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Abstract: Irrigation management in vertisols is one of the major challenges to increase agricultural productivity in India and many devel-
oping countries. Unfortunately, information on hydraulic properties of these soils is very sparse. In an attempt to understand these soils for
better management, 10 different functions were evaluated for their efficacy to describe soil-water retention characteristics (SWRC) of ver-
tisols of India, and point pedotransfer functions (PTFs) were developed by using a nearest neighbor (k-NN) algorithm as an alternative to
widely used artificial neural networks (ANN) for prediction of available water capacity (AWC). Soil profile information of 26 representative
sites comprising 157 soil samples was used for analysis. The Campbell model fit to measured SWRC data better than any other model, with
relatively lower root mean square error (RMSE) (0.0199), higher degree of agreement (0.9867), and lower absolute error on an average
(0.0134). Three other functions, namely, modified Cass-Hutson, Brooks-Corey, and van Genuchten, also described the SWRC data with
acceptable accuracy. Four levels of input information were used for point pedotransfer function (PTF) development: (1) textural data [data on
sand, silt, and clay fraction (SSC)]; (2) Level 1þ bulk density data (SSCBD); (3) Level 2þ organic matter (SSCBDOM); and (4) Level 1þ
organic matter (SSCOM). The RMSE in predictions by k-NN PTFs ranged from 0.0339 to 0:0450 m3 m�3 with an average of
0:0403 m3 m�3. The ANN PTFs performed with average RMSE 0:0426 m3 m�3 and a range of 0.0395 to 0:0474 m3 m�3. The k-NN algo-
rithm provided a viable alternative to neural regression with marginally better performance and the benefit of flexibility in the appending
reference database. The results are significant because SWRC data are still in the development stage in India, and k-NN PTFs would have a
greater value because of the flexibility. DOI: 10.1061/(ASCE)IR.1943-4774.0000375. © 2012 American Society of Civil Engineers.
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Introduction

Vertisols (clay soils) have great potential for agricultural produc-
tion, but many, especially in the developing world, are underutil-
ized due to a lack of understanding regarding their behavior and
management. In water-use regulation or budgeting, there are spe-
cial problems associated with these soils compared to other soils.
The problems are associated with two main factors, i.e., what con-
stitutes available water capacity of the soils and rooting depth
(Ahmad and Mermut 1996). Vertisols and vertic intergrades cover
an area of 257 × 106 ha globally, and India’s share is stated to be
around 30% (Dudal 1965). The swell-shrink nature of these soils

leads to complex hydraulic behavior, causing difficulties in man-
aging them. In fact, management of these soils is one of the major
challenges in increasing agricultural productivity in India. In devel-
oping countries like India, large-scale laboratory data on soil-water
retention characteristics (SWRC) are rarely available primarily
because of a lack of facilities and the costs involved. Because
understanding soil-hydraulic properties is a prerequisite for any ir-
rigation planning or hydrologic simulation, a lack of information on
SWRC is a major constraint faced in India. Literature provides
many mathematical functions to describe SWRC. Researchers have
pursued a universal function that can describe SWRC of all types of
soils. But experience shows that no single function can be termed
generic, although the van Genuchten (VG) function historically has
been the most widely adopted (Chang et al. 2004).

An indirect estimation of soil hydraulic properties (e.g., SWRC)
has received attention from many researchers as an alternative to
direct measurement/estimation. Basic soil information is often re-
lated empirically to properties of interest, mostly using regression
tools. Most of the PTFs reported in the literature pertain to the es-
timation of SWRC. The PTF could be built to predict a point of
interest on the SWRC curve, such as field capacity (soil-water re-
tained at �33 kPa), permanent wilting point (soil-water retained at
�1;500 kPa), and subsequently available water capacity (AWC).
Point PTFs are argued to be better than parametric PTFs because
soil-water retention in different ranges of soil-water potential is af-
fected by different basic soil properties. However, parametric PTFs
offer an advantage of continuous simulations (soil-water retention
at any level of potential can be predicted) and facilitating prediction
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of hydraulic conductivity at varied soil moisture levels. In applica-
tions such as irrigation decisions (scheduling criteria) or estimating
crop water requirements, information on two points on the soil-
water retention curve, namely, field capacity (FC) and permanent
wilting point (PWP) or AWC, may suffice. For such straight appli-
cations uncomplicated point PTFs are desirable.

