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Abstract

Over the history of humankind, knowledge acquisition regarding the human 
body, health, and the development of new biomedical techniques have run through 
some animal model at some level. The mouse model has been primarily used as the 
role model for a long time; however, it is severely hampered regarding its feasibility 
for translational outcomes, in particular, to preclinical and clinical studies. Herein 
we aim to discuss how induced pluripotent stem cells generated from non-human 
primates, pigs and dogs, all well-known as adequate large biomedical models, 
associated or not with gene editing tools, can be used as models on in vivo or in vitro 
translational research, specifically on regenerative medicine, drug screening, and 
stem cell therapy.

Keywords: pluripotency, regenerative medicine, stem cell, therapy, 
domestic animals, non-human primates

1. Introduction

For centuries, animal models have been used to aid on the quest for knowledge 
regarding human anatomy, physiology, and health, at first by simple observa-
tion, progressing to a proper investigation, selection of adequate models for given 
conditions and resuming on the development of specific transgenic animal models 
[1]. A recent concern regarding welfare and animal rights [2] has highlighted the 
relevance of in vitro models, such as pluripotent and adult stem cells. Here we 
describe the recent advances of biomedical research using induced pluripotent stem 
cell (iPSCs) models isolated from non-human primates, pigs, and dogs. Due to ana-
tomical, physiologic, genetic, environmental, and other similarities to humans and 
conditions, those animals are considered highly relevant models for translational 
studies, each presenting specific advantages and drawbacks. Herein we discuss the 
advantages of using iPSCs, associated or not with gene editing tools, to enlarge the 
value and possible applications for pharmaceutical development and therapeutic 
approaches in these models.
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2. Stem cells from animal models: applications on translational research

2.1 Non-human primates: most promising although challenging model?

Although non-human primates (NH-primates) represent only a small share of 
the animals used in medical research, the significance of those studies for human 
health, especially pharmaceuticals and new therapeutic approaches, is prominent 
[3, 4]. NH-primates are often the most suitable model for assessing the safety and 
efficiency of said drugs prior to human trials [5] and supply information to connect 
data from other relevant clinical models, such as rodents, to humans [6].

As study models, NH-primates are highly attractive due to longevity, behavioral, 
anatomical, genetic, physiological, and immunological similarities with humans 
[5, 7–10]. Over the past decades, NH-primates have been used on studies and 
research to prevent or cure human conditions, through the development of vac-
cines and drugs or treatment for cancer, diabetes, obesity, Parkinson’s and other 
neurodegenerative, respiratory and cardiovascular diseases [4, 5, 11, 12], as well 
as methods to prevent mother-fetus transmission of diseases such as HIV [13], 
amongst other conditions and illnesses. Moreover, it has recently been shown that 
some NH-primates present a working memory capacity similar to that of human 
children [14], which highlights their importance for cognitive and neurological 
studies.

Stem cells are also considered an excellent tool for disease modeling and drug 
screening [15]. Although pluripotent cells derived from embryos, also called 
embryonic stem cells (ESCs), and multipotent adult stem cells (ASCs) are relevant 
and have been widely used on stem cell research and therapy purposes [16–23], 
ESCs limited sources and ASCs limited proliferation, and differentiation potentials 
have hampered their use. The advent of inducing pluripotency in vitro on virtu-
ally any somatic cell from any species reported since 2006, led to an entire flock of 
biotechnological and therapeutic applications. Thus, since the debut of induced 
pluripotent stem cells (iPSCs) [24], it is possible to produce patient-specific plu-
ripotent stem cells that are highly valuable as models [15]. Furthermore, supported 
by age-related changes on the immune system of both humans and NH-primates 
[25], the use of said animals modeling human diseases associated with stem cell 
research might provide remarkable insight on translational stem cell-based therapy 
and  transplantation [6].

