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Abstract

The urban heat island (UHI) effect is created by a series of man-made surface 
modifications in urban areas that cause changes to the surface energy balance, 
resulting in higher urban surface air temperatures as compared with surrounding 
rural areas. Studying the UHI effect is highly amenable to hands-on undergradu-
ate student research projects, because, among other reasons, there are low key 
measurement tools that allow accurate and regular stationary and mobile probing 
of air temperature. Here, we summarize the results of a student project at Texas 
A&M University that analyzed the atmospheric UHI of Bryan/College Station, a 
mid-size metro area in east Texas. Sling psychrometers were used for semi-regular 
twice daily stationary air temperature monitoring, and a low-cost electronic sensor 
and miniature data logger were used for mobile measurements. Stationary data 
from two similar, open mid-rise building locations showed typical UHI intensities 
of 0–2°C, while the mobile measurements identified situations with UHI intensi-
ties exceeding 6°C when traversing areas with high impervious surface fractions. 
Nighttime measurements showed the expected UHI intensity relations to wind 
speed and atmospheric pressure, while daytime data were more strongly related to 
urban morphology. The success of this research may encourage similar student proj-
ects that deliver baseline data to urban communities seeking to mitigate the UHI.

Keywords: sling psychrometer, student project, UHI intensity, mobile 
measurements, impervious area fraction

1. Introduction

The urban heat island (UHI) effect is a relatively well-researched surface 
meteorological phenomenon. It describes the difference in surface air temperature 
between a built-up urban area and its surrounding countryside. Said difference is 
usually displaying a warmer surface layer air temperature in urban areas, especially 
during nighttime. Several reviews of the UHI effect magnitudes, characteristics, 
causes and mitigation strategies can be found in the literature [1–7]. Arnfield [1] 
summarized the major aspects, stating that UHI intensity is highest at night, typi-
cally increases with lower wind speeds under clear sky, high pressure conditions, 
and is usually more pronounced during summer time and in larger, more populous 
cities. Recent critique and recommendations for ongoing research [7, 8] have led to 
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a more streamlined approach of interpreting UHI intensity on the basis of measure-
ment techniques, locations, and urban morphological characterizations such as 
impervious area fractions, building heights, and canyon aspect ratios.

The causes of UHI effects are related to fundamental differences in the surface 
energy balance between urban and rural areas. The 3D structure of, and man-made 
materials in, urban areas cause albedo changes during daytime and “radiation 
trapping” at night [6, 9–13], causing stronger heat admission during daytime, 
and slower radiative heat losses at night. In addition, anthropogenic heat from the 
human population and its energy use in urban areas significantly enhances the UHI 
effect [14–22]. While rural areas convert a substantial fraction of daytime incom-
ing net radiation into latent heat fluxes, the dominance of impervious areas and 
an associated lower vegetation density in urban areas compared with their rural 
surroundings causes a redistribution of incoming net radiation into urban heat 
storage and sensible heat fluxes. Increased sensible heat fluxes increase the daytime 
UHI intensity, while high heat storage fluxes exacerbate nighttime UHI intensities 
when stored heat is returned into the atmosphere [23–28]. Detailed numerical 
studies such as by Ryu and Baik [29] have shown that impervious surface area, a 
proxy for energy balance flux changes, is likely the dominant factor determining 
daytime UHI intensity, while anthropogenic heat releases may dominate nighttime 
UHI intensity. Both these factors interact with the 3D structure of the urban fabric 
and the prevailing meteorological conditions. This can cause daytime cool islands 
as man-made (impervious) surfaces store heat and can shade road “canyons”; and 
maximum nighttime heat islands as stored heat together with anthropogenic heat 
are released back into shallower nighttime surface air layers. The results also concur 
with higher net radiation levels under high pressure conditions in summer, and the 
associated lack of turbulent heat transport under low wind speeds in urban areas as 
summarized by Arnfield [1].

