. The 

cytotoxicity of the NPs has been described to be dependent on many factors, such as NP 

morphology, size, hydrophobicity, surface roughness, porosity, surface charge, 

concentration, and cell type used [1, 176]. For example, NPs’ size plays a crucial role in 

the bodyʼs response to the NPs as well as in the biodistribution and elimination of the NPs 

after intravenous administration [177]. The NP’s size may also modify the pathways of the 

endocytosis and cellular uptake [149]. One of the main reasons for the considerable impact 

of the NP size is the exponential enhancement in the surface area-to-volume ratio as the 

size of the NPs decreases, leading to the more surface reactivity of the nanomaterials [149]. 

In vitro investigation of the non-phagocytic cellular uptake of latex spheres have 

demonstrated slower endocytosis of larger spheres (˃200 nm) compared to smaller ones 

(50 and 100 nm) [149]. It was also shown in non-phagocytic cells that the size reduction 

correlates with enhanced toxicity. In vitro studies have shown higher cytotoxicity of 

nanosized mesoporous silica and silicon, ZnO, Ag, Ni, dolomite, and polystyrene 

compared to the respective microparticles [178]. Interestingly, microparticles have shown 

stronger interaction with phagocytic cells, such as monocytes and macrophages, than NPs. 

For example, higher cellular damage has been reported for silica microparticles than for 

NPs in immune cells [3].  

Regarding the correlation of the NP’s morphology and cellular toxicity, it is generally 

accepted that fiber-shaped NPs of a given material are more cytotoxic than spherical 

particles. For example, carbon nanotubes have revealed greater toxicity than fullerenes 

[178]. While NP’s hydrophobicity and surface charge are often strongly linked to each 

other, at the same surface charge a higher hydrophobicity leads to more cytotoxic 

responses compared to the respective hydrophilic particles [179]. Degradability of the 

material is also a determinant parameter for acute and long-term cytotoxicity. The main 

problem with non-degradable materials is their accumulation in organs or inside cells 

where they can cause damaging effects, similar to that of lysosomal storage diseases [180]. 

Biodegradable materials may also lead to unexpected cytotoxicity owing to the release of 

toxic degradation products to the biological milieu [2]. 

Despite all recent progresses in nanotoxicology, this is still a relatively new and 

challenging field as different factors may work synergistically to cause toxicity. Currently, 

plenty of reports have focused on the acute toxicity of nanomaterials and less attention has 
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been paid to long-term toxicity. In this context, the screening of chronic exposure is 

critical to understand the toxicology of nanomaterials in vivo [181].  

The toxicity of nanomaterials can occur through different mechanisms. One of the 

main mechanisms of nanotoxicity is free radical formation and subsequent induction of 

oxidative stress, causing damage to biological components through oxidation of proteins, 

lipids and DNA [182]. Oxidative stress can also cause inflammation through upregulation 

of kinases involved in inflammation, activator protein-1, and redox sensitive transcription 

factors (e.g., NF-κB) [182, 183]. Intracellularly, the interactions of the nanomaterials with 

the cell nucleus and mitochondria are considered as key sources of cellular damage. As 

reviewed by Unfried et al. [184], many types of NPs, such as block copolymer micelles, 

silver-coated gold NPs, carbon nanotubes, and fullerenes, are able to be localized inside 

the mitochondria, and induce ROS formation and apoptosis. Other mechanisms for cellular 

toxicity induction include cell-cycle arrest, nuclear DNA damage, and mutagenesis [1]. 

Additionally, since nanosized materials are inherently quite complex, many unpredicted 

interactions may arise with biological components. Therefore, appropriately validated 

analytical methods and carefully designed experimentations are needed to clarify the 

mechanisms of toxicity so that nanoparticles can be safely used in biomedical applications. 

 

 

2.4 Porous silicon (PSi) nanoparticles 

Over the last decade, the application of PSi NPs in medicine has been highlighted because 

of the immense advances in the preparation protocol, surface modification, ability of 

controlling the physicochemical properties of the particles, as well as understanding the 

biological interactions of this material [185, 186]. The most remarkable characteristics of 

the PSi nanomaterials are their high surface-to-volume ratio, large surface area (300 to 

7001000 m
2
/g) and pore volume (0.9 cm

3
/g), possessing a stable and rigid framework 

with high chemical, mechanical and thermal stability, high biocompatibility, 

biodegradability, and easy scale-up properties [187]. These advantageous benefits have 

made the PSi NPs promising reservoirs for drug delivery applications with the aim to 

overcome the drawbacks of conventional pharmaceutical formulations. Another advantage 

of the PSi particles is the ability of controlling their pore size to achieve controlled release 

kinetics [26, 188-190]. In addition, it is facile to modify the surface of the PSi NPs with 

different functional groups with the aim to provide an opportunity for further modification 

with biomolecules or polymeric materials to tailor drug release, to target a specific tissue 

and to enhance cellular interactions [191, 192]. 
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Figure 6   The protocol applied for the preparation of PSi NPs with different surface chemistries 

[186, 188, 193-195].  HF: hydrofluoric acid, EtOH: ethanol, TOPSi: Thermally oxidized PSi, 

THCPSi: Thermally hydrocarbonized PSi, UnTHCPSi: undecylenic acid functionalized thermally 

hydrocarbonized PSi, TCPSi: Thermally carbonized PSi, APSTCPSi: (3-

aminopropyl)triethoxysilane-functionalized thermally carbonized PSi. The detailed explanation of 

the protocols can be found in the section 4.1. 

Since the freshly etched boron doped p+ Si100 wafers react very slowly with 

ambient air, electrochemical anodization is applied to convert the original surface of the 

PSi to hydrogen terminated (Si-Hx) structures that are very reactive even in the dry 

ambient air [187]. These reactive hydrogen terminated PSi structures can be functionalized 

with different chemical groups according to the very well developed protocols set up for 

their surface modification [186, 188, 193, 194] (Figure 6), leading to the formation of 

stable PSi NPs with new surface functional groups, hydrophilicity and biological effects [5, 

194, 196, 197].  

In this section, some significant therapeutic aspects of different PSi drug delivery 

systems will be discussed and the undeniable impact of these particles in the forthcoming 

technological progress of nanomedicines will be highlighted.  
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2.4.1 Drug loading methods in the PSi particles 

PSi NPs have been established as versatile platforms for drug delivery applications. By 

loading drugs into the porous structures of these particles, it is possible to control drug 

release or deliver the appropriate concentrations of therapeutic molecules to the suitable 

locations in a controlled manner [190, 198, 199]. The most common methods for loading 

drugs within the PSi NPs include covalent attachment, physical adsorption into the inner 

pore walls, solvent evaporation, or drug engulfment by oxidation [200]. In addition to the 

parameters, such as surface charge, pore size, hydrophilicity/hydrophobicity, surface 

chemistry, and physicochemical properties of the loaded molecule, loading methods can 

also affect the drug release profiles of the PSi NPs [4, 186, 200]. Covalent attachment is 

the most robust method for drug loading into the porous structures. Typically, PSi NPs 

with functional carboxyl or amine groups on their surface can be directly used for covalent 

based drug loading; however, PEG linkers can also be used as an alternative approach for 

successful covalent drug loadings [201]. Different reports have shown the application of 

this method to attach different molecules, such as proteins and enzymes to the surface of 

the PSi NPs [202] or to load amino acids and anticancer drugs within the PSi matrix [203]. 

In the covalent attachment method, the payload release can occur only after the breakage 

of the covalent bonds or the degradation of the supporting PSi matrix, achieving a 

prolonged drug release. Since the main drawback of this method is the possible inactivity 

of the loaded molecule, it is essential to conduct relevant assays to confirm the activity of 

the drugs following the release process [200]. 

In contrast to the covalent attachment, drug release can be faster when a physical 

adsorption method (simple immersion of the PSi NPs in a drug solution) is used for drug 

loading. Loading of drug compounds such as ibuprofen, griseofulvin, ranitidine, 

furosemide and bovine serum albumin into the PSi structures has been reported using this 

loading method [204, 205]. Since the bare PSi particles are negatively charged, they can 

spontaneously adsorb positively charged molecules and lead to higher drug loading 

degrees of these compared to the negatively charged drug molecules. The hydrophobicity 

of the PSi NPs can also be very beneficial for the high adsorption and delivery of 

hydrophobic molecules, such as dexamethasone [206] and porphyrins [207]. This 

technique is very desirable as it can be performed without exposing the particles or drugs 

to harsh chemical conditions during the loading process [201]. Since it is not feasible to 

reach long term release profiles with this technique, it can be used typically when rapid 

drug delivery rates are required. However, a recent report has shown that physical loading 

of an anticancer drug, sorafenib, can lead to a very long lasting drug release from the PSi 

NPs, demonstrating the impact of the drug’s physicochemical  property on the drug release 

kinetics [208]. In addition, targeted delivery of PSi particles physically loaded with drug 

molecules has also been reported. For example, Gu et al. have shown the simultaneous 

loading of super-paramagnetic iron oxide NPs and the anticancer drug, doxorubicin, within 

PSi microparticles via simple adsorption to achieve magnetically guided delivery of the 

drug [209].  

The oxidation based method for drug loading rely on a process that results in the 

shrinkage of the pores after drug loading, because of the extra volume of the oxygen atoms 

on the surface of the particles, leading to an efficient drug entrapment inside the pores. 
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Since oxidation increases the surface stability of the PSi particles, this method has been 

applied for many studies [210]. Figure 7 shows a schematic figure of all the 

abovementioned methods for the loading of drugs inside the PSi particles. 

 

 

Figure 7   The most relevant protocols applied for the loading of different drugs into the PSi 

particles. Drug molecules can be physically loaded, covalently conjugated or locked inside the 

pores via the oxidation of the PSi because of pore shrinkage resulted from the volume expansion. 

2.4.2 PSi NPs for drug delivery 

One of the main challenges of the current drug delivery formulations are the poor 

solubility properties of the drug molecules, inefficient drug release and rapid clearance of 

the drug molecules from the body. Accordingly, overcoming all these problems and 

improving the bioavailability of the drug molecules at the site of interest over a predefined 

period of time are the main features that a drug delivery system should possess [211, 212]. 

One of the major focuses of the PSi NPs for drug delivery applications has been devoted to 

the improvement of the bioavailability by increasing the water solubility of the drugs [185, 

187, 204]. When drug molecules are localized inside the pores of PSi, the confined space 

of PSi NPs avoids the drug to revert back from an amorphous state into its crystalline form, 

resulting in higher dissolution rates [204]. For example, Bimbo et al. [213] have used 

thermally hydrocarbonized PSi (THCPSi) NPs to load saliphenylhalamide for the 

inhibition of influenza A virus infection. Since the main drawback of this antiviral drug is 

the poor water solubility, the possibility to minimize the crystallinity of the drug molecules 

was investigated by loading the drug inside the THCPSi NPs. Interestingly, the results 
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showed an efficient inhibition of influenza A infection in human retinal pigment 

epithelium and Madin-Darby canine kidney cells after the drug was released from the PSi 

NPs. The enhanced solubility of griseofulvin [186], indomethacin [214] and intraconazole 

[185] has also been reported. 

Since one of the main drawbacks of many anti-cancer drugs is their very poor water 

solubility, PSi particles have attracted many interests for this area of research. For example, 

cisplatin loading inside 1,12-undecylenic acid modified PSi particle resulted in 

significantly higher toxicity than that of free cisplatin in human ovarian cancer cells, 

owing to the improved solubility [215]. Sustained release of anticancer drugs has been also 

investigated by PSi particles. In this case, covalent loading of daunorubicin within 1-

undecylenic acid modified PSi particles resulted in sustained release of the drug for more 

than 30 days [216]. To compare the impact of loading methods, the release of doxorubicin 

after covalent and physical loading into 10-undecylenic acid functionalized PSi particles 

has been studied [217]. Covalently loaded particles showed drug release once the covalent 

bond was broken or the PSi was oxidized/degraded, exhibiting no initial burst release and 

continuous slow release over five days. In contrast, physically adsorbed doxorubicin 

demonstrated significant burst release in the first 2 h and a complete release within 24 h. 

This study showed that in addition to the effect of the surface chemistry and pore size of 

the PSi particles on the drug release rate (by controlling the interactions of drug molecules 

with the internal and external surface of the particles), drug loading methods have also a 

significant impact on the drug release profiles. 

PSi particles have also been investigated for the sustained delivery of drugs with very 

short half-lifes and narrow therapeutic windows. For example, the clinical applications of 

daunorubicin, a model drug suggested for the treatment of proliferative vitreoretinopathy, 

has been hindered owing to the needs for frequent intravitreal injections over time to 

obtain sustained treatment. To overcome this problem, several studies have applied PSi 

particles for long-lasting presence of the drug at the disease site [218, 219]. For example, 

Hou et al. [219] have shown the sustained drug release after a single intravitreal injection 

of the nanoformulation. They also showed high biosafety of the applied PSi NPs in rabbit 

eyes [220].  

The delivery of protein molecules using PSi NPs is also an emerging area of research. 

De Rosa et al. [221] have used agarose hydrogel matrix to modify the surface of the PSi 

particles with the aim to avoid repeated administrations of protein drugs (bovine serum 

albumin was used as a model drug in this study) over a long period of time by enhancing 

the ability to sustain the drug release, as well as to preserve the molecular stability and the 

integrity of the loaded protein; thus, influencing the intracellular nucleus delivery, and 

enhancing the biocompatibility of the formulation. Since the main challenge of current 

protein formulations is the instability for oral administration because of the enzymatic 

degradation and poor intestinal penetration, PSi NPs have also been applied to preserve the 

bioactive structure of the proteins and improve the oral bioavailability of drugs [222]. For 

example, glucagon like peptide-1 (GLP-1) loaded inside chitosan-coated UnTHCPSi NPs 

showed sustained drug release and high permeation across the intestinal in vitro models, 

suggesting that these NPs are promising carriers for the oral delivery of GLP-1 [223]. The 

potential of the THCPSi particles for the oral delivery of melanotan II (MTII, a food intake 

inhibitor) [224] and ghrelin antagonist (GhA) [225], have also been investigated. The 
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results showed that while the inhibition of food intake was reduced after 4 h for GhA, GhA 

loaded particles could retain the food inhibition for up to 18 h. Kovalainen et al. [226, 227] 

have compared loaded and free PYY3-36, a peptide to reduce food intake, in three 

different PSi NPs, thermally oxidized PSi (TOPSi), THCPSi, and UnTHCPSi NPs. The in 

vivo results showed that while the free PYY3-36 were removed from the bloodstream 

within 12 h, all the examined PSi NPs were able to extend peptide clearance for up to 96 h 

[227].  