Most of the recent PTFs reported in the literature have used a
neural regression approach (e.g., Jain et al. 2004; Minasny et al.
1999; Minasny andMc Bratney 2002; Patil et al. 2010; Schaap et al.
1998). The data used for calibrating PTFs should account for most
of the variations that are likely to be encountered in the soilscape of
the area where they are meant to be used. Because there is no well-
defined or developed soil database in India, it is imperative that any
effort to develop PTFs should also consider future developments
and that provisions be made for modifying PTFs. Unfortunately,
regression PTFs do not provide such flexibility. This is perhaps
the main reason why not a single report from India is found in
the literature that makes use of flexible/alternative pattern-
recognition algorithms. Nemes et al. (2006a, 2006b) have reported
efficacy of the k-nearest neighbor (k-NN) approach to predict FC
and PWP. They found that k-NN PTFs were as efficient as the PTFs
developed using the most advanced neural computing techniques.
These results are very important from an Indian context.

To the best of our knowledge, vertisols have not been studied for
their soil-water retention characteristics (SWRC) on regional scale
in India and information on parametric function that describes
SWRC of these soils is not known. We hypothesized that point
PTFs based on native data should be of greater value than the
generic PTFs, and any PTF that provides flexibility of appending
reference databases and acceptable predictive ability would be an
asset for future development. The objectives of this study were to
(1) identify a parametric function that best describes soil-water re-
tention characteristics of vertisols; (2) establish point PTFs for the
estimation of AWC using neural regression and the k-NN tech-
nique; (3) compare estimates by different PTFs.

Materials and Methods

We used a database developed by Pal et al. (unpublished report,
2003) that included basic soil information and soil-water retention
properties. The database contains information on 26 profiles col-
lected from the Indian states of Madhya Pradesh, Maharashtra,
Karnataka, Andhra Pradesh, Tamil Nadu, Gujarat, and Rajasthan
(Fig. 1). The profiles represent subhumid (moist), subhumid (dry),
semiarid (moist), semiarid (dry), and arid climatic regions with
mean annual rainfall (MAR) of 1,448–1,127 mm, 1,084–
1,011 mm, 977–924 mm, 842–583 mm, and < 533 mm, respec-
tively. The majority of these soils were developed in the alluvium
of the weathered Deccan basalt. Undisturbed soil blocks (8 cm
long, 6 cm wide, and 5 cm thick) were collected from soil horizons,
and thin sections were prepared by the methods of Jongerius and
Heintzberger (1975). The particle-size distribution of the col-
lected soil samples was determined by the international pipette
method after removal of organic matter. Sand (2,000–50 μm), silt
(50–2 μm), total clay (< 2 μm), and fine clay (< 0:2 μm) fractions
were separated according to the procedure of Jackson (1973).
A seven-point SWRC (�33, �100, �300, �500, �800, �1;000,
and �1;500 kPa) was mapped using pressure-plate apparatus. The
sieved soil sample(s) were filled in rubber soil retainer rings of 6 cm
diameter and 1 cm height on a ceramic plate of requisite capacity.
The soil in the ring was allowed to saturate for 24 h with an excess
of water, and the predetermined pressure from a source of com-
pressed air was applied the next day. Moisture was determined

gravimetrically after the soils had attained equilibrium at particular
pressure. Other soil properties (not so important in the context of
this article) were determined using standard soil-survey methodol-
ogy and laboratory techniques.

Salient features of the reference database used in the study
are presented in Table 1. Except for sand content, all the basic
soil properties exhibited a relatively lower coefficient of variation
(COV), implying lesser spatial changes. Seven-point data on soil-
water retention characteristics for 157 samples were used for
analysis. Thus, a total of 1,099 paired data on soil-water retained
at varied suction pressure kPa were used. Salient statistical features
of the SWRC data are presented in Table 1. Water retention ranged
from 0.081–0:576 m3 m�3. The magnitude of the COVat different
points suggested that there was consistency in retention values.
Mean standard deviation (SD) (measured data) was 0.006. We con-
sidered this SD value as criteria for judging the suitability of evalu-
ated SWRC functions.

