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Graphical abstract 

 

Highlights: 

 A triphasic La-Co-Mo sulfide HDS catalyst was successfully synthesized using 

solvothermal synthesis  

 LaCoMoS2 showed enhanced activity over CoMoS2 catalysts. 

 The LaCoMoS2 activity as improved with increasing La doping  

 LaCoMoS2 showed less carbon than CoMoS2 after once catalytic cycle. 

 The La doping of the CMoS2 catalyst led to improvement in the direct desulfurization 

pathway. 

Abstract:  

 

In the present study, catalytic systems based on La-doping were developed to improve the activity 

and performance of CoMoS2 hydrodesulfurization catalysts.  Lanthanum-doped at 5, 10, or 25% 

of the Co content in CoMoS2 hydrodesulfurization catalysts were synthesized through a 

solvothermal process.  X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) 
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analyses confirmed the catalysts were triphasic consisting of Co9S8, MoS2, and La2S3. The La 

doped catalysts showed enhanced catalytic activity compared with CoMoS2 synthesized under the 

same conditions. The CoMoS2 prepared under solvothermal synthesis conditions showed a 

catalytic activity of 6.80 mol g-1 s-1, however, the La0.05Co0.95MoS2 doping showed a catalytic 

activity of 6.51 mol g -1 s-1 whereas the La0.1Co0.9MoS2 and La0.25Co0.75MoS2 samples showed 

catalytic activities of 10.7 mol g-1 s-1.  The reaction products indicated the major reaction pathway 

was direct desulfurization.  The La0.25Co0.75MoS2 catalyst after one reaction cycle showed a lower 

amount of carbon, than the undoped CoMoS2 catalyst.     

Keywords: La doping, hydrodesulfurization catalyst, CoMoS2, triphasic, dibenzothiophene 

Introduction:  

Hydrodesulfurization (HDS) catalysis has been widely studied for the removal of sulfur 

from oil during production. Regulations from the EPA in 1993 reduced the allowable sulfur 

amount in fuels from 5000 ppm to 500 ppm, and later to 15 ppm in 2006, with implementations 

expected for ultra-low sulfur fuels to be 10 ppm on an annual average following 2017 [1].  The 

continuously high demand for ultra-low sulfur fuels has increased the need for the petrochemical 

industry to use high efficiency HDS catalysts. Traditional synthesis methods for HDS catalysts are 

environmentally unfavorable due to the production processes, which require high temperatures and 

the use of hydrogen sulfide (H2S) gas. In addition, traditional HDS catalysts require high 

temperatures and pressures of hydrogen (H2) to function efficiently. However, the current HDS 

catalyst research has shifted towards new synthesis techniques and the development of efficient 

HDS catalysts with more favorable operating conditions and cost effectiveness.   

Currently, methods used for the synthesis of HDS catalysts consist of co-precipitation and 

incipient wet impregnation of silica or γ-alumina supports [2,3]. The synthesis of catalysts with 
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supports generally yield metal oxide precursors, which require thermal conversion under mixtures 

of H2 and H2S, yielding the active metal sulfide catalysts.  To reduce the use of H2 and H2S during 

the catalyst synthesis, and to increase catalytic activities, the research focus has shifted towards 

unsupported catalysts with synthesis routes involving the use of alternative sulfide sources such as 

organic sulfide compounds, ammonium sulfide, and elemental sulfur [4,5,6]. New synthesis 

techniques have also included new methods for unsupported catalysts such as thermal 

decomposition of thiol salts, in situ decomposition of catalyst precursors in the reaction mixture 

and hydrothermal/solvothermal synthesis [7,8,9]. Recent research efforts on unsupported HDS 

catalysts have focused on the synthesis of MoS2 and WS2-based materials promoted with 

transitional metals such as cobalt (Co) or nickel (Ni). Alloying cobalt or nickel with these metal 

sulfides leads to a biphasic catalyst composed of Co9S8 or Ni3S4 and MoS2 or WS2 [9]. Novel 

synthesis methods of HDS catalysts are being investigated to eliminate the need for H2S in the 

synthesis and reduce reaction temperatures. Sollner et al. used elemental sulfur for the synthesis 

of Co promoted MoS2 [5] while Alonso et al. studied the synthesis of MoS2 and WS2 using 

alkyltrimethylammonium-thiomolybdate-thiotungstate-cobaltate (II) as the sulfur precursor [6].  

Both elemental sulfur and alkyltrimethylammonium-thiomolybdate-thiotungstate-cobaltate (II) 

sulfur precursors have been shown to be successful sources for the synthesis of high efficiency 

HDS catalysts. The results showed that the catalytic activities were 32.7 x 10-6 mol l-1 s-1 g-1 and 

13.6 x 10-6 mol l-1 s-1 g-1 for those synthesized with elemental sulfur and 5.1 x 10-6 mol l-1 s-1 g-1 

and 4.6 x 10-6 mol l-1 s-1 g-1 for in situ decomposed catalysts synthesized with Ammonium 

tetrathiomolybdate (ATM) and ammonium thiotungstate  (ATT), respectively [5,6].               

 Although the current research shows that the catalysts are highly active, the disadvantage 

is the poisoning of HDS catalysts through multiple processes such as sintering, metal segregation, 
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and the carbon buildup on the surface of the catalysts during use, all resulting in a gradual decrease 

in catalyst functionality [10-19]. The development of carbon on the surface of the catalysts, also 

known as coking of the catalysts, results in poisoning, which in turn leads to a reduction in 

efficiency, lifetime, and catalyst cyclability, which is especially evident in heavy feeds [10-19]. 

The solvothermal and in situ decompositions of HDS catalysts result in carbon buildup on the 

surface of the catalysts due the solvothermal reaction used to convert the precursor to the active 

catalysts [20]. For both Co and Ni based catalysts, carbon deposition is known to be a deactivating 

agent which can reduce the catalysts’ efficiency and stability in different catalytic systems [21]. 

