
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

6-15-2018

Approximate Set Union via Approximate Randomization Approximate Set Union via Approximate Randomization

Bin Fu
The University of Texas Rio Grande Valley

Pengfei Gu
The University of Texas Rio Grande Valley

Yuming Zhao

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fu, Bin, Pengfei Gu, and Yuming Zhao. 2018. “Approximate Set Union Via Approximate Randomization.”
ArXiv:1802.06204 [Cs], June. http://arxiv.org/abs/1802.06204.

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact
justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

ar
X

iv
:1

80
2.

06
20

4v
3

 [
cs

.D
S]

 1
5

Ju
n

20
18

Approximate Set Union via Approximate Randomization ∗

Bin Fu1, Pengfei Gu1, and Yuming Zhao2

1Department of Computer Science

University of Texas - Rio Grande Valley, Edinburg, TX 78539, USA

2School of Computer Science

Zhaoqing University, Zhaoqing, Guangdong 526061, P.R. China

Abstract

We develop a randomized approximation algorithm for the size of set union problem
|A1 ∪ A2 ∪ ... ∪ Am|, which is given a list of sets A1, ..., Am with approximate set size
mi for Ai with mi ∈ ((1− βL)|Ai|, (1 + βR)|Ai|), and biased random generators with

Prob (x = RandomElement(Ai)) ∈
[

1−αL

|Ai|
, 1+αR

|Ai|

]

for each input set Ai and element x ∈ Ai,

where i = 1, 2, ..., m. The approximation ratio for |A1 ∪ A2 ∪ ... ∪ Am| is in the range
[(1− ǫ)(1− αL)(1− βL), (1 + ǫ)(1 + αR)(1 + βR)] for any ǫ ∈ (0, 1), where αL, αR, βL, βR ∈
(0, 1). The complexity of the algorithm is measured by both time complexity and round com-
plexity. The algorithm is allowed to make multiple membership queries and get random elements
from the input sets in one round. Our algorithm makes adaptive accesses to input sets with
multiple rounds. Our algorithm gives an approximation scheme with O(m · (logm)O(1)) run-
ning time and O(logm) rounds, where m is the number of sets. Our algorithm can handle
input sets that can generate random elements with bias, and its approximation ratio depends
on the bias. Our algorithm gives a flexible tradeoff with time complexity O

(

m1+ξ
)

and round

complexity O
(

1
ξ

)

for any ξ ∈ (0, 1). We prove that our algorithm runs sublinear in time

under certain condition that each element in A1 ∪ A2 ∪ ... ∪ Am belongs to ma for any fixed
a > 0. A O

(

r(r + l|λ|)3l3d4
)

running time dynamic programming algorithm is proposed to
deal with an interesting problem in number theory area that is to count the number of lattice
points in a d−dimensional ball Bd(r, p, d) of radius r with center at p ∈ D(λ, d, l), where
D(λ, d, l) = {(x1, · · · , xd) : (x1, · · · , xd) with xk = ik + jkλ for an integer jk ∈ [−l, l], and
another arbitrary integer ik for k = 1, 2, ..., d}. We prove that it is #P-hard to count the
number of lattice points in a set of balls, and we also show that there is no polynomial time
algorithm to approximate the number of lattice points in the intersection of n-dimensional balls
unless P=NP.

1. Introduction

Computing the cardinality of set union is a basic algorithmic problem that has a simple and natural
definition. It is related to the following problem: given a list of sets A1, ..., Am with set size |Ai|,

∗This research is supported in part by National Science Foundation Early Career Award 0845376 and Bensten

Fellowship of the University of Texas - Rio Grande Valley.

1

http://arxiv.org/abs/1802.06204v3

and random generators RandomElement(Ai) for each input set Ai, where i = 1, 2, ..., m, compute
|A1 ∪A2 ∪ ...∪Am|. This problem is #P-hard if each set is 0, 1-lattice points in a high dimensional
cube [35]. Karp, Luby, and Madras [29] developed a (1 + ǫ)-randomized approximation algorithm
to improve the runnning time for approximating the number of distinct elements in the union
A1 ∪ · · · ∪ Am to linear O((1 + ǫ)m/ǫ2) time. Their algorithm is based on the input that provides
the exact size of each set and an uniform random element generator of each set. Bringmann and
Friedrich [8] applied Karp, Luby, and Madras’ algorithm in deriving approximate algorithm for
high dimensional geometric object with uniform random sampling. They also proved that it is #P-
hard to compute the volume of the intersection of high dimensional boxes, and showed that there
is no polynomial time 2d

1−ǫ

-approximation unless NP=BPP. In the algorithms mentioned above,
some of them were based on random sampling, and some of them provided exact set sizes when
approximating the cardinalities of multisets of data and some of them dealt with two multiple sets.
However, in realty, it is really hard to give an uniform sampling or exact set size especially when
deal with high dimensional problems.

A similar problem has been studied in the streaming model: given a list of elements with mul-
tiplicity, count the number of distinct items in the list. This problem has a more general for-

mat to compute frequency moments Fk =
m
∑

i=1

nk
i , where ni denotes the number of occurrences of

i in the sequence. This problem has received a lot of attention in the field of streaming algo-
rithms [2, 4, 5, 7, 14, 15, 18, 19, 20, 21, 25, 28].

Motivation: The existing approximate set union algorithm [29] needs each input set has a
uniform random generator. In order to have approximate set union algorithm with broad application,
it is essential to have algorithm with biased random generator for each input set, and see how
approximation ratio depends on the bias. In this paper, we propose a randomized approximation
algorithm to approximate the size of set union problem by extending the model used in [29]. In
order to show why approximate randomization method is useful, we generalize the algorithm that
was designed by Karp, Luby, and Madras [29] to an approximate randomization algorithm. A
natural problem that counting of lattice points in d-dimensional ball is discussed to support the
useful of approximate randomization algorithm. In our algorithm, each input set Ai is a black box
that can provide its size |Ai|, generate a random element RandomElement(Ai) of Ai, and answer the
membership query (x ∈ Ai?) in O(1) time. Our algorithm can handle input sets that can generate

random elements with bias with Prob(x = RandomElement(Ai)) ∈
[

1−αL

|Ai| ,
1+αR

|Ai|

]

for each input set

Ai and approximate set size mi for Ai with mi ∈ [(1− βL)|Ai|, (1 + βR)|Ai|].
As the communication complexity is becoming important in distributed environment, data trans-

mission among variant machines may be more time consuming than the computation inside a single
machine. Our algorithm complexity is also measured by the number of rounds. The algorithm
is allowed to make multiple membership queries and get random elements from the input sets in
one round. Our algorithm makes adaptive accesses to input sets with multiple rounds. The round
complexity is related a distributed computing complexity if input sets are stored in a distributed
environment, and the number of rounds indicates the complexity of interactions between a central
server, which runs the algorithm to approximate the size of set union, and clients, which save one
set each.

Computation via bounded queries to another set has been well studied in the field of structural
complexity theory. Polynomial time truth table reduction has a parallel way to access oracle with
all queries to be provided in one round [9]. Polynomial time Turing reduction has a sequential way
to access oracle by providing a query and receiving an answer in one round [12]. The constant-round
truth table reduction (for example, see [16]) is between truth table reduction, and Turing reduction.
Our algorithm is similar to a bounded round truth table reduction to input sets to approximate the
size set union. Karp, Luby, and Madras [29]’s algorithm runs like a Turing reduction which has the
number of adaptive queries proportional to the time.

We design approximation scheme for the number of lattice points in a d-dimensional ball with
its center in D(λ, d, l), where D(λ, d, l) to be the set points pd = (x1, · · · , xd) with xi = i + jλ

2

for an integer j ∈ [−l, l], another arbitrary integer i, and an arbitrary real number l. It returns

an approximation in the range [(1 − β)C(r, p, d), (1 + β)C(r, p, d)] in a time poly
(

d, 1
β , |l|, |λ|

)

,

where C(r, p, d) is the number of lattice points in a d-dimensional ball with radius r and center
p ∈ D(λ, d, l). We also show how to generate a random lattice point in a d-dimensional ball
with its center at D(λ, d, l). It generates each lattice point inside the ball with a probability in
[

1−α
C(r,p,d) ,

1+α
C(r,p,d)

]

in a time poly
(

d, 1
α , |l|, |λ|, log r

)

, where the d-dimensional ball has radius r

and center p ∈ D(λ, d, l). Without the condition that a ball center is inside D(λ, d, l), counting
the number of lattice points in a ball may have time time complexity that depends on dimension
number d exponentially even the radius is as small as d. Counting the number of lattice points
inside a four dimensional ball efficiently implies an efficient algorithm to factorize the product of
two prime numbers (n = pq) as C(

√
n, (0, ..., 0), 4) − C(

√
n− 1, (0, ..., 0), 4) = 8(1 + pA + q + n)

(see [3, 27]). Therefore, a fast exact counting lattice points inside a four dimensional ball implies a
fast algorithm to crack RSA public key system.

This gives a natural example to apply our approximation scheme to the number of lattice points
in a list of balls. We prove that it is #P-hard to count the number of lattice points in a set of
balls, and we also show that there is no polynomial time algorithm to approximate the number of
lattice points in the intersection n-dimensional balls unless P=NP. We found that it is an elusive
problem to develop a poly

(

d, 1
ǫ

)

time (1 + ǫ)-approximation algorithm for the number of lattice
points of d-dimensional ball with a small radius. We are able to handle the case with ball centers in
D(λ, d, l), which can approximate an arbitrary center by adjusting parameters λ and l. This is our
main technical contributions about lattice points in a high dimensional ball.

It is a classical problem in analytic number theory for counting the number of lattice points
in d-dimensional ball, and has been studied in a series of articles [1, 6, 10, 11, 13, 22, 23, 26, 30,
31, 33, 34, 36, 37, 39, 38, 40] in the field of number theory. Researchers are interested in both

upper bounds and lower bounds for the error term Ed(r) = Nd(r) − π
d
2 Γ(12d + 1)−1rd, where

Nd(r) = #{x ∈ Z
d : |x| ≤ r} is the number of lattice points inside a sphere of radius r centered at

the origin and π
d
2 Γ(12d+1)−1rd (where Γ(.) is Gamma Function) is the volume of a d−dimensional

sphere of radius r. When d = 2, the problem is called “Gauss Circle Problem”; Gauss proved
that E2(r) ≤ r. Gauss’s bound was improved in papers [13, 22, 26]. Walfisz [38] showed that
Ed(r) = Ω±(rd−2) and Ed(r) ≤ rd−2, where f(x) = Ω+(F (x))(f(x) = Ω−(F (x))) as x → ∞ if there
exist a sequence {xn} → ∞ and a positive number C, such that for all n ≥ 1, f(xn) > C|F (xn)|
(f(xn) < −C|F (xn)|). Most of the above results focus on the ball centered at the origin, and few
papers worked on variable centers but also consider fixed dimensions and radii going to infinity
[6, 10, 36, 40].

Our Contributions: We have the following contributions to approximate the size of set union.
1. It has constant number of rounds to access the input sets. This reduces an important complexity
in a distributed environment where each set stays a different machine. It is in contrast to the
existing algorithm that needs Ω(m) rounds in the worst case. 2. It handles the approximate input
set sizes and biased random sources. The existing algorithms assume uniform random source from
each set. Our approximation ratio depends on the approximation ratio for the input set sizes
and bias of random generator of each input set. The approximate ratio for |A1 ∪ A2 ∪ · · · ∪ Am|
is controlled in the range in [(1− ǫ)(1− αL)(1 − βL), (1 + ǫ)(1 + αR)(1 + βR)] for any ǫ ∈ (0, 1),
where αL, αR, βL, βR ∈ (0, 1). 3. It runs in sublinear time when each element belongs to at least
ma sets for any fixed a > 0. We have not seen any sublinear results about this problem. 4. We show
a tradeoff between the number of rounds, and the time complexity. It takes logm rounds with time

complexity O
(

m(logm)O(1)
)

, and takes O
(

1
ξ

)

rounds, with a time complexity O
(

m1+ξ
)

. We still

maintain the time complexity nearly linear time in the classical model. Our algorithm is based on
a new approach that is different from that in [29]. 5. We identify two additional parameters zmin

and zmax that affect both the complexity of rounds and time, where zmin is the least number of sets
that an element belongs to, and zmax is the largest number of sets that an element belongs to.

Our algorithm developed in the randomized model only accesses a small number of elements from

3

the input sets. The algorithm developed in the streaming model algorithm accesses all the elements
from the input sets. Therefore, our algorithm is incomparable with the results in the streaming
model [2, 4, 5, 7, 14, 15, 18, 19, 20, 21, 25, 28].

Organization: The rest of paper is organized as follows. In Section 2, we define the compu-
tational model and complexity. Section 3 presents some theorems that play an important role in
accuracy analysis. In Section 4, we give a randomized approximation algorithm to approximate the
size of set union problem; time complexity and round complexity also analysis in Section 4. Section 5
discusses a natural problem that counting of lattice points in high dimensional balls to support the
useful of approximation randomized algorithm. An application of high dimensional balls in Maximal
Coverage gives in Section 6. In Section 7, we summarize with conclusions.

2. Computational Model and Complexity

In this section, we show our model of computation, and the definition of complexity.

2.1. Model of Randomization

Definition 1. Let A be a set of elements.

i. A α-biased random generator for set A is a generator that each element in A is generated with

probability in the range
[

1−α
|A| ,

1+α
|A|

]

.

ii. A (αL, αR)-biased random generator for set A is a generator that each element in A is generated

with probability in the range
[

1−αL

|A| , 1+αR

|A|

]

.

Definition 2. Let L be a list of sets A1, A2, · · · , Am such that each supports the following opera-
tions:

i. The size of Ai has an approximation mi ∈ [(1− βL)|Ai|, (1 + βR)|Ai|] for i = 1, 2, · · · , m.

Both M =
m
∑

i=1

mi and m are part of the input.

ii. Function RandomElement(Ai) returns a (αL, αR)-biased approximate random element x from
Ai for i = 1, 2, · · · , m.

iii. Function query(x, Ai) function returns 1 if x ∈ Ai, and 0 otherwise.

Definition 3. For a list L of sets A1, A2, · · · , Am and real numbers αL, αR, βL, βR ∈ [0, 1), it is
called ((αL, αR), (βL, βR))-list if each set Ai is associated with a number mi with (1 − βL)|Ai| ≤
mi ≤ (1 + βR)|Ai| for i = 1, 2, · · · , m, and the set Ai has a (αL, αR)-biased random generator
RandomElement(Ai).

Definition 4. The model of randomized computation for our algorithm is defined below:

i. The input is a list L defined in Definition 2.

ii. It allows all operations defined in Definition 2.

4

2.2. Round and Round Complexity

The round complexity is the total number of rounds used in the algorithm. Our algorithm has
several rounds to access input sets. At each round, the algorithm send multiple requests to random
generators, and membership queries, and receives the answers from them.

Our algorithm is considered as a client-server interaction (see Fig. 1). The algorithm is controlled
by the server side, and each set is a client. In one round, the server asks some questions to clients
which are selected.

Figure 1: Client-server Interaction

The parameters m, ǫ, γ may be used to determine the time complexity and round complexity,
where ǫ controls the accuracy of approximation, γ controls the failure probability, and m is the
number of sets.

3. Preliminaries

During the accuracy analysis, Hoeffiding Inequality [24] and Chernoff Bound (see [32]) play an
important role. They show how the number of samples determines the accuracy of approximation.