The major obstacle of using oligonucleotides as therapeutic agents is the low 

intracellular delivery of these negatively charged biomolecules. PSi has been recently 

suggested as a potential material for the delivery of oligonucleotides [228-230]. Rytkönen 

et al. [230] have used positively charged aminosilane-modified thermally carbonized PSi 

NPs as oligonucleotide carriers by loading splice correcting oligonucleotides (SCOs) into 

the pores of PSi. They have shown a drug loading degree of 14.3% (w/w) and 100% 

loading efficiency within 5 min, achieved by the high electrostatic interactions between 

particles and oligonucleotides. They demonstrated the successful delivery and release of 

SCOs inside cells in its biologically active form when formulated together with cell 

penetrating peptides. Wan et al. [192] have also loaded small interfering RNA (siRNA) 

biomolecules into the PSi NPs to protect them from degradation and increase the cellular 

uptake. They could load around 7.7 µg of siRNA per mg of PSi NPs in 30 min. This 

formulation could efficiently induce cell apoptosis and necrosis (33%) by downregulating 

the target mRNA (∼40%) and subsequent protein expression (31%), suggesting that this 

new delivery system may pave the way towards developing new tumor therapeutic 

approaches. Zhang et al. [231] have also used PSi particles with a pore size in the range of 

20‒60 nm to modify surface functionality of the pores with PEI and subsequently complex 

it with siRNA. It was shown that the gradual degradation of the PSi particles under 

physiological conditions can lead to the sustained release of the spherical PEI/siRNA 

nanocomplexes. In addition, in vitro experiments showed that the siRNA could internalize 

into the cells and effectively silence the ataxia telangiectasia mutated genes of breast 

cancer. 

To precisely tune the drug release profiles, a so-called “gate-keeping” approach can be 

applied by attaching a responsive polymer to the surface of the PSi nanostructures [232-

235], thus modifying the drug release kinetics. Moreover, coating with non-biologically 

responsive polymers can modify the drug release rate by altering the diffusion process of 

the drug through the polymer matrix [236]. Some examples of the coating strategies used 

for in vitro studies of PSi platforms include chitosan to slow down the release of insulin 

[237], bovine serum albumin capping for sustain release of antibiotic vancomycin [238] 

and poly(N-Isopropylacrylamide) for temperature responsive release of camptothecin 

[239]. One of the main considerations for preparing coated PSi particles is using polymers 

with high biocompatibility and biodegradability. In addition to the significant effect of the 

polymeric coating on the sustained drug release by providing an obstructive layer on the 

surface of the particles, the coating layer can also shorten drug release rate by minimizing 

the oxidization of porous surface layers of the particles, and subsequent degradation [201]. 

Moreover, polymeric coating can be used for enhanced drug permeability across biological 

barriers. For example, Shrestha et al. [222] have shown ca. 20-fold increase in the 

permeation of insulin across an in vitro intestinal monolayer model compared to the pure 
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insulin after encapsulation within chitosan coated PSi NPs. In addition to the coating 

strategy, encapsulation of PSi NPs within other materials can render new properties to the 

PSi particles. For example, Liu et al. [240] have recently fabricated a novel nanocomposite 

by the encapsulation of THCPSi NPs within solid lipid nanoparticles for drug delivery 

applications. This formulation showed greatly improved cellular safety of the PSi NPs, 

highly efficient drug encapsulation, prolonged drug release and very high stability because 

of the altered surface smoothness of the THCPSi NPs. The incorporation of drug-

containing NPs within the PSi particles has been suggested as a promising strategy for 

pronounced and sustained therapeutic effect. For example, Blanco et al. [241] have 

demonstrated the favorable encapsulation of paclitaxel loaded poly(ethylene glycol)-

block-poly(-caprolactone) micelles within the pores of PSi particles, resulting in delayed 

drug release and significant suppression of tumor growth in mice bearing MDA-MB-468 

breast cancer cells. 

In addition to the all abovementioned drug payloads in PSi NPs, metals or metal oxides 

particles have also been encapsulated into PSi NPs to generate a potential magnetic 

resonance imaging contrast agent or to develop theranostic drug delivery systems [242, 

243]. All these examples show the high potential of PSi carriers as promising materials for 

drug delivery applications. 

2.4.3 Immunotherapeutic applications of PSi particles 

Although nanomaterials have shown promising results for the treatment of various 

diseases, they still encounter several challenges such as possible toxicity, rapid clearance, 

low accumulation in the target site, and short-term therapeutic responses, minimizing the 

best outcome of the therapeutic nanosystems. Therefore, there is a need for using NPs in a 

different way to get more efficient therapeutic responses. A novel recently suggested 

approach is immunotherapy through the development of nanoadjuvants and nanovaccines, 

an alternative strategy to improve the effect of NPs through intentional activation of the 

immune system to fight against various diseases [13, 89]. PSi NPs are suggested as 

suitable reservoirs for antigens because of facile loading capability in aqueous media, 

without the use of organic solvents. For example, Gu et al. [21] have used FGK45 (an 

agonist antibody of CD40) engineered PSi NPs to activate APCs. This immunostimulatory 

antibody can bind to the receptors of CD40 on the surface of APCs, and subsequently, 

activate B cells 30–40-fold greater than the stimuli induced by the same concentration of 

free FGK45. They also observed very low uptake of the bare PSi NPs in the mouse bone 

marrow-derived DC compared to the FGK loaded counterparts, exhibiting the high ability 

of the antibody for DC targeting. Marez et al. [244] have also shown superior ex vivo 

cellular uptake of the monophosphoryl lipid A (MPL) or lipopolysaccharide (LPS) 

conjugated PSi microparticles by murine bone marrow-derived DCs and enhanced 

secretion of immunostimulatory cytokines compared to the free MPL and LPS. It was also 

shown that enhanced immunostimulation can independently induce anticancer effect and 

also increase the anti-tumor efficacy of doxorubicin nanoliposomes after the co-

administration in mice. For this purpose, Marez et al. [245] showed that the injection of 

PSi-bound MPL results in the enhanced secretion of the Th1 associated cytokines, IFN-γ 
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and TNF-α, while decreasing the anti-inflammatory cytokine IL-10, leading to the 

increased tumor suppression effect of low dose doxorubicin nanoliposomes via synergized 

immunotherapy. Increased DC activation and sustained drug release of the loaded cargo 

have raised promises for using PSi particles to induce potent protective immunity against 

the immune system related diseases without the need for repeated doses of the 

formulation. 

2.4.4 Cellular uptake and trafficking 

In order to fully understand the interactions of the PSi NPs with the cells, it is crucial to 

improve the knowledge regarding the biological properties of the cells as well as the 

subsequent effects of the NPsʼ physicochemical properties on the cellular compartments 

[246]. Cell membrane is comprised of proteins, lipids, and receptors, which render a 

negative charge to the cell surface [26]. Therefore, the surface charge of the PSi NPs is 

one of the main parameters with a considerable role in the cellular trafficking of the NPs 

[178]. Other parameters, such as concentration, exposure time, particle size, shape, surface 

chemistry, and cell type have also a high impact on the cellular uptake of the NPs [247-

249]. For example, while it is reported that the cellular uptake of PSiO2 NPs take place via 

a clathrin-mediated endocytosis, guanidinium- and amine-functionalized PSiO2 NPs have 

shown clathrin- and caveolae-independent endocytosis [250, 251], and folic acid (FA)-

functionalized PSiO2 particles have demonstrated FA receptor-mediated endocytosis [252, 

253].  

It has been demonstrated that the endocytosis of PSi NPs leads to the formation of a 

vesicle, which captures the NPs and internalize them into the endosome. Then, the 

endosome content can either be recycled back to the extracellular environment or 

transported to the secondary endosomes that fuse with lysosomes [254]. The escape of PSi 

NPs from the endosomes can lead to drug release in the cytosol, a desirable phenomenon 

to get high therapeutic efficiency of the nanoformulations. Generally, the positively 

charged particles can more efficiently escape from the endosomes than the negatively 

charged NPs, which usually remain trapped within the endosomes [255, 256]. Accordingly, 

a strategy that can be suggested is using the positively charged polymers with amine 

groups to create a proton osmotic influx inside the endosome and break-down the 

endosome via proton sponge effect [257]. For example, Tomoya et al. [258] have recently 

developed cationic polyaspartamide derivatives with a regulated number and spacing of 

positively charged amino groups in the side chains to improve the cytosolic delivery of 

siRNA via an endosomal escape mechanism. Mingzhen et al. [231] have also developed 

polyethyleneimine (PEI) modified PSi particles complexed to siRNA with the aim to exert 

gene silencing effect in human breast cancer cells via the escape of the particles from the 

late endosomal/lysosomal compartments. 

Despite great advances in the delivery of different drugs by various NPs, cancer 

therapy still suffers from the insufficient therapeutic concentration of the drug at the target 

cell/tissue owing to the lack of selectivity. Therefore, it is favorable to construct targeted 

nano-sized particles with a high potential of extravasation [17, 33, 139, 250, 253, 259]. 

Currently, many research efforts have tried to generate cell targeted NPs with the aim to 
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selectively guide them to the surface membrane of the cells and trigger receptor-mediated 

endocytosis [33, 139]. Nevertheless, problems associated to this approach still exist 

because of the limited attachment sites on the surface of the NPs as well as the possibility 

of losing the stability during the functionalization steps [26]. Among the astonishing 

benefits of the PSi NPs, the ability of the surface functionalization with various chemical 

groups and targeting moieties is one of the most favorable properties reported in the 

literature, highlighting the potential of these relevant nanoplatforms for a wide range of 

medical applications [21, 200, 201, 234, 238]. Emilie et al. [16] have shown successful 

conjugation of MLR2, mAb528 and Rituximab antibodies on the surface of PSi NPs for 

targeting neuroblastoma, glioblastoma and B lymphoma cells, respectively. Kenji et al. 

[191] have also demonstrated the effective targeting of Ly6C Ab decorated PSi 

nanocarriers to pancreatic cancer cells. They showed the accumulation of intravenously 

injected nanocarriers at the tumor associated endothelial cells within 15 min. Interestingly, 

they also observed the accumulation of 9.8 ± 2.3% of Ly6C targeting nanocarriers in the 

pancreatic tumor as opposed to 0.5 ± 1.8% with non-targeted nanocarriers after 4 h. In all 

these approaches, it is crucial to retain the binding activity of the targeting ligand by 

avoiding the denaturation of the protein structure during the procedure used for 

conjugation or drug loading [260].  

In addition to Ab, targeting peptides have also been applied for the active targeting of 

PSi NPs. Kinnari et al. [261] have proposed a tumor homing peptide as a potent targeting 

ligand to enhance the delivery of PSi NPs to the breast cancer site. They functionalized 

PSi NPs with a peptide targeting mammary-derived growth inhibitor (MDGI) receptor, 

which showed ∼9-fold higher accumulation in the tumour site compared to the control 

THCPSi NPs after intravenous injections into nude mice bearing MDGI-expressing 

tumours. 

Since some reports have shown high accumulation of the nanoparticles on the surface 

of cancer cells, the interest has already been shifted towards strategies to enhance cellular 

internalization of the NPs after attachment to the surface of cancer cells [262, 263]. In this 

regard, Wang et al. [208] have demonstrated the enhanced cellular uptake of the PSi NPs 

in EA.hy926 cells after applying a simple and efficient method based on copper-free click 

chemistry to introduce RGD cell penetrating peptides on the surface of the PSi NPs. With 

this strategy, a significant increase in the amount of particles localized inside the cells was 

demonstrated in vitro. 

In addition to the enhancement of the cellular interactions with the target tissue using 

the aforementioned strategies, the therapeutic efficacy of drug-delivery PSi carriers 

depends on the ability of evading the immune system. In this context, Parodi et al. [264] 

have suggested biomimetic hybrids of PSi particles coated with purified cellular 

membranes of leukocytes for the inhibition of particle opsonization and phagocytosis, 

enhancing the circulation time of the particle and improving the accumulation in the tumor 

site through receptor–ligand interactions with endothelial cells. 

All the above described strategies and surface modification methods for PSi NPs 

demonstrate the promising potential of these NPs as the next generation of nanomedicines. 

  



28 

 

3 Aims of the study 

Despite steadily increasing insights on the application of PSi NPs for therapeutic 

applications, less attention has been paid to the impact of the inherent physicochemical 

properties of these particles on the biological responses and on the success or failure in the 

therapeutic applications considered for the developed nanoformulations. Given to the 

important role of the immune system on the fate of the administered NPs, the aim of this 

study was to understand the main toxic effects of PSi NPs on different type of cells and 

also to understand the impact of the chemical structure of PSi on the immunostimulative 

responses. Furthermore, the development of PSi-based NPs for chemo-immunotherapeutic 

purposes and increasing cellular trafficking in cancer cells were among the main aims of 

this dissertation.  

 

 

The specific objectives of this dissertation were as follows: 

 

 

1. To assess the impact of the surface chemistry of the PSi NPs with similar size, 

surface area and pore volume on the immunotoxicity, hemocompatibility, and 

change in the biochemical parameters and histology of tissues in vivo (I). 

 

2. To understand how the non-toxic concentrations of the PSi NPs with different 

surface chemistries may affect the immune system and work as nano-

immunostimulants by the induction of CD80, CD83, CD86, and HLA-DR co-

stimulatory ligands activation on DCs, T cell proliferation, T cell 

differentiation, and cytokine secretion (II). 

 

3. To evaluate the effect of surface monoclonal antibody-functionalization of 

drug-loaded PSi NPs on the cancer cell targeting, cellular uptake, and 

simultaneous chemo- and immunotherapy via sustained anticancer drug 

release, ADCC activation and cytokine secretion (III). 

 

4. To evaluate the impact of the surface polymeric modification of the PSi NPs 

on the cellular internalization, endosomal escape, drug release, as well as 

colloidal and plasma stability of the NPs (IV and V). 
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4 Experimental 

4.1 Fabrication and characterization of the PSi NPs 

Free-standing multilayer PSi films were electrochemically anodized from monocrystalline, 

boron doped p+ Si100 wafers with a resistivity of 0.01‒0.02 Ω.cm using a 1:1 (v/v) 

hydrofluoric acid (HF, 38%)‒ethanol (EtOH) electrolyte. The multilayer structure was 

formed by applying a repeating pulsed low/high etching profile, designed to create fracture 

planes at desired intervals. The multilayer film was lifted off from the substrate by 

increasing the etching current abruptly to the electropolishing region. The multilayer films 

were then functionalized with the methods described in Table 3 in order to obtain different 

surface chemistries, and finally, wet milled with a high energy ball mill to produce the PSi 

NPs. 

 

Table 3. Chemical modification methods used for the PSi multilayer films to obtain 

different surface chemistries. 

 

Surface chemistry Chemical modification method References 

TOPSi The multilayer films were thermally oxidized in 

ambient air for 2 h at 300°C (I and II). [186] 

 

 

 

 

THCPSi 

Fresh PSi multilayer films were inserted into a 

quartz tube under N2 flow (1 L/min) for at least 30 

min in order to remove residual moisture and 

oxygen. 