For example, research on Co and Ni based catalysts for Fischer-Tropsch synthesis and syngas 

production from biomass has been focused on minimizing catalytic poisoning. Numerous 

promoters have been studied for these catalysts including but not limited to, the use of lanthanum 

due to its ability to minimize carbon formation on the catalyst surface. Hemmati et al. analyzed 

the effects of lanthanum doping on γ-alumina supported Co and concluded that at optimal doping 

concentrations, the lanthanum enhanced the catalytic activity and prolonged catalyst lifetime [22].  

However, there was no observable effect of lanthanum on the Co dispersion on the surface of the 

catalyst, leaving catalytic active sites unaffected. Similar results have been observed for Ni/γ-

alumina and Ni/Al – following the addition of lanthanum, the catalytic efficiency and selectivity 

resulted in significant improvements in toluene reforming and syngas conversions [23-25]. 

Schacht et al. investigated the doping of TiO2 supports of CoMoS2 catalysts with La or Ce [26].  

The authors observed a small increase in the catalytic activity in the presence of La at 2%, which 

showed increased activity to 70% versus 50% conversion observed with Ce doping. Therefore, it 

is important to develop new catalytic systems based on La-doping with improved activity, cost and 

performance, which is the focus of the present work.  The main goal of the present work is to 
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develop new catalytic systems based on La-doping to improve the activity, cost and performance 

of CoMoS2 hydrodesulfurization catalysts. 

 

Unsupported Co promoted MoS2 HDS catalysts were synthesized and doped with different 

concentrations of lanthanum to investigate the effects of La on the HDS reaction of 

dibenzothiophene (DBT). The catalyst precursors were prepared using a reflux reaction containing 

cobalt chloride, ATM and different concentrations of lanthanum nitrate in aqueous solutions.  The 

precursors were converted into the CoMoS2 catalysts using a solvothermal route with 

decahydronapthalene (decalin) as the solvent under hydrogen at 350 °C. The solvothermal 

synthesis technique was used in the present study to add carbon content to the surface of the 

catalysts with the aim to determine the effects of carbon deposition and lanthanum doping on the 

catalyst performance and activity. The structure and morphology of the LaxCo1-xMoS2 catalysts 

were characterized (or investigated), prior and after one catalytic cycle, using XRD, SEM/EDS, 

and XPS.  The progress of HDS reaction was followed using GC-FID and GC-MS, to determine 

the reaction products, kinetics, and the catalytic activities of the La-doped CoMoS2 HDS catalysts.    

 

Experimental 

Preparation of ATM 

Ammonium tetrathiomolybdate was synthesized using a previously described method in 

that the ammonium sulfide was the sulfur source, [27]. A mass of 5.0 g of ammonium 

heptamolybdate was dissolved in 50 mL of 28% NH4OH solution containing 60 mL of (NH4)2S.  

The solution was heated to 70°C under constant stirring and held at that temperature for 1 hr.  The 
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product was cooled in an ice bath, filtered using vacuum filtration, and washed using isopropyl 

alcohol.   

Preparation of HDS precursors 

The catalyst precursors were prepared by dissolving 2.0 g of ATM and an equimolar 

amount of cobalt (II) chloride in 100 mL of deionized (DI) water (18MΩ resistance). The 

lanthanum doping of the samples was conducted by the addition of lanthanum (III) nitrate at 5%, 

10% and 25% of the molar concentration of the cobalt (II) chloride to the precursor.  The cobalt 

and lanthanum doped samples were heated under constant stirring to reflux at 100 °C for 2 hr.  

After heating, the samples were cooled to room temperature and filtered using vacuum filtration. 

The product was washed twice with water followed by acetone and air dried.      

Solvothermal Synthesis of the HDS catalyst 

One gram of the dried precursor and 100 mL of decalin solvent were placed in a 300 mL 

glass lined Parr model 4843 reactor and purged with H2 gas three times, with a final pressure at160 

psi at room temperature. The reaction vessel was heated to 350°C and the pressure of the reaction 

reached 360 psi and both, temperature and pressure were held constant during the reaction and a 

constant stirring rate of 150 RPM. The reactor was cooled to room temperature then the powder 

was collected by vacuum filtration and washed three times with acetone.  The sample was air dried 

overnight before characterization and testing.   

Catalytic testing of LaxCo1-xMoS2 

The testing of the catalyst was performed using a previously determined HDS experimental 

method (or procedure).  In brief, the test was performed using a solution containing 2.625 g DBT 

dissolved in 50 mL of decalin with 0.375 g catalyst using a 160 psi H2 atmosphere, in a 300 mL 

glass lined Parr model 4843 reactor at 350 °C.  Prior to each reaction, the reactor was purged three 
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times with H2 gas. Once the reaction temperature was reached 350 °C, a 1.0 mL aliquot was 

extracted, subsequently at 30-minute intervals. The 1.0 mL aliquots were removed over a reaction 

time of 5 hr.    

Catalyst Characterization: 

XRD characterization    

XRD characterization of the fresh and spent catalysts were performed using a Rigaku 

Miniflex II X-ray diffractometer.  The working parameters of the XRD were as follows: 0.05° step 

in 2 θ, 5 s counting time, copper source operating at 30 kV and 15 mA (Kα 1.54 Å), nickel filter 

and scintillation detector.  The extracted data were fitted using the Fullprof software while the 

LeBail fitting procedure and crystallographic data were obtained from literature [28-31].      

Surface aera and Porosity 

Structural properties of the CoMoS2 and the La doped CoMoS2 catalysts were determined by N2 

physisorption using a Quantachrome Instruments ANOVA 2200E Surface aera porosity 

instrument. The Samples were degassed under vacuum at 300°C for 3 h to removed adsorbed 

molecules. The surface area was determined using the Brunauer-Emett-Teller (BET,) method.  