To investigate these phenomena, researchers have used both stationary and 
mobile air temperature measurements extensively. While early studies often used 
only a few weather station locations [30, 31], or limited mobile traverses [32–34], 
newer studies have profited from now widely available, small form factor, accurate, 
and cost-effective electronic temperature sensors deployed in either stationary or 
mobile fashion. However, the correct deployment and interpretation of such sensors 
and their data still requires careful consideration, such as of radiation shielding and 
sensor response time aspects. In comparison, a hand-operated sling psychrometer 
provides a highly accurate, battery-independent low-key tool that can be operated 
by any lay person and can be immediately ready at the required time. Sling psy-
chrometers provide dry-bulb and wet-bulb temperatures, and thus serve to provide 
both air temperature and humidity. They have been used in the past for UHI “spot” 
measurements [35–37], supplementing weather station and mobile data, and are 
ideally suited as “hands-on” data collection tools in undergraduate student research 
projects [38].

This chapter describes a semester-long student project to determine the UHI 
intensity of a mid-size metropolitan area in east Texas, the Bryan/College Station 
(BCS) metro area, home of Texas A&M University. As part of a spring semester 
course on environmental atmospheric science, students were tasked to maintain 
regular air temperature measurements near the places they lived in town, then turn 
in a writing assignment at the end of the semester. During the following summer 
and fall semesters, the first author maintained two of the measurement sites and 
also carried out a mobile measurement study using her private automobile. Here, 
we discuss selected results from the measurements in context of past UHI studies. 
We also introduce an ongoing project of integrating these measurement results with 
remotely sensed land cover data.
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2. Methods

2.1 Sling psychrometer measurements

Sling psychrometers are traditional meteorological measurement tools to 
determine air temperature (dry-bulb temperature) and relative humidity (wet-
bulb temperature). Sling psychrometers have been used in UHI studies going back 
several decades [32, 35, 36, 39]. They have an educational advantage over automated 
measurements as they require direct student involvement in the data gathering 
and documentation process. The instrument used in this study was a Bacharach 
model 0012-7012 using two red spirit filled glass thermometers with Fahrenheit 
scales. The instrument is made of a robust hard plastic shell, with its outer part 
acting as handle when extended, while the inner part bears the two identical glass 
thermometers. The thermometer scales allow readings as precise as 0.5°F, and are 
accurate to at least 1.0°F based on intercomparisons with other sling psychrometers 
and a research grade meteorological sensor, comparisons that were made part of the 
student project in this UHI study.

Here, we discuss only the dry bulb, aka air temperature data. The atmospheric 
UHI effect was calculated as the difference between the measured air temperature 
and the corresponding temperature at 2 m above ground level (agl) at the Texas 
A&M weather station (Figure 1). The weather station’s combined T/RH sensor, a 

Figure 1. 
Roadmap based view of the Bryan/College Station metro area in East Texas (30.6°N, 96.32 W). The major 
highway traversing the area, Texas-6, is labeled alongside the two stationary measurement locations in red 
(T = ‘trails’, Q = ‘quad’) and the weather station location (W) in blue.
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model 085 from MetOne Instruments Inc., has a high precision and accuracy multi-
element thermistor (±0.15°C). Corrections for elevation differences between the 
measurement sites and the weather station reference location were made using the 
dry adiabatic lapse rate.

Multiple locations were monitored within the BCS metro area during the spring 
semester of 2015, but only two urban locations, which were monitored through-
out 2015, are discussed here. The first location, subsequently identified as the 
“Trails” apartment complex, was a parking lot area in front of apartment buildings 
(Figure 1) in College Station. This part of town is slightly elevated from the sur-
rounding urban area, and located between a narrow, wooded green corridor, and a 
major freeway (State Highway 6). While the location was next to pervious lawns, 
the area was almost tree-less and dominated by buildings, roads, and parking lots. 
The tallest buildings are the three story apartment buildings; the larger area within 
half a kilometer, however, includes a midsize mall and associated parking lots to the 
north, commercial buildings, including hotels, along the freeway to the east, and 
both taller and less tall apartment buildings toward the south and west.

The second location, subsequently referred to as “Quad”, was a small parking 
lot on the Texas A&M campus in College Station (Figure 1). This location is also 
dominated by impervious surface areas, such as more extensive parking lots to the 
southeast, large parking garages to the east, and the onsite multi-story dormitories 
and Dining Hall. It has, however, numerous trees lining the nearby streets. The 
surroundings within half a kilometer consist of numerous, multi-story university 
buildings to the north and west, an open park, a field, and a wooded, one-story 
residential neighborhood to the southwest and south, and a golf course further to 
the northeast.

