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Chapter

Comparative Analysis Carried
Out on Modern Indentation
Techniques for the Measurement
of Mechanical Properties:

A Review

Saquib Rouf, Sobura Altaf, Shezan Malik,
Kaleem Ahmad Najar and M.A. Shah

Abstract

Nowadays many indentation techniques are being commonly employed for deter-
mining some mechanical properties (harness, elastic modulus, toughness, etc.) using
simple method of measuring the indentation depth. On the basis of measurement of
depth of penetration, indentation technique has be classified into major categories i.e.
microindentation and nanoindentation. Nanoindentation technique uses indirect
method of determining the contact area as the depth of penetration is measured in
nanometers, while in conventional indentation the area in contact is measured by
elementary measurement of the residual area after the indenter is removed from the
specimen. Dynamic hardness is the best result of dynamic indentation which can be
expressed as the ratio of energy consumed during a rapid indentation to the volume of
indentation. The parameter which are taken into consideration are indentation depth,
contact force, contact area, mean contact pressure.

Keywords: hardness, elastic modulus, nano/microindentation, Berkovich indenter,
spherical indenter & vicker indenter

1. Introduction

We are having distinct techniques to rule out the mechanical properties of
materials; one among them is nanoindentation. Nanoindentation is the most
accepted method to regulate the mechanical properties like hardness, elastic modu-
lus, toughness and stiffness of a material. Thus, nanoindentation is also noted by its
different names in mechanical engineering field like; depth sensing indentation
(DSI), instrumental indentation technique (IIT) and universal hardness test (UHT).

The indenter is the main component of nanoindentation testing which is
pressured through the exterior of a material. With a prescribed load, the displace-
ment of the indenter inside a material is observed. The hardness of the material is

shown by the equation:
Pmax
H pu—
(&)
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Where, Py, is a maximum load for depth (h) and A, is the residual area or the
projection of indenter. This residual area inside a material is then measured by
atomic force microscope. The residual area builds upon the kind of indenter and
material of indenter. Therefore, the mechanical properties can vary as the
penetrating material changes from one experiment to another.

The nanoindentation is also used to measure reduced elastic modulus and the
sample modulus by using the following Equations [1];

P
Reduced elastic modulus, E, = ill_h X 14 X g

1) 1L
Sample modulus, E; = (1 — v?) (E ~ E~v )

Where, E; is the modulus of indenter and, v; and v; is the poisson’s ratio for
sample and indenter, respectively [1, 2].

1.1 Types of indenters

The various types of indenters with their specifications are mentioned in Table 1
[3]. Generally, nanoindentation itself has a wide range of applications in physical
science and concedes us to examine nanoscale surface adjustments in solid materials
and specify the appearing variations in its mechanical response. From atomic struc-
ture to atomic defects, this has made a revolution in material engineering. It can be
used to study discrete atomic rearrangement of specimen under loading conditions.
When equipped with Raman spectroscopy and Atomic Force Microscope, it can
find its place in studying lattice dislocations [4].

From literature survey, it has been found that results of nanoindentation depend
upon the indenter tip, shape and its orientation [5]. AFM plays a vital role in
nanoindentation process. It is used to measure the residual indentation area of the
specimen which is further used to calculate hardness of material. It has been clearly
observed and proved that nanoindentation results depend upon the type of indenter
used. So, we can say that nanoindentation results vary for different indenters. To
achieve better results in indentation process, continuous nanoindentation has been
introduced. This approach involves intially loading the indenter at peak load and
then unloading 90% of the peak load for 50 seconds and keeping it after 90% of
unloading for almost 100 seconds and lastly unloading wholly the indenter. The
continuous nanoindentation is used to find stiffness in terms of indentation depth
in a one shot experiment.