[194] 
An acetylene (C2H2) flow (1 L/min) was added to 

the N2 flow for 15 min at room temperature (RT) 

followed by a heat treatment for 15 min at 500°C 

under the 1:1 (vol.) N2/C2H2 flow. 

The THCPSi films were allowed to cool back to RT 

under N2 flow (I and II). 

 

UnTHCPSi 

UnTHCPSi films were functionalized from THCPSi 

films by immersing them into undecylenic acid for 

16 h at 120°C (I‒IV). 

[227] 

 

 

 

TCPSi
1
 

TCPSi films were functionalized from THCPSi 

films by continuing the carbonization process after 

the films had cooled back to RT under N2 flow. 

C2H2 flow (1 L/min) was added for an additional 10 

min after which the films were annealed at 820°C 

for 10 min under N2 flow. 

[197] 

The TCPSi films were allowed to cool back to RT 

under N2 flow (I and II). 

 

 

 

APSTCPSi
2
 

APSTCPSi films were functionalized from TCPSi 

films by immersing them into HF:EtOH (1:1, vol.) 

solution for 5 min and drying them at 65°C for 

several hours. 

[193] 



30 

 

The HF-activated TCPSi films were immersed into 

10 vol-% APTES-toluene solution for 1 h at 25°C. 

The solution was removed, and the APSTCPSi 

films were successively washed with toluene, 

toluene-EtOH and EtOH before drying for 16 h at 

70°C (I, II and V). 
1
TCPSi: Thermally carbonized PSi, 

2
APSTCPSi: (3-aminopropyl)triethoxysilane-functionalized thermally 

carbonized PSi 

4.1.1 Preparation of the UnTHCPSi-polyethylenimine (Un-P) NPs (II and IV) 

To pepare Un-P NPs, the carboxyl groups of UnTHCPSi NPs were covalently conjugated 

to the amine groups of branched polyethylenimine (PEI; average Mw∼25,000). To 

successfully accomplish the covalent conjugation, 1.5 mg of UnTHCPSi NPs was 

dispersed in 4 mL of 10 mM 2-(N-morpholino) ethanesulfonic acid (MES) saline buffer at 

pH 5.2. Then, 7 and 6 mg of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide 

hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were added, respectively, and 

mixed for 2 h to activate the carboxyl groups of the UnTHCPSi NPs. Next, the activated 

surface of the PSi NPs were exposed to an excess of hyper-branched PEI with a ratio of 

1:10 (NPs:polymer) and vigorously stirred (1140 rcf) at RT overnight. The excess of 

unconjugated polymer was removed by extensively rinsing of the modified particles with 

MilliQ-water. Finally, the NPs were re-suspended in Hank’s balanced salt solution−(4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) (HBSSHEPES) buffer (pH 7.4).  

4.1.2 Preparation of the APSTCPSi-poly(methyl vinyl ether-alt-maleic acid) 

(APM) NPs (II and V) 

For the chemical conjugation, poly(methyl vinyl ether-alt-maleic anhydrate) (PMVE-MAh; 

average Mw ∼216,000) was first hydrated and changed to the poly(methyl vinyl ether-alt-

maleic acid) (PMVE-MA) by heating at 70 °C for 3 h under stirring speed of 1425 rcf in 

MES buffer (pH 5.2, 10 mM). Then, 10 mg of the PMVE-MA was dissolved in 6 mL of 

MES buffer and mixed with 9.6 and 8 mg of EDC and NHS, respectively, for 2 h in the 

dark to activate the carboxyl groups of the polymer. Finally, the activated polymer chains 

were exposed to the APSTCPSi NPs with a ratio of 5:1 (polymer:NPs) and vigorously 

stirred (1140 rcf) at RT overnight. The excess of unconjugated PMVE-MA polymer was 

rinsed with MilliQ-water and removed before re-suspending APM NPs in HBSSHEPES 

buffer (pH 7.4). 

4.1.3 Preparation of anti-CD326 antibody-conjugated UnTHCPSi NPs (III) 

The covalent conjugation of CD326 antibody (Ab) onto the surface of the UnTHCPSi NPs 

was performed using EDC/NHS chemistry. Briefly, 100 µg of the NPs was dispersed in 1.5 
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mL of the 10 mM MES (pH 5.5), followed by the addition of 1.75 mg of EDC and 1 mg of 

NHS solution. The NP suspension was then left in the dark and under agitation for 2 h 

using a magnetic stirrer. Next, to remove unreacted EDC and NHS, and to separate the 

activated UnTHCPSi NPs, centrifugation of the NPs was performed at 21382 rcf for 5 

min. 100 µg of the surface activated UnTHCPSi NPs were then suspended in 1 mL of 10 

mM MES (pH 6.5) and 10 µg of CD326 Ab was added drop wise and stirred for 1 h. 

Afterwards, the unconjugated CD326 Ab was removed by centrifugation and the NPs were 

washed twice with phosphate buffered saline (PBS) buffer. 

To identify the amount of Ab-conjugated to the NPs, CD326-FITC Ab (Sigma-Aldrich, 

Saint Louis, USA) was used in the conjugation procedure and the final sediment and 

supernatant were collected to measure the amount of conjugated and free Ab by 

fluorescence using a Varioskan Flash (Thermo Fisher Scientific Inc., USA). 

4.1.4 Formation of UnTHCPSi-PEI-PMVE-MA (Un-P-P) nanocomposites (IV) 

The preparation of Un-P-P nanocomposites was achieved by the addition of PMVE-MA 

copolymer onto the Un-P NPs. Briefly, PMVE-MA copolymer was first obtained from 

PMVE-MAh by dissolving the later one in HBSS–HEPES buffer (pH 5.2) at 70°C for 3 h. 

Next, PMVE-MA polymer was activated for 2 h by addition of EDC/NHS to the solution, 

and subsequently, added with a ratio of 1:1 to Un-P NPs dispersed in the same buffer. The 

obtained polymer-conjugated PSi NPs were washed twice with MilliQ-water by repeated 

centrifugation at 21382 rcf for 5 min to ensure that no ungrafted polymer or free reagents 

were present in the final obtained product. The NPs were finally dispersed in HBSS–

HEPES buffer (pH 7.4). 

4.1.5 Characterization of the PSi NPs (I‒V) 

The hydrodynamic diameter (Z-average), polydispersity index (PdI) and surface zeta-

potential of the bare, polymer-conjugated and Ab-functionalized PSi NPs (I‒V) were 

measured using Zetasizer Nano ZS instrument (Malvern Instruments Ltd., UK). For the 

size measurements, the NPs were dispersed in Milli-Q water prior to loading inside a 

disposable polystyrene cuvette (SARSTED AG & Co., Germany). The surface zeta-

potential of the NPs was measured by using disposable folded capillary cells (DTS1070, 

Malvern, UK). All measurements were repeated at least three times. 

The morphology of the NPs (II‒V) was also evaluated using a transmission electron 

microscope (TEM; Jeol JEM-1400, Jeol Ltd., Japan). For this purpose, 2 µL of the NP 

suspension (50 µg/mL) was dropped on carbon-coated copper TEM grids (150 mesh; Ted 

PELLA Inc., Redding, CA) and then allowed to dry at RT overnight. 

The chemical composition of all the bare, polymer-conjugated and Ab-functionalized 

PSi NPs were studied by attenuated total reflectance Fourier transform infrared (ATR–

FTIR) (II‒V) using a Bruker VERTEX 70 series FTIR spectrometer (Bruker Optics, 

Germany) with a horizontal ATR sampling accessory (MIRacle, Pike Technology, Inc.). 

The ATR–FTIR spectra were recorded in the wavenumber region of 4000−650 cm
−1

 with 
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a resolution of 4 cm
−1

 at RT using OPUS 5.5 software. Prior to each measurement, all the 

NPs were left at RT to dry for 48 h. 

The impact of the human plasma on the stability of the polymeric functionazilationed 

NPs was also evaluated (IV‒V). For this purpose, 300 μg of the bare and polymer-

conjugated PSi NPs were dispersed in 200 μL of PBS (pH 7.4). The NPs were then mixed 

with 1500 μL of human plasma and kept at 37°C for 2 h under stirring at 1140 rcf. 

Sampling (200µL) was performed at different pre-determined time intervals (15, 30, 60, 

90 and 120 min) to measure the particle size and PdI using a Zetasizer Nano ZS instrument. 

Anonymous human plasma samples were obtained from the Finnish Red Cross Blood 

Service.  

4.1.6 Drug loading and release (III and IV) 

Drug loading was performed by an immersion method using concentrated solutions of 

drugs. For example, sorafenib (SFN)-loaded UnTHCPSi NPs were prepared by immersing 

100 µg of the NPs in 2 mL of the drug solution (0.5 mg/mL) dissolved in acetone, and then 

stirring for 2h at RT (III). Next, the excess amount of the drug was removed by 

centrifugation at 21382 rcf for 5 min (L-70 Ultracentrifuge, Beckman, USA), followed by 

three washes with MilliQ-water. 

In vitro drug release profiles of the SFN-loaded UnTHCPSi NPs (III) were determined 

by dispersing 200 µg of the loaded NPs in different media, including human plasma, PBS 

(pH 7.4), and PBS containing 10% fetal bovine serum (FBS, pH 7.4) at 37°C. For this 

purpose, 200 µL of the release medium solution was withdrawn at predetermined time-

points, and replaced with equal volumes of the corresponding fresh pre-warmed medium 

to retain a constant volume of the release medium. After sampling, the aliquots were 

centrifuged for 3 min at 21382 rcf and the amount of SFN in the supernatant was analyzed 

by high-performance liquid chromatography (HPLC) as described above. For drug release 

assessment in the plasma, the supernatant of the centrifuged samples was mixed with 

acetone at 1:1 ratio, and centrifuged to precipitate and separate the plasma proteins. All 

measurements were repeated at least three times. 

Loading of the model anticancer drug, methotrexate (MTX), into the bare UnTHCPSi, 

Un-P and Un-P-P NPs was performed by immersing the NPs in the PBS solution of the 

drug (pH 8; 10 mg/mL) at a weight ratio of 20:1 w/w (drug:NPs) and stirring (570 rcf) at 

RT for 90 min (IV). MTX-loaded NPs were separated from the free drug by centrifugation 

at 21382 rcf for 7 min. To remove the drug molecules loosely adsorbed on the surface of 

the NPs, the NPs were gently washed twice with MilliQ-water. 

For drug release of MTX (IV) from bare UnTHCPSi, Un-P and Un-P-P NPs, 250 µg of the 

MTX-loaded NPs were redispersed in 20 mL of PBS (pH 7.4) at 37°C, and then, the same 

protocol used for SFN release study was also followed here, as described above.  

The quantification of the model drugs for the loading degree (III and IV) and drug 

release experiments were performed by HPLC. Detailed description of the procedures for 

loading measurements and the HPLC experimental setups can be found in the respective 

original publications (III and IV). 
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4.2 Cellular toxicity experiments 

4.2.1 Cell lines and culture (I‒V) 

The human B cell lymphoma (Raji; I), human T cell lymphoma (Jurkat; I), human 

monocyte cells (U937; I), murine leukemic machrophage cells (RAW 264.7), and human 

breast adenocarcinoma cell (MDA-MB-231 and MCF-7, III‒V) were selected for the in 

vitro studies (all from Amrican Type Culture Collection, USA) and monocyte-derived 

dendritic cells (MDDCs) for the ex vivo immunstimulation studies. The Raji, Jurkat, U937, 

MDA-MB-231 and MDDCs cells were grown in standard Rosewell Park Memorial 

Institute 1640 (RPMI 1640) medium supplemented by 10% (v/v) fetal bovine serum, 1% 

non-essential amino acids, 1% L-glutamine, penicillin (100 IU/ml), and streptomycin (100 

mg/ml) (all from EuroClone S.p.A., Italy). RAW 264.7 and MCF-7 cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented using the same compounds 

mentioned for RPMI 1640 medium. The cell cultures were maintained in a standard 

incubator (BB 16 gas incubator, Heraeus Instruments GmbH, Germany) at 37°C with an 

atmosphere of 5% CO2 and 95% humidity. For all the studied cell lines, the growth media 

were changed every other day until the time of the experiments. The subculturing was also 

performed when the cells were at 80% of confluency. For passaging and prior to each test, 

the adherent cells (RAW 264.7, MDA-MB-231 and MCF-7) were harvested with trypsin‒

PBS‒ethylenediaminetetraacetic acid (EDTA) (0.25%, v/v). 

4.2.2 Reactive oxygen species (ROS) assay (I) 

For this assay, the Raji, Jurkat, U937, and RAW 264.7 immune cells were separately 

prepared in 10 µM 2´,7´-dichlorodihydrofluorescein diacetate (DCF-DA) solution with a 

concentration of 210
5 

cells/mL and incubated for 1 h at 37°C. The solution was 

subsequently centrifuged in 1425 rcf for 5 min before washing and resuspending in HBSS 

at a final concentration of 210
5 

cells/mL. Then, 100 µL of the cell suspension were added 

to each well (20000 cells/well). In the final step, 100 µL of the PSi NPs (TOPSi, TCPSi, 

APSTCPSi, THCPSi and UnTHCPSi) with the concentrations of 50, 100 and 200 µg/mL 

added to achieve the final PSi concentrations of 25, 50 and 100 µg/mL. After treatment for 

6 and 24 h, dose and time-dependent measurements of the ROS generation were conducted 

by measuring the DCF fluorescence with Varioskan Flash. DCF-DA is nonfluorescent 

until the acetate groups are removed by the intracellular esterases (dichlorofluorescein 

formation) and the oxidation occurs within the cell (fluorophore DCF formation). 

Excitation and emission wavelengths were 498 and 522 nm, respectively, with hydrogen 

peroxide (0.09%) and HBSS treated cells as positive and negative controls, respectively. 

Data were obtained from at least three independent triplicates.  

In addition to ROS assay, other toxicological parameters including reactive nitric oxide 

species (RNOS) and tumor necrosis factor alpha (TNF-α) were measured according to the 

deatailed procedures described in the respective original publication (I). 
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4.2.3 ATP activity (I and III‒V) 

To assess the biocompatibility of the NPs, their toxicity towards the Raji (I), Jurkat (I), 

U937 (I), RAW 264.7 (I), MDA-MB-231 and MCF-7 (III‒V) cells was evaluated by 

measuring the ATP activity as described elsewhere [5]. Typically, 100 µL of the cell 

suspensions with the concentration of 210
5 

cells/mL in the cell media were seeded in 96-

well plates and allowed to attach overnight. Thereafter, the cell media was removed and 

the wells were washed twice with 1× HBSS (pH 7.4) prior to the addition of 100 µL of the 

PSi NPs with different surface chemistries at the concentrations of 25, 50, and 100 μg/mL. 