Both locations can be characterized as local climate zones (LCZ) 56, open 
mid-rise to low-rise urban areas with 30–50% impervious area [8]. However, Trails 
is located closer to the east end of town, with rural areas (LCZ B/C) as close as 
1.5 km to the east, while Quad is located more central to the metro area, with open, 
sparsely build-up LCZ 9 areas more than 2 km distant, and rural areas more than 
4 km distant (Figure 1).

UHI intensity was determined for each location by comparing observed local 
temperatures to the rural temperature measurement (10-min average) at Texas 
A&M’s weather station 10 km outside the urban area toward the southwest. In 
addition, we assembled weather station data (pressure, winds, solar radiation, and 
precipitation) for the days measurements were taken for data analysis.

2.2 Mobile measurements

Air temperature sensors and associated logging equipment have become both 
miniaturized and highly affordable, thus allowing both high spatial density dis-
tributed and low-key mobile data collection of the urban heat island [40]. Mobile 
measurements (traverses) using automobiles, but also bicycle-mounted or person-
ally carried sensors, have been used numerous times in the past to study the UHI 
effect, both in long- and in short-term campaigns [32, 33, 37, 41–65].

In summer and fall 2015, we carried out an undergraduate student research 
project [38] using a standard HOBO U12 data logger with 12-bit temperature sensor 
(model TMC6-HD) from Onset Computer Inc. to evaluate the atmospheric urban 
heat island of the BCS metro area. The sensor has a typical accuracy of ±0.25°C and 
is recorded at a better than 0.2°C resolution. It was placed into a passive radiation 
shield (model RS3, Onset Comp. Inc.), which was mounted to an angular steel 
bracket attached to a metal sleeve with a flat rubber sheet that slides over a passen-
ger car side window (Figure 2). With the window moved nearly all the way up, the 
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sensor was measuring air temperature at approximately 2 m agl off the passenger 
side of the car, with its logger safely placed inside the air-conditioned vehicle. This 
avoided most temperature bias effects from the vehicle itself, or from other vehicles 
on the road, unless measurements occurred either at very low speeds with air mov-
ing across the front hood of the car toward the sensor, such as may have occurred 
when stopping at traffic lights; or when hot exhaust plumes from vehicles on the 
road were encountered. Such possible temperature measurement biases, though 
occasionally encountered, were not removed from the data set.

Typical car moving speeds were 20–30 mph in town and up 50 mph outside 
the urban areas (approximately 10–25 m s−1) during all mobile measurements. 
A smart phone app called RAAH (https://www.raah.co) was used to record the 
vehicle’s location. Data logger and smart-phone times were aligned before each 
drive. During each traverse data were recorded every 10 s, providing for a typical 
horizontal resolution of 100+ m. However, considering the sensor’s response time, 
and the accuracy and timing of the location determination, both the absolute bias 
and uncertainty of a recorded temperature’s location were likely larger than 100 m. 
Such aspects should be considered in all mobile studies when moving speeds are 
comparable or faster than sensor response times.

Raw temperature data were normalized first for the presumed linear tempera-
ture change, if present, during the typically one-hour drive for data collection, then 
adjusted for elevation differences along the route using the dry adiabatic lapse rate. 
Both corrections were always significantly smaller than the encountered tempera-
ture differences between the rural and (sub-)urban areas traversed.

The routes driven were selected to avoid selective coverage of the metro 
area, and such that measurements along a route could be completed within 
approximately 1 h, including nearby rural areas. All routes were driven once in the 

Figure 2. 
Mobile measurement setup.
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morning, and then at least two times during the afternoon and around midnight. 
Based on student availability during the project, completing the set of selected 
routes lasted from late August to early November 2015.