Since iPSCs were first reported, these cells are now available for a variety of 
wild and domestic animal species (reviewed by [26]). Amongst NH-primates, 
they include but are not limited to the rhesus [27]; drill [28]; cynomolgus monkey 
[29, 30]; marmoset [31]; baboon [32]; orangutans [33]; Japanese macaque [34]. 
These cells were mainly generated from fibroblasts and integrative methods, but 
more recently, they were produced through non-integrative methods, such as 
Sendai-virus and episomal vectors [10, 35–37]. NH-primate-derived iPSCs have 
been used in research related to or as models for neurological [38–41], cardiac 
[36, 42, 43], reproductive [44], hematopoietic conditions [37, 45], transplantation 
and grafting [30, 46] and others.

As previously stated, similarities between humans and NH-primates make 
them essential models to assess the safety of drugs and therapeutic methodologies 
before human trials [5]. Immunologic similarities were considered when multiple 
NH-primate species were chosen as models to establish an iPSCs-derived multipo-
tential hematopoietic progenitor cell differentiation protocol [37] and baboon enu-
cleated red blood cells derived from iPSCs [45], aiming at blood disease and others 
preclinical testing. Cell transplantation is a relevant therapeutic methodology for 
some cardiac conditions leading to heart failure [42]. NH-primates iPSCs-derived 
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cardiomyocytes were generated from rhesus monkeys [36, 43] and cynomolgus 
monkeys [42, 47] to assess drug screening, regenerative therapy,  grafting viability, 
and immune rejection potential.

Aside from immunologic, physiologic, and genetic similarities, NH-primates 
cognitive capacity and longevity drag special attention for these animals as models 
for mental illness, age-related or not. Huntington’s disease transgenic animals iPSCs 
have been used for generating neural progenitor cells that may be addressed for 
drug screening [48] pathogenesis modeling [40] and epigenetic and transcriptional 
profile analyses [49]. iPSCs and iPSCs-derived neural stem cells have also been 
generated from other NH-primate species aiming to develop regenerative therapy 
methods and modeling other neurological conditions, such as Alzheimer’s and 
Parkinson’s Disease [10, 36, 50–52].

Nevertheless, another possibility is the generation of custom-made specific 
transgenic disease models, by injecting retroviruses expressing target genes 
or gene editing techniques. The most known gene editing tools are zinc finger 
nuclease (ZFN), transcription activator-like effectors nuclease (TALEN), and 
clustered regularly interspaced short palindromic repeats (CRISPR). More recently, 
ZFNs and TALENs have been superseded by CRISPR/Cas9, which is equally, if 
not more efficient in inducing double-strand breaks (DSBs) and in stimulating 
homology-directed repair (HDR) [53, 54], also offering improved target specific-
ity, prediction of off-target effects and activity [53, 55, 56]. Those approaches have 
been  successfully applied to generate various NH-primate models (Reviewed by 
[57, 58]), including the above mentioned Huntington’s disease transgenic monkey 
[59], Parkinson’s [41, 60], neurodevelopmental disorders [61], Duchenne muscular 
dystrophy [62], severe combined immunodeficiency [63], and others.

Those models represent a significant scientific advance, allowing more  faithful 
models than rodents previously used [58]. Although the use of NH-primate as 
research models is notable, some issues still need to be addressed. The greatly 
developed social skills of those animals implicate in environmental and social 
requirements to be met to keep NH-primates in an ethical and healthy environment 
([64] art. 17), which implicates in high costs. Furthermore, results obtained from 
NH-primates studies are often not translatable to human research [65], highlighting 
the need for other research models, such as porcine and canine.

2.2 Swine: a large model in an already optimized production system

The domestication of swine (Sus scrofa domesticus) as a farm animal in 
 established and controlled housing conditions, including specific conditions free of 
pathogens, has led to an important wide public acceptance that requires only minor 
adaptations for research [66]. The swine reproductive maturity is relatively fast 
compared to other large species (6–8 months), and they present a short gestation 
period (115 days) associated with the capability to produce large litters, with around 
8–16 piglets per litter. Also, the swine body size, anatomy, physiology, and genetic 
homology are compatible with humans [66–69]. Hence, they are one of the most 
exciting species as a translational model for regenerative medicine research, and 
probably the most similar physiological model for humans apart from NH-primates.