After 6 and 24 h incubation at 37°C, 100 µL of the reagent assay (CellTiter-Glo


 

Luminescent Cell Viability Assay, Promega, USA) was added to each well and the 

luminescence was measured using a Varioskan Flash. Negative (HBSS buffer solution) 

and positive (1% Triton X-100) control wells were also used and treated similarly as 

described above. The viability of the negative control was taken as 100%. All assays were 

conducted at least in triplicate. 

4.2.4 Genotoxicity analysis (I) 

The detection of the genetoxicity induced by the PSi NPs was evaluated using the 5-

bromo-20-deoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA) based kit 

assay (Millipore, Corporation, MA, USA). For this assay, 100 μL of the cells were seeded 

and cultured at a concentration of 2×10
5
 cells/mL in 96-well plates. After washing, 100 µL 

of the PSi NPs (50 and 200 µg/mL) prepared in HBSS (pH 7.4) were added to each well to 

achieve the final PSi concentrations of 25 and 100 µg/mL. According to the 

manufacturer’s protocol, the cells were further supplemented with 20 μL of the BrdU 

reagent and incubated for 6 and 24 h at 37°C. Cells were then fixed with a fixative solution 

and the DNA was denatured in one-step by adding 200 µL/well of the fixative solution and 

incubated at RT for 30 min. After three-times of washings, 100 µL/well of anti-BrdU 

monoclonal Ab was added to bind to the BrdU in the newly synthesized cellular DNA. 

Then, peroxidase labeled goat anti-Mouse IgG was added to make immune complexes 

detectable after 30 min incubation with the 100 µL/well of TMB peroxidase substrate at 

RT in the dark. Finally, the reaction product was quantified by the addition of 2.5 N 

sulfuric acid stop solution and measuring the absorbance using a microplate reader 

(Varioskan Flash) at a wavelength of 450 nm. HBSS and 1% Triton X-100 treated cells 

were used as negative and positive controls, respectively. All experiments were carried out 

in triplicate for each type of PSi NP and concentration, and also for each cell type tested. 

4.2.5 Hemocompatibility studies (I) 

Heparin-stabilized fresh human blood was obtained from anonymous donors from the 

Finnish Red Cross Blood Service and used within 2 h. A 5-mL sample of the whole blood 

was mixed gently with 10 mL of Dulbecco’s phosphate-buffered saline (D-PBS) before 

isolating the red blood cells (RBCs) from serum by centrifugation at 3000 rpm for 6 min. 
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The RBCs were then washed further for five times with sterile D-PBS solution. After 

washings, 2 mL of the RBCs were diluted to 40 mL by adding D-PBS (5% hematocrit) 

[265]. Next, 0.1 mL of the diluted RBC suspension was added to 0.4 mL of the PSi NP 

suspensions in D-PBS to a final concentration of 25, 50, 100, and 200 µg/mL. The 

suspension obtained was gently vortexed before incubating at static condition at RT for 1, 

4, 8, 24, and 48 h. Afterwards, the samples were gently vortexed again and centrifuged at 

18,531 rcf for 3 min. 100 µL of the supernatant was transferred to a new 96-well plate to 

measure the absorbance values of hemoglobin at 577 nm with a reference wavelength of 

655 nm using a microplate reader. D-PBS and water (0.4 mL) were used as negative and 

positive controls, respectively. 

To evaluate the morphological changes and also the PSi NP–RBC interactions, the 

diluted RBC suspension (5% hematocrit, 0.1 mL) was mixed with PSi NPs in PBS (0.4 

mL) at the final concentration of 100 µg/mL and incubated at RT for 4 h. The samples 

were then fixed with 2.5% glutaraldehyde and further incubated at 37°C for 1 h, followed 

by post-fixation using 0.5% osmiumtetroxide in PBS for 1.5 h. The cells were then 

dehydrated in increasing concentrations of 50, 70, 96, and 100% of ethanol for 5, 10, 20 

and 15 min, respectively. Finally, the cell suspensions were dropped onto plastic 

coverslips, dried, and sputter coated with platinum before being observed under scanning 

electron mycroscopy (SEM; Zeiss DSM 962). 

4.2.6 In vivo biochemical and histopathological experiments (I) 

For these experiments, 18-adult male Sprague‒Dawley rats weighting between 250 and 

275 g were used. All animals were kept at ventilated temperature-controlled animal room 

(20 ± 2 °C), with relative humidity of 60 ± 10%, and a 12-h light/dark daily cycle from 5 

days before starting the study. During this period, the animals were housed in standard 

polycarbonate stainless steel wire-topped cages with free access to rat chow and water ad 

libitum. The rats were randomly divided to 6 groups of 3 animals: control group (treated 

with normal 0.9% sodium saline) and five experimental groups to receive a single 

injection of TOPSi, TCPSi, APSTCPSi, THCPSi and UnTHCPSi NPs (700 µg/kg) via tail 

vein. After 24 h, the rats were anesthetized and the plasma samples were collected by 

cardiac puncture and analysed for measuring lactate dehydrogenase (LDH), aspartate 

transaminase (AST) and sodium (Na) amount. 

For the histological analyses, the tissue specimens from the liver, kidney and spleen of 

the rats were fixed in 10% solution of formalin in PBS and then processed routinely by 

embedding in paraffin. Afterwards, 5 mm sliced tissues were stained with hematoxylin and 

eosin (H&E) and examined under a light microscope (Olympus BH-2, Tokyo, Japan). 
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4.3 Immunostimulation experiments 

4.3.1 Dendritic cells (DCs) maturation (II) 

Since the PSi NPs with different surface chemistries did not show any sign of 

immunotoxicity on different immune cells at 25 µg/mL, this concentration was selected 

for further evaluation of possible surface chemistry dependent immunostimulatory 

responses. The first step was the generation of MDDCs. For this purposes, fresh peripheral 

blood mononuclear cells (PBMCs), obtained from 40 mL of the blood of individuals, were 

used for monocytes purification by means of anti-CD14 microbeads following the 

manufacturer’s protocol (Miltenyi Biotec, Germany). 

The CD14
‒
 fraction was placed in 10% dimethyl sulfoxide and frozen for a later 

lymphocyte proliferation test. To generate MDDCs, CD14
+
 monocyte cells were incubated 

in RPMI 164 medium (Life Technologies, Invitrogen, USA) supplemented with 10% fetal 

calf serum (FCS; Life Technologies, Invitrogen, USA), penicillin (100 IU/mL), 

streptomycin (100 µg/mL), as well as recombinant human rhGM-CSF (200 ng/mL) and 

rhIL-4 (100 ng/mL) (both from R&D Systems Inc., USA) for 5 days at 37°C. The 

produced immature DC (imDCs) were then recovered and used in the experiments. The 

impact of PSi NPs on DC maturation was evaluated by measuring the CD80, CD83, CD86, 

and human leukocyte antigens-DR (HLA-DR) expression on the surface of the cells. The 

imDCs were co-incubated with the PSi NPs at a concentration of 25 µg/mL in 96-well 

plates (Nunc, Roskilde, Denmark) for 48 h at 37°C. The reason for 48 h exposure of the 

cells with the NPs was the preliminary studies that showed the maximum effect for cell 

stimulation at this time point. After treatment with different PSi NPs, the cells were 

labeled with CD80, CD83, CD86, and HLA-DR monoclonal antibodies (BD Pharmigen, 

CA). Then, the cells were analyzed using a FACSCanto II flow cytometer (BD 

Biosciences, USA), and all the data was processed with FLOWJO software (Tree Star, Inc, 

USA). The results were expressed as the percentage of cells expressing the aforementioned 

markers. Culture supernatants were collected and stored at ‒20°C for subsequent analysis 

of the secreted cytokines. 

4.3.2 T cell proliferation and differentiation (II) 

The CD14 negative cells containing peripheral blood lymphocytes (PBL) were first 

labeled with 2 μM CellTrace carboxyfluorescein succinimidyl ester (CFSE) proliferation 

kit (Life Technologies, Invitrogen, USA) by incubating at RT and darkness for 10 min. 

After washing, the labeled PBL (1.5×10
5
) were co-cultured with 1.5×10

4
 of autologous 

MDDCs (Nunc, Roskilde, Denmark) with different PSi NPs at a concentration of 25 

µg/mL anf final volume of 250 μL or left untreated for 6 days at 37°C. Afterwards, the 

percentage of cells expressing CD3
+
CFSE

low
 was assessed by flow cytometry. The results 

were considered positive when the proliferation index (PI), calculated as: 
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PI =
[%CD3 + CFSElow stimulated (lymphocytes + DCs)][%CD3 + CFSElow unstimulated (lymphocytes + DCs)]

%CD3 + CFSElow (lymphocytes)
 

 

was >3 [266]. The percentage of CD4 and CD8 positive T cell subpopulations was also 

calculated after performing the same protocol and staining the cells with specific 

monoclonal Ab (BD Pharmigen, CA). Culture supernatants were collected and stored at ‒

20°C for subsequent analysis of the secreted cytokines. 

4.3.3 Cytokine secretion (II and III) 

The production of IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α was measured after 

incubating imDC and imDC-PBL co-culture with the PSi NPs using FlowCytomix kit 

(Bender MedSystems, Austria) and following the manufacturer's protocol (II). The results 

were expressed in pg/mL and were normalized after subtracting the respective production 

of the cytokine with the control groups. The cytokine secretion measurement was 

performed after 48 h for the imDC and after 6 days for the imDC-PBL co-cultures exposed 

to the PSi NPs.  

To assess the immunostimulatory response of the anti-CD326 Ab-conjugated 

UnTHCPSi NPs in the cancer cells (III), IL-2 secretion present in the supernatant of the 

samples prepared for antibody-dependent cell-mediated cytotoxicity (ADCC) was 

measured using a commercially available Human IL-2 ELISA kit (BD Biosciences, USA), 

as explained in the next section. The protocol performed for this ELISA assay was 

followed according to the manufacturer’s instructions and is described in the Supporting 

Information of the respective publication (III). 

4.3.4 ADCC-mediated immunotherapeutic effect (III) 

The ADCC test was performed to investigate if the effector immune cells were able to lyse 

the target cancer cells after attaching to the Fc portion of the Ab bound to the target cancer 

cells via their Fab section. Briefly, 100 µL of the MDA-MB-231 and MCF-7 cell 

suspensions at the concentration of 1.25×10
4
 cells/mL were seeded in 96-well plates and 

allowed to attach overnight. Thereafter, 95 µL of the cell media was removed and replaced 

with 25 µL of the pre-warmed ADCC assay buffer. Then, 25 µL of the pure and Ab 

functionalized UnTHCPSi (Un-Ab) NPs at the concentrations of 10, 25, 50, 75, and 100 

μg/mL were added to each well, followed by the addition of 1×10
5
 of the effector immune 

cells dispersed in 25 µL of the ADCC assay buffer. The same amount of free Ab was also 

tested during the study. After 8 h of incubation at 37°C, 75 μL of the Bio-Glo™ Luciferase 

Assay Reagent was added to all the wells (ADCC Reporter Bioassay, Core Kit, USA) and 

incubated at RT for 30 min. The luminescence of the wells was then measured using a 

Varioskan Flash. Cell samples only treated with ADCC assay buffer were considered as 

control. Wells only containing ADCC assay buffer and the Bio-Glo™ Luciferase Assay 

Reagent were considered as background. The experiments were performed at least in 

triplicate for each sample. 
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4.4 Cellular association and intracellular distribution 

4.4.1 Confocal microscopy and flow cytometry experiments (III‒V) 

The cellular interactions of the NPs with MDA-MB-231 and MCF-7 breast cancer cells 

were screened using an inverted confocal fluorescence microscopy (Leica SP5 II HCS A, 

Germany) (III‒V). For this purpose, Lab-Tek
®
 8-Chamber Slides (Thermo Fisher 

Scientific, USA) were used to seed the cells at a density of 5×10
4
 cells/well. After 

overnight incubation at 37ºC, the cell medium was removed and 250 µL of the 

fluorescently labeled PSi NPs (50 µg/mL) was added to each chamber. The cells were then 

incubated for 3 h (III) and 6 h (IV and V) with the NPs before three-times washing with 

HBSS‒HEPES (pH 7.4). Next, the plasma membrane of the cells was stained by a 3-min 

exposure of the cells to 200 µL of the CellMask
®

 (3 µg/mL; Invitrogen, USA) at 37°C. 

Washing was then performed twice with HBSS‒HEPES buffer before cell fixation by 

2.5% glutaraldehyde for 20 min. To check the endosomal escape of the polymer modified 

UnTHCPSi NPs (IV), the staining of the acidic organelles of the cells was done prior to 

cell membrane staining by adding 200 µL of the LysoTracker
®
 Blue DND-22 (50 nM; 

Invitrogen, USA) to the cells and incubating for 30 min at 37°C. Washing was then 

performed twice with HBSS‒HEPES (pH 7.4) to remove any free tracking agent. Finally, 

the intracellular localization was observed by confocal microscope. 

To quantitatively measure the percentage of cells associated with the NPs, flow 

cytometry studies were performed. For these experiments, cells were seeded in 6-well 

plates at a density of 7×10
5
 cells/well. After incubation at 37°C overnight, the cells were 

washed with HBSS‒HEPES (pH 7.4) and treated with fluorescently labeled Un-Ab NPs 

(50 µg/mL) for 3 h (III) and the polymer-modified PSi NPs (50 µg/mL) for 6 h (IV). Free 

NPs were then removed by washing three times with HBSS‒HEPES. Afterwards, the cells 

were detached by incubating with 300 µL of trypsin-PBS-EDTA mixture for 2 min. 

Thereafter, the fixation of the cells was performed with 2.5% glutaraldehyde in PBS for 30 

min and the samples were re-suspended in 700 µL of HBSS‒HEPES (pH 7.4) prior to the 

measurements using LSR II flow cytometer (BD Biosciences, USA) with a laser excitation 

wavelength of 488 nm. For competition experiments, 1 µg of the free Ab was added to the 

cells 30 min before exposing to Un-Ab for 3 h. Data were analyzed and plotted using 

Kaluza
®
 Flow Cytometry Analysis Software. To quench the fluorescence of the polymer-

modified PSi NPs associted to the surface of the cell membrane (IV), trypan blue (TB, 

0.005% v/v) was used before cell fixation, followed by three-times washing. 10,000 events 

were exactly obtained for each sample. The data was analyzed and plotted using Weasel 

software. For the Un-Ab (III) and the polymer-modified PSi NPs (IV and V), Alexa 

Fluor-488 and FITC were used as fluorescence labling agents, respectively. 