Theorem 5 ([24]). Let X1, . . . , Xm be m independent random variables in [0, 1] and X =
m
∑

i=1

Xi.

i. If Xi takes 1 with probability at most p for i = 1, . . . , m, then for any ǫ > 0, Pr(X >

pm+ ǫm) < e−
ǫ2m
2 .

ii. If Xi takes 1 with probability at least p for i = 1, . . . , m, then for any ǫ > 0, Pr(X <

pm− ǫm) < e−
ǫ2m
2 .

Theorem 6. Let X1, . . . , Xm be m independent random 0-1 variables, where Xi takes 1 with prob-

ability at least p for i = 1, . . . , m. Let X =
m
∑

i=1

Xi, and µ = E[X]. Then for any δ > 0,

Pr(X < (1 − δ)pm) < e−
1
2 δ

2pm.

Theorem 7. Let X1, . . . , Xm be m independent random 0-1 variables, where Xi takes 1 with prob-

ability at most p for i = 1, . . . , m. Let X =
m
∑

i=1

Xi. Then for any δ > 0, Pr(X > (1 + δ)pm) <
[

eδ

(1+δ)(1+δ)

]pm

.

Define g1(δ) = e−
1
2 δ

2

and g2(δ) = eδ

(1+δ)(1+δ) . Define g(δ) = max (g1(δ), g2(δ)). We note that

g1(δ) and g2(δ) are always strictly less than 1 for all δ > 0. It is trivial for g1(δ). For g2(δ), this can
be verified by checking that the function f(x) = (1 + x) ln(1 + x) − x is increasing and f(0) = 0.
This is because f ′(x) = ln(1 + x) which is strictly greater than 0 for all x > 0.

5

We give a bound for eδ

(1+δ)(1+δ) . Let u(x) =
ex

(1+x)(1+x) . We consider the case x ∈ [0, 1]. We have

lnu(x) = x− (1 + x) ln(1 + x) ≤ x− (1 + x)(x − x2

2
) = x− (x+

x2

2
− x3

3
) ≤ −x2

6
.

Therefore,

u(x) ≤ e−
x2

6 (1)

for all x ∈ [0, 1]. We let

g∗(x) = e−
x2

6 . (2)

We have g(x) ≤ g∗(x) for all x ∈ [0, 1].
A well known fact, called union bound, in probability theory is the inequality

Pr(E1 ∪E2 . . . ∪ Em) ≤ Pr(E1) + Pr(E2) + . . .+ Pr(Em),

where E1, E2, . . . , Em arem events that may not be independent. In the analysis of our randomized
algorithm, there are multiple events such that the failure from any of them may fail the entire
algorithm. We often characterize the failure probability of each of those events, and use the above
inequality to show that the whole algorithm has a small chance to fail after showing that each of
them has a small chance to fail.

4. Algorithm Based on Adaptive Random Samplings

In this section, we develop a randomized algorithm for the size of set union when the approximate
set sizes and biased random generators are given for the input sets. We give some definitions before
the presentation of the algorithm. The algorithm developed in this section has an adaptive way
to access the random generators from the input sets. All the random elements from input sets are
generated in the beginning of the algorithm, and the number of random samples is known in the
beginning of the algorithm. The results in this section show a tradeoff between the time complexity
and the round complexity.

Definition 8. Let L = A1, A2, · · · , Am be a list of finite sets.

i. For an element x, define T (x, L) =
∣

∣{i : 1 ≤ i ≤ m and x ∈ Ai}
∣

∣.

ii. For an element x, and a subset of indices with multiplicity H of {1, 2, · · · ,m}, define S(x,H) =
∣

∣{i : i ∈ H and x ∈ Ai}
∣

∣.

iii. Define minThickness(L) = min{T (x, L) : x ∈ A1 ∪ A2 ∪ · · · ∪ Am}.

iv. Define maxThickness(L) = max{T (x, L) : x ∈ A1 ∪A2 ∪ · · · ∪ Am}.

v. Let W be a subset with multiplicity of A1 ∪ · · · ∪ Am, define F (W,h, s) = s
h

∑

x∈W

1
T (x,L) , and

F ′(W) =
∑

x∈W

1
T (x,L) =

h
sF (W,h, s).

vi. For a δ ∈ (0, 1), partition A1∪A2∪· · ·∪Am into A′
1, · · · , A′

k such that A′
i = {x : x ∈ A1∪A2∪

· · · ∪ Am and T (x, L) ∈ [(1 + δ)i−1, (1 + δ)i)} where i = 1, 2, ..., k. Define v(δ, z1, z2, L) = k,
which is the number of sets in the partition under the condition that z1 ≤ T (x, L) ≤ z2.

6

4.1. Overview of Algorithm

We give an overview of the algorithm. For a list L of input sets A1, · · · , Am, each set Ai has
an approximate size mi and a random generator. It is easy to see that |A1 ∪ A2 ∪ · · · ∪ Am| =
m
∑

i=1

∑

x∈Ai

1
T (x,L) . The first phase of the algorithm generates a set R1 of sufficient random samples

from the list of input sets. The set R1 has the property that m1+···+mm

|R1| · ∑
x∈R1

1
T (x,L) is close to

m
∑

i=1

∑

x∈Ai

1
T (x,L) . We will use the variable sum with initial value zero to approximate it. Each stage

i removes the set Vi of elements from Ri that each element x ∈ Vi satisfies T (x, L) ∈
[

Ti

4f1(m) , Ti

]

,

and all elements x ∈ Ri with T (x, L) ∈
[

Ti

f1(m) , Ti

]

are in Vi, where Ti = max{T (x, L) : x ∈ Ri}
and f1(m) is a function at least 8, which will determine the number of rounds, and the trade off
between the running time and the number of rounds. In phase i, we choose a set Hi of ui (to be large

enough) of indices from 1, · · · ,m, and use S(x,Hi)m
ui

to approximate T (x, L). It is accurate enough
if ui is large enough. The elements left in Ri − Vi will have smaller T (x, L). The set Ri+1 will be
built for the next stage i + 1. When Ri − Vi is shrinked to Ri+1 by random sampling in Ri − Vi,

each element in Ri+1 will have its weight to be scaled by a factor |Ri−Vi|
hi+1

. When an element x is

put into Vi, it is removed from Ri, and an approximate value of 1
T (x,L) multiplied by its weight is

added to sum. Finally, we will prove that sum · (m1 + · · ·+mm) is close to
m
∑

i=1

∑

x∈Ai

1
T (x,L) , which

is equal to |A1 ∪ A2 ∪ · · · ∪ Am|.
Example 1. Let L be a list of 10 sets A1, A2, · · · , A10, where Ai = Bi ∪ C with |C| = 1000 and
|Bi| = 100 for i = 1, 2, · · · , 10. In the beginning of the algorithm, we generate a set R1 of h1 = 220
random samples from list L, where there are 200 random samples with higher thickness T (x, L),
namely, these 200 random samples locate in C and 20 random samples with lower thickness T (x, L),
say, these 20 random samples locate in Bi. At the first round, we only need select sets A1, A3, and
A6 to approximate the thickness T (x, L) of the 200 random samples locating at C. Then at the
second round, we have to select all the sets A1, A2, · · · , A10, to approximate the thickness T (x, L)
of the 20 random samples coming from Bi (See Fig. 2).

7

Figure 2: Set Union of Ten Sets

4.2. Algorithm Description

Before giving the algorithm, we define an operation that selects a set of random elements from a list
L of sets A1, · · · , Am. We always assume m ≥ 2 throughout the paper.

Definition 9. Let L be a list of m sets A1, A2, · · · , Am with mi ∈ [(1 − βL)|Ai|, (1 + βR)|Ai|] and
(αL, αR)-biased random generator RandomElement(Ai) for i = 1, 2, · · · ,m, and M = m1 + m2 +
· · ·+mm. A random choice of L is to get an element x via the following two steps:

i. With probability mi

M , select a set Ai among A1, · · · , Am.

ii. Get an element x from set Ai via RandomElement(Ai).

We give some definitions about the parameters and functions that affect our algorithm below.
We assume that ǫ ∈ (0, 1) is used to control the accuracy of approximation, and γ ∈ (0, 1) is used
to control the failure probability. Both parameters are from the input. In the following algorithm,
the two integer parameters zmin and zmax with 1 ≤ zmin ≤ minThickness(L) ≤ maxThickness(L) ≤
zmax ≤ m can help speed up the computation. The algorithm is still correct if we use default case
with zmin = 1 and zmax = m.

i. The following parameters are used to control the accuracy of approximation at different stages
of algorithm:

ǫ0 =
ǫ

9
, ǫ1 =

ǫ0
6(logm)

, ǫ2 =
ǫ1
4
, ǫ3 =

ǫ0
3
, (3)

δ =
ǫ2
2
. (4)

ii. The following parameters are used to control the failure probability at several stages of the
algorithm:

γ1 =
γ

3
, γ2 =

γ

6 logm
. (5)

8

iii. Function f1(.) is used to control the number of rounds of the algorithm. Its growth rate is
mainly determined by the parameter c1 that will be determined later:

f1(m) = 8mc1 with c1 ≥ 0, (6)

iv. Function f2(.) is used to check the number of random samples in A′
j of Stage 1 in the algorithm.

We will use different ways to control the accuracy of approximation between the case |Ai| ≤
|A1∪A2∪···∪Am|

f2(m) and the other case |Ai| > |A1∪A2∪···∪Am|
f2(m) . It is mainly used in the proof of

Lemma 15 that shows it keeps the accuracy of approximation when algorithm goes from Stage
i to Stage i+ 1.

f2(m) =
2v(δ, zmin, zmax, L)

ǫ3
+

2 log m
zmin

ǫ3 log(1 + δ)
. (7)

v. Function f3(.) is used as a threshold to count the number ti,j of random samples in Ri ∩A′
j of

Stage i in the algorithm. We will use different ways to control the accuracy of approximation
between the case ti,j ≤ f3(m) and the other case ti,j > f3(m). It is mainly used in the proof
of Lemma 12 that shows that the number of random samples at Stage 1 will provide enough
accuracy of approximation.

f3(m) = f1(m) ·
6 ln 2

γ2

ǫ22
. (8)

vi. Function f4(.) is used to determine the growth rate of function Function f5(.), which is defined
by equation (10).

f4(m) =
f2(m) log m2

ǫ1

6ǫ21
+

f3(m)

ǫ2f1(m)
. (9)

vii. Function f5(.) determines the number of random samples from the input sets in the beginning
of the algorithm:

f5(m) =
mf4(m)

zmin
. (10)

viii. The following parameter is also used to control failure probability in a stage of the algorithm:

γ3 =
γ2

2f5(m)
. (11)

ix. Function f6(.) affects the number of random indices in the range {1, 2, · · · ,m}. Those random
indices will be used to choose input sets to detect the approximate T (x, L) for those random
samples x:

f6(m) = f1(m)

(

24

ǫ21
· ln 2

γ3

)

. (12)

9

Algorithm 1 ApproximateUnion(L, zmin, zmax,M, γ, ǫ)

Input : L is a list of m sets A1, A2, · · · , Am with m ≥ 2, mi ∈ [(1 − βL)|Ai|, (1 + βR)|Ai|] and
(αL, αR)-biased random generator RandomElement(Ai) for i = 1, 2, · · · ,m, integers zmin and zmax

with 1 ≤ zmin ≤ minThickness(L) ≤ maxThickness(L) ≤ zmax ≤ m, parameter γ ∈ (0, 1) to
control the failure probability, parameter ǫ ∈ (0, 1) to control the accuracy of approximation, and
M = m1 +m2 + · · ·+mm as the sum of sizes of input sets.
Output : sum ·M.

1: Let h1 = f5(m)
2: Let i = 1
3: Let currentThickness1 = zmax

4: Let s1 = m
currentThickness1

5: Let s′1 = 1
6: Let sum = 0
7: Obtain a set R1 of h1 random choices of L (see Definition 9)
8: Stage i
9: Let ui = si · f6(m)

10: Select ui random indices Hi = {k1, · · · , kui
} from {1, 2, · · · ,m}

11: Compute S(x,Hi) for each x ∈ Ri

12: Let Vi be the subset of Ri with elements x satisfying S(x,Hi) ≥ currentThicknessi
2f1(m)·m · ui

13: Let sum = sum+ s′i
∑

x∈Vi

ui

S(x,Hi)m

14: Let currentThicknessi+1 =
currentThicknessi

f1(m)

15: Let si+1 = m
currentThicknessi+1

16: Let hi+1 = h1

si+1

17: If (|Ri| − |Vi| < hi+1)
18: Then
19: {
20: Let Ri+1 = Ri − Vi

21: Let ai = 1
22: }
23: Else
24: {
25: Let Ri+1 be a set of random hi+1 samples from Ri − Vi

26: Let ai =
|Ri|−|Vi|

hi+1

27: }
28: Let s′i+1 = s′i · ai
29: Let i = i+ 1
30: If (currentThicknessi < zmin)
31: Return sum ·M and terminate the algorithm
32: Else
33: Enter the next Stage i

We let M = m1 +m2 + · · ·+mm and zmin be part of the input of the algorithm. It makes the
algorithm be possible to run in a sublinear time when zmin ≥ ma for a fixed a > 0. Otherwise, the
algorithm has to spend Ω(m) time to compute M .

4.3. Proof of Algorithm Performance

The accuracy and complexity of algorithm ApproximateUnion(.) will be proven in the following lem-
mas. Lemma 10 gives some basic properties of the algorithm. Lemma 12 shows that R1 has random

10

samples are used so that F (R1, h1, 1)

(

m
∑

i=1

mi

)

is an accurate approximation for
m
∑

i=1

∑

x∈Ai

1
T (x,L) .

Lemma 10. The algorithm ApproximateUnion(.) has the following properties:

i. g∗(ǫ1)
f4(m)

f2(m) ≤ ǫ1
m2 .

ii. v(δ, zmin, zmax, L) = O

(

log zmax
zmin

δ

)

.

iii. 2v(δ,zmin,zmax,L)
f2(m) ≤ ǫ3 and f2(m) = O

(

log m
zmin

δǫ3

)

.

iv. Ri contains at most hi items.

v. g∗(ǫ2)
f3(m)

f1(m) ≤ γ2

2 .

vi. f4(m) = O

(

1
ǫ4

(

log m
zmin

)

· log m
ǫ · (logm)3 +

(logm)3(ln 1
γ
+logm)

ǫ3

)

.

vii. f6(m) = O
(

mc1

ǫ2 · (logm)2(log 2
γ + logm+ log f4(m))

)

.

Proof: The statements are easily proven according to the setting in the algorithm.
Statement i: It follows from equations (2) and (9).
Statement ii: By Definition 8, we need v(δ, zmin, zmax, L) with zmin(1+ δ)v(δ,zmin,zmax,L) ≥ zmax.

Thus, we have v(δ, zmin, zmax, L) ≤ 2

(

log zmax
zmin

log(1+δ)

)

= O

(

log zmax
zmin

δ

)

since log(1 + δ) = Θ(δ).

Statement iii: It is easy to see that log(1 + δ) = Θ(δ) and 1 ≤ zmax ≤ m. It follows from
equation (7), and Statement ii.

