
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

8-2020

Hardness of Sparse Sets and Minimal Circuit Size Problem Hardness of Sparse Sets and Minimal Circuit Size Problem

Bin Fu
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fu B. (2020) Hardness of Sparse Sets and Minimal Circuit Size Problem. In: Kim D., Uma R., Cai Z., Lee D.
(eds) Computing and Combinatorics. COCOON 2020. Lecture Notes in Computer Science, vol 12273.
Springer, Cham. https://doi.org/10.1007/978-3-030-58150-3_39

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact
justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

ar
X

iv
:2

00
3.

00
66

9v
2

 [
cs

.C
C

]
 1

3
Ju

l 2
02

0

Hardness of Sparse Sets and Minimal Circuit Size

Problem

Bin Fu

Department of Computer Science,

University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.

bin.fu@utrgv.edu

Abstract

We study the magnification of hardness of sparse sets in nondetermin-
istic time complexity classes on a randomized streaming model. One of

our results shows that if there exists a 2n
o(1)

-sparse set in NTIME(2n
o(1)

)
that does not have any randomized streaming algorithm with no(1) up-
dating time, and no(1) space, then NEXP 6= BPP, where a f(n)-sparse
set is a language that has at most f(n) strings of length n. We also show
that if MCSP is ZPP-hard under polynomial time truth-table reductions,
then EXP 6= ZPP.

1. Introduction

Hardness magnification has been intensively studied in the recent years [13, 4,
10, 12]. A small lower bound such as Ω(n1+ǫ) for one problem may bring a large
lower bound such as super-polynomial lower bound for another problem. This
research is closely related to Minimum Circuit Size Problem (MCSP) that is to
determine if a given string of length n = 2m with integer m can be generated
by a circuit of size k. For a function s(n) : N → N, MCSP[s(n)] is that given
a string x of length n = 2m, determine if there is a circuit of size at most
s(n) to generate x. This problem has received much attention in the recent
years [3, 2, 13, 8, 7, 6, 5, 4, 12, 11, 10].

Hardness magnification results are shown in a series of recent papers about
MCSP [13, 4, 10, 12]. Oliveira and Santhanam [13] show that n1+ǫ-size lower
bounds for approximating MKtP[nβ] with an additive error O(log n) implies
EXP 6⊆ P/poly. Oliveira, Pich and Santhanam [12] show that for all small
β > 0, n1+ǫ-size lower bounds for approximating MCSP[nβm] with factor O(m)
error implies NP 6⊆ P/poly. McKay, Murray, and Williams [10] show that an
Ω(npoly(logn)) lower bound on poly(logn) space deterministic streaming model
for MCSP[poly(logn)] implies separation of P from NP.

The hardness magnification of non-uniform complexity for sparse sets is
recently developed by Chen, Jin and Williams [4]. Since MCSP[s(n)] are of

1

http://arxiv.org/abs/2003.00669v2

sub-exponential density for s(n) = no(1), the hardness magnification for sub-
exponential density sets is more general than the hardness magnification for
MCSP. They show that if there is an ǫ > 0 and a family of languages {Lb}
(indexed over b ∈ (0, 1)) such that each Lb is a 2n

b

-sparse language in NP, and
Lb 6∈ Circuit[n1+ǫ], then NP 6⊆ Circuit[nk] for all k, where Circuit[f(n)] is the
class of languages with nonuniform circuits of size bounded by function f(n).
Their result also holds for all complexity classes C with ∃C = C.

On the other hand, it is unknown if MCSP is NP-hard. Murray and Williams
[11] show that NP-completeness of MCSP implies the separation of EXP from
ZPP, a long standing unsolved problem in computational complexity theory.
Hitchcock and Pavan [8, 11] if MCSP is NP-hard under polynomial time truth-
table reductions, then EXP 6⊆ NP ∩ P/poly.

Separating NEXP from BPP, and EXP from ZPP are two of major open
problems in the computational complexity theory. We are motivated by further
relationship about sparse sets and MCSP, and the two separations NEXP 6=
BPP and EXP 6= ZPP. We develop a polynomial method on finite fields to
magnify the hardness of sparse sets in nondeterministic time complexity classes
over a randomized streaming model. One of our results show that if there exists

a 2n
o(1)

-sparse set in NTIME(2n
o(1)

) that does not have a randomized streaming
algorithm with no(1) updating time, and no(1) space, then NEXP 6= BPP, where
a f(n)-sparse set is a language that has at most f(n) strings of length n. Our
magnification result has a flexible trade off between the spareness and time
complexity.

We use two functions d(n) and g(n) to control the sparseness of a tally set
T . Function d(n) gives an upper bound for the number of elements of in T and
g(n) is the gap lower bound between a string 1n and the next string 1m in T ,
which satisfy g(n) < m. The class TALLY(d(n), g(n)) defines the class of all

those tally sets. By choosing d(n) = log logn, and g(n) = 22
2n

, we prove that
if MCSP is ZPP ∩ TALLY(d(n), g(n))-hard under polynomial time truth-table
reductions, then EXP 6= ZPP.