One route, which was driven twice during the project, brought the vehicle close 
to the Texas A&M weather station in the rural area approximately 10 km outside 
the urban area to the southwest (Figure 1). Good agreement between the vehicle 
based sensor and the weather station sensor was observed (<0.5°C differences), and 
minimum temperatures during each drive were strongly correlated with weather 
station temperature during the drive hour (slope = 0.98, r2 > 0.99). Consequently, 
we used calculated temperature anomalies during each traverse and determined 
UHI intensity from each drive’s observed maximum minus minimum temperature. 
The remaining meteorological parameters were assembled in similar fashion as 
described above for the stationary measurements.

2.3 Urban area characterization using remote sensing

To aid in the interpretation of the observed atmospheric UHI effect, we 
estimated the spatial extent and configuration of various land-cover/land-use 
(LCLU) areas in Bryan/College Station (BCS), Texas. To this end, we jointly 
analyzed airborne digital orthophotographs and a LiDAR-derived digital surface 
model (DSM) of the study area. We thus characterized urban LCLU based on a 
remote-sensing approach. In particular, we employed a geospatial object-based 
image analysis (GEOBIA) method [66, 67], which effectively exploits contextual/
spatial information. GEOBIA-based image-processing algorithms and data fusion 
are needed to more fully exploit image information, particularly in the case of 
high-spatial-resolution data. For our GEOBIA analysis, we employed eCognition® 
Developer software, which allows objects/segments to be delineated and used to 
classify geospatial datasets. We divided the processing steps into two phases: an 
initial remote-sensing data segmentation and classification phase, and a subsequent 
post-segmentation/classification editing phase, which we conducted to improve 
classification accuracy. We performed quantitative classification accuracy assess-
ment on the revised, post-classification edited result.

2.3.1 Segmentation and classification phase

Data sets and data pre-processing. Data processing for this remote-sensing 
segmentation/classification analysis began with the acquisition of multiple 50-cm 
natural-color (NC)/color-infrared (CIR) Digital Orthophoto Quarter Quad 
(DOQQ ) images, acquired from the Texas Natural Resource Information System 
(TNRIS). These images were collected between October 2014 and August 2015 as 
part of the 2015 Texas Orthoimagery Program. We mosaicked the DOQQs for the 
BCS, Texas study area, and then spatially resampled the mosaic to a 5-m grid cell 
size in order to facilitate subsequent completion of GEOBIA computational process-
ing. Additionally, we utilized a high-point-density LiDAR point cloud, acquired 
from Texas A&M University, which was collected in conjunction with the State of 
Texas over the February 9–10, 2015 period. We filtered and processed the LiDAR 
point cloud using Esri ArcGIS LAS tools to produce a digital surface model (DSM) 
of the BCS area. After initial processing of the image and LiDAR data, we spatially 
subset the respective data sets using a polygon to fit the same areal extents.

Information classes and training set delineation. The LCLU information classes 
employed in this analysis are: roads, roofs, other impervious, trees, lawns, water, 
bare soil, and pasture/cropland. The pasture/cropland class is actually a combined 
pasture/grassland/cropland class, which contains grasslands that are not (residential) 



7

Low-Key Stationary and Mobile Tools for Probing the Atmospheric UHI Effect
DOI: http://dx.doi.org/10.5772/intechopen.89514

lawns. We manually delineated the training areas based on manual/visual interpreta-
tion of the aerial photography and DSM. We initially generated training areas for a 
set of 15 classes, then later merged some of these classes, yielding the aforementioned 
final set of eight information classes. The distribution of training-area polygons 
across these classes is given in Table 1.

GEOBIA parameter values, input variables, and ruleset development. We created a 
ruleset within eCognition® Developer using the imagery, DSM, and training areas. 
The process involved multiple steps, including: segmentation, class assignment 
using the training areas, assigning the classified segments as samples, configuring 
the nearest-neighbor classifier, and applying/conducting the classification. We 
determined GEOBIA parameter values via iterative, trial-and-error experimenta-
tion, with the objective of maximizing LCLU map classification accuracy, while 
also accounting for computational constraints of the GEOBIA system/computing 
environment. For the classification step, we used a nearest-neighbor classification 
algorithm. The classification input features included: mean blue band, mean green 
band, mean red band, mean near-infrared (NIR) band, mean DSM, standard 
deviation blue band, standard deviation green band, standard deviation red band, 
standard deviation NIR band, standard deviation DSM, normalized difference veg-
etation index (NDVI) [68], and normalized difference water index (NDWI) [69]. 
We applied the classifier at the image-object level [66], and exported classification 
results in both vector and raster formats, where we subjected the latter product (at 
5-m cell size) to subsequent processing and analysis.