Statement iv: It follows from lines 19 to 27 in the algorithm.
Statement v: It follows from equation (8).
Statement vi: By equation (9), Statement iii and equation (3), we have

f4(m) =
f2(m) log m2

ǫ1

6ǫ21
+

f3(m)

ǫ2f1(m)

≤
(

6f2(m) · log m2

ǫ1
·
(

logm

ǫ0

)2

+
f3(m)

ǫ2f1(m)

)

= O

(

f2(m) · log m2

ǫ21
·
(

logm

ǫ0

)2

+
1

ǫ2
·
ln 2

γ2

ǫ22

)

= O

(

1

δǫ3ǫ20
(log

m

zmin
) · log m

ǫ1
· (logm)2 +

logm

ǫ0
·
ln 2

γ2

ǫ22

)

= O

(

1

δǫ3ǫ20
(log

m

zmin
) · log m

ǫ1
· (logm)2 +

logm

ǫ0
·
ln 2

γ2

ǫ22

)

= O

(

1

ǫ4

(

log
m

zmin

)

· log m

ǫ
· (logm)

3
+

(logm)3(ln 1
γ + logm)

ǫ3

)

.

11

Statement vii: By equation (12), we have

f6(m) = f1(m)

(

24

ǫ21
· ln 2

γ3

)

(13)

= O

(

mc1

ǫ21
· ln 2

γ3

)

(14)

= O

(

mc1

ǫ2
· (logm)2(log

2

γ2
+ ln f5(m))

)

(15)

= O

(

mc1

ǫ2
· (logm)2(log

2

γ2
+ lnm+ ln f4(m))

)

(16)

= O

(

mc1

ǫ2
· (logm)2(log

2

γ2
+ logm+ log f4(m))

)

(17)

= O

(

mc1

ǫ2
· (logm)2(log

2

γ
+ logm+ log f4(m))

)

. (18)

Lemma 11 gives an upper bound for the number of rounds for the algorithm. It shows how round
complexity depends on zmax, zmin and f1(.).

Lemma 11. The number of rounds of the algorithm is O

(

log zmax
zmin

log f1(m)

)

.

Proof: By line 3 of the algorithm, we have currentThickness1 = zmax. Variable
currentThicknessi is reduced by a factor f1(m) each phase as currentThicknessi+1 = currentThicknessi

f1(m)

by line 14 of the algorithm. By the termination condition of line 30 of the algorithm, if y is the
number of phases of the algorithm, we have y ≤ y′, where y′ is any integer with zmax

f1(m)y′
< zmin.

Thus, y = O

(

log zmax
zmin

log f1(m)

)

.

Lemma 12 shows the random samples, which are saved in R1 in the beginning of the algorithm,
will be enough to approximate the size of set union via F (R1, h1, 1)M . In the next a few rounds,
algorithm will approximate F (R1, h1, 1).

Lemma 12. With probability at least 1−γ1, F (R1, h1, 1)M ∈ [(1−ǫ0)(1−αL)(1−βL)
1+δ |A1∪· · ·∪Am|, (1+

ǫ0)(1 + αR)(1 + βR)(1 + δ)|A1 ∪ · · · ∪ Am|].

Proof: Let A = |A1 ∪ · · · ∪ Am| and U = |A1| + |A2| + · · · + |Am|. For an arbitrary set Ai in
the list L, and an arbitrary element x ∈ Ai, with at least the following probability x is selected via
RandomElement(Ai) at line 7 of Algorithm ApproximateUnion(.),

mi

m1 +m2 + · · ·+mm

1− αL

|Ai|
≥ (1− βL)|Ai|

M

1− αL

|Ai|

=
(1− βL)(1− αL)

M
.

Similarly, with at most the following probability x is chosen via RandomElement(Ai) at line 7
of Algorithm ApproximateUnion(.),

mi

m1 +m2 + · · ·+mm

1 + αR

|Ai|
≤ (1 + βR)|Ai|

M

1 + αR

|Ai|

=
(1 + βR)(1 + αR)

M
.

12

Define ρL = 1− (1− βL)(1− αL) and ρR = (1 + βR)(1 + αR)− 1. Each element x in A1 ∪A2 ∪
· · · ∪ Am is selected with probability in

[

(1−ρL)T (x,L)
M , (1+ρR)T (x,L)

M

]

.

Define T1 =
{

A′
j : |A′

j | ≤ A
f2(m)

}

, and T2 =
{

A′
j : |A′

j | > A
f2(m)

}

(see vi of Definition 8). Let

tj = min
{

T (x, L) : x ∈ A′
j

}

. We discuss two cases:
Case 1: A′

j ∈ T1. When one element x is chosen, the probability that x ∈ A′
j is in the range

[

(1−ρL)tj |A′

j |
M ,

(1+ρR)(1+δ)tj |A′

j |
M

]

. Let pj =
(1+ρR)(1+δ)tj · A

f2(m)

M . Since zmin ≤ minThickness(L), we

have zmin ≤ minThickness(L) ≤ tj . It is easy to see that mA ≥ U . We have

pjh1 =
(1 + ρR)(1 + δ)tj · A

f2(m)

M
· mf4(m)

zmin

≥ (1 + ρR)(1 + δ) · f4(m)mA

f2(m)M

≥ (1 + ρR)(1 + δ) · f4(m)U

f2(m)M

≥ (1 + ρR)(1 + δ) · f4(m)

f2(m)(1 + βR)

=
(1 + αR)(1 + δ) · f4(m)

f2(m)
. (19)

Let ω1(m) = (1+αR)(1+δ)·f4(m)
f2(m) . Thus, pjh1 ≥ ω1(m).

Let R1,j be the elements of R1 and also in A′
j . By Theorem 7, with probability at most Pj =

g∗(1)pj ·h1 ≤ g∗(1)ω1(m) ≤ γ1

2 (by equation (7), equation (9) and inequality (19)), there are more

than 2pjh1 =
2(1+ρR)(1+δ)tj · A

f2(m)

M · h1 elements to be chosen from A′
j into R1. Thus,

F ′(R1,j) ≤
2pjh1

tj
=

2(1 + ρR)(1 + δ) · A
f2(m)M

· h1, (20)

with probability at most Pj to fail.
Case 2: A′

j ∈ T2. When h1 elements are selected to R1, let vj be the number of elements
selected in A′

j . When one element x is chosen, the probability that x ∈ A′
j is in the range

[

(1−ρL)tj |A′

j |
M ,

(1+ρR)(1+δ)tj |A′

j |
M

]

.

Let pj,1 =
(1−ρL)tj |A′

j |
M and pj,2 =

(1+ρR)(1+δ)tj |A′

j |
M .

We have

pj,1h1 =
(1− ρL)tj |A′

j |
M

· h1

>
(1− ρL)tj

A
f2(m)

M
· h1 ≥ (1 − ρL)zminA · h1

f2(m)M
=

(1− ρL)zminA ·mf4(m)

zminf2(m)M

≥ (1− ρL)f4(m)

f2(m)(1 + βR)
. (21)

13

We have

pj,2h1 =
(1 + ρR)(1 + δ)tj |A′

j |
M

· h1

>
(1 + ρR)(1 + δ)tj · A

f2(m)

M
· h1

≥ (1 + ρR)(1 + δ)zmin · A
f2(m)M

· h1

=
(1 + ρR)(1 + δ)zmin · A

f2(m)M
· mf4(m)

zmin

≥ (1 + ρR)(1 + δ) · f4(m)

f2(m)(1 + βR)

≥ (1 + αR)(1 + δ) · f4(m)

f2(m)
. (22)

With probability at most g∗(ǫ3)pj,1·h1 ≤ γ1

4 (by equation (7), equation (9) and inequality (21)),

vj <
(1− ǫ3)(1 − ρL)tj |A′

j |
M

· h1 = (1− ǫ3)(1− ρL)tjh1 ·
|A′

j |
M

.

With probability at most g∗(ǫ3)pj,2·h1 ≤ γ1

4 (by equation (7), equation (9) and inequality (22)),

vj >
(1 + ǫ3)(1 + ρR)(1 + δ)tj |A′

j |
M

· h1 = (1 + ǫ3)(1 + ρR)(1 + δ)tjh1 ·
|A′

j |
M

.

Therefore, with probability at least 1− γ1/2, we have

vj ∈
[

(1 − ǫ3)(1 − ρL)tjh1 ·
|A′

j |
M

, (1 + ǫ3)(1 + ρR)(1 + δ)tjh1 ·
|A′

j |
M

]

. (23)

Thus, we have that there are sufficient elements of A′
j to be selected with high probability, which

follows from Theorem 6 and Theorem 7.
In the rest of the proof, we assume that inequality (20) holds if the condition of Case 1 holds,

and inequality (23) holds if the condition of Case 2 holds.

14

Now we consider

F (R1, h1, 1) =
1

h1

∑

x∈R1

1

T (x, L)

=
1

h1





∑

R1,j with A′

j∈T1

∑

x∈R1,j

1

T (x, L)
+

∑

R1,j with A′

j∈T2

∑

x∈R1,j

1

T (x, L)





≤ 1

h1

2(1 + ρR)(1 + δ)v(δ, zmin, zmax, L) · A
f2(m)M

· h1

+
1

h1

∑

R1,j with A′

j∈T2

∑

x∈R1,j

1

T (x, L)

≤ 1

h1





2(1 + ρR)(1 + δ)v(δ, zmin, zmax, L) ·A
f2(m)M

· h1 +
∑

R1,j with A′

j∈T2

vj
tj





≤ 1

h1

(

2(1 + ρR)(1 + δ)v(δ, zmin, zmax, L) · A
f2(m)M

· h1

)

+
1

h1





∑

R1,j with A′

j∈T2

(1 + ǫ3)(1 + ρR)(1 + δ)h1 ·
|A′

j |
M





=
2(1 + ρR)(1 + δ)v(δ, zmin, zmax, L) · A

f2(m)M

+
∑

R1,j with A′

j∈T2

(1 + ǫ3)(1 + ρR)(1 + δ) ·
|A′

j |
M

≤
(

2(1 + ρR)(1 + δ)v(δ, zmin, zmax, L)

f2(m)
+ (1 + ǫ3)(1 + ρR)(1 + δ)

)

A

M

=

(

1 + ǫ3 +
2v(δ, zmin, zmax, L)

f2(m)

)

(1 + ρR)(1 + δ)
A

M
(24)

≤ (1 + 2ǫ3)(1 + ρR)(1 + δ)
A

M
(25)

≤ (1 + ǫ0)(1 + ρR)(1 + δ)
A

M
.

The transition from (24) to (25) is by Statement iii of Lemma 10. For the lower bound part, we
have the following inequalities:

15

F (R1, h1, 1) =
1

h1

∑

x∈R1

1

T (x, L)

≥ 1

h1





∑

R1,j with A′

j∈T2

∑

x∈R1,j

1

T (x, L)





≥ 1

h1





∑

R1,j with A′

j∈T2

vj
(1 + δ)tj





≥ 1

h1





∑

R1,j with A′

j∈T2

(1− ǫ3)(1 − ρL)h1 ·
|A′

j |
(1 + δ)M





=
(1− ǫ3)(1 − ρL)

(1 + δ)M





∑

R1,j with A′

j∈T2

|A′
j |





=
(1− ǫ3)(1 − ρL)

(1 + δ)M

∑

R1,j with A′

j∈T1

|A′
j |+

(1− ǫ3)(1 − ρL)

(1 + δ)M

∑

R1,j with A′

j∈T2

|A′
j |

− (1− ǫ3)(1− ρL)

(1 + δ)M

∑

R1,j with A′

j∈T1

|A′
j |

=
(1− ǫ3)(1 − ρL)

(1 + δ)M



A−
∑

R1,j with A′

j∈T1

|A′
j |





≥ (1− ǫ3)(1 − ρL)

(1 + δ)M

(

A− v(δ, zmin, zmax, L)A

f2(m)

)

=

(

1− v(δ, zmin, zmax, L)

f2(m)

)

(1 − ǫ3)(1− ρL)

(1 + δ)

A

M
(26)

≥ (1− ǫ3)
(1 − ǫ3)(1− ρL)

(1 + δ)

A

M
(27)

≥ (1− ǫ0)(1 − ρL)

(1 + δ)

A

M
.

The transition from (26) to (27) is by Statement 3 of Lemma 10. Therefore, F (R1, h1, 1)M ∈
[

(1−ǫ0)(1−ρL)
(1+δ) A, (1 + ǫ0)(1 + ρR)(1 + δ)A

]

.

Lemma 13 shows that at stage i, it can approximate T (x, L) for all random samples with highest
T (x, L) in Ri. Those random elements with highest T (x, L) will be removed in stage i so that the
algorithm will look for random elements with smaller T (x, L) in the coming stages.

Lemma 13. After the execution of Stage i, with probability at least 1 − γ2, we have the following
three statements:

i. Every element x ∈ Ri with T (x, L) ≥ currentThicknessi
4f1(m) has S(x,Hi) ∈

[

(1− ǫ1)
T (x,L)

m ui, (1 + ǫ1)
T (x,L)

m ui

]

.

ii. Every element x ∈ Vi with T (x, L) ≥ currentThicknessi
f1(m) , it satisfies the condition in line 12 of the

algorithm.

16

iii. Every element x ∈ Vi with T (x, L) < currentThicknessi
4f1(m) , it does not satisfy the condition in line 12

of the algorithm.

Proof: It follows from Theorem 6 and Theorem 7. There are ui = sif6(m) indices are selected

among {1, 2, · · · ,m}. Let p = T (x,L)
m .

Statment i: We have pui =
T (x,L)

m · sif6(m) ≥ currentThicknessi
4f1(m) · 1

m · sif6(m) = currentThicknessi
4f1(m) · 1

m ·
m

currentThicknessi
· f6(m) = f6(m)

4f1(m) .

With probability at most P1 = g∗(ǫ1)pui ≤ γ3

2 (by equations (8), and (12)), S(x,Hi) < (1 −
ǫ1)

T (x,L)
m ui. With probability at most P2 = g∗(ǫ1)pui ≤ γ3

2 (by equations (8) and (12)), S(x,Hi) >

(1 + ǫ1)
T (x,L)

m ui.
There are at most hi elements in Ri by Statement iv of Lemma 10. Therefore, with probability

at most hi(P1 + P2) ≤ h1(P1 + P2) ≤ h1 · γ3 = γ2

2 ,

S(x,Hi) 6∈
[

(1 − ǫ1)
T (x, L)

m
ui, (1 + ǫ1)

T (x, L)

m
ui

]

.

Statement ii: This statement of the lemma follows from Statement i.
Statement iii: This part of the lemma follows from Theorem 6 and Theorem 7. For x ∈ Vi

with T (x, L) < currentThicknessi
4f1(m) , let p = currentThicknessi

4f1(m) . With probability at most g∗(1)pui ≤ γ3

2

(by equations (8), and (12)), we have S(x,Hi) ≥ 2pui. There are at most hi elements in Ri by
Statement iv of Lemma 10. Therefore, with probability at most h1 · γ3 ≤ γ2

2 , there exists one x ∈ Vi

with T (x, L) < currentThicknessi
4f1(m) to satisfy S(x,Hi) ≥ 2pui.

Lemma 14. Let x and y be positive real numbers with 1 ≤ y. Then we have:

i. 1− xy < (1 − x)y.

ii. If xy < 1, then (1 + x)y < 1 + 2xy.

iii. If x1, x2 ∈ [0, 1), then 1− x1 − x2 ≤ (1− x1)(1 − x2), and (1 + x1)(1 + x2) ≤ 1 + 2x1 + x2.

Proof: By Taylor formula, we have (1 − x)y = 1 − xy + y·(y−1)
2 θ2 for some θ ∈ [0, x]. Thus, we

have (1 − x)y ≥ 1 − yx. Note that the function (1 + 1
z)

z is increasing, and limz→+∞(1 + 1
z)

z = e.

We also have (1 + x)y ≤ (1 + x)
1
x
·xy ≤ exy ≤ 1 + xy + (xy)2 ≤ 1 + 2xy.