1.1. Comparison with the existing results

Comparing with some existing results about sparse sets hardness magnification
in this line [4], there are some new advancements in this paper.

1. Our magnification of sparse set is based on a uniform streaming model. A
class of results in [4] are based on nonuniform models. In [10], they show
that if there is A ∈ PH, and a function s(n) ≥ logn, search-MCSPA[s(n)]
does not have s(n)c updating time in deterministic streaming model for all
positive, then P 6= NP. MCSP[s(n)] is a s(n)O(s(n))-sparse set.

2. Our method is conceptually simple, and easy to understand. It is a polyno-
mial algebraic approach on finite fields.

3. A flexible trade off between sparseness and time complexity is given in our
paper.

2

Proving NP-hardness for MCSP implies EXP 6= ZPP [8, 11]. We consider
the implication of ZPP-hardness for MCSP, and show that if MCSP is ZPP ∩
TALLY(d(n), g(n))-hard for a function pair such as d(n) = log logn and g(n) =

22
2n

, then EXP 6= ZPP. It seems that proving MCSP is ZPP-hard is much easier
than proving MCSP is NP-hard since ZPP ⊆ (NP∩co-NP) ⊆ NP. According to
the low-high hierarchy theory developed by Schöning [14], the class NP∩ co-NP
is the low class L1. Although MCSP may not be in the class ZPP, it is possible
to be ZPP-hard.

2. Notations

Minimum Circuit Size Problem (MCSP) is that given an integer k, and a binary
string T of length n = 2m for some integer m ≥ 0, determine if T can be
generated by a circuit of size k. Let N = {1, 2, · · ·} be the set of all natural
numbers. For a language L, Ln is the set of strings in L of length n, and L≤n is
the set of strings in L of length at most n. For a finite set A, denote |A| to be the
number of elements in A. For a string s, denote |s| to be its length. If x, y, z are
not empty strings, we have a coding method that converts a x, y into a string
〈x, y〉 with |x|+ |y| ≤ |〈x, y〉| ≤ 3(|x|+ |y|) and converts x, y, z into 〈x, y, z〉 with
|x|+ |y|+ |z| ≤ |〈x, y, z〉| ≤ 3(|x|+ |y|+ |z|). For example, for x = x1 · · ·xn1 , y =
y1 · · · yn2 , z = z1 · · · zn3 , let 〈x, y, z〉 = 1x1 · · · 1xn1001y1 · · · 1yn2001z1 · · · 1zn3 .

Let DTIME(t(n)) be the class of languages accepted by deterministic Tur-
ing machines in time O(t(n)). Let NTIME(t(n)) be the class of languages ac-
cepted by nondeterministic Turing machines in time O(t(n)). Define EXP =
∪∞
c=1DTIME(2n

c

) and NEXP = ∪∞
c=1NTIME(2n

c

). P/poly, which is also called
PSIZE, is the class of languages that have polynomial-size circuits.

We use a polynomial method on a finite field F . It is classical theory that
each finite field is of size pk for some prime number p and integer k ≥ 1 (see [9]).
For a finite field F , we denote R(F) = (p, tF (u)) to represent F , where tF (u) is
a irreducible polynomial over field GF(p) for the prime number p and its degree
is deg(tF (.)) = k. The polynomial tF (u) is equal to u if F is of size p, which
is a prime number. Each element of F with R(F) = (p, tF (u)) is a polynomial
q(u) with degree less than the degree of tF (u). For two elements q1(u) and
q2(u) in F , their addition is defined by (q1(u) + q2(u))(mod tF (u)), and their
multiplication is defined by (q1(u) · q2(u))(mod tF (u)) (see [9]). Each element

in GF(2k) is a polynomial
∑k−1

i=0 biu
i (bi ∈ {0, 1}), which is represented by a

binary string bk−1 · · · b0 of length k.
We use GF(2k) field in our randomized streaming algorithm for hardness

magnification . Let F be a GF(2k) field (a field of size q = 2k) and has its
R(F) = (2, tF (u)). Let s = a0 · · · am−1 be a binary string of length m with

m ≤ k, and u be a variable. Define w(s, u) to be the element
∑m−1

i=0 aiu
i

in GF(2k). Let x be a string in {0, 1}∗ and k be an integer at least 1. Let
x = sr−1st−2 · · · s1s0 such that each si is a substring of x of length k for i =
1, 2, · · · , r − 1, and the substring s0 has its length |s0| ≤ k. Each si is called
a k-segment of x for i = 0, 1, · · · , r − 1. Define the polynomial dx(z) = zr +

3

∑r−1
i=0 w(si, u)z

i, which converts a binary string into a polynomial in GF(2k).
We develop a streaming algorithm that converts an input string into an

element in a finite field. We give the definition to characterize the properties of
the streaming algorithm developed in this paper. Our streaming algorithm is
to convert an input stream x into an element dx(a) ∈ F = GF(2k) by selecting
a random element a from F .