SWRC data were fitted to the parametric relationship between
water content, θ, and the water potential of the soil, h, as described
by different researchers. A power law equation suggested by
Brooks and Corey (1966) describes this relationship as

S ¼ ðhb=hÞλ for h < hb S ¼ 1 for h > hb ð1Þ

where S is the saturation degree

S ¼ ðθ� θrÞ=ðθs� θrÞ ð2Þ

where θ = water content at pressure h; θs = maximum water con-
tent; θr = residual water content; hb = air entry pressure head; and
λ = pore distribution index.

Another most widely used function suggested by van
Genuchten (1980) describes the relationship as

S ¼ 1=½1þ ðα � hÞn�m ð3Þ

Fig. 1. Location of vertisol profiles in different states of India
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This equation is mostly under the assumption of m ¼ 1� 1=n.
The value of α is related to the inverse of the air entry
suction, α > 0, and n is a measure of the pore-size distribu-
tion, n > 1.

Campbell (1974) described the water-retention function as

θ ¼ θsðh=hbÞ�1=b for h < hb ð4Þ

θ ¼ θs for h ≥ hb ð5Þ

Hutson and Cass (1987) modified the Campbell function known
as Cass-Hutson (CH) function

θ ¼ θs
�
h
a

��1
b

for θ < θi ð6Þ

θ ¼ θs �
�
θsh2

ð1� θi=θsÞ
a2ðθi=θsÞ

�
for θ ≥ θi ð7Þ

Here,

θi ¼
2bθs
1þ 2b

where a, b = empirical parameters; and hb = air entry
pressure.

Other functions evaluated in this study are enlisted in Table 2. A
public domain computer code SWRC was used for fitting water-
retention functions.

Two techniques were used to build the PTF, namely, artificial neu-
ral networks (ANN)-based regression and k-NN. Software devel-
oped by Nemes et al. (2008) to build PTFs for estimating field
capacity (FC) and a permanent wilting point (PWP) from basic soil
properties like textural distribution, bulk density, and organic mat-
ter in hierarchical order was used for building k-NN PTFs. The
software/tool combines the k-NN algorithm with the bootstrap
data-subset selection technique to allow the development of model
ensembles that can be used to estimate the uncertainty of the final
model output. For developing ANN-based PTFs, software called
Neurointelligence was used. On the basis of earlier experience
(Patil et al. 2010), a feed-forward neural-network model with three
hidden nodes was preferred. The data set was partitioned into train-
ing (117 samples) and test (22 samples) sets. Upon finding an ap-
propriate network model, the PTF was calibrated. For network
training, the Levenberg-Marquardt algorithm was chosen because
the data were small. Four levels of input information were used to
avoid possible bias toward one set of inputs, and dependencies be-
tween basic soil properties and FC/PWP were established:
• Input Level 1: textural data [data on sand, silt, and clay frac-

tion (SSC)];
• Input Level 2: Level 1þ bulk density data (SSCBD);
• Input Level 3: Level 2þ organic matter (SSCBDOM); and
• Input Level 4: Level 1þ organic matter (SSCOM).

Performance Evaluation

The efficacy of parametric functions was evaluated based on (1) root
mean square error (RMSE), (2) index of agreement (d), (3) maxi-
mum absolute error (ME), (4) mean absolute error (MAE), and
(5) correlation coefficient (r) and coefficient of determination (R2).
Statistics for RMSE, d, ME, and MAE were calculated by using the
following equations, respectively, where n represents the number
of data used for modeling and Mi and Ei represent measured
and computed value, respectively, and the unit of errors is m3 m�3:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðEi�MiÞ2

n

r
ð8Þ

d ¼ 1�
P

n
i¼1ðEi�MiÞ2P

n
i¼1ðjEi� �Mj þ jMi� �MjÞ2 ð9Þ

Table 1. Statistical Summary of Soil Properties of 157 Soil Samples

Property Mean SE Variance COV Minimum Maximum

Sand (%) 0.1 0.01 0.01 1.16 0 0.49

Silt (%) 0.33 0.01 0.01 0.26 0.16 0.52

Clay (%) 0.57 0.01 0.01 0.21 0.12 0.79

Bulk density 1.46 0.01 0.02 0.09 1.1 1.8

Organic matter 0.52 0.02 0.06 0.46 0.08 1.55

FC 0.38 0.01 0.01 0.21 0.21 0.58

PWP 0.2 0 0 0.24 0.08 0.32

Soil-water retention at suction pressure (-kPa)