4.4.2 TEM imaging (III‒V) 

To evaluate the intracellular localization of the NPs, TEM imaging of MDA-MB-231 and 

MCF-7 breast cancer cells was performed after treatment with bare, Ab-functionalized 
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(III) and polymer-modified (IV and V) UnTHCPSi NPs. For this purpose, 13 mm round 

shape coverslips were placed at the bottom of 24-well plates (Corning Inc. Life Sciences, 

USA). Next, 10
5
 cells were seeded in DMEM and RPMI 1640 media for MCF-7 and 

MDA-MB-231 cells, respectively, and allowed to attach overnight. The cell culture media 

was then removed, and 500 μL of the NPs suspensions (50 μg/mL) were added to each 

well and the samples were incubated at 37°C for 3 h (III) and 6 h (IV and V). Afterwards, 

the particle suspension was removed and the coverslips were washed twice with HBSS‒

HEPES before fixing the cells with 2.5% glutaraldehyde in 0.1 M PBS solution (pH 7.4) 

for 1 h at RT. After fixation, the coverslips were rinsed twice with HBSS‒HEPES (pH 7.4) 

and sodium cacodylate buffer (NaCac) for 3 min prior post-fixation with 1% osmium 

tetroxide in 0.1 m NaCac buffer (pH 7.4). The cells were finally embedded in epoxy resin 

after dehydration of the cells with 30‒100% ethanol for 10 min each. Ultrathin sections 

(60 nm) were cut parallel to the coverslip, post-stained with uranyl acetate and lead citrate, 

and observed by TEM. 

4.4.3 In vitro anti-cell proliferative experiments (III‒IV) 

The in vitro anticancer effect of the SFN-loaded anti-CD326 Ab-functionalized 

UnTHCPSi NPs was evaluated by measuring the anti-proliferation effect on the MCF-7 

and MDA-MB-231 breast cancer cells. Typically, 100 µL of both cell suspensions at the 

concentration of 1.5×10
5
 cells/mL were seeded in 96-well plates and allowed to attach 

overnight. Thereafter, the cell media was replaced with 100 µL of the SFN-loaded 

UnTHCPSi NPs and SFN-loaded anti-CD326 Ab-functionalized UNTHCPSi NPs with 

different concentrations (III). The pure SFN was also examined at the concentrations 

similar to the drug-loaded NPs in the same conditions. After 8 and 24 h incubation at 

37°C, 100 µL of the CellTiter-Glo


 reagent assay (Promega, USA) was added to each well 

and the luminescence of the wells was measured using a Varioskan Flash. Negative (HBSS 

buffer solution) and positive (1% Triton X-100) control wells were also used and treated 

similarly, as described above. All data sets were compared with a negative control of 

HBSS (pH 7.4), considered as 100% proliferation.  

The antiproliferative effect of the MTX, MTX-loaded UnTHCPSi and MTX-loaded 

polymer-modified UnTHCPSi NPs was also evaluated after 6 h of incubation (IV), using 

the same protocol as described above. All the experiments were performed at least in 

triplicate. 
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5 Results and discussion 

5.1 Effect of the surface chemistry on the biocompatibility of the 

PSi NPs (I) 

In order to establish a safe nano-based therapy, it is of utmost importance to demonstrate 

the non-toxic nature of the nanomaterial in question. Thus, the toxicological 

manifestations of the immune cells exposed to the PSi NPs were evaluated with the aim to 

demonstrate the effect of the surface chemistry of five different types of PSi NPs, namely 

TOPSi, TCPSi, APSTCPSi, THCPSi and UnTHCPSi with similar size, surface area and 

pore volume on the mechanism(s) of immuno-genotoxicity in different types of immune 

cells. 

5.1.1 Analysis of the immunotoxicity mechanism of the PSi NPs 

Since the monitoring of the cytotoxicity mechanism by performing only one toxicity assay 

alone cannot be reliable and cannot clarify the real and the most important pathways 

involved in the toxic effect of the NPs (leading to false-negative or false-positive results 

due to the different mechanisms involved in the toxicity reactions), the effects of the PSi 

NPs on the different toxicological mechanisms, such as loss of the cell membrane integrity, 

ROS production, RNOS release and TNF-α production in the immune cells, were 

evaluated. All these cytotoxicity-indicating parameters are mutually well-known 

independent biological mechanisms capable of affecting the mitochondrial metabolic 

activity (ATP content) in conjunction with each other or separately, and subsequently 

leading to indirect DNA damage [5, 267, 268]. In fact, the loss of membrane integrity, 

oxidative stress and pro-inflammatory responses, all act via decreasing of the ATP content 

that finally results in indirect DNA damage [269]. On the other hand, direct DNA damage 

may also occur when NPs initiate an apoptotic stage in the cells in the absence of a 

significant change in ROS, RNOS, TNF-α or ATP content [270]. 

Hereupon, all the cytotoxicity results of the PSi NPs tested are summarized in Table 4 

to unveil the toxicity mechanism(s) as a function of the surface chemistry of the PSi NPs. 

As indicated in the Table 4, direct genotoxicity can be observed when significant DNA 

proliferation inhibition occurs despite negligible oxidative stress and proinflammatory 

responses, and the absence of change in the proper functionality of the cell membrane and 

mitochondria [271]. On the other hand, indirect DNA damage takes place when promoted 

ROS, RNOS, and TNF-α secretion lead to ATP depletion and DNA damage. In this case, 

there is no significant difference between ATP and DNA proliferation values of the 

affected cells [272]. The third possibility is when moderate changes in ROS, RNOS, TNF-

α and ATP content is followed by a high degree of reduced DNA proliferation, i.e., both 

direct and indirect mechanisms are involved, simultaneously. Table 4 also shows that 

depending on the cell type, surface chemistry and concentration, the PSi NPs can initiate 

direct, indirect or both of these genotoxicity mechanisms in immune cells. 
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The data gathered demonstrated that the positively charged APSTCPSi NPs present 

the lowest biocompatibility because of inducing various cytotoxicity mechanisms. This 

result is in line with the significant increase of the cytotoxicity observed in RAW 264.7 

macrophage cells after exposure to amine-modified porous SiO2 NPs [265]. The higher 

cytotoxicity of APSTCPSi NPs can be explained by their strong interactions with the 

negatively charged cell membranes. Generally, amine-modified positively charged 

particles can depolarize the membrane potential and increase the intracellular Ca
2+

 

concentration by triggering the plasma membrane Ca
2+

 influx pathway as well as by 

enhancing the Ca
2+

 release from the endoplasmic reticulum [273]. This effect eventually 

perturbs the cell membrane by the phase transition of the lipid bilayer [273]. The plausible 

explanation for the high biocompatibility of the TOPSi and TCPSi NPs in comparison to 

the other studied PSi NPs is attributed to their hydrophilicity. In this case, instead of strong 

and direct interactions with the cell membranes, these NPs make weak interactions with 

the cell surface proteins via the aqueous layer surrounding the NP’s surface [5]. The higher 

cytotoxicity observed for the THCPSi NPs compared to the TOPSi and TCPSi NPs can be 

attributed to the lower hydrophilicity and facilitated interactions with the cell membrane 

[5]. Moreover, the higher toxicity of UnTHCPSi NPs in comparison to THCPSi NPs 

seems to be resulted from the surface hydroxyl groups and hydrocarbon chains that 

facilitate more interactions with the ion-exchange pathways and the lipids and esters of the 

phospholipids in the cell membrane [274]. Overall, in this study, the cytotoxicity rank 

order of the PSi NPs was as follows: APSTCPSi > UnTHCPSi > THCPSi > TCPSi ≈ 

TOPSi. In general, Table 4 demonstrates that the different PSi NPs can induce various 

cytotoxicity mechanisms in different cells. For instance, ROS and TNF-α production 

seemed to be the main mechanisms of cytotoxicity in RAW264.7 macrophage cells, 

whereas the cytotoxicity in Jurkat cells was likely due to the RNOS production (I). This 

observation suggests that cells behave differently in the presence of the PSi NPs, and also 

that the PSi NPs’ toxicity is induced via different mechanisms depending on the cell line 

characteristics, such as doubling time, metabolic activity, growth pattern (i.e., whether 

being adherent or suspended cells), and the type of nanomaterial in contact with them [275, 

276]. The results of the cytotoxicity analysis performed for U937 and RAW 264.7 cells 

can be found in the respective original publication (I). 

The main reason for selecting various immune cells for the cytotoxicity analyses was 

the fact that less attention to this issue has been paid in the literature, and that the NPs 

applied for immunostimulatory purposes can show different behaviors in different types of 

immune cells. In addition, the NPs can also differently affect the behavior of the immune 

cells by slight modification of their physicochemical properties, concentration and 

exposure time. Herein, the idea was to clarify that while one specific type of NP can show 

high safety on one type of immune cells, it can probably, in turn, induce cytotoxic effects 

in other type of immune cells. Accordingly, for nano-based immunotherapeutic purposes, 

it is crucial to investigate the effect of the NPs on different types of immune cells as the 

proper function of the immune system is highly dependent on the activity of all the 

components. Therefore, any cytotoxicity observed on even one type of immune cells may 

induce different unwanted physiological alterations and lead to reduced therapeutic effects. 
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Table 4. Overview of the cytotoxicity mechanism analyses of the immune cells exposed to 

different PSi NPs as a function of the NPs’ surface chemistry and concentration. The 

results of the cytotoxicity analysis performed for U937 and RAW 264.7 cells can be found 

in the respective original publication (I). 

 

PSi NP 
Concentration 

(µg/mL) 
ROS RNOS 

TNF-

α 

ATP 

content 

DNA 

damage 

Cytotoxicity 

mechanisms 

  Raji cells  

TOPSi 
25 1 1 1 1 1 a 

100 2 1 2 1 3 b 

TCPSi 
25 1 1 1 1 1 a 

100 1 2 2 1 3 b 

APSTCPSi 
25 3 2 1 2 2 c 

100 3 2 4 2 3 d 

THCPSi 
25 1 1 2 1 1 a 

100 2 2 4 2 2 c 

UnTHCPSi 
25 1 1 1 1 1 a 

100 1 1 1 1 3 b 

  Jurkat cells  

TOPSi 
25 1 3 1 1 1 a 

100 1 4 1 4 4 c 

TCPSi 
25 1 2 1 1 1 a 

100 1 4 1 4 3 c 

APSTCPSi 
25 1 4 1 4 3 c 

100 3 4 2 4 4 c 

THCPSi 
25 1 3 1 1 1 a 

100 1 4 1 4 3 c 

UnTHCPSi 
25 1 4 2 1 1 a 

100 2 4 4 4 4 c 
 

1: ROS production <15 % of the positive control; <1.2-fold increase of RNOS and TNF-α compared to the 

control; ATP-content and DNA proliferation >80%. 

2: ROS production of 1525% of the positive control; 1.21.4-fold increase of RNOS and TNF-α compared 

to the control; ATP-content and DNA proliferation of 6080%. 

3: ROS production of 2535% of the positive control; 1.41.6-fold increase of RNOS and TNF-α compared 

to the control; ATP-content and DNA proliferation of 4060%. 

4: ROS production >35 % of the positive control; >1.6-fold increase of RNOS and TNF-α compared to the 

control; ATP-content and DNA proliferation of <40%. 

a Very low toxicity. In this case, despite small production of ROS, RNOS and TNF-α, there was no change 

in the ATP-content or DNA proliferation. 

b Direct DNA damage. In this case, ROS, RNOS or TNF-α production could not reduce the ATP-content 

and the ATP-content value was considerably higher than the DNA proliferation values. 

c Indirect DNA damage. In this category, despite a decrease in the ATP-content due to ROS, RNOS or TNF-

α production, there was no significant difference between the ATP and DNA proliferation values or even 

the ATP-content was less than the DNA proliferation results. 

d Simultaneously direct and indirect DNA damage. In this case, ROS, RNOS and TNF-α production caused 

a decrease in the ATP-content; however, the DNA proliferation results were considerably less than the the 

ATP-content, indicating that both mechanisms are involved in the cytotoxicity. 
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5.1.2 Hemocompatibility 

In order to evaluate the impact of the PSi NPs’ surface chemistry on the RBCs, the amount 

of lysed hemoglobin was determined after exposure to the PSi NPs. Shorter incubation 

times (1, 4 and 8 h) caused very small RBC destruction in comparison to the long exposure 

time (24 h), for all the PSi NPs tested (Figure 8A–C), highlighting the time dependency of 

the hemolysis process. In addition, while 25 µg/mL of all the PSi NPs did not induce more 

than 6% hemolysis after 24 h, 200 µg/mL of the PSi NPs significantly increased the extent 

of hemolysis, indicating a clear concentration dependency in the hemolysis by the NPs. 

Overall, this data pointed towards a synchronous relationship of the PSi NPs concentration 

and the exposure time with the RBC hemolysis. Generally, the hemolytic activity of 

APSTCPSi and UnTHCPSi NPs was higher than that of observed for TOPSi, TCPSi and 

THCPSi NPs. The plausible explanation for this behavior is the hydrophilicity of TOPSi 

and TCPSi that hinders their interaction with the cell membrane and more predominant 

effect of the negative charge of the THCPSi NPs compared to their hydrophobicity, which 

probably causes less interactions of the NPs with the surface negative charges of the RBCs. 

Contrarily, despite the hydrophilic nature, more predominant impact of the positive surface 

charge of APSTCPSi NPs facilitated the interactions with the negatively charged RBCs’ 

surface membranes, which, in turn, led to the highest rate of hemolysis compared to the 

other PSi NPs. Interestingly, the comparison between UnTHCPSi and THCPSi NPs also 

showed that the former caused a greater hemolysis rate, demonstrating a relatively stronger 

interaction of the hydroxyl groups on the surface of the UnTHCPSi NPs with the cell 

surface. Overall, the hemolytic activity results suggested that the negatively charged 

hydrophilic PSi NPs (TOPSi and TCPSi) are more hemocompatible than the positively 

charged hydrophilic APSTCPSi. This is in line with previous reports comparing positively 

charged amine-modified mesoporous SiO2 materials with their bare counterparts [265].  

Since the lack of hemolysis does not guarantee the hemocompatibility of the PSi NPs, 

the surface interactions between RBCs and PSi NPs was also investigated by SEM 

imaging. As shown in Figure 8D, very small amounts of TOPSi and THCPSi NPs were 

adsorbed onto the surface of erythrocytes. In contrast, a large amount of UnTHCPSi NPs 

were attached onto the cell membranes of RBCs after 4 h, inducing strong shrinkage and 

morphological changes because of the membrane wrapping around the PSi NPs, which can 

ultimately lead to hemolysis. All these findings demonstrated the hemocompatibility 

capacity of the PSi NPs in the following order: TOPSi ≈ THCPSi > TCPSi > UnTHCPSi ≈ 

APSTCPSi. 
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Figure 8   Hemotoxicity of the PSi NPs. Hemolytic activities were monitored within 24 h of 

incubation of the human erythrocytes at 37°C with incremental concentrations of 25 (A), 100 (B), 

and 200 (C) µg/mL of different PSi NPs. The presence of the lysed hemoglobin in the supernatant 

was measured by a spectrophotometric method at 577 nm. Effect of the PSi NPs on the 

morphology of the RBCs (D). SEM pictures of RBCs incubated at RT for 4 h with 100 µg/mL of 

different PSi NPs. Morphological changes of the surface of RBCs are indicated by the white 

arrows. The higher the PSi NP attachment to the surface, the higher the spiculation was observed 

on the cell’s surface. The SEM images increase in magnification from left to right. Scale bars are 2 

µm. Copyright © (2013) Elsevier B. V., reprinted with permission from [277]. 