Definition 1. Let r0(n), r1(n), r2(n), s(n), u(n) be nondecreasing functions
from N to N. Define Streaming(r0(n), r1(n), s(n), u(n), r2(n)) to be the class
of languages L that have one-pass streaming algorithms that has input (n, x)
with n = |x| (x is a string and read by streaming), it satisfies

i. It takes r0(n) time to generate a field F = GF(2k), which is represented
by (2, tF (.)) with a irreducible polynomial tf (.) over GF(2) of degree k.

ii. It takes O(r1(n)) random steps before reading the first bit from the input
stream x.

iii. It uses O(s(n)) space that includes the space to hold the field represen-
tation generated by the algorithm. The space for a field representation is
Ω((deg(tF (.))+ 1)) and O((deg(tF (.))+ 1)) for the irreducible polynomial
tF (.) over GF(2).

iv. It takes O(u(n)) field conversions to elements in F and O(u(n)) field op-
erations in F after reading each bit.

v. It runs O(r2(n)) randomized steps after reading the entire input.

3. Overview of Our Methods

In this section, we give a brief description about our methods used in this
paper. Our first result is based on a polynomial method on a finite field whose
size affects the hardness of magnification. The second result is a translational
method for zero-error probabilistic complexity classes.

3.1. Magnify the Hardness of Sparse Sets

We have a polynomial method over finite fields. Let L be f(n)-sparse language
in NTIME(t1(n)). In order to handle an input string of size n, a finite field
F = GF(q) with q = 2k for some integer k is selected, and is represented by
R(F) = (2, tF (z)), where tF (z) is a irreducible polynomial over GF(2). An
input y = a1a2 · · · an is partitioned into k-segments sr−1 · · · s1s0 such that each
si is converted into an element w(si, u) in F , and y is transformed into an

polynomial dy(z) = zr +
∑r−1

i=0 w(si, u)z
i. A random element a ∈ F is chosen in

the beginning of streaming algorithm before processing the input stream. The
value dy(a) is evaluated with the procession of input stream. The finite F is
large enough such that for different y1 and y2 of the same length, dy1(.) and

4

dy2(.) are different polynomials due to their different coefficients derived from
y1 and y2, respectively. Let H(y) be the set of all 〈n, a, dy(a)〉 with a ∈ F
and n = |y|. Set A(n) is the union of all H(y) with y ∈ Ln. The set of A is
∪∞
i=1A(n). A small lower bound for the language A is magnified to large lower

bound for L.
The size of field F depends on the density of set L and is O(f(n)n). By

the construction of A, if y ∈ L, there are q tuples 〈n, a, dy(a)〉 in A that are
generated by y via all a in F . For two different y1 and y2 of length n, the
intersection H(y1) ∩ H(y2) is bounded by the degree of dy1(.). If y 6∈ L, the
number of items 〈n, a, dy(a)〉 generated by y is at most q

4 in A. If y ∈ L, the
number of items 〈n, a, dy(a)〉 generated by y is q in A. This enables us to convert
a string x of length n in L into some strings in A of length much smaller than
n, make the hardness magnification possible.

3.2. Separation by ZPP-hardness of MCSP

Our another result shows that ZPP-hardness for MCSP implies EXP 6= ZPP.
We identify a class of functions that are padding stable, which has the property
if T ∈ TALLY(d(n), g(n)), then {1n+2n : 1n ∈ T } ∈ TALLY(d(n), g(n)). The

function pair d(n) = log logn and g(n) = 22
2n

has this property. We construct
a very sparse tally set L ∈ EXP ∩ TALLY(d(n), g(n)) that separates ZPEXP
from ZPP, where ZPEXP is the zero error exponential time probabilistic class.
It is based on a diagonal method that is combined with a padding design. A
tally language L has a zero-error 22

n

-time probabilistic algorithm implies L′ =
{1n+2n : 1n ∈ L} has a zero-error 2n-time probabilistic algorithm. Adapting to
the method of [11], we prove that if MCSP is ZPP ∩ TALLY(d(n), g(n))-hard
under polynomial time truth-table reductions, then EXP 6= ZPP.

4. Hardness Magnification via Streaming

In this section, we show a hardness magnification of sparse sets via a streaming
algorithm. A classical algorithm to find irreducible polynomial [15] is used to
construct a field that is large enough for our algorithm.

Theorem 2. [15] There is a deterministic algorithm that constructs a irre-

ducible polynomial of degree n in O(p
1
2 (log p)3n3+ǫ+(log p)2n4+ǫ) operations in

F , where F is a finite field GF(p) with prime number p.

Definition 3. Let f(n) be a function fromN to N . For a language A ⊆ {0, 1}∗,
we say A is f(n)-sparse if |An| ≤ f(n) for all large integer n.