SEM/EDS characterization 

The SEM characterization was conducted using a Zeiss EVO LS 10 electron microscope 

with an attached EDAX EDS detector.  The data were collected using an operating voltage of 

10.71-20.71 keV at a working distance between 6.0-6.5 mm.  The EDS data were collected at an 

accelerating voltage of 20.71 keV with a 120 sec count time per sample.     

XPS characterization 

The XPS characterization was performed using a Thermo Scientific K-α XPS.  The 

operating parameters were as follows: a micro-fused monochromatic Al K-α source with scans at 

Jo
ur

na
l P

re
-p

ro
of



8 
 

1 eV, a depth analysis at 1keV, and a 400 μm spot.  

GC-MS/GC-FID characterization 

 The extracted sample aliquots from the catalytic testing cycle were analyzed using GC-MS 

and GC-FID for the conversion of DBT. The GC-MS was used to identify the potential products 

while the GC-FID was used to monitor the reaction after identification of the final product. The 

extracted reaction aliquots were tested using a Perkin Elmer Autosystem XL attached to 

Turbomass Gold mass spectrometer and a Perkin Elmer Clarus GC with a flame ionization 

detector. The GC-MS and GC-FID operating conditions are summarized in Table 1. 

Results and Discussion  

 

XRD characterization 

 

Figure 1 shows the diffraction pattern for the as-synthesized ATM precursor resulting in 

an orthorhombic crystal lattice, with LeBail fittings illustrated in Table 2.  The synthesized ATM 

precursor crystallographic parameters were in good agreement with that reported on the same 

material, with an overall χ2 value reduced to 2.54, indicating a small difference between the data 

and fitting [32].   

The diffraction patterns for the catalysts synthesized under a solvothermal decomposition 

are shown in Figure 2 while the assoicated LeBail fittings are shown in Table 3.  MoS2 had a 

hexagonal phase with stacking occuring on the 002 plane corresponding to the peak at 14° in 2θ, 

the relatively low intensity and broadness of this peak indicated low stacking of the MoS2 planes 

[33].  A low stacking of MoS2 planes is commonly observed for CoMoS2 HDS catalysts [34].  The 

shoulder peak at 15.44° in 2θ corresponds to the (111) plane of Co9S8 [35].  Furthermore, the 

synthesis of CoMoS2 is dictated by the formation of MoS2 phase because it forms at a higher 

temperature than that for Co9S8.  The formation and crystallinity of these HDS catalysts are highly 
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dependent on the synthesis conditions.  When using ATM as a precursosr, Yoosuk et al. observed 

that the formation of Co and Ni promoted MoS2 started at lower temperatures of 383 °C and 366 

°C, respectively[9]. Similarly, Ramos et al. reported that when using ATM as a catalyst precursor, 

the formation of MoS2 began at 350 °C [36].  Comparable to these findings, Alonso et al., reported 

the formation of NiWS2 in situ during the HDS of DBT at 350 °C when using ATT precursor [37].  

Catalysts with lanthanum dopings at 5 and 10 % weight resulted in no observable changes 

in the diffraction patterns, only two identifiable phases of Co9S8 and MoS2 were obsrved. However, 

a La-doping concentration of 25 % introduced a third phase, La2S3 was observed in the diffraction 

pattern of La0.25Co0.75MoS2, (Figure 2). The new peaks were attributed to the formation of La2S3, 

located at 12.6°, 19.4° and 25.7° in 2θ, which corresponds to (101), (103), and (202) planes, 

respectively. When considering the orthorombic La2S3 phase, there is an excellent agreement 

between the data and that reporetd in the literature [38]. Table 3 summarizes the LeBail fitting 

results for solvothermally synthesized La doped and undoped CoMoS2 catalysts, with reduced χ2 

values and their corresponding fittings ranging from 0.170 and 0.379. The addition of the La 

doping to the CoMoS2, in the diffraction pattern did not have a large effect on the MoS2 

crystallintiy. However, the additon of the La had an apparent effect of increasing the cryatlling of 

the Co9S8 phase, as indicated by the decreasing full width half maximum (FWHM) of the 

diffraction peaks located at 29.8, 47.5 and 52.1. The diffraction peakes located in the CoMoS2 at 

ecreased from 0. 43, 1.07 1.07 to: 0.26, 0.37,0.37 in the 

La0.05Co0.95MoS2, 0.28, 0.43, and 0.39 for the La0.10Co0.90MoS2, and to 0.036, 043, and 0.45 for 

the La0.25Co0.75MoS2 samples. With the La doping, the crystallinity of the Co9S8 phase in the 

samples increased with increasing La concentration.    
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The diffraction patterns of used catalyts are presented in Figure 3 with the associated 

LeBail fittings shown in Table 4.  Following one catalytic cycle, the catalysts maintained their 

Co9S8 and MoS2 crystal phases and La2S3 phase for the La0.25Co0.75MoS2 catalyst.  The χ2 values 

of the fittings were between 0.183 and 0.469, indicating a minimal difference between each sample 

and their fittings. There were no observable changes in the FWHM of the Co9S8 phase after one 

reaction cycle.  The conserved crystallinity of these catalysts indicated the presence of some 

stability in the crystallographic phases which can enhance the catalyst lifetime. 

Surface aera Porosity analysis:  

The  N2 adsorption data used to determine the Surface area of the samples are shown in Table 5 

The adsorption isotherms were observed to follow type II adsorption isotherm. The adsorption 

isotherm indicates the development of multiple layers of adsorbent on the surface during the 

adsorption process. The CoMoS2, La0.10Co0.90MoS2 and La0.25Co0.75MoS2 samples show similar 

surface aeras with respect to total surface area ranging from 50-67 m2/g. However, the 

La0.05Co0.95MoS2 doped sample shows a larger surface area as well as almost double of the surface 

area of the other La doped catalyst (with almost double the pore volume). The La0.05Co0.95MoS2 

does support the idea that La at low concertation inhibits the formation of the planes in MoS2, 

which would result in higher surface area [39].  Furthermore, the increasing in the amount of La 

doping in the catalysts showed a decrease in the surface aera.  Overall, the surface aera obtained 

in form the samples, is relatively low which his less than 100 m2/g. 