Indenter Projected area Semi angle

Sphere 2nRh, Not available

Berkovich 3h§( tan 9)2 65.3°

Vickers 4h§ (tan0)? 68°

Knoop 2h,(tan6;)(tan6,) 0; =86.25°, 6, = 65°

Cube Cone 3h§( tan0)’ 35.26°

Cone nh;(tan a)z a (effective cone angle)
Table 1.

Indenter specifications [3].
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1.1.1 Spherical indenter

Spherical indenters are used for soft materials. It has been established that even a
single alteration of the indenter size or radius can give collectible observation into
heterogeneous aspects of the radiation-induced-damage region. The most common
spherical indenter known is diamond spherical indenter which has radius less than 1
micron. We know that indentation hardness is used as; H = %, where, P is the
applied load and A is the area of indenter.

The indentation hardness equation can be also known as = %, where, d is the

diameter of contact circle when at full load. The nanoindentation deals with the size
of impression, whose area is to be calculated and is found by [1-3]:

A = 27aR;h,

where, R; is radius of the indenter and /. is the depth of contact also called
contact depth.
The Brinell hardness number for spherical indenters is calculated as [6]:

2P
zD(D — \/D* —d%)

Where, D is the diameter of indenter. The Brinell hardness number depends on
the real curved surface response.

Researcher [7] has adopted the use of spherical indenter to figure out the struc-
tural characteristics of SS400, SM490 and SM520 using finite element analysis to
create a shift of algorithm. The specifications taken under consideration are yield
strength (o), the hardening exponent (n), and the ratio (a). The o here is character-
ized as the ratio between the strain at beginning point of strain hardening and the
yield strain. The spherical indenter with the value of 1141GPa as elastic modulus and
that of poisson’s ratio as 0.07, the radius of the indenter is put up to R = 5 pm and the
maximum indentation depth is kept 0.3R, the results derived from the indentation
process on the above mentioned specimens are very much reliable with the proposed
model of reverse algorithm and can provide the best parameters of structural steel.
Thus, the study of the radius of the indenter is an important factor for supposition of
disorder nucleation shear stress implied from spherical indentation retortion.

Dynamic indentation of elastic plastic solid has been also reported here [8].
Dynamic hardness is the best result of dynamic indentation which can be expressed
as the ratio of energy consumed during a rapid indentation to the volume of
indentation. There is a restraination to either the displacement or the force of the
indenter by the indentation equipment. Indentation depth, contact area, contact
force, and mean contact pressure were the parameters that are taken into account
and the finite element technique has been operated to determine the contact issues.
The author observed that parameters like contact force, contact area and mean
contact pressure are directly dependent on indentation velocity irrespective of
material’s elastic plastic property. The dynamic indentation of a material is linked to
a dimensionless parameter which can be attained as the ratio between the kinetic
energy density shifted towards the indented material to the sufficient net energy of
the material and the initial yield. It has been seen that this dimensionless parameter
is associated with the plastic deformation of a solid which implies larger the dimen-
sionless parameter larger will be the plastic deformation of solid. Down below
Figure 1 distinguishes the types of indenters [9] as: (a) Spherical (b) Conical
(c) Square- pyramidal (vicker) & (d) Berkovich, respectively.

BHN =
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Figure 1.
Types of indenters [9]: (a) spherical (b) conical (c) square- pyramidal (vicker) & (d) Berkovich.

1.2 Berkovich indenter

The Berkovich indenter tip has a geometry of a three-sided pyramid that can be
rested to a point, hence upholding a self-similar geometry to very small extent. This
geometry is generally much approved than the Vickers indenter tip which has a
geometry of four-sided pyramid. It is most often preferred for certaining the
mechanical parameters of materials. Berkovich indenter with geometry of three
sided pyramid contains a face angle of 65.3° between the sides. The indenter tip is
blunted and has been constructed with the hard materials example diamond. It is
more precise than vicker indenter due to its sharp point. The Berkovich indenter tip
is of optimal use for most testing funtions. It is not easily impaired and can be
promptly built. It brings about plasticity at slight loads too generating a relevant
share of hardness. The Berkovich indenter tip is feasible as a traceable standard.