33 0.3835 0.0066 0.0068 0.2143 0.214 0.576

100 0.3279 0.0057 0.0051 0.2187 0.157 0.493

300 0.2699 0.0043 0.0029 0.1997 0.13 0.375

500 0.2552 0.0043 0.0029 0.2126 0.119 0.36

800 0.2388 0.0041 0.0026 0.2126 0.116 0.352

1000 0.223 0.0039 0.0024 0.2197 0.109 0.343

1500 0.1951 0.0037 0.0022 0.2383 0.081 0.323

Note: standard error (SE).

Table 2. Functions Selected to Describe SWRC of Study Soils

Function Analytic expression

Matric potential as dependent variable

Exponential h ¼ αe�βθ

Power h ¼ αθ�β

Farrel and Larson (1972) h ¼ hbeα½1�ðθ�θr=θs�θrÞ�

Simmons et al. (1979) h ¼ α½eβðθ�ΦÞ�1�
Libardi et al. (1979) h ¼ α½eβðθ�θsÞ � 1�
Soil-water content as a dependent variable

Driessen (1986) θ ¼ θsh�r lnðhÞ

Note: α, β, Φ, r are function parameters.
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ME ¼ MaxjEi�Mij ð10Þ

MAE ¼
Xn
i¼1

jEi�Mij
n

ð11Þ

Linear correlation coefficient r ¼ 1
n� 1

Xn
i¼1

ðMi � �MÞðEi � �EÞ
SMSE

ð12Þ

Performance of the k-NN algorithm was evaluated against esti-
mations made by neural network models, developed using the same
data and input soil attributes. The same set of statistical indices was
used for the comparison of measured and estimated data. The
RMSE statistic indicates the model’s ability to predict away from
the mean. The value of the RMSE imparts more weight-to-high
values because it involves the square of the difference between ob-
served and predicted values. Ideally, the model should have the
smallest MAE and smallest overall dispersion (RMSE). Units of
all the errors in this paper are m3 m�3.

Results and Discussions

Evaluation of SWRC Functions

The performance of 10 different models in describing SWRC could
be judged from the statistical indices (Table 3). It was apparent that
the Campbell model fitted better than any other model as evidenced

by a relatively lower RMSE (0.0199), a highest degree of agree-
ment (0.9867), and a mean absolute error (0.0134). Barring maxi-
mum error, which was lower in the BC model, all other indices
clearly pointed to the superiority of the Campbell function in de-
scribing SWRC data of the black soils. The next best was the modi-
fied Cass-Hutson function in terms of performance, followed by
VG and BC. All other functions were considered poor because
RMSE exceeded 0.1 as against RMSE of 0.006 in the measured
SWRC data. Although the van Genuchten model historically has
been the most widely adopted (Chang et al. 2004), it was a third
choice after the Campbell model and its variant (CH). Nevertheless,
all the indices suggested that any of the four functions, namely, VG,
BC, Campbell, and CH, could be used for fitting SWRC data. The
BC and VG models are derived on a similar philosophical basis—
both models specify the soil-water retention curve on an empirical
basis with the soil hydraulic conductivity as a function of soil-water
content. The Campbell and CHmodels can be considered as special
cases of BC or simply power law. The soil-hydraulic functions of
the VG model are more difficult to calculate and are considered
relatively difficult to achieve a rapid numerical solution to the
Richards’ equation. The BC function does not fit relatively well to
observed data in certain fine-textured soils, which was confirmed
through the reported findings. Wagner et al. (1998) opine that the
Brooks-Corey model perhaps represents capillarity better than ad-
sorption. Different modifications to the BC function have been
made by researchers to improve description near saturation. How-
ever, our findings show that the dry range could not be described
well enough by the BC function.