4.1. Streaming Algorithm

The algorithm Streaming(.) is based on a language L that is f(n)-sparse. It
generates a field F = GF(2k) and evaluates dx(a) with a random element a in

5

F . A polynomial zr +
∑r−1

i=0 biz
i = zr + br−1z

r−1 + br−2z
r−2 + · · · + b0 can

be evaluated by (· · · ((z + br−1)z + br−2)z + ...)z + b0 according to the classical
Horner’s algorithm. For example, z2 + z + 1 = (z + 1)z + 1.

Algorithm

Streaming(n, x)
Input: an integer n, and string x = a1 · · · an of the length n;
Steps:

1. Select a field size q = 2k such that 8f(n)n < q ≤ 16f(n)n.

2. Generate an irreducible polynomial tF (u) of degree k over GF(2) such that
(2, tF (u)) represents finite F = GF(q) (by Theorem 2 with p = 2);

3. Let a be a random element in F ;

4. Let r =
⌈

n
k

⌉

; (Note that r is the number of k-segments of x. See Section 2)

5. Let j = r − 1;

6. Let v = 1;

7. Repeat

8. {

9. Receive the next k-segment sj from the input stream x;

10. Convert sj into an element bj = w(sj , u) in GF(q);

11. Let v = v · a+ bj ;

12. Let j = j − 1;

}

13. Until j < 0 (the end of the stream);

14. Output 〈n, a, v〉;

End of Algorithm

Now we have our magnification algorithm. Let M(.) be a randomized Turing
machine to accept a language A that contains all 〈|x|, a, dx(a)〉 with a ∈ F and
x ∈ L. We have the following randomized streaming algorithm to accept L via
the randomized algorithm M(.) for A.

Algorithm

Magnification(n, x)
Input integer n and x = a1 · · · an as a stream;
Steps: Let y =Streaming(n, x); Accept if M(y) accepts;
End of Algorithm

6

4.2. Hardness Magnification

In this section, we derive some results about hardness magnification via sparse
set. Our results show a trade off between the hardness magnification and sparse-
ness via the streaming model.

Definition 4. For a nondecreasing function t(.) : N → N, define BTIME(t(n))
the class of languages L that have two-side bounded error probabilistic algo-
rithms with time complexity O(t(n)). Define BPP = ∪∞

c=1BTIME(nc).

Theorem 5. Assume that u1(m) be nondecreasing function for the time to gen-
erate an irreducible polynomial of degree m in GF(2), and u2(m) be the nonde-
creasing function of a time upper bound for the operations (+, .) in GF(2m). Let
f(.), t1(.), t2(.), t3(n) be nondecreasing functions N → N with f(n) ≤ 2

n
2 , v(n) =

(logn+ log f(n)), and 10v(n) + t1(n) + u1(10v(n)) + n · u2(10v(n)) ≤ t2(v(n))
for all large n. If there is a f(n)-sparse set L with L ∈ NTIME(t1(n)) and
L 6∈ Streaming(u1(10v(n))), v(n), v(n), 1, t3(10v(n))), then there is a language
A such that A ∈ NTIME(t2(n)) and A 6∈ BTIME(t3(n)).

Proof: Select a finite field GF(q) with q = 2k for an integer k by line 1 of the
algorithm streaming(.). For each x ∈ Ln, let x be partitioned into k-segments:
sr−1sr−2 · · · s0. Let w(si, u) convert si into an element of GF(q) (See Section 2).

Define polynomial dx(z) = zr +
∑r−1

i=0 w(q, si)z
i. For each x, let H(x) be the

set {〈n, a, dx(a)〉|a ∈ GF(q)}, where n = |x|. Define set A(n) = ∪y∈LnH(y) for
n = 1, 2 · · ·, and language A = ∪+∞

n=1A(n).
Claim 1. For any x 6∈ Ln with n = |x|, we have |H(x) ∩ A(n)| < q

4 .
Proof: Assume that for some x 6∈ Ln with n = |x|, |H(x) ∩ A(n)| ≥ q

4 . It is
easy to see that r ≤ n and k ≤ n for all large n by the algorithm Streaming(.)
and the condition of f(.) in the theorem. Assume that |H(x) ∩ H(y)| < r + 1
for every y ∈ Ln. Since A(n) is the union H(y) with y ∈ Ln and |Ln| ≤ f(n),
there are at most rf(n) ≤ nf(n) < q

8 elements in H(x) ∩ A(n) by line 1 of the
algorithm Streaming(.). Thus, |H(x) ∩A(n)| < q

8 . This brings a contradiction.
Therefore, there is a y ∈ Ln to have |H(x)∩H(y)| ≥ r+1. Since the polynomials
dx(.) and dy(.) are of degrees at most r, we have dx(z) = dy(z) (two polynomials
are equal). Thus, x = y. This brings a contradiction because x 6∈ Ln and y ∈ Ln.