On the specimen, the projected area of Berkovich indenter is given as

[3; A, = 3\/§h3(mn 0)2, where 0 is the face angle. For 6 = 65.3°, Ap = 24.5hf.
Further, the Meyer hardness is given by [10]:

_P_F
~Ap 245K

From the above equation we can conclude that Meyer hardness for Berkovich
indenter is the function of contact depth. Researchers [11] have reported the
nanoindentation of zirconia yttria and alumina zirconi-yttria with the help of the
Berkovich diamond indenters having a tip radius of 20 to 25 nm. The main function
of this indentation practise is to resolve the mechanical properties like modulus of
elasticity (E) and fracture toughness of the above mentioned biomedical ceramics.
The values of mechanical properties are calculated at different loads like 1.5 mN, 2
mN and 5 mN. The frequency for indentation is 75 Hz with poisson’s coefficient
v = 0.25. AFM is engaged in the analysis of the continuing samples of
nanoindentation. The equation given below (Sneddon equation) is employed in the
calculation of the modulus of elasticity [12]:

—

Where, A is the area of contact which in return is a function of indentation
depth (%) also called as depth of penetration. E, is reduced modulus of elasticity and
f which is a constant based upon the geometry of indenter and for Berkovich
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indenter value of f is 1.034. The modulus of elasticity is calculated by the following
Equation [13]:

1-V?
1 lfVl-2
E, E

E—

Where, E;, E and V,, V are constants of modulus of elasticity and poisson’s ratio
of diamond indenter and specimen respectively. Further fracture toughness of the

material is given as [14]:
E P
k=k(z) (o)

Where, H is the hardness of material, P is the load practiced, E is the modulus of
elasticity, k is empirical constant depending upon the geometry of indenter and ¢ is
the crack length. The results obtained are mentioned in Table 2.

Generally, Chech et al. [15] reported the bluntness of Berkovich indenter in their
research. The materials that were employed were those whose young’s modulus
were already known; like fused silica and BK7 glass. The indentation results were
compared with the results from AFM. It was found that the pointless radius of a
spherical cap representing the indenter bluntness depends upon the technique
accepted.

NI

1.3 Vicker indenter
The Vickers indenter resembles to pyramid of square shape with faces and edges

at angles of 68° and 148° respectively. The most common vicker indenter is vicker
diamond indenter. The vicker hardness is given as [16]:

VH = 18544
d

Where, d is the distance from one corner to its opposite corner of the projection
left on the specimen. The Meyer hardness of vicker indenter is given by [17]:

H:d2

Also, the projected area of indenter, A, = 4h?(tan 0)*, where 0 is the face angle
and is equal to 68°, h. is the contact depth [18].

Material Composition Modulus of Nano- Stiffness  K;. (Mpa)
Elasticty (GPa) hardness (N/m)
(GPa)
ATZ 20wt%AlL, 03 + 80wt%TZ-3Y 355+7 21+ 1.2 157,471 +£12 42+0.1
ZTA 80wt%Al,03 + 20wt%TZ-3Y 360 £ 6 35+1 161,190 +12 3.50 + 0.2
3Y-TZP 97%molZr0, + 3%molY,03 354 +7 25+ 0.8 83,886 + 9 51+0.2
8Y-CSZ 92%molZrO, + 8%molY,03 385+2 31.3+ 0.2 153,423 +12 3.77 £+ 0.02
Table 2.

Mechanical properties of various materials [11].
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The vicker indenter is utilized in determination of the fracture toughness of
brittle materials example glass. Fracture toughness (KC) is explained as resistance
offered by a material to abrupt generation of cracks [19]. However, Anstis et al. [20]
proposed an equation to measure the fracture toughness. This equation was a result
of experiments on 16 materials. The equation for fracture toughness is given below:

| E P
K=y W&

The above equation has an uncertainty of 25%, in this equation, VH is the vicker
hardness, E is the modulus of elasticity in Mpa and y is the dimensional less constant
based upon the frame of indenter and geometry of crack generated. Usually y varies
from 0.016 to 0.004 for vicker indenter.