It is trivial to verify Statement iii. 1 − x1 − x2 ≤ (1 − x1)(1 − x2). Clearly, (1 + x1)(1 + x2) =
1 + x1 + x2 + x1x2 ≤ 1 + 2x1 + x2.

Lemma 15 shows that how to gradually approximate F (R1, h1, 1)M via several rounds. It shows
that the left random samples stored in Ri+1 after stage i is enough to approximate F ′(Ri − Vi).

Lemma 15. Let y be the number of stages. Let Vi be the set of elements removed from Ri in Stage
i. Then we have the following facts:

i. With probability at least 1− γ2, aiF
′(Ri+1) ∈ [(1− ǫ1)F

′(Ri − Vi), (1 + ǫ1)F
′(Ri − Vi)], and

ii. With probability at least 1 − 2yγ2,
∑y

i=1 s
′
iF

′(Vi) ∈ [(1 − yǫ1)S, (1 + 2yǫ1)S], where S =
F (R1, h1, 1).

Proof: Let h′
i = hi−|Vi|. If an local is too small, it does not affect the global sum much. In Ri+1,

we deal with the elements x of T (x, L) < currentThicknessi
f1(m) . By Lemma 13, with probability at least

1− γ2, Ri − Vi does not contain any x with T (x, L) ≥ currentThicknessi
f1(m) .

Let ti,j be the number of elements of A′
j in Ri with multiplicity. Let Bi,j be the set of elements

in both Ri and A′
j with multiplicity.

Statement i: We discuss two cases:

17

Case 1: |Ri| − |Vi| < hi+1. This case is trivial since Ri+1 = Ri − Vi and ai = 1 according to the
algorithm (line (19) to line (22)).

In the following Case 2, we assume the condition of Case 1 is false. Thus, h′
i ≥ hi+1.

Case 2: |Ri| − |Vi| ≥ hi+1. We have

F ′(Ri − Vi) ≥ h′
i

currentThicknessi
f1(m)

≥ hi+1

currentThicknessi
f1(m)

=

h1

si+1
· f1(m)

currentThicknessi
=

f4(m)

zmin
. (28)

Two subcases are discussed below.
Subcase 2.1: ti,j ≤ f3(m), in this case, Bi,j has a small impact for the global sum.

Let p = f3(m)
h′

i
. By Theorem 6 and Theorem 7, with probability at least 1 − g∗(1)phi+1 =

1− g∗(1)
f3(m)

f1(m) ≥ 1− γ2

2 (by equation (8)),

|Bi+1,j | ≤ 2phi+1 = 2 · f3(m)

h′
i

· hi

f1(m)
=

2f3(m)

f1(m)
· hi

h′
i

≤ 2f3(m)

f1(m)
· hi

hi+1
≤ 2f3(m)

f1(m)2
.

We assume |Bi+1,j | ≤ 2f3(m)
f1(m)2 . We have F ′(Bi+1,j) ≤ |Bi+1,j |

zmin
≤ 2f3(m)

zminf1(m)2 . Clearly, ai ≤ f1(m).

Thus,

aiF
′(Bi+1,j) ≤ f1(m) · 2f3(m)

zminf1(m)2
=

2f3(m)

zminf1(m)

=
2f3(m)

f4(m)f1(m)
· f4(m)

zmin
(29)

≤ 2f3(m)

f1(m)f4(m)
· F ′(Ri − Vi) (30)

≤ 2ǫ2 · F ′(Ri − Vi)

v(δ, zmin, zmax, L)
. (31)

The transition from (29) to (30) is by inequality (28). The transition from (30) to (31) is by
inequality (9).

Subcase 2.2: ti,j > f3(m) in Ri, in this case, B′
j does not lose much accuracy. From Ri to Ri+1,

hi+1 = hi

f1(m) elements are selected.

Let q =
ti,j
h′

i
. We have

qhi+1 =
ti,j
h′
i

· hi+1 = ti,j ·
hi+1

h′
i

≥ ti,j ·
hi+1

hi
≥ f3(m)

f1(m)
. (32)

With probability at most g∗(ǫ2)qhi+1 ≤ γ2

2 (by inequality (32) and Statement v of Lemma 10),
we have that |Bi+1,j | < (1− ǫ2)qhi+1. With probability at most g∗(ǫ2)qhi+1 ≤ γ2

2 (by inequality (32)
and Statement v of Lemma 10), we have that |Bi+1,j | > (1+ ǫ2)qhi+1. They follow from Theorem 6
and Theorem 7.

We assume |Bi+1,j | ∈ [(1− ǫ2)qhi+1, (1 + ǫ2)qhi+1]. Thus, aiF
′(Bi+1,j) ∈ [(1−ǫ2)ti,j , (1+ǫ2)ti,j].

So, aiF
′(Bi+1,j) ∈

[

(1−ǫ2)F
′(Ri,j)

1+δ , (1 + ǫ2)F
′(Ri,j)(1 + δ)

]

.

We have

18

aiF
′(Ri+1) = ai





∑

j

F ′(Bi+1,j)



 (33)

≤ (1 + ǫ2)(1 + δ)F ′(Ri − Vi) +
2ǫ2F

′(Ri − Vi)

v(δ, zmin, zmax, L)
· v(δ, zmin, zmax, L) (34)

≤ ((1 + ǫ2)(1 + δ) + 2ǫ2)F
′(Ri − Vi) (35)

≤ (1 + 4ǫ2)F
′(Ri − Vi) (36)

≤ (1 + ǫ1)F
′(Ri − Vi). (37)

The transition from (33) to (34) is by inequality (31). The transition from (35) to (36) is based
on equation (4). The transition from (36) to (37) is based on equations (3).

We have

aiF
′(Ri+1) = ai





∑

j

F ′(Bi+1,j)



 (38)

≥ (1− ǫ2)F
′(Ri − Vi)

(1 + δ)
− 2ǫ2F

′(Ri − Vi)

v(δ, zmin, zmax, L)
· v(δ, zmin, zmax, L) (39)

≥
(

(1− ǫ2)

(1 + δ)
− 2ǫ2

)

F ′(Ri − Vi) (40)

≥ (1− 4ǫ2)F
′(Ri − Vi) (41)

≥ (1− ǫ1)F
′(Ri − Vi). (42)

The transition from (38) to (39) is based on inequality (31). The transition from (41) to (42) is
based on equations (3).

Statement ii: In the rest of the proof, we assume that if |Ri| − |Vi| ≥ hi+1, then F ′(Ri+1) =
F ′(Ri − Vi), and if |Ri| − |Vi| < hi+1, then aiF

′(Ri+1) ∈ [(1 − ǫ1)F
′(Ri − Vi), (1 + ǫ1)F

′(Ri − Vi)].

In order to prove Statement ii, we give an inductive proof that s′k+1F
′(Rk+1) +

∑k
i=1 s

′
iF

′(Vi) ∈
[(1 − ǫ1)

kS, (1 + ǫ1)
kS]. It is trivial for k = 0. Assume that s′kF

′(Rk) +
∑k−1

i=1 s′iF
′(Vi) ∈ [(1 −

ǫ1)
k−1S, (1 + ǫ1)

k−1S].
Since F ′(Rk) = F ′(Rk − Vk) + F ′(Vk), we have akF

′(Rk+1) + F ′(Vk) ∈ [(1 − ǫ1)F
′(Rk), (1 +

ǫ1)F
′(Rk)].

Thus, we have

s′k+1F
′(Rk+1) +

k
∑

i=1

s′iF
′(Vi) = s′k+1F

′(Rk+1) + s′kF
′(Vk) +

k−1
∑

i=1

siF
′(Vi)

= s′k(akF
′(Rk+1) + F ′(Vk)) +

k−1
∑

i=1

siF
′(Vi)

≤ (1 + ǫ1)s
′
kF

′(Rk) +
k−1
∑

i=1

siF
′(Vi)

≤ (1 + ǫ1)

(

s′kF
′(Rk) +

k−1
∑

i=1

siF
′(Vi)

)

≤ (1 + ǫ1)
kS.

19

Similarly, we have

s′k+1F
′(Rk+1) +

k
∑

i=1

s′iF
′(Vi) = s′k+1F

′(Rk+1) + skF
′(Vk) +

k−1
∑

i=1

s′iF
′(Vi)

= s′k (akF
′(Rk+1) + F ′(Vk)) +

k−1
∑

i=1

s′iF
′(Vi)

≥ (1− ǫ1)s
′
kF

′(Rk) +

k−1
∑

i=1

s′iF
′(Vi)

≥ (1− ǫ1)

(

s′kF
′(Rk) +

k−1
∑

i=1

s′iF
′(Vi)

)

≥ (1− ǫ1)
kS.

Thus, we have s′k+1F
′(Rk+1) +

∑k
i=1 s

′
iF

′(Vi) ∈ [(1− ǫ1)
kS, (1 + ǫ1)

kS].
Therefore, with probability at least 1 − yγ2 − yγ2,

∑y
i=1 s

′
iF

′(Vi) ∈ [(1 − ǫ1)
yS, (1 + ǫ1)

yS] ⊆
[(1− ǫ1y)S, (1 + 2ǫ1y)S] by Lemma 14.

Lemma 16 gives the time complexity of the algorithm. The running time depends on several
parameters.

Lemma 16. The algorithm ApproximateUnion(.) runs in O

(

mf4(m)f6(m)
zmin

·
(

log zmax
zmin

log f1(m)

))

time.

Proof: Let y be the total number of stages. By Lemma 11, we have y = O

(

log zmax
zmin

log f1(m)

)

.

The time of each stage is ti = hi · ui = h1f6(m) = m
zmin

f4(m)f6(m), which is mainly from line 12

of the algorithm. Therefore, the total time is
y
∑

i=1

ti ≤ m
zmin

· f4(m)f6(m)y.

We have Theorem 17 to show the performance of the algorithm. The algorithm is sublinear if
minThickness(L) ≥ ma for a fixed a > 0, and has a zmin with minThickness(L) ≥ zmin ≥ mb for a
positive fixed b (b may not be equal to a) to be part of input to the algorithm.

Theorem 17. The algorithm ApproximateUnion(.) takes O

(

mf4(m)f6(m)
zmin

·
(

log zmax
zmin

log f1(m)

))

time and

O

(

log zmax
zmin

log f1(m)

)

rounds such that with probability at least 1− γ, it gives a

sum ·M ∈ [(1 − ǫ)(1− αL)(1− βL) · |A1 ∪ · · · ∪ Am|, (1 + ǫ)(1 + αR)(1 + βR) · |A1 ∪ · · · ∪ Am|],
where zmin and zmax are parameters with 1 ≤ zmin ≤ minThickness(L) ≤ maxThickness(L)
≤ zmax ≤ m, where functions f1(.), f4(.), and f6(.) are defined in equations (9), (6), and (12),
respectively.

Proof: Let y be the number of stages. By Lemma 13, with probability at least 1− yγ2,

sum ∈
[

(1− ǫ1)

y
∑

i=1

s′iF
′(Vi), (1 + ǫ1)

y
∑

i=1

s′iF
′(Vi)

]

.

By Lemma 15, with probability at least 1− 2yγ2,

y
∑

i=1

s′iF
′(Vi) ∈ [(1− yǫ1)F (R1, h1, 1), (1 + 2yǫ1)F (R1, h1, 1)] .

20

By Lemma 12, with probability at least 1− γ1,

F (R1, h1, 1)

(

m
∑

i=1

mi

)

∈ [
(1− ǫ0)(1 − αL)(1 − βL)

1 + δ
|A1 ∪ · · · ∪ Am|,

(1 + ǫ0)(1 + αR)(1 + βR)(1 + δ)|A1 ∪ · · · ∪ Am|].

Therefore, with probability at least 1− γ1 − 2yγ2,

sum ·M ∈ [
(1 − yǫ1)(1 − ǫ0)(1− ǫ1)(1 − αL)(1− βL)

1 + δ
· |A1 ∪ · · · ∪ Am|,

(1 + 2yǫ1)(1 + ǫ0)(1 + ǫ1)(1 + αR)(1 + βR)(1 + δ)|A1 ∪ · · · ∪ Am|].

Now assume

sum ·M ∈ [
(1 − yǫ1)(1 − ǫ0)(1− ǫ1)(1 − αL)(1− βL)

1 + δ
· |A1 ∪ · · · ∪ Am|,

(1 + 2yǫ1)(1 + ǫ0)(1 + ǫ1)(1 + αR)(1 + βR)(1 + δ)|A1 ∪ · · · ∪ Am|].

By Statement iii of Lemma 14, we have

1− ǫ ≤ 1− yǫ1 − ǫ0 −
9

8
ǫ1 ≤ (1− yǫ1)(1 − ǫ0)

(

1− 9

8
ǫ1

)

≤ (1 − yǫ1)(1 − ǫ0) (1− ǫ1)

1 + δ
,

and (1+2yǫ1)(1+ ǫ0)(1+ ǫ1)(1+ δ) ≤ (1+2yǫ1)(1+2ǫ0+ ǫ1)(1+ δ) ≤ (1+2yǫ1)(1+4ǫ0+2ǫ1+ δ) ≤
(1 + 8ǫ0 +4ǫ1 +2δ+2yǫ1) ≤ (1 + 8ǫ0 +4ǫ1 + ǫ2 +2yǫ1) ≤ (1 + 8ǫ0 +

ǫ0
3 + ǫ0

3 + ǫ0
3) ≤ 1+ 9ǫ0 ≤ 1+ ǫ.

Therefore,

sum ·M ∈ [(1 − ǫ)(1− αL)(1− βL) · |A1 ∪ · · · ∪ Am|, (1 + ǫ)(1 + αR)(1 + βR) · |A1 ∪ · · · ∪ Am|].

The algorithm may fail at the case after selecting R1, or one of the stages. By the union bound,
the failure probability is at most γ1 + 2γ2 · logm ≤ γ. We have that with probability at least 1− γ
to output the sum that satisfies the accuracy described in the theorem. The running time and the
number of rounds of the algorithm follow from Lemma 16 and Lemma 11, respectively.

Since 1 ≤ zmin ≤ minThickness(L) ≤ maxThickness(L) ≤ zmax ≤ m, we have the following
Corollary 18. Its running time is almost linear in the classical model.

Corollary 18. There is a O(poly(1ǫ , log
1
γ) · m · (logm)O(1)) time and O(logm) rounds algo-

rithm for |A1 ∪ A2 ∪ · · ·Am| such that with probability at least 1 − γ, it gives a sum · M ∈
[(1− ǫ)(1 − αL)(1 − βL) · |A1 ∪ · · · ∪ Am|, (1 + ǫ)(1 + αR)(1 + βR) · |A1 ∪ · · · ∪Am|].

Proof: We let f1(m) = 8 with c1 = 0 in equation (6). Let zmin = 1 and zmax = m. It follows
from Theorem 17 and Statements vi and vii of Lemma 10 as we have the inequality (43):

(

mf4(m)f6(m)

zmin
·
(

log zmax

zmin

log f1(m)

))

= O(poly(
1

ǫ
, log

1

γ
) ·m · (logm)O(1)). (43)

Corollary 19. For each ξ > 0, there is a O(poly(1ǫ , log
1
γ) · m1+ξ) time and O(1ξ) rounds al-

gorithm for |A1 ∪ A2 ∪ · · ·Am| such that with probability at least 1 − γ, it gives a sum · M ∈
[(1− ǫ)(1 − αL)(1 − βL) · |A1 ∪ · · · ∪ Am|, (1 + ǫ)(1 + αR)(1 + βR) · |A1 ∪ · · · ∪Am|].