Claim 2. If x ∈ L, then Streaming(|x|, x) ∈ A. Otherwise, with probability
at most 1

4 , Streaming(|x|, x) ∈ A.
Proof: For each x, it generates 〈n, a, dx(a)〉 for a random a ∈ GF(q). Each
a ∈ GF(q) determines a random path. We have that if x ∈ L, then 〈n, a, dx(a)〉 ∈
A, and if x 6∈ L, then 〈n, a, dx(a)〉 ∈ A with probability at most 1

4 by Claim 1.

Claim 3. A ∈ NTIME(t2(m)).
Proof: Let z = 10v(n) = 10(logn + log f(n)). Each element in field F =
GF(2k) is of length k. For each u = 〈n, a, b〉 (a, b ∈ F), we need to guess a string

7

x ∈ Ln such that b = dx(a). It is easy to see that v(n) ≤ |〈n, a, b〉| ≤ 10v(n)
for all large n if 〈n, a, b〉 ∈ A (See Section 2 about coding). Let m = |〈n, a, b〉|.
It takes at most u1(z) steps to generate a irreducible polynomial tF (.) for the
field F by our assumption.

Since L ∈ NTIME(t1(n)), checking if u ∈ A takes nondeterministic t1(n)
steps to guess a string x ∈ Ln, u1(z) deterministic steps to generate tF (u) for
the field F , O(z) nondeterministic steps to generate a random element a ∈ F ,
and additional O(n · u2(z)) steps to evaluate dx(a) in by following algorithm
Streaming(.) and check b = dx(a). The polynomial tF (u) in the GF(2) has
degree at most z. Each polynomial operation (+ or .) in F takes at most u2(z)
steps. Since z + t1(n) + u1(z) + n · u2(z) ≤ t2(m) time by the condition of this
theorem, we have A ∈ NTIME(t2(m)).

Claim 4. IfA ∈ BTIME(t3(m)), then L ∈ Streaming(u1(10v(n)), v(n), v(n),
1, t3(10v(n))).
Proof: The field generated at line 2 in algorithm Streaming(.) takes
u1(10(logn+ log f(n))) time. Let x = a1 · · · an be the input string. The string
x partitioned into k-segments sr−1 · · · s0. Transform each si into an element
bi = w(si, u) in GF(q) in the streaming algorithm. We generate a polynomial

dx(z) = zr +
∑r−1

i=0 biz
i = zr + br−1z

r−1 + br−2z
r−2 + · · ·+ b0. Given a random

element a ∈ GF(q), we evaluate dx(a) = (· · · ((a+br−1)a+br−2)a+ ...)a+b0 ac-
cording to the classical algorithm. Therefore, dx(a) is evaluated in Streaming(.)
with input (|x|, x).

If A ∈ BTIME(t3(m)), then L has a randomized streaming algorithm that
has at most t3(10v(n)) random steps after reading the input, and at most
O(v(n)) space. After reading one substring si from x, it takes one conver-
sion from a substring of the input to an element of field F by line 10, and at
most two field operations by line 11 in the algorithm Streaming(.).

Claim 4 brings a contradiction to our assumption about the complexity of
L in the theorem. This proves the theorem.

Proposition 6. Let f(n) : N → N be a nondecreasing function. If for each fixed
ǫ ∈ (0, 1), f(n) ≤ nǫ for all large n, then there is a nondecreasing unbounded

function g(n) : N → N with f(n) ≤ n
1

g(n) .

Proof: Let n0 = 1. For each k ≥ 1, let nk be the least integer such that
nk ≥ nk−1 and f(n) ≤ n

1
k for all n ≥ nk. Clearly, we have the infinite list n1 ≤

n2 · · · ≤ nk ≤ · · · such that limk→+∞ nk = +∞. Define function g(k) : N → N

such that g(n) = k for all n ∈ [nk−1, nk). For each n ≥ nk, we have f(n) ≤ n
1
k .

Our Definition 7 is based Proposition 6. It can simplify the proof when we
handle a function that is no(1).

8

Definition 7. A function f(n) : N → N is no(1) if there is a nondecreasing

function g(n) : N → N such that limn→+∞ g(n) = +∞ and f(n) ≤ n
1

g(n) for all

large n. A function f(n) : N → N is 2n
o(1)

if there is a nondecreasing function

g(n) : N → N such that limn→+∞ g(n) = +∞ and f(n) ≤ 2n
1

g(n)
for all large n.

Corollary 8. If there exists a 2n
o(1)

-sparse language L in NTIME(2n
o(1)

) such
that L does not have any randomized streaming algorithm with no(1) updating
time, and no(1) space, then NEXP 6= BPP.

Proof: Let g(n) : N → N be an arbitrary unbounded nondecreasing function
that satisfies limn→+∞ g(n) = +∞ and g(n) ≤ log logn. Let t1(n) = f(n) =

2n
1

g(n)
and Let t2(n) = 22n, t3(n) = n

√
g(n), and v(n) = (logn+ log f(n)).