Herval et al. [21] reported the comparison of fracture toughness from vicker
indenter using Anstis equation for these materials; crown glass (BK7), heavy flint
glass (SF17), zerodur glass and hydroxyapatite ceramic. The experimentation has
been performed on Zwick Roell with load varying from 2 to 100 N with dwell time
at maximum load of 10 seconds. The Cracks are examined using optical microscope.
Thus, the results obtained are summarized in the Table 3. The authors conclude by
verifying that fracture toughness remains constant for a specific material under
varying loads. This means that polishing does not generate residual stress on
sample.

1.3.1 Fracture toughness of Y-TZP dental ceramic

Fracture toughness is the basic criteria for studying the potential of bio ceramics.
The most common ceramic used is zirconia. It finds its application in bone and
dental implants. Y-TZP dental ceramic contains 2-3 mol% of yttrium oxide which
produces of 6MPam1/2 [22]. Donaka [23] reported the indentation of Y-TZP dental
ceramic by vicker indenter. The samples were cut into 10 x 10 x 2 mm plates.
Following four set of loads were applied; 24.03 N (VH3), 49.03 N (VH5), 196.13 N
(VH20) and 294.20 N (VH30). Each load has been applied 30 times. The fracture
toughness has been directly determined by crack length. Table 4 can sum up the
above experiment.

The data above shows that with the increase in applied load, the hardness of
Y-TZP increases. This reaction is recognized as normal indentation size effect [24].
Fracture toughness depends upon the type of crack formed. So, for the process of
attaining the fracture toughness of a material, the fundamental step is to notice the
type of crack formed. Usually palmqvist and median cracks are formed due to
vicker indentation. Palmqvist cracks can be found in tough materials at high loads
and in brittle materials at low loads [25]. Depending upon the type of crack devel-
oped various methods have been used to calculate fracture toughness. Some of them
are mentioned in the Table 5.

The vicker indentation on Y-TZP Ceramic results in crack propagation which is
further used to calculate fracture toughness. Crack propagation mainly depends

Parameter Crown glass Heavy flint glass Zerodur glass Hydroxyapatite ceramic
K;.(MPa) 0.54+0.40 0.47 £ 0.03 0.93+0.1 1.20 = 0.03
VH (GPa) 6.3+0.3 44+0.3 6.7+ 0.6 4.4+ 0.6

Table 3.

Comparison of fracture toughness by vicker indenter.
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Load Vicker hardness (average)
VH3 1379
VHS5 1344
VH20 1345
VH30 1337
Table 4.

Fracture toughness of Y-TZP with varying loads.

Author Crack type Equation

i %)
Casellas [26] Palmqvist 0.024 c% (&)
Palmqvist [27] Palmqvist 0.0028VH1/2.(%)%
Shetty et al. [28] Palmqvist 0.0319 %

.. . 2%
Niihara et al. [29] Palmqvist 0.0089 (VLH) 5 ul%

. . 4
Anstis [30] Median 0'016(4‘% (%) ¢
Evans and Charles [30] Median 0,0752%
Tanaka [30] Median 0.0725%

. . 2
Niihara, Morena and Hasselman [29] Median 0.0309(%) Sc%
Lankford [28] Anykind 0.0782(VHa*) (VLH)Z/S (%) 156

Table 5.

Various methods to calculate fracture toughness depending upon the crack formed [26-30].

upon the indentation load applied and the type of material. For E = 210 GPa, the
fracture toughness of palmqvist crack varies from 4.96 to 7.73 MPam1/2 and 3.96
to 6.72 MPam1/2 for median crack profile. The lankford model gives the highest
of values 7.73 MPam1/2 for 29.42 N and Anstis give lowest of 4.49MPam1/2 for
294.20 [28-30].