21

Proof: We let f1(m) = 8mξ/2 with c1 = ξ
2 in equation (6). Let zmin = 1 and zmax = m. It

follows from Theorem 17 and Statements vi and vii of Lemma 10 as we have the inequality (44):

(

mf4(m)f6(m)

zmin
·
(

log zmax

zmin

log f1(m)

))

= O(poly(
1

ǫ
, log

1

γ
) ·m1+ξ). (44)

An interesting open problem is to find an O(m) time and O(logm) rounds approximation scheme
for |A1 ∪ A2 ∪ · · ·Am| with a similar accuracy performance as Corollary 18. We were not able to
adapt the method from Karp, Luby, and Madras [29] to solve this problem.

5. Approximate Random Sampling for Lattice Points in High

Dimensional Ball

In this section, we propose algorithms to approximate the numebr of lattice points in a high dimen-
sional ball, and also develop algorithms to generate a random lattice point inside a high dimensional
ball.

Before present the algorithms, some definitions are given below.

Definition 20. Let integer d > 0 be a dimensional number, Rd be the d−dimensional Euclidean
Space.

i. For two points p, q ∈ R
d, define ||p− q|| to be Euclidean Distance.

ii. A point p ∈ R
d is a lattice point if p = (y1, ..., yd) with yi ∈ Z for i = 1, 2, ..., d.

iii. Let p ∈ R
d, and r > 0. Define Bd(r, p, d) be a d−dimensional ball of radius r with center at p.

iv. Let q = (µ1, µ2, ..., µd) ∈ R
d. Define Bd(r, q, k) = {(z1, z2, ..., zd) ∈ R

d : z1 = µ1, ..., zd−k =

µd−k and
d
∑

i=1

(µi − zi)
2 ≤ r2}.

v. Let p ∈ R
d, and r > 0. Define C(r, p, d) be the number of lattice points in the d−dimensional

ball of radius r with the center at p.

vi. Let λ, l be real numbers. Define D(λ, d, l) = {(x1, · · · , xd) : (x1, · · · , xd) with xk = ik + jkλ
for an integer jk ∈ [−l, l], and another arbitrary integer ik for k = 1, 2, ..., d}.

vii. Let λ, l be real numbers. Define D∗(λ, d, l) = {(x1, · · · , xd) : (x1, · · · , xd) with xk = jkλ for
an integer jk ∈ [−l, l] with k = 1, 2, ..., d}.

viii. Let λ = a−m, where a and m are integer and a ≥ 2. Define D∗∗(λ, d) = {(x1, · · · , xd) :
(x1, · · · , xd) with xk = ik + jkλ for an integer jk ∈ [−λ−1 +1, λ−1 − 1], and another arbitrary
integer ik for k = 1, 2, ..., d}.

5.1. Randomized Algorithm for Approximating Lattice Points for High

Dimensional Ball

In this section, we develop algorithms to approximate the number of lattice points in a d-dimensional
ball Bd(r, p, d). Two subsubsections are discussed below.

22

5.1.1. Counting Lattice Points of High Dimensional Ball with Small Radius

In this section, we develop a dynamic programming algorithm to count the number of lattice points
in d−dimensional ball Bd(r, p, d). Some definitions and lemmas that is used to prove the performance
of algorithm are given before present the algorithm.

Definition 21. Let p be a point in R
d, and p ∈ D(λ, d, L). Define E(r′, p, h, k) be the set of

k−dimensional balls Bd(r
′, q, k) of radii r′ with center at q = (y1, y2, ..., yh, xh+1, ..., xd) where h =

d− k is the number of initial integers of the center q and yt ∈ Z for t = 1, 2, ..., h.

Lemma 22 shows that for any two balls with same dimensional number, if their radii equal and the
number of initial integers of their center also equal, then they have same number of lattice points.

Lemma 22. For two k−dimensional balls Bd(r, q, k) and Bd(r, q
′, k), if Bd(r, q, k) ∈ E(r, p, h, k)

and Bd(r, q
′, k) ∈ E(r, p, h, k), then C(r, q, k) = C(r, q′, k).

Proof: In order to prove that C(r, q, k) = C(r, q′, k), we need to show that there is a bijection
bewtten the set of of lattice points inside ball Bd(r, q, k) and the set of lattice points inside ball
Bd(r, q

′, k), where q = (y1, y2, ..., yh, xh+1, ..., xd) and q′ = (y′1, y
′
2, ..., y

′
h, xh+1, ..., xd) with y′t, yt ∈ Z

for t = 1, 2, ..., h.
Statement 1: ∀ q1 = (z1, z2, ..., zd) ∈ Bd(r, q, k), where zt ∈ Z for t = 1, 2, ..., d.
we have

(z1 − y1)
2 + · · ·+ (zh − yh)

2 + (zh+1 − xh+1)
2 + · · ·+ (zd − xd)

2 ≤ r2

then

(z1 + y′1 − y1 − y′1)
2 + · · ·+ (zh + y′h − yh − y′h)

2 + (zh+1 − xh+1)
2 + · · ·+ (zd − xd)

2 ≤ r2.

Therefore, there exists a lattice point (z1 + y′1 − y1, ..., zh + y′h − yh, zh+1, ..., zd) ∈ Bd(r, q
′, k)

correspoding to q1.
Statement 2: ∀ q′1 = (z′1, z

′
2, ..., z

′
d) ∈ Bd(r, q

′, k), where z′t ∈ Z for t = 1, 2, ..., d.
we have

(z′1 − y′1)
2 + · · ·+ (z′h − y′h)

2 + (z′h+1 − xh+1)
2 + · · ·+ (z′d − xd)

2 ≤ r2

and

(z′1 − y′1 + y1 − y1)
2 + · · ·+ (z′h − y′h + yh − yh)

2 + (z′h+1 − xh+1)
2 + · · ·+ (z′d − xd)

2 ≤ r2.

Therefore, there exists a lattice point (z′1 − y′1 + y1, ..., z
′
h − y′h + yh, z

′
h+1, ..., z

′
d) ∈ Bd(r, q, k)

correspoding to q′1.
Based on above two statements, there exists a bijection between the set of lattice points inside

ball Bd(r, q, k) and the set of lattice points inside ball Bd(r, q
′, k).

Therefore, C(r, q, k) = C(r, q′, k).

Lemma 23 shows that we can move ball Bd(r, q, k) by an integer units in every dimension without
changing the number of lattice points in the ball.

Lemma 23. Let λ be a real number. For two k−dimensional balls Bd(r, q1, k) and Bd(r, q2, k),
where q1 = (y1, y2, ..., yd−k, xd−k+1, ..., xd), q2 = (y′1, y

′
2, ..., y

′
d−k, x

′
d−k+1, ..., x

′
d) with yt, y

′
t ∈ Z,

t = 1, 2, ..., d − k, and xt′ = it′ + jt′λ, it′ is an integer and jt′ ∈ [−l, l] for t′ = d − k + 1, ..., d, if
x′
t′ = jt′λ, then we have C(r, q1, k) = C(r, q2, k).

Proof: Since Bd(r, q1, k) ∈ E(r, p, h, k) and Bd(r, q2, k) ∈ E(r, p, h, k) with h = d − k, we have
C(r, q1, k) = C(r, q2, k) via Lemma 22.

We define R(r, p, d) be a set of radii r′ for the balls that generated by the intersection of Bd(r, p, d)
wiht hyper-plane x1 = y1, ..., xk = yk, ..., xd = yd.

23

Definition 24. For a d−dimensional ball Bd(r, p, d) of radius r with center at p = (x1, x2, ..., xd).

i. Define R(r, p, d) = {r′ : r′2 = r2 −
k
∑

i=1

(yi − xi)
2 with yi ∈ Z and

k
∑

i=1

(yi − xi)
2 ≤

r2 for some integer k ∈ [1, d]}.

Lemma 25 shows that we can reduce the cardinality of R(r, p, d) from exponentional to polynomial
when setting the element of the ball’s center has same type (i.e. p ∈ D(λ, d, l).)

Lemma 25. Let Bd(r, p, d) be a d−dimensional ball of radius r with center at p, where p ∈
D∗(λ, d, l), then |R(r, p, d)| ≤ 4(r + l|λ|)3l3d3 and R(r, p, d) can be generated in O

(

(r + l|λ|)3l3d3
)

time.

Proof: Since r′2 = r2 −
k
∑

i=1

(yi − xi)
2 for 0 ≤ k ≤ d, we have r′ as:

r′2 = r2 − (y1 − j1λ)
2 − · · · − (yd − jdλ)

2

= r2 − [y21 − 2y1j1λ+ j21λ
2]− · · · − [y2d − 2ydjdλ+ j2dλ

2]

= r2 − {y21 + y22 + · · ·+ y2d}
+{2y1j1 + 2y2j2 + · · ·+ 2ydjd}λ
−{j21 + j22 + j23 + · · ·+ j2d}λ2.

Let R′ = {r′|r′2 = r2 − (x + yλ + zλ2) with x, y, and z is nonnegative integer}, it is easy to
see that r′ ∈ R′ then R ⊆ R′.

Let






X = {x′|x′ = y21 + y22 + ...+ y2d with yi ∈ [r − l|λ|, r + l|λ|], 0 ≤ i ≤ d}
Y = {y′|y′ = 2y1j1 + 2y2j2 + ...+ 2ydjd with yiji ∈ [I(r − l|λ|), I(r + l|λ|)], 0 ≤ i ≤ d}
Z = {z′|z′ = j21 + j22 + j23 + ...+ j2d with ji ∈ [−l, l], 0 ≤ i ≤ d},

then we have:






|Z| ≤ dl2

|Y | ≤ 4d(r + l|λ|)l
|X | ≤ d(r + l|λ|)2.

(45)

For each r′ ∈ R, we have r′2 = r2 − (x + yλ + zλ2) with x ∈ X , y ∈ Y , and z ∈ Z. Therefore,
|R| ≤ dl2 · 4d(r + l|λ|)l · d(r + l|λ|)2 = 4(r + l|λ|)3l3d3 via inequality (45). Then R(r, p, d) can be
generated in O

(

(r + l|λ|)3l3d3
)

time.

Lemma 26 is a spacial case of Lemma 25. It shows that there at most (r2 + 1)a2m cases of
the radii when the elements of the center are the type like fractions in base a. For example, p =
(3.891, 5.436, ..., 5.743) ∈ R

d.

Lemma 26. Let λ = a−m where a is a interger with a ≥ 2. Let Bd(r, p, d) be a d−dimensional
ball of radius r with center at p ∈ D∗∗(λ, d), then |R(r, p, d)| ≤ (r2 + 1)a2m and R(r, p, d) can be
generated in O

(

(r2 + 1)a2m
)

time.

Proof: We have

r′2 = r2 − (y1 − j1λ)
2 − · · · − (yd − jdλ)

2

= r2 − [y21 − 2y1j1λ+ j21λ
2]− · · · − [y2d − 2ydjdλ+ j2dλ

2]

= r2 − {y21 + y22 + · · ·+ y2d}
+{2y1j1 + 2y2j2 + · · ·+ 2ydjd}λ
−{j21 + j22 + j23 + · · ·+ j2d}λ2

24

via Lemma 25.
For each r′2, it can be transformed into r′2 = r2 − (x+ yλ+ zλ2) with x, y and z are integers,
and







|z| ≤ am

|y| ≤ am

|x| ≤ (r2 + 1).
(46)

Therefore, |R| ≤ (r2 + 1)a2m via inequality (46). Then R(r, p, d) can be generated in
O
(

(r2 + 1)a2m
)

time.

Definition 27. For a d−dimensional ball Bd(r, p, d) of radius r with center at p = (x1, x2, ..., xd).

i. Define p[k] = (0, ..., 0, xk+1, ..., xd) for some integer k ∈ [1, d].

ii. Define Z(r, x, t) with Z(r, x, t)2 = r2 − (t− x)2 if |t− x| ≤ r, where t is a integer and x ∈ R.

We give a dynamic programming algorithm to count the number of lattice points in a d−dimensional
ball Bd(r, p, d).

Algorithm 2 CountLatticePoint(r, p, d)

Input : p = (x1, x2, ..., xd) where xk = ik + jkλ for an integer jk ∈ [−l, l], and another arbitrary
integer ik for k = 1, 2, ..., d. r is radius and d is dimensional numbers.
Output : The number of lattice points of the d−dimensional ball Bd(r, p, d).

1: Let r0 = r
2: For k = d− 1 to 0
3: for each rk ∈ R(r, p, d)
4: let C(rk, p[k], d − k) =

∑

t∈Z and t∈[−rk+xk+1, rk+xk+1]

C(z(rk, xk+1, t), p[k + 1], d −

(k + 1))
5: save C(rk, p[k], d− k) to the look up table
6: Return C(r0, p[0], d)

We note that if d − (k + 1) = 0 then C(z(rk, xk+1, t), p[k + 1], d − (k + 1)) = 1, otherwise
z(rk, xk+1, t) is in R(r, p, d) (i.e. C(z(rk, xk+1, t), p[k + 1], d− (k + 1)) is avaiable in the table).

Theorem 28. Assume λ be a real number and p ∈ D(λ, d, l), then there is a O(r(r + l|λ|)3l3d4)
time algorithm to count C(r, p, d).

Proof: Line 2 has d iterations, Line 3 takes 4(r + l|λ|)3l3d3 to compute rk via Lemma 25, and
Line 4 has at most 2⌊r⌋+ 1 items to add up.

Therefore, the algorithm CountLatticePoints(.) takes O(r(r + l|λ|)3l3d4) running time.

Remark: When λ = 1
π , this is a specail case of Theorem 28, and the running time of the

algorithm is O(r(r+ l|λ|)3l3d4). The algorithm can count the lattice points of high dimensional ball
if the element of the center of the ball has same type like i+jλ even though λ is a irrational number.

Theorem 29 shows that the algorithm can count the number of lattice points of high dimensional
ball if the element of the center of the ball has same type like fractions in base a.

Theorem 29. Assume λ = a−m and p ∈ D∗∗(λ, d), where m and a are integers with a ≥ 2, then
there is a O(r3a2md) time algorithm to count C(r, p, d).

25

Proof: Line 2 has d iterations, Line 3 takes (r2+1)a2m to compute rk via Lemma 26, and Line 4
has at most 2⌊r⌋+ 1 items to add up.

Therefore, the algorithm CountLatticePoints(.) takes O(rd(r2 + 1)a2m) running time.

Corollary 30. Assume λ = 10−m and p ∈ D∗∗(λ, d), where m is a integer, then there is a
O(r3102md) time algorithm to count C(r, p, d).

5.1.2. Approximating Lattice Points in High Dimensional Ball with Large Radius

In this section, we present an (1+β)-approximation algorithm to approximate the number of lattice
points in a d−dimensional ball Bd(r, p, d) of large radius with an arbitrary center p, where β is used
to control the accuracy of approximation.

Some definitions are presented before prove theorems.

Definition 31. For each lattice point q = (y1, y2, ..., yd) ∈ R
d with yi ∈ Z for i = 1, 2, ..., d.

i. Define Cube(q) to be the d−dimensional unit cube with center at
(

y1 +
1
2 , ..., yd +

1
2

)

.

ii. Define I(Bd(r, p, d)) = {q | Cube(q) ⊂ Bd(r, p, d)}.

iii. Define E(Bd(r, p, d)) = {q | Cube(q) /∈ I(Bd(r, p, d)) and Cube(q) ∩Bd(r, p, d) 6= ∅}.