 

SEM/EDS characterization results 

 

The SEM images of the solvothermally decomposed catalysts are shown in Figure 4, which 

reveal the formation of platelets with small spherical particles clustered on the surface. Y. Wu has 
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reported the presence of spherical particles on the surface of CoMoS2 catalysts synthesized from 

an ATM precursor with the addition of amines [40]. In the present study, the spherical particles, 

with an average size of 50 nm at 25% lanthanum doping. The La0.05Co0.95MoS2 exhibited an 

agglomeration of particles with no definite morphology. The lack of morphological uniformity 

may be caused by the presence of cavities or defects formed during the synthesis of Co9S8 at 

elevated temperatures [41]. In addition, the presence of carbon on the sample surface may inhibited 

the imaging of the sample.  Alternatively, it has been suggested that La doping at low concentration 

can inhibit the MoS2 plane development [39].     

Table 6 shows the Mo, S Co and La data collected using EDS analysis for the catalytic samples as 

synthesized and recovered after one catalytic cycle.  The data indicate a loss of La from the 

La0.05Co0.95MoS2 sample after one catalytic cycle, which would help to explain the slightly lower 

activity of the La0.05Co0.95MoS2 compared to the other samples La-doped samples. There could be 

a stability issue within the samples at lower La concentrations, due to surface stain observed in 

some nanoparticles [ref].  Alternatively, the La in the before on catalytic cycle may not have been 

as tightly bound to the surface of the precursor and may have been lost during the catalytic cycle.  

On the other hand, the La0.10Co0.90MoS2 and La0.25Co0.75MoS2 remained relatively constant with 

respect to the amount of La present. In both, the La0.10Co0.90MoS2 and La0.25Co0.75MoS2 samples, 

the La concentration was approximately 50% of the intended ratio. These results do explain the 

absence of La2S3 diffraction in the La0.10Co0.90MoS2 while the concentration of La2S3 was too low 

for diffraction. In addition, the lower concentrations also the diffuse XPS plots.  The elemental 

distribution of molybdenum, sulfur, cobalt, lanthanum, and carbon for fresh CoMoS2 and 

La0.25Co0.75MoS2 catalysts are presented in the EDS images of Figures 5 (A and B), respectively.  
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It was observed that molybdenum and sulfur are closely associated in their distribution, while 

cobalt is distributed evenly throughout the surface. With the incorporation of lanthanum doping, 

the cobalt was displaced with lanthanum appearing in the cobalt vacancies.  Under solvothermal 

decompositions, the use of organic solvents resulted in the presence of carbon on the surface of 

the catalysts and for this reason, the EDS mapping included the analysis of carbon [20].  It was 

observed that the concentration of carbon on the surface of the catalysts was significantly less than 

that observed for the other elements as shown by the low intensity in the EDS mapping of carbon 

element (Figures 5 and 6).   

Figures 6 (A and B) include the EDS mappings of used CoMoS2 and La0.25Co0.75MoS2 

catalysts, respectively. Similar results in the molybdenum, sulfur, cobalt and lanthanum 

distribution on the surface of the catalysts were observed following one catalytic cycle, with 

differences occurring with the carbon distribution on the samples.  While, CoMoS2 had an increase 

in carbon concentration on the surface of the catalysts, indicated by the higher intensity in the 

elemental mapping of carbon, the carbon in La0.25Co0.75MoS2 appeared to decrease and disperse in 

the catalyst surface. Catalyst coking is an important issue that can minimize the efficiency and 

lifetime of catalysts [10].  It is believed that lanthanum doping contributed to the decrease of 

carbon on the surface of the La0.25Co0.75MoS2 catalyst, as has been previously reported with 

lanthanum promoted catalysts [22-25, 42].    

XPS results 
 

The elemental composition and binding energies of the catalyst were evaluated by XPS. 

Figures 7A and 7B show the XPS results corresponding to the XPS survey spectra of fresh and 

used catalysts, respectively. Binding energies of 778.9 eV, 285.4 eV, 229.0 eV, and 161.9 eV, 
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were attributed to Co 2P3/2, C 1S, Mo 3d5/2, and S 2P, correspondingly, which is in a good 

agreement with results reported on unsupported CoMoS2 catalysts [43]. 

Figure 8 (A-H) shows the Co2P XPS spectra collected for the synthesized samples, which 

includes the Co2+ 2P2/3 and Co2+ 2P1/2 peaks located at 778 eV and 794 eV, respectively [44- 46].  

The broad peaks observed in the spectrum located at 782.5 eV and 799.9 eV are the Co 2P3/2 and 

Co 2P1/2 satellite peaks [44-46]. There may be some Co3+ spectrum mixed into the satellite peaks, 

which is located around 780.6 eV; however, it would be very minor to add additional fitting curves 

to the data to improve the fitting results [47].  In fact, additional fitting curves to the XPS data did 

not improve the fitting of the XPS spectrum. The XPS data suggests the presence of the cobalt as 

Co2+, which is found in the Co9S8 phase of cobalt sulfide, which has been already observed at 

778.2 eV and 793.2 eV for the Co 2P3/2 and Co 2P1/2 levels of Co9S8 species [48].   However, the 

presence of the CoMoS phase could not be determined in the XPS results of the present study. 