1.4 Nanoindentation for nuclear materials

The nanoindentation technique for irradiated materials started back in 1986
[31]. From last few decades, nanoindentation has been acknowledged as well
founded means to explore the bounded mechanical properties at small scale. There-
fore, the idea of the sequence of ion irradiation and nanoindentation has been
greatly advanced in later years to examine the mechanical role of nuclearly arranged
materials with irradiation developed.

Various studies [32-34] have been performed on the different combination of
materials with the focus on effect of crystal structure and irradiation temperature
on hardness of material. For ion irradiation there is a plan of action that needs to be
followed to observe the irradiation damage prompt by energetic neutrons. It is very
difficult to evaluate the mechanical properties of ion irradiated materials. The most
important factors are limited indentation depths and inhomogenous distribution of
irradiation induced defects [35]. Additionally, upon ion-irradiation the metal sur-
face is modified by a thin radiation-damaged layer which causes a change in its
mechanical response as compared to the bulk of the sample. In order to successfully
study the effects of radiation damage on the indentation behavior, we need to first
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decouple the effects of orientation from the effects of the increased defect density
caused by irradiation. It was observed that there exists a strong orientation effect of
radiation which induces mechanical changes at the grain scale. Obviously, surface
energies for the orientation is quite different. So there can be significant differences
in the damage experienced by these grains [36, 37].

The impact of high energy particles on the metalic materials for energy systems
are widely studied as the mechanical properties of these materials are highly
effected [38, 39]. This study is very important to develop a smart and effective
nuclear energy production system. Mechanical characterization methods like uni-
axial compression and tension remain invalid [40], as high spatial resolution is
required [41-43]. Since nanoindentation gives rich statistical data [44, 45], hence it
is convenient for mechanical characterization of ion irradiated materials.
Nanoindentation for irradiation material can be broadly classified into two catego-
ries; suface nanoindendation and cross-sectional nanoindentation [36, 46].

For irradiated materials, spherical indentation is widely preferred over
berkovich indentation as it can analyze the irradiation effect not only on materials
yielding but also the elasto-plastic transition and strain hardening behavior, by
converting the force-depth (F h) relationships into the indentation stress—strain
(ISS) relationships [47, 48]. High temperature nanoindentation can be used to
determine the thermo-mechanical behavior of irradiated materials at the actual
working temperature [49].

1.5 Nanoindentation for polymeric materials

From past one decade, the use of polymeric composite matrix has been widely
used due to their high energy absorption, light weight and good adhesion [50]. A
large number of researchers [50-53] have reported the nanoindentation on poly-
meric surfaces and it has been observed that assessment of elastic modulus has
remained a challenge. For nanoindentation of soft polymeric materials, the mate-
rials complaince can create difficulties in tracing the initial contact [54]. Researcher
[55] has shown the main problem of nanoindentation with polymeric materials, the
elastic moduli obtained by nanoindentation does not coincide with the moduli
obatined by conventional micro tension and compression. There has been an
increase in the moduli obtained by the nanoindentation of polymeric materials.
Studies performed on polystyrene and polycarbonate show 64% and 70% shift in
moduli, respectively [52]. Moreover, for PMMA [56], 67% shift is seen and 20%
for poly bemzocyclobutene [53]. The elastic moduli for nanoindentation have
been plotted against the micro moduli of the selected set of polymers, shown in
Figure 2(a).

The other approaches like dynamic modulus approach are applied. This method
is often termed as continuous stiffness measurement. The two important parame-
ters in this are storage moduli and loss moduli [57]. The parameters can be also used
with dynamic mechanical analysis (DMA). The storage moduli and loss moduli
were obtained by both dynamic indentation and DMA for thermoplastic materials
[58]. The results of the two methods were compared with each other as shown in
Figure 2(b). The consistent trend of greater dynamic indentation moduli than
DMA moduli was observed for various materials. By this study, it can be observed
that dynamic indentation moduli’s can be subjected to a percent of error while
characterizing the polymeric materials [59].