2.3.2 Post-segmentation/classification editing phase

The resultant LCLU classification entailed various areas of clear misclassifica-
tions, including some roads, parking lots, and roofs/buildings. Therefore, we 
performed some post-/segmentation/classification editing to increase classifica-
tion accuracy of the class information. In particular, publicly available geographic 
information system (GIS) data from the City of College Station and the Brazos 
County Appraisal District aided editing of the LCLU classification map. For roads, 
we used a vector GIS layer containing road center lines, where we buffered the 
center lines, 5 m on each side, followed by a dissolve operation. We assigned the 
road classification value to the buffered area, converted to the data to the raster 
data model, and then overwrote the pixels in the original LCLU map in these areas 
with these road classification values. For the roofs class, we followed a similar 
procedure, except that no buffers were used. Since we only had access to building 

Class ID number Class name Number of training polygons

1 Roads 62

2 Roofs 281

3 Other Impervious 43

4 Trees 43

5 Lawns 153

6 Water 219

7 Bare Soil 39

8 Pasture/Cropland 46

Table 1. 
Number of training polygons per class, used for GEOBIA-based LCLU classification of Bryan/College Station 
(BCS), Texas study area.
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footprint data from the City of College Station, we only applied this operation to 
areas within College Station, and not the City of Bryan; however, a large portion 
of the study area lies within the City of College Station boundary. For the other 
impervious class, based on visual interpretation of the aerial photography, we digi-
tized impervious areas—especially parking lots—where misclassifications were 
evident. After rasterization of the digitized polygons, we then overwrote misclas-
sified pixels in the original LCLU raster using these newly digitized data. Based 
on visual inspection, these post-classification GIS operations generally markedly 
improved classification accuracy. One caveat though is that although the DOQQs 
and LiDAR point clouds were collected close in time, the data in the vector GIS lay-
ers used in this post-segmentation/classification editing phase were acquired some 
time prior to the DOQQ and LiDAR acquisitions, and this temporal disjunction 
may have resulted in some errors in the edited LCLU map, particularly given the 
relatively high rate of urbanization in the BCS area in recent years. Furthermore, 
future analysis may entail using variable buffer distances for the road centerlines, 
depending upon road type.

2.3.3 Quantitative land-cover/land-use classification accuracy assessment

Using standard methods [70, 71], we performed a quantitative thematic/classi-
fication accuracy assessment on the finalized land-cover/land-use (LCLU) clas-
sified map, edited post-classification. We employed a stratified random sampling 
approach for generating the classification accuracy-assessment points/sample 
locations, and we used 100 such points per class [70, 71]. We used the DOQQ aerial 
photograph mosaic as the reference data; we evaluated the accuracy of the post-
classification-edited LCLU map via manual/visual interpretation of the DOQQs 
at the stratified random point locations. This analysis enabled the generation of 
an error matrix from which we computed statistics, including the overall accuracy 
[72, 73]. The overall classification accuracy of the post-classification edited LCLU 
map was 76.5%.

3. Results and discussion

3.1 Stationary measurements

Stationary measurements were commenced past the semester-long student project 
to evaluate whether there was a seasonality to the UHI in BCS. As shown in Figure 3, 
no clear seasonal variation was observed. However, the five highest UHI intensities, all 
above 4°C, were all measured during spring-time (March and April). They occurred 
on clear or mostly clear-sky days after recent cold front passages, and possible reasons 
for high values under those conditions are discussed below. Lowest values, down to 
−1.3°C, indicative of a local urban cool island, occurred dominantly during morning 
measurements. Comparing sites and measurement times, the median morning UHI 
intensity was slightly, but statistically significantly lower than the median night/eve-
ning UHI intensity. Site differences were statistically insignificant.