5.1.3 in vivo histopathological and biochemical biocompatibility 

In order to investigate the in vitro-in vivo correlation of the PSi NPs cytotoxicity, the 

kidney, liver and spleen of the rats injected with the PSi NPs were subjected to 

histopathological analysis. As it can be seen in Figure 9, no evidence of severe 

histopathological changes like necrosis was detectable among the experimental groups. 
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However, mild to moderate adverse histological changes were observed in some cases. For 

example, the animals injected with TOPSi and THCPSi NPs showed slight structural 

changes, including mild inflammatory cell infiltration with TOPSi and mild reduction of 

the glomerular Bowman’s space with THCPSi NPs in the kidney. In addition to the 

glomerular degeneration and inflammatory cell infiltration in the animals treated with 

UnTHCPSi, these NPs could also cause loss of integrity in the kidney. The hepatic central 

vein intima dilation and disruption was also observed in the liver after injection of the 

UnTHCPSi NPs. In the spleen, red pulp expansion and relative white pulp shrinkage were 

observed in the UnTHCPSi treated group, indicating a decrease in the number of 

lymphocytes in the spleen. 

 

 

Figure 9   Representative histological results following intravenous injection of the different PSi 

NPs in rats. The H&E staining of the kidney revealed less toxicity of TOPSi, TCPSi and THCPSi 

than APTCPSi and UnTHCPSi NPs (I). The histological changes included mild (TOPSi, TCPSi 

and APTCPSi) and moderate (UnTHCPSi) inflammatory cell infiltration (>), mild reduction of the 

glomerular Bowman’s space ( ), glomerular degeneration ( ), and loss of integrity ( ). 

Examination of the livers showed hepatic central vein intima dilation and disruption ( ) in 

UnTHCPSi treated rats and normal structure for TOPSi and THCPSi NPs. In the spleen, depletion 

of white pulp (W) compared to the red pulp (R) was observed in the UnTHCPSi treated rats. 

Normal structures of the tissues of the rats treated with saline only are also shown for comparison. 

The histological changes induced by APSTCPSi and TCPSi NPs in the examined tissues can be 

found in the respective original publications (I). Copyright © (2013) Elsevier B. V., reprinted with 

permission from [277]. 



46 

 

To investigate whether the mild histological changes may cause changes in the normal 

functionality of the tested organs, LDH, AST and Na contents were measured in the blood 

samples of the rats treated with the PSi NPs (I). The results showed significantly altered 

values after intravenous administration of APSTCPSi and UnTHCPSi in rats, confirming 

the mild toxic effects of the aforementioned PSi NPs in the liver. Nevertheless, no change 

in the other biochemical and hematological parameters were observed, particularly not in 

the serum creatinine level and blood urea nitrogen that are markers of the kidney function. 

This shows that the histological changes did not lead to significant abnormalities in the 

tested organs. In addition, the hematological factors also did not show any significant 

variation compared to the control for all the tested NPs. Altogether, the in vivo results can 

be regarded as an indicative proof of remarkable biosafety for all the PSi NPs tested 

despite the higher cytotoxicity reactions observed for APSTCPSi and UnTHCPSi PSi NPs.  

 

 

5.2 Effect of surface chemistry of the PSi NPs on the 

immunostimulatory responses (II) 

Since the previous studies showed acceptable safety of all the tested PSi NPs at 25 µg/mL, 

this concentration was selected for further investigations in terms of immunostimulatory 

responses. It was hypothesized that the failures or efficient responses of the nano-based 

immunotherapeutic formulations may, at least partially, arise from the impact of the NPs’ 

surface chemistry on the induction of antagonistic‒agonistic effects through interacting 

with various immunological pathways. 

5.2.1 Inducing DC maturation and stimulation by PSi NPs 

One of the fundamental steps for eliciting an effective immune response is the maturation 

of DCs. Accordingly, the PSi NPs were characterized for their potential to induce MDDC 

maturation ex vivo by determining the expression of CD83, a well-known maturation 

marker, co-stimulatory molecules CD80 and CD86, and antigen presenting marker MHC-

II (Figure 10). Untreated MDDCs were used as imDC controls characterized by low or 

negligible expression of DC maturation markers. The results showed that the NPs can 

induce different levels of MDDC maturation compared to imDC. For example, the 

UnTHCPSi, TCPSi and APSTCPSi NPs slightly stimulated the expression of CD86 and 

HLA-DR. In contrast, the other PSi NPs promoted the upregulation of all the markers to 

different extents, depending on their surface chemistry. For example, the percentage of all 

the measured markers was significantly increased after exposure to the TOPSi and 

THCPSi NPs. In addition, while Un-P induced significant expression of the CD83, CD86 

and HLA-DR markers, the APM NPs overexpressed CD86 co-stimulatory molecule and 

HLA-DR. These results suggest obvious surface chemistry dependent effects on the co-

stimulatory and maturation markers’ expression. Overall, TOPSi and THCPSi induced the 

highest rates of MDDC maturation, while TCPSi and APSTCPSi NPs induced very low 

maturation in MDDC. 
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Figure 10   Percentage of the cells expressing CD80, CD83, CD86 and HLA-DR on DCs. DCs 

were derived from healthy human monocytes and the expression of markers was measured after 48 

h of incubation with the PSi NPs at the concentration of 25 µg/mL. Cells were stained using 

specific antibodies against each marker and analyzed by flow cytometry. The effect of each NP was 

compared with imDC by using the Wilcoxon test and the level of significance was set at the 

probability of *p < 0.05. Copyright © (2013) Elsevier B. V., reprinted with permission from [278]. 

DCs are the primary target of many immunostimulative agents due to their ability to 

initiate both cellular and humoral immune responses [279], by providing MHCII‒TCR and 

CD80/86‒CD28 signals, which are not only crucial for T cell activation, but also for T cell 

proliferation and differentiation [280, 281]. If the first signal activates concurrent with the 

absence of the second signal, the immune-tolerance will occur due to the T cell anergy 

[282], leading to immune system suppression. Thus, by exploiting the properties of the 

NPs to synergistically improve the effect of the immunotherapeutic molecules by affecting 

the aforementioned markers, the NPs can be useful for immunotherapeutic applications. 

The increased expression of co-stimulatory molecules (Figure 10) can improve the 

functionality of DCs in capturing the fragments of pathogens and physically presenting 

peptides of foreign antigen to T cells in the cleft of surface receptors known as the MHC 

molecules [283]. Our results suggest the high potential of TOPSi (SiOx-layer) and THCPSi 

(SiCxHy-layer) NPs for inducing DC maturation, which is very important in facilitating the 
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activation of immune responses and inducing T cell differentiation [284]. This finding can 

open up a possibility for using the PSi NPs in immunotherapy against different diseases.  

5.2.2 Cytokine secretion and T cell responses 

The secretion of cytokines during the DC maturation studies was investigated in parallel to 

the expression of surface markers using flow cytometry and after 48 h exposure of the DCs 

to the NPs. The TOPSi and THCPSi NPs were the only NPs with the ability of enhancing 

the secretion of all the examined cytokines, except for IL-4 that is the indicative of Th2 

cells (Figure 11A). This result is in agreement with the expression of the maturation 

markers on the surface of the DCs, where TOPSi and THCPSi NPs induced the highest 

level of maturation. The other NPs were only able to downregulate the secretion of IL-4 

and showed no effect on the other tested cytokines. These results show the potential of 

these two PSi NPs for immunostimulative purposes owing to the different pathways that 

can be activated by each one of the increased cytokines. For example, IFN- and IL-12 

drive naive T cells to differentiate into Th1 cells and induce cellular immunity against 

intracellular pathogens, while IL-6, IL-1 and TNF- contribute in the positive regulation 

of immunostimulative responses [39-42, 50, 51, 285].  

This demonstrates the potential of NPs with higher C‒H structures on the outermost 

surface layer to highly stimulate the immune responses. All the NPs tested containing 

nitrogen or oxygen on the outermost backbone layer of Si had lower immunoactivation 

responses than the THCPSi and TOPSi. This is in good agreement with the study of 

Moyano et al. [7], who demonstrated a low immune response for NPs with less 

hydrophobicity and with oxygen or nitrogen on their surfaces. The high 

immunostimulatory response of TOPSi, despite the presence of oxygen on its surface and 

hydrophilicity, was related to its significantly higher dissolution rate in aqueous solution 

[286] compared to the TCPSi and THCPSi, leading to silicic acid formation, a safe 

compound with immunostimulating properties [287].  

In contrast to the potential of TOPSi and THCPSi NPs on the immunostimulation, the 

cells exposed to the TCPSi and APSTCPSi NPs showed lower co-stimulatory molecule 

expression and no cytokine release in the DCs. These results, together with no detectable 

levels of immune cell proliferation, suggested that these NPs did not induce 

immunostimulatory response, showing their potential use for the delivery of 

immunosuppressive compounds as a result of no significant immunostimulative properties 

[288].  

Since it is generally accepted that the co-stimulatory signal activation and cytokine 

secretion are the most effective inducers of T cell differentiation, the impact of the PSi 

NPs on T lymphocyte proliferation was investigated by co-culturing CFSE loaded 

autologous PBL with MDDCs co-cultured with different PSi NPs. The results showed that 

TCPSi and APSTCPSi NPs did not induce T lymphocyte proliferation (Figure 11B). In 

contrast, positive T cell proliferation index (PI > 3) [266] was observed at different rates 

when the cells were treated with APM, TOPSi, Un-P, UnTHCPSi and THCPSi NPs, 

suggesting that the surface chemistry of the PSi NPs can affect the rate of lymphocyte 

proliferation. 
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Figure 11   Cytokine secretion from matured DCs cultured with different PSi NPs at 25 µg/mL for 

48 h (A). The analyzed cytokines included IFN-, IL-12, IL-1, IL-4, IL-6, and TNF-α. The data 

was normalized after subtracting the respective cytokine production with imDC and presented as 

average values. Wilcoxon test was used for the statistical analysis and the level of significance was 

set at the probability of *p < 0.05. Lymphocyte proliferative responses are presented after the 

treatment of the cells with different PSi NPs (25 µg/mL) for 6 days at 37°C. The direct impact of 

different PSi NPs on inducing CD3
+
 (A) as well as CD4

+
 and CD8

+
 (B) T cells proliferative 

responses were investigated. TCPSi and APSTCPSi NPs were the only ones without the capability 

of inducing CD3
+
 T cell proliferation. The level of significance was set at the probabilities of *p < 

0.05 and **p < 0.01, measured for all the particles against APM NPs. Copyright © (2013) 

Elsevier B. V., reprinted with permission from [278]. 

In addition, the proliferative responses of CD4
+
 and CD8

+
 T lymphocytes were 

determined (Figure 11C). The results showed that Un-P, THCPSi and APM NPs induced a 

positive proliferation for both the CD4
+
 and CD8

+
 T cells. TOPSi NPs were the only type 

of PSi NPs that were able to induce proliferation only in the CD8
+
 T cells. TCPSi and 

APSTCPSi NPs did not produce a positive proliferative response for any of the T cell 

subpopulations. With the exception of Un-P, other stimulative NPs slightly induced more 

proliferation of CD8
+
 T cell subpopulation than CD4

+
 T cell subpopulation. 
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5.3 Antibody functionalized PSi NPs for targeted cancer chemo-

immunotherapy (III) 

To further investigate the importance of the surface properties of the NPs and their 

biological interactions, Ab-functionalized PSi NPs were prepared and tested for the 

potential of combined targeting, chemotherapy and immunotherapy to synergistically 

increase the efficacy of cancer treatment. The Abs on the surface of the NPs have the 

ability to render targeting as wells as immunostimulatory properties to the NPs (mainly via 

ADCC activation). 

5.3.1 Ab-mediated cell‒NP interactions  

To evaluate the impact of the surface modification of PSi NPs with Ab on both the cellular 

inteactions and the immune responses, anti-CD326 Ab-functionalized UnTHCPSi (Un-Ab) 

NPs were prepared. To confirm the specificity of CD326-mediated targeting of the NPs, 

the cell uptake was studied by confocal microscopy using CD326 overexpressing MCF-7 

cells and MDA-MB-231 control cells, which have negligible expression of the receptor on 

their surface (Figure 12A and B). Results showed that when Alexa Fluor 488-labelled Un-

Ab NPs were tested in MCF-7 cells, many of the NPs interacted with the cell membrane 

and resulted in a substantial increase in the cellular association, as seen by the green color 

in the confocal image. In contrast, for MDA-MB-231 cells exposed to the Un-Ab NPs, no 

targeting to the CD326 negative cells was observed. Similarly, after incubation of the cells 

with the Alexa Fluor 488-labeled UnTHCPSi NPs (III), very weak green fluorescent 

signal was detectable in both the cell lines, showing weak cell–NP interactions. These 

results indicate that many of the NPs were able to interact with the CD326 positive cells 

after surface modification with the Ab. To further support these results, TEM imaging of 

both the cancer cells exposed to the free and Ab-functionalized NPs was performed. The 

results showed that after 3 h incubation with the UnTHCPSi NPs, there was no observable 

cellular association with either of the cancer cells (Figure 12C and E). In contrast, in MCF-

7 cells, high localization of the Un-Ab was observed in the proximity of the cell membrane 

and inside the cells (Figure 12D), attributed to the NPs targeting towards the CD326 

receptors of the cells. Very few Un-Ab NPs were also taken-up by the MDA-MB-231 cells 

(Figure 12F), possibly via nonspecific endocytosis and owing to the surface charge of the 

NPs (zeta-potential of 11.6 ± 1.1 mV). In addition, since a few of MDA-MB-231 cells 

express CD326 receptor on their surface, the observed cellular association can also be 

related to the interaction of Un-Ab NPs with the positive CD326 in the MDA-MB-

231cells.  
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Figure 12   Confocal fluorescence microscopy analysis of the MCF-7 (A) and MDA-MB-231 (B) 

cells incubated with 50 µg/mL of the Un-Ab NPs at 37°C for 3 h. CellMask and Alexa Fluor-488 

were used for staining of the cell membranes and the NPs in red and green color, respectively. 

TEM images of MCF-7 (C and D) and MDA-MB-231 (E and F) cells treated with 50 µg/mL of the 

bare and Un-Ab NPs for 3 h. Competitive inhibition cellular uptake for Un-Ab NPs in MCF-7 (G) 

and MDA-MB-231 (H) cells after pre-incubation with free anti-CD326 Ab for 30 min and followed 

3 h exposure time with the NPs. The red, blue, and grey histograms are representative of the cells 

incubated with HBSS (control), the cells exposed to the Un-Ab with no pre-incubation step, and 

competitive cellular uptake of the Un-Ab NPs after pre-incubating with free Ab, respectively. 