Typically, the CoMoS phase has an energy of 779.2-779.6 eV, which was not observed in the 

spectra of the samples (Figure 11) [49].  Another study showed that the CoMoS phase can be 

observed at 778.8 eV and 793.9 eV for the Co 2P3/2 and Co 2P1/2 peaks, respectively [48]. Also, at 

778.6 and 778.1eV for the CoMoS and Co9S8 phases for the Co 2P3/2 peak, respectively [48]. A 

quick survey of the data in the literature shows a variation of approximately ± 1 eV on the position 

of the CoMoS phase. The error on the position of the CoMoS phase places it within the range of 

the Co9S8, Co3S4 (778.6 eV and 779.7 eV for the Co2+ and Co3+ ions, respectively), and CoS2 

(778.9 eV and 778.5 eV) energies [50, 51].    In addition, XPS results reported in the literature 

generally show a higher intensity and higher area of the spectra for the CoMoS phase than that for 

the Co9S8 phase, which would indicate a higher concentration of the CoMoS phase than for the 

actual major Co9S8 phase. The presence of the Co9S8 phase in the samples was determined using 
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XRD analysis (Figure 2). As can be seen in Figure 8 (A-H), the XPS survey spectra, before and 

after reaction, do not change dramatically, indicating that the Co phase is stable after synthesis and 

is still present after one reaction cycle. The Co 2P spectra were not shifted to higher/lower energy 

levels, indicating no reduction and no oxidation occurred in the cobalt. 

Figure 9 (A-H) shows the S 2p region consisted of two main peaks located at binding 

energies of 161.9 eV and 163.1 eV, which correspond to S 2P3/2 and S 2P1/2, respectively [52]. The 

single doublet with the 2P3/2 peak located at 161.9 eV indicates that sulfur is present in the 2- 

oxidation state [52]. These S 2P peaks are associated with the presence of the metal sulfide phases, 

which include the MoS2, Co9S8 and La2S3 phases present in the samples.  There is a small shoulder 

peak located at 163.5eV corresponding to the presence of C-S bonds, which would be present after 

the solvothermal process.  The conversion of all the catalysts was performed at 350 C in decalin 

to generate the metal sulfide, which may have generated the carbon-sulfide bonds in the sample.  

The presence of carbon in the samples was also observed in the collected EDS data for both the as 

synthesized and the catalyst used in one reaction cycle, as was shown in Figures 5 and 6, 

respectively.  In addition, a small amount of the sulfur present in the sample was oxidized as 

indicate by the S-O bond located at 169 eV, this was less than 10% of the sulfur present in the 

sample.    

The Mo 3d survey spectra, (Figure 10 (A-H)), show two peaks being located at a binding 

energy (BE) of 229.7 eV and 232.3 eV, which can be assigned to the Mo 3d5/2 and Mo 3d3/2 core 

level transitions, respectively. The position of the peaks indicates the presence of Mo in the 4+ 

oxidation state and is present as MoS2 [52, 53].  In addition, a third peak located at 226.5 eV is 

observed in all the spectra, which is assigned to the S 2S core level transition.   In all the samples, 

before and after use, an additional peak is observed around the Mo 3d3/2 peak at approximately 
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232.5 eV in the CoMoS2, before reaction, after reaction, and in the La0.05Co0.95MoS2 sample before 

reaction.  The 232.5 eV peak has been observed in the synthesis of molybdenum carbide samples 

and has been attributed to the formation of Mo-C bond in α-MoC1-x phases [54].  The CoMoS2 

catalyst without La present, shows a large increase in the peak at 232.5 eV after one catalytic cycle, 

which would be expected if this were the formation of a Mo-C compound.  It is also observed that 

the peak at 232.5 eV in the La0.05Co0.95MoS2 catalysts is no longer present after the reaction, 

indicating that the sample is similar to the other La doped catalysts. Furthermore, a peak at 233.4 

eV was observed for all the other samples. In the La-Co-MoS2 samples, the feature at 233.4eV is 

well defined and does not change in magnitude after reaction, this peak has been assigned to the 

presence of Mo in the 6+ oxidation state which corresponds to the presence of a small amount of 

oxygen present in the samples.   The presence of Mo-C in the samples after synthesis and after an 

increase in reaction cycles, would give an indication that the generation of the Mo-C phases occurs 

at the surface of the CoMoS2 catalysts.  However, the addition of the La to the sample prevents the 

formation of the Mo-C or reduces the concentration of the Mo-C.  Similar results were observed 

on the EDS mappings of the catalysts in that the sample with La after one catalytic cycle showed 

less carbon on the catalyst surface compared to the catalysts without La.  Furthermore, the addition 

of the La to the samples prevented the formation of the Mo-C phase, which may be poisonous to 

the catalysts, with reduced activity over time.  Results reported in the literature showed that the 

addition of La to different catalysts prevented both, carbon build up and the generation of metal 

carbides [22-26, 42, 55, 56]. 

The La 3d5/2 spectra are shown in Figure 11 (A-F), which consist of two electronic 

transitions, the first is located at approximately 838.6 eV and the second at 834.5 eV. These two 

peaks observed in the La 3d5/2 spectrum can be attributed to binding lanthanum to sulfur in La2S3 
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and to the satellite peak for La [57].  The satellite peak is originated from the transition of a 3d 

electron into an empty 4f orbital, this transition is observed when La3+ is present in the sample [57-

60] such as in La2S3.  Similar XPS spectra are observed in Figure 11 (A, B, and C) for the as 

synthesized samples which indicate that La is in the same chemical environment in all the samples, 

before and after one catalytic cycle. However, La doping in catalysts has been investigated to 

reduce carbon buildup on the surface of the catalyst [22-26, 42, 56].  The presence of carbon on 

the surface of each catalyst was also analyzed in the XPS spectra due to the presence of 

decahydronaphthalene solvent during decomposition and HDS reactions.  The relative changes in 

concentration of carbon on the surface of each catalyst were quantified by integrating the 

distinctive C 1s peak at 284.1 eV [61].  The ratio between integrated C 1s peaks of used to fresh 

catalysts are summarized in Table 6.  It was determined that CoMoS2 had the highest increase in 

carbon on the surface of the catalyst followed by La0.05Co0.95MoS2. With the La0.10Co0.90MoS2 

catalyst, the presence of carbon remained the same, however, in the La0.25Co0.75MoS2 the overall 

carbon content on the surface was reduced by 2.9%.  These findings are in agreement with the 

observed EDS results in that the carbon mapping intensity decreased for La0.25Co0.75MoS2 

following one catalytic cycle compared to CoMoS2 where an increase of carbon was observed. 