Theorem 32 gives an (1 + β)−approximation with running time O(d) algorithm to approximate

the number of lattice point C(r, p, d) with p is an arbitrary center and r > 2d
3
2

β .

Theorem 32. For an arbitrary β ∈ (0, 1), there is a (1 + β)−approximation algorithm to compute
C(r, p, d) of d−dimensional ball Bd(r, p, d) with running time O(d) for an arbitrary center p when

r > 2d
3
2

β .

Proof: Let |I(Bd(r, p, d))| be the number of lattice points q ∈ I(Bd(r, p, d)), |E(Bd(r, p, d))| be
the number of lattice points q ∈ E(Bd(r, p, d)), and Vd(r) be the volume of a d−dimensional ball
with radius r.

Now consider two d−dimensional balls Bd(r−
√
d, p, d) and Bd(r+

√
d, p, d) that have the same

center as ball Bd(r, p, d). Since every lattice point q corresponds to a Cube(q) via Definition 31, then
we have:

{

Vd(r −
√
d) ≤ |I(Bd(r, p, d))| ≤ Vd(r)

0 ≤ |E(Bd(r, p, d))| ≤ Vd(r +
√
d)− Vd(r).

Therefore,

Vd(r −
√
d) ≤ C(r, p, d) = |I(Bd(r, p, d))|+ |E(Bd(r, p, d))| ≤ Vd(r +

√
d).

Then the bias is |I(Bd(r,p,d))|+|E(Bd(r,p,d))|
Vd(r)

when using Vd(r) to approximate C(r, p, d).

The volume formula for a d− dimensional ball of raduis r is

Vd(r) = f(d) · rd

26

where f(d) = π
d
2 Γ
(

1
2d+ 1

)−1
and Γ(.) is Euler’s gamma function. Then

|I(Bd(r, p, d))|+ |E(Bd(r, p, d))|
Vd(r)

≤ Vd(r +
√
d)

Vd(r)

=
f(d) · (r +

√
d)d

f(d) · rd

=

(

1 +

√
d

r

)d

≤ e
d
3
2
r

≤ 1 +
2d

3
2

r
.

Similarly, we have

|I(Bd(r, p, d))|+ |E(Bd(r, p, d))|
Vd(r)

≥ Vd(r −
√
d)

Vd(r)

=
f(d) · (r −

√
d)d

f(d) · rd

=

(

1−
√
d

r

)d

≥ 1− d
3
2

r

≥ 1− 2d
3
2

r
.

From above two inequalities, we have

(

1− 2d
3
2

r

)

· Vd(r) ≤ C(r, p, d) ≤
(

1 +
2d

3
2

r

)

· Vd(r),

then we have
1

1 + 2d
3
2

r

· C(r, p, d) ≤ Vd(r) ≤
1

1− 2d
3
2

r

· C(r, p, d).

Simplify the above inequality, we have

(

1− 2d
3
2

r − 2d
3
2

)

C(r, p, d) ≤ Vd(r) ≤
(

1 +
2d

3
2

r − 2d
3
2

)

C(r, p, d).

Thus, we have
(1− β)C(r, p, d) ≤ Vd(r) ≤ (1 + β)C(r, p, d) (47)

with β > 2d
3
2

r−2d
3
2
.

It takes O(d) to compute Vd(r) = f(d) · rd, since it takes O(d) to compute f(d) where f(d) =

π
d
2 Γ
(

1
2d+ 1

)−1
. Therefore, the algorithm takes O(d) running time to approximate C(r, p, d) becasue

of Equation (47).

27

Theorem 33. There is an (1+β)-approximation algorithm with running time O(d) to approximate

C(r, p, d) of Bd(r, p, d) with an arbitrry center p when r > 2d
3
2

β ; and there is an dynamic programming

algorithm with running time O

(

1
β d

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

to count C(r, p, d) with center p ∈ D(λ, d, l)

when r ≤ 2d
3
2

β .

Proof: We discuss two cases based the radius of the d-dimensional ball.
Case 1: When counting the number of lattice points of a d-dimensional ball with center p ∈

D(λ, d, l) for r ≤ 2d
3
2

β , apply Theorem 28.
Case 2: When approximating the number of lattice points of a d-dimensional ball with an

arbitrary center p for r > 2d
3
2

β , apply Theorem 32.

Corollary 34. There is a dynamic programming algorithm to count C(r, p, d) of Bd(r, p, d) with

running time O

(

1
βd

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

for p ∈ D(λ, d, l) when r ≤ 2d
3
2

β .

5.2. A Randomized Algorithm for Generating Random Lattice Point of

High Dimensional Ball

In this section, we propose algorithms to generate a random lattice point inside a high dimensional
ball. Two subsections are discussed below.

5.2.1. Generating a Random Lattice Point inside High Dimensional Ball with Small
Radius

In this section, we develop a recursive algorithm to generate a random lattice point inside a
d−dimensional ball Bd(r, p, d) of small radius with center p ∈ D(λ, d, l).

The purpose of the algorithm RecursiveSmallBallRandomLatticePoint(r, p, t, d) is to recursively
generate a random lattice point in the ball Bd(r, p, t).

Algorithm 3 RecursiveSmallBallRandomLatticePoint(r, p, t, d)

Input : p = (y1, y2, ..., yd−t, xd−t+1, ..., xd) where xk = ik + jkλ with arbitrary integer ik, integer
jk ∈ [−l, l], and yi ∈ Z, i = 1, 2, ..., d− t, t is a dimension number with 0 ≤ t ≤ d.
Output : Generate a random lattice point inside t−dimensional ball.

1: Save C(rk, p[k], d − k) into look up table C-Table by using Algorithm
CountLatticePoint(r, p, d) for k = 0, 1, ..., d− 1

2: If t = 0
3: Return lattice point (y1, y2, ..., yd)
4: Else
5: Return RecursiveSmallBallRandomLatticePoint(r′, q, t − 1, d) with probability

C(r′,q,t−1)
C(r,p,t) , where q = (y1, y2, ..., yd−t, yd−t+1, xd−t+2, ..., xd) with yd−t+1 ∈ [xd−t+1−r, xd−t+1+r]

satisfying ||p− q||2 ≤ r2, and r′2 = r2 − ||p− q||2

We note that C(., ., .) is available at C-Table in O(1) step and the implementation of line 5
of the algorithm is formally defined below: Partition I = [1, C(r, p, t)] ∩ Z into I1, · · · , Iw,
where Ii is uniquely corresponds to an integer yd−t+1 ∈ [xd−t+1 − r, xd−t+1 + r] satisfying
q = (y1, y2, ..., yd−t, yd−t+1, xd−t+2, ..., xd), ||p − q||2 ≤ r2, and |Ii| = C(r′, q, t − 1). Gen-
erate a random number z ∈ I. If z ∈ Ii (Ii is mapped to yd−t+1), then it returns
RecursiveSmallBallRandomLatticePoint(r′, q, t−1, d) with q = (y1, y2, ..., yd−t, yd−t+1, xd−t+2, ..., xd).

28

The algorithm RandomSmallBallLatticePoint(r, p, d) is to generate a random lattice point in the
ball Bd(r, p, d). It calls the function RecursiveSmallBallRandomLatticePoint(.).

Algorithm 4 RandomSmallBallLatticePoint(r, p, d)

Input : p = (x1, x2, ..., xd) where xk = ik + jkλ with arbitrary integer ik, integer jk ∈ [−l, l] for
k = 1, 2, · · · , d.
Output : Generate a random lattice point inside d−dimensional ball.

1: Return RecursiveSmallBallRandomLatticePoint(r, p, d, d)

Theorem 35. For an arbitrary β ∈ (0, 1), assume λ be a real number and p ∈ D(λ, d, l), then there

is a O

(

1
β d

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

time algorithm to generate a lattice point inside a d−dimensional

ball Bd(r, p, d).

Proof: By algorithm RandomSmallBallLatticePoint(.), we can generate a random lattice point

inside d−dimensional ball Bd(r, p, d) with probability C(r′,q,d−1)
C(r,p,d) · C(r′′,q′,d−2)

C(r′,q,d−1) · ... · 1
C(r(d−1),q(d−1),0)

=
1

C(r,p,d) .

It takes O

(

1
βd

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

to compute C(r, p, d) via Theorem 33, then algorithm Small-

BallRandomLatticePoint(.) takes O

(

1
βd

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

+O(d) running time. Thus, the algo-

rithm takes O

(

1
βd

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

running time.

5.2.2. Generating a Random Lattice Point of High Dimensional Ball with Large Radius

In this section, we develop an (1 + α)−approximation algorithm to generate a random lattice point
inside a d−dimensional ball Bd(r, p, d) of large radius r with arbitrary center p, where α is used to
control the accuracy of approximation.

We first propose an approximation algorithm RecursiveBigBallRandomLatticePoint(.) to gen-
erate a random lattice point inside a d−dimensional ball Bd(r, p, d) of radius r with lattice point
center p, then we apply algorithm RecursiveBigBallRandomLatticePoint(.) to design algorithm Big-
BallRandomLatticePoint(.) to generate an approximate random lattice point in a d−dimensional
ball Bd(r

′, p, d) of radius r′ with arbitrary center p.
Before present the algorithms, we give some definition and lemmas that is used to analysis

algorithm RecursiveBigBallRandomLatticePoint(.).

Definition 36. For an arbitrary β ∈ (0, 1), let Bd(r, q, k) be k−dimensional ball of radius r with
arbitrary center q. Define P (r, q, k) as

P (r, q, k) =

{

C(r, q, k) r ≤ 2d
3
2

β

Vk(r) otherwise,

where C(r, q, k) is the number of lattice point of k−dimensional ball Bd(r, q, k) and Vk(r) is the
volume of ball Bd(r, q, k).

Lemma 37 shows that we can use P (r, q, k) to approximate C(r, q, k) for k−dimensional ball
Bd(r, q, k) no matter how much the radius r it is.

29

Lemma 37. For an arbitrary β ∈ (0, 1). Let Bd(r, q, k) be k−dimensional ball of radius r with
arbitrary center q, then (1− β)C(r, q, k) ≤ P (r, q, k) ≤ (1 + β)C(r, q, k).

Proof: Two cases are considered.

Case 1: If r ≤ 2d
3
2

β , we have P (r, q, k) = C(r, q, k) via Definition 36.

Case 2: If r > 2d
3
2

β , we have:

(1− β) · C(r, q, k) ≤ Vk(r) ≤ (1 + β) · C(r, q, k)

via Theorem 32, where Vk(r) be the volume of k−dimensional ball Bd(r, q, k) with radius r.
Therefore, we have

(1− β) · C(r, q, k) ≤ P (r, q, k) ≤ (1 + β) · C(r, q, k),

because P (r, q, k) = Vk(r) via Definition 36.
By combining the above two cases, we conclude that:

(1− β)C(r, q, k) ≤ P (r, q, k) ≤ (1 + β)C(r, q, k).

Lemma 38 shows that for two k−dimensional balls, if their radius are almost equal, then the
number of their lattice points also are almost equal.

Lemma 38. For an arbitrary β ∈ (0, 1) and a real number δ, let Bd(r
′, q, k) be a k−dimensional ball

of radius r′ with lattice center at q and Bd(r
′′, q, k) be a k−dimensional ball of radius r′′ > 2d

3
2

β with

lattice center at q, where q = (y1, y2, ..., yd) with yt ∈ Z and t = 1, 2, ..., d, if r′′ ≤ r′ ≤ (1 + δ) r′′,

then C(r′′, q, k) ≤ C(r′, q, k) ≤ 1+β
1−β (1 + δ)

k
C(r′′, q, k).

Proof: Let Vd(r) be the volume of d−dimensional ball of radius r. Since the volume formula for
a d− dimensional ball of raduis r is

Vd(r) = f(d) · rd

where f(d) = π
d
2 Γ
(

1
2d+ 1

)−1
and Γ(.) is Euler’s gamma function. Then, we have the following as:

Vk(r
′′) ≤ Vk(r

′) ≤ Vk(r
′′) · (1 + δ)

k
.

Since r′′ > 2d
3
2

β , r′ ≥ r′′ > 2 d
3
2

β , then we have

{ 1
1+βVk(r

′) ≤ C(r′, q, k) ≤ 1
1−βVk(r

′)
1

1+βVk(r
′′) ≤ C(r′′, q, k) ≤ 1

1−βVk(r
′′)

(48)

via Theorem 32,
Plugging inequality (48) to above inequality, then we have

C(r′, q, k) ≤ 1

1− β
Vk(r

′)

≤ 1

1− β
Vk(r

′′) · (1 + δ)k

=
(1 + β)

(1− β)

1

(1 + β)
Vk(r

′′) · (1 + δ)
k

≤ (1 + β)

(1− β)
· (1 + δ)k C(r′′, q, k)

30

and we also have
C(r′, q, k) ≥ C(r′′, q, k).

Therefore,

C(r′′, q, k) ≤ C(r′, q, k) ≤ 1 + β

1− β
(1 + δ)

k
C(r′′, q, k).

Definition 39. For an integer interval [a, b], c ∈ Z, r > 0, and δ ∈ (0, 1), an (r, c, 1 + δ)-partition
for [a, b] is to divide [a, b] into [a1, b1], [a2, b2], · · · , [aw, bw] that satisfies the following conditions:

i. a1 = a, ai+1 = bi + 1 for i = 1, · · · , w − 1.

ii. For any x, y ∈ {ai, bi}, r2 − (x− c)2 ≤ (1+ δ)2(r2 − (y− c)2) and r2 − (y− c)2 ≤ (1 + δ)2(r2 −
(x− c)2).

iii. For any x ∈ {ai, bi} and y ∈ {ai+1, bi+1}, r2 − (x − c)2 > (1 + δ)2(r2 − y2) or r2 − (y − c)2 >
(1 + δ)2(r2 − x2).

The purpose of the algorithm RecursiveBigBallRandomLatticePoint(.) is to recursivly generate
a random lattice point inside the d−dimensional ball Bd(r, p, d) of radius r with lattice point center
p.

Algorithm 5 RecursiveBigBallRandomLatticePoint(r, p, t, d)

Input : p = (z1, z2, ..., zd−t, yd−t+1, ..., yd) where zi ∈ Z with 1 ≤ i ≤ d − t, and yi ∈ Z with
d − t + 1 ≤ i ≤ d, α ∈ (0, 1) is a parameter to control the bias, r is radius, and t is dimensional
number.
Output : Z = {z1, ..., zd}.
1: If t = 0
2: Return (z1, z2, ..., zd)

3: Let I1 = [a1, b1], · · · , Iw = [aw, bw] be the union of intervals via
(

r, yd−t+1, 1 +
ǫ4

g(d)

)

-

partitions for [⌈yd−t+1 − r⌉, yd−t+1] ∩ Z and [yd−t+1 + 1, ⌊yd−t+1 + r⌋] ∩ Z, where ǫ4 ∈ (0, 1)
and g(d) is a function of d

4: Let M =
w
∑

i=1

(bi − ai + 1)P (ri, pi, t − 1), where pi = (z1, z2, ..., zd−t, bi, yd−t+2, ..., yd), and

r2i = r2 − (bi − yd−t+1)
2

5: Return RecursiveBigBallRandomLatticePoint(r′i, p
′
i, t − 1, d) with probability P (ri,pi,t−1)

M ,
where zd−t+1 = bi, pi = (z1, z2, ..., zd−t, zd−t+1, yd−t+2, ..., yd), and r2i = r2 − (zd−t+1− yd−t+1)

2,
p′i = (z1, z2, ..., zd−t, z

′
d−t+1, yd−t+2, ..., yd), and r′2i = r2 − (z′d−t+1 − yd−t+1)

2 and a random
integer z′d−t+1 ∈ [ai, bi]

We note that the implementation of
(

r, yd−t+1, 1 +
ǫ4

g(d)

)

-partitions in line 3 is as the following

pictures:

31

Figure 3: Example of
(

r, yd−t+1, 1 +
ǫ4

g(d)

)

-Partitions in 2D

Figure 4: Example of
(

r, yd−t+1, 1 +
ǫ4

g(d)

)

-Partitions in 3D

We have the following algorithm that can generate an approximate random lattice point in a
large ball with an arbitrary center, which may not be a lattice point.