Figure 4 shows that the UHI intensity was slightly dependent on large-scale 
wind directions. Northerly winds, as occur behind cold front passages, were 
responsible for the spring-time maxima in UHI intensity at the Trails site, but no 
such significant difference could be found for the Quad site. This could be due to 
the fact that a mid-size mall, a 0.4 km2 large area of impervious surface area, lies 
just beyond a narrow green corridor north of the Trails site, but no such prominent 
heat source lies near the Quad site.
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We used a multi-linear regression to evaluate whether and which meteorological 
factors may have contributed to the UHI intensity at each site. Eliminating wind 
direction, we found that lower temperature, and lower relative humidity days were 
significantly (p > 0.95) correlated with the UHI intensity, a result strongly driven 
by the high spring values though. In addition, days with higher pressures were 
significantly correlated with the observed UHI intensity at the Quad site (p > 0.95). 
However, no statistically significant relationship with (rural) wind speed, ranging 
from 0 to 7 m s−1, was found. In summary, no single meteorological parameter other 
than wind direction (Figure 4) stood out in explaining the observations.

Figure 3. 
Seasonal changes of UHI intensity for the stationary sites and measurement times in 2015.

Figure 4. 
Boxplot of all 2015 UHI intensity measurements as a function of cardinal wind direction during the observation 
period. Thick horizontal bars mark medians, box edges mark the interquartile range (IQR), and whiskers are 
95% confidence interval estimates.
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The observed UHI intensity range is comparable with similar measurements 
in other mid-size urban areas (e.g. [33, 39, 74]). However, parameters other than 
population (or city) size and meteorological conditions are typically more relevant, 
particularly impervious area fraction, anthropogenic heat release, and urban 
morphology [29]. Therefore, we can surmise that because both our sites have a 
higher than average canyon aspect ratio (building height, H, to canyon width, W, 
ratio), and higher than average population and thus energy use density, morning 
cool island findings could be related to shading and strong heat admittance into 
the urban fabric [75–77], while the highest UHI intensities may have been related 
to high local anthropogenic heat emissions, respectively. This will be discussed in 
more detail with respect to LCZ classifications elsewhere.

3.2 Mobile measurements

The selected driving routes covered central areas north and south of the city 
border between Bryan and College Station, where impervious surface areas maxi-
mize (LCZ 3 and 5). They also covered residential areas in south College Station, 
where LCZ 6 dominates.

Figure 5 shows an overview of results from three representative late evening 
drives, depicting three of the four routes. These drives occurred on (from north to 
south) September 16, August 28, and October 14, 2015. Rural wind directions and 
speeds for those drives were SE at 3–4 m s−1, ESE at 1–2 m s−1, and ESE at 3–4 m s−1, 
respectively.

In total, 15 traverses were completed at night and 16 during daytime (12 
afternoon and 4 mornings). The nighttime traverses showed UHI intensities 
of 3.2 ± 1.9 K (mean + − 1 sd), while the daytime UHI intensities were lower at 

Figure 5. 
Roadmap based view of the BCS urban metro area overlaid with temperature anomalies (in Kelvin) during 
three representative late evening traverses. All traverses occurred under weak southeasterly winds. The central 
traverse on August 26, 2015 had the lowest wind speeds and a UHI intensity of 6.1 K.
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2.3 ± 1.2 K. Only the nighttime UHI intensities displayed clear relationships to 
the prevailing meteorological conditions, namely atmospheric pressure and wind 
speed (p > 0.99), but also air temperature itself (p > 0.95). In addition, a weak 
dependence on the day’s solar radiation totals was observed (p > 0.77). The daytime 
traverses’ UHI intensities were not significantly related to the meteorological data; 
only air temperature (p > 0.87) and solar radiation (p > 0.78) were weakly related to 
UHI intensity for the afternoon traverses.

The combined data maintained dependencies on wind speed (p > 0.95) and 
atmospheric pressure (p > 0.9), and, together with the above, these results indicate 
that the UHI intensity of this midsize urban area was significantly more pro-
nounced at night- as compared with daytime conditions. The day-night difference, 
as well as the relationships with wind speed, atmospheric pressure, and related 
cloud cover, reproduced findings from previous UHI studies [1].