The swine has already been explored as a biomedical model to develop diagnos-
tic methods, studies, and treatment for several different conditions and diseases. 
For example, immunology studies and allergy models [70], and respiratory and 
cardiovascular conditions, such as pulmonary surfactant function, reperfusion 
injury, pulmonary hypertension, and asthma [71–73]. Similar to humans, swine 
are omnivores, reassuring its adequacy in studies examining the gastrointestinal 
system: transit time of pharmaceuticals [74], inflammatory bowel disease [75], 
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gastric dilation [76] and metabolic disorders that influence of endocrine system 
[77–79]. The swine model has also been used to study neurological and neurodegen-
erative human disorders, such as amyotrophic lateral sclerosis, Alzheimer’s Disease 
[80, 81], and Huntington’s Disease [82].

For the advancement of regenerative medicine, specifically regarding cellular 
therapies, it is of great importance to study swine stem cells aiming to prove its 
efficacy and safety. Researchers have already demonstrated the effectiveness of 
treatment in the swine model using ASCs such as bone marrow mesenchymal stem 
cells (BM-MSCs) for the repair of myocardial infarction [83] and also for  autologous 
therapy for disc degeneration [84].

However, cellular therapies using multipotent stem cells are restricted to specific 
diseases due to the limited capacity for differentiation to specific types of cells. 
Pluripotent stem cells, nevertheless, circumvents such drawback by presenting the 
ability to differentiate into several cells from the endoderm, mesoderm, or ecto-
derm origin, thus expanding the possibility translational studies for regenerative 
medicine [67].

ESCs are often studied and divided into two pluripotency states: naïve or 
primed. Naïve ESCs are found in the pre-implantation embryo, in the inner cell 
mass (ICM), and primed ESCs are found in the post-implantation stage in the 
epiblast [85, 86]. It is known that the mice ESCs cultured and maintained in vitro 
are considered “naïve”, are collected from ICM and supplemented in culture with 
LIF, although human ECSs are collected from the epiblast and maintained in vitro 
with bFGF supplementation (for more details, refer to [87, 88]). For animal models 
including swine, the establishment of robust pluripotent ESCs using a straightfor-
ward and conventional approach has not yet been reported, and protocols regarding 
naive or primed pluripotency state characterization have not been consistent in the 
last decades [89].

Hence, the generation of iPSCs has shown to provide critical advantages over 
ESCs, particularly, when animal models are used. The iPSCs were already derived 
in the swine model (pig iPSCs or piPSCs) and reported in over 25 studies. The 
majority of those studies have used integrative methodologies to reprogram cells 
derived from embryonic, fetal, or adult fibroblasts. Although more efficient then 
non-integrative methods, integration of reprogramming factors onto the cell’s 
genome might lead to the persistent expression of said factors, which can generate 
tumors and become unfavorable for cell therapy [90, 91]. Pluripotency induction 
using non-integrative vectors would greatly assist their use in cellular therapy [92]; 
however, piPSCs produced by episomal non-integrative methodology were until 
now only considered iPSCs-like [93].

piPSCs have already been induced to differentiate into several lineages: 
 cardiomyocytes [94], hepatocytes [95], and even neuronal precursors cells [80, 96]. 
Kim et al. [96] for example, reported the derivation of piPSCs using porcine embry-
onic fibroblasts (PEFs) with four doxycycline-inducible human factors inserted 
into the cell by lentivirus, and the iPSCs generated were induced into neuronal 
progenitor cells (NPCs), positive for neuronal cells markers (PLAG1, NESTIN, and 
VIMENTIN). The differentiation protocol of iPSCs into NPCs can assist in future 
studies on animal models for neurodegenerative diseases, and the transplantation of 
these cells may provide details regarding the regenerative potency in vivo.