Graphical representation (Fig. 2) shows that the Campbell
model tended to overestimate the soil-water retention in a higher
suction range (�33 and �100 kPa). The CH model also showed

Table 3. Statistical Indices to Judge Efficacy of Different Soil-Water Retention Functions in Describing SWRC Data of Vertisols

Index/Function Driessen Exponential Farrel-Larson LRN Power SNB VG CH Campbell BC

RMSE 0.118 0.102 0.1025 0.1081 0.1022 0.1019 0.0267 0.0213 0.0199 0.0302

d 0.5071 0.5767 0.5752 0.5403 0.5712 0.5782 0.9703 0.9849 0.9867 0.9599

ME 0.3570 0.3110 0.3170 0.3400 0.3090 0.3140 0.1818 0.1342 0.1331 0.0189

MAE 0.08989 0.0844 0.0848 0.088 0.0843 0.0843 0.0157 0.0144 0.0134 0.0184

R2 0.6800 0.9217 0.9512 0.8765 0.9391 0.949 0.9140 0.651 0.9512 0.8970

Clay samples (111)

(-kPa) �33 �100 �300 �500 �800 �1;000 �1;500 Mean Function

RMSE 0.0668 0.0422 0.0147 0.0132 0.0113 0.0143 0.0346 0.0282 Brooks-Corey

d 0.74 0.86 0.98 0.98 0.98 0.98 0.86 0.91

ME 0.1897 0.1121 0.0588 0.0346 0.0322 0.0334 0.0895 0.0786

MAE 0.0484 0.0318 0.0111 0.0105 0.0090 0.0113 0.0269 0.0213

RMSE 0.0384 0.0147 0.0121 0.0149 0.0170 0.0170 0.0151 0.0185 Campbell

d 0.95 0.99 0.99 0.98 0.97 0.97 0.97 0.97

ME 0.1331 0.0384 0.0388 0.0433 0.0484 0.0484 0.0374 0.0554

MAE 0.0267 0.0117 0.0095 0.0120 0.0131 0.0131 0.0115 0.0139

RMSE 0.0431 0.0161 0.0142 0.0175 0.0183 0.0194 0.0156 0.0206 Cass-Hutson

d 0.93 0.98 0.98 0.97 0.96 0.95 0.96 0.96

ME 0.1342 0.0440 0.0462 0.0421 0.0484 0.0695 0.0404 0.0607

MAE 0.0274 0.0129 0.0117 0.0147 0.0140 0.0135 0.0129 0.0153

RMSE 0.0636 0.0324 0.0145 0.0121 0.0125 0.0118 0.0252 0.0246 van Genuchten

d 0.77 0.92 0.98 0.98 0.98 0.98 0.92 0.93

ME 0.1818 0.0226 0.0466 0.0347 0.0297 0.0334 0.0690 0.0597

MAE 0.0452 6.0206 0.0113 0.0095 0.0101 0.0091 0.0185 0.8749

Note: Detailed indices for four screened functions and only mean indices for rest six functions are presented; maximum absolute error (ME); mean absolute
error (MAE); coefficient of determination (R2); Campbell-Hutson (CH), Brooks-Corey (BC); van Genuchten (VG); Libardi, Reichardt, and Nascimento
(LRN); Simmons, Nielsen, and Biggar (SNB).
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a similar tendency. The BC (and VG) model (Fig. 3) underesti-
mated retention in the same range. Underestimation was more
prominent than overestimation, which was also reflected in statis-
tical indices. The shrinking nature of black soils in the wet range
probably was not adequately represented by the BC or VG param-
eters. Perhaps the sensitivity of the models in the wet range needs to
be investigated. Key requirement for any parametric SWC expres-
sion should be parsimony (minmum parameters) to simplify param-
eter estimation and an accurate description of SWC behavior at the
limits (wet and dry ends) while closely fitting the nonlinear shape
of θ� h measurements. The advantages of using a given model lie
in its complexity (number of parameters) and whether it needs to
refit the experimental data or not (Webb et al. 2000). Irrespective of
the model, deviations between measured and calculated moisture
content were found only at lower suction (< �1;000 kPa) heads
(dry range). In general, the wet range is relatively more important
for computer modeling of field soils. It is in this region that most
flow occurs. While comparing the four different soil-water reten-
tion functions, one can observe that all of them fitted the experi-
mental data reasonably well. Obviously, each function adjusts its
own set of parameters in order to minimize the error. The soil hy-
draulic functions of the VG model are comparatively difficult to
calculate and do not lead to rapid numerical solution. It is also nu-
merically expensive. The BC function can also be eliminated owing
to its known limitations in fine-texture soils. Thus, the Campbell
and CH functions could be a preferred choice for the study soils.
It was concluded that performance of four functions (Campbell,
CH, VG, and BC) should be analyzed further with more SWRC
data. The samples were segregated according to USDA textural
class; 111 samples were found to be of clay class, 34 belonged
to silty clay, and rest (12) were of loam, sandy clay loam, and silty
clay loam texture. The SWRC of the two major classes (clay and
silty clay) were separated to identify the best-suited function. The
statistical indices (Table 3) showed that the Campbell function was
relatively better than three other functions in describing SWRC of
clay samples. Patil et al. (2009) reported that the VG function was
better suited to describe SWRC of seasonally impounded clay soils
from the Jabalpur district, India (vertisols and intergrades).