Catalytic Performance of dibenzothiophene hydrodesulfurization: 

 

The results for catalytic removal of DBT at 350℃ are shown in Figure 12.  All the reaction 

kinetics followed a pseudo zero order kinetics model and were fitted accordingly.  It was observed 

that La doping had similar effects on DBT conversion.  For the La0.10Co0.90MoS2 and 

La0.25Co0.75MoS2, the catalytic activities were enhanced, showing a maximum of 42% DBT 

removal.  Higher doping of La was not evaluated because that would greatly reduce Co9S8, which 
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is a well-known promoter of MoS2 HDS catalysts [62].  In addition, there was no observed increase 

in the catalytic activity between La0.10Co0.90MoS2 and La0.25Co0.75MoS2 catalysts.  

Catalytic activities were determined using rate constants from the kinetics data and 

calculated by an equation described by Alonso et al, shown below: 

𝑘𝑐𝑎𝑡 =
𝑘𝑟𝑥𝑛
𝑚𝑐𝑎𝑡

× 107 

Where kcat is the catalytic constant corrected for volume with units of mol g-1s-1, krxn is the rate 

constant corrected for volume with units of mol s-1, mcat is the mass of the catalyst, and 107 is a 

normalization constant [20]. Under the solvothermal decomposition, 10 % and 25 % La doped 

samples had the highest catalytic activity, of 10.7 mol g-1 s-1. The 5 % La doping of the CoMoS2 

showed a small decrease increase in the catalytic rate to 6.51 mol g-1 s-1 from 6.80 mol g-1 s-1 for 

the CoMoS2 catalysts. Escobar et al found La- doping of P-CoMo on alumina showed a decrease 

in the catalytic HDS process at from as La concentration was increased from 1% to 5%. However, 

the selectivity of the reaction towards biphenyl as the product was increased [63].  Our results 

show the lowest catalytic activity for the La0.05Co0.95MoS2 sample and the catalytic active 

increased for both the La0.10Co0.90MoS2 and La0.25Co0.75MoS2.  Similar catalysts have been studied, 

reporting pseudo-zero order kinetics with comparable catalytic activities of DBT conversion over 

a reaction period of 5 h.  Sollner et al. used elemental sulfur for the synthesis of CoMoS2, under 

high-temperature conditions, which showed two reaction rates of 24.5 and 9.27 mol s-1 g-1 [5].  

Olivas et al investigated a Ni promoted MoS2 catalyst under a H2S/H2 gas sulfidation and found 

the catalytic activity to be 7.2 mol g-1 s-1 [64].  Quintana-Melgoza et al has reported catalytic 

activities of 4.61 and 2.74 mol g-1 s-1 for NiMoS2 and MoS2, respectively, both synthesized under 

a H2S/H2 gas mixture [65]. Furthermore, for the current used catalyst in industry, NiMoS2 has been 

reported to have a catalytic activity in the range of 11 mol g-1 s-1[66]. Table 8 shows the catalytic 

Jo
ur

na
l P

re
-p

ro
of



18 
 

activities of HDS catalysts reported in literature which are comparable to the values determined 

for the catalysts in the present work.  The data presented in this work suggest that lanthanum 

doping at optimal concentrations may enhance catalytic activity and effectively enhance catalytic 

lifetime observed through the reduction of catalyst coking. In addition, a solvothermal 

decomposition was performed using (NH4)2S as the sulfur source, which eliminated the need of 

conventional sulfidation processes such as H2S/H2 flow [66].  Furthermore, many of the reported 

catalysts require thermal decompositions at 450 ℃ or greater; however, in the present study, 

CoMoS2 was successfully synthesized at 350 ℃.   

Products from the HDS reactions were identified and analyzed from the data obtained from 

GC-MS and GC-FID.  The overall reaction products observed were biphenyl, 

tetrahydrodibenzothiophene, and cyclohexylbenzene, as was determined using GC-MS.  

Moreover, biphenyl was the major product observed for the reaction followed by 

cyclohexylbenzene and tetrahydrodibenzothiophene. The presence of biphenyl and 

tetrahydrodibenzothiophene elucidate the presence of two competing reaction processes, direct 

desulfurization (DDS) and indirect desulfurization (HYD). Figure 13 shows the chromatograms 

for the CoMoS2 and the La0.1Co0.9MoS2 when the reaction has reached temperature.  There is a 

small amount of biphenyl present the reaction starts slightly before reaching 350°C as well as a 

solvent peak from tetrahydronaphthalene. Figure 14 shows the reaction products after 300 minutes 

of reaction time which shows the presence of unreacted DBT, hydrogenated DBT, Biphenyl, 

cyclohexylbenzene. As well naphthalene and tetrahydronaphthalene are observed, which are 

dehydrogenation products of the decahydronaphthalene.  The relatively high amount of biphenyl 

indicates that DDS is the primary pathway for the catalysts in this study as is common for Co 
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promoted MoS2 catalysts reported in literature also supports the promotion of the catalyst into the 

DDS pathway caused by La doping observed in the literature [68, 63].   

 

Conclusions:  

A lanthanum doped CoMoS2 HDS catalyst was successfully synthesized through a 

(NH4)2MoS4 precursor, cobalt (II) chloride, and lanthanum nitrate using solvothermal conversion.  