In particular, the swine is an attractive model to study human genetic diseases 
due to the genetic homology found between the species [97–99]. The extension 
of genetic editing tools to the piPSCs could significantly increase their value as 
a biomedical model, motivating efforts to develop safe and efficient genome 
 editing technologies in this model, aiming to replicate human disease and develop 
 therapeutic approaches [100].
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In swine, gene editing tools are more prone to be effective and accepted once 
reproductive biotechnologies (such as embryo manipulation and microinjection 
and somatic cell nuclear cloning – SCNT) are far more studied than other models 
such as NH-primates and dogs [101]. The use of CRISPR/Cas9 injection into swine 
zygotes, for example, has been reported as an exciting model for human disease 
based on gene knock-out [102–104], in special, presenting high efficiency and 
without detection of off-targets [105].

Gene editing is highly explored in human iPSCs for cardiovascular, 
 neurodegenerative diseases like Alzheimer’s and Parkinson’s, and degenerative 
muscular dystrophy (DMD), however, its applicability in autologous therapies is 
still restricted. Thus, gene editing in piPSCs to study diseases and their treatments 
[106] and transplant these cells or even to generate new entire edited organisms is 
a game-changer in the regenerative medicine field. Yu [104] edited swine zygotes 
using CRISPR/Cas9 for DMD the piglets born had the disease in skeletal muscle, 
heart and decreased smooth muscle thickness in the stomach and intestine. These 
models would enable, trough gene editing on piPSCs, to test autologous therapies 
for DMD.

Apart from the use of edited cells for cellular therapy, the technology would 
also be useful to the production of human organs by interspecies blastocyst-iPSCs 
complementation [68, 107]. Wu [108, 109] described the chimeras’ production 
through the complementation of hiPSCs in swine zygotes genetically edited via 
CRISPR/Cas9. Researchers also reported to efficiently disable pancreatogenesis in 
pig embryos via zygotic co-delivery of Cas9 mRNA and dual sgRNAs targeting the 
PDX1 gene. When combined with chimeric-competent human pluripotent stem 
cells, the authors inferred that these results would provide a suitable platform for 
the xeno-generation of human tissues and organs in pigs [108, 109].

Bypassing the ethical problems of possible humanization of the swine during the 
embryo complementation process, another option for producing patient-specific 
organs is to recellularize swine organ scaffolds with hiPSCs. The selected organ goes 
through the decellularization process that completely removes cells and organic 
components of tissue, such as lipids, DNA, and antigenic proteins, but maintains 
the extracellular matrix (ECM). Recently, Goldfracht [110] combined hiPSCS-
cardiomyocytes (hiPSC-CMs) with extracellular-matrix (ECM) derived from 
decellularized swine hearts, developing an ECM-derived engineered heart tissues 
(ECM-EHTs) model. Ohata and Ott [111] decellularized the lungs of human, swine, 
and NH-primates, the structure kept the original bronchial tree, vascular network, 
and most of the ECM composition and bioreactors were used to recellularize the 
lungs, and successful cell growth was achieved with perfusion culture.

Organ engineering based on recellularization with patient-derived iPSCs offers 
the unique potential to promote autologous treatment, and are also promising as 
tools for animal production, once piPSCs differentiated into germinative cells could 
be used to re-colonize depleted ovaries or testicles in order to spread the desired 
genetics in other animals [112]. Also, the use of muscle differentiation from iPSCs 
in scaffolds would benefit not only the cellular therapy for injured muscles in gen-
eral, but opens new possibilities regarding in vitro meat production. The produc-
tion of “animal-free” meat offers a reduction in environmental pollution and allows 
disease-free meat production due to its controllable and manipulative production 
system. However, technical challenges and intense research are still needed to 
establish such “animal-free” meat culture system [68, 113].

Although the complete reprogramming of iPSCs in the swine model is not yet 
fully elucidated as it is for human and murine reprogramming, the technology has 
the clear benefit of improving animal production and reproduction, opening new 
perspectives to study genetic diseases or develop cellular transplantation therapies. 
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Studies are still needed to optimize the production of non-transgenic piPSCs and 
their association with other biotechnologies in the swine model, and the inter-
species difference regarding pluripotency acquisition is important in order to define 
proper culture conditions to maintain the pluripotency and the reprogramming 
protocols in this model.