It is easy to see that v(n) = no(1), and both u1(n) and u2(n) are nO(1) (see

Theorem 2). For any fixed c0 > 0, we have t2(v(n)) > t2(log f(n)) ≥ t2(n
1

g(n)) >
t1(n) + nc0 for all large n. For all large n, we have

t3(10v(n)) ≤ t3(20 log f(n)) = t3(20n
1

g(n)) (1)

≤ (20n
1

g(n))

√

g(20n
1

g(n)) ≤ (n
2

g(n))
√

g(n) = no(1). (2)

Clearly, these functions satisfy the inequality of the precondition in Theorem 5.
Assume L ∈ Streaming(poly(v(n)), v(n), v(n), 1, t3(10v(n))). With O(v(n)) =
no(1) space, we have a field representation (2, tF (.)) with deg(tF (.)) = no(1).
Thus, each field operation takes no(1) time by the brute force method for poly-
nomial addition and multiplication. We have t3(10v(n)) = no(1) by inequality
(2). Thus, the streaming algorithm updating time is no(1). Therefore, we have
that L has a randomized streaming algorithm with no(1) updating time, and
no(1) space. This gives a contradiction. So,
L 6∈ Streaming(poly(v(n)), v(n), v(n), 1, t3(10v(n))). By Theorem 5, there is
A ∈ NTIME(t2(n)) such that A 6∈ BTIME(t3(n)). Therefore, A 6∈ BPP. Thus,
NEXP 6= BPP.

5. Implication of ZPP-Hardness of MCSP

In this section, we show that if MCSP is ZPP∩TALLY-hard, then EXP 6= ZPP.
The conclusion still holds if TALLY is replaced by a very sparse subclass of
TALLY languages.

Definition 9. For a nondecreasing function t(.) : N → N, define ZTIME(t(n))
the class of languages L that have zero-error probabilistic algorithms with time
complexity O(t(n)). Define ZPP = ∪∞

c=1ZTIME(nc), and
ZPEXP = ∪∞

c=1ZTIME(2n
c

).

9

Definition 10. For an nondecreasing function f(n) : N → N, define
TALLY[f(k)] to be the class of tally set A ⊆ {1}∗ such that for each 1m ∈ A,
there is an integer i ∈ N with m = f(i). For a tally language T ⊆ {1}∗, define
Pad(T) = {12n+n|1n ∈ T }.

Definition 11. For two languages A and B, a polynomial time truth-table re-
duction from A to B is a polynomial time computable function f(.) such that
for each instance x for A, f(x) = (y1, · · · , ym, C(.)) to satisfy x ∈ A if and only
if C(B(y1), · · · , B(ym)) = 1, where C(.) is circuit of m input bits and B(.) is
the characteristic function of B.

Let ≤P
r be a type of polynomial time reductions (≤P

tt represents polynomial
time truth-table reductions), and C be a class of languages. A language A is
C-hard under ≤P

r reductions if for each B ∈ C, B ≤P
r A.

Definition 12. Let k be an integer. Define two classes of functions with
recursions: (1) log(1)(n) = log2 n, and log(k+1)(n) = log2(log

(k)(n)). (2)

exp(1)(n) = 2n, and exp(k+1)(n) = 2exp
(k)(n).

Definition 13. For two nondecreasing functions d(n), g(n) : N → N, the pair
(d(n), g(n)) is time constructible if (d(n), g(n)) can be computed in time d(n)+
g(n) steps.

Definition 14. Define TALLY(d(n), g(n)) to be the class of tally sets T such
that |T≤n| ≤ d(n) and for any two strings 1n, 1m ∈ T with n < m, they satisfy
g(n) < m. We call d(n) to be the density function and g(n) to be the gap
function. A gap function g(n) is padding stable if g(2n + n) < 2g(n) + g(n) for
all n > 1.

Lemma 15.

i. Assume the gap function g(n) is padding stable. If T ∈ TALLY(d(n), g(n)),
then Pad(T) ∈ TALLY(d(n), g(n)).

ii. For each integer k > 0, g(n) = exp(k)(2n) is padding stable.

Proof: Part i. Let 1n be a string in T . The next shortest string 1m ∈ T
with n < m satisfies g(n) < m. We have 12

n+n and 12
m+m are two consecutive

neighbor strings in Pad(T) such that there is no other string 1k ∈ Pad(T) with
2n + n < k < 2m + m. We have g(2n + n) < 2g(n) + g(n) < 2m + m. Since
the strings in Pad(T)≤n are one-one mapped from the strings in T with length
less than n, |Pad(T)≤n| ≤ |T≤n| ≤ d(n), we have Pad(T) ∈ TALLY(d(n), g(n)).
This proves Part (i).

Part ii. We have inequality g(2n +n) = exp(k)(2(2n + n)) < exp(k)(4 · 2n) =
exp(k)(2n+2) ≤ exp(k)(22n) = 2g(n) < 2g(n)+g(n). Therefore, gap function g(n)
is padding stable. This proves Part ii.