The catalyst exhibited enhanced activity when compared to CoMoS2 synthesized under the same 

reaction and conversion conditions. The 10 and 25 % La doped samples showed almost double the 

reactivity of the non-doped CoMoS2 catalyst. The catalysts were determined to be triphasic 

consisting of a Co9S8, MoS2 and La2S3.  The La-doped catalysts showed the presence of La2S3 

phase according to the X-ray diffraction and XPS data analysis of the catalyst with the highest La 

concentration. In addition, EDS mapping and XPS data indicated that carbon build up was reduced 

in the presence of higher concentrations of La (10 and 25 % doping) in the sample.  The data also 

showed that the direct desulfurization was the preferred reaction pathway for both the CoMoS2 

and LaxCo1-xMoS2 catalysts with biphenyl as the major reaction product.  
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Table 1:  Operating parameters for the GC-MS and GC-FID, determination of DBT concentration  

Parameter GC-MS Setting GC-FID Setting 

Initial Oven Temperature 60 °C 100 °C 

Final Oven Temperature 260 °C 250 °C 

Injector Temperature 260 °C 250 °C 

Ramp 20 °C/min 20 °C/min 

Source Temperature 300 °C  

Gas Flow He 2.0 mL/min Air 450mL and 45mL H2 

Column Perkin Elmer Elite-5 Perkin Elmer Elite-5 

Injection volume 1.0 μL 1.0 μL 

 

Table 2: LeBail fitting of ATM precursor. 

 

Phase 
Space 

Group 
a (Å) b (Å) c (Å) α° β° γ° χ 2 

ATM PNMA 9.5551 6.9462 12.211 90 90 90 2.54 

 

 

Table 3: LeBail fittings of fresh catalysts decomposed under a solvothermal decomposition in 

decahydronaphthalene solvent. 

 

 

Phase 

Space 

Group a (Å) b (Å) c (Å) α° β° γ° χ2 

CoMoS2 MoS2 P63/MMC 3.1496 3.1496 12.3315 90 90 120 0.170 

 Co9S8 FM3M 9.9246 9.9246 9.9246 90 90 90  

La0.05Co0.95MoS2 MoS2 P63/MMC 3.1321 3.1321 12.3584 90 90 120 0.379 

 Co9S8 FM3M 9.9145 9.9145 9.9145 90 90 90  

La0.10Co0.90MoS2 MoS2 P63/MMC 3.1321 3.1321 12.3584 90 90 120 0.244 

 Co9S8 FM3M 9.9145 9.9145 9.9145 90 90 90  

La0.25Co0.75MoS2 MoS2 P63/MMC 3.1318 3.1318 12.3265 90 90 120 0.267 

 Co9S8 FM3M 9.9065 9.9065 9.9065 90 90 90  

 La2S3 PNMA 7.7454 4.1523 15.7205 90 90 90  
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Table 4: LeBail fittings of used catalysts decomposed under a solvothermal decomposition in 

decahydronaphthalene solvent. 

 

 

Phase 

Space 

Group a (Å) b (Å) c (Å) α° β° γ° χ2 

CoMoS2 MoS2 P63/MMC 3.1496 3.1496 12.3315 90 90 120 0.208 

 Co9S8 FM3M 9.9246 9.9246 9.9246 90 90 90  

La0.05Co0.95MoS2 MoS2 P63/MMC 3.1320 3.1320 12.3584 90 90 120 0.183 

 Co9S8 FM3M 9.9145 9.9145 9.9145 90 90 90  

La0.10Co0.90MoS2 MoS2 P63/MMC 3.1259 3.1259 12.2775 90 90 120 0.469 

 Co9S8 FM3M 9.9478 9.9478 9.9478 90 90 90  

La0.25Co0.75MoS2 MoS2 P63/MMC 3.1382 3.1082 12.3898 90 90 120 0.318 

 Co9S8 FM3M 9.8472 9.8472 9.8472 90 90 90  

 La2S3 PNMA 7.7963 4.1560 15.8667 90 90 90  

 

 

 

 

 

Table 5: Surface aera of the CoMoS2 and La0.XCo1-0.XMos2 catalysts  

 

Sample SBET 

(m2/g)a 

CoMoS2 71.60 

La0.05Co0.95MoS2 96.19 

La0.10Co0.9MoS2 66.63 

La0.25Co0.75MoS2 60.91 
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Table 6: Mass percent of Mo, S, Co and La and mole fraction found in the CoMoS2 and La0.XCo1-

0.XMoS2 catalysts determined from EDS analysis.  

 

 

Sample  Mo% Mo 

(mole) 

S% S 

(mole) 

Co% Co 

(mole) 

La% La 

(mole) 

La:Co 

As Synthesized           

CoMoS2 42.61 0.444 31.72 0.990 25.66 0.435    

La0.05Co0.95MoS2 40.96 0.426 32.04 0.999 24.01 0.407 2.99 0.0215 0.053 

La0.10Co0.90MoS2 41.19 0.429 30.79 0.960 24.79 0.420 3.25 0.0234 0.056 

La0.25Co0.75MoS2 43.39 0.452 31.20 0.973 19.91 0.338 5.51 0.0397 0.117 

After one Cycle          

CoMoS2 39.75 0.414 30.30 0.945 29.95 0.508    

La0.05Co0.95MoS2 33.84 0.353 26.57 0.829 37.92 0.642 1.66 0.0120 0.019 

La0.10Co0.90MoS2 42.07 0.439 30.21 0.942 20.38 0.421 2.85 0.0206 0.049 

La0.25Co0.75MoS2 42.6 0.444 31.27 0.975 22.90 0.355 5.17 0.0373 0.105 
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Table 7: Ratio of C 1s peak areas extracted from XPS spectra of fresh and used catalysts. 