Fig. 2. Measured and estimated soil-water retention described by the
Campbell function (best fitting)

Fig. 3. Measured and estimated soil-water retention described by the
Brooks-Corey function (poorest fitting)

Table 4. Statistical Indices to Judge Efficacy of Different Soil-Water Retention Functions in Describing SWRC Data of Black Soils (34 Silty Clay Samples)

Index/Pressure (-kPa) 33 100 300 500 800 1000 1500 Mean

BC

RMSE 0.0325 0.0221 0.011 0.0114 0.0094 0.0112 0.0234 0.0173

d 0.87 0.94 0.98 0.98 0.98 0.97 0.88 0.94

ME 0.1361 0.0703 0.0249 0.0219 0.0225 0.0252 0.0521 0.0504

MAE 0.0175 0.0163 0.0091 0.0099 0.008 0.0082 0.0189 0.0126

Campbell

RMSE 0.0384 0.0147 0.0121 0.0149 0.017 0.0136 0.0151 0.0180

d 0.95 0.99 0.99 0.98 0.97 0.98 0.97 0.97

ME 0.1331 0.0384 0.0388 0.0433 0.0484 0.0597 0.0374 0.0570

MAE 0.0267 0.0117 0.0095 0.012 0.0131 0.0094 0.0115 0.0134

CH

RMSE 0.0236 0.0111 0.0109 0.0158 0.014 0.0129 0.0165 0.0150

d 0.96 0.99 0.98 0.96 0.96 0.96 0.91 0.96

ME 0.0756 0.0302 0.0294 0.044 0.033 0.0504 0.0395 0.0432

MAE 0.0154 0.0092 0.0088 0.012 0.0113 0.0076 0.0129 0.0110

VG

RMSE 0.0308 0.015 0.0091 0.0105 0.0109 0.0097 0.0188 0.0150

d 0.89 0.98 0.99 0.98 0.98 0.98 0.91 0.95

ME 0.1322 0.0554 0.0205 0.0205 0.028 0.0321 0.0428 0.0474

MAE 0.0172 0.0109 0.0075 0.0086 0.0085 0.0071 0.0143 0.0106
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Campbell and CH functions were also found to be well suited. The
BC function was the worst performer. That study was confined to a
smaller area and without any climatic heterogeneity. In this study,
there were variations in soil genesis, climate, and topography. Thus,
it could be argued that the Campbell function could describe
SWRC of vertisols of varied origin and characteristics. As dis-
cussed earlier, it is the dry part of the retention curve that is difficult
to describe well, irrespective of the function used. Therefore, pref-
erence for the Campbell model needs to be evaluated further
because currently the findings are not fully convincing. Mixed re-
sults were obtained in silty clay soils (Table 4). The CH and VG
functions had the lowest RMSE (0.0150), mean error was lowest
in the CH functions, followed by VG. If the magnitude of RMSE
and ME is given more importance, CH emerges as the most suitable
function. It could be surmised that all four functions were within an
acceptable range of RMSE, and hence a choice could be made by
the user depending on the application or convenience.

Pedotransfer Functions

The performance of PTFs developed using k-NN and neural net-
works could be judged from the statistical indices (Table 5).