10

Lemma 16. Let d(n) and g(n) be nondecreasing unbounded functions from N
to N , and (d(n), g(n)) is time constructible. Then there exists a time con-
structible increasing unbounded function f(n) : N → N such that
TALLY[f(n)] ⊆ TALLY(d(n), g(n)).

Proof: Compute the least integer n1 with d(n1) > 0. Let s1 be the number
of steps for the computation. Define f(1) = max(s1, n1). Assume that f(k− 1)
has been defined. We determine the function value f(k) below.

For an integer k > 0, compute g(f(k−1)) and the least k numbers n1 < n2 <
· · · < nk such that 0 < d(n1) < d(n2) < · · · < d(nk). Assume the computation
above takes s steps. Define f(k) to be the max(2s, nk, g(f(k − 1)) + 1). For
each language T ∈ TALLY[f(n)], there are at most k strings in T with length
at most f(k). On the other hand, d(nk) ≥ k by the increasing list 0 < d(n1) <
d(n2) < · · · < d(nk). Therefore, we have |T≤nk | ≤ k ≤ d(nk). Furthermore,
we also have g(f(k − 1)) < f(k). Since s is the number of steps to determine
the values s, nk, and g(f(k − 1)) + 1. We have 2s ≤ f(k). Thus, f(k) can be
computed in f(k) steps by spending some idle steps. Therefore, the function
f(.) is time constructible.

We will use the notion TALLY[f(k)] to characterize extremely sparse tally

sets with fast growing function such as f(k) = 22
2k

. It is easy to see that
TALLY = TALLY[I(.)], where I(.) is the identity function I(k) = k.

Lemma 17. Let d(n) and g(n) be nondecreasing unbounded functions. If
function g(n)) is padding stable, then there is a language A such that A ∈
ZTIME(2O(n)) ∩ TALLY(d(n), g(n)) and A 6∈ ZPP.

Proof: It is based on the classical translational method. Assume
ZTIME(2O(n)) ∩ TALLY(d(n), g(n)) ⊆ ZPP. Let f(.) be a time constructible
increasing unbounded function via Lemma 16 such that
TALLY[f(n)] ⊆ TALLY(d(n), g(n)). Let t1(n) = 22

n

and t2(n) = 22
n−1

.
Let L be a tally language in DTIME(t1(n)) ∩ TALLY[f(n)], but it is not in
DTIME(t2(n)). Such a language L can be constructed via a standard diagonal
method. Let M1, · · · ,M2 be the list of Turing machines such that each Mi has
time upper bound by function t2(n). Define language L ∈ TALLY[f(n)] such
that for each k, 1f(k) ∈ L if and only if Mk(1

f(k)) rejects in t2(f(k)) steps. We
have L ∈ TALLY(d(n), g(n)) by Lemma 16.

Let L1 = Pad(L). We have L1 ∈ TALLY(d(n), g(n)) by Lemma 15.
We have L1 ∈ DTIME(2O(n)) ⊆ ZTIME(2O(n)). Thus, L1 ∈ ZPP. So,
L ∈ ZTIME(2O(n)). Therefore, L ∈ ZTIME(2O(n)) ∩ TALLY(d(n), g(n)). We

have L ∈ ZPP. Thus, L ∈ DTIME(2n
O(1)

) ⊆ DTIME(22
n−1

). This brings a
contradiction.

Theorem 18. Let d(n) and g(n) be nondecreasing unbounded functions from
N to N. Assume that g(n) is padding stable. If MCSP is ZPP ∩
TALLY(d(n), g(n))-hard under polynomial time truth-table reductions, then
EXP 6= ZPP.

11

Proof: Assume that MCSP is (ZPP ∩ TALLY(d(n), g(n))-hard under poly-
nomial time truth-table reductions, and EXP = ZPP.

Let L be a language in ZTIME(2O(n)) ∩ TALLY[d(.), g(.)], but L 6∈ ZPP by
Lemma 17. Let L′ = Pad(L). Clearly, every string 1y in L′ has the property
that y = 2n + n for some integer n. This property is easy to check and we
reject all strings without this property in linear time. We have L′ ∈ ZPP.
Therefore, there is a polynomial time truth-table reduction from L′ to MCSP via
a polynomial time truth-table reduction M(.). Let polynomial p(n) = nc be the
running time for M(.) for a fixed c and n ≥ 2.

Define the language R = {(1n, i, j), the i-th bit of j-th query of M(1n+2n)
is equal to 1, and i, j ≤ p(n + 2n)}. We can easily prove that R is in EXP.
Therefore, R ∈ ZPP ⊆ P/poly (See [1]).