Quantitative determination for the cell‒NP interactions (I). About 10,000 events were evaluated 

for each measurement. Error bars represent s.d. (n ≥ 3). The level of the significant differences of 

the non-competitive and competitive samples was set at a probability of ***p < 0.005. Copyright 

© (2014) Springer, reprinted with permission from [289]. 
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To validate the significant role of the Ab on the high cellular interactions of the Un-Ab 

NPs with MCF-7 cells, a competitive inhibition assay was also performed. The flow 

cytometry histograms (Figure 12G and H) showed significant decrease of the fluorescence 

intensity of the tested MCF-7 cells exposed to both the free Ab and Un-Ab NPs when 

compared to the cells exposed to the Un-Ab NPs alone. These results demonstrated that by 

using free Ab as a competitive inhibitor, the cellular interactions of the Un-Ab NPs were 

reduced due to the lower availability of the CD326 receptor on the cell surface for the NPs. 

Moreover, and in turn, this also suggested a specific targeting of the surface expressing 

CD326 cells via the developed Un-Ab nanovectors. As expected, the results for MDA-

MB-231 cells were in contrast to the MCF-7 cells and showed no difference between the 

Un-Ab and Un-Ab pre-exposed to the free Ab. The quantitative analysis of the flow 

cytometry results are shown in Figure 12I.  

5.3.2 Immunotherapeutic potential of Ab-functionalized UnTHCPSi NPs 

To investigate the immunotherapeutic potential of the Un-Ab NPs and to check whether 

the Ab function could be affected after the conjugation onto the NPs’ surface, the ADCC 

induction was performed as the main immunocytotoxic mechanism of the monoclonal Ab 

[290] for the free Ab, Ab-conjugated NPs, and pure NPs. Figure 13A shows that while the 

Un-Ab and free Ab could significantly induce the concentration dependent ADCC activity 

in MCF-7 cells in a similar manner, no considerably increased ADCC activity was 

detectable in MDA-MB-231 cells. In addition, in both the cancer cells, no increase of the 

ADCC activity was observed after treatment with the bare UnTHCPSi NPs and controls 

(data not shown). Since the ADCC activation is an immunotherapeutic mechanism in 

which an effector immune cell lyses a target cell, whose surface antigens are occupied by 

an Ab where its Fc portion is attached to the FcγRIII surface domains of the immune cells 

[291], the main reason for the absence of ADCC activation in MDA-MB-231 cells is the 

lack of CD326 antigen on the cell’s surface. 

In addition to the direct effect of the ADCC activation on lysing the targeted cancer 

cells, this mechanism can also indirectly improve the immunotherapeutic effect by 

enhancing cytokine production from the activated effector immune cells interacting with 

the target cells via the Ab [292]. Therefore, the IL-2 release was screened to evaluate 

whether the binding of the immune cells to the membrane surface antigens via FcγRIII 

could activate the cytokine secretion. As shown in Figure 13B, and in concordance with 

the ADCC results, the data showed no significant increase in the values for both the 

concentrations of the UnTHCPSi, Un-Ab, and free Ab in MDA-MB-231 cells, because of 

the low expression of CD326 on the surface of these cells. In MCF-7 cells (Figure 13C), 

while there was no increase in the IL-2 amount for UnTHCPSi NPs compared to the 

control (mixture of cancer and immune cells treated with medium), the IL-2 release was 

significantly increased after the treatment of the MCF-7 cells with Un-Ab, as well as with 

an equal amount of free Ab-conjugated to 25 and 100 µg/mL of the NPs. Since IL-2 

induces immune responses via stimulating the proliferation of T cells against the specific 

recognized antigen [293], it can be used as an immunotherapeutic cancer suppressor in the 

developed nanovectors. Taken altogether, these results confirmed the crucial role of 
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immune‒cancer cell interactions for the cell-mediated immune defenses via ADCC 

activation and subsequent enhancement of the levels of the corresponding cytokines at the 

site of interaction. 

 

 

Figure 13   Immunological effects of the developed Un-Ab NPs on the breast cancer cells. The 

ADCC activity (A) was determined after the incubation of the target cells with the effector cells 

(effector immune cell to the target cell ratio of 8:1), along with various concentrations of free anti-

CD326 monoclonal Ab, as well as Un-Ab with an equal amount of the free tested Ab for 8 h. IL-2 

production assessment in MDA-MB-231 (B) and MCF-7 (C) cells after 24 h incubation with 

UnTHCPSi and Un-Ab at the concentrations of 25 and 100 µg/mL, as well as of free Ab at 

concentrations of 0.037 and 0.0148 µg/mL (equivalent to the amount of Ab-conjugated to the low 

and high concentrations of the tested Un-Ab NPs). All the data sets were compared with the 

samples containing cancer and immune cells treated with the medium alone. The data shows the 

mean ± s.d (n = 4). The level of the significant differences was set at a probability of *p < 0.05, 

compared to the samples treated with medium. Copyright © (2014) Springer, reprinted with 

permission from [289]. 

As it has been shown that the inhibitory effect of Ab-mediated immunotherapeutic 

mechanisms occur at the highest rate in earlier stages of the disease or when the tumor 

burden is small [294], it is illusive to expect efficient antitumor activity with just single Ab 

therapy in advanced cancer, where immune function is impaired as a consequence the 

nature of the disease [295]. Hence, our approach for the development of drug-loaded Un-

Ab nanovectors points to the applicability of such nanovectors in getting synergistic 

anticancer response by increasing drug delivery to the target site, as well as ADCC 

activation and cytokine release. Nevertheless, we are currently at an early stage of 
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understanding about the therapeutic potential of Ab in targeted nanosystems and more 

studies are needed to develop efficient chemo-immunotherapeutic formulations by the Ab-

conjugated drug loaded nanocarriers. 

5.3.3 Drug release and anticancer effect  

Although it is often assumed that the drugs loaded inside targeted NPs are released after 

reaching the target site, there is a high possibility for rapid unfavorable drug release after 

the intravenous administration [296]. Therefore, nanosystems with minimum drug release 

in the blood circulation are desirable for successful drug targeting. In this context, and as 

shown in Figure 14A, only ca. 15% of the pure drug was dissolved in human plasma over 

a 6 h period, ascribed to the very low solubility of SFN [297]. The use of PSi NPs led to a 

significant increase in the solubility of the anticancer drug to ca. 40% in 4 h. In contrast, 

for the Un-Ab, the accumulative drug release was less than 30% over the same time 

period. It can be deduced that the electrostatic interaction between the drug and the Ab 

may take place and slow down the drug release. Besides, as Ab conjugation was performed 

after the drug loading, pores can be partially blocked by the Ab and delay the drug release. 

The drug release amount remained constant until 24 h in all the tested samples (data not 

shown). Accordingly, it can be concluded that, although the developed nanovectors could 

improve the solubility of SFN in human plasma, the major part of drug (approximately 

70%) was not immediately released and remained inside the pores of the NPs, suggesting 

the possibility of efficient delivery to the cancer cells via the CD326 receptor targeting. 

After confirming the ability of the SFN-loaded Un-Ab NPs in sustaining the drug 

release and targeting, the assessment of the anti-proliferation effect of the NPs was also 

evaluated. An ATP-based luminescence assay was performed in both the cancer cells after 

24 h exposure to the pure SFN, SFN-UnTHCPSi and SFN-Un-Ab NPs (Figures 14B and 

C). The anti-proliferative action on the MDA-MB-231 cells with negligible surface 

expression of the CD326 antigen showed no significant differences in the inhibitory effect 

of the SFN-UnTHCPSi NPs after Ab conjugation due to the very low cellular interaction 

with the cells, as shown in the confocal microscopy studies (Figure 12A and B). In MDA-

MB-231 cells, the higher effect of the pure drug can be ascribed to its higher availability 

for the cells compared to the loaded ones, where majority of the drug is inside the NPs’ 

pores and very low cellular interactions occur between the NPs and cells. These results 

demonstrated the absence of specific anticancer effect of the SFN-Un-Ab in MDA-MB-

231 cells, and also suggested that the proliferation inhibition effect in MDA-MB-231 cells 

is mostly originated from the amount of drug released from the NPs rather than from the 

cellular uptake of the drug-loaded NPs.  

In MCF-7 cells (Figure 14C), the cell proliferation inhibition effect of the targeted 

SFN-Un-Ab NPs and pure drug was higher than that of the SFN-UnTHCPSi NPs at the 

studied time-points. This is attributed to the superior interaction of the SFN-Un-Ab NPs 

with the cells and better accessibility of the pure drug to the cells compared to the SFN-

UnTHCPSi NPs. Although the SFN-Un-Ab NPs showed less inhibitory effect than the 

pure drug at 8 h (III), owing to their low drug release and the time needed for the uptake 

of the NPs, a similar trend was observed for both the samples after 24 h (Figure 14C). This 



55 

 

can be explained by the high CD326-mediated endocytosis of the SFN-Un-Ab over time, 

which probably resulted in the accumulation of the drug inside the cells and subsequent 

anticancer effect. Generally, very slow drug release in the bloodstream and increased 

cellular uptake by employing a functional surface moiety like Ab can be considered as a 

good combination for specific drug targeting to the cancer cells by means of NPs [298]. 

Moreover, the specific anticancer effect can be synergized in vivo by applying a suitable 

Ab with the ability of inducing ADCC activation and cytokine secretion from the effector 

immune cells, as explained in the previous sections. This approach can be applied to 

decrease the dosage required for efficient cancer treatment and also to minimize the side 

effects of the conventional anticancer drugs via desirable drug delivery kinetics to the right 

site in the body. 

 

 

Figure 14   Dissolution profiles of pure SFN, SFN-UnTHCPSi and SFN-Un-Ab in human plasma 

at 37°C (A). Growth inhibition effect of the pure SFN, SFN-UnTHCPSi and SFN-Un-Ab NPs are 

presented in MDA-MB-231 (B) and MCF-7 (C) cells. The NPs were suspended in the PBS 

containing 10% of FBS (pH 7.4). The cells were exposed to the samples for 24 h at 37ºC. The 

highest concentration of the pure SFN was prepared in 0.7% v/v of acetone in PBS containing 10% 

FBS solution (pH 7.4). The rest of the drug concentrations were prepared by a serial dilution of 

the highest drug concentration using PBS containing 10% FBS. The cell viability in 0.7% acetone 

solution was 96 ± 3%. The data represent the mean ± s.d. (n = 3). All measurements were 

performed in triplicate. Copyright © (2014) Springer, reprinted with permission from [289]. 
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5.4 Surface polymeric engineering of the PSi NPs for the cellular 

interaction enhancement (IV and V) 

In addition to the surface functionalization with the Ab to enhance specific interactions 

with the cells, numerous attempts have been made to find new approaches to improve 

unfavorably low cellular interactions of the NPs by other methods [299, 300]. For example, 

cell penetrating peptides have been widely used for cellular uptake enhancement despite 

several disadvantages, such as low metabolic stability, possible immunogenicity, and 

dependency of their membrane translocation ability on the amino acids arrangement and 

site of conjugation with the NPs [301, 302]. Surface polymeric functionalization is one of 

the desirable alternatives that can be applied not only to affect the NP’s properties by 

manipulation of the intrinsic smoothness, size, shape, charge, hydrophilicity, homogenicity, 

and stability, but also to act as a driving force for improving cellular internalization, 

endosomal escape, and drug release profiles with the final aim to achieve a subtle 

therapeutic effect [303]. 

5.4.1 Stability, cellular association and endosomal escape 

Ideally, nanocarriers injected into the bloodstream should show minimal interactions with 

the plasma proteins in order to avoid agglomeration and rapid clearance by the 

macrophages [304]. To circumvent this problem, NPs can be modified, for example, with 

different kinds of polymers that resist the protein adsorption [305]. Figure 15A1 shows 

that the polymer-conjugated UnTHCPSi NPs exhibited a significantly lower variation in 

size and PdI compared to the bare NPs, indicating less interactions with human plasma 

proteins. Although it is known that the surface functionalization of the NPs with PEI can 

increase the stability of the NPs by reducing nonspecific protein adsorption [306], these 

results showed that PMVE-MA may also lead to a similar effect and decrease the NP 

interactions with plasma proteins.  

One of the unavoidable problems associated with the PSi NPs is their intrinsic 

instability in aqueous solutions due to their tendency to aggregate, leading to significant 

decreases in their interfacial area, dispersibility, and cellular associations [195]. 

Accordingly, the stability assessment in aqueous medium was evaluated and showed that 

while the hydrodynamic diameter of the UnTHCPSi NPs was increased to over 1 µm in 

less than 90 min as a result of the NP aggregation, the polymer-functionalized particles 

showed no substantial change in the particle size (Figure 15A2). Further stability 

assessment of the NPs for 2 days revealed no change in the size of the polymer-conjugated 

NPs from 2 h to 48 h (data not shown). The appearance of the NPs after storing at RT for 4 

h is shown in Figure 15A3. It was observed that the native UnTHCPSi NPs were 

aggregated and precipitated over time due to the hydrophobic properties, whereas the 

polymer functionalized NPs were quite stable and very well dispersed because of the 

improved hydrophilicity and repulsion forces between the NPs [307, 308]. 

The cellular trafficking and endosomal escape was also evaluated in MCF-7 and 

MDA-MB-231 breast cancer cell lines by confocal fluorescence microscopy and 

simultaneous imaging of the PSi NPs, cell membrane, and the acidic compartments of the 
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cells. Since the drug loaded NPs entrapped in endosomes and lysosomes can be easily 

degraded by specific enzymes, the endosomal escape of the NPs is a critical prerequisite 

for effective therapeutic response [256]. While our results showed negligible cell uptake of 

the UnTHCPSi NPs in both the cell lines, an increase in the cellular internalization of Un-

P and Un-P-P NPs was confirmed by observing the turquoise color in the merged picture 

as a result of the colocalization of the green fluorescence of the PSi NPs and the blue color 

of the MDA-MB-231 and MCF-7 cells (Figure 15B). In addition, for both the cell lines, 

only few NPs were located inside the acidic endosomal compartments, as shown by the 

overlapped yellow color (green NPs and red acidic compartments) in the merged picture. 

Some of the particles also remained on the surface of the cell membrane, presented as a 

green color. These observations indicate that the polymer-modified NPs were able to 

interact with the cells, escape from the acidic compartments and localize in the cytosol 

more efficiently. The plausible explanation for the above observation is that the free 

available amine groups in the PEI layer of the Un-P-P NPs can induce endosomal escape 

via “proton-sponge” or “endosome buffering” effects [309]. In addition, the endosomal 

escape could be probably due to the fact that, although the maleic acid amide (MAA) 

constructed by the conjugation of the carboxyl groups of maleic acid to the amine groups 

of PEI in Un-P-P is stable at extracellular neutral pH, it is capable to be rapidly hydrolyzed 

at the endosomal acidic pH [310, 311], leading to a high impact on the proton sponge 

effect because of the presence of both available free hidden amine groups of the PEI and 

those that become free after PMVE-MA dissociation. Another explanation for this 

observation could be the ability of PMVE-MA layer to fuse into the lipid bilayer of the 

acidic compartments of the endosomes and disrupt them, similarly to previous reports for 

other specific anionic polymers [312, 313].  