Definition 40. Let integer d > 0 be a dimensional number, Rd be the d−dimensional Euclidean
Space.

i. A point q = (x′
1, x

′
2, ..., x

′
d) ∈ R

d is the nearest lattice point of p = (x1, ..., xd) ∈ R
d if it satisfies

32

x′
i =

{

⌊xi⌋ xi − [xi] ≤ 1
2

⌈xi⌉ xi − [xi] >
1
2 ,

for xi ≥ 0 or x′
i =

{

⌈xi⌉ |xi| − [|xi|] ≤ 1
2

⌊xi⌋ |xi| − [|xi|] < 1
2 ,

for xi < 0,

where i = 1, 2, ..., d.

Algorithm 6 BigBallRandomLatticePoint(r, p, d)

Input : p = (x1, · · · , ..., xd) where xi ∈ R with 1 ≤ i ≤ d, α ∈ (0, 1) is a parameter to control the
bias, r is radius, and k is dimensional number.
Output : Generate a random lattice point inside d−dimensional ball.

1: Let q be the nearest lattice point of p in R
d

2: Repeat
3: Let s =RecursiveBigBallRandomLatticePoint(r+

√
d, q, d)

4: Until s ∈ Bd(r, p, d)
5: Return s

Theorem 41. For an arbitrary α ∈ (0, 1), there is an algorithm with runing time O
(

d3 log r
α

)

and

(1 + α)−bias for a d−dimensional ball Bd(r, q, d) to generate a random lattice point with radius

r > 2d3

α that centered at q = (y1, y2, ..., yd) with yt ∈ Z, t = 1, 2, ..., d.

Proof: In line 5 of algorithm RecursiveBigBallRandomLatticePoint(.), define

r′2i =

{

r2 − (yd−t+1 − ai)
2 if ai ≤ yd−t+1

r2 − (yd−t+1 − bi)
2 otherwise,

,

p′i =

{

(z1, z2, ..., zd−t, ai, yd−t+2, ..., yd) if ai ≤ yd−t+1

(z1, z2, ..., zd−t, bi, yd−t+2, ..., yd) otherwise,
and

r2i =

{

r2 − (yd−t+1 − bi)
2 if bi ≤ yd−t+1

r2 − (yd−t+1 − ai)
2 otherwise,

pi =

{

(z1, z2, ..., zd−t, bi, yd−t+2, ..., yd) if bi ≤ yd−t+1

(z1, z2, ..., zd−t, ai, yd−t+2, ..., yd) otherwise.
Let v(i) = (bi − ai + 1), and r′i =

ri
1+

ǫ4
g(d)

, then we have

∑

i

C(r′i, p
′
i, t− 1)v(i) ≤ C(ri, pi, t) ≤

∑

i

C(ri, pi, t− 1)v(i).

Since r′i =
ri

1+
ǫ4

g(d)

, then

1− β

1 + β

(

1 +
ǫ4
g(d)

)−(t−1)
∑

i

C(ri, pi, t− 1)v(i) ≤ C(ri, pi, t)

and
C(ri, pi, t) ≤

∑

i

C(ri, pi, t− 1)v(i)

via Lemma 38, where δ = 1 + ǫ4
g(d) .

Via Lemma 37 we have

(

1− β

1 + β

)2 (

1 +
ǫ4
g(d)

)−(t−1)
∑

i

P (ri, pi, t− 1)v(i) ≤ P (ri, pi, t)

and

P (ri, pi, t) ≤
1 + β

1− β

∑

i

P (ri, pi, t− 1)v(i).

33

Thus, we have

(

1− β

1 + β

)2(

1 +
ǫ4
g(d)

)−(t−1)

≤ P (ri, pi, t)
∑

i

P (ri, pi, t− 1)v(i)
≤ 1 + β

1− β
.

From above inequality, we have

(

1− β

1 + β

)2(

1 +
ǫ4
g(d)

)−(t−1)
1

P (ri, pi, t)
≤ 1
∑

i

P (ri, pi, t− 1)v(i)
≤ 1 + β

1− β

1

P (ri, pi, t)
.

Via Lemma 37 we have

(1− β)2

(1 + β)3

(

1 +
ǫ4
g(d)

)−(t−1)
1

C(ri, pi, t)
≤ 1
∑

i

P (ri, pi, t− 1)v(i)
≤ 1 + β

(1− β)2
1

C(ri, pi, t)
.

Let g(d) = d2, ǫ4 = α
4 and β = α

α+16d+16 . Since Algorithm RecursiveBigBallRandomLattice-
Point(.) has d iteration, we can generate a random lattice point with bias of probability as:

P (ri, pi, d− 1)
∑

i

P (ri, pi, d− 2)v(i)
· P (ri, pi, d− 2)
∑

i

P (ri, pi, d− 1)v(i)
· · · P (ri, pi, 0)
∑

i

P (ri, pi, 0)v(i)

≤ 1 + β

(1− β)2
1

C(r, p, d)
·
(

1 + β

1− β

)d−1

· P (ri, pi, 0)

≤ 1

1− β

1

C(r, p, d)
·
(

1 + β

1− β

)d

· (1 + β)C(ri, pi, 0)

=

(

1 + β

1− β

)d+1
1

C(r, p, d)

=

(

1 +
2β

1− β

)d+1
1

C(r, p, d)

≤ e
2β

1−β
(d+1) 1

C(r, p, d)

≤
(

1 +
4β

1− β
(d+ 1)

)

1

C(r, p, d)

≤ (1 + α)
1

C(r, p, d)

34

and

P (ri, pi, d− 1)
∑

i

P (ri, pi, d− 2)v(i)
· P (ri, pi, d− 2)
∑

i

P (ri, pi, d− 1)v(i)
· · · P (ri, pi, 0)
∑

i

P (ri, pi, 0)v(i)

≥ (1− β)2

(1 + β)3

(

1 +
ǫ4
g(d)

)−(d−1)
1

C(r, p, d)

(

1− β

1 + β

)2(d−1)(

1 +
ǫ4
g(d)

)

−(d−1)(d−2)
2

(1− β)C(ri, pi, 0)

=

(

1− β

1 + β

)2d+1(

1 +
ǫ4
g(d)

)

−(d−1)d
2 1

C(r, p, d)

≥
(

1− 2β

1 + β

)2d+1(

1 +
ǫ4
g(d)

)
−d2

2 1

C(r, p, d)

≥
(

1− 2β

1 + β

)2d (

1 +
ǫ4
g(d)

)−d2

1

C(r, p, d)

≥
(

1− 4βd

1 + β

)(

1− ǫ4d
2

g(d)

)

1

C(r, p, d)

≥
(

1− 4βd

1 + β

)

(1− ǫ4)
1

C(r, p, d)

≥
(

1− 4βd

1 + β
− ǫ4

)

1

C(r, p, d)

≥
(

1− 4βd

1 + β

)

(1− ǫ4)
1

C(r, p, d)

≥ (1− α)
1

C(r, p, d)
.

Therefore, we can generate a random lattice point with probability between
[

(1− α)
1

C(r, p, d)
, (1 + α)

1

C(r, p, d)

]

.

In line 3 of algorithm RecursiveBigBallRandomLatticePoint(.), it forms a
(

r, yd−t+1, 1 +
ǫ4

g(d)

)

-

partition I1, · · · , Iw for [⌈yd−t+1 − r⌉, ⌊yd−t+1 + r⌋] ∩ Z and [yd−t+1 + 1, ⌊yd−t+1 + r⌋] ∩ Z. Then,

there are at most w number of ai, where w such that r

(1+ ǫ4
g(d))

w ≤ 1. Solving w, we have w ≥ g(d) log r
ǫ4

.

And there are d iterations in algorithm RecursiveBigBallRandomLatticePoint(.).

Thus, the running time of the algorithm is O
(

g(d) log r
ǫ4

· d
)

= O(d
3 log r
ǫ4

) = O
(

d3 log r
α

)

.

Remark : We note that there are at most one (t− 1)−dimensional ball of radius r < 2d3

α with
center at a lattice point, where t = 1, 2, ..., d. For this case, we can apply Theorem 35 with β = 0.

Theorem 42. For arbitrary α ∈ (0, 1), and α′ ∈ (0, 1), there is an (1 + α′)−bias algorithm with

runing time O
(

d3 log(r+
√
d)

α

)

for a d−dimensional ball Bd(r, q, d) to generate a random lattice point

of radius r > 2d
3
2

α with an arbitrary center.

Proof: Consider another ball Bd(r
′, q, d) of radius r′ with lattice center q = (y1, y2, ..., yd) that

contains ball Bd(r, p, d) , where r′ = r +
√
d. Let Vd(r) be the volume of a d−dimensional ball

with radius r, then probability that a lattice point in Bd(r
′, q, d) belongs to Bd(r, p, d) is at least

(1− α) C(r,p,d)
C(r′,p,d) .

Via Theorem 32, we have
{

1
1+βVd(r) ≤ C(r, p, d) ≤ 1

1−βVd(r)
1

1+βVd(r +
√
d) ≤ C(r′, q, d) ≤ 1

1−βVd(r +
√
d),

35

then we have
1− β

1 + β

Vd(r)

Vd(r +
√
d)

≤ C(r, p, d)

C(r′, p, d)
≤ 1 + β

1− β

Vd(r)

Vd(r +
√
d)

.

The formula for a d− dimensional ball of raduis r is

Vd(r) = f(d) · rd

where f(d) = π
d
2 Γ
(

1
2d+ 1

)−1
and Γ(.) is Euler’s gamma function. Let β = α

8+α and α > 2d
3
2

r+
√
d
,

(1− α)
C(r, p, d)

C(r′, p, d)
≥ (1− α)

1 − β

1 + β

f(d) · rd

f(d) ·
(

r +
√
d
)d

= (1− α)
1 − β

1 + β

(

1−
√
d

r +
√
d

)d

≥ (1− α)
1 − β

1 + β

(

1− d
3
2

r +
√
d

)

≥ (1− α)

(

1− 2β

1− β

)

(

1− d
3
2

r +
√
d

)

≥
(

1− α− 2β

1− β
− d

3
2

r +
√
d

)

.

Therefore, the probability a lattice point in Bd(r
′, q, d) belongs to Bd(r, p, d) fails is at most

(

α+ 2β
1−β + d

3
2

r+
√
d

)

, where

(

α+ 2β
1−β + d

3
2

r+
√
d

)

< 1, which means the algorithm BigBallRandom-

LatticePoint(.) fails with small possibility.
The probability to generate a random lattic point in ball Bd(r

′, q, d) is in range of

[

(1− α)
1

C(r′, q, d)
, (1 + α)

1

C(r′, q, d)

]

via Theorem 41. Then the bias to generate a random lattic point in ball Bd(r, p, d) is Pr(pi)∑
i Pr(pi)

,

where Pr(pi) ∈
[

(1− α) 1
C(r′,q,d) , (1 + α) 1

C(r′,q,d)

]

.

Then, we have

Pr(pi)
∑

i

Pr(pi)
≤

(1 + α) 1
C(r′,q,d)

(1− α) 1
C(r′,q,d)C(r, p, d)

=
1 + α

1− α

1

C(r, p, d)

=

(

1 +
2α

1− α

)

1

C(r, p, d)
,

36

and

Pr(pi)
∑

i

Pr(pi)
≥

(1− α) 1
C(r′,q,d)

(1 + α) 1
C(r′,q,d)C(r, p, d)

=
1− α

1 + α

1

C(r, p, d)

=

(

1− 2α

1 + α

)

1

C(r, p, d)

≥
(

1− 2α

1− α

)

1

C(r, p, d)
.

Therefore, the probability to generate a random lattice point in Bd(r, p, d) is range of

[

(1− α′)
1

C(r, p, d)
, (1 + α′)

1

C(r, p, d)

]

where α′ = 2α
1−α .

It takes O
(

d3 log(r+
√
d)

α

)

running time to generate a random lattice point inside a d−dimensional

ball Bd(r +
√
d, p, d) with a lattice point center via Theorem 41. Thus, the algorithm BigBallRan-

domLatticePoint(.) takes O
(

d3 log(r+
√
d)

α

)

running time to generate a random lattice.

Theorem 43. For an arbitrary α ∈ (0, 1), there is an algorithm with runing time O
(

d3 log(r+
√
d)

α

)

and (1+α)−bias for a d−dimensional ball Bd(r, q, d) to generate a random lattice pointo f radius r >

2d
3
2

α with a arbitrary center; and there is a O

(

1
β d

11
2 l3

(

2d
3
2

β + l|λ|
)3
)

time algorithm to generate

a lattice point inside a d−dimensional ball Bd(r, p, d) of radius r ≤ 2d
3
2

α with center p ∈ D(λ, d, l).

Proof: We discuss two cases based the radius of the d-dimensional ball.

Case 1: When generate a random lattice point inside a d-dimensional ball of radius r > 2d
3
2

α with
center arbitrary center p, apply Theorem 42.

Case 2: When generate a random lattice point inside a d-dimensional ball of radius r ≤ 2d
3
2

α with

center p ∈ D(λ, d, l), apply Theorem 35.

5.3. Count Lattice Point in the Union of High Dimensional Balls

In this section, we apply the algorithm developed in Section 4 to count the total number of lattice
point in the union of high dimensional balls.

Theorem 44. There is a O
(

poly
(

1
ǫ , log

1
γ

)

·m · (logm)O(1)
)

time and O(logm) rounds algorithm

for the number of lattice points in B1∪B2∪· · ·∪Bm such that with probability at least 1−γ, it gives
a sum ·M ∈ [(1 − ǫ)(1− αL)(1− βL)· |B1∪· · ·∪Bm|, (1 + ǫ)(1 + αR)(1 + βR)· |B1∪· · ·∪Bm|], where
each ball Bi satisfy that either its radius r > 2d

3
2

β or its center p ∈ D(λ, d, l) and |B1 ∪ · · · ∪Bm| is
the total number of lattice point of union of m high dimensional balls.

Proof: Apply Theorem 33 and Theorem 43, we have mi for each ball Bi with

mi ∈ ((1− βL)Ci(ri, pi, t), (1 + βR)Ci(ri, pi, t)) ,

37

and biased random generators with

Prob(x = RandomElement(Bi)) ∈
[

1− αL

Ci(ri, pi, t)
,

1 + αR

Ci(ri, pi, t)

]

for each input ball Bi, where Ci(ri, pi, t) is the number of lattice point of t−dimensional ball Bi of
radius ri for i = 1, 2, ...,m. Then apply Theorem 17.

5.4. Hardness to Count Lattice Points in a Set of Balls

In this section, we show that it is #P-hard to count the number of lattice points in a set of balls.

Theorem 45. It is #P-hard to count the number of lattice points in a set of d-dimensional balls

even the centers are of the format (x1, · · · , xd) ∈ R
d that has each xi to be either 1 or

√
h
2 for some

integer h ≤ d.