It could be observed that at the lowest input level (SSC), the
performance of the k-NN PTF was relatively better (Fig. 4) as in-
dicated by a lower an RMSE (0.0339) than an RMSE of 0.0437
at the same input level in a neural PTF. Other indices (d, ME,
MAE, R2) also confirmed the superiority of the k-NN PTF. The
incremental addition of bulk-density data as an input variable
did not improve performance of the k-NN PTF as evidenced by
an increased RMSE (0.0426) in predicting AWC. The bulk density
in vertisols is known to change with soil-water content. Perhaps,
the data could not provide enough information on underlying re-
lationship between SWR and BD, and hence the empirical relation-
ship did not improve. The RMSE continued to increase with the
addition of organic matter (Fig. 5) as an input variable with or with-
out the addition of bulk density. However, the addition of organic
matter alone as an additional input variable (Fig. 6) with textural
composition exhibited a relatively lower RMSE (0.04). In general,
k-NN PTFs had lower mean RMSE (0.0403) compared to neural
PTFs (0.0426). Other statistical indicators also indicated that k-NN
PTFs predicted AWC with greater accuracy irrespective of input/
predictor variable level. Performance of neural PTFs exhibited im-
provement in RMSE (from 0.0437–0.0401) with inclusion of bulk
density as a predictor variable. These results were expected because
neural networks are known to show better predictive ability with an
increase in the number of input variables. However, the highest
RMSE (0.0474) was recorded at the maximum input level of

texture, bulk density (BD), and organic matter (OM). The lowest
RMSE and other indices at input SSCOM pointed to the impor-
tance of OM as a predictor variable. Evaluation of the k NN PTFs
had also showed that the lowest input level (SSC) was adequate
enough to get reasonable estimates of AWC. Thus, both techniques

Table 5. Statistical Indices to Evaluate Performance of Hierarchical k-NN
and Neural PTFs Developed

Input RMSE d ME MAE R2

ANN PTF

SSC 0.0437 0.61 0.10 0.03 0.23

SSCBD 0.0401 0.58 0.10 0.03 0.34

SSCBDOM 0.0474 0.59 0.12 0.03 0.12

SSCOM 0.0395 0.6 0.10 0.02 0.22

k Nearest PTF

SSC 0.0339 0.78 0.10 0.02 0.46

SSCBD 0.0426 0.71 0.09 0.03 0.38

SSCBDOM 0.045 0.67 0.10 0.03 0.29

SSCOM 0.040 0.77 0.11 0.06 0.45

Fig. 4. (a) Measured and estimated available water capacity using
k-NN PTFs with input of texture; (b) measured and estimated available
water capacity using ANN PTFs with input of texture

Fig. 5. (a) Measured and estimated available water capacity using
k-NN PTFs with input of texture, bulk density, and organic matter;
(b) measured and estimated available water capacity using ANN PTFs
with input of texture, bulk density, and organic matter
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underlined the importance of choosing a correct input variable for
vertisols rather than the number of variables.

On comparison, it was evident that as a tool, k-NN performed
better than neural networks with the additional advantage of sim-
plicity in use and the possible appending of a development data set
and hence could be a tool of choice. It is obvious that 26 profiles
can provide only a glimpse of vertisols in India, and 77 × 106 ha is
a vast area that needs representation by a far greater number of pro-
files. Precisely, due to this reason, the k-NN algorithm becomes
important. As more and more SWRC data are acquired, the PTFs
would need refinement for better predictions. Because ANN does
not provide flexibility of appending data, PTFs would need to be
redeveloped each time the data are added. On the other hand, k-NN
PTFs could be refined without reprocessing. With proven accept-
able accuracy, k-NN PTFs will be important for applications.

Conclusion

After evaluation, four of the 10 functions to describe SWRC
of vertisols of India were recommended in order of prefer-
ence: Campbell, Cass-Hutson, van Genuchten, and Brooks-Corey.
However, the evaluation was based on limited data, and the recom-
mended functions either overestimated or underestimated retention
in the dry region of SWRC. It would be interesting to perform
analysis with additional SWRC data before generalizing the re-
commendations. Neural regression and k-NN techniques of PTF
development were evaluated. The best performing k-NN PTF to
predict AWC required textural information as an input, while the
best ANi matter in addition to the texture. Superior ability of k-NN
PTFs in vertisols of India was noted. The study demonstrated that
k-NN technique can be as competitive as widely used neural regres-
sion with the additional benefit of appending the development data
as and when desired. The proposed PTFs could be useful in man-
aging the vertisols of India.
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Notation

The following symbols are used in this paper:
d = degree of agreement; and
R2 = coefficient of determination.
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