2.3 Canines: closer to humans than ever

The dog (Canis lupus familiaris) is considered a well-suited animal model for 
many diseases, drug development, and regenerative therapies. Like humans, dogs 
present a great phenotypic diversity and a well-mixed gene pool because of centu-
ries of random breeding [114], and they also exhibit metabolic, physiological, and 
anatomical similarities to humans [115]. More than 200 known hereditary canine 
diseases have an equivalent human disease, including cardiomyopathies, muscular 
dystrophy, and cancer. Moreover, the dog was the most prevalently used species in 
early transplantation research, including bone marrow transplantation and gene 
therapy [116], due to their similarities to humans concerning stem cell kinetics, 
hematopoietic demand, and responsiveness to cytokines [117, 118].

Because of the many similar cancer characteristics in dogs and humans, includ-
ing histological features, genetics, behavior, and response to conventional therapies 
[119], dogs are amongst the leading models for human cancer studies. Notably, 
the number of dogs that are diagnosed and managed with cancer is estimated to 
be over 6 million per year in the United States [119]. Such conditions triggered 
researchers’ interest and efforts to identify cancer-associated genes, study the envi-
ronmental risk factors, understand tumor biology and progression, and develop 
of novel cancer therapeutics [120]. Different researchers described similar types 
of cancer in dogs and humans that include prostate, skin, mammary, lymphoid 
neoplasia, and others [121–124]. Nonetheless, it should be recognized that just as in 
other models, both similarities and dissimilarities exist [119], including disparities 
concerning genomic factors, clinical behavior, and prevalence. For example, the 
BRAF gene’s somatic mutation occurs in nearly 60% of melanoma from humans, 
but only in approximately 6% of dogs [125]. Also, while osteosarcoma most typi-
cally affects the appendicular skeleton and metastasizes to lungs in humans and 
dogs, peak onset occurs at a young age in humans, but more often at an advanced 
age in dogs [126].

Stem cell research is a recent and increasing field for canines, unraveling the 
development of novel cell-based disease models, drug discovery, and therapies. 
Some research with ASCs has been performed dogs due to their regeneration 
properties. Canine MSCs (cMSCs), for example, successfully recovered damaged 
spinal cord neurons [127], increased tubular epithelial cell proliferation in cisplatin-
induced kidney damage [128], successfully treated osteonecrosis [129], repaired 
infarcted myocardial tissue [130], are capable of chondrogenic differentiation [131] 
and suppression of inflammation of ruptured crucial ligament [132].

As previously discussed, ASCs cells have limitations when considered for 
therapy or regenerative medicine, such as limited proliferation, expansion, and 
differentiation potentials. In contrast, pluripotent stem cells can fill a critical void in 
regenerative medicine by allowing autologous studies or gene editing for in vivo or 
in vitro disease modeling. Similar to pigs, but in particular in dogs, isolation of gen-
uinely pluripotent cells has been challenging. According to [133] six studies from 
2007 until 2009 derived ESCs from blastocysts that expressed the core pluripotency 
markers and were capable of differentiating into representative lineages of all three 
germ layers in vitro; however, a limited proliferative potential and differentiation in 
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germ cells layers were observed in all [134–139]. Moreover, a consensus regarding 
typical morphology and cell culture conditions are still unreported [136, 138].

iPSCs generation in canines has evolved quickly. Some studies have shown 
that the generation of canine induced pluripotency stem cells (ciPSCs) from fetal 
or adult cells through retroviral transduction of dog, human, or mouse factors 
[140–149]. The pluripotency state of the ciPSCs (naïve, primed, or other) has 
been discussed, and the proper characterization of these cells lacks consensus. 
These studies tested different medium and supplement combinations in culture 
and reported different pluripotency acquisition requirements and maintenance 
(different culture supplementation and different cell surface markers detection). 
Interestingly, [141] obtained ciPSCs derived from adipose multipotent stromal cells 
that showed similarity to human ESCs regarding morphology, pluripotency markers 
expression, and the ability to differentiate into all three derivatives germ layers in 
vitro (endoderm, ectoderm, and mesoderm).