 

 

 

Sample Carbon peak area Ratio (After:Before) 

CoMoS2 Fresh 79293 
1.366 

CoMoS2 Used 108306 

La0.05Co0.95MoS2 Fresh 78960 
1.201 

La0.05Co0.95MoS2 Used 94792 

La0.10Co0.90MoS2 Fresh 62110 
1.000 

La0.10Co0.90MoS2Usedt 62108 

La0.25Co0.75MoS2 Fresh 97001 

0.97 La0.25Co0.75MoS2 Used 94234 
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Table 8: Catalytic activities calculated for the synthesized CoMoS2, La0.05Co0.95MoS2, 

La0.10Co0.90MoS2, and the La0.25Co0.75MoS2 with literature values for other HDS catalysts.  

lanthanum substituted   

 

 

Catalyst K (x10-7 mol s-1g-1) Literature K (x10-7 mol s-1g-1) 

CoMoS2 6.80 24.5, 9.27 5, 3.0763 

NiMoS2 N/A 4.6163 

MoS2  N/A 2.7463 

NiMoS2 N/A 7.262 

NiMoS2 N/A 1162,64 

La0.05Co0.95MoS2 6.51 Present study 

La0.10Co0.90MoS2 10.7 Present study 

La0.25Co0.75MoS2 10.7 Present study 
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Figure 1: Powder XRD pattern of the synthesized ammonium tetrathiomolybdate and fitting, 

difference between the data and the fitting, and Bragg peaks.    
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Figure 2: A. Powder XRD patterns of fresh CoMoS2, B. La0.05Co0.95MoS2, C. La0.10Co0.90MoS2 
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and D. La0.25Co0.75MoS2 synthesized using solvothermal decomposition with 

decahydronaphthalene solvent.  
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Figure 3: A. Powder XRD patterns of used CoMoS2, B. La0.05Co0.95MoS2, C. La0.10Co0.90MoS2 

and D. La0.25Co0.75MoS2 synthesized using solvothermal decomposition with 

decahydronaphthalene solvent.  
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Figure 4 A. SEM images of fresh CoMoS2, B. La0.05Co0.95MoS2, C. La0.10Co0.90MoS2, and D. 

La0.25Co0.75MoS2 decomposed under a solvothermal decomposition in decahydronaphthalene 

solvent. 
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Figure 5: A. EDS map of fresh CoMoS2 catalyst decomposed under a solvothermal decomposition 

in decahydronaphthalene solvent showing carbon, cobalt, molybdenum and sulfur. B. EDS map of 
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fresh La0.25Co0.75MoS2 catalyst decomposed under a solvothermal decomposition in 

decahydronaphthalene solvent showing carbon, cobalt, lanthanum, molybdenum and sulfur. 
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Figure 6 A: EDS map of used CoMoS2 catalyst decomposed under a solvothermal decomposition 

in decahydronaphthalene solvent showing carbon, cobalt, molybdenum and sulfur. B.  EDS map 
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of used La0.25Co0.75MoS2 catalyst decomposed under a solvothermal decomposition in 

decahydronaphthalene solvent showing carbon, cobalt, lanthanum, molybdenum and sulfur. 
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Figure 7: A. XPS spectra of fresh catalysts decomposed under a solvothermal decomposition in 

decahydronaphthalene solvent. B. XPS spectra of spent catalysts decomposed under a 

solvothermal decomposition in decahydronaphthalene solvent.   
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Figure 8: Co2P XPS spectra of CoMoS2 as prepared (A), La0.05Co0.95MoS2 as prepared (B), 

La0.10Co0.90MoS2 as prepared (C), La0.25Co0.75MoS2 as prepared (D) CoMoS2 after one catalytic 

cycle (E), La0.05Co0.95MoS2 after one catalytic cycle (F), La0.10Co0.90MoS2 after one catalytic cycle 

(G), and La0.25Co0.75MoS2 after one catalytic cycle (H). 
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Figure 9: S2P XPS spectra of CoMoS2 as prepared (A), La0.05Co0.95MoS2 as prepared (B), 

La0.10Co0.90MoS2 as prepared (C), La0.25Co0.75MoS2 as prepared (D) CoMoS2 after one catalytic 

cycle (E), La0.05Co0.95MoS2 after one catalytic cycle (F), La0.10Co0.90MoS2 after one catalytic cycle 

(G), and La0.25Co0.75MoS2 after one catalytic cycle (H) 
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Figure 10: Mo3d XPS spectra of CoMoS2 as prepared (A), La0.05Co0.95MoS2 as prepared (B), 

La0.10Co0.90MoS2 as prepared (C), La0.25Co0.75MoS2 as prepared (D) CoMoS2 after one catalytic 

cycle (E), La0.05Co0.95MoS2 after one catalytic cycle (F), La0.10Co0.90MoS2 after one catalytic cycle 

(G), and La0.25Co0.75MoS2 after one catalytic cycle (H). 
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Figure 11: La3d5/2 XPS spectra of La0.05Co0.95MoS2 as prepared (A), La0.10Co0.90MoS2 as prepared 

(B), La0.25Co0.75MoS2 as prepared (C), La0.05Co0.95MoS2 after one catalytic cycle (D), 

La0.10Co0.90MoS2 after one catalytic cycle (E), and La0.25Co0.75MoS2 after one catalytic cycle (F) 
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Figure 12: Results from catalytic testing of catalysts of CoMoS2, La0.05Co0.95MoS2, 

La0.10Co0.90MoS2, and La0.25Co0.75MoS2 catalysts at 350°C with 160 psi H2 initial pressure. 
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Figure 13: Chromatogram of the reaction at t=0, initially reached 350° for the 

La0.10Co0.90MoS2(top) and the CoMoS2 (bottom).  
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Figure 14: Chromatogram of the reaction after 300 minutes Reaction for the La0.10Co0.90MoS2 

(top) and CoMoS2 (bottom) with DBT.  
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