The confocal results showed that the Un-P NPs can cross the cell membranes of the 

MDA-MB-231 cells after 6 h of incubation, confirming that the PEI conjugation 

successfully endow the UnTHCPSi NPs with a cellular association function. In contrast, 

the observed lower cellular uptake by the MCF-7 cells can be ascribed to the higher 

resistance of the MCF-7 cells compared to the MDA-MB-231 cells, as well as its tendency 

to make condensed clusters, minimizing its interactions with the NPs. 

To confirm the confocal imaging results, the flow cytometry experiments were 

conducted in the presence and absence of TB (which acts as a fluorescence quenching 

agent). In the samples that were not treated with the TB, while there was no change in the 

fluorescence peak of the bare UnTHCPSi NPs in both the cell lines compared to the 

control (Figure 15C1 and C3), the fluorescence intensity of the cells incubated with Un-P 

and Un-P-P NPs was considerably shifted to the right, a clear evidence for the high 

cellular association of the polymer-conjugated NPs and the cells. For the TB treated 

samples (Figure 15C2 and C4), the quenching agent was not able to completely remove all 

the fluorescence of the cells treated with the polymer-conjugated NPs, revealing the 

cellular internalization of the NPs in 6 h.  
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Figure 15   The stability of the bare and surface modified PSi NPs in human plasma (A1) and 

aqueous solution (A2) over 2h at 37°C. Colloidal stability (A3) was measured after 4 h of 

incubation in static conditions. Values denote the mean ± s.d. (n = 3). Merged panel of the 

confocal fluorescence microscopy analysis of the cells incubated with HBSS buffer (pH 7.4) as 

control, as well as 50 µg/mL of UnTHCPSi, Un-P, and Un-P-P at 37°C for 6 h (B). Lysotracker 

and CellMask for staining the lysosomes and the cell membranes are shown in red and blue 

pseudo-colors, respectively. The image shows the internalized NPs outside of the acidic endosomal 

compartments in turquoise color and those co-localized in early endosomes and lysosomes in 

yellow color. The NPs that are located on the surface of the cell membrane are shown in green 

color. Flow cytometry analyses of MDA-MB-231 and MCF-7 cells before (C1 and C3) and after 

(C2 and C4) extracellular fluorescence quenching by TB to evaluate both cellular uptake and 

extracellular binding of the NPs with the cell membrane. The cells were incubated with UnTHCPSi, 

Un-P, and Un-P-P NPs for 6 h at 37°C. The results are representative of three independent 

experiments. Copyright © (2013) Elsevier B. V., reprinted with permission from [314]. 
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Although many reports in the literature have demonstrated the ability of some specific 

types of positively charged polymers, such as PEI, for successful improvement of the 

cellular internalization and endosomal escape [315], these materials have shown 

drawbacks in terms of making overt pores in the lipid bilayers, which can eventually lead 

to cellular toxicity by disturbing the concentration balance of ions and proteins that are 

essential to maintain the normal function of the cells [316, 317]. Thus, the application of 

specific polymer-conjugated nanostructures, which are capable to avoid cellular toxicity 

while increasing the cellular trafficking and releasing their payloads in the cytoplasm, is 

essential for designing superior nanomedicines. 

To show the important role of the outer polymer layer (PMVE-MA) of the developed 

nanosystems in the enhanced cellular interaction, PMVE-MA-conjugated APSTCPSi NPs 

were prepared without the PEI layer. The hydrodynamic size, zeta-potential, and PdI of the 

particles were investigated before and after functionalization (Figure 16A‒C). The size of 

the NPs increased from 168 ± 2.2 to 201 ± 1.8 nm, and a significant change of the zeta-

potential from positive (33 ± 2.4 mV) to negative (−31 + 2.8 mV) was observed, indicating 

successful polymeric conjugation to the PSi NPs’ surface. The PdI of all NPs was less than 

0.2.  

 

 

Figure 16   Size (A), zeta-potential (B), and PdI (C) of the PSi NPs after preparation, colloidal 

stability after 2 h incubation of APSTCPSi (D1) and APM (D2) NPs at RT. TEM images of 

APSTCPSi (E) and APM (F) with the scale bars of 100 nm, and confocal fluorescence microscopy 

analysis of the MDAMB-231 and MCF-7 cells incubated with 50 μg/mL of APSTCPSi and APM 

NPs at 37°C for 6 h. The arrows in section D and F indicate APSTCPSi NPs precipitation in 

aqueous solution and the polymer layer on the surface of APM NPs, respectively. CellMask for 

staining of the cell membranes is shown in blue pseudo-color. The picture shows the APSTCPSi 

NPs on the surface membrane in green color and internalized APM NPs in turquoise color. The 

scale bars in the lower right panels for MDA-MB231 and MCF-7 cells correspond to 20 μm. 

Copyright © (2013) John Wiley & Sons, Inc., reprinted with permission from [318]. 
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The colloidal stability evaluation of the samples after 2 h storage at RT in static 

conditions showed that while the APSTCPSi NPs agglomerated very fast, the APM NPs 

were highly stable owing to the enhanced surface hydrophilicity of the NPs (Figure 16D). 

TEM images (Figure 16E and F) showed a surface coverage on top of the pores for APM 

NPs, which is not observed in the APSTCPSi NPs. 

In order to demonstrate the relevant bioadhesive potential of PMVE-MA, the cellular 

interaction of the NPs was further explored by confocal microscopy using simultaneous 

imaging of the PSi NPs and the cell membrane of the cells (Figure 16G). The results 

showed the localization of the APSTCPSi NPs on the outer cellular membranes of the 

MDA-MB-231 and MCF-7 cells, and a further increase in the cellular penetration of the 

APM NPs, as it could be seen by the change of PSi NPs’ green fluorescence on the surface 

of the cell membrane to turquoise for the NPs located inside the cells in the merged picture. 

The high cellular uptake of the APM NPs can be hypothetically attributed to the presence 

of PMVE-MA, which is probably able to fuse into the lipid bilayer of the membrane, 

similarly to what has also been observed for other specific surface anionic NPs [319, 320]. 

In this nanosystem, the cellular internalization can be attributed to the nonspecific binding 

of the particles to the existing cationic sites on the cell membrane, high dispersibility of 

the NPs, as well as the bioadhesive properties of the PMVE-MA polymer [144]. The 

pronounced difference in the cellular uptake of the bare and APM NPs supports the fact 

that the surface chemical modification is among the most efficient strategies for the 

modulation of biological functions of the NPs. However, the cellular uptake of the NPs 

could also be dependent on many other factors such as size, shape, surface charge, 

aggregation/agglomeration states, purity of the NPs, and NP–cell incubation conditions, 

making the actual uptake assessment of a given type of NPs rather complex [5]. 

5.4.2 Drug loading, release study and antiproliferation effect 

Next, the drug-loading of the NPs by comparing the drug loading degree before and after 

polymeric conjugation was investigated. MTX was chosen as a model anticancer drug due 

to its potency in breast cancer treatment [321], and the presence of both carboxyl and 

amine groups in its structure. The latter unique property of this drug can enhance the 

probability of its interactions with the amine and carboxyl groups of the polymers 

conjugated to the NPs, and consequently, increase its loading degree in the PSi NPs. The 

loading degree of MTX in the UnTHCPSi NPs was 6.4 ± 1.2%, whereas the PEI and 

PMVE-MA conjugation improved the MTX loading degrees to 12.6 ± 0.1 and 14.0 ± 0.5%, 

respectively. The low MTX loading in the bare UnTHCPSi can be attributed to the low 

affinity of the drug to the pores of the bare NPs, because of the intrinsic hydrophobic 

nature of the pores. Contrarily, polymer-conjugated NPs are prone to inter-particle 

hydrogen and electrostatic bonding with the drug, leading to the improved drug loading. 

This suggests that the polymer conjugation could increase the loading of the drug due to 

the more interactions of the drug’s functional groups with the free amine and carboxyl 

groups of the polymer-conjugated PSi NPs. The drug release profiles of MTX-loaded PSi 

NPs were also evaluated. Figure 17A shows the sustained drug release profiles after 

polymeric conjugation. The UnTHCPSi NPs released all the MTX in less than 5 min in 
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PBS (pH 7.4) due to the rapid diffusion of the drug from the pores. Contrarily, the release 

rate from PEI- and PEI-PMVEMA-conjugated PSi NPs were significantly slower than that 

of observed for the bare PSi NPs, showing a constant drug release up to about 95 and 70% 

within the first 3 h, respectively. Afterwards, no significant change was observed in the 

cumulative drug release until 12 h. This suggests that the polymer layers provide an easy 

means to tune the drug release profile by capping on top of the PSi NPs and the hydrogen 

and electrostatic binding with the drug molecules [322]. A plausible explanation for the 

slower drug release rate from the Un-P-P NPs compared to the Un-P NPs is the presence 

of both carboxyl and amine groups in the MTX structure, which increases the possibility 

of interaction with the amine groups of PEI and the carboxyl groups of PMVE-MA in Un-

P-P NPs. 

In order to demonstrate that the Un-P-P NPs can efficiently deliver the anticancer drug 

inside the cells, the cell proliferation was analyzed in breast cancer cells exposed to the 

MTX-loaded PSi NPs using an ATP-based activity assay (Figure 17B and C). The results 

showed that the free drug and the MTX-loaded UnTHCPSi NPs had the same proliferation 

inhibition pattern, reducing the cell viability from 90% to less than 35% for the MDA-MB-

231 cells and from 95% to around 50% for the MCF-7 cells. In contrast, the MTX-loaded 

Un-P-P NPs exhibited more efficient therapeutic efficiency than the free and MTX-loaded 

UnTHCPSi NPs in both the cell lines. In the MDA-MB-231 and MCF-7 cells, the 

proliferation rate was decreased from 64% to less than 10% and from 77% to around 27%, 

respectively, after the exposure to the Un-P-P NPs. All the data sets were compared with 

the negative control HBSS (pH 7.4), considered as 100% proliferation. These results 

clearly revealed the potent cytotoxic effect of the developed nanosystem in the breast 

cancer cells. The lower effect of the MTX-loaded UnTHCPSi NPs can be attributed to the 

low cellular uptake of the particles. In addition, the higher proliferation inhibition of the 

MTX-Un-P-P in the MDA-MB-231 cells compared to the MCF-7 cells is attributed to the 

higher cellular internalization of the NPs in the former one. Since the anticancer effect of 

the MTX is related to its potency to penetrate inside the cells and inhibit folic acid 

reductase and DNA synthesis during cellular replication [323, 324], the higher therapeutic 

efficiency of the Un-P-P NPs can be probably explained by the ability of the nanocarriers 

to deliver higher amounts of the MTX inside the cells, resulting in a higher cytotoxicity 

effect.  
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Figure 17   Drug release profiles of MTX-loaded UnTHCPSi and polymer-conjugated PSi NPs in 

PBS (pH 7.4) at 37°C (A). Proliferation of MDA-MB-231 (B) and MCF-7 (C) cells after exposure 

to free MTX, MTX-UnTHCPSi and MTX-Un-P-P for 6 h at 37°C. In MDA-MB-231 cells, free MTX 

and MTX-UnTHCPSi showed a mild concentration-independent cell proliferation reduction and 

MTX-Un-P-P revealed potent concentration-dependent cell proliferation decrease. In MCF-7 cells, 

while free drug and MTX-UnTHCPSi showed very high cell proliferation, MTX-Un-P-P induced a 

moderate cell proliferation reduction effect independent of the concentration tested. Data are 

expressed as the mean of three independent experiments ± s.d. (n = 3). Copyright © (2013) 

Elsevier B. V., reprinted with permission from [314]. 
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6 Conclusions 

In this dissertation, the impact of the surface modification of the PSi NPs on the biological 

responses was investigated at the cellular level by evaluating the cytotoxicity, immune 

responses, and cellular interactions. Such studies can clarify how various functional groups, 

biomolecules, or polymers on the surface of the PSi NPs can render new properties to the 

NPs for specific applications like immunotherapy, cancer therapy, or targeting to the right 

site of interest. 

First, the mechanisms involved in the genotoxicity of immune cells were investigated 

after exposure to different PSi NPs. The toxicity of the PSi NPs was found to be 

predominantly surface chemistry- and charge-dependent. The cytotoxicity of the PSi NPs 

was more affected by the surface charge of the NPs than their hydrophilic/hydrophobic 

surface properties. However, for similar surface charges, the NPs with hydrophobic 

surfaces, i.e., THCPSi and UnTHCPSi NPs, were more cytotoxic than the hydrophilic ones 

(i.e., TOPSi and TCPSi NPs). More importantly, it was demonstrated that no single 

methodology is likely to meet all the requirements to comprehensively study the biosafety 

profiles of the PSi NPs, as there are different mechanisms for toxicity induction. 

Next, it was demonstrated that, at the non-toxic concentrations, the surface chemistry 

of the PSi NPs has a significant effect on the immune responses by modulating the 

expression of co-stimulatory signals and cytokine release by DCs. TOPSi (SiOx-layer) and 

THCPSi (SiCxHy-layer) were more effective inducers of immunoactivation responses by 

enhancing the expression of CD80, CD83, CD86 and MHC-II, as well as increasing the 

secretion of cytokines mediating T cell differentiation. In contrast, TCPSi and APSTCPSi 

(both SiCx-layer based) NPs did not show any signs of immunostimulation, suggesting 

their potential for the delivery of immunosuppressive compounds due to the negligible 

effects on the DCs and T cells. 

Then, Ab-functionalized drug loaded PSi nanovectors were developed to mediate 

chemo-immunotherapy approaches. It was shown that with proper attachment of the Ab on 

the surface of the particles, this biomolecule can be served as a targeting moiety, 

immunotherapeutic biomolecule, as well as a cap for blocking drug molecules within the 

pores and minimizing their premature release. 

Finally, it was shown that the polymeric functionalization of the PSi NPs can be also a 

proper strategy to improve safety, stability, cellular interaction, and endosomal escape of 

the NPs, all important attributes for therapeutic applications. Functionalized PSi NPs were 

prepared by covalent conjugation of PEI and PMVE-MA polymers onto the surface of 

UnTHCPSi NPs with high potential for sustained drug release and intracellular delivery in 

breast cancer cells. These particles showed more potent antiproliferative properties on 

cancer cells compared to the pure tested anticancer drug (MTX). 

Overall, the work in this thesis demonstrates how the surface modification of the PSi 

NPs can render new biological properties to the particles, opening new insights for the 

applications of the PSi NPs for biomedical applications and holding promises for further 

progresses in cancer therapy. 
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