The results from the mobile measurements will be used further to analyze the 
major urban drivers of UHI intensity in terms of LCZ type [8, 52, 57, 63, 78–84], 
and associated impervious area fractions and aspect ratios [29, 85–87].

Here, we show two case studies: one using a typical Google Earth (GE) view, and 
one using remotely sensed urban land cover. Figure 6 shows a GE view of a part of 
the eastern BCS urban area, where the local highway separated a densely build-up 
area from a large outdoor sports facility, featuring frequent lawn irrigation and 
open, mostly undeveloped land to its southeast.

Figure 6. 
Sectional GE overlay of mobile air temperature measurements during the late evening traverse on August 
26, 2015. The white arrow shows wind speed and direction during the traverse. Driving direction is indicated 
by the light blue arrows, and relative driving speed can be deduced from symbol spacing. Symbols designate 
temperatures ranging from 29.5° C (red) in the road sections downwind densely build-up urban areas 1–2 km 
to the west of highway 6, to 26° C (yellow) downwind the irrigated outdoor sports complex near the center of 
the map, to 24° C (green) downwind of the then (2015) undeveloped area southeast of the sports complex.
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Temperatures dropped 3°C crossing the highway toward the east into a less 
developed area, and another 2°C once downwind of a largely undeveloped area at 
the time (LCZ B/C/D). Driving direction and symbol spacing highlighted in this 
close-up illustrate the delayed response of the temperature sensor at higher driving 
speeds on the southern leg as compared with the northern leg, which included two 
short stops at traffic lights, one before crossing the highway, and another north of 
the sports complex near the center of the map.

Case study 2 is shown in Figure 7, which depicts temperature anomalies from 
three independent daytime traverses overlaid on the high resolution LCLU map. The 
daytime traverses showed a much more sophisticated, smaller scale pattern of the UHI 
as compared with the nighttime traverses. Wind speed during all these drives was south 
to southeasterly, and upon closer inspection the data revealed impacts of impervious 
surfaces areas near and upwind of the driving location [38, 88] as an important factor 
in determining UHI intensity in the BCS metro area. Research is ongoing to improve the 
LCLU map, and quantify UHI intensity as a function of the footprint’s impervious area 
fraction, as well as other LCZ properties such as canyon aspect ratio and surface albedo.

4. Conclusions

We have translated an undergraduate course project of stationary measure-
ments of the urban heat island in a mid-size urban area in east Texas into a more 
detailed undergraduate study of the cities’ UHI intensity as a function of meteo-
rological conditions and urban morphology. Our study was able to reproduce the 

Figure 7. 
Temperature anomalies from several daytime (afternoon) traverses, overlaid on the LCLU map of the BCS 
area. The depicted routes were driven on September 2, 2015 (central SW–NE extension; winds E at 4 m s−1), 
October 14, 2015 (southern extension; winds SE at 4 m s−1), and August 26, 2015 (northern extension; winds 
S at 3.5 m s−1). X and y-axis units are in meters and reflect easting and northing of UTM zone R14 (i.e., 
distance, respectively, from the central meridian of the zone and from the equator).
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expected UHI intensity relationships with wind speed and atmospheric pressure, 
emphasizing synoptic high pressure conditions with intense solar radiation as 
a major driver of the UHI. In addition, we may have also found effects of local 
anthropogenic heat release and building shading. The latter, urban morphology 
and its local to regional impacts, is an ongoing focus of UHI research. We find 
that not only on larger scales is the UHI effect advected downwind, but local 
temperatures during daytime are advected downwind on a sub-kilometer scale [8]. 
Hence, the fraction of impervious area immediately upwind may more strongly 
affect local air temperature than the local impervious area fraction at the point of 
measurement. Future work is intended to better quantify this effect for the urban 
area studied. If confirmed, and of significant size, this opens avenues for local area 
UHI effect mitigation planning. It suggests that previous calls for (i) more surface 
unsealing to reduce urban runoff and increase surface moisture and (ii) increased 
tree cover for additional shading and latent heat cooling, may indeed be the two 
most efficient pathways to reduce the UHI locally, at least in mid-size metropolitan 
areas, where LCZs 5 and 6 dominate.
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