Proof: We derive a polynomial time reduction from DNF problem to it. For each set of lattice

points in a h-dimensional cube {0, 1}h, we design a ball with radius r =
√
h
2 and center at C =

(
√
h
2 , · · · ,

√
h
2). It is easy to see that this ball only covers the lattice points in {0, 1}h. Every 0, 1-

lattice point in 0, 1 has distance to the center C equal to r. For every lattice point P ∈ Rh that is
not in {0, 1}h has distance d with d2 ≥ r2 + (1 + 1

2)
2 − (12)

2 = r2 + 2.

Definition 46. For a center c = (c1, · · · , cd) and an even number k > 0 and a real r > 0, a

d-dimensional k-degree ball Bk(c, r) is {(x1, · · · , xd) : (x1, · · · , xd) ∈ R
d and

d
∑

i=1

(xi − ci)
k ≤ r}.

Theorem 47. Let k be an even number at least 2. Then we have:

i. There is no polynomial time algorithm to approximate the number of lattice points in the
intersection n-dimensional k-degree balls unless P=NP.

ii. It is #P-hard to count the number of lattice points in the intersection n-dimensional k-degree
balls.

Proof: We derive a polynomial time reduction from 3SAT problem to it. For each clause C =
(x∗

i ∨ x∗
j ∨ x∗

k), we can get a ball to contain all lattice points in the 0-1-cube to satisfy C, each x∗
i is

a literal to be either xi or its negation x̄i.
Without loss of generality, let C = (x1 ∨ x2 ∨ x3). Let δ = 0.30. Let center DC =

(d1, d2, d3, d4, d5, · · · , dn) = (1 − δ, 1 − δ, 1− δ, 12 ,
1
2 , · · · , 1

2), which has value 1 − δ in the first three
positions, and 1

2 in the rest. For 0, 1 assignment (a1, a2, · · · , an) of n variables, if it satisfies C if

and only if
n
∑

i=1

(ai − di)
k ≤ 2(1 − δ)k + δk + (n− 3) · (12)k. Therefore, we can select radius rC that

satisfies rkC = 2(1− δ)k + δk + (n− 3) · (12)k. We have the following inequalities:

{

(2− δ)2 > (1 + δ)k > 2(1− δ)k + δk

(1 + 1
2)

k > 2(1− δ)k + δk + (12)
k.

(49)

This is because we have the following equalities:














(1 + δ)2 = 1.69,
2(1− δ)2 + δ2 = 2× 0.49 + 0.09 = 1.07,
2(1− δ)2 + δ2 + (12)

2 = 1.07 + 0.25 = 1.32,
(1 + 1

2)
2 = 2.25.

(50)

If Y = (y1, y2, · · · , yn) is not a 0, 1-lattice point, we discuss two cases:

38

i. Case 1. yi 6∈ {0, 1} for some i with 1 ≤ i ≤ 3.

In this case we know that dist(Y,DC)
2 > r2C by inequality (50).

ii. Case 2. yi 6∈ {0, 1} for some i with 3 < i ≤ n.

In this case we know that dist(Y,DC)
2 > r2C by inequality (50).

If Y = (y1, y2, · · · , yn) is a 0, 1-lattice point, we discuss two cases:

i. Case 1. Y satisfies C.

In this case we know that dist(Y,DC)
2 ≤ r2C .

ii. Case 2. Y does not satisfy C.

In this case we know that dist(Y,DC)
2 > r2C by inequality (1 − δ)2 > δ2.

The ball BC with center at DC and radius rC contains exactly those 0,1-lattice points that satisfy
clause C. This proves the first part of the theorem.

If there were any factor c-approximation to the intersection of balls, it would be able to test if
the intersection is empty. This would bring a polynomial time solution to 3SAT.

It is well known that #3SAT is #P-hard. Therefore, It is #P-hard to count the number of lattice
points in the intersection n-dimensional balls. This proves the second part of the theorem.

6. Approximation for the Maximal Coverage with Balls

We apply the technology developed in this paper to the maximal coverage problem when each set is
a set of lattice points in a ball with center in D(λ, d, l).

The classical maximum coverage is that given a list of sets A1, · · · , Am and an integer k, find k
sets from A1, A2, · · · , Am to maximize the size of the union of the selected sets in the computational
model defined in Definition 2. For real number a ∈ [0, 1], an approximation algorithm is a (1 − a)-
approximation for the maximum coverage problem that has input of integer parameter k and a list
of sets A1, · · · , Am if it outputs a sublist of sets Ai1 , Ai2 , · · · , Aik such that |Ai1 ∪Ai2 ∪ · · · ∪Aik | ≥
(1− a)|Aj1 ∪ Aj2 ∪ · · · ∪ Ajk |, where Aj1 , Aj2 , · · · , Ajk is a solution with maximum size of union.

Theorem 48. [17] Let ρ be a constant in (0, 1). For parameters ξ, γ ∈ (0, 1) and αL, αR, δL, δR ∈
[0, 1− ρ], there is an algorithm to give a

(

1− (1 − β
k)

k − ξ
)

-approximation for the maximum cover

problem, such that given a ((αl, αr), (δL, δR))-list L of finite sets A1, · · · , Am and an integer k, with
probability at least 1− γ, it returns an integer z and a subset H ⊆ {1, 2, · · · ,m} that satisfy

i. | ∪j∈H Aj | ≥
(

1− (1− β
k)

k − ξ
)

C∗(L, k) and |H | = k,

ii. ((1− αL)(1− δL)− ξ)| ∪j∈H Aj | ≤ z ≤ ((1 + αR)(1 + δR) + ξ)| ∪j∈H Aj |, and

iii. Its complexity is (T (ξ, γ, k,m), R(ξ, γ, k,m), Q(ξ, γ, k,m)) with

T (ξ, γ, k,m) = O

(

k3

ξ2

(

k log

(

3m

k

)

+ log
1

γ

)

m

)

,

where β = (1−αL)(1−δL)
(1+αR)(1+δR) and C∗(L, k) is the number of elements to be covered in an optimal

solution.

We need Lemma 49 to transform the approximation ratio given by Theorem 48 to constant (1− 1
e)

to match the classical ratio for the maximum coverage problem.

39

Lemma 49. For each integer k ≥ 2, and real b ∈ [0, 1], we have:

i. (1− b
k)

k ≤ 1
e − η

e (b+
b
2k − 1).

ii. If ξ ≤ η
e (b+

b
2k − 1), then 1− (1− b

k)
k − ξ > 1− 1

e , where η = e−
1
4 .

Proof: Let function f(x) = 1 − ηx − e−x. We have f(0) = 0. Taking differentiation, we get
df(x)
dx = −η + e−x > 0 for all x ∈ (0, 14).
Therefore, for all x ∈ (0, 1

4),

e−x ≤ 1− ηx. (51)

The following Taylor expansion can be found in standard calculus textbooks. For all x ∈ (0, 1),

ln(1− x) = −x− x2

2
− x3

3
− · · · .

Therefore, we have

(1− b

k
)k = ek ln(1− b

k
) = ek(−

b
k
− b2

2k2 − b3

3k3 −···) = e−b− b2

2k− b3

3k2 −···

≤ e−b− b
2k = e−1 · e1−b− b

2k (52)

≤ e−1 · (1 − η · (b+ b

2k
− 1)) ≤ 1

e
− η

e
(b+

b

2k
− 1). (53)

Note that the transition from (52) to (53) is based on inequality (51).
The part ii follows from part i. This is because 1−(1− b

k)
k−ξ ≥ 1− 1

e +
η
e (b+

b
2k −1)−ξ ≥ 1− 1

e .

Theorem 50. There is a poly(λ, d, l, k,m) time (1 − 1
e)-approximation algorithm for maximal cov-

erage problem when each set is the set of lattice points in a ball with center in D(λ, d, l).

Proof: [Sketch] Let α = αL = αR = δL = δR = 1
ck with c = 100, and b = β = 1−αL)(1−δL)

(1+αR)(1+δR) . It is

easy to see (b+ b
2k −1) ≥ 1

4k . Let ξ = η
e (b+

b
2k −1) = Θ(1k). It follows from Theorem 48, Lemma 49,

Theorem 33 and Theorem 43.

7. Conclusions

We introduce an almost linear bounded rounds randomized approximation algorithm for the size
of set union problem |A1 ∪ A2 ∪ ... ∪ Am|, which given a list of sets A1, ..., Am with approximate
set size and biased random generators. The definition of round is introduced. We prove that our
algorithm runs sublinear in time under certain condition. A polynomial time approximation scheme
is proposed to approximae the number of lattice points in the union of d-dimensional ball if each ball
center satisfy D(λ, d, l). We prove that it is #P-hard to count the number of lattice points in a set
of balls, and we also show that there is no polynomial time algorithm to approximate the number
of lattice points in the intersection of n-dimenisonal k-degree balls unless P=NP.

8. Acknowledgements

We want to thank Peter Shor, Emil Jeřábek, Rahul Savani et al. for their comments about algorithm
to geneate a random grid point inside a d−dimensional ball on Theoretical Computer Science Stack
Exchange.

40

References

[1] S. D. Adhikari and Y. F. S. Pétermann. Lattice points in ellipsoids. Acta Arith., 59(4):329–338,
1991.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 20–29, 1996.

[3] G. E. Andrews, S. B. Ekhad, and D. Zeilberger. A short proof of jacobi’s formula for the number
of representations of an integer as a sum of four squares. The American Mathematical Monthly,
Vol. 100, No. 3:274–276, 1993.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In Randomization and Approximation Techniques, 6th International
Workshop, RANDOM 2002, Cambridge, MA, USA, September 13-15, 2002, Proceedings, pages
1–10, 2002.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an
application to counting triangles in graphs. In Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA., pages
623–632, 2002.

[6] J. Beck. On a lattice point problem of l. moser I. Combinatorica, 8(1):21–47, 1988.

[7] J. Blasiok. Optimal streaming and tracking distinct elements with high probability. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, pages 2432–2448, 2018.

[8] K. Bringmann and T. Friedrich. Approximating the volume of unions and intersections of
high-dimensional geometric objects. Comput. Geom., 43(6-7):601–610, 2010.

[9] S. R. Buss and L. Hay. On truth-table reducibility to SAT and the difference hierarchy over
NP. In Proceedings: Third Annual Structure in Complexity Theory Conference, Georgetown
University, Washington, D. C., USA, June 14-17, 1988, pages 224–233, 1988.

[10] K. Chandrasekharan and R. Narasimhan. On lattice-points in a random sphere. Bull. Amer.
Math. Soc., 73(1):68–71, 1967.

[11] J.-R. Chen. Improvement on the asymptotic formulas for the number of lattice points in a
region of the three dimensions (ii). Scientia Sinica, 12(5).

[12] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages
151–158, 1971.

[13] K. Corráadi and I. Kátai. A comment on k. s. gangadharan’s paper entitled ”two classical
lattice point problems”. Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl, 17.

[14] P. Flajolet, É. Fusy, O. Gandoue, and F. Meunier. Hyperloglog: the analysis of a near-optimal
cardinality estimation algorithm. In 2007 Conference on Analysis of Algorithms, AofA 07, pages
127–146, 2007.

[15] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. J.
Comput. Syst. Sci., 31(2):182–209, 1985.

[16] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. In Proceedings of the
Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA, June 30 -
July 3, 1991, pages 13–15, 1991.

41

[17] B. Fu. Partial sublinear time approximation and inapproximation for maximum coverage.
arXiv:1604.01421, April 5, 2016.

[18] S. Ganguly, M. N. Garofalakis, and R. Rastogi. Tracking set-expression cardinalities over
continuous update streams. VLDB J., 13(4):354–369, 2004.

[19] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries and
event reports. In VLDB 2001, Proceedings of 27th International Conference on Very Large
Data Bases, September 11-14, 2001, Roma, Italy, pages 541–550, 2001.

[20] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams.
In SPAA, pages 281–291, 2001.

[21] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of the number
of distinct values of an attribute. In VLDB’95, Proceedings of 21th International Conference
on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland., pages 311–322, 1995.

[22] J. L. Hafner. New omega theorems for two classical lattice point problems. Inventiones Math-
ematicae, 63(2):181–186, 1981.

[23] D. R. Heath-Brown. Lattice points in sphere. Numb. Theory Prog., 2:883–892, 1999.

[24] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

[25] Z. Huang, W. M. Tai, and K. Yi. Tracking the frequency moments at all times. CoRR,
abs/1412.1763, 2014.

[26] M. N. Huxley. Exponential sums and lattice points ii. Proc. London Math. Soc., 66(2):279–301,
1993.

[27] C. Jacobi. Gesammelte Werke, Berlin 1881-1891. Reprinted by Chelsea, New York, 1969.

[28] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct elements
problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA,
pages 41–52, 2010.

[29] R. M. Karp, M. Luby, and N. Madras. Monte-carlo approximation algorithms for enumeration
problems. J. Algorithms, 10(3):429–448, 1989.

[30] J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatsh. Math.,
110(1):47–61, 1990.

[31] A. Meyer. On the number of lattice points in a small sphere and a recursive lattice decoding
algorithm. Des. Codes Cryptography, 66(1-3):375–390, 2013.

[32] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 2000.

[33] G. Szegö. Beiträge zur theorie der laguerreschen polynome ii: Zahlentheoretische anwendungen.
Math. Z., 25(1).

[34] K.-M. Tsang. Counting lattice points in the sphere. Bulletin of the London Mathematical
Society, 32(6).

[35] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979.

42

http://arxiv.org/abs/1604.01421

[36] A. I. Vinogradov and M. M. Skriganov. The number of lattice points inside the sphere with
variable cente, analytic number theory and the theory of functions, 2. Zap. Nauen. Sem.
Leningrad Otdel. Mat. Inst. Steklov (LOMI), 91:25–30, 1979.

[37] I. M. Vinogradov. On the number of integer points in a sphere. Izu. Akad. Nauk SSSR Ser.
Mat., 27(5):957–968, 1963.

[38] A. Walfisz. Gitterpunkte in mehrdimensionalen Kugeln. Instytut Matematyczny Polskiej
Akademi Nauk(Warszawa), 1957.

[39] A. Walfisz. Weylsche exponentialsummen in der neueren zahlentheorie. VEB Deutscher Verlag
der Wissenschaften, 1963.

[40] A. A. Yudin. On the number of integer points in the displaced circles. Acta Arith, 14(2):141–152,
1968.

43

	Approximate Set Union via Approximate Randomization
	Recommended Citation

	1 Introduction
	2 Computational Model and Complexity
	2.1 Model of Randomization
	2.2 Round and Round Complexity

	3 Preliminaries
	4 Algorithm Based on Adaptive Random Samplings
	4.1 Overview of Algorithm
	4.2 Algorithm Description
	4.3 Proof of Algorithm Performance

	5 Approximate Random Sampling for Lattice Points in High Dimensional Ball
	5.1 Randomized Algorithm for Approximating Lattice Points for High Dimensional Ball
	5.1.1 Counting Lattice Points of High Dimensional Ball with Small Radius
	5.1.2 Approximating Lattice Points in High Dimensional Ball with Large Radius

	5.2 A Randomized Algorithm for Generating Random Lattice Point of High Dimensional Ball
	5.2.1 Generating a Random Lattice Point inside High Dimensional Ball with Small Radius
	5.2.2 Generating a Random Lattice Point of High Dimensional Ball with Large Radius

	5.3 Count Lattice Point in the Union of High Dimensional Balls
	5.4 Hardness to Count Lattice Points in a Set of Balls

	6 Approximation for the Maximal Coverage with Balls
	7 Conclusions
	8 Acknowledgements