1.6 Nanoindentation in biological materials

The mechanical properties of biological materials are the early stage of develop-
ment. Among all the techniques for mechanical characterization of biological

8
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Figure 2.
(a) Surface nanoindentation and (b) cross-sectional nanoindentation [46].

materials, nanoindentation is most powerful tool due to its wide nanolevel force
resolution [60] and mainly because of its surface and interfacial properties which play
significant role not only in biology but also in synthesis of biomaterials. Therefore, the
study of adoption of nanoindentation for biological materials and systems is of great
interest.

New studies have been performed were it has been described how the diseases
respond towards the mechanical characteristics up to the molecular level [61-66].
The method has also been used to carry out the mechanical analysis of fossils [67].
Indentation finds its application in describing the behavior of human skin which
can be used to solve the aging problem of skin [68, 69]. Application of
nanoindentation technique to biomaterials research is also expanded up to human
enamel and eye tissues. In the coming years, the importance of nanoindentation
testing in biology and biomaterials research is likely to show a rapid increase.
Nanoindentation testing is implicated on both soft and hard tissues and also on
biomaterials especially those with hierarchical microstructures. The
nanoindentation methods are also applied to highlight the study of skeletal and
dental tissues [70]. There also exist nanomechanics for soft, living tissues and
polymeric biomaterials. Nanoindentation is now also being applied to the problem
with studies examining connective tissues and polymers using both static and
dynamic methods. The nanoindentation investigations on natural biomaterials have
contributed significantly to biomimetics and the development of new composite
materials. Continuing advancements in nanoindentation analysis will increase the
method’s utility in the characterization of biomaterials [71].

The measurement protocol for nanoindentation of biological samples (sometimes
referred as bioindentation) takes into account the irregularity of the surface of the
samples by incorporating an automatic surface detection procedure in the measure-
ment matrix. The use of large spherical indenters facilitates contact detection on
extremely soft samples (hydrogels [72], cartilage, scaffolds) by providing larger con-
tact stiffness and averages surface and structural inhomogeneity. The penetrations
seen in bioindentation are usually in the range of ten to several hundred micrometers,
thus testing a large volume of tissue rather than single cells [73]. The applications of
the bioindenter are very wide. Many human tissues are subject to mechanical loading
and their mechanical characterization can provide valuable information for disease
evolutions, treatments and also developments of artificial replacements (implants,

9
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scaffolds). Bioindentation can be used in the diagnostic of disease (liver functions,
arteries) and for fundamental research on treatment of these diseases [74].

2. Conclusion

Nanoindentation is a dynamic perceptible method for attaining mechanical prop-
erties from very limited content. In delicately regulated tests in which the acceptance
of the elastic contact analysis are met, accuracy of a few percent is smoothly obtain-
able for indentations as micro as 10 nm. Specialists must be constantly aware of the
holdings of variations from these suppositions on nanoindentation results. Exact
evaluation for load, displacement and machine concurrence are requirement, as is an
effective rational sketch of the shape of the tip, and a configuration devised to reduce
the consequences of thermal drift and plasticity.

If there arise a need to measure a surface layer or other small volume, then
evading the effects of surface conditions, or nearby free surfaces or interfaces, a
practical indentation size range can be found analytically. Size effects, pile-up and
anisotropy can advance precise deviations that must be alleged.

Nanoindentation is an area of powerful research and development and data
analysis practices are frequently being revised. Future developments of
nanoindentation are foreseen in the area of periodic incorporation of computer
simulations, (FEM and others) and quantitative imaging technique to boost in
analysis of depth-sensing indentation data, and much development in dynamic
contact analysis system in addition to incorporation of acoustic practices.
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