Remarkably, dogs develop breed-associated genetic predispositions to particular 
disorders and suffer from many of the same maladies as humans. Many genetic 
diseases, such as Alzheimer’s disease, retinal atrophy, muscular dystrophy, cancer, 
obesity, cardiovascular diseases, and diabetes mellitus, affect dogs and humans 
[121, 135, 150]. For instance, the neurobehavioral syndrome called canine cognitive 
dysfunction (CCD), which affects 14.2–22.5% of dogs over eight years old, shares 
many clinical and neuropathological similarities with human aging and early stages 
of Alzheimer’s Disease [151–154]. Recently, Hyttel and collaborators [155] aimed 
to characterize the CCD condition in iPSC-derived neurons from aged demented 
and healthy dogs, allowing the comparison of CCD with human Alzheimer’s at 
the cellular level. Canine iPSCs have also been tested in other studies, as research-
ers transplanted autologous iPSCs into the myocardial wall of dogs to examine 
the potential for myocardial infarct treatment, and the stem cell population were 
tracked regarding distribution,  migration, engraftment, survival, proliferation, and 
differentiation [142].

Although biotechnological techniques and tools for the dog are less developed 
than for other species such as swine, the progress on gene editing technologies that 
can correct genetic defects, thereby offering potential treatment of some inherited 
diseases, is of great interest in canines due to the genetic proximity to humans 
described before [156, 157]. In 2015, [158] explored the feasibility of producing 
gene knockout (KO) dogs using gene editing by CRISPR/CAS9. The study focused 
to knock out the myostatin gene (MSTN), that is a negative regulator of skeletal 
muscle mass and demonstrated for the first time that a single injection of Cas9 
mRNA and sgRNA corresponding to a particular gene into zygotes, combined with 
an embryo transfer strategy, efficiently generated site-specific genome-modified 
dogs [158, 159].

Recent studies also focused on using CRISPR/Cas9 edition for canine cancer 
models [160, 161]. Eun et al. [161], reported the attempt to optimize the CRISPR/
Cas9 system to target canine tumor protein 53 (TP53), one of the most important 
tumor suppressor genes. The establishment of TP53 knockout canine cells could 
generate a useful platform to reveal novel oncogenic functions and effects of 
 developing anti-cancer therapeutics [161].

Whereas one of the key benefits of using ciPSCs in disease modeling is the 
already discussed advantage over murine models, mostly due to the higher similarity 
between dogs to humans, another important perspective about ciPSCs is its poten-
tial use in clinical applications to improve the health and welfare of dogs themselves, 
an important aspect to be considered, in particular, due to the increasing inclusion 
of pets inside families and their overall importance to the One Health concept.
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3. Future perspectives and final considerations

Herein advantages and hurdles of using of induced pluripotent stem cells were 
discussed concerning ongoing and future applications in large animal models, 
summarized in Figure 1. While true ESCs have only been described in mouse 
and rat models, it is widely accepted that these models are not the most adequate 
for studies on cellular therapies in regenerative medicine. Therefore, progress on 
translational medicine relies on the development of pluripotent-based technologies 
in suitable environments such as NH-primates, swine, or canine organisms. The 
alliance between in vitro induced pluripotency and gene editing tools opens a new 
road to suitable and experimental preclinical protocols. Besides the in vivo or in 
vitro disease modeling, the validation of pluripotency in domestic and wild animals 
holds great promise to contribute to animal production, preservation, and health 
by enabling, for example, the generation of gene editing and improved gametes, 
embryos, and animals.

Acknowledgements

Funding was provided by FAPESP (São Paulo Research Foundation) grants no. 
2013/08135-2 and 2015/26818-5.

Figure 1. 
Biomedical and regenerative possibilities for translational use of induced pluripotent stem cells derived from 
large animal models.
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