Therefore, there is a class of polynomial size circuits {Cn}∞n=1 to recognize R
such that Cn(.) recognize all (1

n, i, j) with i, j ≤ p(n+2n) in R. Assume that the
size of Cn is of size at most q(n) = nt0 + t0 for a fixed t0. For an instance x = 1n

for L, consider the instance y = 1n+2n for L′. We can compute all non-adaptive

queries 〈T, s(n)〉 to MCSP in 2n
O(1)

time via M(y). If s(n) ≥ q(n), the answer
from MCSP for the query 〈T, s(n)〉 is yes since 〈T, s(n)〉 can be generated as
one of the instances via the circuit Cn(.). If s(n) < q(n), we can use a brute
force method to check if there exists a circuit of size at most q(n) to generate

T . It takes 2n
O(1)

time. Therefore, L ∈ EXP. Thus, L ∈ ZPP. This bring a
contradiction as we already assume L 6∈ ZPP.

Corollary 19. For any integer k, if MCSP is ZPP∩TALLY(log(k)(n), exp(k)(2n))-
hard under polynomial time truth-table reductions, then EXP 6= ZPP.

Proof: It follows from Theorem 18 and Lemma 15.

Corollary 20. For any integer k, if MCSP is ZPP∩TALLY-hard under poly-
nomial time truth-table reductions, then EXP 6= ZPP.

Corollary 21. If MCSP is ZPP-hard under polynomial time truth-table reduc-
tions, then EXP 6= ZPP.

6. Conclusions

In this paper, we develop an algebraic method to magnify the hardness of sparse
sets in nondeterministic classes via a randomized streaming model. It has a flexi-
ble trade off between the sparseness and time complexity. This shows connection
to the major problems to prove NEXP 6= BPP. We also prove that if MCSP is
ZPP-hard, then EXP 6= ZPP.

Acknowledgements: This research was supported in part by National
Science Foundation Early Career Award 0845376, and Bensten Fellowship of
the University of Texas Rio Grande Valley. Part of this research was conducted

12

while the author was visiting the School of Computer Science and Technology
of Hengyang Normal University in the summer of 2019 and was supported by
National Natural Science Foundation of China 61772179.

References

[1] L. Adleman. Two theorems on random polynomial time. In Proceedings of
the 19th Annual IEEE Symposium on Foundations of Computer Science,
pages 75–83, 1978.

[2] E. Allender and S. Hirahara. New insights on the (non-)hardness of circuit
minimization and related problems. In 42nd International Symposium on
Mathematical Foundations of Computer Science, MFCS 2017, August 21-
25, 2017 - Aalborg, Denmark, pages 54:1–54:14, 2017.

[3] E. Allender, D. Holden, and V. Kabanets. The minimum oracle circuit size
problem. Computational Complexity, 26(2):469–496, 2017.

[4] L. Chen, C. Jin, and R. Williams. Hardness magnification for all sparse NP
languages. Electronic Colloquium on Computational Complexity (ECCC),
26:118, 2019.

[5] S. Hirahara, I. C. Oliveira, and R. Santhanam. Np-hardness of minimum
circuit size problem for OR-AND-MOD circuits. In 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA,
USA, pages 5:1–5:31, 2018.

[6] S. Hirahara and R. Santhanam. On the average-case complexity of MCSP
and its variants. In 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, pages 7:1–7:20, 2017.

[7] S. Hirahara and O. Watanabe. Limits of minimum circuit size problem as
oracle. In 31st Conference on Computational Complexity, CCC 2016, May
29 to June 1, 2016, Tokyo, Japan, pages 18:1–18:20, 2016.

[8] J. M. Hitchcock and A. Pavan. On the np-completeness of the minimum
circuit size problem. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2015,
December 16-18, 2015, Bangalore, India, pages 236–245, 2015.

[9] T. Hungerford. Algebra. Springer-Verlag, 1974.

[10] D. M. McKay, C. D. Murray, and R. R. Williams. Weak lower bounds
on resource-bounded compression imply strong separations of complexity
classes. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019.,
pages 1215–1225, 2019.

13

[11] C. D. Murray and R. R. Williams. On the (non) np-hardness of computing
circuit complexity. Theory of Computing, 13(1):1–22, 2017.

[12] I. C. Oliveira, J. Pich, and R. Santhanam. Hardness magnification near
state-of-the-art lower bounds. In 34th Computational Complexity Con-
ference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA., pages
27:1–27:29, 2019.

[13] I. C. Oliveira and R. Santhanam. Hardness magnification for natural prob-
lems. In 59th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2018, Paris, France, October 7-9, 2018, pages 65–76, 2018.

[14] U. Schöning. A low and a high hierarchy within NP. JCSS, 27:14–28, 1983.

[15] V. Shoup. New algorithms for finding irreducible polynomials over finite
fields. In 29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988, pages 283–290, 1988.

14

	Hardness of Sparse Sets and Minimal Circuit Size Problem
	Recommended Citation

	1 Introduction
	1.1 Comparison with the existing results

	2 Notations
	3 Overview of Our Methods
	3.1 Magnify the Hardness of Sparse Sets
	3.2 Separation by ZPP-hardness of MCSP

	4 Hardness Magnification via Streaming
	4.1 Streaming Algorithm
	4.2 Hardness Magnification

	5 Implication of ZPP-Hardness of MCSP
	6 Conclusions

